Emulation of Multipath Transmissions in P4
Networks with Kathara

Marcel GroBmann and Tobias Homeyer

Computer Networks Group, University of Bamberg
Bamberg, Germany
Email: marcel.grossmann@uni-bamberg.de | tobias.homeyer@stud.uni-bamberg.de

Abstract—Packets sent over a network can either get lost or
reach their destination. Protocols like TCP try to solve this
problem by resending the lost packets. However, retransmissions
consume a lot of time and are cumbersome for the transmission
of critical data. Multipath solutions are quite common to address
this reliability issue and are available on almost every layer
of the ISO/OSI model. We propose a solution based on a P4
network to duplicate packets in order to send them to their
destination via multiple routes. The last network hop ensures
that only a single copy of the traffic is further forwarded to
its destination by adopting a concept similar to Bloom filters.
Besides, if fast delivery is requested we provide a P4 prototype,
which randomly forwards the packets over different transmission
paths. For reproducibility, we implement our approach in a
container-based network emulation system called Kathara.

Keywords—P4; Multipath; Emulation; Kathara;

I. INTRODUCTION & MOTIVATION

When data is sent over the network, in many cases a packet
can either get lost or reach its destination. Many protocols
try to solve this problem like TCP, which resends packets
that are lost. But this retransmission consumes additional time
and is not the best solution for sending critical data. We try
a different approach by sending critical/needed data to its
destination by duplicating packets. For example, if a person
visits a hospital for a remote surgery, it is important that the
data is transmitted quickly and reliably. To achieve this, this
paper proposes a solution to duplicate important packets in
order to send them to their destination via multiple routes.
The receiving switch ensures that only a single copy of the
traffic is further forwarded to its destination. To ensure that
only one copy is forwarded, this paper proposes a concept
where a hash is created over a packet and its value is stored
in the switching register in a concept that is similar to Bloom
filters [9].

Besides, multipath transmissions can be used to increase
data delivery speed by splitting the path. Hereby, data is
transmitted over a network by randomly distributing it over
different routes to reach its target, which speeds up transmis-
sion time.

Motohashi et al. [8] created a multipath P4 implementation
for wireless access points, which randomly distributes the
traffic. Their prototype is only capable to transmit UDP
packets. In our approach, we created two different multipath
scenarios for P4 routers by either splitting or duplicating the
traffic for both transport layer protocols.

Lindner et al. [7] try to solve this problem with a different
approach, where they create a specific header. Our approach

offers more flexibility as it can be reused for all protocols and
does not necessarily depend on specific protocol parameters
(only if the hash is created over such parameters) and it is not
needed to create a new header to find duplicate packets.

Our goal is to create a reproducible emulation of multi-
path transmissions in P4 enabled networks. Therefore, we
created different prototypes with a P4 network emulated in
Kathard that can send packets over two different paths. First,
a random_split setup is created, which forces packets to
randomly traverse those paths. Second, a duplicate prototype
is implemented, which clones packets to send them over
both paths. It ensures that duplicates are removed again on
the receiving switch. Our implementation and trial configu-
rations are made publicly available on Github under uniba-
ktr/p4_multipath' to ensure reproducibility of the experi-
ments.

II. FOUNDATION
A. Kathard

Kathard [2] is an open source container-based network
emulation system and is the spiritual successor of the notorious
Netkit. It can be used to test production networks in a sandbox
environment or to develop new network protocols.

In Kathard, each device is emulated by a container, which
runs on either Docker or Kubernetes, and the virtual network
devices are connected by virtual L2 Local Area Networks
(LANs). Each container can run a different Docker image
and already provided ones include P4, Quagga, FRRouting,
OpenVSwitch, and many more. Besides, it is also possible to
use custom container images. We provide a multi-architecture
P4 image unibaktr/ubuntu:p4*, which is based on an ubuntu
image that comes with the necessary networking tools. Kathara
uses the concept of network scenarios, where a directory
contains a file with the network topology, called lab.conf.
Files and folders can be created for each device, which
represent its configuration.

B. Software-Defined Network

The objective of Software-Defined Networks (SDNs) is
the realization of a powerful transport architecture for a
next generation packet-switched high speed network and the
intelligent orchestration and provisioning system that enables
the demand-driven allocation of virtualised resources [5].

Uhttps://github.com/uniba-ktr/p4_multipath
Zhttps://hub.docker.com/r/unibaktr/ubuntu

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

Switch Configuration

Table
Config

Control

Program

\
Action 3
Set !

I
S ’ ay e
_ . ——— . = |
2. % Match =) Match =3
= A || Action & || Action 3

Ingress Pipeline Egress Pipeline

Figure 1. P4’s abstract forwarding model [cf. 3]

SDN is vendor neutral as the data plane switches, SDN con-
troller, and network control applications are separate entities
and can be provided by different vendors [6, p. 459-460].

C. OpenFlow

OpenFlow provides a simple way to enable the control plane
to program hardware and software from different vendors. The
OpenFlow interface is used to match packets with rule tables
based on header fields (e.g. IP addresses, MAC addresses,
etc.). Each iteration of OpenFlow has shown that more header
fields and rule tables are needed for switches to expose their
capabilities to the controller [3].

D. Programming Protocol-Independent Packet Processor

Programming Protocol-Independent Packet Processor (P4)
[3] is a high-level language. P4 is capable of working with
an SDN control protocol such as OpenFlow. The P4 pro-
gramming language is used to increase flexibility and allows
programmers to change how a packet is processed at deployed
switches. In addition, P4 is protocol-independent and the
switches are not bound to a specific network protocol. Also
the programmer is able to describe the packet processing
functionality independent of the hardware.

Instead of extending the OpenFlow specification, "future
switches should support flexible mechanisms for parsing pack-
ets and matching header fields, allowing controller applica-
tions to leverage these capabilities through a common, open
interface (i.e., a new "OpenFlow 2.0" API)" [3]

If a packet arrives at the P4 parser, as depicted in Figure 1,
it extracts the header fields from the packets. The header fields
are used to define the protocols supported by the switch. After
that, the header fields are used in the input and output port
"match+action" tables, which determine into which output port
and queue the packet is placed. At the input port it is decided
whether a packet should be discarded, forwarded, flow control
triggered, or replaced. The output port "match+action” is used
to perform pre-instance modification to the packet header, e.g.,
multicast copies [3].

The P4 language is used to express how packets are
processed by the data plane of a programmable target. It is
only designed to specify data plane functionality and does not
consider the control plane. In conventional switches the data
plane functionality is defined by the manufacturer. The control
plane is used for controlling the data plane by managing entries
of the routing tables, configuring specialized objects, and by
processing control packets.

10.0.1.1

s3
Figure 2. Network topology

The latest version of P4 is P41 (version 1.2.2)° and has
made many non-backward compatible changes compared to
P44 (version 1.0) to achieve a more stable language definition.
Many functions were outsourced into libraries, e.g., counters,
checksum units, etc., to transform P4 from a complex language
with 70+ keywords into a small core one with around 40
keywords. Due to these changes, the new keyword "external”
was introduced to describe library elements.

Each manufacturer must provide both a P4 compiler and
an accompanying architecture definition for their target. The
input controls provide information to the P4 program and the
output control can be written by the P4 program.

The Very Simple Switch (VSS) is an example architecture
provided by the P4 specification®. It can receive packets
through input ports where the arbiter performs a checksum
check and drops failed packets. The VSS has one parser,
a match-action pipeline, and a deparser. When a packet is
deparsed, it is emitted through an Ethernet output port. There
are three special Ethernet output ports:

« drop port, which discards a packet,

« recirculate port, which sends a packet back to an Ethernet
input port,

« and CPU port, which sends a packet to the control plane.

III. MULTIPATH PROTOTYPES

Our prototypes use the same topology depicted in Figure
2 with four switches, namely s/ to s4, which are running
our unibaktr/ubuntu:p4 image and two computers, 2/ and h2,
which are equipped with our unibaktr/ubuntu base image?.
Currently, the switches are configured manually and only show
the capabilities of a P4 program, where its main functionality
to determine the multipath behavior resides on s/ and s4,
which connect the network to the end users respectively. A
further hierarchical execution of the distribution algorithms is
not covered by now.

A. Multipath Random Split

This prototype uses two tables for the IPv4 addresses, the
first one is instantiated on s2 and s3, as only normal forwarding
is needed here. The second table is integrated on s/ and s4
to forward the packet either to s2 or s3 with the function
random_split_group_to_nhop of Listing 1. When a packet is
forwarded to the IP 10.0.4.2 then the random_split_group
method is called, which needs three parameter, first the

3https://p4.org/p4-spec/docs/P4-16-v1.2.2.html

random_split_group_id, second the threshold and last the
maxNum parameter; maxNum is used to create a random
number. If it is greater than the threshold egress port O is
used, such that the packet is forwarded to s2. And if this is
not the case, the packet is forwarded to s3. This is analogous
for the other direction, when a packet is sent from A2 to hl.

Listing 1. Ingress of random_split prototoype
table random_split_group_to_nhop {

key = {
meta.random_split_group_id: exact;
meta.random_split_port: exact; }
actions = {
drop;
set_nhop; 1}
size = 1024; }

B. Multipath Duplication

The duplication prototype exists to ensure a save, fast, and
reliable route for all packets from A1 to h2. In order to achieve
this, all packets are duplicated and sent over L3. All packets
from Al use the standard route via s3 to reach h2. However,
to ensure a fast and above all reliable route, the packets are
cloned at s/ and the duplicate is sent via s2 to h2. The packet
that reaches switch s4 first is forwarded to /2, the second one
is dropped.

For example, when hl sends a packet p to h2, the p is
transmitted from A/ to h2 via s3 and s4. At sl, p is duplicated
and p is sent to A2 via s2 and s4. The packet that reaches
s4 last will be dropped and the other one is forwarded to its
destination.

At s/ a mirroring_add function is executed, which al-
lows to clone every packet at the ingress port and route
it over the secondary egress port of s/. Listing 2 shows
the action clone_packet, which specifies that all pack-
ets are cloned with ingress to egress (I2E) when the
REPORT_MIRROR_SESSION_ID is equal to 500.

Listing 2. Ingress of duplicate prototype
action clone_packet () {
bit<32> REPORT_MIRROR_ID = 500;
clone (CloneType.I2E, REPORT_MIRROR_ID); }

Switch s4 runs with its own P4 file and uses a concept
similar to Bloom filters [9] for packet deduplication. For each
packet arriving at s4, a hash value is created. This hash value
is stored in a register and is compared to other hash values
that are already stored to find duplicate packets. The hash
value is created with the help of the IP source address, IP
destination address, source and destination port of the transport
layer protocol with the help of the CRC hash algorithm from
P43, The created hash value of a packet is compared to the
value of the previous packets and when the same value is
recognized, the packet is dropped and the saved hash value is
removed. Our prototype can hold up to five hash values and
save them in the register. Registers work similar to an array in
comparison to other programming languages. The hash values
must be stored in a register and not in a table, because it is
necessary to update the value regularly, which is not possible
with a P4 table. To get a few packets between duplicates, it
is necessary to store more than one value, and this can be

increased if necessary. Each time a new packet arrives, the
hash value is stored in register 0 and the other values are
moved to the next register (e.g. the value stored in O is then
stored in 1 and the value of 1 in 2, etc., only the value from
register 4 is removed).

IV. EVALUATION

In order to evaluate both prototypes, we used Wireshark to
sniff the traffic off all Collision Domains (CDs). Therefore,
we created Python clients that can send UDP or TCP packets
to a corresponding server across the topology.

In order to use Wireshark with Kathard it is necessary to
connect each CD with a Wireshark container. For random split
we observed with Wireshark running on the CDs A, B, C, and
L that not always the same route is taken to reach h2 from
hi.

To show that the duplication behavior works as intended, it
is necessary to see exactly one UDP or TCP message on all
six CD when a UDP or TCP test packet (with the same data)
is sent over the network. This means that the UDP or TCP
packet sent over the network is duplicated at s/ and thus also
sent over s2, and at s4 one of the two packets is discarded and
only one message reaches its destination.

We verified that the creation of a hash over the packet is
working as expected and that hash collision rarely happen. It
is very easy to replace the hash function, or its parameter, to
reduce the risk of hash collisions if necessary. With the help of
the log message, it could be verified that a hash is created for
the UDP or TCP packet and compared with the values stored
in the register.

V. CONCLUSION AND FUTURE WORK

The development of the prototypes was successful and they
work with UDP and TCP. P4 with the Kathard emulator is
able to duplicate and deduplicate incoming packets. Packet
deduplication with the creation of a hash over a packet
works well and is easily adaptable for other protocols. The
disadvantage, however, is that the switch must have a register
and, depending on the hash algorithm used, there is a risk of
hash collisions.

The duplicate prototype is only a small step to ensure
a reliable and fast transmission of packets over a network.
It is necessary to add multiple features to it, such as load
balancing, congestion control, and the automatic re-routing of
packets when a switch fails. The reliability of the random_split
prototype can be enhanced by integrating Raptor Codes [4] in
the corresponding P4 implementations. Currently, everything
is set up manually and if a switch has crashed, it will still try
to send the packet via the crashed route.

A next step of our resilience concept is given by the
integration of network control over SDN functionality by
integrating a controller like ONOS [1] into our prototypes. It
would allow a better control of the control layer. P4 is designed
to define the interface by which the control and data plane can
communicate, but P4 cannot be used to describe the control
plane functionality of the target [3]. With the help of SDN we
can develop ways to overcome these deficiencies.

REFERENCES

. Berde, P, Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T.,
Lantz, B., O’Connor, B., Radoslavov, P., Snow, W., and Parulkar, G.:
ONOS: Towards an Open, Distributed SDN OS. In: Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking. HotSDN
14, 1-6. Association for Computing Machinery, Chicago, Illinois, USA
(2014). por: 10.1145/2620728.2620744

. Bonofiglio, G., Iovinella, V., Lospoto, G., and Di Battista, G.: Kathara: A
container-based framework for implementing network function virtualiza-
tion and software defined networks. In: NOMS 2018 - 2018 IEEE/IFIP
Network Operations and Management Symposium, pp. 1-9 (2018). DOI:
10.1109/NOMS.2018.8406267

. Bosshart, P, Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J.,
Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D.:
P4: Programming Protocol-Independent Packet Processors. SIGCOMM
Comput. Commun. Rev. 44(3), 87-95 (2014). por: 10.1145/2656877 .
2656890

. Eittenberger, P.M., and Krieger, U.R.: Performance Evaluation of Forward
Error Correction Mechanisms for Android Devices Based on Raptor Codes.
In: Fischbach, K., and Krieger, U.R. (eds.) Measurement, Modelling, and
Evaluation of Computing Systems and Dependability and Fault Tolerance,
pp. 103-119. Springer International Publishing, Cham (2014)

. Kreutz, D., Ramos, EM.V., Verissimo, P.E., Rothenberg, C.E., Azodol-
molky, S., and Uhlig, S.: Software-Defined Networking: A Comprehensive
Survey. Proceedings of the IEEE 103(1), 14-76 (2015). por: 10.1109/
JPROC.2014.2371999

. Kurose, J.F., and Ross, K.W.: Computer Networking: A Top-Down Ap-
proach (6th Edition). Pearson (2012)

. Lindner, S., Merling, D., Hiberle, M., and Menth, M.: P4-Protect: 1+1 Path
Protection for P4. In: Proceedings of the 3rd P4 Workshop in Europe.
EuroP4°20, 21-27. Association for Computing Machinery, Barcelona,
Spain (2020). DOIL: 10.1145/3426744.3431327

. Motohashi, H., Nguyen, K., and Sekiya, H.: Enabling P4-based Multipath
Communication in Wireless Networks. In: 2020 IEEE Globecom Work-
shops (GC Wkshps, pp. 1-5 (2020). bor1: 10.1109/GCWkshps50303.2020.
9367468

. Tarkoma, S., Rothenberg, C.E., and Lagerspetz, E.: Theory and Practice of
Bloom Filters for Distributed Systems. IEEE Communications Surveys &
Tutorials 14(1), 131-155 (2012). por: 10.1109/SURV.2011.031611.00024

