
How to Model and Predict the Scalability of a
Hardware-In-The-Loop Test Bench for Data

Re-Injection?
Christoph Funda

Test System Development
ZF Mobility Solutions GmbH

Ingolstadt, Germany
christoph.funda@zf.com

Tobias Konheiser
Test System Development

ZF Mobility Solutions GmbH
Ingolstadt, Germany

tobias.konheiser@zf.com

Reinhard German
Department Computer Science
University Erlangen-Nuremberg

Erlangen, Germany
reinhard.german@fau.de

Kai-Steffen Hielscher
Department Computer Science
University Erlangen-Nuremberg

Erlangen, Germany
kai-steffen.hielscher@fau.de

Abstract—This paper describes a novel application of an
empirical network calculus model based on measurements of a
hardware-in-the-loop (HIL) test system. The aim is to predict the
performance of a HIL test bench for open-loop re-injection in the
context of scalability. HIL test benches are distributed computer
systems including software, hardware, and networking devices.
They are used to validate complex technical systems, but have not
yet been system under study themselves. Our approach is to use
measurements from the HIL system to create an empirical model
for arrival and service curves. We predict the performance and
design the previously unknown parameters of the HIL simulator
with network calculus (NC), namely the buffer sizes and the
minimum needed pre-buffer time for the playback buffer. We
furthermore show, that it is possible to estimate the CPU load
from arrival and service-curves based on the utilization theorem,
and hence estimate the scalability of the HIL system in the context
of the number of sensor streams.

Index Terms—hardware-in-the-loop simulation, computer per-
formance evaluation, network calculus, scalability evaluation

I. INTRODUCTION

The HIL-based testing approach enables testing and vali-
dation of complex technical systems. Since the device under
test (DUT) works under hard real-time (RT) conditions, the
HIL test bench needs to be RT capable to enable the testing
and to be able to check the RT properties of the DUT. To
reduce the real-time requirements to soft real-time for the
streaming software (SW), a well-known technique is used: the
playback buffer. The playback buffer and the corresponding
pre-buffer time need to be dimensioned appropriately, so that
no overflow or underflow occurs. HIL systems need to be
verified and validated during their development process. The
formal basics for analyzing streaming systems with NC are
proposed by Le Boudec in [8]. In our last paper [7] we
applied the well-known methods of NC from the field of
networking and performance engineering to a HIL simulator.
We researched for and experimented with more appropriate
service-curve approximation methods, taking the soft real-time
requirements of the system under study into account. We have
shown these methods in the Workshop for NC (WoNeCa) [6]
and have written a pre-print paper [5] about it. With this work
we extend the single stream system to a system with multiple

parallel streams, describing a more complex system under
study. We evaluate the performance in terms of scalability by
increasing the number of parallel streams of the system. This
kind of system is common in the area of autonomous driving
systems, with a huge sensor set generating multiple parallel
streams. The basics of scheduling multiple flows is well known
in the NC community and can be described by first-in-first-out
(FIFO) residual curves. We furthermore approximate the CPU
utilization by setting the measured mean processing rates in
relation to the mean rates of the input flow and compare it to
the measured average CPU load on the HIL system. We create
a CPU load model for the HIL system to make predictions.
The predicted CPU load is validated using measurements with
different number of streams.

II. METHODS

A. Terminology

NC is the mathematical framework for deterministic delay
and backlog bound calculation based upon the min-plus al-
gebra invented by Cruz in 1991 [2]. We use the term cycle-
time to describe a fixed time-interval between two successive
messages or packets. The pre-buffer time or pre-buffer delay
is the time that is used to fill the playback buffer in the HIL
PC before starting to stream in real-time to the DUT.

B. Arrival and Service-Curve Approximation

Arrival and service curves can be approximated with linear
curves. The most common linear curve functions are burst-rate,
rate-latency, delay and rate functions. These linear functions
are basic functions and can be found in any basic literature
about NC, like in [8], [2], [3] and [10]. Another approach are
piecewise continuous functions, as described in [9], [11], [1]
or [4]. As we found that the disadvantages of using piecewise
continuous functions exceeds the benefits, we focus in this
work on the approximation method for lower service curves
and lower arrival curves with rate-latency functions described
by the formula 1:

βr,L(t) = rβ · ⌈t− Lβ⌉ (1)

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

������������	
��
��
��	��������	��	�
����

�������

�
�������	����
��
����	��	���������

���
��
���	����

��	
��������
�
��������	�
�������

��	�����

���
��

�����	�	�������	�����

����
��	��	

���
��
��	���������
 ���!������	�����	�
������	�
"�#

$��
%��	�	���%
��	����

$��
%��!	�	���%
��
���%�	���
���
��

���	����	���
���
��

&��	'��()
�)
�
�
��	��������	�
��	����!����	��	��

��������

������������	��	��

��������	��	*�+	%
�
����
��	��	�
����	�
����
���	�������

������������	��	��
��������	��	�
����	�
����
���	�������

����
���	�������
,
�)	--.	���
����

���%��

Fig. 1. Computer performance evaluation models and how they are combined

In addition we use rate-burst functions for upper arrival
curves described by the formula 2:

αr,b(t) = rα · t+ bα (2)

The previous equations contain different parameters. rβ and
rα describe the rate of the NC curve, bα represents the burst
parameter of the arrival curve and Lβ the latency value of the
service curve.

C. Research Questions

We derive the following research questions to estimate the
performance of the HIL in terms of scalability of the streams.

• How tight are the bounds derived by NC for the maximum
delay and the backlog in the system while scaling up the
streams?

• Are the derived mean arrival & service-curve rates cor-
related to the mean CPU load?

To answer the questions we conducted the following ap-
proach.

III. APPROACH

In Fig. 1, the performance evaluation methods and how they
are combined and used in this study are shown. Measurements
of the HIL system are the basis of this study. The measure-
ments of timestamps at the input and output of processing
servers at the HIL system are used to approximate arrival
and service curves for NC equations. With NC solutions for
streaming systems, the maximum delay bound (equal to the
minimum pre-buffer time) as well as the maximum backlog
bound are calculated. The delay and buffer bounds derived by
NC are verified by timing measurements at the HIL interface
to the DUT. Measurement of CPU utilization are used to verify
the estimated arrival and service-curve rates. When the number
of streams are scaled up on the HIL, the theoretical CPU
utilization of the NC model is compared to the measured
CPU load of the HIL device for verification purposes. For
performance predictions an easy CPU model is generated. The
aim is to predict the bottleneck of the CPU with the CPU
model and the bottleneck of the memory with the NC model,
while scaling up the streams.

Middle Layer

HW Layer

OS Layer
(LINUX RT)

Application Layer (LabVIEW)

HW Layer

OS Layer
(LINUX RT)

Application Layer (ROS/C++)

Replayer
Adapter
ROS to

TCP
Com_TCP

TROS1 TROS2 TROS3 TROS4

Data processing

ramdisk
(Rosbags)

TTCP_send

TCP/IP
Socket

TTCP_receive

Processing

TLV3

Timing
by
LV

Tsend_HW

TROS5

Queue

TLV1

Queue

TLV2

Queue

Localhost
via TCP

Queue

TROS0

Timing
by

Driver

DUT

Localhost
via TCP

Timing
by

FPGA

Tsend_kernel

CLOUD

Tsend_app

TCP/IP
Socket

Fig. 2. Detailed conceptual model and software instrumentation

A. Measurements

As a measurement system, a pure SW logger is used. In Fig.
2 the system under study is shown. It consists of a HOST PC
where the SW is robot operating system (ROS) based and a
HIL PC where the SW is LabView (LV) based, connected with
a TCP connection. The SW is instrumented on both PCs in the
user space to measure the SW processing latencies in µs. When
data arrives and when it leaves a process, a system timestamps
is generated for each step in the streaming chain. This kind
of measurement for the service curve generation is called
passive measurement in the NC community, according to the
terminology used by Fidler in [4]. Additionally, we monitor
the CPU load every second with the Linux top command.

B. Network Calculus for Multiple-Stream Systems

The system under study consists of a local storage, a
replayer, which replays the data, and the subsequent streaming
chain. The SW processes in the streaming chain can be re-
duced to one system service. At the end of the streaming chain,
the packet flow fills the playback buffer. After that buffer
the packets flow with a time shift to the DUT. An analysis
of streaming systems regarding playback buffer dimensioning
and pre-allocation with NC was done by Le Boudec in [8].
For basic mathematical notation, we refer to his work and we
refer to our last paper [7] for a mathematical proof and detailed
mathematical notations. We furthermore model the scheduling
on the PCs and the Ethernet network link with FIFO residual
curves. We assume a fair distribution of the TCP streams i,j
on the link:

βi(t) = C · ⌈t− L⌉ −
∑
∀j ̸=i

αj(t) (3)

We are limiting the residual service of the Ethernet link with
40 Gbps bandwidth to the maximum service offered by the
TCP algorithm, which is estimated by measurements as 5,24
Gbps, denoted as C in 3. We furthermore assume no data-loss
on the Ethernet link. For the parallel running SW processes of
the streaming chain, we assume a fair distribution of the SW
processes of different streams scheduled on the CPU cores,
described by the streams per core equation 4:

spc = ⌈streams

cores
⌉ (4)

We model the residual service of each processing unit
according to equation 5:

βi(t) =

r̄β · ⌈t− Lβ⌉ spc ≤ 1

r̄β · ⌈t− Lβ⌉ −
spc∑
∀j ̸=i

αj(t) spc > 1
(5)

The calculation of Dmax and Bmax is derived and explained
in [7].

C. Calculation of CPU Utilization and CPU Regression
Model from Measurements

The HIL system is distributed on two devices and therefore a
CPU utilization estimation for each device is necessary. While
running the system the CPU load is recorded. These record-
ings not only contain streaming related workload, but also
background and logging tasks. This needs to be considered
when comparing the CPU load to the utilization estimations
from the NC approach. As the additional processes are not
represented by the NC approach, we will have an offset y and
a factor x to match both systems, resulting in the following
equations 6 for each number of streams i:

Umeasured(i) = x · i · UNC(i) + y (6)

We used simple regression to generate a CPU load model
and derive values for the offset and the linear multiplication
factor. To calculate the CPU utilization from the estimated NC
curves, we derived equation 7:

UNC(i) =
100

num cores
·

i∑
n=1

rα(i)

rβ(i)
(7)

IV. CASE STUDY

A. Case Study Description

The case study is based on a multiple RADAR data stream
with variable bit-rate. We performed measurements of SW
processing unit timestamps and CPU utilization logs with 1
to 10 streams in parallel and used these for input model-
ing and NC model generation. Latency and backlog bounds
were calculated with NC and the minimum pre-buffer delay
Dmax(T8−T1) and system backlog Bmax(T8−T1), which is
assumed to be equal to the maximum playback-buffer backlog.

B. Measurement and NC Results for Delay and Backlog

Table I shows the measured values and the results derived
from the NC approach. The tightness is calculated by dividing
the NC result by the measured value.

TABLE I
NC AND MEASUREMENT COMPARISON

num streams 1 4 8 10
Dmeasure

max [s] 0.15 0.12 0.21 2.10
DNC

max[s] 0.66 0.56 0.53 2.39
Dtightness

max 4.25 4.73 2.52 1.14
Bmeasure

max [MiB] 0.17 0.13 0.19 1.80
BNC

max[MiB] 0.68 0.60 0.57 2.18
Btightness

max 4.11 4.61 2.94 1.20

The tightness factor is always greater than 1, so we derive
always valid bounds. However, the factor decreases from 4 to
1 as we scale up from 1 to 10 streams.

C. Comparing HIL Measurements, NC Model and Regression
Model for CPU Utilization

The linear regression approach to estimate the CPU utiliza-
tion of the Host PC results in equation 8. Similarly it can be
calculated for the HIL PC in equation 9.

U ϵ
ROS = 0.71 · UNC

ROS + 3.03 (8)

U ϵ
LV = 0.84 · UNC

LV + 20.86 (9)

Table II displays the measured, estimated and calculated
utilization using the NC arrival & service-rates and a linear
regression model.

TABLE II
CPU UTILIZATION

num streams 1 4 8 10
Umeasure
ROS 1.41 4.60 7.68 11.35

Uϵ
ROS 3.04 3.59 6.54 11.87

UNC
ROS 0.02 0.20 0.62 1.25

Umeasure
LV 10.93 29.05 24.80 29.44

Uϵ
LV 20.87 21.07 22.28 30.00

UNC
LV 0.01 0.06 0.21 1.09

V. DISCUSSION

The tightness of the NC bounds increases with the number
of streams in our measurements, which is the opposite of
what we expect. However, the bounds are tight until the
maximum number of streams we could measure. Beyond 10
streams we were not able to log timestamps anymore. Despite
the dependency on measurements, the FIFO residual curve
approach seems to be a valid method for estimating NC bounds
for multi-stream systems. The CPU utilization estimation for
the ROS computer works well. The LV computers utilization
estimation does not scale well. One reason for this could be the
estimation method for the service-curve rate. However, even
the CPU load measurements do not scale well in LV.

VI. CONCLUSIONS

The NC bounds calculated with the FIFO residual curve
approach result in valid upper bounds for the end-to-end delay
and the system backlog. However, the increasing tightness
of the bounds, as the number of streams increases, seems
implausible. More number of streams need to be evaluated, but
we reached a performance bottleneck of timestamp logging at
10 streams. With the NC model, we mainly want to estimate
how many streams we are able to scale up in terms of memory
usage by the backlog bound. The CPU utilization approach
using the regression model results in valid estimations, but
the model needs to be refined with more measurements and
extrapolation must be incorporated into the model in order to
estimate the bottleneck of CPU utilization by the number of
streams. This will be addressed in future work.

REFERENCES

[1] Anne Bouillard, Laurent Jouhet, and Eric Thierry. Service curves in
network calculus: dos and don’ts, 2009.

[2] R.L. Cruz. A calculus for network delay. i. network elements in isolation.
IEEE Transactions on Information Theory, 37(1):114–131, 1991.

[3] R.L. Cruz. A calculus for network delay. ii. network analysis. IEEE
Transactions on Information Theory, 37(1):132–141, 1991.

[4] Markus Fidler. Survey of deterministic and stochastic service curve
models in the network calculus. IEEE Communications Surveys and
Tutorials, 12(1):59–86, 2010.

[5] Christoph Funda. Arrival- and service-curve estimation methods from
measurements to analyze and design soft real-time streaming systems
with network calculus, 12 2022.

[6] Christoph Funda. Performance evaluation of HIL systems with NC.
https://plassart.github.io/WoNeCa/2022/, 2022. Accessed: 2023-05-02.

[7] Christoph Funda, Tobias Konheiser, Thomas Herpel, Reinhard German,
and Kai-Steffen Hielscher. An industrial case study for performance
evaluation of hardware-in-the-loop simulators with a combination of
network calculus and discrete-event simulation. In 2022 International
Conference on Electrical, Computer, Communications and Mechatronics
Engineering (ICECCME), pages 1–7, 2022.

[8] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A The-
ory of Deterministic Queuing Systems for the Internet, volume 2050.
Springer Berlin, Heidelberg, 2001.

[9] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In 2000 IEEE International Sym-
posium on Circuits and Systems (ISCAS), volume 4, pages 101–104
vol.4, 2000.

[10] Amaury Van Bemten and Wolfgang Kellerer. Network calculus: A
comprehensive guide, 10 2016.

[11] Ernesto Wandeler. Modular Performance Analysis and Interface-Based
Design for Embedded Real-Time Systems. PhD thesis, ETH Zurich, 09
2006.

ACKNOWLEDGMENT

This research was supported by ZF AG and ZF Mobility
Solutions GmbH (a company of ZF group).

APPENDIX

System under study computer devices

The HIL cluster consists of a HOST PC and a HIL RT-
PXI. The HOST PC is equipped with a 2012 Intel Xeon E3-
1230 V2 3.3 GHz processor (four physical CPU cores) and
16 GB system memory. All worker nodes are connected via
40 Gbit Ethernet in a single-switch star topology. Each node
runs Gentoo Linux (kernel version 3.6.11) and Java 1.7.0.13.

The HIL RT- PXIe-8880 is equipped with an Intel(R)
Xeon(R) CPU E5-2618L v3 @ 2.30GHz (8 physical CPU
cores) and 24 GB system memory. All worker nodes are con-
nected via 40 GBit Ethernet in a single-switch star topology.
Each node runs NI Linux Real-Time x64 4.14.146-rt67 and
other NI LabVIEW Runtime and NI Drivers.

