
Multiple DCLC Routing Algorithms for
Ultra-Reliable and Time-Sensitive Applications

Piyush Navade, Lisa Maile, Reinhard German
Computer Networks and Communication Systems

Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

{piyush.navade, lisa.maile, reinhard.german}@fau.de

Abstract—This paper discusses the problem of finding multiple
shortest disjoint paths in modern communication networks,
which is essential for ultra-reliable and time-sensitive applica-
tions. Dijkstra’s algorithm has been a popular solution for the
shortest path problem, but repetitive use of it to find multiple
paths is not scalable. The Multiple Disjoint Path Algorithm
(MDPAlg), published in 2021, proposes the use of a single full
graph to construct multiple disjoint paths. This paper proposes
modifications to the algorithm to include a delay constraint,
which is important in time-sensitive applications. Different delay-
constraint least-cost routing algorithms are compared in a
comprehensive manner to evaluate the benefits of the adapted
MDPAlg algorithm. Fault tolerance, and thereby reliability, is
ensured by generating multiple link-disjoint paths from source
to destination.

Index Terms—Dijkstra’s algorithm, shortest path routing,
disjoint multi-paths, delay constrained, least cost.

I. INTRODUCTION

With the increasing demand for ultra-reliable and time-
sensitive applications in modern communication networks, it
has become necessary to develop routing algorithms that can
ensure reliable and fast delivery of data packets. Traditionally,
the shortest path problem has been a well-known problem
in graph theory, Dijkstra’s algorithm [1], being the most
popular solution. To ensure ultra-high reliability, this problem
is extended to finding multiple paths that do not share any
common links, so that in the event of a failure, the transmission
of data can still be guaranteed. Many solutions which use
Dijkstra’s algorithm for this problem have been proposed in the
literature, like [2] and [3]. However, they require the repetitive
use of Dijkstra’s algorithm to generate multiple paths, which
is not a scalable solution [4].

Recently, Multiple Disjoint Path Algorithm (MDPAlg) [5]
proposes a novel method involving a single full graph instead
of using Dijkstra’s to construct multiple disjoint paths. When
time-sensitive applications are considered, the generated dis-
joint paths should also keep the delay constraint, which is
why we propose modifications to the algorithm of [5]. First,
we start with modifications to simple Dijkstra’s algorithm to
make it scalable when the number of nodes increases in a
network and then similar modifications are made to MDPAlg,
to include the delay constraint.

It is to be noted that the proposed solutions in this paper are
solutions to a routing problem and not an optimization prob-

lem. Generally, optimization problems in computer networks
involve maximizing or minimizing a certain metric, such as
bandwidth utilization, while considering various constraints.
Here, we are only concerned with determining the most
efficient path for data packets to travel from one node to
another while considering the cost of the path and its delay.

In summary, the contributions of this paper are as follows:
(i). Evaluating the efficiency and scalability of Dijkstra’s
Algorithm with delay constraints for finding multiple shortest
disjoint paths in a given network. (ii). Modifying MDPAlg to
include a delay threshold to generate multiple shortest disjoint
paths constrained by delay. (iii). Comparing the above two
approaches in a comprehensive manner to judge when and
where they are useful.

II. ALGORITHM

A. Delay Bounded Dijkstra’s Algorithm

The shortest path (SP) problems are core networking prob-
lems. In practical scenarios, the paths with a total cost greater
than a given bound are not used. As Dijkstra’s algorithm
discovers paths in increasing order of cost, the SP search can
be terminated earlier, thereby reducing the search space and
runtime of the algorithm [1].

Additionally, a delay constraint is introduced to the algo-
rithm, where accumulated delays from the source to other
nodes are tracked in the same way that costs are calculated in
the simple Dijkstra algorithm. When moving from one node to
the next, if the delay exceeds the threshold, the corresponding
cost is not updated. This allows the algorithm to terminate
early if the delay constraint is not met, reducing the search
space and runtime of the algorithm. By incorporating delay
constraints into the algorithm, it is possible to find the shortest
path that meets both the cost and delay requirements. One
approach to generate multiple paths using Dijkstra’s algorithm
is to run it repeatedly on the modified graph, where the links
which are used in the previous output path are removed.

Edge disjoint shortest path algorithm proposed in [2] cal-
culates the shortest path using an iteration of Dijkstra, then
the graph is modified by switching the direction of the links
present in this shortest path and multiplying their weight by
-1 so that these links are not considered when Dijkstra is run
again, resulting in a pair of disjoint shortest paths. A similar
approach is followed in Suurballe’s algorithm, [3].

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

The iterative use of Dijkstra’s has its disadvantages. Firstly,
running Dijkstra’s algorithm repeatedly on the modified graph
can significantly increase the runtime, particularly for large
and complex networks. This can have a negative impact on
the overall performance of the network, particularly in time-
sensitive applications. Secondly, this approach may not always
find all the shortest paths that exist in the network. This
is because when the links of a discovered shortest path are
removed from the graph, it is possible that some of the shortest
paths, which may exist in the original graph, may not be
discovered in subsequent runs of Dijkstra’s algorithm.

B. Delay Modifications to MDPAlg

In order to increase the reliability of the network, multiple
paths are needed so that the same data can be sent simultane-
ously over different paths. The algorithm described in Section
II-A has the limitation of producing only one path at a time,
which can be a significant drawback in applications where
network reliability is critical.

To overcome these issues, Lopez-Pajares et al. [5], designed
MDPAlg which is able to obtain multiple disjoint paths among
a given node and the remaining nodes in a graph, following a
two-phase process, with just a single full graph search. During
the first phase, the aggregated costs to go from the source to
any other node in the graph are determined. This analysis is
a modified version of Dijkstra’s algorithm in which a graph
node not only collects information: delay and cost, from
the minimum-cost tree but from all its neighbors (including
cross-links), lines 9-11 in Algorithm 1. By using this extra
information, MDPAlg is able to build multiple disjoint paths
with only one single graph search, hence avoiding iterative
executions.

The Cost Matrix (CM) is defined as an NxN non-complete
matrix of depth 2, where N is the total number of nodes in
the graph. The matrix is non-complete because if two nodes
don’t share a link between them, the corresponding cell in
the matrix will be empty. Algorithm 1 illustrates the analysis
phase. We initialize CM with an infinite value in all of its
entries, except for the one associated with the source, set up
with zero cost and delay, which ensures that the algorithm
starts the analysis procedure at this node. Then each node of
the graph is analyzed once, ordered by the selection criteria
of the lowest cost, see line 4 in Algorithm 1.

The first depth of CM corresponds to the cost (or weight)
and the second corresponds to the delay values and both are
filled respectively in line 9-14.

The path generation phase is based on the CM obtained
in Algorithm 1. Path generation follows an iterative approach
of getting the minimum cost neighbor and disabling the links
which are used. More specifically, after selecting a neighbor
node to continue the path construction, the two entries repre-
senting the link between them in the CM are disabled (since
the paths obtained are bidirectional). We modify this matrix
with values calculated in a delay matrix. Specifically, for every
value in the delay matrix which exceeds the delay bound, the

Algorithm 1: Cost Analysis in MDPAlg
Data: Graph(G), Source(s)
Result: Cost Matrix(CM)

1 CM = initialize(G, s);
2 Q = get nodes from G;
3 while Q ̸= ∅ do
4 u = extract min(Q);
5 for each vertex v neighbour of u do
6 if v ̸= s then
7 w = Lc ; /* Link Cost */
8 d = Ld ; /* Link Delay */
9 if CM [u][u][0] + w < CM [v][v][0] then

10 CM [v][v][0] = CM [u][u][0] + w
CM [u][v][0] = CM [u][u][0] + w

11 end
12 if CM [u][u][1] + d < CM [v][v][1] then
13 CM [v][v][1] = CM [u][u][1] + d

CM [u][v][1] = CM [u][u][1] + d
14 end
15 end
16 end
17 end
18 return CM

corresponding value in CM is replaced by infinity, therefore
in the path generation phase, this link will never be selected.

C. Delay Constraints

Delay constraints for real-time communication have re-
ceived significant research attention over the last few years [6,
7]. Determining delay bounds on a per-hop basis is a non-
trivial task, as they also depend on the current reservation of
flows in the network and their paths. The proposed routing
algorithms are run iteratively for each flow in the network.
However, when additional flows are added to the network,
previous delay constraints may become invalid. Consequently,
previously determined paths could be no longer valid. There-
fore, in [8], we propose a central network controller which
offers reservation-independent delay bounds for IEEE 802.1Q
networks [9]. The controller defines maximum delay bounds
for each hop in the network, which are then used for the rout-
ing algorithms. These delay bounds are validated for each new
flow reservation, to make sure that all delay constraints - and
returned paths - remain valid. We use Network Calculus [10]
- as it is a well-established delay analysis framework - to
validate the per-hop delay bounds when new flows are added
to the network. An overview of related work for the delay anal-
ysis of IEEE 802.1Q networks using Network Calculus can be
found in [6]. Be aware that the simultaneous use of disjoint
paths to duplicate the transmission of frames, as proposed by
the Time-Sensitive Networking standard IEEE 802.1CB [11]
(Frame Replication and Elimination for Reliability), increases
the delay in the network, as has been identified in [12, 13].

Fig. 1. Number of paths generated

III. RESULTS

The modified algorithms were first implemented in Python.
Our modified MDPAlg is compared with Delay Bounded
Dijkstra’s because it is a well-proven solution. However,
as Dijkstra’s algorithm does not provide disjoint paths by
definition, we must execute Dijkstra’s algorithm iteratively to
obtain the disjoint paths between a given pair of nodes. After
each run, we remove from the graph the minimum-cost path
obtained, launching Dijkstra’s algorithm with the modified
graph again to calculate a new disjoint path. The process ends
when no more paths are discovered between the pair of nodes.
In this way, the disjointness among paths is guaranteed.

The experiment involves testing on the most challenging
type of graphs, which are fully connected, and contain between
10 and 100 nodes. For each instance, 1000 test runs are
conducted, with randomly assigned weights and delays for
evaluation. Moreover, the source-destination pair is randomly
chosen in those 1000 runs. From Fig. 1, we see that MDPAlg
manages to return more paths than Dijkstra’s. This is because
the graph changes every time Dijkstra’s is executed, it is not
able to find the maximum number of paths.

The comparison of run-times is illustrated in Fig. 2, and it is
evident that the primary factor causing the algorithm to slow
down is the execution of Dijkstra’s. MDPAlg, on the other
hand, solves this issue by conducting a single graph search
only once, which makes the algorithm faster. Additionally, as
MDPAlg is capable of generating multiple disjoint paths, it
is beneficial to use our modification to eliminate paths that
exceed the delay threshold. This approach performs better than
the traditional approach of using Dijkstra’s algorithm.

IV. CONCLUSION

This paper proposes modifications to MDPAlg to include
a delay threshold to generate multiple shortest disjoint paths
constrained by delay, making them more scalable and efficient
in larger networks. The contributions of this paper include
evaluating the efficiency and scalability of Dijkstra’s Algo-
rithm with delay constraints for finding multiple shortest dis-

Fig. 2. Run time comparison

joint paths in a given network, modifying MDPAlg to include
a delay threshold to generate multiple shortest disjoint paths
constrained by delay, and comparing the above approaches in
a comprehensive manner.

In summary, the algorithm described in this paper provides
a solution to the routing problem in computer networks by
determining the most efficient path for data packets to travel
from one node to another while considering the cost of the
path and its delay. Incorporating delay constraints into the
algorithm ensures that the shortest path that meets both the
cost and delay requirements is found, making the network
operate efficiently and effectively. The proposed modifications
to Dijkstra’s algorithm and MDPAlg make them more scalable
and efficient, allowing for the generation of multiple disjoint
paths in larger and more complex networks.

REFERENCES

[1] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[2] R. Bhandari, “Optimal physical diversity algorithms and survivable
networks,” in Proceedings Second IEEE Symposium on Computer and
Communications, pp. 433–441, 1997.

[3] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest
pairs of disjoint paths,” Networks, vol. 14, no. 2, pp. 325–336, 1984.

[4] A. V. Bemten, J. W. Guck, C. M. Machuca, and W. Kellerer, “Bounded
dijkstra (bd): Search space reduction for expediting shortest path sub-
routines,” ArXiv, vol. abs/1903.00436, 2019.

[5] D. Lopez-Pajares, E. Rojas, J. A. Carral, I. Martinez-Yelmo, and
J. Alvarez-Horcajo, “The disjoint multipath challenge: Multiple disjoint
paths guaranteeing scalability,” IEEE Access, vol. 9, pp. 74422–74436,
2021.

[6] L. Maile, K.-S. Hielscher, and R. German, “Network Calculus Results
for TSN: An Introduction,” in IEEE Information Communication Tech-
nologies Conference (ICTC), (Nanjing, China), pp. 131–140, May 2020.

[7] L. Deng, G. Xie, H. Liu, Y. Han, R. Li, and K. Li, “A survey of real-time
ethernet modeling and design methodologies: From avb to tsn,” ACM
Comput. Surv., vol. 55, no. 2, 2022.

[8] L. Maile, K.-S. J. Hielscher, and R. German, “Delay-guaranteeing
admission control for time-sensitive networking using the credit-based
shaper,” IEEE Open Journal of the Communications Society, vol. 3,
pp. 1834–1852, 2022.

[9] “IEEE Standard for Local and Metropolitan Area Network–Bridges
and Bridged Networks,” IEEE Std 802.1Q-2018 (Revision of IEEE Std
802.1Q-2014), 2018.

[10] J.-Y. Le Boudec and P. Thiran, Network calculus: A theory of determinis-
tic queuing systems for the Internet. Berlin, Heidelberg: Springer-Verlag,
2001.

[11] “IEEE standard for local and metropolitan area networks - frame
replication and elimination for reliability,” IEEE Std 802.1CB-2017,
2017.

[12] L. Maile, D. Voitlein, K.-S. Hielscher, and R. German, “Ensuring
reliable and predictable behavior of ieee 802.1cb frame replication
and elimination,” in ICC 2022 - IEEE International Conference on
Communications, pp. 2706–2712, 2022.

[13] L. Thomas, A. Mifdaoui, and J.-Y. Le Boudec, “Worst-case delay bounds
in time-sensitive networks with packet replication and elimination,”
IEEE/ACM Transactions on Networking, vol. 30, no. 6, pp. 2701–2715,
2022.

