
Visualization of Network Emulation Enabled by
Kathará

Marcel Großmann and Duy Thanh Le

Computer Networks Group, University of Bamberg
Bamberg, Germany

Email: marcel.grossmann@uni-bamberg.de | duy-thanh.le@uni-bamberg.de

Abstract—In network research, reproducibility of experiments
is not always easy to achieve. Infrastructures are cumbersome
to set up or are not available due to vendor-specific devices.
Emulators try to overcome those issues to a given extent and
are available in different service models. Unfortunately, the
usability of emulators requires time-consuming efforts and a
deep understanding of their functionality. At first, we analyze to
which extent currently available open-source emulators support
network configurations and how user-friendly they are. With
these insights, we describe, how an ease-to-use emulator is
implemented and may run as a Network Emulator as a Service
(NEaaS). Therefore, virtualization plays a major role in order to
deploy a NEaaS based on Kathará.

Keywords—Network Emulator; Visualized Kathará; Con-
tainerization

I. INTRODUCTION

It is a norm in the science community that experiments
proposed by a pioneering paper must be reproduced and exam-
ined closely and thoroughly before considering to be valid and
applied to the real world. For example, in medicinal chemistry
or drug discovery fields, the literature must "provide adequate
experimental detail, and Reviewers have a responsibility to
carefully examine papers for adequacy of experimental detail
and support for the conclusions" [1] or could result in legal
issues because of fake or substandard results. Transparent,
deploy-able, and reproducible papers are not yet prevalent
in the network research community since they must provide
access to all software, scripts, input data, and test-beds used in
these experiments. The first three items are relatively easy to
share, given the rise of public cloud-based hosting platforms
for version control and collaboration (i.e., git) which offers
access without restrictions. But a flexible, easy-to-deploy, and
cost-effective test-bed is not trivial to obtain. A genuine test-
bed, though having indisputable authenticity given by the
usage of physical hardware like switches, routers, and sensors,
also has a number of issues associated with it. It is costly and
hard to scale as the expense increases relatively as the size of
the test network expands, not to mention the cost of mistakes
caused by implementation errors, accumulating to the lack of
reproducibility. Network emulators, in contrast, offer lower-
cost and high-effective alternatives.

There are several prototyping programmable emulators like

GNS31, Mininet2, Containernet3, and Kathará4, and they all
have a fair share of pros and cons. For example, GNS3 offers
network researchers various network experiments by utilizing
multiple VMs to represent switches, routers, and hosts and
interconnect them via virtual interfaces. That emulator seems
appealing at first glance since any practical topologies can be
easily replicated and evaluated, but VMs are too heavyweight
due to the locally available resources limitation [2]. Mininet or
Containernet, in contrast, embrace the concept of Container-
based Emulation (CBE) by using lightweight, OS-level virtu-
alization techniques to substitute VMs as emulated network
elements, thus providing cheap experimenters with flexibility,
and reproducibility [2, 3]. However, they all demand specific
hardware, software, and OS and further system configurations
in order to be installed and work properly, not to mention the
steep learning curve to comprehend these tools. And lastly,
all of the mentioned emulators are single-machine tools, thus
restricting the testing topologies to a certain extent due to local
resource confinement.

Therefore, we propose a vision of a cloud-based, multi-
tenancy Network Emulator as a Service (NEaaS) platform by
integrating current technologies into an open-source network
emulator that allows users conveniently deploy and moreover,
test a wide range of network designs. We demonstrate a first
generation prototype of that platform to exhibit its capabilities
compared to the current network emulators. Our prototype is
made publicly available on Github under uniba-ktr/KaaS5.

II. FOUNDATION

A. Containerization

Hypervisor-based virtualization is highly regarded by cloud
providers since it supports multiple VMs - each has different
shares of CPU, memory, storage, and network interface, runs
an isolated OS with many binaries (i.e., system libraries and
application packages) and different software applications - to
operate simultaneously in a single physical server. Though
delivering several advantages (e.g., adaptability, portability,
efficiency), it also has some drawbacks: heavyweight as each

1https://docs.gns3.com/docs/
2https://github.com/mininet/mininet
3https://github.com/containernet/containernet/
4https://github.com/KatharaFramework/Kathara
5https://github.com/uniba-ktr/KaaS

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

VM runs an independent OS that adds overhead to the storage
footprint; slow startup time, since each VM has to proceed
through all steps in a typical boot process of bare-metal server;
inelasticity due to fixed resource distribution (e.g., v-cores,
RAM, storage size). These shortcomings make hypervisor-
based virtualization less favorable compared to the new ap-
proach, namely containerization when designing an effective
network emulator [2, 4].

Containerization, on the contrary, is built on top of the two
fundamental features of the Linux Kernel: namespaces and
cgroups. The former allows the partition of its own Kernel
resources, giving a process isolated resources such as: network
stack, filesystem, process ID, and user ID. The latter allows
user to limit, monitor, and isolate the amount of system
resources such as CPU, memory, I/O rates of one or multiple
processes. That results in a twofold increase in efficiency:
high optimization of available resources, while minimizing
overhead, along with minimal startup time. With these unique
characteristics, containerization is considered by many as a
compelling-based technique for a lightweight, cost-effective
network emulator [2, 5].

B. Container-based Emulation

Realizing the potential of OS-level virtualization, several
notable network emulators are designed based on such technol-
ogy, namely Mininet, Containernet, and Kathará. Mininet[2],
"...a network emulation orchestration system...", can mimic
many complicated network experiments with a high level of
fidelity. A "host" in Mininet is a single user-space process
sharing the same Kernel, process IDs, and filesystem with
other Mininet hosts. Mininet also utilizes various Linux net-
work tools (e.g., ip-netns, tc) in the form of Python classes for
ease of development to create virtual networking interfaces and
configurable links. Mininet is lightweight and agile, but there
are some considerable downsides: limited options regarding
resource constraints; no support of Docker containers as host
type; steep learning curve since the hosts and their links
are programmed in Python code. Consequently, Peuster et
al.[3] develop Containernet, a container-enabled host version
of Mininet. It allows users to employ Docker containers as
emulated hosts and provides better options for restricting
resource usages.

Kathará [6], successor of Netkit, also supports Docker
containers as emulated hosts. However, Kathará obscures the
actual implementation of network devices and links by using
the concept of network scenarios. Network devices, links, and
any required configurations are described in text files (e.g.,
lab.conf, device.startup). Therefore, both novice and expert
users can build, run, and test any network experiments without
spending much time and learning effort.

III. ARCHITECTURE

A. The Architecture of the Prototype

As presented in Figure 1, the prototype consists of four
services, where each one is a customized Docker container,
and the links depict the dependencies between these services.

Kathara/REST docker-client

Kathará-in-Docker

tty/socket.io docker-client

Web-TTY

G
U

I

do
ck

er
-i

n-
do

ck
er

D
oc

ke
r

en
gi

ne

Figure 1. Single user prototype

As shown, the GUI service is a containerized web application
allowing users to interact (e.g., creating devices, attaching
devices to collision domains) with the API endpoints provided
by the Kathará REST API service (i.e., emulator core). More-
over, users can remotely connect to any emulated hosts to
run additional commands through the web sockets exposed
by the Web-TTY container. And both Kathará REST and
Web-TTY services depend on a "Docker-in-Docker"6 (i.e.,
DinD) container serving as the Docker engine. Finally, the
Kathará REST, Web-TTY, and DinD containers compose a
single, completed network emulator. The prototype favors the
microservices over the monolithic architecture due to several
causes: allowing developers to implement and deploy new core
functions without getting in the way of one another; it fits
well with the cloud-native approach as a single micro-services
emulator will be assigned on-demand to a single user; offering
better security because each user has his dedicated DinD so
that his emulated hosts are entirely isolated from others.

B. The System Workflow

Figure 2 describes the sequence diagram for creating and
running a Kathará lab in the prototype. First, users add
various networking devices on the GUI, then users make an
HTTP POST request that holds information of these devices
to the create_lab API endpoint. The emulator core checks
the validity of the submitted JSON, then creates a Kathará
lab and its configuration files within the KinD component
itself. Thereafter, the emulator core responds with a state_msg
containing the current state of the submitted lab. Next, if the
lab is successfully created, users can start it by calling the
start_lab endpoint. As a result, the emulator core tries to start
the requested Kathará lab asynchronously. After that, when
users check the current state of the lab by the lab_info endpoint
and the lab was successfully started, they will receive the list
of container IDs for the devices in that lab. Occasionally, if
users want to run commands on any device, they can click on
the icon of that device in GUI. The container ID of that device
is sent to the Web-TTY service, and a terminal session via a
websocket is initiated and displayed on the Kathará GUI as
an HTML iframe.

C. Kathará REST API

As per documentation, Kathará does not support REST API
service of any sort whatsoever, only a Python package with

6https://hub.docker.com/_/docker

create laboratory

send_lab

state_msg

initialize laboratory
start_lab

state_msg

get_info
container ID

lab_info

state_msg

connect to ID
TTY connection

send container ID

TTY connection

GUI KinD Web-TTY DinD

select [container ID]

Figure 2. Micro-service interactions

various APIs that allows developers to interact with it within
Python apps7, thus severely restricting the capabilities of the
network emulator. Therefore, a new RESTful API interface is
introduced and implemented to allow remote control of the
Kathará emulator from another service, particularly in this
design, the Kathará UI. The fastAPI framework8 is chosen due
to its robustness, agility, and support of better libraries such as
Pydantic9 or type hints. Moreover, additional Python wrapper
classes (e.g., LabWrapper, LabController, KatharaWrapper)
are introduced to mask the complexity when interacting with
the core libraries. Consequently, the new Kathará REST API
provides an API endpoint for each command of Kathará.
For example, Listing 1 shows the implementation of the API
endpoint to create a lab:

Listing 1. Lab creation API endpoint
1 @app.post("/lcreate", response_model=Message)
2 async def create_lab(info: Laboratory):
3 log.info("Create Lab {}".format(info.json()))
4 result = LabController().gen_lab(info)
5 return result

D. Kathará-in-Docker

Furthermore, both the Kathará emulator and the new REST
API framework are incorporated in a single Docker image,
thus creating a concept of Kathará-in-Docker (i.e., KinD). This
novel capability highly contributes to the NEaaS vision, as an
emulator sandboxed environment is easy to be deployed and
scaled on-demand using available container orchestrators like
Docker Swarm or Kubernetes.

IV. EVALUATION

The need for reproducibility of dissertations in the research
community, in general, and in networking research groups, in
particular, has been resonating for a long time. Others already
lay out the features which a network emulator should have so

7https://github.com/KatharaFramework/Kathara/wiki/Kathara-Python-API
8https://fastapi.tiangolo.com/lo/
9https://docs.pydantic.dev/latest/

Table I
FEATURE COMPARISON OF NETWORK EMLUATORS

Mininet Containernet GNS3 Kathará Kathará -UI
Scalability + + - + +
Flexibility - - + + +
Extensibility - - (limited) (limited) +
QoE - - + (limited) +
Realism + + + + +
Cost + + + + +

it can fulfill such demand. The experience gathered after using
those emulators is summurized in the following list:

• Scalability: the platform should facilitate a wide range of
emulation of network topologies from several to hundreds
or thousands of network devices without altering the
system architecture.

• Flexibility: It should be effortless to create any network
experiments in a convenient manner.

• Extensibility: New capabilities or types of network de-
vices should be integrated into the platform with ease,
and should not require any modifications in the design of
the platform.

• QoE: The time and effort a user, regardless of his ability,
spent to use the tool should be minimal. A rich and
productive graphical user interface is recommended.

• Realism: The system and its components should show the
same functions found in the physical hardware. Similarly,
the traffic generated by the platform should be as genuine
as possible to the actual traffic.

• Cost: The overall costs (e.g., capital cost, operating cost)
should be as minimum as possible.

As a result Table I represents the achievements of the men-
tioned network emulators, as well as, our prototype regarding
the mentioned features.

V. CONCLUSION & FUTURE WORKS

In this paper, we demonstrate a new approach to enhance
network emulator tools with modern technologies to unlock
new capabilities. The main contribution is that this platform
also allows network researchers regardless of their proficiency
to easily reproduce any network experiments with a high level
of fidelity, as well as universities or other institutes to provide
better network emulators for students to learn.

However, this prototype is far from finished. A new user
management module is required to provide more functions
for users, such as registration, authentication, creating, and
saving multiple Kathará labs. The infrastructure consumed by
the NEaaS platform should also be provisioned and managed
by additional services like Proxmox10 and Ansible11. Then on
top of that layer, a container orchestrator, presumably Kuber-
netes, is needed to schedule and allocate multiple containers
demanded by numerous users with ease and efficiency.

10https://www.proxmox.com/en/
11https://github.com/ansible/ansible

REFERENCES

[1] R. G. Bergman and R. L. Danheiser, “Reproducibility
in chemical research,” Angewandte Chemie International
Edition, vol. 55, no. 41, pp. 12 548–12 549, 2016. DOI:
https://doi.org/10.1002/anie.201606591.

[2] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown, “Reproducible network experiments us-
ing container-based emulation,” in Proceedings of the
8th International Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’12, Asso-
ciation for Computing Machinery, 2012, 253–264, ISBN:
9781450317757. DOI: 10.1145/2413176.2413206.

[3] M. Peuster, H. Karl, and S. van Rossem, “Medicine:
Rapid prototyping of production-ready network services
in multi-pop environments,” in 2016 IEEE Conference
on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2016, pp. 148–153. DOI: 10.1109/
NFV-SDN.2016.7919490.

[4] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown, “Reproducible network experiments us-
ing container-based emulation,” in Proceedings of the
8th International Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’12, Asso-
ciation for Computing Machinery, 2012, 253–264, ISBN:
9781450317757. DOI: 10.1145/2413176.2413206.

[5] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and
L. Peterson, “Container-based operating system virtual-
ization: A scalable, high-performance alternative to hy-
pervisors,” in Proceedings of the 2nd ACM SIGOPS/Eu-
roSys European Conference on Computer Systems 2007,
ser. EuroSys ’07, Association for Computing Machinery,
2007, 275–287, ISBN: 9781595936363. DOI: 10 .1145/
1272996.1273025.

[6] M. Scazzariello, L. Ariemma, and T. Caiazzi, “Kathará:
A lightweight network emulation system,” in NOMS
2020 - 2020 IEEE/IFIP Network Operations and Man-
agement Symposium, 2020, pp. 1–2. DOI: 10 . 1109 /
NOMS47738.2020.9110351.

