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Abstract—State Management at line rate is crucial for critical
applications in next-generation networks. P4 is a language used
in Software-Defined Networking to program the data plane. The
data plane can profit in many circumstances when it is allowed
to manage some of its state without any detour over a controller.
This work is based on a previous study investigating the potential
and performance implications of add-on-miss state insertions.
The state-keeping capabilities of P4 are limited regarding the
amount of data and the update frequency. We follow the tentative
specification of an upcoming Portable-NIC-Architecture and
implement these changes into the software P4 target T4P4S. We
show first results, which suggest that insertions are possible with
only a slight overhead compared to lookups. Furthermore, the
initial evaluation shows an influence of the rate of insertions on
their latency.

Index Terms—SDN, State Management, P4, Add-on-Miss

I. INTRODUCTION

Next-generation networks are required to process an increas-
ing amount of data with an ever-decreasing allowed maximum
latency. Critical applications in 5G or 6G networks rely
on ultra-reliable, low-latency communication. To accomplish
these goals, not only high-performant network devices are
required, but also the capability of extending these devices by
intelligent mechanisms. The P4 language [1] allows the target-
independent programming of network data planes as part of
Software-Defined Networking (SDN). SDN splits the network
into two views: the control plane, which manages the network,
e.g., by adapting specified rules like routing tables, and the
data plane, which forwards traffic and efficiently applies these
rules. The data plane and control plane must work hand-
in-hand when it comes to more complex applications that
require state. In case state (i.e., rules/table entries) has to be
updated, the data plane has to reach out to the controller to
digest its update proposal. This involves additional latency of
at least one RTT, which hinders efficient processing. To get
rid of this detour, the data plane should be able to maintain
additional local state without the interference of the control
plane. These updates include either the insertion or deletion
of table entries or the modification of them. We investigated
the latter in previous work [2]. This paper extends that work
by implementing and studying the on-the-fly addition of new
table entries using the software-target T4P4S [3]. A new entry
is created with given parameters if there is no matching entry
for a given lookup. Add-on-miss updates will also be part of

the upcoming P4 Portable NIC Architecture (PNA) [4]. Both
techniques, especially if combined, increase the capability of
state management in P4 data planes. They enable additional
data plane applications, e.g., flow data tracking.

The remainder is structured as follows: Section II provides
background on P4 and table updates and gives insights into
the implementation of add-on-miss insertions. Section III
describes related work. Section IV evaluates its performance,
and Section V finally summarizes our findings.

II. BACKGROUND & IMPLEMENTATION

In this section, we provide general background information
on P4 and table updates. Furthermore, we introduce add-on-
miss insertions.

A. P4

P4 [1] is a domain-specific language to describe the be-
havior of data plane devices in SDN. P4 is designed as a
target-independent language and abstracts from the underlying
hardware. Compilers translate the programs exploiting features
of the used target. There exist hardware targets, e.g., ASICs,
FPGAs [5], SmartNICs, and software targets like p4-dpdk [6],
bmv2 [7], and T4P4S [3]. For our implementation, we use
T4P4S, which transpiles P4 programs into C-code that is
linked with the Data Plane Development Kit (DPDK), a
high-performant userspace packet-processing library. T4P4S is
extensible and offers high performance in contrast to BMv2,
which is meant as a reference implementation for prototyping.
Due to the better performance, we are able to gain knowledge
in the evaluation of realistic scenarios.

The P4 pipeline contains a parser that parses incoming
packets according to a given finite state machine and header
specifications. Afterward, the packets traverse match/action
tables, determining performed actions and their parameters for
specified header field values. In the end, the packet is deparsed
again and sent out or dropped.

State can be maintained mainly using unstructured memory,
i.e., registers. These are limited in size and number, inflexible,
and have no matching support. Another way to work with
data is by using the mentioned match/action tables. They
support sophisticated matching (e.g., exact, lpm, ternary) and
lay structured in the memory. P4 programs can be extended
by non-P4, target-dependent externs.
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Figure 1: Control and data plane interaction for table updates
(cf. [2]).

B. Table Updates

Two update types must be distinguished: inserting and
modifying table entries. In traditional P4, both can only be
performed after the controller has initiated the update, leading
to an additional overhead if the data plane wants to update
its state (cf. Figure 1). Control and data plane communicate
either in target-specific protocols or using the standardized
P4Runtime [8] interface. In previous work [2], we extended
T4P4S to allow modifiable table entries (green). This allows
state updates at line rate. Modifiable parameters are marked
using @__ref-annotation to be treated as references. It has
to be ensured that consistency is maintained between multiple
updates (inter-packet races) and between updates and possibly
parallel insertions (insertion/update consistency). Both are
ensured: using a lock-free, DPDK built-in mechanism for hash
tables, ensuring insert-update consistency and per-entry locks
avoiding inter-packet races. Annotations to the table definition
allow the programmer to enable the mentioned consistency
mechanisms, as required.

The same detour stands for table entry insertions. Tradi-
tionally, the controller handles insertions (red). Subsequently,
allowing the data plane to add table entries would avoid any
detours and decrease the overhead in latency. It has to be noted
that table insertions are expected to happen less frequently
than entry updates since this has to be done only once, e.g.,
per flow. The insertions are done if the corresponding lookup
(orange) results in a miss. Then, a new entry is directly added
to the table.

The PNA defines a new table property ‘add_on_miss,’
specifying whether the mechanism is active
for the table. Moreover, it defines an extern
add_entry<T>(tablename, params) that allows
adding new table entries. This extern can be called in the
default action and is executed, in case of a miss. A code
snippet on initializing new entries is given in Listing 1.
The example code shows a simplified L2-forwarder. The
forward table matches the source MAC address. In case of
a miss, a new entry is added to the table using the broadcast
MAC address as value.

The advantage of this approach is that the language is not
adapted, but the functionality is provided using an additional
hardware-dependent extern. This way, not every target has to
provide the functionality. Additionally, the creation of a new
table entry may be done conditionally. However, the condi-
tional addition may cause problems, especially for hardware
targets, when this is mapped to pipeline stages.
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Figure 2: Three-host setup

table forward {
actions= {forward, add}
key = {hdr.eth.srcAddr: exact;}
add_on_miss = true;
default_action=add;

}

action forward(bit<48> dstMac) {
...

}

action forward_add() {
bit<48> dstMac = 0xffffffffffff;
add_entry<forward_params_t>

("forward", {dstMac});
}

Listing 1: PNA add-on-miss entry initialization

III. RELATED WORK

The upcoming Portable NIC Architecture (PNA) [4] tries to
bring P4 to the end of the network and therefore requires more
sophisticated state management to allow efficient hardware
offloading, helping applications running on the end host. Many
applications may profit from cheap state updates, e.g., flow
monitoring [9] or IDS [10].

SwiSh [11] implements a distributed state layer to pro-
grammable switches. They evaluated different types of con-
sistency and implemented the layer for the Intel Tofino. The
approach shares state between several network nodes but still
involves their controllers. FlowBlaze [12] (P4 implementa-
tion: [13]) implements data plane updates relying on registers
instead of table entries. This approach uses native P4 features
mapping registers using a flow context table. Therefore, it
is widely compatible, but the functionality is limited since
registers are constrained in terms of, e.g., total number and
width.

IV. EVALUATION

In this section, we present first results of our evaluation.
We conduct experiments to measure the impact, i.e., latency,
of the insertions. Thereby, we consider two scenarios: having
an insertion-only pattern, and therefore only lookup misses,
and a mixed one, in which only a tiny subset of packets cause
lookup misses and trigger insertions.

a) Setup: For the evaluation, we use a three-host setup
depicted in Figure 2 that allows us to measure the latency of
every packet. One host is our Device under Test (DuT) running
T4P4S on a single CPU core; the other host (LoadGen)
generates packets having a size of 84 B using MoonGen [14].



Both hosts are connected via two 10 Gbit/s fiber links. They
are each monitored using optical splitters, and the monitored
packet stream is forwarded to the third host (Timestamper) that
timestamps the packets before and after the DuT to calculate
the latency [15]. For timestamping, we exploit the hardware
timestamping capabilities of the Intel X552 NIC [16] with a
resolution of 12.5 ns. Every generated packet contains a key
that is used for matching, producing either a lookup or an add-
on-miss. The DuT runs on Debian Bullseye on an Intel Xeon
D-1518 @ 2.2 GHz CPU with 32 GB RAM.

We built a latency-optimized version of T4P4S originally
based on commit [17] for our evaluation. Latency is optimized
by isolating CPU cores and removing any draining. Moreover,
the batch size is set to one, which means that one packet is
read from the NIC, processed, and sent to the NIC again,
one after another. Therefore, differences in latency are caused
by the overhead in terms of the additionally required CPU
cycles of the investigated approach. This way, we can see
the performance indications of the investigated operations as
clearly as possible.

b) P4 Program: The P4 program contains only one table,
for which the add-on-miss feature is activated, similar to the
previous example. The table is initially empty and filled later
by the add-on-miss insertions. Generated packets contain a key
in a header field that cycles through pseudorandom values.
This key is used for the table matching, and every packet is
forwarded back to the load generator.

c) Insertion Latency: The first conducted experiment
measures the required time for insertions, i.e., the latency
of packets leading to an insertion. The key values cycle
through

[
0, 220

)
several times. The table is initially empty. The

experiment can, therefore, be divided into two phases: The first
220 packets do not match any entry and will, therefore, result
in an insertion. Every subsequent request will be successfully
looked up without any more insertions required in the second
phase. In that phase, we may additionally add some keys
above the key range of phase one, resulting in an insertion.
This way, we can evaluate the performance for two scenarios:
when only insertions occur and the average scenario of rarely
happening insertions. The latter is likely the case for real-world
applications. We set the sending rate of the load generator to
300 Mbit/s to avoid any influence from the load of the DuT. We
filtered the amount of data visualized for the following latency
plots due to the high number of data points. In both phases,
only every 997th packet is shown; however, all latencies are
displayed for the insertions in the second phase.

Figure 3 shows the observed latencies while processing five
million packets in total. Insertions caused by add-on-misses are
only performed during the first phase. There are no additional
insertions in the second phase. The median latency during
the insertion phase is higher, 3900 ns compared to 3600 ns.
It can be seen that the performance is of the same magnitude
when only lookups are performed, as it was also the case for
table entry updates [2]. Our previous adoption of the table
architecture towards a lock-free single replica table enables
the implementation.
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Figure 3: Latencies while inserting 220 new entries through
add-on-miss, followed by ≈ 4M lookup hits (300 Mbit/s)
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Figure 4: Latencies while inserting 220 new entries through
add-on-miss, followed by ≈ 4M additional packets, with an
insertion rate of 10 000 (300 Mbit/s)

d) Insertion rates: While the first experiment shows
the latencies when only insertions are performed, we now
investigate isolated insertions at different rates. This is a more
realistic use case since, e.g., new flows touch the device
less often than known ones. Figure 4 shows again observed
latencies, but now there is an add-on-miss with every 10 000-th
packet during the second phase. The lookups still perform
better than insertions. The latency of the insertions is higher
when performed between lookups than when executed during
an insertion-only phase. This is likely due to worse cache
efficiency. Different branches of the compiled program are
executed when mixing insertions and lookup, leading to a
worse branch prediction. This is primarily an issue for software
targets running on CPUs. Hardware targets mostly follow a
different architecture using pipeline stages, leading to a more
constant latency, independent of the taken branch in the control
flow [18].

This trend continues with a decreasing rate of insertions.
Figure 5 shows the latencies induced by different rates of
insertions during the second phase. To show the trend more
clearly, we increased the load to the device by raising the
sending rate of the load generator to 800 Mbit/s. The accumu-
lated (cf. Figure 5a) latency of all packets (both hits/lookups
and misses/insertions) slightly decreases when fewer costly
insertions are done. The reason is quite apparent. At the same
time, the cost of each insertion (cf. Figure 5b) rises when



fewer insertions are performed. Having an insertion only every
100 000-th packet introduces a median latency of 6437 ns,
which is an increase of 47.1 % compared to an insertion rate
of 10. The reason for that was already discussed before.
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Figure 5: Latencies having insertions with different rates
(800 Mbit/s)

V. CONCLUSION

This paper investigated an approach toward adding state in
P4 data planes on the fly. If a table lookup results in a miss, a
new entry is added by calling a special extern. This is possible
with only a little overhead with regard to latency. Allowing
table entries to be added by the data plane itself increases the
possible low-latency applications. The evolution of P4 towards
that is a highly welcome but also required step towards next-
generation networks.

To what extent this trend is a step back away from the split
view of control and data plane towards more intelligence in
the data plane itself can be discussed. Conversely, the methods
presented in the paper enable quick updates in the local state.
Local state is especially suited for tasks like flow tracking
inside the application. Advanced applications may still require
a global state managed by the control plane, ensuring consis-
tency between several nodes. Both state types help hand-in-
hand to enable both fast and powerful applications.

Future work can extend this analysis by implementing a
performance model and splitting the costs into different sub-
parts. Additionally, this model can be built up on CPU cycles
rather than latency. Moreover, it can investigate the maximum
possible throughput in a throughput-optimized version. When
it comes to multi-core scenarios, the mentioned different
locking and synchronization strategies of the match/action
tables come into play and their differences in performance
can be analyzed for combined insertions and update patterns.
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