
Online Algorithm for Arrival & Service Curve
Estimation

Christoph Funda
Test System Development

ZF Mobility Solutions GmbH
Ingolstadt, Germany

christoph.funda@zf.com

Pablo Marı́n Garcı́a
Department Computer Science

University Erlangen-Nuremberg
Erlangen, Germany
pablo.marin@fau.de

Reinhard German
Department Computer Science

University Erlangen-Nuremberg
Erlangen, Germany

reinhard.german@fau.de

Kai-Steffen Hielscher
Department Computer Science

University Erlangen-Nuremberg
Erlangen, Germany

kai-steffen.hielscher@fau.de

Abstract—This paper presents a novel concept to extend state-
of-the-art buffer monitoring with additional measures to estimate
arrival- and service-curves. The online algorithm for arrival- and
service-curve estimation replaces the state-of-the-art timestamp
logging, as we expect it to overcome the main disadvantages
of generating a huge amount of data and using a lot of CPU
resources to store the data to a file during operation. We prove
the accuracy of the online-algorithm offline with timestamp data
and compare the derived bounds to the measured delay and
backlog. We also do a proof-of-concept of the online-algorithm,
implement it in LabVIEW and compare its performance to the
timestamp logging by CPU load and data-size of the log-file.
However, the implementation is still work-in-progress.

Index Terms—hardware-in-the-loop streaming system, net-
work calculus, service-curve estimation, performance monitoring

I. INTRODUCTION

The concept we propose is an approach to estimate service-
curves of each software service in a hardware-in-the-loop
(HIL) streaming chain.

Our approach is based on an iterative online-algorithm in-
spired by network calculus (NC) that replaces the state-of-the-
art timestamp logging to evaluate the processing performance
of software modules. It reduces the amount of logging data
enormously, as in case of one software process, three variables
are saved. The variables are based on the timestamps and
the number of messages in the queue. Due to their iterative
calculation we assume low calculation efforts on a CPU. By
that, it allows this approach to be used during operation of a
HIL test bench in streaming operation mode.

The estimated service curves provide an overview of the
performance of the HIL system during operation and give a
hint on any system influences and changes. By saving them in
a data-base together with logging data from the system, any
system influences can be analysed.

Furthermore, the service curves can be used to calculate
delay and backlog bounds with NC. If new input data with
another arrival curve behavior needs to be processed by the
HIL, the buffer size and pre-buffer delay parameter will
change. The concept can be used to suggest a pre-buffer delay
to prevent buffer underflow but also we can also safe time
when the recommended pre-buffer delay is much lower than

Supported by ZF Friedrichshafen AG.

the designed one. It also allows to predict the needed queue
size between each software service.

II. RELATED WORK

Algorithms for estimating arrival and service curves using
NC have been a common topic in the literature for the past
years. For a more detailed review of arrival and service curve
estimation methods we refer to our paper [1]. In this section,
we present a few examples.

A. Service Curve Estimation

The work from Alcuri et al. [2] presents a method for
estimating service curves for all type of systems, including
non-FIFO ones. To estimate the service curve, the algorithm
first segments the given input and output traffic measurements
into backlogged periods (periods of time where the buffer is
not empty). Proceeding iteratively for each backlogged period,
the start time, end time, and the amount of output traffic
at these timestamps are determined. It then computes the
throughput r of the backlogged period as the number of bits
that left the system during the period divided by the duration
of the period. After that, a maximum estimation technique
is used to guess the maximum throughput of all backlogged
periods, here denoted as rmax. If the desired precision of the
estimation is reached, it continues, otherwise it restarts with
the next backlogged period. By tracing a line with rmax slope
at all points of the departure process and projecting it onto the
horizontal axis, the delay T is computed. It then computes the
maximum delay Tmax of every available backlogged period.
Finally, the final service curve is obtained as rate-latency curve
with rate rmax and latency Tmax [2].

Funda et al. [1] presented three estimation methods based
on a literature review. The first one (based on WCET and
proposed by Helm et al. [3]) takes the maximum measured
processing latency and the minimum measured rate as latency
and rate for the service curve, respectively. This method
performs good for hard real-time requirements. However, this
only works if the long-term rate of the system is lower
than the mean rate, what was our main outcome of our
case-study in [4]. The second method (based on MCET)
estimates the service as the measured mean rate, as proposed
by Helm et al. [3]. For the system latency, it computes the

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):  
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication. 



maximum and the minimum deviation between the input flow
and the mean flow. The system latency is computed as the
difference between the maximum and minimum deviation.
Latency outliers are then covered. The third method (based
on BCET) resorts the measured data with the cumulative
latencies in descendant order. Thus, a service curve can be
derived. Then, a tangent at the rate-point of interested is traced
and the intersection point with the time-axis determines the
latency of the system. This third method can lead to highly
overestimated bounds, especially when patters in the service
flow exist or in the case of stochastic NC. This method can also
be used to estimate the arrival curve: the measured data are
sorted in ascending order by the inter-arrival time, This time,
the intersection between the tangent and the y-axis (bytes)
determines the burst parameter.

B. Arrival Curve Estimation

In our previous paper [1], we presented a review of estima-
tion methods for arrival and service curves. In addition, we
proposed a method for estimating the arrival curve, based on
its definition. The upper curve was modeled as a rate-burst
function and the lower curve as a rate-latency function. The
rate rα of both curves was computed using the arrival rate
1/dT0 of the measurements and averaging it:

rα =
1

mean(dT0)
(1)

It should be also noted that the arrival flow coming from the
replayer has an arrival rate of 1/dT1.

The burst parameter bα of the upper curve was computed
in a recursive way: in every step the burst parameter was
increased by one and then shifted the origin of the arrival curve
through the arrival flow. Any time there was an intersection
point between both curves, the algorithm jumped to the next
step. Once both parameters were computer, the arrival curve
had the following form:

αu
r,b = rα · t+ bα (2)

For the lower arrival curve, the latency Lα was computed as
the maximum difference between the arrival flow and its mean
rate. The rate is the same as for the upper arrival curve. The
lower arrival curve had thus following form:

αl
r,L = rα · ⌈t− Lα⌉ (3)

In [5], Bouillard presented a method for estimating the ar-
rival curve that takes into account the changes in the input flow.
This method should mitigate the effects of small variations of
flows on the performance of the network. She computes and
upper and lower arrival curve, which constrain the input flow
xn on the interval [m,n] if ∀m ≤ m′ ≤ n′ ≤ n:

α(xn′ − xm′) ≤ n′ −m′ ≤ ᾱ(xn′ − xm′) (4)

where α and ᾱ are the lower arrival curve and upper arrival
curve, respectively, and m < n are two non-negative integers.
If eq. 4 is fulfilled, then the flow xn is (α,ᾱ)-constrained on
the interval [m,n]. The goal is to compute a long-term rate,

which takes into account the drastic changes of flows. For that,
she presents an iterative algorithm for obtaining the rate (both
upper and lower arrival curve share this computed rate). Burst
parameter b for the upper curve and latency parameter D for
the lower curve are introduced manually and work as tuning
parameters of the precision of the algorithm. The initial rate is
1/x1 and then in every step of the loop, eq. 4 is checked and
in case it is not accomplished, a new rate is computed using
the last point that was upper bounded and the point that does
not fulfill anymore the lower bound, or conversely.

The algorithm is implemented in several layers for detecting
better periodical behaviors. The first points that do not fulfill
the bounds are saved as a sub-flow and given as input flow
for the next layer.

III. METHODS

A. Research Questions

How can we monitor the performance of our HIL streaming
system during operation, without producing too much logging
data and having a low impact on the CPU performance?

How accurate are the bound by the generated arrival-
and service-curves compared to offline methods based on
timestamps?

How performant are the arrival- and service-curve estima-
tion methods implemented as online algorithms compared to
state-of-the-art timestamp logging?

B. Performance Evaluation Approach

The performance evaluation approach is as follows:
• Analyse and rate the algorithm performance.
• Implement timestamp logging.
• Implement online algorithm.
• Operate the HIL with single and multiple streams with

both implementations separately.
• Measure CPU load during operation and the size of the

log-file at the end of operation with both implementations
and compare them.

• Compare the accuracy of the algorithm with other algo-
rithms and measurements of maximum delay and back-
log.

C. Concept Idea and Description of the Online Algorithm

T1 T3T2

Inf

Fig. 1. Queue and software service

Our algorithm generates service curves during operation
by monitoring two metrics: maximum delay and maximum
backlog between the input to a queue of a server (represented
by T1 in Fig. 1) and the output of the server (represented by T3

in Fig. 1) . We calculate the burst parameter of the arrival curve
by the given mean-rate from the original data and derive the



vertical deviation from that mean-rate curve in each iteration,
saving just the maximum and the minimum of that deviation.

In Fig. 2b, an illustration of the last two calculations can
be seen: The online algorithm aims to extract the rate-latency
service-curve parameters by using the measured worst-case
delay as well as backlog. The following data are provided as
input for the calculations: for each packet i, the time stamp of
the packet, ti, and the number of bytes at each packet, bi. We
measure the maximum queue length qmax and the maximum
delay lmax during operation. In this algorithm, we use the
inter-arrival time, which is the time difference between two
successive incoming packets:

∆ti = Ti − Ti−1 (5)

The online algorithm computes first, for each step i, the
cumulative sum of inter-arrival time:

i∑
i=0

∆ti = T̃i (6)

where T̃i is the time passed until packet i, in seconds, and the
bits:

i∑
i=0

∆bi = B̃i (7)

where B̃i is the number of Bits sent till packet i. The mean
input rate rin is calculated then from the timestamp T0 of
the measurement data, which will be re-injected to the DUT.
A deviation from the ideal curve can be then iteratively
calculated (see Fig. 2a):

rin · T̃i − B̃i = ∆b (8)

where ∆b measures the deviation, in bits or msgs.
Saving just the maximum and the minimum of ∆b, we

can calculate the maximum burst parameter bin, of the arrival
curve in bits or msgs, as:

bin = max{∆b, 0} −min{∆b, 0} (9)

where max{·} and min{·} calculate the maximum and min-
imum of their argument, respectively.

time[s]

m
es

sa
ge

s[
By

te
s]

(a)

time [s]

data [Bytes]

(b)

Fig. 2. Estimation of ∆b (a) and calculation of lβ and rβ (b)

For the calculation of the latency parameter lβ the following
equation is used:

lβ =
max{qmax − bin, 0}

rin
(10)

where the parameter lβ is in seconds. Lastly, we can obtain
the rate parameter rβ as follows:

rβ =
bin

max{lmax − lβ , 0}
(11)

where the parameter rβ is in [ bits ] or [msg
s ].

IV. RESULTS OF ALGORITHM PERFORMANCE
EVALUATION AND DISCUSSION

A. Algorithm comparison and performance rating

Algorithms for estimating arrival and service curves using
NC have been a common topic in the literature for the past
years. In Table I and in II we present some of them, explaining
their characteristics.

1) Service curve performance estimation: An algorithm is
rated to be usable online, if the performance is high, which
means the computational effort and the memory usage are
both low, which leads to a high scalability. We rate scalability
as more important than its accuracy. A medium accuracy is
sufficient.

TABLE I
COMPARISON OF METHODS FOR ESTIMATING SERVICE CURVES

Method Computational
effort Memory usage Suitability

for online algorithm accuracy of bounds

Alcuri et
al. [2] High High Low High

Funda et al.-
WCET [1] Low Low High Low

Funda et al.-
MCET [1] Medium Medium Medium Medium

Funda et al.-
BCET [1] High High Low Low

Online Algorithm Low Low High High

timestamp logging Medium High Low High

The approach of [2] is an iterative approach that analyses at
first all backlogged periods for the mean-rate and afterwards
for the maximum latency. So we rate its computational effort
as well as its memory usage as high. Its scalability is rated
as low and therefore it is not suitable to be implemented as
an online algorithm. The WCET algorithm inspired by [3]
and described in detail in [1] is suitable from a performance
perspective, but its accuracy is too low and it leads to infinite
bounds faster. The MCET algorithm inspired by [3] and
described in detail in [1] rates medium suitable from a
performance perspective, even if it has medium accuracy,
what would be enough. The BCET algorithm of [1] is just
not suitable from a performance perspective and has too low
accuracy. For the online algorithm we describe here in this
paper, we estimate low performance requirements and a high
accuracy. The validation of its performance and its accuracy
are the purpose of this paper.



TABLE II
COMPARISON OF METHODS FOR ESTIMATING ARRIVAL CURVES

Method Computational
effort Memory usage Suitability

for online algorithm Precission of bounds

Bouilliard [5] Medium High Medium High
Funda et al. [1] Low High Medium Medium
Online Algorithm Low-Medium Low-Medium High Medium
timestamp logging Medium High Low High

measurement
MCET

BCET
WCET

Alcuri

Onlin
e

0

2

4

6

B
m

a
x

[M
iB

]

10
8

Infinite

(a)
measurement

MCET
BCET

WCET
Alcuri

Onlin
e

0

20

40

60

80

100

D
m

in
[s

]
Infinite

(b)

Fig. 3. Performance evaluation: Maximum queue length (backlog) (a) and
end-to-end delay (b)

2) Arrival curve performance estimation: The algorithm of
Bouilliard is implemented in several layers for detecting better
periodical behaviors. The first points that do not fulfill the
bounds are saved as a sub-flow and given as input flow for
the next layer.

We rate its computational effort from its description as
medium and its memory usage as high, so its scalability is
medium.

However, the algorithm can not be used in our case, as we
do not use a traffic shaper like a token-bucket and therefore,
we cannot give the maximum burst parameter before-hand,
what is needed by that algorithm. We need to estimate the
burst parameter online.

On the other hand, the iterative algorithm presented in [1]
provides a good basis for implementing it online. With some
basic knowledge of NC and some simple measurements, this
algorithm could be extended to estimate the minimum service-
curve.

The direct iterative approach mentioned by Funda et al.
in [1] estimates the burst and mean-rate parameter and would
need less computational effort, however it needs to save all the
data over time, so its memory usage increase over time and is
rated as too high. On the other hand, it achieves the highest
accuracy, as it implements the definition of arrival-curves and
can be used as an algorithm for comparison.

In this paper, we assume low performance requirements
and a medium accuracy for the online algorithm, since there
is a risk of overestimating the burst parameter, as we will
discuss later. We also verify the validity of these assumptions
by performing an experimental performance evaluation of the
online algorithm.

B. Algorithm Accuracy

We prove the accuracy of that algorithm offline with times-
tamp data and compare the derived bounds to the measured
delay and backlog and to other algorithms in table III and
in Fig. 3. The derived bounds by the online algorithm are

TABLE III
TIGHTNESS OF NC METHODS (USING MAX. VALUES)

Method Dmin[s] Bmax[MiB] Dmin Tightness Bmax Tightness
Measurement 0.15 390256 - -
Funda- MCET 7.95 5.84x107 51.51 41.99
Funda- BCET 77.33 5.58x108 501.14 402.39
Funda- WCET Inf Inf Inf Inf
Alcuri et al. 83.47 6.04x108 540.99 434.32
Funda - Online
Algorithm 0.19 2382992 1.26 1.71

the tightest ones compared to the other algorithms. However,
the algorithm has also two risks of an incorrect parameter
estimation. The first one occurs, if the numerator of eq. 10
becomes 0, so lβ becomes also 0. This can happen, if the
approximation of ∆b from the input flow is overestimated.
This is due to the fact that we do not consider the order of
occurrence of the minimum and maximum of ∆b. However,
this order plays a role in the estimation of the arrival curve
burst parameter. So there is a risk in our approximation of
overestimating the arrival curve burst parameter. The second
incorrect estimation can occur, if the denominator of eq. 11
becomes 0 so rβ becomes infinite. This can happen if lβ is
higher than lmax. It is really unlikely that both parameters
are incorrectly estimated at the same time. However, lβ could
theoretically be higher than the measured lmax.

C. Algorithm Performance

We will do a proof-of-concept of the online algorithm in
LabVIEW and compare its performance to the timestamp
logging by CPU load and data-size of the log-file. However,
this is for the moment work-in-progress. We furthermore
assume, that the CPU performance requirement is much lower
for the online algorithm compared to the timestamp logging,
as we observed the writing to a file as highly consuming for
the CPU performance. The data-size will be lower, as the
algorithm just saves 4 numbers instead of 2 timestamp logs
per sample, assuming thousands of samples.

V. CONCLUSIONS

In this paper, we presented an online algorithm that offers
a light-weight method for tight service curves estimations. We
carried out a short review of the different estimation methods
for arrival and service curves from the literature and we eval-
uated its suitability for being applied online. Furthermore, we
introduced the online algorithm and explained how it estimates
the maximum delay and backlog during operation. We rated
and compared the different algorithm performance based on
an analysis. Lastly, we proved the accuracy of the online
algorithm offline using timestamp data. We observed that the
online algorithm provides the tightest bounds compared to
the measured bounds. In future work, we will implement the
online algorithm in LabVIEW and compare its performance
to the timestamp logging method.

ACKNOWLEDGMENT

This research was supported by ZF AG and ZF Mobility
Solutions GmbH (a company of ZF group).



REFERENCES

[1] C. Funda, P. Marin Garcia, R. German, and K.-S. Hielscher, “Arrival
and service curve measurement-based estimation methods to analyze and
design soft real-time streaming systems with network calculus,” 2023,
unpublished.

[2] L. Alcuri, G. Barbera, and G. D’Acquisto, “Service curve estimation by
measurement: An input output analysis of a softswitch model,” in Quality
of Service in Multiservice IP Networks, M. Ajmone Marsan, G. Bianchi,
M. Listanti, and M. Meo, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 49–60.

[3] M. Helm, H. Stubbe, D. Scholz, B. Jaeger, S. Gallenmüller,
N. Deric, E. Goshi, H. Harkous, Z. Zhou, W. Kellerer, and
G. Carle, “Application of network calculus models on programmable

device behavior,” in 2021 33rd International Teletraffic Congress
(ITC-33), Avignon, France, Aug. 2021, pp. 1–9. [Online].
Available: https://gitlab2.informatik.uni-wuerzburg.de/itc-conference/itc-
conference-public/-/raw/master/itc33/hel21ITC33.pdf?inline=true

[4] C. Funda, T. Konheiser, T. Herpel, R. German, and K.-S. Hielscher, “An
industrial case study for performance evaluation of hardware-in-the-loop
simulators with a combination of network calculus and discrete-event
simulation,” in 2022 International Conference on Electrical, Computer,
Communications and Mechatronics Engineering (ICECCME), 2022, pp.
1–7.

[5] A. Bouillard, “Algorithms and efficiency of Network calculus,”
Habilitation à diriger des recherches, Ecole Normale Supérieure (Paris),
Apr. 2014. [Online]. Available: https://hal.inria.fr/tel-01107384


