
Federated Learning for Service Placement in Fog
and Edge Computing

Manuel Dworzak and Marcel Großmann and Duy Thanh Le

Computer Networks Group, University of Bamberg
Bamberg, Germany

Email: {firstname.surname}@uni-bamberg.de

Abstract—Service orchestration requires enormous attention
and is a struggle nowadays. Of course, virtualization provides
a base level of abstraction for services to be deployable on a
lot of infrastructures. With container virtualization, the trend
to migrate applications to a micro-services level in order to be
executable in Fog and Edge Computing environments increases
manageability and maintenance efforts rapidly. Similarly, net-
work virtualization adds effort to calibrate IP flows for Software-
Defined Networks and eventually route it by means of Network
Function Virtualization.

Nevertheless, there are concepts like MAPE-K to support
micro-service distribution in next-generation cloud and network
environments. We want to explore, how a service distribution
can be improved by adopting machine learning concepts for
infrastructure or service changes. Therefore, we show how
federated machine learning is integrated into a cloud-to-fog-
continuum without burdening single nodes.

Keywords—Fog Computing; SDN; Orchestration; Federated
Learning;

I. INTRODUCTION

In the early days of personal computers, when the Internet
was not yet around, the question of service orchestration did
not exist. Computer users only ran programs located and
installed on the computer they were currently using. With the
rise of the Internet and global connectivity, this paradigm of
local-only shifted. Cloud Computing (CC) constitutes another
major shift in which not only the code is stored remotely
but also executed on data-center machines far away from the
computer user. With this shift, a new question arose: On which
server shall the code run? The cloud provider must choose
between several servers, ranging from a few to thousands
of servers, with very potent hardware. The great advantage
of CC, due to these potent servers, is that a non-optimal
decision may not lead to significant performance loss as the
servers have enough residual capacity in most cases. This
non-significant performance loss changed with the upcoming
paradigms of Fog and Edge Computing (FEC). The decision
changed from thousands of servers to millions or billions of
nodes and devices. Additionally, computing devices are not as
powerful anymore and differ significantly in their capacities.
Consequently, it leads to a more complex decision on which
computing device to deploy as the decision variables and
the number of devices increase. Furthermore, non-optimal
decisions lead to more significant performance loss as some
devices may not have the computing capabilities to balance

cl
ou

d
fo

g
ed

ge

various
detectors
various

detectors
various

detectors
monitoring
subscriber

detection
emitterTSDB

event
handling
functions

container
registrydetection

repository

federated
learning

control server

SD
N

co
nt

ro
lle

r
O

N
O

S deployment
topologyCRMA detection

listener
deployment

requester

J J J

J

P

ed
ge

no
de

s

agreement deployment
receiver

topology
listenernode scoring

load detector

federated
learner

exclusion
detector

monitoring
platform

P

P

P P

P

P

P

P

Implementation languages: P Python J Java

Figure 1. High level architecture [4]

out decision mistakes. So the core question stands: How to
optimize service deployment?

At first, we give a short overview of current state-of-
the-art research on container orchestration and Autonomic
Computing.

IBM introduced a blueprint of Autonomic Computing and
its characteristics, such as self-healing, self-configuring, self-
protecting, and self-optimizing [5]. They provide the moni-
toring, analysis, planning and execution over the knowledge
base (MAPE-K) reference architecture to build a system that
implements the given characteristics.

Casalicchio [1] provides the problem definition and research
challenges of autonomic orchestration. They hint at the cur-
rent research challenges from monitoring, over performance
modeling, to adaptation models. Furthermore, they explain
that the MAPE-K architecture is the predominant orchestration
architecture in Autonomic CC systems.

Costa et al. [2] found that the main challenges in the context
of Fog Computing (FC) orchestration are privacy and security,
evaluation in real environments, and standardized execution
environments. In addition to finding research challenges, their
survey states the following research questions: What is the
goal of the orchestration, what are the orchestration entities,
and what is the orchestration control topology, and which
architecture layers shall one consider [2]?

As we will use machine learning (ML) in our architecture,

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

CPU

RAM

Network

Disk

Figure 2. Radar chart for resource estimation

we also want to present studies that research the combination
of container orchestration and ML. Naydenov and Ruseva [6]
give a broad overview of the domains of ML in container
orchestration and the ML approaches and algorithms. Zhong
et al. [7] go into more detail with more in-depth literature
research about ML algorithms used in container orchestration.
Additionally, the authors review each of the ML algorithms
and orchestration methods by their characteristics in terms of
advantages and disadvantages.

In our previous work we gave insights, how the MAPE-
K paradigm is realized for container orchestration, especially
in the cloud-to-fog-continuum as shown in the architecture
depicted in Figure 1. We proposed a three-layer Autonomic
Computing architecture for Docker1 container deployment
for FEC scenarios using Software-Defined Networks (SDNs).
Additionally, we added a federated machine learning (FL)
concept to ease the decision making process [4]. Now, we
show various technologies and tools we used to accomplish
our goal, ranging from the modalities of computing paradigms
to ML techniques.

II. SERVICES TO SUPPORT DECISION MAKING

A. Resource Estimation

We ask application providers to annotate every container
deployment request with a radar chart as shown in Figure 2.
Hence, we can learn the required resources from the already
running containers due to these chart annotations, using FL
on each node with each container. For FL, each node needs
to know about the network topology such that the nodes can
interact with each other, which the topology listener provides,
which gets this data from the SDN Controller. For each deploy-
ment request, the node scoring module creates a score based
on the estimated resource usage. The node scoring process
considers factors like already used ports, container names, or
resource overload, which the exclusion detector verifies. The
deployment receiver component deploys the container to the

1https://www.docker.com/

(a) Non-anomaly plot

(b) Anomaly plot

Figure 3. Anomaly detection

highest scored node, which all eligible nodes agreed on by a
distributed agreement algorithm.

B. Load Detection

We avoid any Quality of Experience (QoE) impact on
currently running services by running the learning process
only, when the system has an overall low resource usage.
Contrary, on an overall high resource usage, each container’s
resource usage information is stored in a node-local database.
This data is used for learning by the FL process. Hence, we
store in the load detector one model for each hierarchy and a
global one.

C. Taint Detection

The concept of tainted nodes is taken from Kubernetes2

and used to prevent nodes with high resource usage from
deploying new containers. The taint detector receives the tree
structure from the monitoring subscriber and checks in the
tree structure if any node has fulfilled a CPU, memory, or disk
load over 60%. If any of these three conditions are satisfied,
we consider the node tainted, and the taint detector forwards
this information to the detection emitter.

D. Anomaly Detection

The anomaly detector aims to detect anomalies by an ex-
tended isolation forest for hosts and containers. These forests
are relearned every day to be up to date with current usage
trends. Whenever the monitoring subscriber sends a tree to the
anomaly detector, it calculates an anomaly score. If it exceeds
a host or container-specific threshold, the event is forwarded
to the detection emitter.

For each container and host, we use the CPU, memory
and disk usage, as well as, the network sent and receive
rate to generate the extended isolation forest. To avoid the
swamping problem and keep the forests small enough for

2https://k3s.io/

create

"Leader elected"
message

Start learning

Aggregate
hierarchy models

Send hierarchy models

Send learned
models

Aggregate
modelsSend finalized model to each node
Store new

global model

Send global model and
the current hierarchies

Federated Learner FL Control Server

Hierarchy Leader

loop [for first IP in each hierarchy]

Figure 4. FL workflow

efficient computation of anomaly scores, we only use 1000
data points for each extended isolation forest. We create
a boxplot of anomaly scores for these data points, where
the whiskers are the threshold to detect anomalies for each
isolation forest. In Figure 3 the two blue vertical lines in
the right images represent the whiskers, while the red vertical
bar on the right images represents the current anomaly score,
depicted as a red dot in the left image. We can see in Figure
3a that the red vertical bar or red dot, the current anomaly
score, is inside the blue vertical bars or the whiskers of the
boxplot. It means we do not consider the current anomaly
value as an anomaly. In Figure 3b, we can see what it looks
like when detecting an anomaly. The anomaly score exceeds
the whiskers of the boxplot.

For every tree the monitoring subscriber receives, we cal-
culate the anomaly score and compare it with the whiskers of
the isolation forest model. If the anomaly score exceeds the
whiskers, an anomaly is detected. However, we also want to
detect which kind of anomaly we have which is not supported
by isolation forests by default. Hence, we calculate the average
and standard deviations for each parameter (CPU, Memory,
Disk, Network RX, Network TX) and how many standard
deviations the current value is divergent from the average.
The anomaly detector sends this array with the container
name and the host IP to the detection emitter. Based on this
information, the event handling functions component can use
different strategies to resolve the anomaly event.

III. FEDERATED LEARNING

A chart diagram is the basis for the federated learner to
estimate the container resource usage. Therefore, it uses a
local data model. For each hierarchy, an elected leader will

aggregate the learned models of its hierarchy. They are sent to
the FL control server, which is the counterpart that aggregates
those models.

We show the workflow for the whole FL process in Figure
4. When an iteration begins, the FL control server sends the
global model, the hierarchy name, and the list of IP addresses
of the current hierarchy to each node. The first IP address is
considered the hierarchy leader in this iteration. This way of
leader election is simple and efficient. However, it does not
give respect to the resources on the node. Once the leaders
are elected, they send a "Leader Elected" message to their
hierarchies. By receiving the message each node trains the
model from its local data. After the federated learners have
finished their learning process, the nodes send their models
to their hierarchy leader, which aggregates them. Once the
merging is complete, all hierarchy leaders send the aggregated
models to the FL control server, which aggregates all hierarchy
models. After this aggregation, the FL control server sends the
finalized model to each node and stores the global model.

IV. CONCLUSION

Our architecture is already shown in our previous work
[4], which is structured according to the MAPE-K paradigm.
Different aspects were additionally split among the network
layers of edge, fog, and cloud computing.

Several existing Docker container orchestrators, Kuber-
netes2 and Docker Swarm1, as two notable mentions, use a
centralized node scoring process in which a central solver
iterates through all nodes for the deployment and scores them
individually. Increasing the node count increases the time spent
on the scoring process due to more required computations
by the central solver. We solved this goal by introducing a
decentralized scoring function in which each node scores itself
in parallel. A centralized server process only needs to find the
node with the highest score.

Taken from Delimitrou and Kozyrakis [3], we know that in
70% of the cases, users overestimate the required resources
while 20% underestimate the resources. We give users a radar
chart to fill out for resource estimation and then use ML
techniques to learn the used resources. This ML approach
allows mitigation of the issues that the majority overestimates
or underestimates resource requirements as the ML approach
learns and adapts its model constantly.

In the future, a critical addition would be moving some
detectors to the fog layer. In the current state, if a new
machine enters the network and a new machine detector
suffers from packet loss, this new node will never be used for
deployment. Instead of using dedicated detection processes,
we could leverage the northbound protocols of Open Network
Operating System (ONOS) to get information about the current
networking nodes. In the future, more research on which
analysis steps are vital to the system is required to move them
to the fog layer to reduce possible failure scenarios, as the
cloud layer has three single point of failures (SPoFs), and
mitigate them further.

REFERENCES

1. Casalicchio, E.: Autonomic Orchestration of Containers: Problem Def-
inition and Research Challenges. In: Proceedings of the 10th EAI In-
ternational Conference on Performance Evaluation Methodologies and
Tools on 10th EAI International Conference on Performance Evaluation
Methodologies and Tools. VALUETOOLS’16, 287–290. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engi-
neering), Taormina, Italy (2017). DOI: 10.4108/eai.25-10-2016.2266649

2. Costa, B., Bachiega, J., Carvalho, L.R. de, and Araujo, A.P.F.: Orchestra-
tion in Fog Computing: A Comprehensive Survey. ACM Comput. Surv.
55(2) (2022). DOI: 10.1145/3486221

3. Delimitrou, C., and Kozyrakis, C.: Quasar: Resource-efficient and qos-
aware cluster management. ACM SIGPLAN Notices 49(4), 127–144
(2014)

4. Dworzak, M., Großmann, M., and Le, D.T.: Federated Autonomous
Orchestration in Fog Computing Systems. In: Yang, X.-S., Sherratt, S.,
Dey, N., and Joshi, A. (eds.) Proceedings of Eigth International Congress
on Information and Communication Technology, forthcoming. Springer
Nature Singapore, Singapore

5. IBM Autonomic Computing: White Paper: An architectural blueprint for
autonomic computing. (2005)

6. Naydenov, N., and Ruseva, S.: Combining Container Orchestration and
Machine Learning in the Cloud: a Systematic Mapping Study. In: 2022
21st International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–
6 (2022)

7. Zhong, Z., Xu, M., Rodriguez, M.A., Xu, C., and Buyya, R.: Machine
Learning-based Orchestration of Containers: A Taxonomy and Future
Directions. ACM Computing Surveys (CSUR) (2021)

