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Titelbild:

Die Abbildung zeigt die Häufigkeit der detektierten Mahden in 2020, welches ein Ergebnis

der entwickelten Methode dieser Thesis darstellt und in den folgenden Kapiteln genauer

erläutert wird.
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"Science progresses best when observations force us to change preconceptions."

– Vera Rubin
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Summary

Grasslands shape many landscapes of the earth as they cover about one-third of its sur-

face. They are home and provide livelihood for billions of people and are mainly used as

source of forage for animals. However, grasslands fulfill many additional ecosystem func-

tions next to fodder production, such as storage of carbon, water filtration, provision of

habitats and cultural values. They play a role in climate change (mitigation) and in preserv-

ing biodiversity and ecosystem functions on a global scale.

The degree to what these ecosystem functions are present within grassland ecosystems

is largely determined by the management. Individual management practices and the use

intensity influence the species composition as well as functions, like carbon storage, while

higher use intensities (e.g. high mowing frequencies) usually show a negative impact. Espe-

cially in Central European countries, like in Germany, the determining influence of grass-

land management on its physiognomy and ecosystem functions leads to a large variability

and small-scale alternations of grassland parcels. Large-scale information on the manage-

ment and use intensity of grasslands is not available. Consequently, estimations of grassland

ecosystem functions are challenging which, however, would be required for large-scale as-

sessments of the status of grassland ecosystems and optimized management plans for the

future. The topic of this thesis tackles this gap by investigating the major grassland manage-

ment practice in Germany, which is mowing, for multiple years, in high spatial resolution

and on a national scale.

Earth Observation (EO) has the advantage of providing information of the earth’s sur-

face on multi-temporal time steps. An extensive literature review on the use of EO for

grassland management and production analyses, which was part of this thesis, showed that

in particular research on grasslands consisting of small parcels with a large variety of man-

agement and use intensity, like common in Central Europe, is underrepresented. Especially

the launch of the Sentinel satellites in the recent past now enables the analyses of such

grasslands due to their high spatial and temporal resolution. The literature review specifi-

cally on the investigation of grassland mowing events revealed that most previous studies
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English Summary

focused on small study areas, were exploratory, only used one sensor type and/or lacked a

reference data set with a complete range of management options.

Within this thesis a novel framework to detect grassland mowing events over large areas

is presented which was applied and validated for the entire area of Germany for multiple

years (2018–2021). The potential of both sensor types, optical (Sentinel-2) and synthetic

aperture radar (SAR) (Sentinel-1) was investigated regarding grassland mowing event de-

tection. Eight EO parameters were investigated, namely the Enhanced Vegetation Index

(EVI), the backscatter intensity and the interferometric (InSAR) temporal coherence for

both available polarization modes (VV and VH), and the polarimetric (PolSAR) decompo-

sition parameters Entropy, K0 and K1. An extensive reference data set was generated based

on daily images of webcams distributed in Germany which resulted in mowing information

for grasslands with the entire possible range of mowing frequencies – from one to six in

Germany – and in 1475 reference mowing events for the four years of interest.

For the first time a observation-driven mowing detection approach including data from

Sentinel-2 and Sentinel-1 and combining the two was developed, applied and validated on

large scale. Based on a subset of the reference data (13 grassland parcels with 44 mow-

ing events) from 2019 the EO parameters were investigated and the detection algorithm

developed and parameterized. This analysis showed that a threshold-based change detec-

tion approach based on EVI captured grassland mowing events best, which only failed

during periods of clouds. All SAR-based parameters showed a less consistent behavior to

mowing events, with PolSAR Entropy and InSAR Coherence VH, however, revealing the

highest potential among them. A second, combined approach based on EVI and a SAR-

based parameter was developed and tested for PolSAR Entropy and InSAR VH. To avoid

additional false positive detections during periods in which mowing events are anyhow

reliably detected using optical data, the SAR-based mowing detection was only initiated

during long gaps within the optical time series (< 25 days). Application and validation of

these approaches in a focus region revealed that only using EVI leads to the highest ac-

curacies (F1-Score = 0.65) as combining this approach with SAR-based detection led to

a strong increase in falsely detected mowing events resulting in a decrease of accuracies

(EVI + PolSAR ENT F1-Score = 0.61; EVI + InSAR COH F1-Score = 0.61).

The mowing detection algorithm based on EVI was applied for the entire area of Ger-

many for the years 2018-2021. It was revealed that the largest share of grasslands with high

mowing frequencies (at least four mowing events) can be found in southern/south-eastern

Germany. Extensively used grassland (mown up to two times) is distributed within the en-

tire country with larger shares in the center and north-eastern parts of Germany. These

patterns stay constant in general, but small fluctuations between the years are visible. Early
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English Summary

mown grasslands can be found in southern/south-eastern Germany – in line with high mow-

ing frequency areas – but also in central-western parts. The years 2019 and 2020 revealed

higher accuracies based on the 1475 mowing events of the multi-annual validation data set

(F1-Scores of 0.64 and 0.63), 2018 and 2021 lower ones (F1-Score of 0.52 and 0.50).

Based on this new, unprecedented data set, potential influencing factors on the mowing

dynamics were investigated. Therefore, climate, topography, soil data and information on

conservation schemes were related to mowing dynamics for the year 2020, which showed a

high number of valid observations and detection accuracy. It was revealed that there are no

strong linear relationships between the mowing frequency or the timing of the first mow-

ing event and the investigated variables. However, it was found that for intensive grass-

land usage certain climatic and topographic conditions have to be fulfilled, while extensive

grasslands appear on the entire spectrum of these variables. Further, higher mowing fre-

quencies occur on soils with influence of ground water and lower mowing frequencies in

protected areas. These results show the complex interplay between grassland mowing dy-

namics and external influences and highlight the challenges of policies aiming to protect

grassland ecosystem functions and their need to be adapted to regional circumstances.
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Zusammenfassung

Grünland prägt viele Landschaften der Erde, da es etwa ein Drittel der Erdoberfläche

bedeckt. Es ist Heimat und Lebensgrundlage für Milliarden von Menschen und wird haupt-

sächlich als Futterquelle für die Viehhaltung genutzt. Neben der Futterproduktion erfüllen

Grünlandflächen jedoch viele weitere Ökosystemfunktionen, wie die Speicherung von

Kohlenstoff, die Wasserfilterung, die Bereitstellung von Lebensräumen, als auch kulturelle

Werte. Sie spielen eine Rolle bei der Abschwächung des Klimawandels und bei der Erhal-

tung der biologischen Vielfalt und der Ökosystemfunktionen auf globaler Ebene.

Das Ausmaß, in dem diese Ökosystemfunktionen in Grünlandökosystemen vorhan-

den sind, wird weitgehend durch die Bewirtschaftung bestimmt. Einzelne Bewirtschaf-

tungspraktiken und die Nutzungsintensität beeinflussen sowohl die Artenzusammenset-

zung als auch Funktionen wie die Kohlenstoffspeicherung, wobei höhere Nutzungsinten-

sitäten (z. B. hohe Mähfrequenzen) in der Regel einen negativen Einfluss haben. Ins-

besondere in mitteleuropäischen Ländern wie Deutschland, führt der bestimmende Ein-

fluss der Grünlandbewirtschaftung auf die Physiognomie und die Ökosystemfunktionen zu

einer großen Variabilität und kleinräumigen Differenziertheit einzelner Grünlandflächen.

Großräumige Informationen über die Bewirtschaftungs- und Nutzungsintensität von Grün-

land sind nicht verfügbar. Folglich sind Schätzungen der Ökosystemfunktionen von Grün-

land eine Herausforderung, die jedoch für großräumige Bewertungen des Zustands von

Grünlandökosystemen und optimierte Bewirtschaftungspläne für die Zukunft erforderlich

wären. Das Thema dieser Arbeit greift diese Lücke auf, indem es die wichtigste Grün-

landbewirtschaftungsmethode in Deutschland, die Mahd, über mehrere Jahre, mit hoher

räumlicher Auflösung und auf nationaler Ebene untersucht.

Die Erdbeobachtung hat den Vorteil, Informationen über die Erdoberfläche in multi-

temporalen Zeitschritten zu liefern. Eine umfangreiche Literaturrecherche zur Nutzung

von Erdbeobachtung für Grünlandmanagement und Produktion, welche Teil dieser Ar-

beit war, hat gezeigt, dass insbesondere die Forschung zu kleinparzelligem Grünland mit

einer großen Vielfalt an Bewirtschaftungs- und Nutzungsintensitäten, wie in Mitteleu-

ropa gängig, unterrepräsentiert ist. Insbesondere die vor wenigen Jahren erfolgte Start
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Deutsche Zusammenfassung

der Sentinel-Satellitenmissionen ermöglicht nun auch die Analyse solcher Grünlandflächen

aufgrund der hohen räumlichen und zeitlichen Auflösung ihrer Aufnahmen. Die Literatur-

recherche speziell zur Untersuchung von Mähereignissen auf Grünland ergab, dass die

meisten bisherigen Studien sich auf kleine Untersuchungsgebiete konzentrierten, explo-

rativ waren, nur einen Sensortyp verwendeten und/oder keinen Referenzdatensatz mit einer

vollständigen Palette von Managementoptionen enthielten.

Im Rahmen dieser Arbeit wird eine neuartige Methodik zur Erkennung von Grün-

landmahdereignissen vorgestellt, welches über mehrere Jahre (2018-2021) flächendeckend

in Deutschland angewendet und validiert wurde. Beide Sensortypen – optisch (Sentinel-

2) und SAR (Sentinel-1) – wurden hinsichtlich ihres Potentials zur Detektion von Grün-

landmahdereignissen ausgewertet. Acht EO-Parameter wurden untersucht, nämlich der En-

hanced Vegetation Index (EVI), die Rückstreuintensität und die interferometrische zeitliche

Kohärenz (InSAR) für beide verfügbaren Polarimetrien (VV und VH), sowie die po-

larimetrischen (PolSAR) Zerlegungsparameter Entropie, K0 und K1. Ein umfangreicher

Referenzdatensatz wurde auf der Basis täglicher Bilder von Webcams generiert, welche

über Deutschland verteilt sind. Dieser enthält Mahdinformationen für Grünland mit dem

gesamten möglichen Spektrum an Mähfrequenzen – von eins bis sechs Mahden – und 1475

Referenz-Mähereignisse für die Untersuchungsjahre.

Zum ersten Mal wurde ein Ansatz basierend auf tatsächlichen Beobachtungen zur

Erkennung der Mahd entwickelt, angewandt und großflächig validiert, der Daten von Sen-

tinel - 2 und Sentinel - 1 verwendet und beide miteinander kombiniert. Anhand eines

Subset der Referenzdaten (13 Grünlandparzellen) wurden die EO-Parameter untersucht

und der Algorithmus zur Mahddetektion entwickelt und parametrisiert. Die Analyse hat

gezeigt, dass ein schwellenwertbasierter Ansatz zur Erkennung von Veränderungen auf der

Grundlage des EVI die Ereignisse der Grünlandmahd am besten erfasst, und nur während

Bewölkungsperioden Mahden nicht erfolgreich detektiert. Alle SAR-basierten Parameter

zeigten ein inkonsistenteres Verhalten gegenüber Mähaktivitäten als EVI, wobei PolSAR

Entropie und InSAR Kohärenz VH noch das höchste Potenzial aufwiesen. Ein zweiter,

kombinierter Ansatz, der auf EVI und einem SAR Parameter basiert, wurde entwickelt

und für PolSAR Entropie und InSAR VH getestet. Aufgrund vieler zusätzlicher Verän-

derungen, die in den Zeitreihen erkennbar sind, wurde die SAR-basierte Mahddetektion

nur während langer Lücken in den optischen Zeitreihen (< 25 Tage) initiiert. Die Anwen-

dung und Validierung dieser Ansätze in einer Fokusregion ergab, dass die Verwendung

des EVI-Ansatzes zu den höchsten Genauigkeiten führt (F1-Score = 0.65), da die Kom-

bination dieses Ansatzes mit der SAR-basierten Detektion zu einem starken Anstieg der
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Deutsche Zusammenfassung

falsch erkannten Mähereignisse und damit zu einer Abnahme der Genauigkeiten führte

(EVI + PolSAR ENT F1-Score=0.61; EVI + InSAR COH F1-Score = 0.61).

Der auf EVI basierende Mahddetektionsalgorithmus wurde für die gesamte Fläche

Deutschlands für die Jahre 2018–2021 angewendet. Es zeigte sich, dass der größte An-

teil an Grünland mit hoher Mähfrequenz (mindestens vier Mähereignisse) im Süden/Sü-

dosten Deutschlands zu finden ist. Extensiv genutztes Grünland (bis zu zweimal gemäht)

ist über das gesamte Bundesgebiet verteilt, mit größeren Anteilen in der Mitte und im Nor-

dosten Deutschlands. Diese Muster bleiben im Allgemeinen konstant, aber es sind kleine

Schwankungen zwischen den Jahren erkennbar. Früh gemähtes Grünland findet sich in Süd-

/Südostdeutschland - entsprechend den Gebieten mit hoher Mähfrequenz -, aber auch in

Mittel- und Westdeutschland. Die Jahre 2019 und 2020 zeigen höhere Genauigkeiten (F1-

Scores von 0.64 und 0.63), 2018 und 2021 niedrigere (F1-Score von 0.52 und 0.50).

Darüber hinaus wurden mögliche Einflussfaktoren auf die Mahddynamik untersucht.

So wurden Klima, Topografie, Bodendaten und Informationen über Schutzmaßnahmen mit

der Mahddynamik für das Jahr 2020 in Verbindung gebracht, für welches eine hohe An-

zahl gültiger Beobachtungen und eine hohe Erfassungsgenauigkeit erzielt werden konnten.

Es zeigte sich, dass es keine starken linearen Beziehungen zwischen der Mahdhäufigkeit

oder dem Zeitpunkt der ersten Mahd und den untersuchten Variablen gibt. Es wurde jedoch

festgestellt, dass für eine intensive Grünlandnutzung bestimmte klimatische und topografis-

che Bedingungen erfüllt sein müssen, wohingegen extensive Grünlandflächen im gesamten

Spektrum dieser Variablen auftreten. Außerdem treten auf Böden mit Grundwassereinfluss

höhere und in Schutzgebieten niedrigere Mahdhäufigkeiten auf. Diese Ergebnisse zeigen

das komplexe Zusammenspiel zwischen der Dynamik der Grünlandmahd und äußeren Ein-

flüssen und verdeutlichen die Herausforderungen in der gezielten Erstellung von Maß-

nahmen zum Schutz von Grünland-Ökosystemfunktionen und die Notwendigkeit diese re-

gional anzupassen.
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Spanish Summary

Los pastizales constituyen uno de los ecosistemas más grandes del mundo, ya que cubren

aproximadamente un tercio de su superficie. Son el hogar y sustento de miles de millones

de personas y se utilizan principalmente como fuente de forraje para los animales. Además

de esto, los pastizales juegan un papel importante en la preservación de diferentes funciones

ecosistémicas a escala mundial. Por ejemplo, los pastizales contribuyen al almacenamiento

de carbono y la filtración de agua, son el hábitat de numerosas especies y tienen valores

culturales. De igual manera, desempeñan un papel en el cambio climático (regulación y

mitigación) y participan en la conservación de la biodiversidad.

Sin embargo, el grado en el que los pastizales pueden ejecutar estas funciones eco-

sistémicas depende en gran medida en como estos son gestionados. En particular, las prác-

ticas de gestión individuales y la intensidad de uso influyen tanto en la calidad de com-

posición de los pastizales, así como en su habilitad para satisfacer importantes necesidades

ecológicas. Por ejemplo, el pastoreo continuo e intensificado, suelen mostrar mayormente

un impacto negativo.

Dicho esto, especialmente en los países centroeuropeos como Alemania, existe una gran

variedad de manejo e intensidad de uso, que ha dado lugar a la creación de pequeñas parce-

las con diferentes tipos o clases de pastizales (ej. diferente composición y estructura). Sin

embargo, debido a que no se dispone de información sobre la gestión y la intensidad de uso

de pastizales a gran escala (ej. a nivel de país), resulta difícil realizar estimaciones y medi-

ciones de las funciones ecosistémicas que cada uno de los diferentes tipos de pastizales

proveen. Estas estimaciones, son a su vez necesarias para evaluar el estado y composición

de los pastizales, así como para optimizar los planes de gestión en el futuro. El tema de esta

tesis aborda esta brecha, investigando la principal práctica de gestión de los pastizales en

Alemania, que es la siega, durante varios años y a escala nacional.

Los sistemas de Observación de la Tierra (acrónimo en ingles EO) como los satélites

artificiales, tienen la ventaja de proporcionar información de la superficie terrestre en pasos

temporales múltiples. Sin embargo, una extensa revisión sistemática de la literatura lle-

vada a cabo durante esta tesis, demostró que el uso de EO para la investigación, análisis y
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Spanish Summary

gestión de los pastizales, principalmente aquellos que consisten de pequeñas parcelas con

una gran variedad de manejo e intensidad de uso como es común en Europa Central, es en

generalmente limitada. Por ejemplo, en los últimos años, debido a alta resolución espacial y

temporal de los satélites “Sentinel”, ha sido posible realizar análisis detallados sobre estos

tipos de pastizales. Sin embargo, una revisión de la literatura enfocada específicamente en

eventos de siega, reveló investigaciones previas solo se han enfocado pequeñas áreas de es-

tudio, han sido exploratorios, han utilizado solo un tipo de sensor satelital (óptico o radar),

y/o carecen de un conjunto de datos de referencia con una gama completa de opciones de

gestión.

De esta manera, dentro de esta tesis se presenta un marco novedoso para detectar eventos

de siega de pastizales en grandes áreas, que se aplicó y validó para toda el área de Alemania

cubriendo eventos de siga por cuatro años (2018–2021). Se investigó el potencial de ambos

tipos de sensores, óptico (Sentinel-2) y SAR (Sentinel-1) en relación con la detección de

eventos de siega de pastizales. Se investigaron ocho parámetros: el índice de vegetación

mejorado (EVI), la intensidad de retrodispersión y la coherencia temporal interferométrica

(InSAR) para los dos modos de polarización disponibles (VV y VH) y los parámetros de

descomposición polarimétrica (PolSAR) Entropía, K0 y K1. Se generó un amplio conjunto

de datos de referencia basado en imágenes diarias de cámaras web distribuidas por Alema-

nia, que dio como resultado información sobre la frecuencia de eventos siega: uno a seis

eventos al año en toda Alemania, obteniendo 1,475 eventos de siega de referencia durante

los cuatro años de estudio.

Por primera vez se desarrolló, aplicó y validó un método de detección de siega ascen-

dente utilizando datos de Sentinel - 2 y Sentinel - 1 y combinaba ambos. El algoritmo de

detección se desarrolló y parametrizo utilizando un subconjunto de los datos de referencia

(ej. 13 parcelas de pastizales con 45 eventos de siega en el 2019). Este análisis demostró que

el método de detección de cambios basado en umbrales de EVI capturó mejor los eventos

de siega de pastizales, que solo falló durante días o periodos nublados. Todos los parámet-

ros basados en SAR mostraron un comportamiento menos consistente con los eventos de

siega, con, sin embargo, PolSAR Entropía y InSAR Coherencia VH revelaron el mayor po-

tencial entre ellos. De la misma manera, se desarrolló y probó un segundo método basado

en la combinación de EVI y un parámetro basado en SAR para PolSAR Entropía y InSAR

VH. Para evitar falsos positivos durante periodos en los que los eventos de siega se detectan

de forma fiable utilizando datos ópticos, la detección de siega basada en SAR sólo se llevó

acabo en periodos donde las series temporales ópticas ocurrieron con menor frecuencia ini-

ció (< 25 días). La aplicación y validación de estos métodos en una región de interés reveló

que el uso de EVI produce a las precisiones más altas (F1-Score = 0,65), ya que la combi-
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nación basada en SAR resulto en un alto número de falsos positivos. Dicho de otra manera,

los métodos basados en SAR detectaron un mayor numero de eventos de siega incorrec-

tamente, lo que resultó en una disminución de las precisión (EVI + PolSAR ENT 0,65).

F1-Score = 0.61; EVI + InSAR COH F1-Score = 0,61).

Finalmente, el algoritmo de detección de siega basado en EVI se aplicó para toda el

área de Alemania para el periodo del 2018-2021. Los resultados revelaron que la mayor

parte de los pastizales con altas frecuencias de siega (al menos cuatro eventos de siega)

se encuentran en el sur / sureste de Alemania. Los pastizales de uso extensivo (segados

hasta dos veces al año) se distribuyen por todo el país, con una mayor proporción en el

centro y el noreste de Alemania. Estos patrones se mantienen generalmente constantes,

pero se aprecian pequeñas fluctuaciones de un año a otro. Las praderas segadas temprano

se encuentran en el sur/sureste de Alemania, en línea con las zonas de alta frecuencia de

siega, pero también en las partes centro-occidentales. Análisis efectuados para el año 2019

y 2020 revelaron mayores precisiones basadas en los 1475 eventos de siega del conjunto

de datos de validación plurianual (puntuaciones F1 de 0,64 y 0,63), 2018 y 2021 menores

(puntuaciones F1 de 0,52 y 0,50).

En base a este nuevo conjunto de datos que no tiene precedentes, se investigaron por

primera vez los posibles factores que influyen en la dinámica de la siega en Alemania. Así,

el clima, la topografía, los datos del suelo y la información sobre los planes de conservación

se relacionaron con la dinámica de siega para el año 2020, lo que mostró un elevado número

de observaciones válidas y una gran precisión de detección. Se puso de manifiesto que no

existen relaciones lineales fuertes entre la frecuencia de siega (o el momento de la primera

siega) y las variables investigadas. Sin embargo, se comprobó que para el uso intensivo de

los prados deben cumplirse determinadas condiciones climáticas y topográficas, mientras

que los prados extensivos aparecen en todo el espectro de estas variables. Además, las

frecuencias de siega más altas se dan en suelos con influencia de aguas subterráneas y las

frecuencias de siega más bajas en zonas protegidas. Estos resultados muestran la compleja

interacción entre la dinámica de siega de los pastizales y las influencias externas, y resaltan

los desafíos que existen para determinar o establecer políticas destinadas a proteger las

funciones ecosistémicas de los pastizales y su necesidad de adaptarse a las circunstancias

regionales.

xix





French Summary

Les prairies façonnent de nombreux paysages de la planète puisqu’elles couvrent envi-

ron un tiers de sa surface. Elles constituent le foyer et le moyen de subsistance de milliards

de personnes et sont principalement utilisées comme source de fourrage pour les animaux.

Toutefois, outre la production de fourrage, les prairies remplissent de nombreuses autres

fonctions écosystémiques, comme le stockage du carbone, la filtration de l’eau, la fourni-

ture d’habitats et les valeurs esthétiques. Elles jouent un rôle dans le changement clima-

tique (mitigation) et dans la préservation de la biodiversité et des fonctions écosystémiques

à l’échelle mondiale.

Le degré de présence de ces fonctions écosystémiques dans les écosystèmes de prairie

est largement déterminé par la gestion. Les pratiques de gestion individuelles et l’intensité

d’utilisation influencent la composition des espèces ainsi que les fonctions, comme le stock-

age du carbone, tandis que les intensités d’utilisation élevées (par exemple, les fréquences

de tonte élevées) ont généralement un impact négatif. Dans les pays d’Europe centrale,

comme l’Allemagne, l’influence déterminante de la gestion des prairies sur leur phys-

ionomie et leurs fonctions écosystémiques entraîne une grande variabilité et des alter-

nances à petite échelle de diverses prairies. Des informations sur la gestion et l’intensité

d’utilisation des prairies ne sont pas disponible en grande échelle. Par conséquent, les es-

timations des fonctions de l’écosystème des prairies sont difficiles à réaliser, alors qu’elles

seraient nécessaires pour des évaluations à grande échelle de l’état des écosystèmes des

prairies et des plans de gestion optimisés pour l’avenir. Le sujet de cette thèse aborde cette

lacune en étudiant la principale pratique de gestion des prairies en Allemagne, à savoir la

tonte, sur plusieurs années et à l’échelle nationale.

L’observation de la terre (OT) a l’avantage de fournir des informations sur la surface de

la terre sur des pas de temps multi-temporels. Un examen approfondi de la littérature sur

l’utilisation de l’OT pour la gestion des prairies et les analyses de production, qui faisait

partie de cette thèse, a montré qu’en particulier la recherche sur les prairies constituées de

petites parcelles avec une grande variété de gestion et d’intensité d’utilisation, comme c’est

le cas en Europe centrale, est sous-représentée. Le lancement des satellites Sentinel dans
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un passé récent permet maintenant d’analyser de telles prairies grâce à leur haute résolution

spatiale et temporelle. La revue de la littérature portant spécifiquement sur l’investigation

des événements de tonte des prairies a révélé que la plupart des études précédentes se

concentraient sur de petites zones d’étude, étaient exploratoires, n’utilisaient qu’un seul

type de capteur et/ou manquaient d’un ensemble de données de référence avec une gamme

complète d’options de gestion.

Dans le cadre de cette thèse, un nouveau cadre pour détecter les événements de tonte des

prairies sur de grandes surfaces est présenté, qui a été appliqué et validé pour l’ensemble

de la superficie de l’Allemagne pendant plusieurs années (2018–2021). Le potentiel des

deux types de capteurs, optique (Sentinel-2) et SAR (Sentinel-1) a été étudié concernant

la détection des événements de tonte des prairies. Huit paramètres OT ont été étudiés, à

savoir l’indice de végétation amélioré (EVI), l’intensité de rétrodiffusion et la cohérence

temporelle interférométrique (InSAR) pour les deux modes de polarisation disponibles (VV

et VH) et les paramètres de décomposition polarimétrique (PolSAR) Entropie, K0 et K1.

Un vaste ensemble de données de référence a été généré à partir d’images quotidiennes de

webcams réparties en Allemagne, ce qui a permis d’obtenir des informations sur la tonte des

prairies avec toute la gamme possible de fréquences de tonte - de une à six en Allemagne -

et 1475 événements de tonte de référence pour les quatre années considérées.

Pour la première fois, une approche de détection de tonte ascendante incluant les don-

nées de Sentinel - 2 et Sentinel - 1 et combinant les deux a été développée, appliquée et

validée. Sur la base d’un sous-ensemble de données de référence (13 parcelles de prairie

avec 45 événements de tonte) de 2019, les paramètres d’OT ont été étudiés et l’algorithme

de détection développé et paramétré. Cette analyse a montré qu’une approche de détection

des changements basée sur desseuils et fondée sur les EVI capturait le mieux les événe-

ments de tonte des prairies, qui n’échouait que pendant les périodes de nuages. Tous les

paramètres basés sur le SAR ont montré un comportement moins cohérent par rapport

aux événements de tonte, avec le PolSAR Entropie et InSAR Cohérence VH, cependant,

révélant le plus grand potentiel parmi eux. Une deuxième approche combinée basée sur EVI

et un paramètre basé sur SAR a été développée et testée pour PolSAR Entropie et InSAR

VH. Afin d’éviter des détections supplémentaires de faux positifs pendant les périodes où

les événements de tonte sont de toute façon détectés de manière fiable à l’aide des données

optiques, la détection de tonte basée sur le SAR n’a été initiée que pendant les longs inter-

valles de la série temporelle optique (< 25 jours). L’application et la validation de ces ap-

proches dans une région ciblée ont révélé que seule l’utilisation de l’approche EVI conduit

aux meilleures précisions (score F1 = 0,65), car la combinaison de cette approche avec la

détection basée sur le SAR a conduit à une forte augmentation des événements de fauchage
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faussement détectés, entraînant une diminution des précisions (EVI + PolSAR ENT). F1-

Score = 0.61; EVI + InSAR COH F1-Score = 0,61).

L’algorithme de détection de tonte basé sur EVI a été appliqué à l’ensemble de la su-

perficie de l’Allemagne pour les années 2018-2021. Il a été révélé que la plus grande part

des prairies avec des fréquences de tonte élevées (au moins quatre événements de tonte)

se trouve dans le sud/sud-est de l’Allemagne. Les prairies utilisées de manière intensive

(tontées jusqu’à deux fois) sont réparties sur l’ensemble du territoire, avec des parts plus

importantes dans le centre et le nord-est de l’Allemagne. Ces schémas restent constants en

général, mais de petites fluctuations sont visibles d’une année sur l’autre. On trouve des

prairies tontées précocement dans le Sud/Sud-est de l’Allemagne, ce qui correspond aux

zones où la fréquence de tonte est élevée, mais aussi dans le centre-ouest du pays. Les an-

nées 2019 et 2020 ont révélé des précisions plus élevées sur la base des 1475 événements

de fauche de l’ensemble de données de validation pluriannuel (scores F1 de 0,64 et 0,63),

2018 et 2021 des précisions plus faibles (scores F1 de 0,52 et 0,50).

Sur la base de ce nouvel ensemble de données, les facteurs d’influence potentiels sur

la dynamique du tonte ont été étudiés. Ainsi, le climat, la topographie, les données pé-

dologiques et les informations sur les programmes de conservation ont été mis en rela-

tion avec la dynamique de la tonte pour l’année 2020, ce qui a montré un nombre élevé

d’observations valides et une grande précision de détection. Il a été révélé qu’il n’existe

pas de relations linéaires fortes entre la fréquence de tonte ou le moment de la première

tonte et les variables étudiées. Cependant, il a été constaté que pour une utilisation inten-

sive des prairies, certaines conditions climatiques et topographiques doivent être remplies,

alors que les prairies extensives apparaissent sur l’ensemble du spectre de ces variables. En

outre, les fréquences de tonte sont plus élevées sur les sols ayant une influence sur les eaux

souterraines et plus faibles dans les zones protégées. Ces résultats montrent l’interaction

complexe entre la dynamique de la tonte des prairies et les influences externes et mettent en

évidence les défis des politiques visant à protéger les fonctions des écosystèmes des prairies

et leur nécessité d’être adaptées aux circonstances régionales.
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Chapter 1
Introduction

1.1 Scientific Relevance and Research Motivation

1.1.1 The Impact of Agriculture on the Living Environment

For centuries, humanity has drastically changed the planet and one of the main driv-

ing forces for changes of the terrestrial surface is agriculture. Land use-change and in-

tensification processes have increased agricultural production rapidly on a global scale

(IPBES, 2019). However, this comes at the expense of ecosystem functions which are not

production-oriented, with severe consequences. On the one hand, agriculture is one of the

main contributors to climate change. On the other hand, land use change and intensifica-

tion processes in agriculture are the main cause for a drastic loss in global biodiversity,

accompanied by a degeneration of ecosystems through a decline in regulating and cultural

ecosystem services (Newbold et al., 2015; IPCC, 2019, 2021).

Despite the potential of being a carbon dioxide CO2 sink though vegetation photosyn-

thesis, the agricultural sector contributes to about one-quarter of global greenhouse gas

emissions according to the Intergovernmental Panel on Climate Change (IPCC) (IPCC,

2019, 2021). Agriculture is the main source of methane (CH4) and nitrous oxide (N2O),

which are the most important greenhouse gases, next to CO2 (IPCC, 2022). In particu-

lar, livestock production is responsible for about 30–45 % of emissions of these chemical

compounds (IPCC, 2019; Reay et al., 2012). Climate change is going to have existential im-

pacts, some of which are already visible. As a result of global climate change temperatures

rise and extreme events increase in their occurrence and intensity, including hot extremes,

heavy precipitation events and droughts (IPCC, 2022). All ecosystem types are affected by

substantial damages and partly irreversible losses of ecosystem functions which reduces

food and water security (IPCC, 2022).
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Land use change

Agriculture

The agricultural sector is responsible 
of 23% of GHG emissions

~ 1 million species are under threat of extinction 
with agriculture being the main driving force
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mono-cultural agricultural 
landscape

Climate Change

Loss of 
Biodiversity and 
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GHGs CH4 and N2O

For ~65% of the terrestrial surface, land use has 
caused biotic intactness to decline beyond 10%

Homogenization 
of landscapes

Intensification 
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… fulfill many ecosystem 
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carbon storage and water 
filtration

… biodiversity and the shaping of 
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… resistance and resilience to 
extreme weather depends highly 
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Figure 1.1: Overview of the relationship of the agricultural sector and grasslands in particular to
climate change and the loss of biodiversity and ecosystem functions. Sources for statis-
tical information: IPCC (2019); IPBES (2019)

Apart from this indirect influence of agriculture on ecosystem functions through its aug-

mentation of climate change, agriculture also directly affects ecosystems. It is the major

contributor to the global loss of biodiversity (Newbold et al., 2015). About 25 % of an-

imal and plant species are under threat of extinction worldwide at the moment (IPBES,

2019). Species’ habitats are lost due to land use change, homogenization of landscapes and

intensification of agricultural management (Newbold et al., 2016). These processes usu-

ally negatively influence aspects of ecosystem functions which are not oriented towards the

provision of agricultural products, e.g. the water cycle, chemical fluxes and soil processes.

It was estimated that the human induced ecological footprint exceeds the rate of Earth’s

regeneration already since 1970 (WWF, 2022).

1.1.2 The Role of Grasslands and its Management

Grasslands play a specific role in the context of agriculture-driven global climate change

and the loss of biodiversity and ecosystem functions (1.1). Firstly, the global grassland

biome covers 30–40 % of the earth’s surface (White et al., 2000) and about 70 % of the agri-

cultural land globally (Suttie et al., 2005; O’Mara, 2012). Secondly, grasslands are mainly

used for fodder production but have multiple other ecosystem functions (White et al., 2000;

Gibon, 2005; Gibson, 2009). Compared to most other agricultural crops, grasslands are no

mono-cultures. They are potentially very species-rich and can build biodiversity hotspots

within the agricultural landscape (Dengler et al., 2014, 2020; Bond and Parr, 2010). Tem-
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perate grasslands contain similar numbers of vascular plant species like tropical rainforests

on a certain grain size (Dengler et al., 2014). In addition, many insect, spider and breeding

bird species rely on grassland habitats (Chisté et al., 2016; Jungandreas et al., 2022). Fur-

ther, grassland ecosystems store carbon and play therefore a role for global carbon budget.

Within grasslands, carbon is mostly stored below-ground. This soil carbon is not released

when grasslands are managed non-destructively, i.e. when grazing or mowing activities do

not kill the plants (Ward et al., 2016; Kühnel et al., 2019). Due to the large share of terres-

trial surface covered by grasslands, the contribution of carbon storage of these ecosystems

is of high importance (Conant, 2010; Dass et al., 2018). The share of global terrestrial car-

bon storage of grassland ecosystems is estimated to be about 34 % (White et al., 2000;

Suttie et al., 2005). It is therefore comparable to forests, even though uncertainties in esti-

mations are high (Suttie et al., 2005). Furthermore, grasslands play a role regarding water

filtration and erosion control (Gibson, 2009). Grasslands fulfill also multiple cultural ser-

vices as they potentially shape aesthetic and diverse landscapes, are important for tourism

and provide a sense of home for many people worldwide (FAO, 2009; Hatfield and Davies,

2006; Angelsen et al., 2014).

The degree to which individual ecosystem services are fulfilled in grasslands varies

strongly, especially because grassland ecosystems are highly diverse (White et al., 2000;

Gibson, 2009). They occur on every continent apart Antarctica, hence, in various climates

and include temperate grasslands, tropical grasslands and savannas (White et al., 2000;

Gibson, 2009). In addition, the diversity is determined by various management practices

and use intensity of grasslands (Socher et al., 2012; Gossner et al., 2016; Neyret et al.,

2021). As presented before, grasslands are responsible for a large share of methane and

nitrous oxide emissions, but the amounts highly depend on the management of the grass-

lands, e.g. the stocking rate (Butterbach-Bahl et al., 2011; Jarvis et al., 2011; De Vries et al.,

2012). Management and use intensity of grasslands therefore directly influence how much

grasslands contribute to global climate change. Regarding biodiversity and ecosystem ser-

vices, large gradients occur among differently managed grasslands. Even though grasslands

potentially contain high numbers of species, many grasslands show only few. Apart from

specific cases, this is usually connected to higher use intensities of the grasslands (Socher

et al., 2012; Hilpold et al., 2018; Neyret et al., 2021). Higher grazing pressure and more

frequent mowing and fertilization events lead to a shift within grassland species compo-

sition towards more productive plant species. Less productive plant species and species

with flowering cycles that do not fit to the timing of mowing events have a disadvantage

and disappear. This reduces the overall number of plant species in a grassland with strong

negative effects on the distribution of pollinators for which reductions are already evident

(IPBES, 2019). Devastating future effects regarding a pollinator loss are anticipated. Neg-
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ative effects of higher use intensity of grasslands were also found for other insect and bird

species (Di Giulio et al., 2001; Chisté et al., 2016; Lengyel et al., 2016; Jungandreas et al.,

2022). In addition, intensification processes of the agricultural sector are accompanied by

a homogenization of landscapes which also leads to losses in biodiversity and habitats as

hedges and single trees are removed, areas are flattened and moist wells are assimilated, for

example (Gossner et al., 2016). Management also influences the carbon and water cycle of

grassland ecosystems (Baer et al., 2002). It was found that intensive use leads to a reduction

in soil carbon of grasslands (Ward et al., 2016; Kühnel et al., 2019). Grasslands normally

function as water purifiers but high amounts of fertilizer applications on intensively used

grasslands reduce the water quality in many grassland ecosystems (Botter et al., 2021).

Grassland management also changes the impact of climate change-related extreme

weather and climate conditions, like drought events, on grassland productivity. Intensively

used grasslands were found to be less resistant against drought conditions which might be

related to higher functional and phenological diversity in extensively used grasslands with

higher amounts of plant species (Kreyling et al., 2008; Beierkuhnlein et al., 2011; Vogel

et al., 2012; Isbell et al., 2015).

1.1.3 The Need to monitor Grassland Management

Global climate change and the loss of biodiversity and ecosystem functions are on-going

and accelerating processes. An increase in world population and changes in consumer be-

havior will put additional pressure on Earth’s ecosystems in the future (Tilman and Clark,

2014). Policies and adapted management plans are needed to mitigate climate change and

protect nature and its functionality (Leclère et al., 2020). The agricultural sector is a main

contributor but also a potent field of action as sustainable management practices are rel-

atively low-priced and quick to implement (IPCC, 2019). However, the development and

implementation of holistic and sustainable management plans requires knowledge on the

condition of ecosystems and their services. In particular in grassland ecosystems, there are

uncertainties in estimates of biodiversity and ecosystem functions as well as their contribu-

tion to climate change. This is caused by the diversity of global grassland ecosystems which

is amplified by varying management practices and use intensities. It is however known, that

global grasslands are degrading and sustainable management techniques are required (Car-

butt et al., 2017; Strömberg and Staver, 2022).

Information on grassland management is therefore needed to support the assessment

and monitoring of grassland ecosystem services and the development of a holistic and sus-

tainable management plan for grasslands in the future. In Germany, like in many parts of

the world but in particular in many European countries, grassland mowing complements
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and partly substitutes direct grazing by animals (Schoof et al., 2020b,a). Many grasslands

are regularly mown throughout the year, whereby the timing and frequency of the mowing

events vary. For the ecology and ecosystem services of grasslands both, timing and fre-

quency of mowing, plays an important role. However, there is no extensive information on

grassland mowing dynamics available in Germany. In addition, mowing dynamics of years

with differing climatic conditions, relationships of mowing dynamics to site conditions and

incentives of farmers for intensive or extensive grassland use are poorly understood.

Remote Sensing is a valuable tool to investigate grassland vegetation dynamics beyond

the scales possible through reporting farmers or field measurements. Earth observation (EO)

provides repeated, area-wide, independent and open source data which can be used to de-

velop automated algorithms to monitor processes on the Earth’s surface. Satellite constel-

lations, like the Sentinels, which acquire data of the Earth’s surface with revisit times of

only some days provide optimal data basis to investigate inter-annual temporal vegetation

dynamics, like mowing activities on grasslands.

1.2 Research Objectives

As outlined in section 1.1, biodiversity and ecosystem services of grasslands are largely

influenced by its management and use intensity, but information on grassland management,

specifically mowing patterns, are missing. This information is lacking in particular on scales

which are relevant for policy makers as it should be available automatically and over wide

areas.

To address this, a novel framework to detect grassland mowing events in Germany based

on satellite data is developed as key objective of this study. Due to small grassland parcel

sizes and the small-scale heterogeneity of grasslands in Germany, in particular the high-

resolution data sets of the Sentinels, Sentinel-1 and Sentinel-2, are of advantage. In addi-

tion to the spatial resolution, dense and continuous time series, which are needed to investi-

gate short-lived grassland management activities, are available through the Sentinel fleets.

Therefore, the Copernicus data archives of multiple years for the entire area of Germany

are used to develop a method for and assess grassland mowing dynamics. The research

objectives of this thesis are:

• Objective 1: An extensive literature review on the usage of EO data for grassland

management and production analyses is conducted to identify spatio-temporal pat-

terns of the investigated study sites, used sensors and applied methods, and to detect

research gaps from previously conducted studies.
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• Objective 2: A central objective of the thesis is the development of a novel frame-

work to automatically detect grassland mowing events in Germany. The potential

of Sentinel-1 and Sentinel-2 data time series for the detection of grassland mowing

events is assessed in combination with a self-created reference data set.

• Objective 3: Based on the developed framework to detect mowing events, the method

is applied to data archives of multiple years (2018–2021) to assess the multi-annual

applicability and performance and compare mowing dynamics between years of vary-

ing climatic conditions.

• Objective 4: The linkage between mowing dynamics and potential influencing fac-

tors on grassland management and use intensity, like climatic, topographic, soil or

socio-political conditions is investigated to highlight existing conditions and poten-

tial incentives of farmers for intensive or extensive grassland usage.

Several key questions need to be answered to elaborate on the overarching research

objectives of the thesis. The first group of questions is about the literature review on the use

of EO data for grassland management and production analyses:

Research Questions 1:

1. How extensively has grassland management and production with EO data been

researched, where are research foci and research locations of previous studies?

2. Which sensor types, sensors, indices and methods are applied to investigate

grassland management and production in previous studies?

3. Which research gaps exist and how are they potentially addressed?

The second group of questions refers to the development of the framework to detect

grassland mowing dynamics, including the analyses of potentials and limitations of various

parameters based on Sentinel-1 (S1) and Sentinel-2 (S2) imagery, the development of the

detection algorithm and an accuracy assessment:
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Research Questions 2:

1. What are potentials and challenges to detect grassland mowing events with

optical and SAR imagery, as provided by Sentinel-2 and Sentinel-1, and how

can they be exploited and overcome, respectively?

2. Which sensor and which parameter is able to detect grassland mowing events

most successfully or is a combination of both the most accurate approach?

3. How reliably can mowing events be detected and what are limiting factors?

The third group of questions is related to the multi-annual application of the developed

method and the investigation of mowing dynamics of four consecutive years with varying

climatic conditions in Germany:

Research Questions 3:

1. How does the developed grassland mowing event detection approach perform

for the entire area of Germany?

2. What are patterns of multi-annual nation-wide mowing dynamics in Germany?

3. Where are hotspots of intensively used grasslands and where are regions of

extensive grassland use?

The last group of research questions is about the investigation of relationships between

mowing dynamics and potential influencing factors:

Research Questions 4:

1. To what extent do climatic, topographic, soil conditions and socio-political

frameworks influence mowing dynamics in Germany?

2. What do these relationships imply for management options and the status of

grasslands in the future?

1.3 Thesis Outline

In the following chapters, first, the results of the extensive literature review on EO for

grassland management and production are presented to give a broad overview over exist-

ing literature and research gaps in the field (chapter 2). Afterwards, background on the
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geography and, here, in particular grassland use and protection mechanisms in the study

area is given in chapter 3. The framework of grassland mowing detection is presented in

detail in chapter 4. It includes the description of data sets and methods as well as results

of the mowing detection based on various input parameters and the Germany-wide and

multi-annual application of the developed approach. The next chapter considers the link-

age between mowing dynamics and climatic, topographic, soil conditions and protection

mechanisms (chapter 5). Finally, the results of the thesis are summed up and the research

questions answered in the final chapter (6).
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Chapter 2
A Review on Remote Sensing of

Grassland Management and Production∗

This chapter presents a systematic literature review of research on using EO data to

investigate grassland management and production. The usage of remote sensing in grass-

land biomes is underrepresented compared to other land cover types, however, numbers are

growing. By reviewing previous studies, information of existing research, such as investi-

gated study sites, used sensors, applied methods, among other aspects, was collected and

assessed. The results of this review present state-of-the-art methods as well as potentials

and limitations of approaches of previous work and highlight research gaps.

Studies between 1986 and the first quarter of 2020 were systematically searched and

reviewed, and more recent research was included when appropriate which led to a total of

more than 250 studies. The chapter starts with the definition and distribution of grasslands

worldwide to give a background on this diverse land cover type (section 2.1). Afterwards,

the results of the literature review are presented starting with general properties of the ex-

isting work (section 2.2.1). Next, previous research on using remote sensing to investigate

grassland production traits is presented (section 2.2.2), followed by the review of studies on

remote sensing for grassland management and use intensity (section 2.2.3). As it is related

to one of the main objectives of this thesis, state-of-the-art approaches using remote sensing

for grassland mowing detection is highlighted in the final section (2.2.4).

2.1 Background on Grassland Characteristics

Grasslands occur on every continent of the world apart from Antarctica (Reynolds and

Frame, 2005; Dixon et al., 2014). Their distribution shows a large climatic gradient as

∗Parts of this chapter have been published in Reinermann et al. (2020).
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they exist on cold continental to tropical climates and in various elevations (Figure 2.1).

A global mapping of grasslands is challenging due to the large variety in physical ap-

pearance resulting from differing species compositions of grasslands. Ramankutty et al.

(2010) used Moderate Resolution Imaging Spectroradiometer (MODIS) and Satellite Pour

l’Observation de la Terre - Vegetation (SPOT-VGT) data along with agricultural inventory

information to map pastures (Figure 2.1). The focus of this map is on managed grasslands

and it represents the situation in 2000 (Ramankutty et al., 2008). For many parts of the

world, this is probably already outdated as grassland ecosystems permanently face the risk

of conversion into croplands. However, other mapping approaches reveal other disadvan-

tages, such as no focus on managed grasslands. Dixon et al. (2014) mapped the distribu-

tion of grasslands, however, focusing on different grassland ecosystem types resulting in a

broader scale mapping, missing European grasslands, for instance. Grasslands with large

and continuous coverage occur in North America (Great Plains), South America, Europe,

Central and South Africa, southeastern and southwestern Australia and New Zealand, and

Central Asia (Figure 2.1).

The diversity in grassland climatic conditions and physiognomy becomes visible when

examining annual temperature and precipitation rates as well as images of various grass-

land sites of the world (Figure 2.1 A–F). The global distribution and diversity of grasslands

result in difficulties and disagreements of the definition of grasslands. An extensive com-

pilation of definitions can be found in Gibson (2009). Grasslands are defined to consist

of grass species (Poaceae) and herbaceous vegetation, including herbs, shrubs and trees

(White et al., 2000; FAO, 2009; Dixon et al., 2014). Per definition, grasslands should not

exceed 25 % of shrub cover and the share of trees should remain smaller than 10 % in tem-

perate and 40 % in tropical regions (Faber-Langendoen and Josse, 2010). Apart from visible

features, grasslands are characterized by specific environmental conditions, which usually

involve sufficient moisture for grass growth and external conditions that limit tree growth

(Allaby, 2012). Bush and tree encroachment is usually hindered by recurrent disturbances,

such as herbivory and fire (Suttie et al., 2005).

The terms used for grasslands vary and a strict separation into sub-categories is chal-

lenging. However, terms which are usually used for managed grasslands are rangelands

and pastures. Rangelands are mostly associated with grazing livestock and pastures with

grazed and/or mown grasslands (Allen et al., 2011). The term meadow is often applied for

grasslands which are used to produce hay and silage. Terms for grasslands associated to

specific geographic regions and local legal connotations include campos, cerrados, llanos,

pampas, prairies, savannas and steppes (Allen et al., 2011). These consist at times not only

of grasslands and form relatively specific land cover types. In particular, savannas constitute
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A)   Scottsbluff, Nebraska, USA B)   Hohenpeissenberg, Germany

C)   Zadoi, China D)   Paso de los Toros, Urugay

E)   Estcourt, South Africa F)   Invercargill, New Zealand
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E)
D)

C)
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Figure 2.1: Coverage of pastures worldwide according to NASA SEDAC (Ramankutty et al., 2010)
as well as climate diagrams of locations with grasslands showing mean temperature and
precipitation for around 30 years between 1960 and 2000 (NOAA, 2011) (A–F). The
climate diagrams are not exhaustive but highlight the diversity of climatic conditions
of grassland areas. The images show grasslands close to the weather stations and were
downloaded from flickr.com. The figure was adapted from Reinermann et al. (2020).
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a special case. These occur in sub-tropical and tropical regions and are often a transition

zone between grassland and forest (Dixon et al., 2014). Hence, savannas were excluded

from this review.

Grasslands are often separated into natural and non-natural grasslands. The existence

of natural – or native – grasslands is determined by natural conditions, such as climate,

fire or native grazers. Non-natural, managed or cultural grasslands are characterized by

human influence (Suttie et al., 2005; Dixon et al., 2014). A strict separation between those

classes is, however, often not possible as humans influence most grasslands to some degree.

Nonetheless, it is important to understand that there are differences regarding the degree

of human impact within grassland ecosystems. For instance, some European grasslands

depend completely on human action. They are annually seeded, regularly fertilized, at times

irrigated, and harvested throughout the year. As a result, the ecology of these grasslands is

completely altered compared to naturally occurring grasslands.

2.2 Results of the Literature Review

Grasslands gain more and more interest in research recently. This is related to the fact

that grasslands are more relevant for global processes, such as climate change (mitigation)

than previously anticipated (compare section 1.1.2) and provide important ecosystem func-

tions (Figure 2.2). In addition, field sampling which is time consuming and expensive is

aggravated by the diverse nature of grasslands (Nestola et al., 2016). Remote sensing pro-

vides an opportunity to continuously monitor grasslands on large scales.

Optical sensors provide information on greenness, vitality and density of vegetation.

SAR sensors capture information on vegetation height, canopy structure (Hill et al., 1999;

Wegmuller and Werner, 1997), soil attributes, surface roughness (McNairn and Brisco,

2004) and dielectric properties of the surface (Hill et al., 1999; McNairn and Shang, 2016).

For the literature review, the focus lied on research on grassland management and pro-

duction traits using remote sensing. Fodder production is a major function of grasslands and

closely related to management which, itself, is an important determining factor for grass-

land ecosystem services. Previous reviews on using remote sensing for grassland manage-

ment and production analyses focus only on a specific aspect, such as biomass retrieval or

grazing, did not provide a complete picture on the use of different sensor types or are out-

dated (Tucker, 1980; Tueller, 1989, 1995; Hill et al., 2004; Lu, 2006; Schellberg et al., 2008;

Ali et al., 2016; Shoko et al., 2016; Wachendorf et al., 2018). All research which was found

during an extensive literature search and screening through the references therein covering

the topics of grassland management or production was reviewed. Only articles with a clear
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Figure 2.2: Services and functions of grassland ecosystems as well as major management activities
and optical and SAR satellite sensor data retrieval. The source of the symbols is the
Integration and Application Network (ian.umces.edu/media-library).

focus on grassland ecosystems and using space-borne remote sensing data were included in

the review process. The search was conducted on Google Scholar and Web of Science using

the search terms shown in Table 2.1. The literature search was conducted in the first quarter

of 2020 leading to 253 articles. More recent publications were added when appropriate.

Table 2.1: Search strings and terms used for the literature review on research on remote sensing use
for grassland management and production analyses.

Field Search Terms
Management and Use Intensity harvest*, cut*, mow*, irrigat*, fertiliz*, graz*,

management, monitoring, "use intensity", intensity
Production Traits biomass, production, productivity, quantity, yields

Grasslands grassland*, pasture*, meadow*, steppe*, rangeland*
Remote Sensing "remote sensing", "earth observation", satellite*

2.2.1 Properties of the Reviewed Studies

Around 70 % of the reviewed articles were about remote sensing of grassland produc-

tion. Studies with a focus on remote sensing analyses of grassland management and use

intensity made up about 18 % of the reviewed articles and approximately 12 % investigated

both topics. Most of the reviewed studies were published in the International Journal of Re-

mote Sensing (14 %), followed by the Journal of Remote Sensing (12 %), Remote Sensing

of Environment (9 %) and Ecological Indicators (6 %), among other journals.
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Figure 2.3: Number of studies investigating grassland management or production with satellite im-
agery per year resulting from the literature review. ∗ Only studies until April 2020 were
included in the review.

The number of publications per year shows an increasing trend (Figure 2.3), in particular

from 2010 onwards. Investigations on grassland management and use intensity started later

compared to production trait estimations, but both remained important. Studies including

both topics were counted double.

0 1 905 15 40

Number of Studies

[%]

B)

A)

Figure 2.4: Number of studies per country and distribution of studies focusing on management or
production analysis per continent resulting from the literature review.

The global frequency distribution of the locations of study sites per country is high-

lighted in Figure 2.4. Large-scale applications, of which two investigated entire Europe and

six the entire globe, were not included in the map. Most studies were conducted in China

(n=89). When comparing the locations of study sites of previous research to the distribution

of grasslands worldwide (Figure 2.1) it becomes visible that some grasslands are not yet

14



2.2 Results of the Literature Review

investigated at all, e.g. in southern and eastern Africa. Regarding the research topics of the

reviewed literature, all continents apart from Europe show a larger share of studies focusing

on grassland production traits instead of management (Figure 2.4 Barcharts).

Some grasslands have already been extensively investigated, such as the Xilingol steppe

in China, others seem to be underrepresented. This does not mirror the value of the grass-

lands, but is probably related to practical reasons, such as a lack in financing research in

this area. Hence, some grasslands of the world have been studied only rarely or not at all

using remote sensing.

The temporal dimension of the reviewed literature was examined as it was investigated

whether single images, multiple images or time series were used for the analyses. Which

of these categories were used, while multi-temporal is defined by at least five consecutive

images, and the start and end points of the investigated satellite imagery in the order of

the publication dates are shown in Figure 2.5. It becomes clear that time series analyses

have always played an important role, however also single images or multi-temporal data

sets were frequently investigated regarding grassland production or management. A visible

starting point of investigated data of many studies is around 1999 and 2000, which were the

launch years of Landsat-7 and MODIS Terra.

The use of sensor systems and satellites was investigated which showed that the majority

of research on remote sensing analyses of grassland production and management clearly re-

lies on optical systems (Figure 2.6). Regarding single satellite fleets, mostly MODIS (Terra

and Aqua) and Landsat data was applied, followed by Advanced Very High Resolution Ra-

diometer (AVHRR) and SPOT-VGT (Figure 2.7). The Sentinel fleets, launched in 2014 and

2015, respectively, provide high spatial resolution images with a revisit time of a few days

for most grasslands worldwide. In the future, they will play a major role in the analysis and

monitoring of grassland production and management.

The clear dominance of optical sensors is related to the enhanced interpretability and

understanding of optical imagery compared to SAR data accompanied by a longer history

of usage. However, SAR data has already shown potential in the exploitation of grassland

information. Hence, SAR data sets will most likely experience more usage for monitoring

of grassland production traits and management, alongside other topics, in the future. In

particular combinations of optical and SAR data sources have the potential to overcome

limitations of each sensor type (e.g. cloud coverage for optical data) and, therefore, improve

grassland monitoring activities.
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Figure 2.5: Study periods (x-axis) of the reviewed studies ordered according to their publication
date (y-axis) highlighting the use of single or multiple images or time series and the
investigated time frames of previous literature.
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Figure 2.6: Number of studies based on optical or SAR sensors of all reviewed studies for the two
topics, grassland production and management analysis.
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Figure 2.7: Number of studies with each sensor or sensor fleet.

2.2.2 Remote Sensing of Grassland Production

To investigate spatial and temporal patterns of grassland production, mainly vegetation

indices based on optical sensors were used in previous literature (Tucker et al., 1986; Yang

et al., 1998; Ricotta et al., 2003; Franklin and Molina-Freaner, 2010; Reeves and Baggett,

2014; Yin et al., 2014; Gu and Wylie, 2015; Gao et al., 2016; Qamer et al., 2016; Kath

et al., 2019). Almost all of these indices are based at least partly on the near-infrared and

red bands. The calculated indices, from which the normalized difference vegetation in-

dex (NDVI) was by far mostly used, were visually interpreted and spatial patterns or the

temporal development of an area investigated.
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Figure 2.8: Distribution of the R2 values of empirical models to estimate grassland biomass of
previous literature.
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2.2.2.1 Empirical Models for Grassland Production

Apart from using vegetation indices as direct proxies for grassland production estima-

tion, they are often also used as input for models in combination with ground-truth data.

Here, bio-physical, process-based as well as empirical models played a role and typical

ground-truth data sets were eddy covariance measurements and biomass samples. The rela-

tionship of several vegetation indices to eddy covariance measurements was studied, finding

that the EVI was significantly correlated during periods of high vegetation cover in a tem-

perate grassland, the Soil-Adjusted Vegetation Index (SAVI) during low vegetation cover

periods (Zhou et al., 2014). This is in accordance to another study which found that the

relationship between the greenness index based on satellite imagery and eddy covariance

measurements changes through time (Yan et al., 2019). However, an empirical model based

on eddy covariance measurements accompanied by other bio-physical measurements and

optical vegetation indices resulted in weekly grassland production estimates. The model

was based on a regression tree approach and revealed the potential of grasslands to act as

carbon sinks (Wylie et al., 2016).

Another common approach in previous literature was to develop an empirical model

based on above-ground biomass samples and satellite data. The models which consisted of

one to several spectral bands and indices were trained with a subset of the ground data and

tested with the remaining part to estimate the performance of the model. More than half of

the studies (approximately 62 %) using this approach included the NDVI in their models.

Other often used indices were the EVI (15 %), the SAVI (9 %) and the leaf area index (LAI)

(8 %).

The models to estimate grassland production were in 60 % of the reviewed studies sim-

ple linear or multiple linear regression models (Edirisinghe et al., 2011, 2012; Smith et al.,

2011). Apart from that, machine learning models were applied to map grassland production

based on satellite imagery and biomass samples. Here, Random Forests (Ramoelo et al.,

2015; Wang et al., 2017; Magiera et al., 2017; Zeng et al., 2019), Support Vector Machines

(Zhang et al., 2016), Generalized Linear Models (Baghi and Oldeland, 2019), Gaussian

process regression (Yin et al., 2018), Artificial Neural Networks (Xie et al., 2009; Li et al.,

2013; Ali et al., 2017a,b; Quan et al., 2017; Yang et al., 2018) and Adaptive Neuro-Fuzzy

Inference Systems (Ali et al., 2017b). The accuracy of the biomass models varied with R2

values between 0.4 and 0.97 (Figure 2.8). However, these are only partially comparable as

the degree of diversity of the studied grassland varied. The highest R2 values were reached

when the grassland was pre-selected according to the cover types of studies which investi-

gated single time steps (Marsett et al., 2006; Wehlage et al., 2016).
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Empirical models usually require field data along with satellite imagery and the model

performance depends on the quality of the ground data. This is a limitation for large-scale

applications and continuous monitoring field data with a large diversity would be needed

for which collection is cost and time intensive. Field data collection is also a source of error

and inconsistencies between studies.

Next to the spatial variability of grasslands influencing the quality of empirical models

and the field data collection, also the temporal variability of grassland biomass plays a

role. Grasslands which are frequently mown or grazed contain various amounts of biomass

throughout the year. The development of empirical relationships between satellite imagery

and field samples as well as the timing of field data collection has to take this into account.

On the one hand, multi-temporal grassland biomass information might reveal the timing

and type of management activities, such as mowing. On the other hand, information on

management of grasslands could improve biomass models and enable the challenging task

of yield estimation in grassland ecosystems.

2.2.2.2 Process-based Models for Grassland Production

Another regularly used approach to estimate grassland production with remote sensing

data is the application of radiative transfer models. An often used model is the RPOSAIL

model which is a combination of a leaf optical properties (PROSPECT) and a canopy bi-

direction reflectance (SAIL) model and is often applied to estimate bio-physical properties

of vegetation (Jacquemoud et al., 2009; Quan et al., 2017). Another model which is used to

estimate crop growth and is also applied in grassland ecosystems is the Simulateur multi-

disciplinaire pour les Cultures standard (STICS) (Bella et al., 2004).

Many studies investigated grassland productivity which is defined as mass unit per

area per time. This was usually done by applying a Light Use Efficiency (LUE) model

(Monteith, 1972, 1977; Hill et al., 2004; Donald et al., 2010), from which the mostly

used one among the reviewed articles was the Carnegie-Ames-Stanford Approach (CASA)

model (Zhang et al., 2014; Sun et al., 2017), followed by the Vegetation Photosynthe-

sis Model (VPM) (Yu et al., 2018). Within LUE models, productivity is estimated as a

function of LUE and of absorbed photosynthetically active radiation (APAR) which is ob-

tained from vegetation indices of optical imagery for certain vegetation types (Potter et al.,

1993). Some process-based models which were used to estimate grassland productivity

were the BIOME-BGC (You et al., 2019), C-Fix (Maselli et al., 2013), Denitrification-

Decomposition (DNDC) model (Wang et al., 2016), Global Production Efficiency Model

(GLO-PEM) (Fan et al., 2010), Temperature and Greenness (TG) model (Jia et al., 2018),

Greenness and Radiation (GR) model (Jia et al., 2018), Eddy Covariance - Light Use Ef-
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ficiency (ECLUE) model (Jia et al., 2018), Vegetation Production and Respiration Model

(VPRM) (Jia et al., 2018) and Organizing Carbon and Hydrology in Dynamic Ecosys-

tems (ORCHIDEE) model (Tan et al., 2010). The mode-based grassland productivity esti-

mates were validated by comparing them with eddy covariance measurements (Wu et al.,

2008; Tan et al., 2010; Wang et al., 2010; Rossini et al., 2012; He et al., 2014; Zhou et al.,

2017b).

Using process-based modeling approaches has the advantage that these models are usu-

ally applicable on large scales and no field data is needed to build the model to estimate

productivity. Global products of this kind are already available, such as the MODIS Net Pri-

mary Productivity (NPP) product in eight-daily or monthly temporal resolution (Running

et al., 2004). It enables the analysis of global processes, such as climate change. However,

these models are at times not able to depict the small-scale diversity of grassland landscapes

which is potentially supported by ground data, such as eddy covariance measurements (Niu

et al., 2016; Gaffney et al., 2018; Zhu et al., 2018).

2.2.3 Remote Sensing of Grassland Management and Use Intensity

0 20 40 60 80 100

Mowing
Grazing
Irrigation
Fertilization

Figure 2.9: Number of studies focusing on a management type out of all reviewed research on
remote sensing of grassland management.

Studies focusing on investigating grassland management and use intensity mostly ex-

plored the management activities grazing and mowing (Figure 2.9). These are common

management practices for which information is potentially obtained using satellite imagery.

Among the reviewed studies almost no one investigated management activities like fertil-

ization or irrigation. On the one hand, these might be more difficult to analyze with satellite

data, on the other hand, grazing and mowing are major management practices influencing

the ecology of the grassland ecosystems.

The extents of the study sites of research papers on grassland management and use

intensity were investigated (Figure 2.10). The approximate size of the investigated study

areas were extracted from maps when not specified in the literature. The study site sizes

were analyzed according to the different management options. It is shown that only a few

studies analyzed areas larger than 10000 km2 which is less than one thirtieth of the area
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of Germany. It highlights that satellite-based analyses of grassland management and use

intensity so far were conducted on farm or regional scale mostly.
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Figure 2.10: Distribution of the size of the investigated region of interest within the reviewed stud-
ies.

Concerning used indices, again the NDVI was mostly used in previous studies (46 %) to

investigate grassland management and use intensity with remote sensing. Other often used

indices were the LAI (12 %), reflectances of single bands (11 %), the EVI (7 %) and the

fCover (5 %). Apart from that, the Fraction of absorbed Photosynthetic Active Radiation

(FAPAR), Tasseled Cap components, the Normalized Difference Water Index (NDWI), the

SAVI and vegetation indices based on red edge bands of S2 were used in the reviewed

articles. Based on SAR, backscatter intensity data was mostly used (15 % of all studies),

followed by interferometric temporal coherence (6 %). Among additional investigated SAR

parameters were polarimetric decomposition parameters, such as alpha angle and entropy.

2.2.3.1 Analyses of Grassland Management Types

The literature on remote sensing of grassland management and use intensity can be

divided into separate topics. One of these is the detection of grassland management types.

Mostly, grasslands were classified and the three groups "grazed", "mown" and "mixed"

were distinguished. An approach using time dynamic warping on Landsat-TM and Satellite

Pour l’Observation de la Terre (SPOT)-4 data reached a kappa value of 83 % (Dusseux

et al., 2013). In another management type detection exercise the LAI was proven to be an

important model input parameter (Dusseux et al., 2012). An additional result of previous

literature was that observations in spring and early summer are relevant for the detection

of grassland management types (Dusseux et al., 2014b; Price et al., 2002b). In particular

the delineation of the mixed class, which often leads to difficulties, is improved through

cloud-free images in spring and early summer (Dusseux et al., 2014b). This is probably

related to the high biomass levels and fast vegetation growth of grasslands in spring. As a
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consequence, the reduction of biomass through mowing or grazing leads to strong changes

in the amplitude of satellite-based vegetation indices or backscatter intensity which enhance

the detectability of these events.

Considering SAR data, grassland phenology was well captured by the HH/VV ratio

(Dusseux et al., 2014a). However, adding backscatter information to classification models

aiming at differentiating management types did not improve the results (Price et al., 2002a;

Dusseux et al., 2012).

The investigation of grassland management was so far mainly focused on grazing and

mowing. Other management activities, like irrigation or fertilization, have not yet been

studied extensively using remote sensing. Fertilization has a large impact on the ecology of

grasslands as regular application of fertilizer alters the species composition of grasslands,

among other things. The irrigation of grasslands will play an increased role in future cli-

mates, in particular in regions which are assumed to experience more frequent dry spells

like the Mediterranean. As a consequence, these aspects will be of increased interest in the

future.

2.2.3.2 Analyses of Grazing Intensity

Another major aspect of research on remote sensing of grassland management and use

intensity was the analysis of grazing intensity. Grazing intensity was defined as proxy,

a vegetation index, for instance (Reeves and Baggett, 2014), or derived from estimated

biomass (Long et al., 2010; Li et al., 2016). At times, satellite-based information was cou-

pled with statistical data, e.g. livestock census data as animal per area (Roeder et al., 2008;

Gomez-Gimenez et al., 2017) or field experiments (Ma et al., 2019; Xu et al., 2019).

A large majority of studies focused on the analysis of optical vegetation indices to in-

vestigate grazing intensity (Blanco et al., 2009; Li et al., 2013; Ma et al., 2019; Xu et al.,

2019). In many articles, time series of vegetation indices were used to investigate trends or

spatial patterns of grazing intensity (Reeves and Baggett, 2014; Li et al., 2016; Xu et al.,

2016). The NDVI was found to correlate significantly with ground-truth data on grazing

intensity levels (Xu et al., 2018; Ma et al., 2019). Various spatial patterns were detected,

for instance, hotspot areas of grazing intensity around watering ponds (Blanco et al., 2009).

The analysis of temporal dynamics of grazing intensity revealed positive as well as negative

trends; for some areas, success of conservation efforts were detected (Roeder et al., 2008;

Blanco et al., 2009; Xu et al., 2016).

Some studies analyzed the relationship of grazing intensity to the degradation of grass-

land ecosystems. Proxies of vegetation condition were correlated to indicators of grazing
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intensity, e.g. livestock density, or multivariate analyses including meteorological data to

account for climate effects were conducted (Roeder et al., 2008; Blanco et al., 2009; Paudel

and Andersen, 2010; Li et al., 2013; John et al., 2018). Mixed effects were found in that

regard as stocking rate, for instance, showed significant as well as insignificant relation-

ships to grassland degradation indicators in previous research (Roeder et al., 2008; Li et al.,

2013; John et al., 2018).

Grazing is the most common management type of grasslands worldwide. Intensive

grazingor overgrazing is a substantial cause for the degradation of grassland ecosystems

and the loss of related ecosystem functions. This makes research on grazing intensity highly

relevant. However, although remote sensing has advantages, such as the coverage of large

areas, cost-efficiency and repeatability of methods, approaches to monitor degradation in-

duced by grazing intensity are limited. The impact of grazing pressure on ecosystems is

often entangled with climate effects. This interplay needs to be understood to develop ef-

fective monitoring mechanisms and prevention plans.

2.2.4 Remote Sensing of Grassland Mowing Detection

Next to the delineation of management types or the analyses of grazing intensity, the

detection of mowing events plays a central role in research on remote sensing of grassland

management. Several studies, which are mostly rather exploratory, used optical and SAR

data on various spatial scales and temporal dimensions. One previously used methodolog-

ical approach of mowing detection is the classification of cut versus uncut grasslands, for

potentially multiple events during the year. Mainly SAR data sets, but also optical data

or a combination of optical and SAR data were used in that regard (Halabuk et al., 2015;

Siegmund et al., 2016, 2019; Taravat et al., 2019; Lobert et al., 2021; Lange et al., 2022).

Halabuk et al. (2015) used vegetation indices based on MODIS with a decision tree-based

classification approach resulting in a F1-Score of 0.85, however only for extensively used

grasslands. An Artificial Neural Network (ANN)-based classification of SAR backscatter

intensity reached an accuracy of 0.85 (F1-Score) but only for two test sites in Germany

(Taravat et al., 2019). A combination of optical and SAR with data from Landsat 8, S2

and S1 was used in a Convolutional Neural Network (CNN) approach, whereas the model

with the highest accuracy (F1-Score = 0.84) included the NDVI, backscatter cross-ratio and

InSAR Coherence (Lobert et al., 2021). This classification approach was tested for single

grassland parcels with a relatively good data coverage in Germany and still needs to be

explored for a broader research area. Within a study on grassland use intensity, the mowing

frequency was determined based on a CNN classification approach for the entire grassland

area of Germany using S2 data resulting in an F1-Score of 0.57 (Lange et al., 2022).
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Although the classification-based approaches often used multi-temporal satellite data,

the temporal information, namely the signal development of mowing events over time, was

not included. Several exploratory studies investigated the signals of various satellite-based

indices before, during and after grassland mowing events. This involved the comparison of

parameters of single images before and after mowing events, such as backscatter intensity

using COSMO-SkyMed or S1 (Grant et al., 2015a; Malss et al., 2018) or InSAR coherence

based on TerraSAR-X (Ali et al., 2017a), showing that changes of these parameters after

mowing events are visible. The investigation of time series for various parameters, includ-

ing the NDVI based on S2 (Rossi et al., 2019), Gross Primary Productivity (GPP) based on

MODIS and Landsat (Skinner et al., 2011; Zhou et al., 2017a), backscatter intensity based

on S1 and COSMO-SkyMed (Grant et al., 2015b,a), polarimetric decomposition parameters

based on TerraSAR-X and Radarsat-2 (Voormansik et al., 2013, 2015) and interferometric

temporal coherence based on COSMO-SkyMed (Zalite et al., 2014, 2015) and S2 (Tamm

et al., 2016), revealed visible changes of the parameters after mowing events which were,

however, varying in their amplitude and inconsistent. In previous time series-based mowing

detection approaches, the temporal information was involved and mostly a change detec-

tion or other rule-based detection approach was developed. A temporal decision rule-set

led to a F1-Score of 0.9 for detected mowing events which were used as input for a crop

growth model (Courault et al., 2010). However, only homogeneously managed grasslands,

all characterized by three mowing events per year, were included in the study. The detection

of abrupt drops in a S2-based NDVI time series reached a detection rate of 77 % (account-

ing only for correctly detected mowing events) in a study area in Switzerland (Kolecka

et al., 2018). For entire Europe, however on a coarser spatial resolution using MODIS data,

mowing events were detected with a thresholding-based location of throughs (splines) (Es-

tel et al., 2018). The detected mowing events were combined to mowing frequencies which

resulted in an accuracy of 80 %. Schwieder et al. (2021) applied a rule set developed by

Griffiths et al. (2020), which is based on the detection of strong minima in a Landsat 8 and

S2-based EVI time series, to detect mowing events for entire Germany for the years 2017-

2020. The validation of the approach relying solely on optical data resulted in F1-Scores

of 0.58 to 0.67. Apart from the classification-based approach by Lobert et al. (2021), only

De Vroey et al. (2022) used a combination of optical and SAR data for mowing detection

so far. The thresholding approach which works on parcel level and resulted in F1-Scores

of 0.64 (S2) and 0.58 (S1+S2) for a validation data set from Belgium was applied to grass-

land sites in Czech Republic, Italy, Netherlands, Lithuania, Romania, Spain and Belgium

(De Vroey et al., 2021, 2022).

The number of studies on grassland mowing detection increased strongly within the last

few years as the feasibility rose with the launch of the Sentinel satellites. A large majority
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of studies presented above are more exploratory and investigated the signals of various pa-

rameters related to mowing events, but only a few developed mowing detection algorithms

and even less applied it to a large and heterogeneous grassland area to map grassland mow-

ing dynamics. Without a mapping result as in De Vroey et al. (2021, 2022) for instance,

the plausibility and comparability of the mowing detection results is largely reduced. An-

other important aspect which was often completely missing or at least very limited was

the availability of an independent and complete validation data set in previous research.

Many studies used a validation data set based on the visual interpretation of optical satellite

data (Kolecka et al., 2018; Schwieder et al., 2021) which potentially leads to a bias of the

accuracy assessment as the mowing detection algorithm as well as the creation of the vali-

dation data set are limited by the same factors (e.g. cloudy conditions). The validation data

set requires information of various management options and intensity levels of grasslands,

which was mostly not given in previous literature as reference information of intensively

mown sites was very limited. Without a complete validation data set the quality of the ac-

curacy assessment is largely reduced. A mowing detection approach based on optical and

SAR data, applied to a large and heterogeneous grassland area in high resolution and for

multiple years, and validated with an extensive validation data set – as conducted within

this thesis – was still missing in the research landscape.

2.3 Summary

Research on the use of EO data to investigate grassland management strategies, use in-

tensities and production traits was assessed to highlight patterns of previous studies and

extract research gaps. All papers on these topics which were found by an extensive search

within the Web of Knowledge and Google Scholar were included, leading to a compre-

hensive literature review of, in total, 253 papers, published between 1986 and 2020. Stud-

ies investigating grassland management and production increased within the last years, in

particular since 2010. Study sites in South America and Africa are underrepresented as re-

search from these continents cover only 5 and 4 % of the reviewed literature. As large and

diverse grassland areas occur in South America and Africa, this shows that more research

is needed, in particular as many people’s livelihoods depend on grassland ecosystems there

(Angelsen et al., 2014). Previous studies used single images, multiple images and complete

time series to investigate grassland management and production traits. Data from MODIS

and Landsat played a central role in the past, however, now and in the future the Sentinels

gain increased importance in that regard. The vast majority of the reviewed studies used

optical data and only a small share (4 %) combined optical and SAR data to investigate

grassland management and production.
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Compared to the other continents, grassland production traits show a small share in Eu-

rope (30 %). This is probably related to the fact that European grasslands are characterized

by a strong human influence through management and small parcels. The grasslands are

managed differently leading to grassland landscapes with small-scale, alternating parcels

which differ in their management and use intensity and, consequently, their physiognomy

and ecosystem services. A lack of knowledge on grassland management aggravates analysis

of grassland production traits, for example yields, in European grasslands. Only six studies

covered all grasslands worldwide and many took place on a rather local level. The research

on larger extents (mostly LUE-based productivity estimations) were more generalized due

to a lack of detailed spatial information. Large-scale analyses including more spatial detail,

which is needed due to the diversity and small-scale heterogeneity of grasslands, are mostly

lacking. In addition, many grasslands show intra-annual dynamics related to management

and use strategies (like mowing or grazing events) which need to be included. Many stud-

ies lack a multi-temporal approach, which at its best includes continuous information on

grassland management.

Studies focusing on grassland management and use intensity were usually conducted on

small study sites as 90 % shows sites smaller 10000 km2. Furthermore, research on remote

sensing of grassland management traits lacks an automatized monitoring approach. Many

studies are rather exploratory and are limited by ground-truth information about grassland

management. In addition, often not all intensity levels of grasslands were included which

misses to cover the diverse nature of these ecosystems in reality. More spatially detailed

research on grassland management and productivity traits are needed for the development

of continuous monitoring frameworks covering large extents. Lastly, combined analyses of

optical and SAR data are still rare in previous literature.

26



Chapter 3
Study Area: Grasslands in Germany

3.1 Climate and Topography of Germany

Germany is located in the center of Europe, with coastlines to the North Sea and the

Baltic Sea (Figure 3.1 A). The federal republic is covering an area of about 357 000 km2

and consists of 16 federal states. From north to south, Germany is geomorphologically

structured by the Northern Lowlands, the Central Uplands, the Pre-Alpine and Alpine re-

gions. Highest elevations are found in the Alps with the peak “Zugspitze” (2 962 m.a.s.l),

the average altitude is 370 m.a.s.l. (Figure 3.1 B) (Zöller, 2017). According to characteris-

tics regarding topography, climate and vegetation cover, Germany can be grouped into great

natural landscapes (Meynen et al., 1962), from which seven are on land (Figure 3.1 C).

Figure 3.1: Location of Germany in Central Europe (A), altitude (B) and great natural landscapes
of Germany (C).
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Germany shows a humid temperate climate with warm summers (Koeppen and Geiger,

1936). It lies between the maritime west and the continental east, in the region of the west-

erlies. Rainfall rates remain relatively constant throughout the year with an average annual

precipitation of 789 mm (Deutscher Wetterdienst, 2022b). Highest precipitation rates can

be found close to or in areas with higher elevations in Germany, e.g. in the south close to

the Alps, in the Black Forest and the Sauerland (with annual rainfalls exceeding 1500 mm).

Areas in central and central-eastern Germany show the lowest rainfall rates (Figure 3.2 B).

The average annual temperature was 8.2 ◦C for the reference period 1961–1990 and has

risen to 9.3 ◦C for 1991–2020 (Deutscher Wetterdienst, 2022b). Temperatures show an

annual profile with lowest temperatures in January and highest temperatures in July (Fig-

ure 3.2 C). The highest annual temperatures are reached in lower altitudes in the west of

Germany, e.g. within the valley of the river Rhine (Figure 3.2 A). There is a significant

increasing trend in temperature in Germany, revealing a rise of 1.6 K from 1881 to 2021

(Imbery et al., 2021). The years 2018, 2019 and 2020 were among the warmest in the recent

past with temperatures of 2.1 to 2.3 K higher compared to the reference period of 1961–

1990 (Imbery et al., 2021). In addition, 2018 was an unusually dry year with a precipitation

rate 202.6 mm lower than the long-term average (1961–1990) (Imbery et al., 2021).

Figure 3.2: Multi-annual mean temperature (1981–2010) and mean precipitation rates (1981–2010)
interpolated from station data from the German Weather Service, and monthly mean
temperatures and precipitation averaged over Germany (1991–2010) derived from the
Climate Data Center of the German Weather Service.

3.2 Grasslands in Germany

3.2.1 Distribution and Usage

Grasslands are a dominant land cover in many regions in Germany as they account for

about one third of the agriculturally used area (Statistisches Bundesamt, 2021). In Germany,
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almost all grasslands are secondary grasslands, meaning that their occurrence is not natural

but requires human action (Dengler et al., 2014). Without human influence, these grasslands

would change into more woody ecosystems as most of the land area in Germany would

be forests naturally. Common human actions preventing bush encroachment in grassland

biomes are management practices, like cattle grazing and mowing (Schoof et al., 2020b,a).

In Germany, grasslands are heavily used which determines its physiognomy, fulfillment

of ecosystem services and biodiversity. Grassland vegetation is harvested and provided as

fodder for livestock or directly grazed. Hence, many grasslands are regularly mown during

the year and at times additionally grazed (Schoof et al., 2020b,a). In addition, grasslands

are usually fertilized and very rarely irrigated in Germany. The timing and frequency of

management activities and, consequently, the use intensity varies from parcel to parcel.

In Germany, grasslands are mown from zero to six times per year. Higher use intensities,

meaning higher numbers of mowing events per year and regular fertilization, provoke a

shift within the plant species community towards more productive species (Socher et al.,

2012; Neyret et al., 2021). As described in section 1.1.2, this is also related to additional

changes within grassland ecosystem functions. In addition, the timing of the first mowing

event plays a critical role for the ecology of grasslands. In Germany, early mowing events

take place already in April. As a consequence, many plant species are locally extinct as they

can not reproduce. Also, next to insect and spider species, in particular breeding birds are

negatively influenced by early mowing activities in Germany. Grasslands which are mown

relatively early are usually also mown more often.

Grasslands are distributed throughout Germany, covering large gradients of elevations,

climatic conditions and soil types (Figure 3.3 A). They often occur in regions and spots

which are unfavorable for agricultural use of common crops, for instance, areas which are

rather wet, or show steep slopes, high elevations or poor soils (Schoof et al., 2020b,a). Large

parts of the agricultural land are used as grassland in southern and northern Germany and in

some regions in central-western Germany (Figure 3.3 B). These areas also mostly overlap

with the amount of cattle per area, which are highest in southern and northern Germany

(Figure 3.3 C). Livestock is additionally fed with bought fodder, such as soy. Germany has

the largest dairy industry in Europe and cattle farming is oriented towards the dairy industry.

A large proportion of cows are dairy cows, meaning that they are mainly used to produce

milk. The number of cattle per area is not necessarily related to the size of the farms as

can be seen from the differences between these parameters in Germany (Figure 3.3 D). The

average farm sizes in the states of the former German Democratic Republic (north-eastern

part of Germany) is generally larger as combining agricultural land into larger farms was a

common practice there.
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Figure 3.3: Distribution of grassland in Germany (A) according to the Copernicus High Resolution
Layer 2018 (Copernicus, 2018) and information on the proportion of grassland of agri-
cultural land (B), the number of cattle per hectare (C) and the mean farm size (D) on
federal level for 2020 (Statistisches Bundesamt, 2020, 2021).
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The management and use intensity of grasslands in Germany varies. As a consequence

and in combination with the wide distribution, grasslands are very heterogeneous. They

are characterized by small parcels with diversified use intensities and, consequently a high

diversity in their physiognomy and provision of ecosystem services. The available informa-

tion on the management of grassland ecosystems and their ecosystem functions is compa-

rably limited in Germany.

3.2.2 Status and Protection Mechanisms

Figure 3.4: Distribution of Natura 2000 sites (Habitats Directive and Birds Directive) in Germany
and occurrence of grassland according to the Copernicus High Resolution Layer 2018
(Copernicus, 2018).
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Temperate grasslands are among the most species rich habitats in Europe and exceed

species numbers of agricultural sites or forests by far (Dengler et al., 2014). Many vascular

plant species, as well as insects, such as cicadas and butterflies, spiders and breeding birds

are bound to extensively used grassland sites (Schoof et al., 2020b). A large number of

grassland related species are currently endangered which mirrors the critical condition of

these ecosystems. In Germany, 84 % of the grassland habitats are threatened, from which

31 % count as severely threatened to complete extinction according to the red list status

classification (Finck et al., 2017; Schoof et al., 2020b). An evaluation of grassland sites

according to the flora-fauna-habitat guidelines showed that more than 55 % of habitat types

are in an unfavorable state and less than 10 % revealed a favorable condition, while three

quarters of all grassland types additional show negative development trends (BMU, BfN,

2020). Not only special grassland habitats are endangered as also species rich lowland

and mountainous hay meadows are often classified as threatened through intensification

processes (mowing frequency and fertilization) in Germany (BMU, BfN, 2020).

The conservation of grassland habitats and species is defined by policies on different

tiers. A general framework and guidelines for agricultural management for members of the

European Union (EU) are determined within the Common Agricultural Policy (CAP) (Eu-

ropean Commission, 2013). The CAP consists of two pillars, of which the first is about the

income support of farmers and the second one is on agricultural practices, rural develop-

ment and nature conservation within the agricultural landscape. The second pillar considers

the agricultural environmental measures which are usually composed of compensatory pay-

ments for restrictive covenants resulting from measures in agricultural practices supporting

environmental protection (Schoof et al., 2020b). The exact restrictions and requirements

are defined by each member state. In Germany, this is defined through the national nature

conservation law, which protects some grassland habitats (biotope protection) which are

not allowed to be destroyed (Schoof et al., 2020a). In addition, grasslands are, in principal,

protected against being converted into agricultural areas, in particular when the occurrence

of endangered species is ascertained. The condition of grasslands within protected areas,

such as Natura 2000 which is a European framework of protected areas to conserve species

and habitats (Figure 3.4), is restraint to deteriorate but only if the conservation of the grass-

land habitat was part of the preservation goals of the protected area (Schoof et al., 2020a).

Within the national law for nature conservation in Germany, also some concrete measures

regarding grassland management are named which are, however, defined in detail – accom-

panied by the amount of compensatory payments – on federal level.

In Bavaria, the south-eastern most state of Germany, which is covered by large amounts

of grassland, there are two major conservation programs (StMELF and StMUV, 2022). The
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first one, which is called cultural landscape program ("Kulturlandschaftsprogramm") com-

pensates sustainable grassland management by farmers. Next to topics, such as extensive

pasture management, farmers are compensated for mowing after the 15th of June or the 1st

of July. In the second program, the contract nature conservation, regulations of protected

areas, including Natura 2000 sites, for instance, are defined. Apart from financial support

for turning cropland into grassland and waiving of fertilization, for example, applicants

are compensated for mowing after 1st of June, 15th of June, and so on and for management

dormancy periods (StMELF and StMUV, 2022). Lower Saxony, which is the north-western

most state of Germany, is also occupied by large shares of grassland. There, several con-

servation programs exist, which focus on rural development, the conservation of specific

habitats and species, and the compensation for difficulties arising from protection measures

in protected areas (Ministerium für Umwelt, Energie und Klimaschutz, 2014). Within the

first one, farmers are compensated for nature friendly practices, for example late mowing.

The mowing date in that regard is defined as the phenological 25th of May and is, therefore,

newly calculated every year. The compensatory payment for nature friendly management

practices within protected areas is a complex point awarding scheme, including mowing

dates, mowing frequency and fertilization application (Ministerium für Umwelt, Energie

und Klimaschutz, 2014; Schoof et al., 2020a).

The critical status of grassland habitats and severe threat of many grassland-related

species shows that the applied conservation regulations are not sufficiently effective. One

point of critique are the complex systems which are difficult to compare and accompanied

by a large amount of bureaucracy, often exceeding the capabilities of the responsible au-

thorities (Schoof et al., 2020b). In addition, the amount of financial aid on all levels can be

considered as too low to effectively implement nature conservation schemes in agriculture

(BMU, BfN, 2020). Regarding protected areas, such as Natura 2000, studies on their suc-

cess in conserving habitats and species come to mixed results (BMU, BfN, 2020). Protected

areas need adequate management and monitoring system, of which the latter is in general a

major difficulty regarding the effective implementation of conservation plans (Schoof et al.,

2020a).
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Chapter 4
A Novel Framework to detect Grassland

Mowing Events∗

Despite their large area coverage, many aspects of grasslands are unknown. They are

very diverse which is partly caused by varying management practices and use intensity.

As outlined in chapter 1.1, grasslands potentially contain large numbers of plant species,

accompanied by other important ecosystem services, like the provision of habitats, car-

bon storage, water filtration and cultural aspects. Large-scale assessment and monitoring

of grassland biodiversity and ecosystem services is however highly challenging due to the

diverse nature of the grassland biome and due to missing information on grassland manage-

ment and use intensity, being the most determining factor. Without sufficient information

on grassland biodiversity and ecosystem services and the relationship to management, the

development of sustainable management plans for future climates are impossible.

In Germany, mowing is the most important grassland management activity. Most grass-

lands are at least also mown, apart from grazing, and the frequency and timing of mowing

events largely influence the ecology of the grassland ecosystems, and therefore, its biodi-

versity and provision of ecosystem services (Schoof et al., 2020b,a; Socher et al., 2012;

Neyret et al., 2021). Hence, the automated detection of grassland mowing events is the

main objective of this thesis.

Remote sensing is a unique tool enhancing the monitoring of grassland management (2)

and, therefore, enabling large-scale assessments of grassland biodiversity and ecosystem

services. In particular, the Sentinel sensors – providing earth observation imagery in high

spatial and temporal resolution – are of advantage in investigating grassland management as

grassland parcels are rather small, in Germany. In addition, the effects of grassland manage-

ment activities, like mowing, are often only visible for a short period of time (days to few
∗Parts of this chapter have been published in Reinermann et al. (2022) and Reinermann et al. (2023).
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weeks) which makes a revisit time of a few days highly important. Both Sentinel sensors,

optical (S2) and SAR (S1) provide information which could be valuable in investigating

and monitoring grassland mowing activities.

Optical imagery, and here in particular vegetation indices, have a long history in mon-

itoring vegetation as they provide information on vegetation greenness, density and pho-

tosynthetic activity (Huete et al., 2002). Hence, multi-temporal optical data enables the

depiction of temporal patterns of vegetation, like phenology. Grassland mowing leads to

a change in color and density of the vegetated surface which is potentially portrayed by

optical data.

Space-borne SAR data has a shorter application history compared to optical data regard-

ing vegetation monitoring. However, SAR data was already intensively used to investigate

characteristics of forest ecosystems (e.g. biomass) and, more recently, finds more and more

usage in EO-based analyses of agricultural areas (Holtgrave et al., 2020). Changes of scat-

ters, for example regarding their polarimetric, dielectric, among other physical character-

istics, resulting from grassland mowing events, are potentially depicted by SAR imagery.

As optical data is negatively influenced by cloudy weather conditions and SAR data alone

probably won’t depict grassland mowing as reliable as optical data, a combination of both

sensors might enhance grassland mowing detection substantially. Hence, within this the-

sis the potential of optical and SAR data and the combination of both regarding grassland

mowing detection is examined and an automated framework developed.

Within the following sections, first, the data sets are described which include satellite

data as well as reference data used for parametrization and validation of the mowing detec-

tion approach. Secondly, the methodological approach is described in detail and afterwards

the results of the automated mowing detection algorithm are presented and discussed. The

chapter is finalized by a summary.

4.1 Data

Within the following sections, the input data required for the development of the grass-

land mowing detection algorithm is described. The satellite data, consisting of S2 and S1

imagery, is described in section 4.1.1. As the developed mowing detection algorithm is a

knowledge-based approach, reference data based on which the method is developed and

calibrated is needed. The reference data, including calibration and validation data, is de-

scribed in section 4.1.2.
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4.1.1 Satellite Data

4.1.1.1 Optical Data

S2 consists of two polar-orbiting satellites, Sentinel-2A and Sentinel-2B, with a revisit

time of five days (Drusch et al., 2012). Due to overlapping orbits higher acquisition fre-

quencies of up to every second day are possible in Germany. As a consequence, the data

availability of S2 is unevenly distributed in Germany. The coverage of the S2 satellites is

shown in Figure 4.1 highlighting areas covered by overlapping orbits and areas covered by

only one orbit. In addition, optical data is limited to cloud-free observations which influ-

ences the availability of data.

A) B)

Coverage of Sentinel-2
Satellite Acquisitions
(18 days)

1

2
3
4

Figure 4.1: Coverage of S2A (A) and S2B (B) orbits for a period of 18 days showing the unevenly
distributed data availability according to the acquisition plan.

The S2 satellites carry a passive Multispectral Instrument (MSI) recording reflected

radiation from the Earth’s surface within the visible to infrared range. The data is ac-

quired in 13 spectral bands which have differing spatial resolutions from 10–60 m. The

four bands with the highest spatial resolution of 10 m, which are also the most important

for vegetation monitoring, are Blue (central wavelength ≈ 492 nm), Green (central wave-

length ≈ 559 nm), Red (central wavelength ≈ 665 nm) and Near-Infrared Radiation (NIR)

(central wavelength ≈ 833 nm).

The grassland mowing detection algorithm was developed on time series data of 2019

and then applied to the years 2018–2021 for entire Germany. Only data from the period

where vegetation is active in Germany, namely March to November, was included. Hence,

S2 Level 2 data from March to November of 2018–2021 for all 64 tiles covering Germany

was processed for the multi-annual grassland mowing detection. This resulted in 1.6 TB
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(4374 scenes) of processed data in 2018, 1.2 TB (3483 scenes) in 2019, 1.5 TB (4122

scenes) in 2020 and 1.1. TB (3191 scenes) in 2021.

4.1.1.2 SAR Data

Similar to S2, S1 consists of two polar-orbiting satellites, Sentinel-1A and Sentinel-1B,

resulting in a revisit time of six days. The two satellites carry SAR sensors covering data in

the microwave frequency domain at C-band, making the data acquisition independent from

sunlight and cloud conditions (Torres et al., 2012). The data is acquired in interferomet-

ric wide-swath (IW) mode which consists of three sub-swaths with several bursts merged

together. The SAR sensors collect data in dual polarization, with vertical emission and ver-

tical and horizontal reception (VV, VH). For this thesis ground-range-detected GRD as well

as single-look-complex SLC data is used. The GRD data is detected, multi-looked and pro-

jected to ground-range and therefore the preferred product when focusing on the intensity

(amplitude). As within this thesis next to the intensity also interferometric (InSAR) and

polarimetric (PolSAR) parameters are investigated, the SLC data is included as it contains

the needed phase information. The feasibility of SAR data for grassland mowing detection

is investigated only for a focus region and therefore S1 GRD and SLC data of RON 117 in

ascending mode is processed for March to November 2019. This results in 45 GRD and 45

SLC scenes which were investigated regarding grassland mowing detection.

4.1.2 Reference Data

A ground-truth reference data set, independent from satellite imagery was used to cali-

brate and validate grassland mowing events. This data set was created by exploiting public

webcam and self-installed camera images (RGB) for grasslands distributed in Germany

and the entire time period of 2018–2021 (Figure 4.2). Cameras were installed at farm sites

where close information exchange and collaboration with farmers were conducted. These

sites were in the south of Munich in the Pre-alpine area of southern Bavaria, which is char-

acterized by a large share of grasslands and a large diversity regarding grassland use inten-

sity. These self-installed cameras were accompanied by webcams which were more widely

distributed to include information of grasslands in other geographical regions in Germany.

In total, 80 cameras (11 self-installed and 69 public) took images at least once per day and

captured information on grassland management activities, like mowing, fertilization and

grazing. In addition, many cameras covered multiple grassland parcels within their field of

view. While location and field of view of the self-installed cameras was known, the location

of the public webcams was determined according to all available information, which usu-

ally were coordinates of the position or at least a town or place name. The parcels viewed
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by the camera were then located by inspecting the recorded images along with high reso-

lution satellite data (e.g. Google Earth). The shapes for the grassland parcels were created

by hand according to this information. All recorded images were viewed and management

activities, like mowing dates, were extracted.

Data from 192 grassland parcels and, in total, 1475 mowing events were generated in

that regard which were used for calibration and validation. The exact numbers of grassland

parcels and mowing events vary between the years (Table 4.1) as some cameras were dep-

recated or out of order for some time or changed their view angle. In addition, systematic

recording started only in 2019, leading to a lower number of observed grassland parcels

and mowing events for 2018. Only a small share (nGrasslands = 13 and nMowingEvents = 44) of

2019 were used for parametrization and calibration of the mowing detection approach. The

remaining grasslands were used for validation (Table 4.1). For some accuracy statistics,

like the F1-Score (section 4.2.2), also falsely detected events are considered. Therefore, to

calculate these statistics, only cameras (and mowing events taken place there) with con-

tinuous information are used as they can provide also information on false positives. The

distribution of mowing frequencies available for validation varies between the year (com-

pare Table 4.1). 2018 shows more grassland parcels with lower mowing numbers per year,

followed by 2021. 2019 and 2020 show higher numbers of more frequently mown grass-

lands.

Figure 4.2: Location of webcams used for validation and cameras used for parametrization of the
grassland mowing detection approach.
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Table 4.1: Reference data used for parametrization and validation of the grassland mowing detec-
tion. The Zoom corresponds with the investigated focus region.

2018 2019 (∗) 2020 2021
Number of mowing events 117 536 (491) 448 419
Number of mowing events based on
continuous information

108 328 (283) 410 334

Number of grassland parcels 49 192 (179) 161 159
Grassland mown up to 1 time 34.7% 19.0% 14.3% 23.3%
Grasslands mown 2–3 times 42.9% 52.5% 57.1% 52.2%
Grasslands mown more than 4 times 22.4% 28.5% 28.6% 24.5%

∗ Values in brackets refer to numbers of mowing events and grassland parcels which re-
main for validation and are not used for parametrization.

The mowing detection based on S1 and the combination of S2 and S1 was tested for

a focus region in southern Germany and validated with a subset of the validation data set.

This subset consisted of mowing information from 66 grassland parcels with 229 mowing

events, in total. The focus region corresponds with the zoom area of Figure 4.2.

As mentioned above, a small share, namely 13 grassland parcels were used to parameter-

ize the detection algorithm (compare Figure 4.1.2). Only data from 2019 was used in that

regard. To minimize over-fitting these grassland parcels were excluded completely from

the validation. These parcels show a complete range of possible mowing frequencies on

German grassland as they range between one and six mowing events. In addition, some of

these parcels are additionally grazed. A detailed description of the 13 parcels can be found

in Table 4.2.

Table 4.2: Detailed information of the 13 parametrization sites which were used to develop and
calibrate the mowing detection approach.

Name Coordinates (xy) Number of Mowing Events Grazing
FE1 Fendt 1 5299758, 654263 4 No
FE2 Fendt 2 5299584, 654286 5 No
FE3 Fendt 3 5299584, 654286 1 Yes
FE4 Fendt 4 5299574, 654517 4 No
RB1 Rottenbuch 1 5290622, 646496 5 No
RB2 Rottenbuch 2 5290534, 646763 1 No
RB-L Rottenbuch-L 5288210, 647705 4 No

UGAU Unterammergau 5275185, 652597 3 Yes
MW Murnau-West 5281987, 663910 3 No
MN Murnau-Nord 5284733, 665111 4 No
HF Hofheim 5286114, 665689 1 Yes
GL Glentleiten 5282120, 672186 6 No
UF Uffing 5284930, 661943 3 No
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4.1.3 Auxiliary Data

The Copernicus HRL grassland layer from 2018 was used to mask the grassland area

(Copernicus, 2018). It is a raster data set in 20 m resolution and covers all grassland types

in Germany, including natural, semi-natural and agricultural grassland. The grassland layer

is based on a classification with S1 and S2 data and has an overall accuracy of 89.9 %.

For S1 pre-processing, the EU-DEM from Copernicus was used (Copernicus, 2016). It is

a combination of Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model

(GDEM), has a spatial resolution of 25 m and an error of +/- 7 m (Figure 3.1 B).

Phenological information from the Climate Data Center (CDC) of the German Weather

Service (DWD) was used to compare them with the results of the mowing detection. Multi-

annual data sets from 2018–2021 with information on the greening of grassland (DWD

Climate Data Center, 2018a, 2019a, 2020a, 2021a), the first hay cut (DWD Climate Data

Center, 2018b, 2019b, 2020b, 2021b) and the first silage cut (DWD Climate Data Center,

2018c, 2019c, 2020c, 2021c) were acquired and investigated further. The grid data sets

are derived from a network of phenological observations in Germany and have a spatial

resolution of 1 km.

In addition to that, spatial data sets were used for aggregation purposes. Country bor-

ders and spatial information on states and counties in Germany were downloaded from

the GADM Service (GADM, 2019). Further, spatial data on the great natural landscapes

of Germany were used. These are defined according to geographical and geomorphological

properties (e.g. climate, topography) (Meynen et al., 1962) and are provided by the German

Federal Agency for Nature Conservation (Figure 3.1 C).

4.2 Methodological Approach

Within the following sections the processing of the data and the development of the

mowing detection algorithm are presented. This includes the pre-processing of data set, the

description of the analysis of all parameters, the parametrization and validation approaches

of the mowing detection (section 4.2.2).

For data processing, mostly python in version 3.6 was used. The most important mod-

ules which were applied were raterio, pandas, geopandas, numpy, scipy and matplotlib.

The automated processing of the national and multi-annual high resolution satellite data

time series was implemented on the in house high-performance cluster of the German Re-

mote Sensing Data Center of the German Aerospace Center. The developed algorithm was
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therefore generalized and embedded into a batch script to be executable automatically on

the Linux machine. Apart from the that, QGIS in version 3.8.2 was mainly used for the

development of maps and inkscape 1.2 for creating schematic overviews.

4.2.1 Pre-processing

All data sets were masked with the Copernicus High Resolution Grassland Layer (HRL)

of 2018 (Copernicus, 2018) based on which areas not covered by grassland were excluded.

In addition, sensor-specific pre-processing followed by temporal filtering and smoothing

were conducted as described in more detail in the following sections.
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Figure 4.3: Pre-processing steps of S2 and S1 data to obtain the parameter time series investigated
regarding grassland mowing detection. Adapted from the supplementary material of
Reinermann et al. (2022).
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4.2.1.1 Sentinel-2
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Figure 4.4: Availability of cloud-free S2 data for the years 2018–2021 after applying the MAJA
pre-processing algorithm and cloud-screening.

The MACCS-ATCOR Joint Algorithm (MAJA) is a combination of an multi-temporal

algorithm for atmospheric correction and cloud screening (MACCS) and an atmospheric

correction software (ATCOR). S2 Level 2 data corrected with the MAJA version 3.3 was

used (Hagolle et al., 2017). The data was pre-processed and pixels, which were influenced

by clouds, cloud shadows or unfavorable terrain according to the algorithm, were excluded

(Figure 4.4). Only clear pixels were as the influence of clouds is easily confused with mow-

ing activities on the grassland parcel. Therefore the most strict cloud-screening was con-

ducted to ensure that no artifacts remain within the optical data set. When the grass is
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mown, the dense vegetation is removed leaving grass stubble, which are often yellow or

brown, accompanied by a higher fraction of visible soil compared to before the mowing.

This change in the terrestrial surface properties is translated to the reflectance values of

optical sensors. Vegetation indices can best capture these changes and therefore should be

used to detect grassland mowing events. Vegetation indices have the advantage of reducing

uncorrected influences of atmosphere, terrain and additive noise, and are therefore particu-

larly robust and well suited for multi-temporal change analyses of vegetation. Within this

thesis, the EVI was used for that purpose as it is a common and well-known vegetation

index, but does not saturate as quickly as other indices over grasslands. Based on the NIR,

Red and Blue bands of the S2 surface reflectance data the EVI was calculated for every

scene as follows (Huete et al., 2002):

EV I =
2.5∗NIR−Red

NIR+6∗Red−7.5∗Blue+1
(1)

As vegetated areas usually have positive EVI values, negative ones were filtered out. This

should remove persistent clouds as well as unvegetated areas not masked by the HRL

layer. The EVI scenes were afterwards stacked to data cubes and EVI time series were

pre-processed pixel-wise. The EVI time series was linearly interpolated to daily data per

pixel as the time series showed irregular spacing of observation times due to unevenly

spaced data acquisition and cloud masking. Afterwards the time series was smoothed with

a Savitzky-Golay filter (Savitzky and Golay, 1964) with a window length of 31 days and a

polynomial fit of order two to remove small fluctuations (Figure 4.3 A).

4.2.1.2 Sentinel-1

previous studies have shown that the changes in the physical properties of the Earth’s

surface caused by grassland mowing activities are potentially captured by SAR data time

series. Such changes of, for example, dielectric, height or polarimetric properties are ac-

quired by the backscatter intensity and interferometric (Interferometric Synthetic Aperture

Radar (InSAR)) or polarimetric (Polarimetric Synthetic Aperture Radar (PolSAR)) features

which can be calculated from the S1 SAR data. To test whether the intensity (amplitude) of

the SAR signal or the parameters including phase information are better suited to investigate

grassland mowing dynamics, all of these parameters were investigated. The SAR intensity

data in Vertical transmission and vertical reception (VV) and Vertical transmission and

horizontal reception (VH) polarization is based on the S1 Ground Range Detected (GRD)

data.

44



4.2 Methodological Approach

The S1 GRD intensity data was pre-processed by applying the orbit files, removing bor-

der noise and thermal noise and undertaking a radiometric calibration. Further, a refined

Lee speckle filter with a window size of 3 x 3 was applied. The data was then further pre-

processed by conducting a terrain flattening and correction using the EU-DEM (Coperni-

cus, 2016). Afterwards, the VV and VH data sets were resampled to 10 m spatial resolution

and transformed to gamma nought in logarithmic scale (dB) (Figure 4.3 B).

To obtain the PolSAR parameters, S1 Single Look Complex (SLC) data is used which

was downloaded for a focus region in the south of Germany. As the S1 data is available

in VV/VH polarization, the dual-polarization entropy/alpha decomposition (Cloude, 2007)

was used. After applying the orbit file and calibration, the covariance matrix (C2) and the

VV/VH-polarized Kennaugh matrix were calculated and the polarimetric features Entropy,

Alpha, K0, K1, K5 and K6 were obtained (Schmitt et al., 2015; Ullmann et al., 2017). The

features K5 and K6 which describe the real and imaginary parts of the signal are known

to add only limited value to vegetation analysis and Alpha and Entropy are highly corre-

lated (Löw et al., 2021; Schmitt et al., 2015). Therefore, to investigate grassland mowing

dynamics, only the parameters Entropy, K0 and K1 are investigated further (Figure 4.3 C).

Entropy ranges between zero to one and is a measure of scattering randomness (i.e., de-

polarization) where higher values are related to increased depolarization and vice versa

(Cloude, 2007). K0 represents the total intensity of the complex signal and is defined as

K0 = |SVV |2 + |SV H |2, and K1 shows the difference between the intensities of the complex

signal and is defined as K1 = |SVV |2 −|SV H |2 (Schmitt et al., 2015).

Next to the PolSAR features, the interferometric coherence was calculated for VV and

VH based on S1 SLC data (Ullmann et al., 2019; Voormansik et al., 2020). The interfero-

metric coherence is a measure of decorrelation between SAR images. It is defined as the

complex correlation coefficient of two SAR acquisitions s1 and s2 containing phase infor-

mation:

γ =
|⟨s1s∗2⟩|√
⟨s1s∗2⟩⟨s1s∗2⟩

(2)

The estimated coherence (γ) is a product of several types of decorrelation, including decor-

relation due to signal-to-noise ratio, for example. However, the dominant factor is the tem-

poral decorrelation which captures decorrelation due to changes in physical properties of

the surface. The coherence ranges between zero and one where zero represents complete

signal decorrelation and vice versa.

All S1 parameters, namely VV and VH backscatter intensity, PolSAR Entropy, K0 and

K1 and InSAR Coherence VV and VH were linearly interpolated and afterwards smoothed

to minimize small fluctuations. Several smoothing algorithms with varying degrees were
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tested in this regard resulting in a Savitzky-Golay filter with a window size of 31 days

and a polynomial fit of order two (Savitzky and Golay, 1964). In addition, likewise the

EVI, the SAR parameters were masked using the Copernicus HRL Grassland layer 2018

(Copernicus, 2018).

4.2.2 Mowing Detection Method Development, Parametrization and
Validation

The development of the mowing detection algorithm of this thesis is a observation-based

approach. The EVI and the seven S1 parameters are investigated regarding their potential to

capture and detect grassland mowing activities. This is done by analyzing the center-pixel

time series of the parameters for 13 grassland parcels with known management activities.

These sites showed varying mowing intensities, i.e. timing and frequency of mowing events,

and exhibited 44 mowing events in 2019. Time series of spatially averaged parameters of

3 x 3 pixel windows and entire parcels were observed as well. However, these were not

visibly different from the center-pixel time series. in addition, an approach based on single

pixel time series has the advantage of maintaining the pixel resolution. For these reasons,

the investigations were focused on the center-pixel time series of the parametrization sites.

It is hypothesized that mowing activities are detectable from time series of the investi-

gated parameters. For undisturbed vegetation, the EVI usually shows an increase in spring,

with a peak in late spring or summer, followed by a gradual decrease, which portrays the

natural vegetation growth cycle in Germany. As the EVI signal is highest for green, dense

and active vegetation, it is assumed that a mowing event, i.e. by a removal of biomass results

in a drop in the EVI time series. The remaining grass stubble with more yellow coloring

and a higher share of reflectance from the soil leads to smaller EVI values. This is followed

by another increase of EVI when the grassland vegetation grows back (Huete et al., 2002).

Regarding the potential to cover grassland mowing events with the S1-based parameters,

the change from long, thin-leaved, overlapping vegetation to grass stubble with higher re-

flectance rates from the soil and a reduction in moisture are probably of highest importance.

The backscatter intensities of both channels are assumed to show an increase after grass-

land mowing events due to these reasons (McNairn and Brisco, 2004). The behavior of the

PolSAR parameters is not easily anticipated as they are underrepresented in literature about

grassland dynamics. However, the removal of long vegetation with different plant species

which usually shows a rather diffuse signal most probably results in a decrease of Entropy

due to a reduction in randomness. Regarding the InSAR Coherence it can be assumed that

more grassland vegetation leads to increased decorrelation and, therefore, to lower Coher-
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ence values, and short vegetation after mowing to higher Coherence values (Wegmuller and

Werner, 1997). As the InSAR Coherence results from the comparison of two images there

is also the possibility that one of the images is acquired before and the other one after the

mowing event. In that case, the Coherence would be very low, as this would lead to high

levels of decorrelation.

To detect the dates of grassland mowing events, changes within the time series of the

investigated parameters were located. In the context of grassland mowing events a change

detection approach is of advantage compared to other time series approaches, as the in-

vestigated time series are rather short (March to November) and do not show a consistent

periodicity (seasonality) within and between time series. Therefore, other common time

series approaches, like break point analysis for example, are not well applicable. Time se-

ries of remotely sensed parameters naturally fluctuate as acquisition properties do not stay

strictly constant due to differences in atmospheric conditions or surface properties, e.g.

dew, even after pre-processing. Hence, an approach was chosen to locate strong changes in

time series individually for each pixel and each mowing event, to detect grassland mow-

ing within the time serie. The detection of mowing events was defined by a thresholding

approach (compare Figure 4.5). A fixed threshold leads to more control over the grassland

mowing detection compared to using a time series specific (per pixel) statistic as threshold.

To establish the thresholds, averaged changes in amplitude over all mowing events of each

parameter were calculated and compared for the parametrization sites. In that regard, also

the most suitable parameters were selected which were processed further to detect grassland

mowing events.

The thresholds of the mowing detection were determined with the 13 parametrization

parcels based on the accuracy achieved for the 44 mowing events of these parcels. The

accuracy was determined by the percentage of correctly detected mowing events and the

F1-Score which also includes the information on falsely detected mowing events (Sokolova

and Lapalme, 2009):

F1 =
TP

TP+ 1
2(FP+FN)

(3)

The parameterized mowing detection algorithms were afterwards applied to entire grass-

land area of Germany and validated with an independent validation data set. The German-

wide accuracy assessment was again based on the number of correctly detected mowing

events and the F1-Score.
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Figure 4.5: Illustration of the change detection within the time series of the parameters to locate
mowing events. Local minima and maxima are located and the differences in parameter
values at these positions investigated. The EVI (A) shows drops after a mowing event,
therefore local minima are detected and the EVI amplitude there is compared to the EVI
at the previous local maximum (indicated by L1). A Local minimum is defined by an
immediate increase afterwards (indicated by L2). SAR parameters (B) usually show an
increase after mowing events, therefore local maxima are located accordingly.

4.2.3 Development of a Mowing Detection Uncertainty Layer

An uncertainty layer was developed which informs on the certainty or reliability of all

detected mowing events in high resolution (10 x 10 m). It was developed and applied for

the focus region and the detected mowing events of 2019 based on S2 data. The uncertainty

layer depends on an estimated uncertainty of each individual detected mowing event which

has two components (compare Figure 4.6). The first component is about the availability

of cloud-free S2 observations during detected mowing events. It is calculated as the time

span between the last clear-sky observation before the local maximum and the first right

after the local minimum of the detected mowing event (Figure 4.6 A). Smaller time spans

indicate that the mowing detection relied on actual EVI acquisitions instead of interpolated

data. Therefore, smaller time spans between observations right before and after detected

mowing events are considered more reliably than larger time spans. The second component

of the uncertainty measure is the magnitude of the change in amplitude of the EVI related

to the mowing event. Hence, the gradient of the EVI is calculated as the difference between

the EVI value at the local minimum and the EVI value at the local maximum, divided by

the time span between the local maximum and local minimum belonging to the detected

mowing event (Figure 4.6 B). Higher gradients are related stronger decreases within shorter

time periods making higher gradients more reliable than smaller gradients.
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Figure 4.6: Schematic illustration of the estimation of the two uncertainty components, time span
between actual EVI observations (U1) (A) and gradient of EVI at the mowing date
(U2) (B). The uncertainty measures are calculated for each detected mowing event as
illustrated, afterwards combined and averaged for all mowing events.
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The first uncertainty measure component, the time spans between actual observations

before and after the detected mowing event, results in values between two to 100. The sec-

ond measure, the magnitude of change in amplitude of the EVI related to the mowing event,

resulted in small values which is why it was multiplied by 10000 to adjust it to the value

range of the first measure. As a result, the second uncertainty measure ranges between ten

to 300 which is approximately three times larger than the first measure. The two uncer-

tainty components were combined by subtracting the first component (time spans) from the

second one (gradients). Due to the different value ranges between the two components, the

second component (gradients) were weighted three times.

The combined uncertainty measure was afterwards z-normalized and divided by the

largest value (300). The resulting uncertainty information fluctuates around zero with a

value range of [-2,2]. The lower the value, the lower the uncertainty of the detected mow-

ing event, and vice versa. The estimated uncertainty of all detected mowing events were

averaged to obtain an overall uncertainty layer of detected mowing events in pixel resolu-

tion.

4.3 Results

In the following, first, the results of the investigation of all input parameters and the pa-

rameter selection for the mowing detection are presented. Second, the results of the mowing

detection based on S2 only and a combined approach are shown for a focus region. Finally,

the results of the application of the developed grassland mowing detection for the entire

area of Germany and the years 2018–2021.

4.3.1 Investigation of Time Series and Parameter Selection

To investigate whether the parameters of interest have the potential to detect grassland

mowing events and to decide based on which the mowing detection approach is developed,

time series of all parameters were analyzed for 13 parametrization sites. As presented in

section 4.1.2, these grassland sites show differing management properties and use inten-

sities making them suitable for the investigation of the behavior of the parameters before,

during and after mowing events. In total, the 13 parametrization sites contain 44 mowing

events in 2019, which were investigated here.

The EVI shows rapid drops after mowing events, followed by instantaneous increases

(Figure 4.7). The drops as well as the increases take only around two weeks, highlighting

that the visible effects of mowing of the EVI time series is short-lived. The pattern of EVI

decreasing after mowing is consistent among the calibration sites and mowing events. Only
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a few mowing events (n=6) are not followed by an EVI drop, i.e. the third mowing event

of RB-L, the second mowing event of UGAU, the third event of GL, the third mowing

event of MN, the third mowing event of RB1 and the fourth mowing event of FE2. In

addition, there are only a few EVI drops unrelated to mowing events visible which take

place during the year and not at the end of the vegetation period in October/November, i.e.

HF in July/August and September, FE3 in September and UF in April.

The backscatter information (intensity) of S1 shows inconsistent temporal patterns re-

lated to mowing events for VV and VH (Figures 4.8 and 4.9). For some of the parametriza-

tion sites the anticipated increase of backscatter after a mowing event is visible, e.g. for

VH the second mowing event of FE4, all three mowing events of UGAU, the first mowing

events of RB1, FE1, FE3 and FE2, and for VV the first mowing events of RB-L, RB1, MN

and FE3. However, the temporal signals of backscatter VV and VH fluctuate strongly and

many peaks unrelated to mowing events can be depicted, e.g. for VH in MW and for VV in

FE1, for example.

Similar to the backscatter information, the PolSAR parameters, Entropy, K0 and K1

show much fluctuation which sometimes seems to be related to mowing, but not in all cases

(Figures 4.10, 4.11 and 4.12). K1 shows mostly drops after mowing events, Entropy and

K0 show peaks. From the three parameters, Entropy shows peaks after mowing events most

consistently, for example all mowing events of RB-L and RB1. However, there are many

additional peaks unrelated to mowing events visible within the Entropy time series, e.g. in

MW.

Comparable to the other S1-based parameters, the behavior related to mowing events of

InSAR Coherence VV and VH are inconsistent (Figures 4.13 and 4.14). Both parameters

show peaks after mowing events for many of the mowing events of the calibration sites,

e.g. for Coherence VV all four mowing events of RB-L, all three mowing events of UF, the

mowing event of HF, and for Coherence VH the first two mowing events of FE4, MN and

FE1, among other examples. However, the time series show also peaks which are unrelated

to mowing activities, like in RB2 for both parameters. In addition, the values range below

0.4 for most sites, which is close to the noise level of temporal coherence data.

In addition to the visual observation of time series of the investigated parameters, their

values before and after all mowing events (n=44) of the parametrization sites were com-

pared. All raw data values (Figure 4.15) as well as smoothed values (Figure 4.16) were

averaged to investigate how and by how much the values change after a mowing event and

to assess if the smoothing might blur some relationships. The values of six days before

and six days after each mowing event were considered in that regard. The averaged EVI of
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EVI smoothed

EVI raw
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Figure 4.7: Raw and smoothed time series of EVI, mowing events and the presence of cows for the
calibration sites. The observation of the time series informs on the behavior of the EVI
before, during and after mowing events and during the presence of cows on the sites.
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BS VV smoothed

BS VV raw
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Figure 4.8: Raw and smoothed time series of Backscatter Intensity VV, mowing events and the
presence of cows for the calibration sites. The observation of the time series informs on
the behavior of the Backscatter VV before, during and after mowing events and during
the presence of cows on the sites.
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BS VH smoothed

BS VH raw
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Figure 4.9: Raw and smoothed time series of Backscatter Intensity VH, mowing events and the
presence of cows for the calibration sites. The observation of the time series informs on
the behavior of the Backscatter VH before, during and after mowing events and during
the presence of cows on the sites.
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ENT smoothed

ENT raw
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Figure 4.10: Raw and smoothed time series of PolSAR Entropy, mowing events and the presence
of cows for the calibration sites. The observation of the time series informs on the be-
havior of the Entropy before, during and after mowing events and during the presence
of cows on the sites.
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K0 smoothed

K0 raw

Mowing event
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Figure 4.11: Raw and smoothed time series of PolSAR feature K0, mowing events and the presence
of cows for the calibration sites. The observation of the time series informs on the
behavior of the K0 parameter before, during and after mowing events and during the
presence of cows on the sites.
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K1 smoothed

K1 raw
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Figure 4.12: Raw and smoothed time series of PolSAR feature K1, mowing events and the presence
of cows for the calibration sites. The observation of the time series informs on the
behavior of the K1 parameter before, during and after mowing events and during the
presence of cows on the sites.
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COH VV smoothed

COH VV raw
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Presence of cowsx

Figure 4.13: Raw and smoothed time series of InSAR Coherence VV, mowing events and the pres-
ence of cows for the calibration sites. The observation of the time series informs on
the behavior of the Coherence VV before, during and after mowing events and during
the presence of cows on the sites.
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COH VH smoothed

COH VH raw
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Figure 4.14: Raw and smoothed time series of InSAR Coherence VH, mowing events and the pres-
ence of cows for the calibration sites. The observation of the time series informs on
the behavior of the Coherence VH before, during and after mowing events and during
the presence of cows on the sites.
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the raw data is based on less observations (Figure 4.15) as there are missing values due to

clouds, which are gap-filled in the smoothed time series. Again, the EVI shows the most

consistent pattern when comparing the values before and after mowing events. The ration of

decreases to increases of all mowing events (n=44) was 39 to six (compare Table 4.3). Re-

garding the SAR parameters, Coherence VV shows the highest consistency with a decrease

to increase ration of nine to 36, followed by Coherence VV (10/35) and Entropy (14/31)

(Table 4.3). When comparing the averaged changes in amplitude among the parameters, the

EVI shows the highest change (0.29 and 0.11, respectively), followed by Entropy (0.14 and

0.06, respectively) and Coherence VH (0.09 and 0.06, respectively) (Table 4.3).

The comparisons of averaged values before and after mowing events of the raw time

series (Figure 4.15) show, in general, similar patterns compared to the smoothed time se-

ries (Figure 4.16). However, the smoothed parameters show weaker differences in their

amplitude when comparing the values of before and after a mowing event. Even though

smoothing weakens the changes in amplitude related to mowing events, it is needed to re-

duce fluctuations unrelated to mowing. In particular for the SAR parameters, which show

much fluctuation, finding the right degree of smoothing is difficult. Several smoothing al-

gorithms (rolling mean, Whittaker Smoother) and degrees of smoothing as well as decom-

positions (Empirical Mode Decomposition) and transformations (Fourier Transformation)

were tested on the SAR time series with the aim to extract the signals of mowing events

and separate them from noise. However, all of these tests conducted on the parametriza-

tion sites resulted in less consistent or less strong detectable changes related to mowing

events compared to the applied approach using the Savitzky-Golay smoothing (compare

section 4.2.1).

Overall, the examination of the parametrization sites revealed that the EVI shows the

most consistent behavior and strongest change in amplitude after grassland mowing events.

All S1-based parameters showed inconsistent behavior, however, Entropy and Coherence

VH show increases for many of the investigated mowing events. In particular, the analyses

on the parameter values before and after mowing events and observations from the time

series revealed that Entropy shows one of the highest differences in amplitude and is rel-

atively consistent. Coherence VH and Coherence VV show similar changes in amplitude,

however Coherence VH a higher consistency. Hence, next to the EVI, Entropy and Coher-

ence VH are included in the mowing detection approach for these reasons and to consider

a polarimetric decomposition parameter to investigate the relevance of polarimetry as well

as an InSAR parameter accounting for the temporal coherence.
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Table 4.3: Averaged changes of values of six days before and six days after all mowing events used
for parametrization (n=44) for all investigated parameters. All differences were normal-
ized using the 95%-percentiles. Modified according to Reinermann et al. (2022)

Decrease/Increase
Ratio

Normalized Differ-
ence (Raw Data)

Normalized Dif-
ference (Smoothed
Data)

EVI 39/6 0.29 0.11
ENT 14/31 0.14 0.06
K0 23/22 0.002 0.0009
K1 29/16 0.06 0.02
BS VV 25/20 0.03 0.008
BS VH 15/30 0.08 0.02
COH VV 10/35 0.08 0.06
COH VH 9/36 0.09 0.06

EVI = Enhanced Vegetation Index, ENT = PolSAR Entropy, K0 = PolSAR K0, K1 = PolSAR
K1, BS VV = Backscatter VV, BS VH = Backscatter VH, COH VV = InSAR Coherence VV,
COH VH = InSAR Coherence VH.
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Figure 4.15: Average values for six days before and six days after all mowing events (n=44) of
parametrization sites of raw time series for all investigated parameters. It shows the
averaged change in amplitude of each parameter related to mowing and the change of
each single mowing event as grey line.
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Figure 4.16: Average values for six days before and six days after all mowing events (n=44) of
parametrization sites of smoothed time series for all investigated parameters. It shows
the averaged change in amplitude of each parameter related to mowing and the change
of each single mowing event as grey line.

4.3.2 Mowing Detection Approach and Threshold Calibration

The results from the investigation of all parameters revealed that especially the EVI cap-

tures grassland mowing events well through a consistent and distinctive decrease. There-

fore, an mowing detection algorithm solely using EVI was developed. However, close ex-

amination of the parametrization time series showed that the EVI times series missed the

drop related to mowing events when S2 observations were missing around the time of the

mowing event due to clouds. A combined approach of S2 and S1 was therefore developed

in addition, as the S1 parameters alone led to inconsistent results with many peaks/troughs

within the time series unrelated to mowing activities (compare section 4.3.1).

4.3.2.1 Parametrization of Grassland Mowing Detection

4.3.2.1.1 Sentinel-2 The approach solely using the EVI time series was developed and

parameterized using the 13 grassland parcels. A comparison of all mowing events of these

sites revealed that the smoothed EVI drops on average by 0.07 after a mowing event took

place (compare Figure 4.16). To detect mowing events, the EVI drop was located by search-

ing for local maxima and minima within the time series and comparing the EVI values of

those. Based on the information of the time series of the parametrization sites, it was de-

fined that, in addition to the abrupt decrease in EVI, an immediate increase has to follow

afterwards to detect a mowing event. This was important to prevent the false detection of

natural plant senescence processes related to decreasing EVI. Based on this mowing detec-
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tion approach, 77 % (34 of 44 mowing events) of the mowing events of the parametrization

sites were correctly detected (compare Figure 4.17). Ten events were missed and ten falsely

detected resulting in a F1-Score of 0.77. EVI decreases between 0.01 to 0.15 were tested

consecutively as thresholds for a mowing event detection on the mowing events of the

parametrization sites showing that for a large value range of 0.02–0.12, the accuracy of

the mowing detection stays the same. Below and above these thresholds, the accuracy goes

down. For further mowing detection the threshold of 0.07 was implemented as, apart from

being the average EVI decrease of all mowing events, it is the center value between the

thresholds which lead to the highest accuracy for the parametrization sites.

When a mowing event is detected the mowing date needs to be defined which potentially

lies between the local maximum and local minimum which led to the mowing detection. it

was decided to set the mowing date on the exact date between the local maximum and the

local minimum to minimize the offset on average.

4.3.2.1.2 Sentinel-2 and Sentinel-1 Combined When applying the EVI-based mowing

detection approach on the parametrization sites, it was revealed that most of the events

missed by the EVI approach were related to unfavorable weather conditions. Eight of the

ten missed mowing events were within periods of cloud cover or shortly before or after

that. A second mowing detection approach was therefore defined, in which the EVI-based

approach is complemented by a S1-based detection in periods of cloud gaps. The PolSAR

Entropy as well as the InSAR Coherence VH were tested in that regard. Cloud gaps of at

least 25 days within the optical time series were considered as critical gaps in which the

S1-based information is added. In case there already is a S2-based detection (up to 10 days

before or after the S1-based detection), the S1 detection is not added, but disregarded. As

both, Entropy and Coherence VH, showed mostly peaks after mowing events, these are

searched for within a time frame of five days before the beginning of the cloud gap and

ten days afterwards. Multiple thresholds for mowing detections were tested of which an

Entropy increase of 0.05 revealed the best results for the parametrization sites. Regarding

the Entropy, the mowing detection within cloud gaps led to twelve additional mowing event

detections for the parametrization sites, of which eight were correct (compare Figure 4.17).

However, five of these additional detections were already detected by the EVI-based ap-

proach. Only three of the remaining additional S1-based detections were correct (i.e. the

third events in RB1 and MN, and the fourth event in FE2) and four were falsely detected

events (i.e. in UGAU, MN, FE3 and MW). Consequently, the combined approach led to a

correct detection of 84.4% of mowing events of the parametrization sites and a F1-Score of

0.78.
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EVI

Entropy

Entropy during cloud gap

Mowing event

Large cloud gap (>25d)

Presence of cows

Detected mowing (EVI)

Detected mowing (entropy)

Figure 4.17: EVI (S2) and Entropy (S1) time series and their mowing detection and actual mowing
events for the parametrization sites.
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4.3.2.2 Results of Grassland Mowing Detection - Focus Region

The parameterized mowing detection based solely on the EVI and the combined ap-

proach were applied in a focus region and validated with an independent data set. The

focus region is in southern Germany and the area contains a high share of grasslands which

show the entire range of possible treatments and use intensities as they are mown from zero

to six times per year and potentially additionally grazed. The validation data set of the focus

region consisted of 229 mowing events on 66 grassland parcels. By applying the EVI-based

approach and allowing a time difference of up to seven days between detected and actual

mowing date, 148 of the 229 mowing events (64.6%) were correctly detected (compare Ta-

ble 4.4). The approach combining EVI and PolSAR Entropy led to an increase in correctly

detected mowing events as 169 of 229 (73.8 %) mowing events were detected. However,

the number of falsely detected mowing events increased as well, from 76 to 157 false posi-

tives of the EVI-only to the combined (EVI+Entropy) approach. The combined approach of

the EVI and InSAR Coherence mowing detection resulted in a similar picture as the other

combined approach. The number of correctly detected mowing events increased to 72 %

of the 229 mowing events, but also the number of false positives increased to 156. The

overall accuracy was therefore best for the approach solely using the EVI as the F1-Scores

decreased from 0.64 (EVI only) to 0.61 for both, the combination of EVI and Entropy as

well as EVI and Coherence. The distributions of the actual and detected mowing frequency

in the focus region show that only using the EVI leads to an underestimation and using a

combination of S2 and S1 parameters to an overestimation of mowing events (Figures 4.18

and 4.19).

Table 4.4: Accuracy results of the EVI approach and the combined approaches, EVI+Entropy and
EVI+Coherence, for a focus region in southern Germany.

EVI EVI+ENT EVI+COH
Correctly detected 64.6% 73.8% 72%
F1-Score 0.65 0.61 0.61

EVI = Enhanced Vegetation Index, ENT = PolSAR Entropy, COH = InSAR Coherence VH.

The developed combined approach using S2 EVI and S1 Entropy was applied to de-

tect mowing events for the entire focus region. Figure 4.20 shows the detected mowing

frequency based on the algorithm only using S2 EVI and the combined EVI+ENT ap-

proach. It becomes visible that, overall, higher mowing frequencies are detected using the

combined approach. The differences are more visible when examining the zooms (Fig-

ure 4.20 A and B). The border between the area covered by two orbits (east of zoom A)

and the area covered by one orbit (west of zoom A) is visible using the EVI-only approach.

It is still present within the EVI+ENT based mowing frequency, however in an attenuated
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Figure 4.18: Mowing frequency of EVI and EVI+Entropy as detected with the presented ap-
proaches and the reference data of the focus region. The comparison of the detected
mowing frequencies to the actual conditions shows an underestimation of the EVI and
an overestimation of the combined approach.
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Figure 4.19: Mowing frequency of EVI and EVI+Coherence VH as detected with the presented
approaches and the reference data of the focus region. The comparison of the detected
mowing frequencies to the actual conditions shows an underestimation of the EVI and
an overestimation of the combined approach.
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Figure 4.20: Mowing frequency detected by using the EVI-only (S2) algorithm and by using the
EVI+ENT combined approach (S2+S1) for the entire focus region and two zoom re-
gions (A and B) in 2019.
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manner. Complementing the mowing detection with S1 information seems to improve the

large scale mapping in that regard. However, a more detailed examination of the spatial pat-

terns shows that the EVI-based mowing frequency reveals relatively homogeneous parcel

structures, while the EVI+ENT mowing frequency pattern shows parcel borders less clearly

and a higher salt and pepper effect (Figure 4.20 A and B).

It was demonstrated that complementing the mowing detection approach based on EVI

with S1 information led to some improvement but, overall, could not increase the detection

accuracy. The following mowing detection analyses were therefor solely based on the EVI

algorithm.

4.3.3 Nation-wide, multi-annual Mowing Detection

Based on the application of the mowing event detection using S2 for entire Germany for

2018–2021 multi-annual mowing dynamics are analyzed. For that purpose, the S2-based

mowing detection algorithm was transformed to be applicable for all S2 tiles covering Ger-

many and all four years of interest (2018–2021). The S2 data of the area of Germany was

in three UTM zones (UTM31, UTM32 and UTM33) which was accounted for during the

processing. After the mowing detection algorithm was applied to each tile, the resulting

Geotiffs were reprojected to World Geodetic System (WGS) 84 (EPSG: 4326) and all tiles

were merged together. The per-tile mowing detection, which included the processing of

annual time series data, was parallelized on a high performance computing environment

using multiple CPUs. The finalization of the mowing detection took between half and one

day for the entire area of Germany and one year.

After the detection of mowing events per year, the mowing frequency and the timing

of the first mowing event were mapped and investigated for 2018–2021 on varying spatial

scales to highlight temporal and spatial patterns of mowing dynamics.

4.3.3.1 Multi-annual Mowing Detection

The detected grassland mowing frequencies show a relatively stable spatial pattern

among the years, where in particular regions in southern and south-eastern Germany show

high numbers of more frequently (more than 3 times) mown grasslands (Figures 4.21, 4.22,

4.23 and 4.24). Higher shares of intermediate (three times) and intensive (more than 3

times) grassland use can also be found in western Germany and the north. Regions in cen-

tral and eastern parts of Germany seem to be less intensively used (mown less than three

times). The zooms of Figures 4.21 to 4.24 highlight the fine spatial resolution (10 m) of

the mowing frequency maps and show mowing dynamics in seven differing grassland land-
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scapes. The two northern regions (A and B) are characterized by the influence of water as

they are close to the coasts and the appearance of dykes. There are extensively used grass-

lands in these landscapes, but a majority shows intermediate and a smaller share intensive

use. The two zoom regions show higher mowing frequencies in 2020, lower mowing fre-

quencies in 2021 and an intermediate mowing intensity in 2018 and 2019 when all four

years are compared to each other. The landscape in north-eastern Germany (C) has larger

parcels which is also visible from the zooms as they are all in the same scale. This is a relic

from the more unified usage of agricultural area in the former Eastern German Republic.

The area is in general characterized by low mowing frequencies with small proportions of

grasslands with intermediate numbers of mowing frequencies. The mowing frequency stays

relatively constant for the years 2018-2020 and was a little less in 2021. The landscape

in the center of Germany (D) is a typical central-German low mountain range area with

isolated patches of forests and grassland. The area overall shows intermediate grassland

mowing intensities with grasslands with low, intermediate and (a little less) high numbers

of mowing frequency. Comparable to the zoom regions A and B, the area shows higher

numbers of mowing frequency in 2020, lower numbers in 2021 and intermediate mow-

ing frequencies in 2018 and 2019. The landscape in south-eastern Germany (E) lies in the

northern part of the Bavarian Forest Nature Park and contains patches of forest, grassland

and agricultural areas, whereas large parts are under protection. Like the zoom area D, the

area shows an intermediate mowing intensity with grasslands of lower, intermediate and

(less) higher numbers of mowing frequency. Within this region, the use in 2018 was more

intensive compared to 2019, 2020 and 2021 when comparing all four years. Some areas of

the southern Alpine Foreland are among the most intensively used grassland areas in Ger-

many (F, G). The southern Alpine Foreland is characterized by high precipitation rates and

a high share of grasslands. Both regions (F, G) show highest mowing frequencies in 2020

and lower number of mowing in 2018 and 2021.

The aggregation to districts through averaging reveals a similar general picture for mow-

ing dynamics in Germany (Figure 4.25). Differences between the years are visible, in par-

ticular when examining the high-resolution (10 x 10 m) maps (Figures 4.21 to 4.24). Grass-

lands in central and north-eastern regions of Germany are less often mown. This pattern

stays relatively similar for the four years of interest for these areas. Regions in the north

and in western/south-western Germany show intermediate mowing intensity when consid-

ering the entire area of Germany. The year 2020 shows higher mowing numbers in northern

and north-western Germany. Highest mowing intensities can be found in southern/south-

eastern Germany. In particular the valley of the river “Inn” appears to have a large share of

grasslands with high mowing frequencies. This pattern stays relatively constant, apart from
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Figure 4.21: Detected mowing frequency in 2018 based on S2 in high resolution with the zoom
regions A: Schleswig Geest, B: Weser Marsh, C: North Brandenburg Plateaux and
Upland, D: Vogelsberg mountain, E: Upper Bavarian Forest, F & G: Southern Alpine
Foreland.
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Figure 4.22: Detected mowing frequency in 2019 based on S2 in high resolution with the zoom
regions A: Schleswig Geest, B: Weser Marsh, C: North Brandenburg Plateaux and
Upland, D: Vogelsberg mountain, E: Upper Bavarian Forest, F & G: Southern Alpine
Foreland.
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Figure 4.23: Detected mowing frequency in 2020 based on S2 in high resolution with the zoom
regions A: Schleswig Geest, B: Weser Marsh, C: North Brandenburg Plateaux and
Upland, D: Vogelsberg mountain, E: Upper Bavarian Forest, F & G: Southern Alpine
Foreland.
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Figure 4.24: Detected mowing frequency in 2021 based on S2 in high resolution with the zoom
regions A: Schleswig Geest, B: Weser Marsh, C: North Brandenburg Plateaux and
Upland, D: Vogelsberg mountain, E: Upper Bavarian Forest, F & G: Southern Alpine
Foreland.
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Figure 4.25: Detected mowing frequencies for 2018, 2019, 2020 and 2021 averaged per county.

2021 which shows lower numbers of mowing events, in particular in the intensively used

areas.

Averaged over the entire area of Germany, the overall distribution of mowing frequen-

cies for the entire country for all four years becomes visible (Figure 4.26). The overall share

as well as the area of grasslands with the respective mowing frequency stays similar for the

four years (Figure 4.26 A and B). In addition, it can be seen that most of the grassland is

mown one to two times in all years. Between 10 to 17 % (depending on the year) of all

grasslands in Germany are mown three times or not at all, and a minimum shows intensive

mowing of four mowing events per year or more.

0 1 2 3 4 5+
0

10

20

30

40

Gr
as

sla
nd

 (%
)

A

0 1 2 3 4 5+
0

10000

20000

30000

Gr
as

sla
nd

 a
re

a 
(k

m
²)

B

2018
2019
2020
2021

Figure 4.26: Detected mowing frequencies for 2018, 2019, 2020 and 2021 averaged over Germany.
The relative share of detected mowing frequencies per grassland (A) and the absolute
areas (B) are shown, which only show minimal differences when the entire grassland
area of Germany is included.

As not the entire area of Germany is covered by two S2 orbits, the data availability is

not evenly distributed in Germany which is amplified by varying cloud conditions. The av-
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eraged mowing frequencies of grasslands (share and total area) for regions with higher data

availability is shown in Figure 4.27. Only pixels with cloud-free acquisitions of at least 20

days are included here. As the atmospheric conditions were weakest in 2021 compared to

the other years, the absolute area of grassland with detected mowing frequencies is smaller

(Figure 4.27 B). The detected areas are highest for 2020 followed by 2018 for all mowing

frequencies. The distribution of mowing frequencies for grasslands with good data avail-

ability reveal, that overall mowing frequencies were smaller in 2018, higher in 2020 and

2021 and intermediate in 2019 (Figure 4.27 A, B).
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Figure 4.27: Detected mowing frequencies for 2018, 2019, 2020 and 2021 averaged only for ar-
eas with good data quality in Germany (covered by two orbits). The relative share of
mowing frequencies per grassland area shown per year (A) and the absolute area of
mowing frequencies zero to at least five per year (B) differ as the data availability was
not equal among the years.

Another aggregation analysis was conducted using the great natural landscapes of Ger-

many which are defined by natural geographic zones, like climatic or topographic (compare

section 3.1). Figure 4.28 shows the mowing frequency for each great landscape averaged

over the four years and the distribution of mowing frequencies per great landscape and year

(A–G). For this aggregation only pixels with a good data availability, defined by at least

20 valid scenes per year, were included. It becomes clear that the Pre-Alpine and Alpine

regions show higher mowing frequencies compared to the rest of Germany (Figure 4.28 F,

G). In these two regions, grasslands which are mown three times are the largest group while

in the other great landscapes, grasslands mown one or two times build the majority. In ad-

dition, the share of grasslands with high mowing intensities (mown at least four times) is

higher for the south-eastern landscapes, in particular the Pre-Alpine region (Figure 4.28 F).

Even though the overall picture stays the same for the four years, there is some variabil-

ity visible (Figure 4.28 A–G). The Northwestern Lowlands, the Western Low Mountain

Ranges and the Alpine great landscape show higher mowing frequencies in 2020 when

comparing all four years (Figure 4.28 A, C, G). For the regions Northeastern Lowlands and

Southwestern Low Mountain Ranges the mowing frequency stays relatively constant for
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2018–2021 (Figure 4.28 B and E). The Pre-Alpine great landscape shows higher mowing

frequencies in 2018 and 2020 when comparing all years (Figure 4.28 F).
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Figure 4.28: Detected mowing frequencies averaged per year and great natural landscape and dis-
tribution of mowing frequencies for each year per landscape (bar charts). Great natural
landscapes A: Northwestern Lowlands, B: Northeastern Lowlands, C: Western Low
Mountain Ranges, D: Eastern Low Mountain Ranges, E: Southwestern Low Mountain
Ranges, F: Pre-Alpine and G: Alpine.
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4.3.3.2 Timing of Mowing Events

Regarding the timing of the first mowing event, the overall picture shows that many

grasslands are mown relatively early, apart from single parcels which become visible when

zooming in (Figures 4.29, 4.30, 4.31 and 4.32). Areas with more grasslands with late first

mowing events can be found for some years in higher elevated regions, like the Swabian

Jura in the north of Zoom B in 2020 or areas in the Bavarian Forest Nature Park (Fig-

ure 4.31), south-east of Zoom E in 2021 (Figure 4.32). When comparing the four years, in

particular in 2018 grasslands were mown early. On parcels level it is visible that there is a

variability of the timing of the first mowing event between years (Figures 4.29 to 4.32 A–

G). The northern regions (A, B, C) show later mowing events in 2020 and 2021 when com-

pared to the other years. The regions in central and southern Germany (D, E, F and G) show

early grassland mowing in particular in 2018. Overall, comparably large grassland parcels

are mown earlier than smaller ones. Early mown grasslands are at times connected to each

other, but this is not necessarily the case. Grassland parcels which are mown relatively late

are often small and irregularly shaped. The exact timing of the first mowing event of single

parcels varies between the years, but the tendency, i.e. if the parcels are mown comparably

early or late, stays constant.

The results of the aggregation of the timing of first mowing event to districts highlight

the variability in-between years as well as similarities and differences to the mowing fre-

quency (4.33). Regions in southern and western Germany have higher shares of early mown

grasslands than other regions. Concurrent with overall lower numbers of mowing events per

year, many grasslands in central and eastern Germany are mown relatively late. In 2018,

almost the entire area of Germany shows early first mowing dates. In 2019 and 2020, in

particular parts in western Germany are characterized by early mown grasslands.

The distribution of the timing of the first mowing event was further investigated for the

great landscapes with the highest share of grasslands (more than 15 %) in Figure 4.34. As

broad areas of the violins indicate that many grasslands were mown around this date, it is

revealed if there were one or more preferred dates when the first mowing event took place

for each landscape and year. There are differences visible between landscapes and years.

Remarkable are relatively early first mowing dates for the Western Low Mountain Ranges

and the Pre-Alpine regions (Figure 4.34 B, C) and relatively late ones for the Northwestern

Lowlands and the Western Low Mountain Ranges (Figure 4.34 A, B). Even later mowing

dates show large shares of grassland in the Western Low Mountain Ranges and the Pre-

Alpine great natural landscape in 2021 (Figure 4.34 B, C).

77



Chapter 4 A Novel Framework to detect Grassland Mowing Events

Figure 4.29: Detected date of first mowing event in 2018 based on S2 in high resolution with the
zoom regions A: Schleswig Geest, B: Weser Marsh, C: North Brandenburg Plateaux
and Upland, D: Vogelsberg mountain, E: Upper Bavarian Forest, F & G: Southern
Alpine Foreland.
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Figure 4.30: Detected date of first mowing event in 2019 based on S2 in high resolution with the
zoom regions A: Schleswig Geest, B: Weser Marsh, C: North Brandenburg Plateaux
and Upland, D: Vogelsberg mountain, E: Upper Bavarian Forest, F & G: Southern
Alpine Foreland.
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Figure 4.31: Detected date of first mowing event in 2020 based on S2 in high resolution with the
zoom regions A: Schleswig Geest, B: Weser Marsh, C: North Brandenburg Plateaux
and Upland, D: Vogelsberg mountain, E: Upper Bavarian Forest, F & G: Southern
Alpine Foreland.
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Figure 4.32: Detected date of first mowing event in 2021 based on S2 in high resolution with the
zoom regions A: Schleswig Geest, B: Weser Marsh, C: North Brandenburg Plateaux
and Upland, D: Vogelsberg mountain, E: Upper Bavarian Forest, F & G: Southern
Alpine Foreland.
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Figure 4.33: Timing of first mowing event for 2018, 2019, 2020 and 2021 averaged per county.

Northwestern lowlands Western low mountain ranges Pre-alpine

Figure 4.34: Frequency distribution of the timing of the first mowing event for three natural land-
scapes (A–C) in Germany for 2018–2021. The blue line indicates the mean. Adapted
from (Reinermann et al., 2023).
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4.3.3.3 Hotspot Regions of high Mowing Intensity

The shares of extensively as well as intensively used grasslands, grasslands with inter-

mediate use and early mown grasslands per grassland area per district highlight hotspots of

use preferences (i.e. hotspots of extensive or intensive grassland use) (Figure 4.35 A–D).

All districts of Germany are characterized by a share of extensively used grassland (mown

zero to one time) of at least 10 % (Figure 4.35 A). For many districts in the center and east-

ern parts of Germany, the proportion of extensive grassland is around 50 %. Some districts

show shares of extensively used grasslands of up to 93 %. The districts which show high

shares of grasslands with intermediate use (mown two to three times) (Figure 4.35 B) seem

to be opposed to the ones with high shares of extensively used grassland (Figure 4.35 A).

This is related to the fact that only small proportions of grasslands within districts are in-

tensively used (Figure 4.35 C) and, therefore, the large proportion of grasslands are used

extensively or show intermediate use. Shares of grasslands with intermediate mowing fre-

quencies reach 72 % of the grassland area of a district, which can be mostly found in

southern or western parts of Germany (Figure 4.35 B). Grasslands with high mowing fre-

quencies show two hotspot regions in Germany, which are in the north-west and in the

south-east of Germany (Figure 4.35 C). While only some districts in the north-western

hotspot region reach shares of intensively used grasslands of up to 15 %, the south-eastern

hotspot region reveals many districts with proportions of intensive grassland of more than

20 %. Districts with shares of grassland mown before first of June of at least 50 % can

be found in south-eastern Germany (partly overlapping with districts characterized by high

shares of intensively used grasslands), but also in western Germany (Figure 4.35 D).

4.3.3.4 Comparison with Phenology Data

The results of the multi-annual mowing detection were compared to phenology infor-

mation about the greening and mowing of grasslands, based on observations (compare

section 4.1.3). Surprisingly, the greening of permanent grassland in 2018 was rather late

according to this data (Figure 4.36), even though the spring of 2018 was characterized

by mild temperatures resulting in an early onset of vegetation activity (Reinermann et al.,

2019). The observed first silage and hay cuts in 2018 were relatively early compared to

2019–2021 (Figure 4.36) which is in accordance with our findings as the detected first

mowing dates in 2018 were earlier than for the other years for large parts Germany. The

phenology information shows that the year 2021 was characterized by late grassland green-

ing and late observed silage and hay cuts which is also in accordance with our findings

concerning the detection of the first mowing event in 2021. The overall spatial patterns of
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Figure 4.35: The share of extensively mown grassland (zero to one mowing event) (A), interme-
diately mown grassland (mown two to three times) (B), intensively mown grassland
(mown four to six times) (C) and early mown grassland (before 1st of June) (D) for
the year 2020, averaged per county.

areas for which rather early silage and hay cuts were observed for all years also overlap

with areas for which early first mowing events were detected within this thesis.

The phenology information is a valuable source to compare the results with observation-

based data and evaluate the plausibility of the overall patterns of the results. These data

sets, however, lack high resolution information on sub-parcel level and cannot substitute an

automated mowing event detection algorithm.

4.3.4 Estimation of Mowing Detection Uncertainty

An uncertainty layer was developed (compare section 4.2.3) which informs on the over-

all reliability of the detected mowing events based on S2 EVI. The uncertainty measure

consists of two components, the time spans between actual observations right before and

after a detected mowing event and the magnitude in change in amplitude of the EVI of

a mowing event and ranges around zero. The uncertainty was estimated for the focus re-

gion for all detected mowing events of 2019 (Figure 4.37). Values below zero are related

to higher uncertainties and vice versa. It is shown that at times entire parcels are character-

ized by higher mowing detection uncertainty levels. However, in many cases field borders

or small and irregularly shapes grassland parcels show higher uncertainty. This might be

related to influence of mixed pixels at field borders, for instance. The western part of the
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Figure 4.36: Grassland phenology information based on observations of the German Weather Ser-
vice (DWD), including the greening of permanent grasslands and the first silage as
well as hay cuts, for the years of interest (2019–2021).
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focus region shows overall higher levels of uncertainty (Figure 4.37). The reason for that is

that this area is only covered by one S2 orbit while the remaining area of the focus region is

characterized by the coverage of two overlapping orbits (compare Figure 4.1) resulting in a

difference in data availability (compare Figure 4.4). The lack of cloud-free S2 observations

influences both uncertainty measure components leading to higher levels of uncertainty

when less data is available. This pattern is also visible when examining the occurrence of

large data gaps within the S2 time series (Figure 4.38). the same area which shows high

levels of uncertainty is also characterized by the occurrence of large data gaps which were

defined by at least 25 days without cloud-free observation. The spatial pattern of the number

of large data gaps is related to the MAJA cloud detection approach.

4.3.5 Accuracy Assessment

The Germany-wide mowing detection between 2018 to 2021 was validated with an in-

dependent validation data set which consistent of 1475 mowing events on 179 grassland

parcels for 2018–2021 (section 4.1.2). Allowing a time difference of up to seven days be-

tween the detected and the actual mowing date, the highest number of correctly detected

mowing events was achieved in 2020 (66.3 %), followed by the results of 2019 where

63.3 % of the mowing events were correctly detected (compare Table 4.5). In 2018 and

2021, a fewer number of mowing events was correctly detected (57.4 % and 46.4 %, re-

spectively). Within the year 2019, the highest exactness of the mowing detection (precision)

was achieved. While the number of correctly detected mowing events informs on the quan-

tity of the detection approach, the precision is a measure of the quality as it is defined as the

number of correctly detected events of all detected events, i.e. informing about the share

of falsely detected mowing events. The lowest precision was found in 2018. The F1-score

which is a statistical accuracy metric combining the amount of correctly detected events

and the precision (section 4.2.2) was highest for 2019 (0.64), closely followed by 2020

(0.63).

While the previous accuracy measures accounted for every detected or undetected mow-

ing event individually, also the overall quality of the algorithm to predict the mowing fre-

quency correctly (and if not, by how far) was assessed. The annual mowing frequency was

correct for about one third of grassland parcels in 2020 resulting in the highest accuracy

among the years regarding the mowing frequency. This result is followed by 2018, for

which 28 % of grassland parcels showed the correct mowing frequency. Only one event

apart from the actual mowing frequency were around one half of grassland parcels in 2019

(54 %) and 42 % in 2020. The number of days between actual and detected mowing date

was smallest for 2019 and highest for 2021. The allowed time span between actual and
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Figure 4.37: Estimated uncertainty of all detected mowing events in 2019 which was based on
two components, namely the time span between actual observations before and after
detected mowing events and the gradient of the EVI during a detected mowing event.
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Figure 4.38: Number of large data gaps, which were defined as larger than 25 days, of the pre-
processed and cloud-screened EVI time series for 2019. It informs on the distribution
of the data availability of S2.
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detected mowing date for a mowing date to be classified as correctly detected, has a high

influence on the detection accuracy which is illustrated in Figure 4.39 for the mowing de-

tection in 2019. For small numbers of allowed time difference betwen actual and detected

mowing dates (i.e. zero to four days), the jumps in the number of detected mowing events

when adding one day to the allowed time difference are high. These changes are smaller in

the value range of a higher number of allowed time difference (i.e. ten to 14 days).

Table 4.5: Results of the validation of the EVI-based grassland mowing detection of Germany for
2018–2021 with the reference data set.

2018 2019 2020 2021
Correctly detected mowing events 57.4% 63.3% 66.3% 46.4%
Precision 0.48 0.66 0.60 0.53
F1-Score 0.52 0.64 0.63 0.50
Share of grassland parcels with no difference in de-
tected and true mowing frequency

28% 20% 34% 19%

Share of grassland parcels with a difference in detected
and true mowing frequency of one

35% 54% 42% 33%

Average days between detected and true mowing date 2.9 2.5 2.7 3.4
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Figure 4.39: Number of correctly detected and missed mowing events with different allowed time
spans between actual and detected mowing date based on S2-based mowing detection
of 2019.

4.4 Discussion

4.4.1 Multi-annual Mowing Dynamics in Germany

The detection of the mowing frequency and the timing of mowing events led to plau-

sible results. Between zero to six mowing events were detected per year for individual

grasslands which is in accordance with information of the German federal agency for na-

ture protection and the reference data set (Schoof et al., 2020b,a). Even though the mowing
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detection algorithm works on pixel basis, the borders of grassland parcels become visible

when mapping mowing frequency or the timing of the first mowing event which indicates

that the approach works successfully. However, shapes of grassland parcels are not needed

for the algorithm which is an advantage over other approaches which need such information

(De Vroey et al., 2021, 2022). In many cases, grasslands are used differently on sub-parcel-

level which means that they are only mown or grazed partly. This leads to difficulties for

approaches investigating grassland management on parcel level, but is accounted for in the

pixel-wise, high-resolution approach of this thesis.

The spatial patterns of the detected mowing frequency in Germany overlaps with

the results from Schwieder et al. (2021) who also found high mowing frequencies in

southern/south-eastern Germany and an annual frequency range of up to six mowing events.

Another study found mowing frequencies of up to three events only, even in regions in

southern/south-eastern Germany (Lange et al., 2022). However, bulletins from the German

federal nature protection agency and our reference data set show that grasslands are indeed

mown up to six times per year in these regions (Schoof et al., 2020b,a).

The reason for the relatively large share of high mowing frequency grasslands in the

south/south-eastern part of Germany might be the high precipitation rates (section 3.1). In

addition, the overall share of grasslands is high in these areas as the landscapes are hilly

and, therefore, not as favorable for agricultural crop cultivation. The numbers of cattle

and farms focused on milk production are highest in Bavaria (south-eastern Germany),

followed by Lower Saxony (north-western Germany) which is the second most intensive

region regarding mowing frequency (Statistisches Bundesamt, 2020).

By comparing all four investigated years to each other, it becomes clear that the general

picture of mowing intensity stays relatively constant as the regions with large shares of high

mowing frequencies show these patterns for 2018–2021 as well as regions with large shares

of low mowing frequencies. This is related to the fact that varying management strategies

and use intensities have an impact on grassland ecosystems and shape their functionality on

the long term and, therefore, presumably stay the same (compare section 1.1.2). Extensive

grasslands with high numbers of species on moist sites, for example, would not produce

large amounts of yields just because they are mown more often in one year (Le Clec’h

et al., 2019).

However, the detailed analysis of mowing dynamics on parcel level (Figures 4.21 to

4.24 and 4.29 to 4.32 A–G) showed that there are some small variations and grasslands are

not managed entirely the same every year. It can be assumed that farmers react to exter-

nal changes (e.g., weather conditions), but rather in one additional or less mowing event
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or a shift in the timing of mowing events than a complete change, e.g. from intensive to

extensive usage.

In 2018, the first mowing event was conducted earlier compared to the other years. For

some regions (e.g. in the north), the mowing frequency in 2018 was lower, for other regions

(e.g. in the south) it was higher. The year 2018 was extremely hot and dry (Deutscher Wet-

terdienst, 2020) which might have influenced the grassland mowing dynamics. The months

April and May in 2018 were relatively warm which resulted in an early onset of vegetation

growth in spring (Reinermann et al., 2019; Deutscher Wetterdienst, 2020). This early spring

resulted in relatively early first mowing events in large parts of Germany as found in this

thesis. An overall strong reduction of the mowing frequency due to hot and dry weather

conditions and stressed vegetation was not found apart from local effects. This might be re-

lated to the fact that many grasslands occur in rather moist sites and are not severely affected

by drought. Kowalski et al. (2022) found small drought effects in moist grassland sites in

north-eastern Germany which is in accordance with these findings. Further, here, mowing

dynamics are investigated in contrast to yields. It is possible that mowing activities stayed

the same in 2018, but yields were reduced. Schwieder et al. (2021) found lower numbers of

mowing frequency for some parts of Germany compared to other years, however also only

to a small degree.

It was observed that grasslands with a higher mowing frequency also show earlier first

mowing events compared to grasslands with lower numbers of mowing events per year.

In addition, the timing of the first mowing event is influenced by weather conditions and

the growth rate of the grassland vegetation. However, there is also a political influence

on the timing of the first mowing event. As early mowing constitutes a disadvantage for

man plant species and consequently for insects and spiders, as well as breeding birds, there

are monetary incentives provided by the German government for farmers to conduct later

mowing in spring (Dengler et al., 2014; Schoof et al., 2020a). The subsidy payments are

coordinated per state and, therefore, vary, but often the first of June is the effective date

according to which farmers a payed if the have not mown their grassland parcel before.

The year 2019 showed intermediate mowing intensities, 2020 the highest for large parts

of Germany. 2020 presumably had favorable weather conditions for grassland growth, it

was rather warm but not as dry as 2018 (Imbery et al., 2021). The year 2021 showed the

smallest mowing intensity when comparing all years. In addition, the first mowing event

was comparably late in 2021. The reason for these patterns is the cold spring as in partic-

ular April 2021 was very cold (Deutscher Wetterdienst, 2022a). This led to late vegetation

growth onset in spring and presumably shifted the mowing activities to later dates and/or

reduced the number of possible harvests.
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4.4.2 Advantages and Drawbacks of Grassland Mowing Detection
based on S2 and S1

4.4.2.1 Patterns of the Mowing Detection Accuracy

The developed mowing detection approach applied for the entire grassland area of Ger-

many resulted in F1-Scores between 0.5 to 0.64 which is in a similar range compared to

other studies conducting grassland mowing detection on large scales (Schwieder et al.,

2021; De Vroey et al., 2021, 2022). For a majority of grasslands in Germany, the mowing

frequency was either correctly detected or off only by one mowing event. Consequently, the

overall grassland mowing intensity can be captured by applying the developed algorithm.

Even though the accuracy statistics were similar among previous studies and this thesis,

the comparison of varying approaches for grassland mowing detection is challenging as the

accuracies strongly depend on the validation data set. As there is no public information on

grassland management in general, or mowing dynamics in particular, the acquisition of val-

idation data itself is effortful. In addition, grasslands in Germany (and worldwide) show a

large variety with varying mowing frequency and timing of mowing activities which should

be captured by the validation data to guarantee a meaningful accuracy assessment. Here, we

generated an extensive validation data set including grasslands showing the entire possible

range of mowing frequencies (up until 6 per year) and a large share of intensively mown

grasslands (high mowing frequencies). In addition, our approach had the advantage that the

reference data was based on webcam images and was, therefore, independent from satellite

images in contrast to other studies (Kolecka et al., 2018; Schwieder et al., 2021). A vali-

dation data set based on satellite imagery has the disadvantage that it is potentially biased

towards cloud-free observations leading to a potentially biased accuracy assessment. Dur-

ing cloudy weather conditions mowing events are missed while generating a validation data

set based on satellite images which biases the accuracy towards better results when these

mowing events are also missed in the detection approach. Furthermore, the allowed time

period between actual and detected mowing date varied between studies. The time span

for which a detected mowing date is considered correct naturally influences the detection

accuracy (compare Figure 4.39).

The mowing detection accuracies of this study varied between the years, with 2019 as

well as 2020 showing higher and 2018 as well as 2021 lower F1-Scores. The year 2018

was exceptionally hot and dry in Germany leading to stress conditions for the vegetation

(Deutscher Wetterdienst, 2020; Reinermann et al., 2019). This probably impairs the mow-

ing detection accuracy as the mowing of dried, brown vegetation would not lead to a strong
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drop in the EVI signal or the drying process itself is falsely detected as mowing event.

The accuracy assessment speaks for the latter case as 2018 showed the highest number of

false positives among the investigated years. However, also the validation data set of 2018

was smaller compared to the other years as it consisted of about one-fourth of mowing

events only, which has an influence on the accuracy. Also 2021 (F1-Score=0.50) revealed

weaker accuracies compared to 2019 (F1-Score=0.64) and 2020 (F1-Score=0.63). The year

2021 was characterized by higher rates of cloud coverage which impaired the availability

of dense time series which probably weakens the mowing detection success, especially as a

purely S2-based approach, hence relying on cloud-free conditions, was applied in the end.

The approach was designed with data from 2019 which is probably the reason for the high

accuracies of this year. However, also 2020 reached accuracies almost as high as in 2019.

It shows that the approach is transferable to other years with similar or better data avail-

ability without losing detection accuracy. An assessment for the future would be to test if

complementing the mowing detection approach based on S2 with S1 data would lead to

improvements during years with relatively high cloud coverage rates, such as 2021.

4.4.2.2 The Potential and Drawbacks of S2 to Detect Grassland
Mowing Events

Previous studies already investigated vegetation indices, like the NDVI or EVI regarding

their potential to capture grassland mowing events. In the past, mostly the NDVI was used

for which drops of 0.2 to 0.5 of the raw time series were found after mowing events for

various European grasslands (Courault et al., 2010; Kolecka et al., 2018; Griffiths et al.,

2020). The EVI was used more recently as it appears to saturate not as quickly as the

NDVI for grasslands which is also the reason why it was used here. Within this study, we

found that the exact threshold to detect a mowing event within the optical time series is not

that critical. For a range of 0.1 of EVI equivalents (from 0.2 to 0.12) of tested thresholds

the accuracy of the mowing detection remained the same for the parametrization sites.

The critical factor is that there is a detectable signal change within the vegetation index

which is largely determined by the data availability. The results suggest that in particular

optical satellite imagery showing high spatial and temporal resolution, like S2, is needed to

successfully detect grassland mowing events.

The availability of optical data plays an important role for grassland mowing event de-

tection. Approaches based on vegetation indices derived from optical data have shown to

successfully detect grassland mowing events (Kolecka et al., 2018; Schwieder et al., 2021).

However, the local minimum caused by a mowing event is only visible for a few days

(around ten) within the time series of vegetation indices as the grassland vegetation grows
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back rapidly. Therefore, the availability of dense and cloud-free time series of optical data

is necessary to detect all mowing events successfully. As the orbit coverage of S2 is not

uniform within Germany, there are areas with image acquisitions every second and third

day and areas with acquisitions every fifth to sixth day. The areas which are covered by

only one orbit have a lower amount of continuously available dense data and, consequently,

there might be less mowing events detected there (compare Figures 4.1 and 4.4). Including

satellite data from different sources, like backscatter, interferometric coherence or polari-

metric decomposition parameters of S1, did not lead to an increase in grassland mowing

detection accuracy as presented here. Adding an additional optical dataset (L8) also did not

reveal a substantial improvement of mowing event detection in Germany (Schwieder et al.,

2021).

4.4.2.3 The Potential and Drawbacks of S1 to Detect Grassland
Mowing Events

Mowing detection is best captured by the EVI time series, however, some mowing events

are potentially missed by the EVI algorithm during cloudy weather conditions. In partic-

ular in areas which are not covered by two S2 orbits, there remains an underestimation of

mowing activities. Within this thesis, several SAR-based parameters were tested to comple-

ment the EVI detection, consisting of backscatter intensity and InSAR Coherence in both

polarization geometries each and PolSAR decomposition features Entropy, K0 and K1.

The backscatter intensities showed at times increases after mowing events which were,

however, inconsistent. The literature on the potential of SAR backscatter to capture grass-

land mowing events is divided. Some found significant increases of the SAR backscatter

signal after mowing events (Schuster et al., 2011; Grant et al., 2015a,b). However, other

studies found no consistent visual or statistical relationship between the SAR backscatter

signal and grassland mowing events (Zalite et al., 2015; Tamm et al., 2016) which is in line

with our results. It is possible that varying moisture conditions lead to the inconsistency in

the backscatter patterns as dielectric properties affect the signal. Another possibility is that

the backscatter’s reaction towards mowing events varies because the procedure on ground

differs. Often, the grass remains on the parcel for some days after mowing to dry. In this

context, the grass is at times left flat, at times put together to lines. However, comparisons

of these management procedures extracted from the reference images (webcams) with the

backscatter did not reveal a systematic behavior.

The InSAR Coherence parameters were also not able to completely capture grassland

mowing events successfully. Actual mowing events were often followed by peaks in Coher-
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ence VV and VH, but there were many additional peaks detectable within these time series

which were unrelated to mowing activities. Within other studies, the InSAR Coherence of

various sensors was also often inconsistent regarding its behavior to grassland management

activities (Zalite et al. (2014, 2015) for COSMO-Skymed; Ali et al. (2017b) for TerraSAR-

X; Voormansik et al. (2020) for S1). In addition, the Coherence signal over grassland is

very close to the noise level which makes its interpretation less reliable (Wegmuller and

Werner, 1997). De Vroey et al. De Vroey et al. (2022) included the S1 Coherence into a

mowing detection approach and states that it was an improvement, however, the overall

accuracy was not improved as the F1-Score decreased from 0.64 to 0.58 for their research

site in Belgium.

PolSAR decomposition parameters were so far only sparsely investigated regarding

grassland mowing detection. Similarly to our results, previous studies – which investigated

PolSAR decomposition features based on TerraSAR-X and Radarsat-2 (Voormansik et al.,

2013, 2015) – found some relationships between PolSAR parameters and grassland mowing

activities, e.g. an increase in Entropy after mowing events. However, these increases were

not consistent and the interpretation remains challenging. One explanation is that grown

grass is more up-right and therefore vertically oriented while mown grass on the grown is

horizontally oriented. Following this explanation, grassland mowing activities would lead

to an increase in depolarization and, therefore, Entropy. This is in accordance with our

findings as an many cases, Entropy increased after mowing events. However, as the entropy

time series shows additional peaks unrelated to mowing events, disentangling the reaction

to mowing events from other influencing factors would be required.

4.4.2.4 The Potential and Drawbacks of the S2 and S1 combined

As the optical as well as the SAR-based parameters have their advantages and disad-

vantages in detecting grassland mowing events, one hypothesis of this thesis was that a

combination of both might result in the best results. As the optical parameter – the EVI

time series – showed a more consistent behavior and, hence, a much higher potential re-

garding grassland mowing detection compared to the SAR parameters, these were only

considered in periods for which the EVI-based algorithm potentially fails, namely in long

data gaps, within this study. However, the SAR-based detection still led to a strong increase

in falsely detected mowing events resulting in overall smaller F1-Scores compared to the

EVI-only approach. In a classification-based approach to detect grassland mowing events

with a deep learning algorithm, Lobert et al. (2021) found best results when including the

NDVI, backscatter cross-ration and InSAR Coherence. However, this was only tested for

a small area which was characterized by coverage by two S2 orbits and a large-scale ap-
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plication still needs to be tested. As previously mentioned, De Vroey et al. De Vroey et al.

(2022) combined S1 and S2 parameters to detect grassland mowing events and stated that

including SAR information supported the detection, however the F1-Score decreased. In-

cluding PolSAR features, such as Entropy, in a classification approach based on EVI to

detect grassland mowing events and, hereby, in particular in a deep learning model might

improve detection accuracies in future studies.

4.5 Summary

An automated mowing detection algorithm was developed based on Sentinel time series

data. The approach was knowledge-based as it was developed according to observations

and analyses undertaken using parametrization sites. Therefore, an extensive reference data

set was generated used to develop the algorithm and to validate the results. The reference

data set was created by the exploitation of daily RGB images of self-installed (11) and pub-

lic webcams (69) distributed in Germany. Mowing dates during the years 2018–2021 were

extracted from the camera images resulting in 1475 mowing dates available for validation

on 179 grassland parcels in Germany. In addition to that, mowing information of 13 grass-

land parcels, including all mowing intensity levels, in the south of Germany in 2019 was

collected based on which the mowing detection approach was developed and parameter-

ized. Hence, S2 and S1 parameter were investigated to analyze if the effects of grassland

mowing events were visible within the time series, consisting of the EVI, the backscatter

intensity VH, the backscatter intensity VV, the polarimetric decomposition parameters K0,

K1 and Entropy, and the interferometric coherence VH and VV.

The EVI showed the largest and most consistent change in amplitude following a mow-

ing event. Hence, an EVI-based mowing detection approach was developed which con-

sisted of the location of strong decreases within the time series followed by an immediate

increase. The thresholding (amplitude of decrease) for the mowing detection was conducted

using the 13 parametrization sites. The EVI approach successfully detected most mowing

events apart from mowing activities taking place during cloudy weather conditions. There-

fore, a second mowing detection algorithm was developed in which the EVI algorithm was

complemented by a S1 parameter. All S1-based parameters showed less consistent reac-

tions towards mowing events compared to the EVI and additional fluctuations unrelated to

mowing activities within their respective time series were visible when investigating the

parametrization sites. Hence, in the combined approach mowing events were detected by

the EVI and only during periods of long cloud gaps (> 25 d), the S1-based mowing detec-

tion is initiated. Out of the S1 parameters, the PolSAR Entropy and the InSAR Coherence

VH showed the most promising results to successfully detect mowing events which is why
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the S1 and S2 combined detection approach was tested with Entropy and InSAR Coherence

as input parameters. The S2-only and the combined (S2 and S1) approach were applied and

validation in a focus region in southern Germany in 2019. The resulting mowing frequen-

cies differed as with the combined approach more mowing events were detected than with

the S2-only algorithm. The validation showed that the combined detection algorithm often

overestimated the mowing frequency. The F1-Score of the EVI approach was highest (0.65)

as the detection complemented with S1 led to many false positives resulting in F1-Scores

of 0.61 (Entropy) and 0.61 (Coherence VH).

The S2-only approach was therefore further developed and applied to the entire grass-

land area of Germany and for the years 2018–2021. The application of the pixel-wise al-

gorithm using EVI time series resulted in detected mowing dates for all four years, based

on which annual grassland mowing frequencies and the timings of the first mowing event

per year were extracted and analyzed in detail. The resulting maps showed that exten-

sively mown grasslands (zero to one mowing event) occur everywhere in Germany, the

highest shares of grasslands with extensive grassland use are found in central and north-

eastern Germany. Hotspots of intensive grassland mowing (more than three times) are in

south-eastern Germany showing most intensively used grasslands, followed by an area in

northern Germany. The spatial patterns of grassland mowing frequency and the timing of

the first mowing event stayed constant throughout the four investigated years. However,

variability in mowing dynamics was found on small scales. The accuracy assessment of

the national, multi-annual mowing detection showed higher mowing detection accuracy for

2019 (F1-Score=0.64) and 2020 (F1-Score=0.63) compared to 2018 (F1-Score=0.52) and

2021 (F1-Score=0.50). This is probably related to the extreme climatic conditions in 2018,

which was an exceptionally dry and hot year in Germany and the relatively weak data avail-

ability in 2021, resulting from higher cloud cover rates. The high accuracy in 2020 shows

that the EVI-based mowing detection approach is successfully transferable into different

years with relatively similar weather conditions as the year 2019, for which the detection

algorithm was developed.
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Chapter 5
Relationships of Mowing Dynamics to

external Conditions∗

Agriculture, with grassland usage as a major contributor, have a huge impact on the

earth’s surface, on fluxes and functions of ecosystems. It plays a central role in critical

global aspects, like climate change and the loss of biodiversity and ecosystem functionality

(as outlined in section 1.1). However, the agricultural sector, with grassland management

as important contributor, is also an important area of potential action as it is man-made and

adaptations are often quickly implemented and do not require high budgets ((IPCC, 2019)).

In addition, the agricultural sector is strongly affected by climate change. The increase in

drought and heat extremes has an accelerated negative impact on vegetation growth in the

future which requires adapted, sustainable management strategies. For the development of

management plans, information on current practices are needed, e.g. how often grasslands

are mown and how these are distributed in Germany, as investigated in chapter 4.3.3. How-

ever, the question on why grasslands are managed that way remains. The conditions which

have to be fulfilled for rather intensive grassland management or extensive management

are usually unknown. A quantification of incentives of farmers about their management

practices is challenging. Information on these aspects are, however, valuable to create sus-

tainable management strategies for future climates which conserve and protect grassland

ecosystem functions.

In Germany, grasslands occur mostly in areas which are characterized by lower produc-

tivity as higher productive regions are mostly used for crop cultivation, resulting in many

grasslands in areas with relatively high moisture levels, steep slopes or less qualitative soils

(Bruns et al., 2000). This is the result of multiple conversions of grassland into cropland in

the past and a general intensification and homogenization of landscapes in Germany (Wolff

∗Parts of this chapter have been published in Reinermann et al. (2023).
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et al., 2021). In general, agricultural land is usually more intensively used when the abiotic

conditions are suitable, however, also socio-political conditions have a strong influence

(Levers et al., 2018). The external conditions and circumstances for intensive or extensive

grassland use are not known for larger spatial areas.

Hence, within this chapter of the thesis, the relationship between abiotic and socio-

political conditions to mowing dynamics are compared to analyze which aspects are impor-

tant and which conditions have to be fulfilled for certain grassland usage. The investigated

data consists of climate data (precipitation and temperature), topographic data (elevation

and slope), soil data (soil classes) and conservation schemes (Natura 2000 sites). In addi-

tion, the mowing dynamics are compared to grassland productivity and yield indicators to

investigate if there is a relationship between mowing intensity and productivity or yields.

In the following, first, all data sets are described (section 5.1), then the pre-processing and

analysis of the data is presented in the methods section (section 5.2). Afterwards the results

of the analysis are presented (section 5.3) and, finally, these are discussed and summarized

(sections 5.4 and 5.5).

5.1 Data

5.1.1 Satellite Data

S2 data from Copernicus (Drusch et al., 2012), pre-processed using the MAJA algorithm

(version 3.3, Hagolle et al. (2017)), were used to provide the information on mowing dy-

namics in Germany. All scenes between March to November 2018–2021 for the entire area

of Germany were downloaded consisting of 64 S2 tiles. Within 2020, there are overall most

clear sky observations available which is why this year was selected to investigate relation-

ships of mowing dynamics to abiotic and conservation conditions (compare Figure 4.4). To

investigate grassland productivity, S2 data of all four years is analyzed. S2 consists of two

polar-orbiting satellites (S2A and S2B) acquiring multispectral optical imagery in 13 bands

with varying spatial resolutions. The Blue, Green, Red and NIR bands, all in 10 m spatial

resolution, are used further (compare section 4.1.1). Due to the orbiting geometry of both

S2 satellites there are areas in Germany which are covered by two orbits and areas only

covered by one orbit resulting in varying data availability.

5.1.2 Environmental and Socio-Political Data

To analyze which factors have an influence on grassland mowing dynamics and which

conditions are fulfilled for rather intensive or extensive management, several data sets are
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5.1 Data

investigated. The abiotic data consisted of climate, topographic and soil data for the en-

tire area of Germany. The climate data, namely annual mean temperature and summed up

rainfall rates for 2020, were acquired from the German Weather Service (DWD Climate

Data Center, 2022b,a). The data sets were available as raster data in 1 km spatial resolu-

tion (Figure 5.1). They rely on station data which was interpolated for the entire area of

Germany.
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Figure 5.1: The investigated parameters for the comparison analysis between mowing frequency as
well as timing of first mowing event and climate as well as topographic information for
2020: annual mean temperature, annual rainfall of 2020 and slope and elevation.

The topography information consisted of elevation and slope data which was extracted

from the EU-DEM provided by Copernicus (Copernicus, 2016). The EU-DEM is a digital

surface model based on SRTM and ASTER GDEM in 25 m resolution. The soil information

is based on soil classes which were extracted from the compiled soil map of Germany

(BUEK 250, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) (2018)).

As apart from environmental conditions also socio-political circumstances potentially

influence the grassland management, information on conservation schemes are included in
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Figure 5.2: The soil classes of Germany which were compiled from the German soil map (Bunde-
sanstalt für Geowissenschaften und Rohstoffe (BGR), 2018).
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the analyses. In that regard, Natura 2000 sites provided by the European Environmental

Agency (European Environmental Agency, 2021) were investigated (Figure 3.4). Natura

2000 is a network of protected areas aiming at conserving species and habitats among mul-

tiple countries. Both classes, the Habitats Directive and the Birds Directive were considered

here.

In addition to that, statistical data with information on grassland yields and the number

of cattle, both available per district, from the German state Bavaria were included in the

analyses. The data sets were acquired from the Bavarian State Office for Statistics (Bay-

erisches Landesamt für Statistik, Fürth, 2022b,a). Whereas the yield information was avail-

able for the four years of interest (2018–2021), the number of cattle was only available for

2018, 2019 and 2020.

5.2 Methodological Approach

5.2.1 Pre-processing

5.2.1.1 Sentinel-2 Data

The satellite data consisting of the S2 time series was filtered using the MAJA-based

cloud mask while only best quality pixels (no clouds, no cloud shadows) were retained.

In addition, all areas which are not covered by grassland were excluded from the analysis.

Therefore, the Copernicus High Resolution Layer of grassland of 2018 was applied (Coper-

nicus, 2018). Afterwards the EVI was calculated with equation (1) and the EVI time series

filled and smoothed as explained in section 4.2.1. This was the base data set for the pro-

ductivity estimation. To investigate mowing dynamics, the EVI-based mowing detection

algorithm was applied and mowing events were detected for the year 2020 for the entire

grassland area of Germany as described in sections 4.3.2 and 4.3.2.2. The same procedure

and thresholds as for section 4.3.3 were used resulting in a mowing detection accuracy

(F1-Score) of 0.60 (compare section 4.3.5).

For the analysis of relationships between the mowing patterns and environmental and

socio-political variables, the annual grassland mowing frequency and the timing of the first

mowing event are used as proxies for mowing dynamics and mowing intensity. To compare

the mowing frequency and the timing of the first mowing event with the climate and topog-

raphy data sets, they are resampled to a spatial resolution of 1 km (average) and projected

to the Gauss-Kruger Zone 3 (EPSG: 31467) coordinate system. As a consequence of aver-

aging the mowing frequencies to a coarser resolution, the discrete values between zero to

six are transformed into continuous values.
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5.2.1.2 Environmental and Socio-Political Data

To harmonize the data sets, the elevation and slope layers were also re-projected to

Gauss-Kruger Zone 3 (EPSG: 31467) and a spatial resolution of 1km which are the char-

acteristics of the climate data sets. The soil classes of the compiled soil map of Germany

(BUEK250) were condensed according to the World Reference Base of Soil Resources

to guarantee and international comparability. The remaining soil classes which were Lep-

tosols, Cambisols, Podzols, Gleysols, Histosols, Chernozems, Luvisols, Planosols, Fluvi-

sols and Anthrosols (compare Figure 5.2). The Natura 2000 were subset and sites with

an area smaller than 1 ha were excluded from further analysis. The statistical data sets on

grassland yields consisted on information of yield information of meadows and agricultural

grassland which were combined by averaging these two values. The statistics on grassland

yields and the number of cattle which were in tabular format were joined to shape data of

the districts in Bavaria.

5.2.2 Statistical Analysis

After pre-processing and harmonization of all data sets, they were statistically analyzed

and their relationships examined. The climate and topographic data, which were raster data

sets all in the same resolution and projection, were linearly correlated. Hence, the Pear-

son’s correlation coefficient and the significance of the linear relationships were examined.

As these relationships are potentially not identical for the entire area of Germany, the re-

lationships between climate as well as topography data and mowing frequency as well as

timing of first mowing event were investigated per great natural landscape. Here, only the

great natural landscapes with a grassland share of more than 15% were included (compare

Figure 3.1), which are the Northwestern Lowlands, the Western Low Mountain Ranges

and the Pre-Alpine region. In addition, the intensively, extensively and early mown grass-

lands are investigated according to their distribution on the feature spaces of temperature-

precipitation and elevation-slope. This reveals potential frameworks of climatic or topo-

graphic conditions related to intensive, extensive or early mowing. The soil classes data set

is in vector format and covers the entire area of Germany. It is used to analyze on which

soil classes most grasslands occur in general and on which most intensively or extensively

mown grasslands. The Natura 2000 sites are also in vector format. This data set is used

to compare the mowing frequency and timing of first mowing event of grasslands within

protected areas to grasslands which are not protected.
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5.2.3 Grassland Productivity Estimation

Information on grassland yields and productivity were acquired and mapped to inves-

tigate their relationship to mowing intensity. Next to the statistical data on yields and the

number of cattle per district for Bavaria, a grassland productivity indicator was generated

which was compared to mowing dynamics. It was based on S2 EVI time series data of

2018–2021 of the entire grassland area of Germany. The productivity indicator was defined

as integral of the filtered, interpolated and smoothed EVI time series per pixel. The inte-

gral is derived by summing up the EVI values between March and November of each year.

Hence, the productivity indicator is a qualitative estimate of the annual grassland produc-

tivity suitable to investigate which regions in Germany show relatively high, medium and

low productivity rates.

5.3 Results

Within the following sections the results of the relationship analysis between mowing

dynamics and potential influencing factors are presented. First, the relationships between

climatic (temperature, precipitation) and topographic (slope, elevation) variables to mow-

ing dynamics, namely the mowing frequency and the timing of the first mowing event,

are elaborated (section 5.3.1). Then, the relationship between soil classes and the grass-

land mowing frequency is shown (section 5.3.2) and, finally, mowing dynamics within and

outside of Natura 2000 sites are presented (section 5.3.3).

5.3.1 Relationship of Mowing Dynamics to Climate and Topography

Linear regressions between temperature, precipitation, slope as well as elevation and the

mowing frequency as well as the timing of the first mowing event as response variables were

investigated. The data sets of 2020 in 1 km resolution were utilized and all areas covered

by grassland in Germany included. All variables showed significant relationships to the

grassland mowing parameters (Table 5.1). However, the correlation coefficient Pearson’s

r revealed weak correlations for all parameters as 13 % of variance were not exceeded

(Table 5.1). The relationship between the mowing frequency and precipitation revealed the

highest correlation with a Pearson’s r of 0.36. The second highest correlation was found

between the mowing frequency and elevation (0.20), the third highest between the timing

of the first mowing event and temperature as well as precipitation (-0.11). The correlation

coefficients of the latter is negative which signals that higher temperature and precipitation

rates are related to earlier mowing dates. The relationship and correlation analyses were
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also conducted for great natural landscapes (compare Figure 3.1 C) individually which did

also not lead to higher correlations or clearer relationships.

Table 5.1: Pearson’s r correlation coefficients for the linear relationship between climatic as well as
topographic variables and mowing information.

Mowing Frequency Timing of 1st mowing event
Temperature -0.13∗∗∗ -0.11∗∗∗

Precipitation 0.36∗∗∗ -0.11∗∗∗

Slope -0.04∗∗∗ 0.03∗∗∗

Elevation 0.20∗∗∗ -0.05∗∗∗

∗∗∗=p-value < 0.001.

Other Grassland
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Figure 5.3: Distribution of intensively, extensively and early mown grasslands on the temperature-
precipitation and the slope-elevation feature space.

The climatic and topographic conditions under which grasslands are intensively or ex-

tensively used were investigated. Therefore, the climatic and topographic ranges of grass-

lands were mapped and their distribution on the climatic (temperature and precipitation) and

topographic (slope and elevation) feature spaces were analyzed (Figure 5.3). The climatic

and topographic ranges of intensively used, extensively used and early mown grasslands

were compared to all grasslands in Germany. The two investigated groups of intensively

used grasslands are defined by showing at least three mowing events per year and by show-

ing at least four mowing events per year. As the mowing frequency data set was resampled

to 1 km spatial resolution (compare section 5.2) for this analysis, and higher frequencies is

therefore underrepresented, grasslands at least mown three times per year were considered
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Figure 5.4: Areas which are potentially too cold, too hot, too dry, too wet, too steep or too high for
intensive (mown 3 to 6 times) grasslands usage.
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intensive. For extensively used grasslands the ones mown up to only once per year were

included. The two groups of early mown grasslands were defined as mown before 1st of

June and mown before 1st of May.

Grasslands mown three to six times per year occurred on a smaller climatic gradient

compared to all grasslands (Figure 5.3 A). The temperatures of intensively used grasslands

mown between three to six times range between approximately 8.4 to 11.2 ◦C and pre-

cipitation rates of 600 to 1500 mm per year. Grasslands which are even more intensively

used – mown four to six times – show even smaller climatic gradients. Extensively used

grasslands which are mown up to once per year, appeared on the entire climatic gradient

(Figure 5.3 B).

The timing of the first mowing event shows a relatively clear boundary for grasslands

mown before first of June. These areas occurred only in areas with temperatures of at least

8 ◦C but in the entire precipitation gradient (Figure 5.3 C). Grasslands already mown before

first of May appear on an even smaller climatic gradient with temperatures of 9.5 to 12.2 ◦C

and precipitation rates of 500 to 1000 mm, approximately.

The topographic gradients of the investigated grassland classes reveal a comparable pat-

tern (Figure 5.3 D–F). Grasslands mown three to six times occurred on small slopes of up to

5 degrees, approximately, and elevations of up to 800 m.a.s.l. with an interrupt between 100

and 200 m.a.s.l. (Figure 5.3 D). Even more intensively used grasslands with annual mowing

frequencies between four and six show smaller topographic gradients with slopes of up to

2 degrees and elevations of 400 to 850 m.a.s.l., approximately. Comparable to the climatic

variable feature space, extensively used grasslands appeared on the entire topographic gra-

dient like all grasslands (Figure 5.3 E). Grasslands mown before 1st of June occurred on

slopes of up to 9.5 degrees and elevations of up to 1000 m.a.s.l. The occurrence of grass-

lands mown before 1st of May does not reveal clear borders of topographic conditions but

distributes mostly on small slopes of up to 3 degrees and elevations of up to 500 m.a.s.l.

(Figure 5.3 F).

The climatic and topographic gradients on which intensively used grasslands – mown

three to six times – occurred are shown in Figure 5.4. It highlights the spatial extents of the

ranges of temperature, precipitation, slope and elevation for intensively used grasslands.

All values outside of this range were greyed out. As intensively used grasslands did not

occur on the grey areas, it can be assumed that these were too cold, too hot, too dry, too

wet, too steep or too high for intensive grassland use.
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5.3.2 Relationship of Mowing Dynamics to Soil Classes

As first aspect, the distribution of soil classes on the entire grassland covered area in

Germany was investigated. The largest group were Cambisols (33 %), followed by His-

tosols and Gleysols which add up to a little over one third (36 %) of the share of soil classes

covered by grassland. The remaining soil classes constitute smaller proportions. Next, the

distribution of grassland mowing frequencies per soil class was analyzed with the result that

there is no soil class which is only covered by intensively or extensively mown grassland

(Figure 5.5). However, some soil classes show overall higher mowing intensities compared

to others, such as Histosols (Figure 5.5 D). Leptosols and Chernozems were mostly cov-

ered by extensively used grasslands. The overlay of mowing frequency and soil classes also

shows such tendencies but no consistent patterns (Figure 5.5 A–C). In the region in north-

ern Germany, both Gleysols and Histosols are covered by patches of rather intensively as

well as extensively mown grasslands (Figure 5.5 Zoom 1 B–C). In the central German re-

gion. grasslands on Cambisols show a tendency to be mown more often than the grasslands

on Leptosols (Figure 5.5 Zoom 2 B–C). In southern Germany, Luvisols and Gleysols show

a large share of grasslands with high mowing frequencies, whereas Cambisols are rather

extensively mown or not used as grasslands at all (Figure 5.5 Zoom 3 B–C).

Another aspect of the analyses of the relationship between mowing intensity and soil

classes was the investigation of the investigation of the shares of soil classes per intensity

levels of grassland. Considering the most intensively used grassland – mown between four

to six times –, a large proportion of these are present on Cambisols (30 %) and Gleysols

(20 %). However, these are also among the most common soil classes in Germany. This

becomes also visible when focusing on extensively used grasslands – mown only up to

once per year – as the largest shares of extensively used grassland occurs also on Cam-

bisols (31 %) and Gleysols (22 %). Hence, the shares of intensively or extensively mown

grasslands were investigated per soil class. This analysis showed that the share of inten-

sively used grasslands was relatively small for all soil classes as it did not exceed 10 %.

The soil classes with the largest share of intensively mown grasslands were Luvisols (9 %),

followed by Histosols (7 %). The shares of extensively used grasslands are higher com-

pared to intensively used ones over all soil classes. Chernozems show the highest share of

extensively used grassland out of all grassland occuring on Chernozems (64 %). This was

followed by Leptosols (49 %), Anthrosols (44 %) and Podzols (43 %). Chernozems are

considered as highly productive which is why they are usually not covered by grassland but

other agricultural land.
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Figure 5.5: Analysis of the mowing frequency of various soil classes by comparing the soil classes
of Germany (A) and zoom regions (B) with the detected mowing frequency (C) and the
distribution of the mowing frequency for each soil class (D).
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5.3.3 Relationship of Mowing Dynamics to Protection Mechanisms

Previous results have demonstrated that abiotic factors, e.g. temperature and precipita-

tion rates, constitute the environmental framework for grasslands with high mowing fre-

quencies, while extensively used grasslands were not restricted by certain environmental

conditions. Hence, the relationship between mowing dynamics and protection schemes

was investigated as this potentially has an influence on the use intensity (compare sec-

tion 3.2). The averaged mowing frequencies per Natura 2000 site (Figure 5.6 A) and the

spatial overlay of Natura 2000 sites and detected mowing frequencies (Figure 5.6 B) show

that grasslands characterized by all mowing frequencies occur within Natura 2000 sites.

The averaged mowing frequencies per Natura 2000 site reach values of more than two

mowing events per year (Figure 5.6 A), indicating that grasslands are also intensively used

even though they are within a protected area. This can also be seen when investigating the

spatial mapping of mowing frequencies inside and outside of Natura 2000 sites, in par-

ticular for the region in southern Germany (Figure 5.6 B). Averaged over the entire area

of Germany, there are more grasslands with smaller numbers of mowing events per year

within Natura 2000 sites compared to the rest of Germany, however again also intensively

mown grasslands are detectable within protected areas (Figure 5.7). Considering the tim-

ing of the first mowing event, grasslands within Natura 2000 sites are mown later for the

first time compared to other grasslands (Figure 5.8). In particular the number of grasslands

mown before first of June is higher for unprotected compared to protected areas. However,

many grasslands within Natura 2000 sites are mown around mid of May indicated by a

peak. Another peak of the timing of the first mowing event is visible after the first of June

as many grasslands protected by Natura 2000 were mown then.

5.3.4 Relationship of Mowing Dynamics to Productivity and Yield

The estimated productivity indicator was based on the sum of filtered, interpolated and

smoothed S2 EVI time series between March and November each year (compare sec-

tion 4.2.1. The maps covering the entire area of Germany show some variability in grass-

land productivity on different levels (Figure 5.9). Parcel borders of grasslands are visible

showing different productivity levels between ans also within single grassland parcels (Fig-

ure 5.9 A–C). There is also inter-annual variability visible as 2018 shows lower values in

estimated productivity compared to the other years. The differences between the years are

nit equal for all regions. The grassland region in the north shows lower productivity rates

in 2018 (Figure 5.9 A), while the region in the central-north is characterized by lower esti-

mated productivity in 2018 and 2019 (Figure 5.9 B). The pre-alpine region in the south of

Germany shows relatively homogeneous patterns with smaller visible reductions in grass-

111



Chapter 5 Relationships of Mowing Dynamics to external Conditions

Figure 5.6: Mowing frequency averaged for protected areas (Natura 2000 sites) (A) and zooms of
high resolution mowing frequency for protected and unprotected grasslands (B).
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Figure 5.7: Distribution of mowing frequency of all Natura 2000 sites compared to grasslands not
protected by Natura 2000 showing a lower mowing frequency for protected compared
to unprotected grasslands.
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Figure 5.8: Distribution of the timing of the first mowing event of all Natura 2000 sites compared
to grasslands not protected by Natura 2000.

land productivity in 2018 compared to the other regions (Figure 5.9 C). The productivity

indicator averaged per district highlights the mentioned inter-annual differences as 2018

shows overall lower productivity rates (Figure 5.10). The year 2021 shows the highest esti-

mated productivity among the investigated years. Regions with relatively high annual pro-

ductivity rates coincide with regions of high mowing frequencies, such as southern/ south-

eastern Germany and parts in the north (compare Figure 4.25). Lower productivity rates are

present in central and north-eastern German regions which are also characterized by low

numbers of annual mowing events.

Another analysis concerning grassland productivity was undertaken by investigating

yield (Figure 5.11 B) and cattle statistics (Figure 5.11 C) together with the mowing fre-

quency (Figure 5.11 A) and the estimated productivity (Figure 5.11 D) averaged to district

level for the south-eastern most state of Germany, Bavaria. Bavaria shows the highest de-

tected mowing frequency in Germany, but includes also the entire range of grassland mow-

ing frequencies, between zero to six mowing events per year. Averaged per district leads to

more than three mowing events per year at the most, occurring in some districts in south-

ern Bavaria (Figure 5.11 A). The districts with relatively large number in mowing events

only partly overlap with regions characterized by high annual grassland yield rates (Fig-

ure 5.11 B). High yields can be found in south-eastern and western districts of Bavaria. The

number of cattle per district shows high numbers in south-eastern Bavaria, as well as some

south-western and western districts (Figure 5.11 C). The productivity indicator shows high-

est values for the districts in southern Bavaria. These general patterns stay the same among

the four investigated years, apart from some minor changes. In particular, the number of

cattle stayed constant. The productivity measure indicates higher overall values in 2020

and 2021, which partly coincides with the yield statistics.
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Figure 5.9: Productivity indicator which is defined as the sum of interpolated and smoothed EVI
values between March and November per year for all grasslands in Germany and the
four investigated years (2018–2021).

Figure 5.10: Productivity indicator which is defined as the sum of interpolated and smoothed EVI
values between March and November per year for all grasslands in Germany averaged
per district, for the four investigated years (2018–2021).
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Figure 5.11: Grassland mowing frequency per district (A), statistical information on grassland
yields (B), the number of cattle (C) and the estimated productivity averaged per district
(D). Blank areas indicate no data availability.
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5.4 Discussion

5.4.1 Relationships of Mowing Dynamics to Climate and Topography

Even though the relationships between the two parameters on mowing dynamics, namely

the mowing frequency as well as the timing of the first mowing event, to all four investigated

climatic and topographic variables (temperature, precipitation, slope and elevation) were

significant, low correlation values revealed only small explanatory power of the variables.

The significance of the relationship is influenced by the number of data points (Rouder

et al., 2009) which are high when investigating satellite image data sets. The highest cor-

relation was found between the mowing frequency and the rainfall sum of 2020 (Pearson’s

r = 0.36). However, the slope of the regression line for this relationship was almost zero. The

results show that abiotic conditions, such as temperature, precipitation, slope and elevation,

have an influence on mowing dynamics whereby precipitation is the most important factor.

However, the relationships are probably not consistent for the entire grassland area of Ger-

many or are more complex and intertwined. It is known that precipitation favors vegetation

growth and, consequently, more intensive use, but only to a certain degree until a point of

saturation is reached (Smit et al., 2008). Remote sensing studies investigating the relation-

ship between gross or net primary productivity of grasslands and climatic variables found

that precipitation is a major influencing factor (Li et al., 2013; Jia et al., 2015; Gao et al.,

2016, 2017; Zhao et al., 2019), however differences for different grasslands and various

time scales were revealed (Petrie et al., 2016). Primary productivity was mostly negatively

correlated to temperature in previous research on grasslands in China (Mao et al., 2014;

Xiong et al., 2019). The highest influence of temperature on grassland productivity was

found at the beginning of the growing season (Wang et al., 2020). Future research should

consider the relationships between climatic and topographic variables to mowing dynamics

and conduct multi-variate analyses.

The analyses of climatic and topographic conditions for different mowing dynamics re-

vealed existing environmental frameworks for grassland mowing intensity levels, in partic-

ular for intensively used grassland. All intensively mown grasslands occurred in a specific

value range defined by temperature, precipitation, slope and elevation, indicating that the

remaining area might be too cold, too hot, too dry, too wet, too steep or too elevated for

intensive grassland use. Apart from direct effects, like optimal climatic conditions favoring

vegetation growth and, consequently also intensive grassland use (Bernhardt-Römermann

et al., 2011), these patterns can also be explained by indirect effects. For instance, the fre-

quent usage of heavy machinery, which is needed for intensive mowing on grasslands, is

limited on wet sites or steep slopes. In addition, grassland sites in high altitudes are often
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more difficult to reach. Another factor influencing plant growth – and, therefore, the poten-

tial to intensively use grassland – is the availability of soil organic matter which showed

lower contents in grassland soils on steep slopes, for instance (Kühnel et al., 2019).

The timing of the first mowing event shows a clear visible border with grasslands mown

before 1st of June as these occur only in areas which show an annual mean temperature of

at least 8 ◦C. This clear pattern is related to the influence of spring temperatures for the

onset of (grassland) vegetation growth (Huang et al., 2020). It highlights the importance of

temperature on grassland mowing dynamics, in particular the timing of the first mowing

event, which is especially interesting as this factor can only hardly be adapted by farmers

to increase plant growth to intensify the grassland use. In contrast to that, other factors

determining plant growth, such as precipitation rate, nutrient availability and moisture level

are potentially changed by management options like irrigation, fertilization and drainage.

5.4.2 Relationship of Mowing Dynamics to Soil Classes

The analysis of the influence of soil classes on the mowing frequency revealed no dis-

tinct pattern but tendencies. Soil classes which are characterized by constant water influ-

ence, such as Histosols and Gleysols, show the highest mowing frequency rates in Germany,

indicating the importance of plant available water for grassland growth and, consequently,

mowing intensity. The soil class that revealed the least intensive grassland usage were Lep-

tosols, which are typically poorly permeable for roots. This characteristic seems unfavor-

able for grassland growth rates. Even though water availability plays a role for intensive

grassland use, wet soils have the disadvantage (in that perspective) of hindering the fre-

quent use of heavy machines. Therefore, it can be assumed that wet grassland sites are

drained to enable intensive mowing.

In Germany, many grasslands occur on sites which are not favorable enough for crop

cultivation, for example on soils with poor nutrient availability (Schoof et al., 2020b,a).

From the remaining grasslands, in particular Histosols are favorable for grass growth due

to their high rates in organic carbon (Eswaran et al., 1993). Spatial information on drainage

and soil organic carbon contents (e.g. Zepp et al. (2021)) would be needed in future research

to disentangle the influence of water availability and soil quality, such as organic carbon,

on grassland mowing dynamics.

5.4.3 Relationship of Mowing Dynamics to Conservation Schemes

Abiotic conditions, including temperature, precipitation, slope, elevation and soil char-

acteristics shape the environmental framework in particular for the potential to intensively
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use grasslands. The circumstances and motivation for farmers for extensive usage seem un-

related to these site conditions and are probably of a socio-political nature. Conservation

schemes, in which farmers are compensated for extensive use are an important incentive.

Here, the locations of Natura 2000 sites in Germany were included as these sites repre-

sent a broad framework of protected areas aiming at the conservation of vulnerable and

endangered flora and fauna, and their habitats. As previously described (section 1.1.2), the

frequency and timing of mowing events have a determining impact on grassland ecology.

Mowing dynamics influence the species composition and provision of ecosystem func-

tions. Extensive use (lower mowing frequency and later first mowing events) facilitates

higher species numbers and a broader spectrum of ecosystem functions aside the provision

of fodder (Socher et al., 2012; Neyret et al., 2021). It was therefore hypothesized that grass-

lands within Natura 2000 sites are more extensively used compared to the other grasslands,

which was only partly confirmed. Overall, grasslands within Natura 2000 show lower mow-

ing frequencies and later first mowing events. However, not all of the grasslands protected

by Natura 2000 are extensively used as also grasslands with intermediate or evene intensive

use were present. Most probably, this is related to the fact that the Natura 2000 framework

aims at sustaining habitats or single endangered species. This is potentially but not neces-

sarily coupled with extensive grassland usage. In addition, the single Natura 2000 sites are

individually managed and have individual goals. The overall guidelines and restraints are

defined by the countries and in Germany, by the federal states. Comparing the enforcements

and its effects on national level is therefore challenging (Fischer-Hüftle and Gellermann,

2018).

5.4.4 Relationship of Mowing Dynamics to Productivity and Yield

Ideally, a productivity measure together with mowing information could inform on

grassland yields. Grassland yield estimation is a challenging task, in particular in such het-

erogeneously and dynamically used grassland landscapes like in Germany. The developed

productivity indicator applied here showed plausible patterns and variability on different

scales. The drought-induces negative effects for vegetation in 2018 (Reinermann et al.,

2019) become visible, for instance, when examining the productivity indicator. However,

the developed productivity measure is a qualitative information which needs further refine-

ment to be used as input for grassland yield estimations. The comparison with statistical

information from the south-eastern most German state (Bavaria) showed only partly co-

inciding patterns, which potentially indicates that the productivity indicator is not entirely

correct. However, also the statistical information is error-prone as it is the result of (often

visually) estimated grassland yields of different farmers. The results underline that there is

no spatially detailed, accurate information on grassland yields available in Germany. In fu-
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ture research, a combination of productivity estimates, e.g. estimated biomass, and mowing

information potentially improves the challenging task of large-scale and high-resolution

grassland yield estimation.

5.5 Summary

The relationship of grassland mowing dynamics to abiotic conditions, conservation

schemes and productivity indicators were analyzed to explore, assess and illustrate the

conditions and motivation of farmers for varying grassland mowing intensity. The mow-

ing dynamics were retrieved from the application of the developed framework to detect

grassland mowing events based on S2 time series (chapter ch4:framework), whereby the

mowing frequency and the timing of the first mowing event in 2020 were examined here.

Climatic data (temperature and precipitation) and topographic data (slope and elevation)

were retrieved to examine the relationship to mowing dynamics. Mean annual temperature,

annual rainfall sum of Germany of 2020 derived from the German Weather Service (DWD)

and slope and elevation extracted from the Copernicus EU-DEM were used.

All four variables revealed significant relationships to the mowing frequency as well as

the timing of the first mowing event, however the correlation coefficients were low. The re-

sults highlight that there is an influence of abiotic conditions on mowing dynamics but that

the explanatory power is low. However, it was found that climatic and topographic condi-

tions shape a framework for different mowing intensity levels, in particular for intensively

used grassland. Grasslands mown relatively often occurred only in a certain value range

of abiotic variables revealing regions which might be too cold, too hot, too dry, too wet,

too steep or too elevated for intensive mowing of grasslands. These patterns are probably

related to optimal growth conditions of vegetation as well as practicability and accessibility

of the grassland sites. The investigation of soil classes showed that the availability of plant

available water plays a role for the potential to intensively use grasslands as Histosols and

Gleysols showed the highest shares of intensively mown grasslands among all soil classes

in Germany. However, all grassland mowing intensity levels occur on all soil classes and a

distinct pattern is not present.

The previous analyses showed that extensively used grasslands occur throughout Ger-

many independent of abiotic conditions. The conditions for extensive grassland use are

therefore probably defined by socio-political factors. To further examine this, grasslands

within the conservation network Natura 2000 were compared to grasslands outside of this

protection scheme as the Natura 2000 sites aim at conserving vulnerable species. As an

intensifcation of grassland use usually leads to a reduction in species numbers, in partic-
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ular rare ones, and alters habitats, it was hypothesized that protected grasslands are more

extensively used than unprotected ones, which was only partly confirmed. The mowing fre-

quency was lower and the timing of the first mowing event was found to be later in Natura

2000 protected grasslands compared to the other grasslands, however, also grasslands with

high mowing frequencies and early mown grasslands were among the protected grasslands.

This is related to the fact that the Natura 2000 sites are managed to sustain habitats and

species which is potentially also fulfilled with more intensive mowing and not necessarily

with extensive use.

The analyses of the influence of abiotic and socio-political conditions on mowing dy-

namics reveal the characteristics of various factors in shaping environmental frameworks

and incentives for varying use intensity levels. However, the motivation of the grassland

management is also influenced by personal factors, such as tradition and education, which

are difficult to measure and incorporate. Many of the investigated abiotic conditions are

potentially altered to improve plant growth and enable intensive grassland use, for exam-

ple by irrigation, fertilization and drainage, which highlights the importance of protection

schemes to guarantee the conservation of a large variety in grasslands and accompanying

species.

In addition to that, spatial and temporal patterns of grassland productivity and yield were

investigated to assess the relationship of mowing dynamics to grassland fodder production

which is the major provisioning ecosystem service of grasslands. The examined produc-

tivity indicator was based on the integral of the filtered, interpolated and smoothed EVI

time series per pixel. It showed small scale variability of grassland productivity within and

between parcels and between the investigated years. Even though plausible results were

achieved, the indicator is qualitative and not equatable with yield. Information on annual

grassland yields is not available on high spatial resolution and no monitoring systems exist

yet. A combination of a productivity indicator with mowing information would provide a

valuable information in the research of grassland yields which is still challenging due to the

diverse and dynamic grassland use in areas like in Germany.
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Chapter 6
Synthesis and Outlook

6.1 Summary and Conclusive Findings

The following chapter gives an overview over the thesis, whereby first, the importance

of the topic and the research gap are shortly summarized, then, the objectives and research

questions of the study are discussed and finally, a brief outlook to future research is pre-

sented.

Grasslands cover about one-third of the Earth’s surface and provide livelihoods for bil-

lions of people as they are used for fodder production for animals. As outlined in sec-

tion 1.1, they fulfill many additional ecosystem services, including carbon storage, water

filtration, provision of habitats and cultural values. Hence, grasslands play an important

global role in climate change mitigation and preservation of biodiversity and ecosystem

functions. Which ecosystem services are provided and to what degree is largely depending

on the management and use intensity of the grasslands (section 1.1.2). In Germany, like

in many other central European countries, grassland management and use intensity show

a wide range resulting in alternating grassland parcels with diverging physiognomy and

ecosystem functions. There is no public information on the management and use intensity

available in Germany which aggravates the assessment of the condition and status of pro-

vision of ecosystem services of the grasslands. The management activity with the largest

impact – after conversion to cropland – is mowing, which is conducted up to six times per

year. The timing and frequency of mowing events influence the species composition and

consequently, the carbon storage potential, the fodder quality and the habitat quality, among

other things. This dissertation addresses the lack of information about grassland mowing

activities in Germany. The major objective of this thesis was the development, nation-wide

application and validation of an algorithm to detect grassland mowing events in Germany.

Grasslands are widely distributed in Germany; however, they are usually composed of small
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parcels with alternating management. Therefore, satellite data time series, in particular the

high-resolution Sentinel sensors, are needed to provide and analyze large-scale and contin-

uous data sets used for the detection and analyses of grassland mowing events. Based on

the exploitation of this satellite data achieve, a novel framework was developed to, for the

first time, operationally monitor grassland mowing dynamics for the entire grassland area

of Germany.

Around this core element of the thesis, more objectives were defined, of which the first

was to conduct an extensive literature review on the use of satellite imagery to investigate

grassland management and production. The research questions related to the first objective

were the following:

Research Questions 1:

1. How extensively has grassland management and production with EO data been

researched, where are research foci and research locations of previous studies?

2. Which sensor types, sensors, indices and methods are applied to investigate

grassland management and production in previous studies?

3. Which research gaps exist and how are they potentially addressed?

To answer these questions and approach the first objective, research on the topics of

EO data usage to analyze grassland management and production was searched, assessed

and evaluated. All papers covering these topics found through an extensive literature search

(details explained in chapter 2) were included leading to a review of 253 studies, in total.

All studies were assessed and patterns of investigated study areas, used data, methods and

results were extracted and research gaps highlighted.

A large majority of studies can be found in China (35 %), which is probably related to

the fact that the great value of grassland there has been recognized. An underrepresentation

of studies was found for grasslands in South America and Africa (5 and 4 % of all stud-

ies). These continents contain large and diverse grassland areas, which highlights the need

to study these ecosystems further in the future. In particular, as many livelihoods depend

on grassland ecosystems in regions in South America and Africa. In a global comparison

and for most continents, there were more studies investigating grassland production traits

(82 %) than grassland management and use intensity (30 %), some studies investigated

both. Only in Europe, the number of studies investigating grassland management exceeded

the one on production (by more than double). This is probably related to the diversity of

grasslands in Europe which are characterized by small, alternating grassland parcels with
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different physiognomy and ecosystem services. This diversity which is a result of vary-

ing management strategies and use intensities of the farmers aggravates the estimation of

grassland productivity traits.

The literature review showed that the large majority of studies focused on optical data

to investigate grassland management and production traits (94 %) and only 4 % combined

optical and SAR sensor types. The focus often was on the analysis of vegetation indices,

in particular the NDVI. Regarding the temporal resolution, single images, multi-temporal

imagery and time series were used. In the past, mostly Landsat and MODIS played impor-

tant roles for grassland management and use intensity analyses as imagery based on these

satellites make up about one half of the reviewed literature. In the recent past, the Sentinels

gained more and more importance due to their high spatial and temporal resolution.

Most studies investigated small study areas, in particular when investigating grassland

management. Almost all studies in this context investigated grasslands on an area of up

to 10000 km2, which is about the size of Crete. Often, the diversity of grassland, e.g. re-

garding mowing intensity in European regions, were not covered. Spatially detailed anal-

yses of grassland production are often hindered by the lack of information on grassland

management which itself is usually unknown. As some grasslands show high intra-annual

variability (i.e. through mowing or grazing activities), integrating continuous, temporal in-

formation on grassland management would improve production estimations of grasslands,

like yields, also on larger scales.

Many of the studies focusing on the analysis of grassland management strategies or

use intensities were exploratory, were conducted on only a very small research area or for a

limited range of possible use intensities. Larger scale applications were usually based solely

on optical data or aggravated by the lack of an extensive reference data set to validate their

approach.

The second objective of this thesis is about the central aim of the thesis which was

the development of a novel framework to automatically detect grassland mowing events in

Germany. The aim was to included both sensor types, S1 and S2, in the analysis regarding

their potential to capture grassland mowing events and within an automated mowing event

detection algorithm. The research questions of the second objective are presented in the

following.
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Research Questions 2:

1. What are potentials and challenges to detect grassland mowing events with

optical and SAR imagery, as provided by Sentinel-2 and Sentinel-1, and how

can they be exploited and overcome, respectively?

2. Which sensor and which parameter is able to detect grassland mowing events

most successfully or is a combination of both the most accurate approach?

3. How reliably can mowing events be detected and what are limiting factors?

To approach these questions, parameters of S2 and S1 were analyzed regarding their po-

tential to capture grassland mowing events and based on this, a framework to automatically

detect grassland mowing events was developed. Based on 13 differently used parametriza-

tion sites, the temporal signal of eight parameters were investigated and their reaction to

mowing events on these sites were analyzed and compared to each other. The time series of

the EVI based on S2 showed consistent drops after mowing events, followed by immedi-

ate increases. There were no additional drops independent of mowing activities observable

apart from the decrease of the EVI in autumn which is related to the natural remission of

vegetation growth and photosynthesis in this climate. In a few cases, mowing events were

not captured by the EVI time series as no decrease was observable. This was usually related

to periods of cloud conditions resulting in data gaps. In can be concluded that the EVI cap-

tures grassland mowing event well, however, potentially misses some events during cloudy

weather conditions. A mowing detection approach was developed which located strong EVI

decreases (local minima), followed by an increase (instead of a plateau). The threshold for

the mowing event detection was calibration with the parametrization sites and resulted in

an EVI change of 0.07.

Regarding S1, several parameters were investigated, consisting of the backscatter in-

tensity of VH and VV, the polarimetric decomposition (PolSAR) parameters Entropy, K0

and K1, and the interferometric temporal (InSAR) Coherence of VH and VV. All of these

parameters showed inconsistent behavior towards grassland mowing events as their time

series were characterized by many fluctuations even after smoothing, with increases or

decreases unrelated to mowing events. It became clear that a S1 parameter alone could

not successfully be used for an automated detection of grassland mowing events. Among

all investigated S1-based parameters, the PolSAR Entropy and the InSAR Coherence VH

showed the most potential to capture grassland mowing events as increases after mowing

events were mostly present and additional increases unrelated to mowing were not as fre-

quent as for other parameters. As the EVI-based mowing detection algorithm potentially

124



6.1 Summary and Conclusive Findings

misses mowing events within periods of data gaps, a second mowing detection approach

was developed which combined S2 and S1 to detect mowing events. Mowing events were

detected like in the EVI-only approach, however, within S2 gaps of at least 25 days the

S1-based parameter is checked for strong increases within a time period of 5 days before

until 10 days after the gap to detect mowing events. The PolSAR Entropy and the InSAR

Coherence VH were both calibrated in that regard using the parametrization sites and their

performance for the combined mowing detection approach tested.

The EVI-only and the combined approaches were applied and validated in a focus re-

gion in southern Germany with a large share of grasslands, including all levels of mowing

intensity from zero to six events per year. It showed the high potential of the EVI time series

for mowing detection with 64.6 % of correctly detected mowing events and an F1-Score

of 0.65. The combined approach using the EVI accompanied with the PolSAR Entropy

and the InSAR Coherence VH led to an increase in correctly detected mowing events to

73.8 and 72.0 %, respectively. However, also the number of falsely detected mowing events

rose which resulted in a reduced accuracy with F1-Scores of 0.61 for EVI+Entropy and

0.61 for EVI+Coherence. Hence, it could be revealed that the potential of SAR parameters

for grassland mowing detection is limited. Most probably varying moisture conditions or

changing practices when grasslands are mown – e.g. at times grass is left on parcels to dry –

influence the reaction of the SAR parameters to mowing events and aggravate an automatic

detection approach.

The most successful approach, which was the detection algorithm based on the EVI,

was then applied to the entire area of Germany and validated with an extensive reference

data set for the years 2018–2021. The reference data was collected from touristic webcams

distributed in Germany which acquired daily RGB images of landscapes covering one to

multiple grasslands. In total, information of around 179 differently managed grasslands

were available for validation resulting in 1475 reference mowing events for 2018–2021.

The accuracy assessment revealed similar results like the focus region with a F1-Score of

0.64 for 2019. The mowing detection in 2020 was almost as accurate with a F1-Score of

0.60, however a larger number of correctly detected mowing events (66.3 %). The years

2018 and 2021 reveal lower accuracies with F1-Scores of 0.48 and 0.53. The results show

the algorithm developed with data from 2019 and in a local region is transferable with con-

stant accuracy to the entire area of Germany and other years with similar weather conditions

and data availability like 2019. The year 2018 was exceptionally hot and dry which has neg-

atively influenced the detection capability of mowing events and, in 2021, the availability

of cloud-free data was lower compared to the other years.
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The third objective of the thesis was related to the analysis of the detected mowing

dynamics in Germany for the years 2018–2021 with the following research questions.

Research Questions 3:

1. How does the developed grassland mowing event detection approach perform

for the entire area of Germany?

2. What are patterns of multi-annual nation-wide mowing dynamics in Germany?

3. Where are hotspots of intensively used grasslands and where are regions of

extensive grassland use?

This objective was approached by the application of the developed mowing detection

algorithm to all grassland areas of Germany for the years 2018–2021. Based on the detected

mowing events, annual mowing frequencies and the timing of the first mowing event of

each year were mapped and analyzed. The maps show mowing dynamics in high spatial

resolution of 10 m which potentially also captures patterns within parcels.

The investigation of mowing frequencies in Germany showed that a high share of inten-

sively mown grasslands can be found in the south/south-eastern parts of Germany (mown

more than three times). Central and central-northern parts of Germany show high shares of

extensively mown grasslands (mown up to two times). Early mown grasslands can be found

in southern/south-eastern Germany – comparable to areas with high mowing frequencies –,

but also in western/north-western parts of the country. The southern Pre-Alpine region of

Germany is the one with the highest precipitation rates which might be the reason for large

shares of high mowing frequency grasslands. In addition, the overall proportion of grass-

land is high which is also translated into the highest numbers of cattle in the south-eastern

state of Bavaria. Western/North-western Germany is characterized by higher temperatures

and mild winters which is probably the reason for comparably early first mowing events.

Considering the entire grassland area of Germany, 11–16 % are mown not at all, 33–

40 % one time, 31–33 % two times, 10–16 % three times and 4–5 % at least four times,

depending on the year.

The mowing dynamics between the years stay relatively constant, however some vari-

ability was visible on smaller scales. It is revealed that farmers overall maintain the manage-

ment practices apart from small deviations of one additional or less mowing event. Farm-

ers probably react to external influences, for example weather conditions. The year 2020

showed overall higher mowing frequencies, probably a reaction to the overall warm tem-
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peratures of this year. In 2018, some areas revealed lower mowing frequencies which were

probably related to the high temperatures and dry weather conditions of this year. However,

mowing frequencies were not reduced for all grasslands of Germany in 2018. In 2018, the

first mowing event took place earlier compared to the other years which was probably the

result of an early spring in that year. In 2021, the timing of the first mowing events was

late for many regions. This year was characterized by a very cold April and late start of

vegetation growth in spring.

The final objective was about the relationship of mowing dynamics to potential influ-

encing factors, namely climatic, topographic, soil and protection conditions. The following

research questions were approached in that regard.

Research Questions 4:

1. To what extent do climatic, topographic, soil conditions and socio-political

frameworks influence mowing dynamics in Germany?

2. What do these relationships imply for management options and the status of

grasslands in the future?

Data sets of abiotic conditions and conservation schemes were acquired and related to

the detected mowing dynamics to analyze which conditions are usually fulfilled for inten-

sive and which for extensive grassland use. In that regard, data sets of 2020 were used as

this year showed a high mowing detection accuracy and good optical satellite data availabil-

ity. The climatic data consisted of annual mean temperature and annual precipitation sum

in 1 km spatial resolution. The topographic data, consisting of slope and elevation, and the

mowing information were resampled to the projection and resolution of the climatic data

to make the raster data sets comparable. The mowing frequency and the timing of the first

mowing event were averaged from 10 m to 1 km, resulting in continuous values also for the

mowing frequency. The soil classes were assimilated to match the World Reference Base

to make them internationally comparable. The Natura 2000 sites were used as proxy for the

presence of conservation schemes and were filtered to maintain only sites larger 1 ha.

The comparison of climatic as well as topographic data with the mowing dynamics re-

vealed that there were significant relationships between all four variables and the mowing

frequency as well as the timing of the first mowing event. The correlation coefficients were,

however, small as the Pearson’s r was almost always smaller 0.3. Solely the relationship be-

tween precipitation and mowing frequency revealed a higher correlation with a Pearson’s r

of 0.36. This already indicates a relative importance of precipitation for mowing frequency.
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To analyze the conditions which are related to intensive or extensive grassland use, the cli-

matic and topographic gradients of intensively used grasslands (mown three to six times

or four to six times), extensively used grasslands (mown up to one time), and early mown

grasslands (mown before 1st of May or 1st of June) were depicted. This revealed that in-

tensively used grasslands in Germany occur on a smaller climatic and topographic gradient

compared to all grasslands, revealing that a framework of conditions have to be fulfilled

for intensive grassland use. Extensively used grasslands were shown to cover the entire cli-

matic and topographic gradients like all German grasslands. Grasslands mown before 1st

of June occurred only at annual temperatures of at least 8 ◦C.

A comparison of mowing frequencies of different soil classes showed that there are no

strict boundaries of mowing intensity levels between them. However, there were tendencies

visible that soil classes with influence of ground water are more intensively used compared

to others, highlighting the importance of the availability of water for intensive grassland

use. Grassland within Natura 2000 sites showed lower numbers of mowing frequency and

were later mown compared to the grasslands outside of Natura 2000 sites. However, also

protected grasslands are at times intensively managed and show mowing frequencies of up

to six events per year. This is related to the fact that the Natura 2000 ecosystems are man-

aged to maintain their habitats and species which might be achieved with rather intensive

management for some cases. The results highlight that climatic and topographic conditions

build a framework for intensive grassland use, and extensive use is not coupled to abiotic

conditions. The reason for this is that many abiotic conditions which would naturally result

in extensive use, like high water levels or reduced nutrient availability, can be circumvented

by farmers through drainage and fertilization, for example. The results underline the impor-

tance of protection mechanisms for grassland ecosystems to maintain the diversity also in

future climates.

6.2 Outlook for Future Research

The monitoring of grassland management plays an increasingly important role in the

future. The use of many grasslands in Germany is intensified continuously. In addition,

grasslands are permanently at risk of being converted into cropland. Hence, the number

of grasslands with a large variety in ecosystem services and biodiversity is decreasing in

Germany. Furthermore, actions within the agricultural sector are required regarding the

mitigation of climate change and the conservation of species and ecosystem functions. Sus-

tainable and holistic management plans require continuous and comprehensive information

on use and state of the ecosystems, with mowing dynamics being of central importance for

grasslands.
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6.2 Outlook for Future Research

For future research, further development and improvements to the monitoring frame-

work are possible. One aspect for which a more detailed refinement is useful concerns the

unevenly distributed optical satellite imagery resulting from unequal coverage of S2 orbits

in Germany. Complementing the S2-based detection with S1 data was shown to not solve

this issue – as presented within this thesis – as the mowing detection accuracy could not

be improved. Adding other sources of optical data did also not result in an improvement of

grassland mowing detection analyses. However, tackling remaining artifacts resulting from

unevenly distributed S2 data in post-processing is a promising future approach, e.g. by

revising the mowing detection in areas characterized by less data availability by an empir-

ically trained model based on information of areas with more data availability. In addition,

the aspect of grazing is potentially approached in future research. Grazing events are often

confused with mowing events, however, grazing has a different impact on grassland ecol-

ogy compared to mowing. While investigating mowing dynamics, some recurring patterns

related to grazing became visible within the time series of satellite imagery which could

be useful to investigate grazing (intensity) on grasslands. One example is a large spatial

variability of vegetation index values on grassland parcels.

The framework to monitor grassland mowing dynamics developed within this thesis is

going to be applied for the entire grassland area of Germany within future years. Results

from the analyses conducted here have shown that the approach is transferable to other

years. However, for years with a relatively low data availability, the approach could be

potentially adjusted to improve the results. In addition to the temporal extension, the mow-

ing detection algorithm could also be applied to other temperate grasslands which occur

outside of Germany and are regularly mown, including Northern, Central and Eastern Eu-

ropean grasslands.

Another aspect of future research is the integration of spatial mowing date informa-

tion into models, e.g. to estimate carbon and nitrogen fluxes in grassland ecosystems.

Another field of application is the biodiversity estimation of grassland ecosystems, for

which the mowing intensity is a valuable additional explaining variable for the analyses.

Co-operations in that regard are already ongoing and are further maintained in the future.

Lastly, mowing dates are a valuable input feature for the estimation of grassland yields

which is a research focus in the future. Due to the large variety of grasslands and the large

diversity in the timing and types of management actions, the estimation of grassland yields

is challenging. Spatial information of grassland yields is not available in Germany and com-

bining models to estimate grassland biomass with mowing information potentially enables

successful grassland yield estimations in the near future.
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