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Explanation of the plot on the front page:

The plot of the imaginary part of the transverse magnetic susceptibility Imy* (g, w) exhibits
the prominent resonance mode calculated with our two-particle extention of the Variational
Cluster Approach in the hole-doped (z = 0.18) Hubbard model at 7" = 0. This salient structure
is observed in cuprate superconductors by use of Inelastic Neutron Scattering experiments.
Being a universal property of the cuprates, the resonance is believed to be closely related to
the mechanism of high-temperature superconductivity. As an upward as well as a downward
dispersion exists, the plotted structure is also called hourglass structure which we obtained
for the first time in a strongly correlated microscopic calculation without free parameters. In
addition, characteristic properties such as the doping dependencies are proved to be in accord
with the experiments. This can be considered as the most important achievement of this
thesis. Further explanations are given in this work or in (El)

Erlduterungen zu dem Plot auf der Titelseite:

Der Plot des Imaginirteils der transversalen magnetischen Suszeptibilitit Imy® (q, w) zeigt die
bekannte Resonanzmode, welche mit Hilfe unserer Zwei-Teilchen Erweiterung des Variational
Cluster Approach im loch-dotierten (x = 0.18) Hubbard model bei 7" = 0 berechnet wurde.
Diese besondere Struktur wird in Kuprat Supraleitern im Rahmen Inelastischer Neutronenstreu
Experimente beobachtet. Als universelle Eigenschaft der Kuprate wird die Resonanzmode
weithin akzeptiert als eng verbunden mit dem Mechanismus der Hochtemperatur-Supraleitung
gesehen. Da sowohl eine obere als auch eine untere Dispersion existiert, bezeichnet man
die abgedruckte Struktur auch als hourglass Struktur, welche wir erstmals im Rahmen einer
stark korrelierten mikroskopischen Technik ohne freie Parameter berechnet haben. Dariiber
hinaus zeigen sich weitere charakteristische Eigenschaften, wie z.B. Dotierungsabhangigkeiten,
als tibereinstimmend mit den Experimenten. Dies kann als die wichtigste Errungenschaft
dieser Dissertation angesehen werden. Weitere Erlduterungen sind dieser Arbeit oder (El) zu
entnehmen.
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Abstract

Two-particle excitations, such as spin and charge excitations, play a key role in high-T, cuprate
superconductors (HTSC). Due to the antiferromagnetism of the parent compound the mag-
netic excitations are supposed to be directly related to the mechanism of superconductivity.
In particular, the so-called resonance mode is a promising candidate for the pairing glue, a
bosonic excitation mediating the electronic pairing. In addition, its interactions with itinerant
electrons may be responsible for some of the observed properties of HTSC. Hence, getting
to the bottom of the resonance mode is crucial for a deeper understanding of the cuprate
materials .

To analyze the corresponding two-particle correlation functions we develop in the present
thesis a new, non-perturbative and parameter-free technique for T = 0 which is based on
the Variational Cluster Approach (VCA, an embedded cluster method for one-particle Green's
functions). Guided by the spirit of the VCA we extract an effective electron-hole vertex from
an isolated cluster and use a fully renormalized bubble susceptibility xqo including the VCA
one-particle propagators. Within our new approach, the magnetic excitations of HTSC are
shown to be reproduced for the Hubbard model within the relevant strong-coupling regime.
Exceptionally, the famous resonance mode occurring in the underdoped regime within the
superconductivity-induced gap of spin-flip electron-hole excitations is obtained. Its intensity
and hourglass dispersion are in good overall agreement with experiments. Furthermore,
characteristic features such as the position in energy of the resonance mode and the difference
of the imaginary part of the susceptibility in the superconducting and the normal states
are in accord with Inelastic Neutron Scattering (INS) experiments. For the first time, a
strongly-correlated parameter-free calculation revealed these salient magnetic properties
supporting the S=1 magnetic exciton scenario for the resonance mode.

Besides the INS data on magnetic properties further important new insights were gained
recently via ARPES (Angle-Resolved Photoemission-Spectroscopy) and Raman experiments
which disclosed a quite different doping dependence of the antinodal compared to the
near-nodal gap. This thesis provides an approach to the Raman response similar to the
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X Abstract

magnetic case for inspecting this gap dichotomy. In agreement with experiments and
one-particle data obtained in the VCA, we recover the antinodal gap decreasing and the
near-nodal gap increasing as a function of doping. Hence, our results prove the Hubbard
model to account for these salient gap features.

In summary, we develop a two-particle cluster approach which is appropriate for the strongly-
correlated regime and contains no free parameter. Our results obtained with this new approach
combined with the phase diagram and the one-particle excitations obtained in the VCA strongly
constitute a Hubbard model description of HTSC cuprate materials.



Kurzfassung

Zwei-Teilchen Anregungen, darunter Spin und Ladungs Anregungen, sind von besonderer Be-
deutung in Hoch-T, Kuprat Supraleitern (HTSL). Aufgrund der antiferromagnetischen Phase
bei niedrigen Dotierungen werden magnetische Anregungen direkt mit dem Mechanismus der
Supraleitung in Verbindung gebracht. Gerade die sogenannte Resonanzmode ist ein vielver-
sprechender Kandidat fiir den pairing glue, eine bosonische Anregung, welche die Paarung
von Elektronen induziert. Weiterhin wird deren Wechselwirkung mit itineranten Elektronen
verantwortlich gemacht fiir einige der beobachteten Eigenschaften der HTSL. Fiir ein tieferes
Verstandnis der Kuprate ist es daher unerlasslich, der Resonanzmode auf den Grund zu gehen.
Um die entsprechenden Zwei-Teilchen Korrelationsfunktionen zu analysieren, entwickeln wir auf
Basis des Variational Cluster Approach (VCA, eine Cluster Methode, um Ein-Teilchen Green
Funktionen zu berechnen) in der vorliegenden Dissertation eine neue, nicht-perturbative und
parameterfreie Technik fiir "= 0. Im Sinne der VCA berechnen wir einen effektiven Elektron-
Loch Vertex auf einem einzelnen Cluster und verwenden eine vollkommen renormierte Bubble
Suszeptibilitat o, welche die VCA Ein-Teilchen-Propagatoren beinhaltet. Mit Hilfe unserer
neuen Technik kénnen wir die magnetischen Anregungen der HTSL im Rahmen des Hubbard
Modells in der stark korrellierten Phase reproduzieren. Als herausragendes Ergebnis erhalten
wir die beriihmte Resonanzmode im underdotierten Bereich innerhalb des von der Supraleitung
induzierten Gaps der Spin-Flip Elektron-Loch Anregungen. Deren Intensitdt und Sanduhren-
formige Dispersion zeigen eine sehr gute Ubereinstimmung mit den Experimenten. Weiterhin
sind charakteristische Eigenschaften, wie die Energie der Resonanzmode oder die Differenz des
Imaginarteils der Suszeptibilitdt in der supraleitenden und normalen Phase im Einklang mit In-
elastischen Neutronenstreu (INS) Experimenten. Zum ersten Mal bringt eine stark-korrellierte
und parameterfreie theoretische Rechnung diese besonderen magnetischen Eigenschaften her-
vor und bekraftigt damit die Erkldrung der Resonanzmode als S=1 magnetisches Exziton.

Neben den INS Resultaten zu magnetischen Eigenschaften wurden kiirzlich weitere wichtige
neue Erkenntnisse mittels ARPES (Winkelaufgeloste Photoemissionen Spektroskopie) und
Raman Experimenten erhalten. Beide legten eine deutlich unterschiedliche Dotierungsab-
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xii Kurzfassung

hangigkeit des anti-nodalen Gaps verglichen mit dem Gap nahe des nodalen Punktes offen.
Im Rahmen dieser Dissertation wird eine der magnetischen Berechnung dhnliche Technik fiir
den Raman Response benutzt, um dieses unterschiedliche Verhalten des Gaps zu untersuchen.
Ubereinstimmend mit den Experimenten und Ein-Teilchen Ergebnissen aus VCA Rechnungen
bekommen wir ein Abfallen des anti-nodalen Gaps und Ansteigen des Gaps nahe dem nodalen
Punkt als Funktion der Dotierung. Folglich zeigen unsere Ergebnisse, dass das Hubbard Modell
diese besonderen Eigenschaften des Gaps beinhaltet.

Zusammenfassend entwickeln wir eine Zwei-Teilchen Cluster Technik, welche fiir stark korrel-
lierte Systeme geeignet ist und keine freien Parameter enthdlt. Unsere Ergebnisse mit dieser
neuen Technik in Verbindung mit dem Phasendiagramm und Ein-Teilchen Anregungen der
VCA Rechnungen bekraftigen mit Nachdruck eine Beschreibung der HTSL Kuprate auf Basis
des Hubbard Modells.



Definitions, notations and
abbreviations

Throughout the present thesis the following definitions, notations and abbreviations are often
used:

e The bold face type is used to denote vectors as well as matrices.

e In the Brillouin zone the following symmetry points are used:

r = (0,0)
X = (mm0)
M = (m,mn)

e The following abbreviations are often used:

HTSC = high-temperature superconductor

LASCO = Lay_sAsCu0Oy, with A = Sr or A= Ba
YBCO = YBG,QCU3OG+5

VCA = Variational Cluster Approach

SFA = Self-Energy-Functional Approach

ARPES = Angle-Resolved Photoemission-Spectroscopy
INS = Inelastic Neutron Scattering
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Introduction

The experimental and theoretical research on condensed matter physics and electronic many-
body systems is one of the most impressive success stories in science. It is needless to mention
the importance of the semiconductor physics making possible the electronic devices which
accompany, enrich and change our daily life in an unthinkable short time. And still nowadays
the condensed matter physics is an inexhaustible wide field of interesting and very complex
problems and phenomena challenging the creativity and intelligence of the scientists. One
of the most important parts in this field is the strongly-correlated condensed matter physics.
These many-body systems are characterized by a correlation of the particles being of the same
magnitude as the band width which is a measure of the kinetic energy. This rules out a
perturbative treatment of the interaction as well as the kinetic part in a theoretical approach
to these systems. Rather, it is inevitable to take both mechanisms into account for a realis-
tic description. To meet these requirement the development of a variety of new techniques
was spurred in the field of the theoretical investigations (see the introduction to chapter ).
One of the most prominent examples for the rich physics of strong correlations was unclosed
with the discovery of the copper-oxide (cuprate) high-temperature superconductor (HTSC)
Lay_sBasCuO, by J.G. Bednorz and K.A. Miiller in the year 1986 (EI) That followed a
multitude of cuprate superconductors was found and strong effort has been made from many
scientists to get to the bottom of the microscopic mechanisms producing the observed macro-
scopic properties. Although great progress was achieved in the field of the cuprates, it is still
a very hot topic and worthy to work intensively in order to prove the roots of the mechanisms
producing high-temperature superconductivity.

Conventional low-temperature superconductors as Nbs3T'i with a critical temperature of T, ~
10K were discovered in 1911 (B) and are well described by the BCS (Bardeen-Cooper-
Schrieffer) theory (|a) invented about 45 years afterwards. It was shown that an effective
electron-electron interaction mediated by an exchange of phonons (quantized lattice vibra-
tions) is able to lead to a pairing of electrons into cooper pairs. After a Bose-Einstein transi-
tion the condensate of cooper pairs can be described by a macroscopic wave-function which



2 Chapter 1. Introduction

rules out microscopic scattering processes and therefore resistivity. A very important proof of
the BCS theory was the comparison of the phonon spectrum, measured by Inelastic Neutron
Scattering (INS) experiments, with results from Electron Tunneling experiments. By use of
the Eliashberg theory (ﬁ) a quantitative agreement was found (I§; d; E) In addition the
BCS theory renders the explanation of the isotope effect (Iﬁl) which states that the criti-
cal temperature is associated with the mass M of the atoms the superconductor consists of
via: T, M = constant. The exponent is for most conventional superconductors o =~ 0.5.
Furthermore most thermodynamic properties can be understood on the basis of the so-called
BCS mean-field hamiltonian. However, it exists a strong consensus that the theory of phonon-
mediated pairing is not applicable to the new HTSC. The reason is that at the relative high
critical temperature of for example T, ~ 35K measured in La;g5Bag15CuO, the thermal
excited photons would probably disturb and destroy a phonon-induced pairing mechanism. A
further important difference is the strong electron-electron Coulomb interaction in the cuprates
in contrast to the weak-coupling conventional superconductors making a description through
a mean-field hamiltonian impossible. From 1986 on more and more members of the new
class of cuprate superconductors were found with successive higher critical temperatures up
to T, =~ 160K measured in HgBayCaCusOgys under pressure. A very important cornerstone
was the discovery of Y BayCu3zOg,s (YBCO) as it was the first material becoming super-
conducting above the liquid nitrogen temperature (7. =~ 90K for 6 ~ 1). Not at last, this
made the HTSC an interesting material for industrial use as the superconducting phase can
be reached by cooling with the much cheaper liquid nitrogen than liquid helium.

1.1 Chemical structure of cuprate superconductors

Next, we will consider the chemical structure of cuprate superconductors using the example
of YBCO and Lay_sAsCuO, (LASCO) sketched in Fig. [Tl and Fig. respectively. It is
widely believed, that the properties observed in experiments stem from the physics of the two-
dimensional CuQO, planes indicated by the bold dashed lines in Fig. [l and Fig. L2 Highly
anisotropic properties such the normal state conductivity are justifying this assumption. Under
this premise the rest of the chemical structure serves only as a charge reservoir changing the
electronic density of the CuO; planes. In case of LASCO the stoichiometry is such that the
Cu turns into Cu*", the La into La®" and the oxygen atoms are charged twofold negative.
While a single copper atom has a [3d'°][4s'] electronic configuration a copper atom embedded
in the crystal is in the [3d°] configuration. Therefore, every copper ion has one hole in a d-
orbital with a spin 1/2 and the 2p-orbitals of the oxygen ions are saturated with two additional
electrons [2p°]. The electronic filling of the CuO, planes in LASCO can be modified through a
substitution of lanthanum atoms with either strontium (A = S7) or barium (A = Ba) atoms.
The different valence of these elements leads the a lowering of the electronic filling of the CuO,
planes which means hole(p)-doping. In case of YBCO this is achieved through additional oxide
atoms. Also electron(n)-doped materials of the cuprate family were discovered. Examples for
n-doped cuprates are Ndy_sCesCuO4 and LaPri_sCesCuOy.
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Figure 1.1: Sketch of the chemical elementary cell of Y Ba;Cu3O, (YBCO). The bold
dashed lines indicate the CuQOy planes.

1.2 Physical basics of cuprate superconductors

Besides the interesting high critical temperature of cuprate superconductors this class of ma-
terials also exhibits a rich phase diagram depending strongly on the electronic filling of the
CuO4 planes. Fig. L3 shows a generic phase diagram in dependence of the doping = and the
temperature 7.

At zero doping (z = 0) an antiferromagnetic Mott-insulating (IE; E) phase is observed which
will be explained briefly. We consider a hypercubic lattice with one orbital per site (this will
be detailed in chapter P) at half-filling. Without an electron-electron interaction, the hopping
between lattice sites leads to a metallic band. Switching on a strong local Coulomb interaction
between the electrons impedes double occupancy, as an additional electron means an energy
cost due to the local Coulomb repulsion denoted with U. Hence, the non-interacting band
splits up into two bands (called lower and upper Hubbard band) separated by the Mott-gap
U. Although the electrons in this regime at half-filling are localized, virtual hopping pro-
cesses to and back adjacent sites, which are occupied with an electron carrying an opposite
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Figure 1.2: Sketch of the chemical elementary cell of LasCuQOy (LASCO). The bold dashed
lines indicate the CuQOy planes.

spin, are possible. This so-called super-exchange leads to an antiferromagnetic coupling and is
given in two dimensions by J = 4%, with ¢ the nearest-neighbor hopping integral (see Fig. [ 4]).

Due to doping the corresponding Néel temperature decreases, but much slower on the n- than
the p-doped side of the the phase diagram. That followed, the superconducting phase with a
maximum critical temperature at a certain value of doping, called optimal doping, is observed.
Phase-sensitive experiments revealed that the underlying pairing has a d-wave symmetry in
the p-doped as well as in the n-doped regime (see (ﬁj) for a review). The superconducting
region in the phase diagram below optimal doping is called the underdoped regime. And, com-
plementary, above optimal doping one speaks of the overdoped regime. So far, the observed
phase diagram at the p-doped side is richer than at the n-doped side. Experimental results
proposm a spin-glass phase in between the antiferromagnetic and the superconducting phase

Ej |l% and, furthermore, the so-called pseudogap phase is observed (see (IE%% for
rewews). The characteristic of this phase is a finite superconducting gap without supercon-
ductivity.
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Figure 1.3: Generic phase diagram of cuprate superconductors.

A variety of theories based on a preformed pair scenario was invented to elucidate the physics of
the pseudogap phase. Involving spin-charge separation, the Resonating Valence Bond (RVB)
for example ascribes the pseudogap to the spin gap produced by spinon pairs below 7™ while
the holons undergo a Bose-Einstein transition at the critical temperature 7, (Iﬂ; b3 b3; E)
Another proposed explanation based on preformed pairs is the following. Dynamical charged
stripes are separated by insulating antiferromagnetic stripes on a microscopic scale below 7" >
T*. As the charge carriers are confined in the stripes, an one-dimensional electron gas is formed.
Below 7™ the spin gap in the antiferromagnetic stripes lead to pairing due to pair-hopping
between the antiferromagnetic stripes and the one-dimensional electron gas. Large enough
éﬁephson coupling below T, creates the phase coherence and therefore superconductivity
).
In addition, there are theories which try to explain the pseudogap state with phases competing
with superconductivity. Possible candidates for such phases are charge density and spin density
waves. A further interestinﬁcenario is that of orbital currents circulating around plaquettes

C(EOI% copper atoms (@; bd; ba: hd. El) or involving plaquettes of the Cu — O bonds
;33).

So far, the nature of this phase is still intensively debated and still unclear.

The proximity of the Mott-insulating antiferromagnetic to the superconducting phase advises
us to consider the HTSC as a doped Mott-insulator. A theoretical description is challenged
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Figure 1.4: Schematic visualization of the super-exchange mechanism.

with the task of explaining these dominant phases as well as the doping-driven evolution from
one to the other phase. Against this background the probably most crucial question is the
microscopic mechanism of pairing and how it is connected to the antiferromagnetic phase.

Considering the doped antiferromagnetic Mott-insulator one possible short-ranged mechanism
of pairing is based on the antiferromagnetic exchange coupling J. Fig. sketches the
propagation of a single hole compared to a hole-pair on an antiferromagnetic background
on a quadratic lattice with one orbital per site. In case of a single hole a tail of parallel
spins is produced (upper sketches) which is energetically not favorable. The propagation of a
hole-pair avoids this tail (lower sketches). After the hopping of the first hole two frustrations
(middle sketch) creating an potential with leads to an attraction between the two holes, as
the following second hole lets the frustration disappear (right sketch). Although this is very
simplified pictorial argument, it already gives a clue of what is called the instantaneous pairing
mechanism involving the virtual high-energy excitations above the Mott gap.

A further possible pairing mechanism is based on the exchange of electron-hole spin fluctuations
whose energy dispersion is analyzed in INS experiments (é 35: 36; B7: kd: é ). Resembling
the phonon-induced mechanism in conventional superconductors this retarded spin fluctuation
mediated pairing is called the pairing glue. Currently, the instantaneous or retarded nature
is intensively debated and there is some evidence that both mechanism are accounting for
the pairing (IE; 41, @) The mentioned INS experiments revealed an interesting spectrum
of electron-spin fluctuations in the underdoped and optimal doped regime. When entering
the superconducting state in the high-T,. cuprates, the magnetic excitation spectrum is char-
acteristically and markedly modified: a resonant mode emerges with its peak intensity being
highest around the wave vector qAF Iﬁﬂ i characterlstlc of antiferromagnetism in the un-
doped parent compound Its frequency wyes(gar) follows the doping
dependence of T, and is of the order of 40 meV. Away from gar, the mode has both a
downward and upward hourglass-like dispersion with the latter being strongly damped as it
extends into the continuum of electron-hole spin-flip excitations. The expression hourglass is
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meanwhile established for the combined upward and downward dispersion as it is observed in
several p-doped cuprate superconductors. In the n-doped cuprates only the resonance peak is
detected as an universal feature so far (@) A variety of experiments in the HTSC, such as
Angle-Resolved Photoemission-Spectroscopy (ARPES), Optical and Tunneling Spectroscopies,
have been interpreted as evidence of interactions of electrons with this mode (@; ; ).
However its microscopic origin, in particular its role in pairing and the more detailed effects
arising from the interactions of charge carriers with this magnetic mode are still unclear and
intensively debated (Iﬂ; lagd: lad: @;gﬁ; 52; E) A prerequisite to resolve this debate obvi-
ously requires a consistent theoretical description of the neutron resonance mode and, more
generally, the magnetic excitation spectrum (@; @; @) and at the same time of the phase
diagram, containing the competing antiferromagnetic and superconducting phases.

1.3 Purpose of the present thesis

In this thesis, on the basis of a microscopic theory for two-particle excitations, we provide a
consistent description for the experimentally relevant regime of the two-dimensional one-band
Hubbard model. This is a simplified model derived from the chemical structure of the CuO,
planes which is believed to contain the essential microscopic physics of the cuprates. Chapter Dl
is devoted to this issue and introduces the three-band (54) and one-band (@) Hubbard model.

Chapter Bl contains the technical approaches used in the present thesis. We start in section Bl
with a review of the Variational Cluster Approach (VCA), its derivation from the Self-Energy-
Functional Approach (SFA) and the numerical realization using the Q-matrix formalism. This
part follows closely the seminal publications of Potthoff et al. E'E; 60; I61; E) That followed,
we present in section our new approach to two-particle, i.e. the magnetic, excitations,
which is the basic technical development of the present work. We extend the original idea
of the VCA, which is to extrapolate cluster results to the infinite lattice, to the treatment
of two-particle excitations. In our novel approach, the two-particle vertex extracted from the
corresponding cluster susceptibilities is used to obtain the susceptibilities in the infinite-lattice
limit. Hence, the whole approach is controlled by the cluster size and the two-particle as well
as the one-particle quantities become exact in the limit of infinite cluster sizes. In addition,
section B3] deals with an approximation to the Raman response function. We present an
approach similar to the magnetic case but without vertex corrections as the k-dependence
of the Raman vertex leads to a more complicated numerical treatment. This chapter closes
with the introduction of our method of choice to solve the cluster problem. We explain the
(Block-)Lanczos algorithm following the corresponding book chapter of Freund (@)

The VCA was recently applied to calculate the zero-temperature (7' = 0) phase diagram as
well as one-particle excitations (Ia; 64: l65; l66: l67; l6g: ) of the one-band Hubbard model
for the appropriate strongly correlated regime (U = 8t). These results successfully reproduced
salient experimental features such as the electron-hole as;I%metry in the doping dependence

of antiferromagnetic and superconducting phases (@; @; : @; @) in the HTSC materials.
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Also the VCA one-particle excitations were found to reproduce characteristic features observed
in ARPES experiments such as the much-discussed presence of a gap dichotomy of the nodal
and antinodal superconducting gaps (E) Reviewed briefly, these one-particle data obtained
with the VCA are related to the new two-particle results of our parameter-free calculation for
the underdoped one-band Hubbard model in chapter @ and B

The essential new points in this thesis are that our non-perturbative theory for two-particle
excitations (e.g. the dynamic spin-susceptibility) is (i) parameter-free (given fixed, widely-
accepted values for the one-band Hubbard model parameters) and (ii) is working in the relevant
strong correlation regime of the underlying one-band Hubbard model.

Within this theory we present in chapter @l a systematic analysis of the magnetic correlations in
the hole-doped regime that captures salient features measured in INS experiments. As one of
the most salient outcome the celebrated resonance with its hourglass-like dispersion structure is
obtained for the first time in a parameter-free strongly correlated microscopic calculation. It is
verified to be a spin S=1 excitonic bound state, which appears in the superconductivity-induced
gap in the spectrum of electron-hole spin-flip (i.e. S=1) excitations. This will be detailed in
our results, where we find the doping dependence of wyes(gar), the energy-integrated spectral
weight evaluated at g4 and the difference of the magnetic susceptibilities in the supercon-
ducting and the normal states to be in qualitative accord with INS data for underdoped YBCO,
where the mode was studied in great detail (@; @; @; @; @; @) In contrast, previous
descriptions of the magnetic resonance have been obtained by weak-coupling (@) and/or semi-
phenomenological approaches (Iﬂ; 72 [73: [74; [75; @) reproducing the experimental behavior
with adjustable parameters.

The infinite-lattice limit is crucial to obtain the magnetic resonance which may be considered
as a fingerprint of the antiferromagnetic order in the superconducting state. Only then are we
able to differentiate between the competing antiferromagnetic and superconducting orders in
the phase diagram. Therefore, this limit is also embedded in our controlled description of the
corresponding susceptibilities.

In case of the Raman response our data presented in chapter Blreveal the prominent dichotom
of nodal and antinodal superconducting gaps observed in Raman (Iﬂ; |j733) and ARPES :
8d: @) experiments. In addition, we address the question of an origin of the gap in the
superconducting phase apart from superconductivity. Our findings can be reconciled with the
found gap results extracted from the VCA spectral function (E)

Combined with the earlier one-particle calculations, our new results for two-particle excitations
presented in chapter @l and B provide a consistent picture, which lends substantial support to
Hubbard-model descriptions of high-T. cuprate superconductivity.

At last, in chapter [l a short summary of the present thesis is provided.
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Figure 1.5: Schematic visualization of the instantaneous pairing mechanism within a
quadratic lattice in the antiferromagnetic phase.






Physical models

The derivation of an appropriate mathematical model is a crucial task for the theoretical
investigation in condensed matter physics. On the one hand the model should be as easy
as possible but on the other hand it has to contain the relevant physical mechanisms of the
considered material. Therefore, according to a prominent statement from A. Einstein the
following imperative can be formulated:

Create your model as easy as possible but not easier

We want to describe the properties of cuprate superconductors whose chemical structure is,
in principle, described in chapter [l using the example of LASCO and YBCO. We already
stated that the relevant physical processes of cuprates are believed to happen in the CuO,
planes with a strong electron-electron Coulomb interaction competing with the kinetic energy.
Furthermore, we ruled out phonons as important excitations for the physical properties. This
leads to the following assumptions for an appropriate model:

e The dynamics of the atoms take place on a much larger time scale compared to the
electrons = we can restrict to a pure electronic model.

e All relevant spin and charge degrees of freedom are in the CuO, planes = we can restrict
to a two-dimensional model on a square lattice. Due to the Mermin-Wagner theorem
(@) long-range order can only be established in the ground state at 7" = 0 in less
than three dimensions. Nethertheless, in numerical calculations at finite temperatures
the correlation length can approach the system size wherefore the system appears to be
long-range ordered.

e The dominating interaction between the electrons is a short-range repulsive Coulomb
interaction = we can restrict to a local or at least nearest neighbor Coulomb interaction.

Following the seminal publication (ﬁ) we introduce the so-called three-band Hubbard model

which maps the relevant orbitals within the CuO; planes: the 3d,2_,2 orbitals of the copper

11
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Figure 2.1: Sketch of the three-band model for the CuQs planes in the cuprates.

atoms and the 2p, and 2p, orbitals of the oxygen atoms (see Fig. 2ZTI).

But first we will define the electronic operators used in the following models. ¢;, annihilates
and ¢/ = (c;,)" creates an electron with the spin o at the site i. These operators obey the
fermionic anticommutation relations:

[C;[ga CZT/U/]Jr = [Cz‘m Cz'/a/]Jr =0 ) [Cz‘m CI/J/]JF = 51',1'/50,0' (2-1)

2.1 Three-band Hubbard model

The three-band Hubbard model (@) contains hopping of electrons between the oxygen 2p,-
and 2p,-orbitals (¢*?) as well as a hopping between the copper 3d,2_,2- and the oxygen 2p-
orbitals (¢*4). Furthermore, the hamiltonian includes a local Coulomb interaction U? and U?
and a Coulomb interaction between adjacent oxygen 2p- and copper d-orbitals UP?. Finally
the different energy levels of the oxygen 2p- and copper d-orbitals are taken into account via
the on-site energies € and ¢?. Thus, the hamiltonian reads:

Hipuppz = — Z tﬁ’/(c}acj/g + h.c.) — Z tff(cjacja + h.c.) (2.2)
(4,3"),0 (i,4),0

+UpanTnjl+Udannu —i—Udenmijepan —|—6dZni .
J i (i,4) J g

The indices i and j refer to sublattice of copper d— and oxygen p—orbitals, respectively.
Nig = c}acia (njo = c}acja) is the number of electrons with spin o at the site ¢ () while
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Figure 2.2: Phase convention for the hopping matrix elements of the three-band Hubbard
model.

n; = nip +n;y (n; =nj +n;;). (...) denotes the summation over nearest neighbors. Due to
the symmetry properties of the orbitals a phase convention for the hopping matrix elements
has to be introduced (see Fig. Z2)). For a recent VCA study of the three-band model see (@)

2.2 One-band Hubbard model

This section deals with the model we will use for our calculations presented in this thesis. In
chapter [l we analyzed the electronic configuration of the copper and oxygen atoms within
the CuO, planes and found at zero doping [3d°] for the first and [2p°] for the latter one.
That means, without doping each oxygen orbital is fully occupied while the 3d,2_,> copper
orbital contains one hole in the d-orbitals on an average. It was shown (@) that in the strong
coupling limit it is favorable for doped holes to go into the oxygen p-orbitals and form the
famous Zhang-Rice singlet with the hole at the copper d-orbital. Furthermore, on the basis of
this Zhang-Rice singlet an effective low-energy one-band model was derived in (@) Therefore,
we will consider as a simplification only one hybridized 3d,2_,> — 2p, — 2p,-orbital located at
each copper site. The oxygen orbitals will be neglected except for providing the orbitals for the
hybridization. This effective model is called one-band Hubbard model which was previously
introduced to describe the magnetism of itinerant electrons in narrow bands (@) It contains
a local Coulomb interaction U and an hopping between the lattice sites. In our case, we
consider nearest (¢) and next-nearest (') neighbor hopping. Although this model appears very
simple, an exact solution only exists in one dimension through the Bethe ansatz ({85). The
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Figure 2.3: Sketch of the one-band model for the CuQO, planes in the cuprates with nearest
and next-nearest neighbor hopping.

hamiltonian in the grand canonical form reads:

Hiuor = Hpruor — ,LLZTLZ' = —t Z (c} cijg 4+ hc) =t Z (c! cjo + h.c.)
¢ (.4), ((B:9)).0

i,j),0
—,LLZnZ- + UZniTnu , (2.3)

with ((...)) denoting the summation over next-nearest neighbors. Fig. gives a sketch of
the effective one-band model with nearest and next-nearest neighbor hopping.

As the one-band Hubbard model is our model of choice for the description of the cuprate
superconductors we will leave the attribute one-band in the further thesis for simplicity. Next,
we review some general symmetries and limits of the Hubbard model.

2.2.1 Conserving quantities

It is straightforward to prove the Hubbard hamiltonian symmetric under U(1) and SU(2) trans-
formations which leads to a conserving of the particle number N, = > . n;,, the squared total
spin (S)* = (3, S;)? and the z-component of the total spin S* = 3", S7 = =50 (niy — mayp).

[HHubbla No]f = [HHubbh (‘5')2]7 = [HHubbla SZ]* =0 (24)



2.2. One-band Hubbard model 15

2.2.2 Particle-hole-transformation

A hypercubic lattice, such as we will use for the cuprates, belongs to the class of bipartite
lattices. These lattices can be constructed by two sublattices A and B with each site of
sublattice A having only sites of B as nearest neighbors and vice versa. Considering such a
bipartite lattice we perform a particle-hole transformation defined as:

Cig — CT ; CT — NiCio (2-5)

with 7; = 1 at the sites of A and 7; = —1 at the sites of B. Application to the hamiltonian in
Eq. E3 yields

H L = —t Z (¢} cio+hoc) 4+t Z (c! cjo + hoc.)
(i,4),0 ((@5)).0

with N the number of lattice sites. We realize that the Hubbard model is particle-hole

symmetric for ¢/ =0 at u = Z.

223 U = 0 limit

In the limit of a vanishing interaction the Hubbard model can be solved straightforwardly by
a Fourier transformation

Cig = —— Cpo €T : o = —ikri (2.7)

1
io ﬁ Z CLJG
k

Inserting in Eq. 23 yields in two dimensions

Heuwn = Z CJ]LJCk:U (e(k) — p) (2.8)
e(k) = —2t(cos(ky)+ cos(ky)) — 2t'(cos(ky + ky) + cos(k, — ky)) (2.9)

2.2.4 Large U limit

In the limit of a strong local repulsion U double occupancy is impeded. Applying second order

perturbation theory in % renders in case of only nearest-neighbor hopping and a filling n <1

the prominent ¢ — J model
o 1
HtJ = —t <Z> (C;[JC]‘J + hC) + J; <SZSJ - ZTLﬂ%) s (210)
1,]),0 2,7

with J = 47 and the modified one-particle operators omitting double occupancy ¢, =
Cio(l = ni_g) , & =¢l (1 —n;_y). The spin-3 operators S; are defined in section B2Z2

t2
1
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At half-filling the ¢ — J model simplifies to the Heisenberg model

Hy=1J)Y <SZ-SJ» - i) . (2.11)

(6,7)
We discover that the Hubbard model in the strong coupling limit describes at half-filling an
insulator with an antiferromagnetic spin interaction.



Techniques

We are interested in the equilibrium dynamics of elementary one- and two-particle excitations
of a system of strongly-correlated electrons. These dynamics are described by the Green's
function which we will define in the Matsubara formalism (@; @; ; @)

1

Gapliv) = (Aai Bl = 5 [ drGualr)e™

[ee)
_ _%/ AT (T A A (1) Bo(0) )T (3.1)
—0o0
with the imaginary time Heisenberg representation A(7) = ef7Ae™#7, 7 = it and T, denoting
the time-ordering operator. In case of the fermionic one-particle Green's function the A and B
are fermionic creation and annihilation operators and iw/ = i(2n+1)7T ; n € Z are fermionic
Matsubara frequencies, while for the two-particle analogon each of the two operators (A, B)
consists of two fermionic operators and iw? = i2n7T ; n € Z are bosonic Matsubara fre-
quencies. However, a perturbatively calculation of a Green's function of a strongly-correlated
system fails as the interaction strength is comparable to the bandwidth and no small parameter
exists. Many numerical methods have been invented to attack the strong correlated many-
body problem. Most of them became essentially exact in some cases. For limited system sizes
this holds for the Quantum Monte Carlo (QMC) method (@) and the Exact Diagonalization
(ED), while the Density-Matrix Renormalization-Group (DMRG) (Iﬁ'; @) works best in one
dimension. In case of infinite dimensions the Dynamical Mean-Field Theory (DMFT) @)
becomes exact also for the thermodynamic limit on infinite systems. However the DMFT is
for low-dimensional system only an approximation as no spatial correlations are considered.
Improvements can be obtained by cluster extentions (@) These extentions incorporate short-
range spatial correlations by solving a small cluster exactly. There are existing two realizations,
a real-space construction called Cellular-DMFT (C-DMFT) (@; od; 97, @) and a reciprocal-
space construction called Dynamical Cluster Approximation (DCA) (@) Both methods are
improvements in low dimensions but they are no longer exact in the limit of infinite dimensions.

17
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In the following chapter we introduce a technique to calculate the one-particle Green's function
for infinite sized systems which also considers spatial correlations via the exact solution of a
finite cluster. The dynamic quantity obtained from the cluster calculation is the electronic
self-energy . Therefore, this technique called Variational Cluster Approach (VCA) (@) is
closely related to the Cluster Perturbation Theory (CPT) (Im; 101, ﬁ) As an improvement
compared to the CPT the VCA combines a cluster technique with a variational principle which
allows for symmetry broken phases. Thus, the VCA combines short-range correlations and
long-range order phenomena. Noteworthy, it turns out, that the CPT as well as the C-DMFT
can be derived as special cases of the VCA, wherefore the VCA can be considered as a more
general principle dé) (for an explanation of these three techniques see also (IE))

As the present thesis focuses on two-particle excitations of strongly-correlated systems, we
derive an extention to the VCA for two-particle correlation functions which will contain no free
adjustable parameters. Guided by the spirit of the VCA we define an effective two-particle
vertex obtained at the cluster level. This ensures that the approach is controlled by the cluster
size, which means, that the one-particle as well as the two-particle correlation functions be-
come exact in the limit of infinite cluster sizes. In case of the Raman response the treatment
of the vertex function is more complicated and we use the effective mass approximation for
the bare Raman vertex. The subsequent chapter will show that the derived technique enables
us to calculate salient two-particle properties of strongly-correlated hight-temperature super-
conductors without adjustable free parameters for the first time.

This chapter closes with the explanation of the ED which is our method of choice for solving
the finite cluster in the 7" = 0 limit.

3.1 Variational Cluster Approach (VCA)

The VCA (@) is based on the Self-Energy-Functional Approach (SFA) (@; @) Here, the
grand potential €2 can be expressed as functional of the self-energy of the system. The
stationary point of this functional yields the physical self-energy at which also the grand
potential becomes physical. In case of not exactly solvable systems, the stationarity condition
also provides a powerful method to find the best approximated self-energy in a certain subspace
of trial self-energies.

3.1.1 Self-Energy-Functional Approach

We consider a system of electrons on a infinite lattice at the temperature T" and the chemical
potential 1 with the hamiltonian

H = Hy(t) + H\(U) . (3.2)

The Hy contains all one-particle terms depending on the parameters ¢

H() = ZtalgCLCQ s (33)
7/6
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Figure 3.1: Diagrammatical definition of the Luttinger-Ward functional with double lines
depicting the fully interacting Green’s function while the dashed lines symbolize the in-
teraction.

while H; is the interaction part depending on U

1
_ T
H, = B g 5[/043750(1060507 . (3.4)
a? 7’\/7

The a374 refer to a complete and orthonormal set of one-particle basis states. By use of the
Dyson equation, the one-particle Green's function G5 = Gap(iw)) = <<CQ;CE>>Z-wf can be
calculated as follows:

G =G, +G2G , (3.5)

where Gy = Gy(iw]) = (iw] + p — t)~! is the non-interacting Green's function and X5 =
Y (iw]) the electronic irreducible self-energy, which can be obtained by the functional deriva-
tion of the so-called Luttinger-Ward functional ®[G] (Iﬂ)
_,09[G]

S=3(G) =T~ (3.6)
In their original work Luttinger and Ward constructed the functional ®|G| diagrammatically
for the weak-coupling case and found it to be given by an infinite series of closed skeleton
diagrams (Fig. BI). As no self-energy insertions are in the series of diagrams the functional
depends only on the fully interacting Green's function (dressed one-particle propagators) and
the bare interaction. With ®[G| showing no explicit dependence on one-particle terms ¢ such
as the hopping, two systems with different one-particle terms but the same interaction are
described by the same universal Luttinger-Ward functional. To avoid the weak-coupling dia-
grammatic series Potthoff provided a non-perturbative construction of ®[G] and proved the
universality explained above to be still valid (@)

The grand potential € of the considered system is given by the following self-energy functional
evaluated at its stationary point

O[2] = Trln (— (Gy' - 2)*1) 4P, (3.7)

with F[X] = ®[G[X]] — Tr (XG[X]) the Legendre transform of ®[G| and G[X] the inverse
of X[G] (see (59) for details). The subscript ¢ indicates the explicit ¢ dependence of the
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grand potential due to Gy. Note, that the trace appearing in the equation is defined as
TrO = T3, ,Oaa(iw). The above functional becomes stationary at the exact self-energy
of the system:

53]
o

-1

=0 < GX|=(G;'-X) (3.8)
However, the self-energy functional ,[X] is not known explicitly.

Next, we define a so-called reference-system, which is described by a hamiltonian similar to

Eq. B2)
H = Hy(t') + H\(U) , (3.9)
but with a different one-particle operator

Hy =Y thches . (3.10)
a?/B

As the steps explained above are also valid for this reference-system we derive a similar ex-
pression for the grand potential

Op[S] = Trln (- (G’g1 - z)_l) + R[], (3.11)

with G}, = G{(iw)) = (iw! + p—t')~1. Note, that Eq. (BZ) as well as Eq. (BII) contains
F[X]. This is a universal functional of the self-energy with a functional dependence that is
the same for any t and therefore also for /. That very important fact will be used to eliminate

the F'[X] by a subtraction of the equations (B7) and (BII)
—1
0[Z] = Qu[E] + Trin (— (G - 2)‘1) — Trln (— (G’gl - 2) ) . (3.12)

So far we made no approximation and all equations are still exact, but as the original hamil-
tonian is not exactly solvable, the physical self-energy is also not accessible.

Next, we make the essential assumption, that the reference-system is simple enough to be

solved. This provides a certain space of trial self-energies 3(t’) parameterized by t’. The
evaluation of Eq. (BI2) at these trial self-energies yields

W) = QuEE)]+Trn (- (65" - =) ")

“Trin <— (G’g1 . Z(t’))l)

= O +Trh (— (Gy' - Z(t’))_l) ~Trin(~G) . (3.13)
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Figure 3.2: Sketch of the approximated stationarity condition in case of two variational
parameters. The vector a indicates the non-vanishing bracket in Eq. (3I4) and is per-
pendicular to the tangential vectors by and by of the t' parameterized hypersurface.

By applying the Euler equation 6€2,[3(¢")]/0t" = 0 to the last expression, we obtain as a very
important result

T Y ((Ggl —-2() " - Gl)ﬁa (szgii,(t/) =0. (3.14)

w

Only the non-interacting Green's function has to be calculated within the original system.
The problem of finding the exact self-energy is approximated by the reduction of the space of
trial self-energies to a hypersurface parameterized by ¢’. If the exact one is captured by this
hypersurface, the bracket in Eq. (BI4) will be zero at the exact self-energy. It is a precious
fact, that Eq. (BI4)) also holds for trial self-energies not containing the exact one. In this
case the bracket will not become zero, but as the derivative in Eq. (BI4)) defines a tangential
vector to the ¢’ parameterized hypersurface, Eq. (BI4) can be interpreted as the projection
of the exact stationarity condition onto this hypersurface. Therefore, even for not exact trial
self-energies Eq. (BI4) can be fulfilled due to an orthogonality of the non-vanishing bracket
to the hypersurface (see the sketch in Fig. B2)). Although the found self-energy is not exact
in this case, it is the best approximated one which is covered by the hypersurface of trial
self-energies. Therefore we will call the stationarity condition in this case an approximated
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clustering

original lattice clustered lattice

Figure 3.3: Tiling up the original real space lattice into N, finite clusters with L. sites
each. This lattice is called superlattice with the cluster being the elementary cell.

stationarity condition. We mention that the SFA can be shown to be causal (see (@) for a
detailed proof). It is noteworthy, that a found stationary point is not an extremum in general
and that more than only a single point may be found. In practice, they are mostly saddle
points and in case of more than one of these points the physical self-energy is the one which
diminishes the grand potential. However, there are some exceptions from the latter rule.
Stationary points which can not be reconciled with the overall phased diagram or which lead
to huge discrepancies between the physical and the reference system have to be neglected in
some cases.

3.1.2 Derivation of the Variational Cluster Approach (VCA)

On the general basis of the SFA we intent to explain the derivation of a non-perturbative
approach to Green's functions of fermionic lattice systems. This approach will be determined
by a proper choice of the reference system, which must obey the condition to be solvable.
For this reason we tile up the infinite lattice into N, finite clusters with L, sites each (see
Fig.B3)). The total number of sitesis N = N.x L.. As the original lattice is in principle infinite
(N — o0) the number of cluster will also be infinite N, — co. Assuming the interaction to
be local, which is a proper choice as we aim at the Hubbard model for explicit calculations,
allows for a splitting of the hamiltonian into an intracluster and intercluster part:

H=Y" [HS"‘“’(Ra) + Hl(Ra)} +3 H™(R,, Ry) . (3.15)
a a,b

with the intracluster one-particle part

H{™(R,) = tijChinCajo - (3.16)

27_]70-



3.1. Variational Cluster Approach (VCA) 23

an arbitrary local interaction part H; and the intercluster one-particle part

H{™ (Ray Ry) = > Viaiyj) Chio i - (3.17)

Z7J7U

The latter part connects different clusters with each cluster labeled by it's reference point R.
Therefore the intercluster hopping obeys the constraint V(4)(;) = 0. While the translational
invariance of the original system is broken on the cluster level due to open boundary conditions
on a single cluster, we assume the invariance of the intercluster part under translation with
respect to the superlattice vector R. Note, that the open boundary conditions are not a
requirement but an intrinsic characteristic of the approximation, which will be discussed later
in this section and also in section B3

For the next step towards the VCA we introduce a transformation under which the hamiltonian

Eq. (BIH) remains invariant

Héintra)(Ra) N éintra)(Ra)+A(Ra) (318)

Ho(inter)<Ra’ Rb) _ Héinter)<Ra’Rb) B 5a,bA(Ra) ’
with an arbitrary one-particle operator A(R,) = Emﬂ’o,{A?j"mlclwcajox —|—Af;"”l(cawcajg/ +
h.c.)}. The first part of these one-particle operator accounts for all normal fields while the
latter one covers all superconducting fields. For simplicity, we reduce the notation AZ/SC’M/
in the following to A;;. So far we did no approximation and the original hamiltonian remains
unchanged. For a solvable reference system which provides the trial self-energies for the SFA,

we neglect the intercluster part of the hamiltonian

H=3 [Hg"“a)(Ra) + AR, + Hl(Ra)] . (3.19)

a

Due to the clustering we use open boundary conditions, but in principal also periodic boundary
conditions could be used. The proof that our choice is the correct one we introduce an
additional hopping between the edge sites of the cluster with the parameter ¢,. As the hopping
operator is a one-particle operator we can apply the Euler equation to find the ¢, for which
the self-energy is approximated best. Indeed, it turns out that the VCA vyields ¢, = 0 as a
result (Ia) Thus, in contrast to the CPT the VCA answers the question of a proper choice
of boundary condition by itself.

As we require this reference system to be solvable, we can extract the self-energy from the
Dyson equation for the reference system Eq. (BH)

St =G, ' -G& " . (3.20)

In principal, we are now able to use Eq. (BI4) for finding the stationary points. The task
is to calculate the grand potential by use of the exact cluster information and perform the
optimization of the cluster self-energy to fulfill 6€2,[32(¢")]/dt’ = 0 in the space of the varia-
tional parameters A;;. These variational parameter can be understood as an enlargement of
the space of trial self-energies. A further improvement could be achieved by implementing the
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so-called bath sites in the reference system. These are additional cluster sites where the inter-
action vanishes . The additional variational parameter is the so-called hybridization function
which is the hopping from an correlated to such an uncorrelated site. In this work bath sites
would mean too much numerical effort and are therefore not considered.

Systematically, the procedure runs as follows: For a set of variational parameters the self-
energy of the reference system has to calculated via Eq. (B20) and used to evaluate the grand
potential via Eq. BI3l These steps have to be repeated (of course in an intelligent and pur-
poseful way) until §Q:[3(¢’)]/6t" = 0.

VCA Green’s function

Inserting the optimized self-energy into the Dyson equation for the original system Eq. (B1)
yields the desired VCA Green's function

G = (Go’l Gy G’_1> o (3.21)

This expression can be simplified as we know the explicit solutions of the non-interacting
Green's functions G ™' = G ' (iw)) = (iwf+p—T) and G4 ~' = G’y ' (iw!f) = (iw! +p—T").
With N, the number of clusters (in principle, N, is infinite, but for practical calculations it is a
sufficient large and finite number) and L. the number of cluster sites, the matrix T is defined
as T" = 1. «n, ® (t+ A) with ¢ the cluster hopping matrix and A the arbitrary one-particle
fields, both having the dimension L. x L. (see Eq. (B322))). Therefore T” has the dimension
(N, x L.) x (N, x L.) and shows a block-diagonal shape with each block being the cluster
hopping matrix plus the matrix A. T differs from T” by the (V. x L.) x (N. x L.) intercluster
hopping matrix V' (see Eq. (B223)) as well as A and therefore reads T' = T"+V — 1y, «n. Q@ A.

t+ A
L. x L. O

t+ A
L. x L.

Tl

(3.22)

t+ A
L.x L,

NexX Ne
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0 Vio Vis .ok
L. x L, L.x L,
Vi 0 Vis £k
vV — L.x L, L. x L. (3.23)
* *
‘/31 ‘/32 * *
LC X LC LC X LC k *
*
. 0
*
N¢ X Ne
With these considerations Eq. (BZI]) becomes
—~1 -1
G— (G’_l (T - T’)) - (G’_l B A) . (3.24)

Note, that G’ is the Green's function of the reference system, which has the dimension
(N, x L.) x (N. x L) like V' and which is of a block-diagonal form with each block the
interacting cluster Green's function G’ = 1y,«n, ® G°.

As the superlattice obeys the translational invariance we are allowed to perform a Fourier
transformation with respect to the superlattice vector R induced by the unitary matrix U
Vi, = UV U'. The matrix V4 is block-diagonal with each block a k-dependent L. x L, matrix
V (k). Note, that k is an element of the reduced Brillouin zone. Inserting this result into

Eq. (B24) yields
Gk) = UGU!' =U (Inn, * G —UWVU + 1y n,  A) T U
= U (U U(yxn, * GHUT = Vi + U(Lyen,  A)UNU) U
= (Lyow ¥ G = Vi Tyn, ¥ A) (3.25)
We used UTU = 1 and U(const @ 1y, xn,)U" = const @ 1, «n,. This is a very interesting

and important result, as the whole equation Eq. (B2H) is k-separable and becomes a L. X L.
matrix equation which is & and w dependent

Gk, iw]) = (G (iw)) — V(k) + A) " . (3.26)

This k-separability implies that for any practical purpose there is no need to distinguish be-
tween the reference system and the cluster Green's function.

The last equation can be understood as follows: We included the additional one-particle fields
A in the reference system. As the hopping matrix, these fields will enter the Green's function
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Figure 3.4: The clustered lattice in real space and the corresponding first Brillouin zone
in reciprocal space with the shaded area indicating the reduced Brillouin zone. Note, that
for an infinite lattice the k-points become dense.

G* in the denominator with a minus sign. But the term +A in Eq. (B28) annihilates this part.
Therefore these fields only effect the cluster self-energy also included in the G¢. Without the
variational procedure for finding the optimized one-particle parameters the CPT is obtained
with the intercluster hopping and A as the perturbation. In this sense the VCA can be
understood as the CPT combined with a variational principle.

3.1.3 Translational invariance

The VCA Green's function as shown in Eq. (B28]) is given in a mixed representation as beside
the wave vector k it is still a matrix in the cluster indices. However, such a mixed representation
. . . .o . 1 ret

is not@pp@pnate for physical quantities, e.g. the spectral function A(k,w) = F2ImG = (k, w)
(@; ; 188; @) This problem stems from the broken translational invariance due to the
clustering and is a shortcoming of the VCA itself. To get rid of the mixed representation we

inspect the full Fourier transformation of the real-space Green's function

1
Gk+K,kK'+K') =
A 7

> ORI G Ry g, Rytry)e BRIt (3.97)

a/7b7i7j

As a notation we write k for the reciprocal vectors of the reduced Brillouin zone according to
the superlattice R < k and K according to the cluster vectors r < K (see Fig. B4l). With
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'R — 1 and the translational invariance due to the superlattice we obtain
1 ; : / !
Gk+ K,k +K') = NI > R HONG(R, + Ry + 1, Ry + 1y )e W KO

€ 1byi,g

Lt .
Xel(k} k )Rbelle

= Lic Z ei(k+K)riG(Rl -+ T, 0 + Tj)e_i(kl+Kl)Tj 5k,’k,/6ile
1,i,7

_ Lic Z el(k+K)riGij(k)e_l(k,+K/)rj 5k,kz’ . (3.28)
Y}

The Green's function is no longer in a mixed representation. To restore the translational invari-
ance only the diagonal elements are taken into account G(k+K) := G(k+ K, k+ K')0k k.
The k vector is an element of the reduced Brillouin zone according to the superlattice and as
N, is in principle an infinite number, k is continuous. However, K is a vector of the reciprocal
lattice whose smallest non-zero value is exactly the periodicity of the reduced Brillouin zone.
Therefore we can rewrite the Green's function as G(k) := G(k, k) with k a continuous element
of the original Brillouin zone. For details using the example of one dimension see appendix A1l

The diagonalization of the Green's function is not the only possible choice for the restoration
of the translational invariance. One could also apply the above procedure to the self-energy.
But due to the matrix operations arising from the Dyson equation the result differs from
Eq. B3Z8). However, experience tells us to proceed in the way explained above, as it yields
better results (Iﬁ) See, for a deeper discussion on this topic Ref. (I@)

3.1.4 Limits of the VCA

First we want to analyze the L. — oo limit. As the exact self-energy is captured by the
reference system in this case, the VCA becomes exact.

For a vanishing hopping matrix T' = 0 all lattice sites decouple and the self-energy is local.
Therefore the exact self-energy is captured even by an one-site cluster and the VCA becomes
exact.

At last we consider the non-interacting limit. As the self-energy of the original system and of
the reference system is zero, the VCA also becomes exact in this limit.

3.1.5 Choice of variational parameters and thermodynamic consis-
tence

This section is addressed to the choice of appropriate variational parameters. A larger param-
eter space means also a larger space of trial self-energies and improves the approach. But
the numerical effort arising from the variational procedure to find the stationary points limits
the number of parameters. Therefore one has to make a thorough decision which parame-
ters to take into account and which not. The aim of this work is to analyze the physics of
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high-temperature superconductors microscopically. And by taking into consideration the phase
diagram of the cuprate superconductors two phases are apparently dominant. The antiferro-
magnetic at low doping and, of course, the d-wave superconducting phase at higher doping.
For this reason we introduce an U(1) symmetry breaking pairing field and a SU(2) symmetry
breaking antiferromagnetic field:

ASC hSC Z CaiTCajl + hC) (329)

AAF = hap Z an quFT' (330)

gar = (m, ) is the ant|ferromagnet|c wave vector in two dimensions and 7;; accounts for the
d-wave pairing and is defined as
{ +1, for r; — r; in x-direction
ij =

—1, for ; — r; in y-direction (3.31)

Beside the phases of interest, the choice of the variational parameter is crucial also for the
thermodynamic consistence. This means the %uivalence of a quantity on the one hand

calculated via the spectral theorem (@ 87; 188

Ay (w)
T ) o 1j0
<CiJCJU> - /;OO dwl—l—eﬁw ) (332)
and on the other hand as the derivation of a thermodynamic potential
o0
(clycjo) = i (3.33)

As both, the grand potential and the Green's function and therefore the spectral function are
approximated, this equivalence is not necessary. However, the introduction of a variational
parameter ¢}, in the reference system corresponding to t;;, in the original system ensures the
thermodynamic consistence for the considered quantity. To proof this statement we evaluate

Eq. (B33):

0Q[2(t,,,)] o ;a1 09X (E)] 08
575”,0—1) =T (G (iwr) = Sty iw) jy + — 55— » 5%7’0 (3.34)

=0

The first part of the right side stems from the explicit ¢;;, dependence of the G while the
second one stems from the implicit dependence of the variational parameter on ¢;;,. The latter
vanishes as the derivative of the grand potential is evaluated at a stationary point. And the
sum in the first part can be transformed by use of the Matsubara sum (see appendix [A2.7])
into an integral over real frequencies and becomes Eq. (B32), q.e.d..

In this work we analyze in detail the doping dependence of physical quantities. For this reason
we want to ensure the thermodynamic consistence of the particle number N = 3. (¢! ¢;)
and introduce an onsite energy as a third variational parameter:

R,) =/ Z(nan + Nai)) (3.35)
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3.1.6 Q-matrix formalism - Numerical evaluation

In this section we introduce a formalism which allows for an effective computation of the VCA
and, furthermore, provides a good starting point for an elegant derlvatlon of a two-particle
approach. This formalism is based on the Lehmann representation (@ . 188; @) for the
cluster Green's function

o L mlealn)(nlchim)
aﬁ( l) - Z'Zzwl (E E)

T—0 Om|caln) (nlcs0m) {0 |02|m>(m|0a|0>
B dz< iw] — (B, — Ey) " iw] — (Ey — Ep) ) . (3.36)

(e_ﬁEm + e_ﬁE”)

We used d for the possible degeneration of the ground state and Z’ as the grand canonical
partition function. The exact solution of the cluster is achieved by employing the Lanczos
algorithm (see section B4) which yields the eigenvalues and eigenstates of the hamiltonian up
to a certain energy. With these we define the so-called Q-matrix which essentially contains the
spectral weights of the one-particle excitations. Note, that we assume the chemical potential
i as already included in the hamiltonian H = H — uN.

e—BEm 4 ¢—BEn
Qozs = <m|ca |n> \/

ZI
7—0 1
= ﬁ(éEm,Eo (Om[caln) + 0k, 5y (M|cal0n)) (3.37)
The index s denotes as a double index the two states s = (m, n). With the matrix
5st o 5st

gst(w) = 5B —E) w-u (3.38)

the Lehmann representation of the cluster Green's function is recovered by

G(iw]) = Qg(iw] )Q' (3.39)

The latter result allows us to rewrite the VCA Green'’s function (Eq. B26]) with the simplified
notation V' (k) = V (k) — A:

-1

Gish) = ((@gtha) - vin)
- Qo' Y. (V(k)Qa(i))Q')
=0

- Qg@wl)Z (@VkQg(is) Q'

- Qs -QVKQ) @ (340
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As the g(iw]) is a diagonal matrix the inverse is easily g~ (iw]) = iw/ — A with the definition
Ay = dqw’. This allows for a further simplification

G(k,iw)) = Q (iwlf - M(k:)) ot (3.41)

The poles of the VCA Green’s function are given by the eigenvalues of the matrix M (k) =
A+ Q' (k)Q via wy(k) = (UT(k)M(k)U (k))s, with U(k) the unitary transformation
which diagonalizes M (k).

The knowledge about the discrete pole structure enables us to evaluate infinite Matsubara
sums as well as numerical integrations along the real w-axis occurring in the expressions for
expectation values and the grand potential. In the following the T = 0 expression for the
particle density will be derived as an example.

1 © Aie(k,w)
ote) = 7 Zk /_oo e 1+e6w N Z / oo Ao (K 2)

= _——Z/ dwlm w+10+ (k))_lQT]_

10

1
= Z/ dwlm [ QU(k))iosw T E— (UT(k)QT)sw]

S

_ ___Z/ de|QU 108[ ~|»i0+1_ws(k):|
N NZ/ de|QU 0w — ws(k))

= N Z QU (k)% (3.42)

ws(k)<0

=P

T—x0 i10+ T—x0

(*: Here, the Dirac identity is used:
value of the integral)

Note, that the (¢! c¢;,) is dependent on the site i as open boundary conditions are used. To
obtain a local quantity (such as the density) of the original system in the VCA approach means
to average over the cluster sites as the following calculation of the local VCA Green's function

shows. Using Eq. (B28) yields:
1 1

F imd(x — x), with P the principal

Z G(k+ K, Zwlf) = Z Gij(k, Z'wlf)eik(m_rf)eiK(”_"'f)
N.L. % N.L.L. e
— y I pik(ri—r:) _ N !
NCLC & ”( >€ NCLC ZZ( )

1 )
= i Z Gi(AR =0, iw)) (3.43)
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rll r2’ rl’ r2’

Figure 3.5: Diagrammatic representation of the general Bethe-Salpeter equation. The
tiny black lines depict non-interacting one-particle Green’s functions.

Hence, the density derived in Eq. (BZ2) has also to be averaged over the cluster sites to give
the density of the original system in the VCA approach.

The knowledge about the discrete pole structure of the VCA Green's function also enables us
to reformulate the grand potential Eq. (BI3)) as (details on the derivation are given in (@))

UEWE)] = QWE]+TY In (1 + e*Ws) ~TY I (14 )

=0 By =Y we(-w) + Y wl(—ws) - (3.44)

3.2 Two-particle extension of the VCA for the
magnetic susceptibility

The focus of this thesis is on the calculation of two-particle response functions, in particular
the transversal magnetic susceptibility x which yields the magnetic excitation spectrum. Such
quantities are obeying the Bethe-Salpeter equation as an analogon to the Dyson equation
for one-particle correlation functions. However, as the exact vertex is not known in general,
we need an appropriate approximation which works in the strongly-correlated regime. Hence,
this section is about a two-step approach with first an approximation to the Bethe-Salpeter
equation itself and second an approximation to the two-particle vertex function. That followed,
a self-consistently determined controlling constant is introduced to effect a fine-tuning of the
vertex function and to assess the quality of the approximation via a checksum.

Note, that the approach derived in this section holds also for other two-particle correlation
functions, e.g. the charge response function.
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Figure 3.6: Diagrammatic representation of the Bethe-Salpeter equation for the magnetic
susceptibility. The tiny black lines depict non-interacting one-particle Green’s functions.

Figure 3.7: Diagrammatic representation of the approximated Bethe-Salpeter equation
for the magnetic susceptibility. The tiny black lines depict non-interacting one-particle
Green’s functions.

3.2.1 Approximation to the Bethe-Salpeter equation

The general Bethe—Salgaeter equation for a two-particle response function L is given in real

space by (@; 87; lad: ) (see also Fig. BH)
L<f17f1/7f27f2/) - L0<f17f1’7f27f2’> + (345)
Z /dT3---d7'4'L0(f1,7_“1/,7737f3')r(f3773',f47f4')L(f4,f4/,f27f2') )

r3, Ty
Ty, Ty
03,0y
04,04

where we used the four-vector notation r; = (7, 7;) and 7; = (r;,0;) as a multiple index. T’
denotes the irreducible particle-hole vertex depending, after Fourier transformation, in general
on four internal frequencies and momenta which reduces to three internal frequencies and
momenta due to momentum and energy conservation. This already gives a hint for the more
complex task of calculating two-particle compared to one-particle correlation functions, where
the self-energy only depends on one frequency and momentum.

In the following we will consider two-particle response functions which are of the form ((A;B;))
(e.g. the magnetic susceptibility or the charge response function) for which the above equa-
tion simplifies as we have to set r; = 71, and ro = ry (see Fig BH). As the structure of
the Bethe-Salpeter equation concerning the space and time coordinates is the same for the
considered response functions we will shorten the notation by negligence of the spin indices
in the following approximation. The obtained result will hold for the transversal magnetic
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susceptibility and the longitudinal as well by adapting the spin indices.

However, we still need to deal with a vertex function depending on three internal frequencies
and momenta. This will lead to at least dramatical numerical problems. With 6,,,,, =
Opymy6(T3—Ty) and 6, ., = Opyr, 6(74—T74) we achieve an important progress by introducing
the following approximation

P(T?n T3, Tyg, T4’) E— P/(r?n T4, )57‘377‘3/ 57‘4,7‘4/ . (346>

In this approximation the response function reads (see also Fig B1l)

x(r1,m2) = Xo(ri,ra2) + Z/dT3d7'4Xo(7’17Ts)FI(T37T4)X(7’47T2)- (3.47)

3,74

Using the definition ¢; = (q;,w;) and ¢ = (q,w?,) with w; and w’ discrete Matsubara fre-

quencies allows for a compact formulation of the Fourier transform:

] q.q 1 iq(ro—r
i) = x(@.0) =5 3 [ dndrr e

71,72

= Xo(@ @) + > x0(d a)T (a1, %2)x (g2, )

q1,92
XO(Q? (7) + XO(q~7 Q)F,(Cja Q)X(Cja (7)
= XO(qv wazn) + XO(qv wan)rl(qv ZW,I;L)X((], wan) (348)

We made explicit use of the translational invariance in time and space to only retain the di-
agonal parts of the interacting and non-interacting response functions.

Shedding light on what the approximation means physically

To gain a deeper understanding of the approximation used above, we implement the approxi-
mation Eq. (BZ8) via the Fourier represehtation Orgiry = Oryry 0(T3 —T30) = % > i43(ra—ry)
and &, = Oy ry 0(Ta—Tw) = % > ¢’ (r=rw) into the Bethe-Salpeter equation Eq. (B4H).

With the specialization 7y = r» and r, = ro we obtain

X(r1,7m2) = Xo(r1,72)+ (3.49)

2

<%) Z /de...deyXO('f’l,'f’saTB/)eiqS(rsTS/)F(T?HT3/7T4’T4')eiq4(r4T4/)X(T4’T4/’T2) )
r3, Ty
Ty, Ty
g3, 44
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The Fourier transform yields

} q.q 1 iq(ro—r
w@ish) = x(@.0) =5 3 [ dndmr e

71,72
T 2
= Xo(q,q) + (N) > xola, g+ ) %
q1, 42
g3, 44

XD [=q— (1 — @), (@1 — 43), (@2 + q4), @ — (@2 + q2)] x(—q2, =2 + @) -

The vertex is coupled to x and xo via ¢; and ¢y. But for each pair of these variables an
averaging is performed due to the sum over ¢3 and ¢4 which, in principle, decouples the vertex
from x and xo:

X(q.iwp) = x(@.4) = x0(@) + xo(9)T(q)x(q)
= Xo(g,iw},) + xo(g, iwp, )T (g, iw),)x(q, iwy,) (3.50)
Of, course the approximation has to render the same result as in Eq. [BZ3), which leads to
[(q,iw?) = I"(q,iw?,). In this sense our approximation can be understood as an averaging

over the internal frequencies and momenta occurring in the Bethe-Salpeter equation.
Cluster approach

However, we are still faced with the task of calculating the response function of a strong
correlated system on an infinite lattice which is not solvable in general. Therefore, we are
seeking for a microscopic approach which includes short-range spatial correlations and allows
for symmetry breaking long-range phases as the VCA does for the one-particle Green's function.
Thus, we act in the spirit of the VCA and introduce a clustering of the real-space lattice.
Rewriting Eq. (B41) in a mixed inter- and intracluster representation yields

Xl'j<Ra7Rb7T17T2) = XO,ij(RauRb7T17T2)+ (351)

Z /dT3dT4XO,ik<Ra7 R07 71, T3>F2)I(RC7 Rd7 73, T4)le(Rd7 Rb7 T4, T2) .
RC7 Rd
0]
Translational invariance only holds for the intercluster indices R, wherefore Eq. (BZ8) turns

into a matrix equation in the intracluster indices i, j

x(g,iwy,) = Xo(q,iwp,) + Xo(q, iwp,) T (g, iw;,)x (g, iy, - (3.52)
To restore the translational invariance we follow directly the procedure in section BT.3 After
a Fourier transform with respect to the intracluster indices we only take the diagonal elements
into account x(g+ Q) := x(g+ Q, g+ Q’)dq.¢q- The g vector is an element of the reduced
Brillouin zone according to the superlattice and as N, is in principle an infinite number, q is
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continuous. However, @ is a vector of the reciprocal lattice associated with the cluster sites
and whose smallest non-zero value is exactly the periodicity of the reduced Brillouin zone.
Therefore we can rewrite the susceptibility as x(q) := x(g, q) with g a continuous element
of the original Brillouin zone. For details using the example of one dimension see appendix A1l

In the following, an approximation to the irreducible particle-hole vertex will be done which is
a crucial innovation of the technique presented in this thesis. The vertex will be approximated
by an effective vertex obtained from a cluster calculation in the same manner as the self-energy
for the one-particle Green's function is obtained. The directly following section deals with the
calculation of the dressed bubble susceptibility yo,. The denotation dressed bubble implies
the fact, that our x already contains fully dressed one-particle Green's functions and, thus,
the correlated physics at the one-particle level. We will see, that this is important for ren-
dering the non-collective single-particle spin-flip continuum as well as the correct value of the
effective vertex. A further section is devoted to the introduction of a controlling mechanism.
We employ an exact sum-rule for improving and checking the quality of the used approximation.

We need to mention a special procedure for the calculation in the superconducting phase.
According to the broken U(1) symmetry of the hamiltonian the particle number is no longer
conserved. But for the purpose of the practical application we introduce a particle-hole trans-
formation with respect to only one spin-channel, here the spin-down channel. With the loss of
the hamiltonian's SU(2) symmetry we gain the restoration of the U(1) symmetry, which eases
the numerical calculations. See appendix [A3] for details on the particle-hole transformation.

3.2.2 Dressed bubble approximation to the magnetic susceptibility

This section deals with the dressed bubble approximation to the magnetic susceptibility which,
however, captures the fully interacting physics at the one-particle level. This bubble suscep-
tibility will be denoted y,. Starting point is the definition of the magnetic susceptibility
(@; ;a8 @) in a mixed representation according to the inter- and intracluster indices as
we consider a superlattice produced be finite clusters

7 1
Q ; iwl T —1 a
Xi (4, iwp,) = / drenT—— e (S0 (1) S(0) (3.53)
0 ¢,
with the imaginary-time Heisenberg representation S&(7) = ef’"S%~H™ _ The notation

concerning the intercluster and intracluster indices is the same we used for the derivation of
the VCA. The spin operator S in the above equation is defined as (@; 87; lss. @)

a _ (1 1 o Cit
Si = (CiTCil) o ( ¢ ) s (3.54)

with o®¥%7# the Pauli spin matrices

(1) (15 (0



36 Chapter 3. Techniques

Due to the scalar product §;S; = S75% + 1 (575 + 5;5]) where S = S7 4 iS? are the
spin ladder operators, we can define a Iongltudlnal (anng the z-axis) and a transversal part
(in the x,y plane) of the magnetic susceptibility:
Xi;(q,iwh,) = x5 (q,iwh,) (3.56)
Xij (@ iwn) = X5 (g iwy,) - (3.57)

In case of a SU(2) symmetric hamiltonian the transversal and the longitudinal susceptibilities
yield the same information. The derivation will be made in great detail for the transversal
magnetic susceptibility. For the longitudinal part of magnetic susceptibility we give only the
result for brevity.

We consider the transversal magnetic susceptibility

£, b | o—iaRa +
X5 (g, iwy,) = dre mﬁz (54:(7)55;(0))
0

- / dreih— ZeﬂqRﬂT{ L(T)S50) (3.58)

and apply the bubble approximation to the expectation value (T:-{S;(7)Sg;(0)}):

(To{els) (7)cast (1)l (0)co; (0)}) ~ (Tr{cart (7)ely (0)1)(Tr{elsy (T)eo;(0)}

—Faom(T)FJam(—T) . (3.59)

In the last step the normal G' and anomalous F' (which are vanishing in case of a U(1)
symmetric hamiltonian) Green's functions are identified

Gaoijt (T) = —{(Te{cat(7)ch;1(0)}) | (3.60)
Faoij (1) = —(Tr{cair(1)co;1(0)}) - (3.61)
Translational invariance due to the intercluster index and the periodicity in the imaginary

time enables us to insert the Fourier transforms of the Green's functions which yields after a
straightforward algebra

. T . . .
Xowij (@, iwp,) = N (Gijr(k + q,iw] +iw)Gjiy (K, iw])
¢ n,k
+F(k,iw]) Fi(q — k,iw), —iw])) . (3.62)

As already explained, a particle-hole transformation for the spin-down channel is used in case
of a U(1) symmetry broken hamiltonian. The following derivation will be done in detail for
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Figure 3.8: Diagrammatic representation of the approximated Bethe-Salpeter equation
for the magnetic susceptibility with fully dressed one-particle propagators depicted as
double lines.

the particle-hole transformed case while in case of a U(1) symmetric hamiltonian without the
particle-hole transformation we only give the results for brevity. With the results of appendix
we obtain the particle—hole transformed bubble susceptibility

ol @it = Z (Gt (a = ke ok, — i) G (ki)
Gf]]h(k iw )ijhu(q — k,iwd, — zwﬁ)) . (3.63)

The basic idea is now to use in the expression for the bubble susceptibility o the fully in-
teracting VCA Green's functions obtained with the same clustering. This idea is depicted
diagrammatically in Fig. B8 In the subsequent step we are able to insert the Q-matrix repre-
sentation for the VCA Green's functions Eq. (BZ1])

Xoi Mg, ind) = — Z(Gf]’}vc“‘ q — K, iwl, — i)V (K, iw])
—Gfﬁr(m(q —k,iw®, —iw )GZhTYCA(k w ))
f _ -1t CF 1 ¢
“ N Z([ —iw] —M(q—k))  Q :|ijT [Q (i, — M(k))  Q ]ijl
— @ (wh, — ] - M(g— k) ' QT |
ij |7

Q (i) — M(k)) " Q'] @-m)
(k

- T <QiTM1 UMlS(q - k)UsTm(q - k)QLQjT QilusUuat( )Ut,u4 )Quul
o, iwt, —iw,{—ws(q—k) iw,{—wt(k)

K112 K314

_Qilul Upis(g — k)UJ/JQ (q — k)Q;mT Qitps Unst (k) tu4( >Qu4jl)
iwb —iwh — wy(q — k) iwh — wi(k)

1
- ﬁ Z <QiT“1UM15(q_k)UJH2(q k)QuijQllMS M3t( )Utu4( )Quul

k,s,t
H1sH25H3 54

—Qit Upys(q — k:)USTm(q - k)QLQﬂQiTusUust( ) tu4< >Qu4jl)
XEs(q, k,iwzm) ) (3.64)
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with =, (q, k, iw?)) the frequency sum, which can be evaluated due to the knowledge of the
discrete pole structure ws(k). We make intense use of the technique of Matsubara sums which
is explained in the appendix A2l in detail.

1 1

Zalq kyiwd) = T
(a ) Z iwh —iwh — wy(q — k) iwl — w(k)
1 1 1
= — ¢d
2mi wf(w)w —wb, +ws(g — k) w—wi(k)
1 1
= =) f(w) : (3.65)
% w—iwd, + ws(q — k) w — wi(k)
Enclosed by the path (5 are the two poles iw? — w,(q — k) and w;(k) leading to
(g kiwh) = [(iwd, —wi(g— k) -
o " iwh —ws(q — k) —wi(k)
—1
k
k) s T T oa = )
f(we(k)) — f(iwy, —ws(g — k)
: . (3.66)
iwh, = (ws(q — k) + wi(k))
For a further simplification, we consider the Fermi distribution f(iw?, — ws(q — k)):
1 1
b . . .
f(%dm ws<q k)) - e B(iwh, —ws(q—k)) +1 - e_ﬁws(q_k)eww?n +1
1
- e—Bws(q—k) zm27r+1 = f(_w3<q - k)) (367)
v

=1

For clarity, the abbreviation Piis(k) = >_, Qi1 Ups(k) is introduced and together with the
frequency sum the equation Eq. (B84) becomes

G aist) = - S(Rela = BPL @ - BPLEIP ()

k,s,t

—Ps(q — k>PJ]T<q - k)Pz'Tt(k)PtTji(k))

flwi(k)) — f(-wi(qg — k)
iwp, — (ws(q — k) +wi(k)) -

(3.68)

Next, the retarded bubble susceptibility is obtained by analytically continuing from the bosonic
Matsubara frequencies to the real axis and as we are basically interested in the ground state
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properties we also consider the T'= 0 limit:

Xoi" Mg w) = ——Z( i1s(q — k)Pl (q — k)P (k)P (k)
k,s,t

Pu(g— k)P (g k)%kmzl(k))

Ows(q — k) + O(wi(k)) — 1

w+ 10t — (ws(q — k) + wi(k)) (3.69)

The T' = 0 normal state bubble susceptibility without the particle-hole transformation is:

Xoo CHqw) = Z Pys(q+ k)Pl (q+ k)P (k) Pl (k)

y O(ws(q + k) — O(wi(k))
w+i0t — (ws(q+ k) — wi(k))

(3.70)

The derivation of the longitudinal magnetic susceptibility at 7" = 0 proceeds analogous to the
transversal magnetic susceptibility. Hence, we only give the results for brevity:

1
) = g (Pl B Pl ) P L ()
¢ k,s,t,o
FPasla + )P (g + k)P] ()P (1))
ST — (o k) - wt<k>>
G0w) = 1 3 Poslat RIPL(a + WP (R)PL ()
k,s,t,o
O(ws(q + k) — O(w(k)) (3.72)
w10t — (ws(q + k) — wi(k)) '
The results for the susceptibilities resemble the common non-interacting susceptibility
ny, —nh, ..
Xo(q,w) = Z . k k+gq (3.73)

—~ w+i0t — (w(k+q) —w(k))

where nY_ is the non-interacting occupation number. But our approach includes the fully

renormalized one-particle excitation energies as well as the renormalization of the quasi-particle
spectral weights effected by the P—matrices.



40 Chapter 3. Techniques

3.2.3 Effective vertex

This section is devoted to the development of an effective vertex which allows for a numerical
calculation. We use the y ““ derived in the latter section in the approximated Bethe-Salpeter

equation Eq. (BR2)
x(q.iwh,) = x5 g, iwd,) + x5 (g, iwd )T (g, iwd)x(q, iwh,) - (3.74)

This defines the vertex

' = (xi “Na.iwh) ' = (x(@iw))) (3.75)

But this vertex is still not attainable as the exact susceptibility occurs in the equation. We
need to introduce a further approximation which is motivated from the VCA itself. In fact, we
restrict the calculation of the vertex function to a finite cluster which is exactly the same that
renders the self-energy for the VCA

. o/ -1 o -1
Loppliwy,) = (x5(iwn)) = (X“(iwy)) - (3.76)
With this approximated vertex the susceptibility is feasible to calculate

b VCA( - b byl ovear, b
X(q.iwn) = (L= xo (@, iwn)Tess(iwn))  xo (g iwy,) - (3.77)
We already mention, that we are going to introduce a constant factor a which modifies the
effective vertex and serves as a indicator for the quality of our approach. Furthermore, with this
a it can be achieved a fine-tuning of the effective vertex to render the correct pole structure

of the susceptibility from Eq. (BZ1)

I‘eff(iwfn) — ozI‘eff(iwb ) ; acR. (378)

m

It is very important to make sure, that « is not an adjustable free parameter, but rather a
self-consistently determined number. This will be detailed in section B24]

For the evaluation of the effective vertex only cluster quantities are invoked. The x§(iw?))
emerges as the restriction of x} ““(q,iw?)) to the finite cluster and becomes the convolution
of the exact cluster Green's functions Eq. (B39). The derivation follows exactly the procedure

of the last section and yields the simpler result (7" = 0):

+,ph,c - } } T T
Xo,g (qw) = — Z (QnstjTQthm - Qz‘lstﬂQiTtQm)
s,t

Ow.) +O(w;) —1
w~+ 10+ — (W + wy)

(3.79)

O(wy) — O(wr)

w+ 10t — (W —wy)

Xos(gw) = =) QunQl,Q;1Qf, (3.80)
s,t
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Xdz;? “ 7 - - Z <QZO'SQ3]0'Q]OTQHJ + QZUSQSJ o'Qj—O'tij-io'>

s,t,o

O(wy) — O(wt)

; 3.81
w+i0F — (W, — wy) (3.81)
O(w!) — O(w))
_ T s
XO ] Q7 - Z QzastngjotQtigw + 0+ — (w, _t wg) (382)
s,t,o S

Besides these bubble susceptibilities the exact cluster susceptibility x¢(iw? ) is needed. But as
we are able to calculate the eigenstates and eigenenergies of the cluster the direct calculation
via the spectral representation is rendered possible. We provide the general expression for the
spectral representation

B 00 W'
Xij(iwy)) = /OdTew?T<Az'(T)Bj(0))=—/_ dW'S.AZ,Bij() (3.83)

o Wb —w'
with the spectral function

1

S, (@) = o S (mlA )l Bylm)e B (1= e 5)o(w — (By — ) . (384)

m,n

In the 7" =0 limit we obtain

m|Ai|n) (| Bj0m) (0| Bj|n)(n|Ai|0m)
Xijw) = dz <w+10+ (B, —Ey)  w+i0+ 1+ (B, — EO)) ‘ (385)

The operators which have to be used for A and B are

Xi7c : A’L — S; , Bj — Sj
Xl’c . Az = SZZ s Bj = sz s
and in case of the particle-hole transformation
X L A= C?Cﬁ T : By = %TC}l .
X D A= oo — g : Bj = cjiei — ¢jieg) -

Calculating the effective vertex in the superconducting phase leads to numerical problems aris-
ing from the exact cluster susceptibility. As the magnetic response is small, the inversion of the
exact cluster susceptibility is numerically very difficult. For this reason we provide in appendix
[A4 a procedure to calculate Eq. (BZ7]) which avoids this inversion. This transformation is no
approximation and is only based on straightforward algebraic operations.

It is noteworthy to mention that the effective vertex is not perturbatively obtained but rather
controlled by the size of the clusters producing the infinite superlattice. The same holds for
the self-energy of the one-particle Green's function. The latter as well as the susceptibilities
will be exact for infinite cluster sizes.
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3.2.4 Controlling constant o« - Checksum

We already mentioned to include an additional controlling constant « in Eq. (BZ8]) which
is not an adjustable free parameter, but rather a self-consistently determined number. This
self-consistent procedure stems from the constraint, that the sum of the susceptibility over all
wave vectors and frequencies yields a local and equal-time quantity (similar sum-rules are used
in (@) for constructing a controlled local approximation for the irreducible vertex)

Y @) = (s, (3.56)
q,iwk,

T l - b z\2

N > Xgoiwh) = ((8)?) . (3.87)
q,iwk,

Such local and equal-time quantities can be also obtained by use of the filling n and the double
occupancy d of the system as the following consideration shows:

e For each of the n—2d, single-occupied site 7, the expectation value ((S7)?) gives T while
1
4

unoccupied and double-occupied sites yield 0. Hence we obtain ((S?)*) = 1(n — 2ds).

e In case of the transversal susceptibility we use the relation S;S; = S;S7 +

5 (S5S; +575) in combination with (S;"5;) = (S;S]"). Since each single-occupied

site ¢ gives (S9;5;) = S(S+1) = 2 and unoccupied as well as double-occupied sites give
(8:8;) = 0 we caleulate (S;S}) = 3(n — 2dy) — $(n — 2ds) = 5 (n — 2dy).

The only quantity left so far is the double occupancy ds. But within the Hubbard model ds is
the derivative of grand potential with respect to the onsite interaction strength U:

d d
= (3 nin) = (- H) = -0 .
The self-consistent calculation that has to be performed is given in the following scheme:

1. Choose a certain « close to 1.

2. Calculate the susceptibility via Eq. (BZ1).
3. Evaluate the sum Eq. (B36)/(B37).

4. Vary « and turn to item 1

Run this loop until the sum-rule is fulfilled.

At last we point out the difficulty in evaluating the frequency sum in Eq. (B86)/(B381). For
real frequencies we have to integrate numerically along the whole real axis, at least in the
region where a finite spectral weight of the spin excitation is present. However, there is a rich
pole structure along this axis wherefore the mesh of the numerical integration has to be very
fine which again intensifies the numerical effort. An important improvement is achieved with
the transformation of the integration path given in appendix [A22
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3.3 Inelastic light scattering - Raman response

This section is devoted to the calculation of the Raman response. This is a spectroscopic
method which uses inelastic light scattering. Since a photon carries an insignificant momen-
tum the Raman response yields information about ¢ = O electron-hole excitations. But,
nevertheless, it focuses on specific regions in the Brillouin zone adjusted by the polarization
of the incoming and scattered photons. That means the ¢ = 0 electron-hole excitations
contributing to the total response are specified by the light polarizations. Hence, the Raman
response function provides precious momentum resolved information of electron-hole excita-
tions.

First, we derive an approximation to the Raman response function by neglecting many-body
corrections of the Raman vertex. But similar to the previous sections concerning the magnetic
susceptibility we use the VCA normal and anomalous Green's functions to account for the full
interacting physics at the one-particle level. In the subsequent section the bare Raman vertex
will be approximated within the so-called effective mass approximation. For this the needed
tensor of the effective mass is obtained from the quasi-particle dispersion calculated in the VCA.

The following section concerning the Raman response is based on Ref. (@)

3.3.1 Dressed bubble approximation to the Raman response

The Raman response function is defined as the effective density-density correlation function

s
SM(q.ishy) = [ dreh{pta,7)p(~q.0) (3.5
0
with the effective density operator

plg.m)=> 7' (k.q)cl(k+q.7)c.(k.7) . (3.90)

The latter definition contains the bare scattering amplitude ~”(k, q) which is determined
from the Raman matrix elements as well as the polarization vectors of the incoming (i) and
scattered (s) light (the v is a group theoretical classification which is determined by the pair
of polarization vectors)

V(k.q) = Yaslk,q)es el . (3.91)
a8
The €7, is the a component of the polarization vector of the incoming/scattered light and

the Raman matrix elements are

1 (k+qlpl|k") (k' Ipg k) | (k+ alp]|K’) (K'|p]|k)
k — - s 7 i s 992
7046( ,Q) 504,6 + m ; |: Ek — Ek/ + Wi + Ek:-i—q — Ek:’ — Wy ’(3 9 )
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with Pl = pe'%/s™ and p the o component of the momentum operator, w; /s the frequency
of the incoming/scattered photon and m the electron mass.

The Raman response function can be expressed through the Raman susceptibility via the
fluctuation-dissipation theorem

1
Sf(q,w) = —;(1 +b(w))Imx" (g, w) . (3.93)
with b(w) = —z— the Bose-Einstein distribution function.

Since we are interested in the scattering of light, we are allowed to consider the ¢ = 0 limit
as the momentum of the photons is small against the momentum of the conduction electrons
with which the photons interact ¢ << kr (kp is the Fermi momentum). Making use of the
Nambu formalism the Raman susceptibility in the superconducting phase can be formulated
in a compact way

Elg=0,it) = —Q—ZTT [ Gk, iwhD (K, iw!  iw? )Gk, iw! +iw )] . (3.94)

where we used the definition (k) = o*~"(k), o* the z Pauli matrix. The Nambu Green's
function G combining the normal (@ and anomalous F Green's functions (Im 87 ledl @

reads

AL Gi(k,iwl)  F(k,iw))
N — T\t ) W
Gk, iwon) = ( Fr(k,iwl) —Gy(k, —iw) (3.95)
Furthermore, Eq. (B04) contains the fully interacting Raman vertex T'(k, iw/!, iw? ) obeying a
Bethe-Salpeter Equation
Dk, i) iwh) = 37(k)+ (3.96)

N

T ) . .
~ > Vilk — K iw) — iwl)o Gk iw! )UK iw], iwh,)G (K iw], + iwh,)o"

J/

TV
vertex corrections

with the effective interaction V; that determines the channel of the vertex corrections, e.g.
i = 0 for the spin channel (o will be the 2x2 identity matrix).

Neglecting the vertex corrections we approximate the interacting Raman vertex with the bare

one. After some straightforward matrix operations we obtain the imaginary part of the Raman
susceptibility

4
ImXR’”(iwfn) = —NZ(yy(k Im TZ (k, zw Gk, Zw + Wb ) —

F(k,iw))F*(k, —iw! — zwzl))} : (3.97)
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We made explicit use of the fact, that Gy (k, iw!) = G| (k,iw]) for the relevant phases we are
interested in. Further simplifications can be achieved by use of the spectral representations of
the normal and anomalous Green's functions

o0 A k /

G(k,mg):/ dw’ﬁ, (3.98)
e'e] B k /

F(k,w,{):/ dw’ﬁ, (3.99)

Imx " (iwb,) = —%Z(w”(kz))QIm TZ/OO dw’/w dw” (3.100)
<A(k,w’) Ak, ") B(k,u') B(k,w") )] |

Wl — Wi Fiwd, — Wil — W (=il — Wb ) — W

With the technique of Matsubara sums (see appendix[A2]) we make explicit use of the discrete
pole structure. And the subsequent continuation from the bosonic Matsubara frequencies to
the real axis renders

Iy P (i) = —%Zw(k))%m/_m dw’/_oo i’ (3.101)

w—-w'+w+i0t W =W+ w+10F

<A(k,w’)A(k,w”) _ B(k,w)B(k,v") ) () — f(w,,))] |

with f(w) the Fermi distribution. Next, the imaginary part is calculated by the application of

the Dirac identity: mfzvoliz'O‘* = Pxfmo Fimd(x —xg), with P the principal value of the integral
R,v v\2 dw’ / /
Imy(w) = SO0 [ T ()~ flw+ )
k
X (A(k,w + W )A(k,w') — B(k,w + w')B(k,w")) . (3.102)

The normal and anomalous spectral functions occurring in the above expression are derived
via a VCA calculation. This is similar to the approach presented in section BZ2 And, since
we are interested in the ground state properties, we consider the 7" = 0 limit

) = Y60 [ e+ - 6w)

x (AVOY k,w + W) AV (k,w') — BV (k,w + ") BV (k,w')) . (3.103)

3.3.2 Effective mass approximation to the Raman vertex

This section is about an approximation to the bare Raman vertex 7" (k). The intermediate
states in Eq. (B32) are from the conduction band or from bands separated from the conduction



46 Chapter 3. Techniques

band. It can be shown, that the matrix elements in the first case are proportional to the
momentum transferred by the photon. As this is a very small quantity the contributions to the
sum originating from the intermediate states of the conduction band are by a factor of (vg/c)?
(vg : Fermi velocity; ¢ : speed of light) smaller compared to the contributions of others than
the conduction band. Therefore, the former contributions are negligible. If we assume in
addition w;/s << Ei — E, Eq. (BO2) recovers the effective mass of the quasi-particle band

(110)

sk 0)e e el 3.104
’Y CVZB’Y/B q—) VZ VS Zak 8]{;’6 VZ VS ( )

with (k) the quasi-particle dispersion. Since we perform our calculations using the one-band
Hubbard model on a square lattice in two dimensions, we consider for the effective mass
approximation a tight-binding dispersion. We use an expansion up to 4" nearest neighbor

hopping:

e(k) = > (k) (3.105)
cOk) =t (3.106)
eW(k) = 2t (cos(ky) + cos(k,)) (3.107)
(k) = 4tycos(k,)cos(k,) (3.108)
@ (k) = 2t3(cos(2k,) + cos(2k,)) (3.109)
eW(k) = 4t (cos(2k,) cos(k,) + cos(k,) cos(2k,)) (3.110)

As we will discuss later, our main interest is in the Raman response for Blg and B2g group
symmetries. The polarization vectors for these group symmetries are:

1 1 . 1 —1
€B1lg; — 2 1 ; EBlg,s — 2 1
(3.111)

1 0
€B2gi — 0 ; €B2gs = 1

With this we are able to derive the vertex functions for these two symmetries

vPY(k) ~~ t(cos(k,) — cos (k,)) (3.112)
+4t3(cos (2k,) — cos (2ky))
+6t4(cos(2k,) cos(k,) — cos(k,) cos(2k,)) ,

vP¥ (k) =~ 4tysin (k,)sin (k,) + (3.113)
8t4(sin(2k,) sin(k,) + sin(k,) sin(2k,)) .

To make a consistent calculation, we obtain the parameters ¢, ..., t4 by fitting the tight-binding
energy dispersion to the quasi-particle band gained from the VCA calculation.
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3.4 Exact Diagonalization using the (Block-)Lanczos
algorithm

The whole techniques explained in this chapter are based essentially on the information gained
from the solution of an isolated cluster which is a well-defined problem. A set of basis states
{|]cv) } can be defined with which the hamiltonian is representable as a matrix H,3 = (a|H|f3).
In principle, it is possible to fully diagonalize this matrix and to obtain the eigenstates and
eigenenergies. However, this leads to numerical problems as the size of the Hilbertspace .57
grows exponentially with the number of cluster sites (size of # : sl<, with s the states per
site). And even clusters with more than about six sites lead already to insuperable problems
concerning the runtime and the memory allocation by use of standard computers for the full
diagonalization procedure.

In the following we will explain the so-called (Block-)Lanczos algorithm (we closely follow
Refs. (@; ; )), which is an approximation to the full diagonalization as only a certain
number of the lowest eigenstates and eigenenergies are calculated. Furthermore, these lowest
states are not exact but the lower the eigenenergy the more accurate the approximation will
be. Also enlarging the number of states calculated within a Lanczos procedure will emend
the accuracy of the lower eigenstates and eigenenergies. The Lanczos algorithm is also called
Exact Diagonalization in the literature which is the reason for the term full diagonalization we
choose for standard direct methods. The restriction to only low-energy states is justified as we
are interested in the ground state properties of the considered system for which the low-energy
states account mostly.

To depict the simplification the Lanczos algorithm offers, we consider an 8 site Hubbard-cluster
at half-filling without superconductivity. As the dimension of the Hilbertspace is given by the
following expression

dim () = ( ]f,T ) < 1%71 ) (3.114)

(where N; is the number of electrons with spin up while N| is the number of electrons with
spin down), the according Hilbertspace is of the dimension 4900, which means for a direct
method a full diagonalization of a 4900x4900 matrix. By use of the Lanczos algorithm we only
take for example the lowest 100 states into account, which recovers at least the low-energy
physics very well.

3.4.1 Krylov space

The basic idea of the Lanczos method is the concept of invariant subspaces explained in the
following. Assuming a (N x N) Hamilton matrix H we consider a M —dimensional subspace
¢ spanned by the vectors {|g;) }iz1,.. . with M < N. ¢ will be called an invariant subspace
of H if

9) €9 — H|p) €Y (3.115)
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holds for any |¢) of &. As a special case, each eigenstate of H represents an invariant sub-
space. With the definition of the N x M matrix G whose columns are the vectors {|g;) }iz1...m
we obtain

HG = | Hlg) | Hlg) | .. | Hlgum)

= Zi]‘ilgﬂ|gi> Zi]‘ilgi2|gi> Zi]‘ilgiM|gi> :GI_{7 (3-116)

with the M x M matrix H;;. If we are able to solve the eigenvalue problem

H|y) = \[Y) (3.117)
a solution to the eigenvalue problem of H can be constructed:
H [G|y)] = GHY) = GA[Y) = N [G[)] (3.118)

This very important result means that eigenstates and eigenvalues of H can be found by
solving the eigenvalue problem of lower-dimensional matrix H.

The crucial point of finding an appropriate invariant subspace of H to get the low-energy
eigenstates of H leads to the construction of the so-called Krylov space %}, which is the
linear span of the vectors

{‘¢0>7H‘¢0>7H2‘¢0>7"'7HM71|¢0>} ) (3119)

with |¢g) a normalized random initial vector. Applying the hamiltonian H to the above set
of vectors renders an new set which are all elements of %}, except the last one

{H|¢o), H?|¢o), H|¢o), ..., H |¢0) } . (3.120)

Next, we consider the last element of the set of vectors spanning the Krylov space and expand
the initial vector into the eigenstates {|V;)} of H
N-—1

N—-1
HY gg) = HYM 'S W) = el 1)
=0 =0

N—-1 [L c M—-1
— oMoy + ST (—) AN 3.121
[10€0 |To) z; o \a |5) ( )

Assuming the initial vector to have a non-vanishing overlap with the exact ground state of H
((Uy|do) # 0), the vector HM~1|¢,) converges to the ground state for large enough M as
leo] > |e;|. Hence, HM|¢y) is approximately proportional to H~!|¢) and the Krylov space
¥ an approximate invariant subspace of H. If (Uy|¢g) = 0, the vector H|¢y) converges
to the lowest eigenstate of H with which the initial vector has a non-vanishing overlap. As we
are interested in ground-state properties, we have to omit initial vectors with (¥g|¢g) = 0. But
in practical applications a random start vector obeys this condition virtually always. And, in
addition, if informations about the ground state such as particle number or spin are available,
it is advantageous to use initial states belonging to the subspace of these quantum numbers.
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3.4.2 (Block-)Lanczos

After the theoretical considerations above, the practical construction of basis vectors spanning
a Krylov space is explained in the following. With a given basis vector |¢,) of the Krylov
space, we create a further orthonormal basis vector

|§Z~5n+1> = H|¢n> - an|¢n> - ﬁn|¢n—1> ) (3122)
|¢~)n+1>
n = = ) 3.123
|Pny1) ol ( )
where the coefficients «,, and (3, are overlap integrals
an = (¢n|H|¢n) (3.124)
Bn = (bn1|H|pn) . (3.125)

The coefficients (3, can be shown to be real numbers

ﬁ:; - <¢~n‘H‘¢n71> = <¢n|¢;n> + Ofnfl<¢n|¢n71> + Bn71<¢n‘¢n72>
— |Gl €R . (3.126)

The resulting matrix H represented in the Krylov basis is of a tridiagonal form

ag B
Br a1 B O
H= & 2 | . (3.127)
O Loam—2 Bu-r

5M71 apr—1

Solving the eigenvalue problem H ;) = \;|t/;) we obtain the approximated eigenstates |®;)
of H to an eigenvalue \; via

[®;) = Glvy) (3.128)

with G the N x M matrix whose columns are the vectors {|¢;)}i—o.. ap—1. As discussed above
the eigenvalues \; and eigenstates |1);) converge to the exact eigenvalues ¢; and eigenstates
|W;) for large M.

In contrast to the standard Lanczos algorithm the Block-Lanczos method uses p > 1 ini-
tial vectors which leads to the Block-Krylov space

Similar to the standard Lanczos method the orthonormal basis will be produced iteratively. The
important difference is in the occurrence of linear dependent vectors. In case of p = 1 this
happens after M -+ 1 iterations wherefore the M preceding vectors are a complete orthonormal
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set of basis vectors of the Krylov space and |<;~5M+1) = 0. This holds no longer for p > 1.
Here, the linear dependent vector H*|¢7') and all H'|¢") with [ > k render no additional
information and have to be eliminated. This is named with the term deflation. The complete
orthonormal set of basis vectors of the Krylov space is obtained after p deflations. Within the
Block-Lanczos algorithm all of the p initial vectors are treated at once and the resulting matrix

H is a band-matrix with the bandwidth 2p. + 1, where p,. is p minus the already performed
deflations. The following symbolic matrix shows, in principle, the shape of H

* X X X X X

* X X X K K KX
* X X X K KX X
* K X X X X X X

(3.130)

o R T I SR S )
* K K K K K X K K X
* K K X K K K X X
EE S A S
S T o S I
* K K X X X ¥
* K X K X ¥

S I S S

* K X X X
* X X X

As an example we consider the Lehmann representation of the one-particle Green's function at
T =0 (see Eq. (B3@)). Assuming the ground state not to be degenerated it can be calculated
with p = 1. For the excited states we need the N — 1 (PES: Photoemission Spectroscopy)
and N + 1 (IPES: Inverse Photoemission Spectroscopy) initial states which are defined as
{calP0) tami...n, and {cl|d0) }ami... .. While the standard Lanczos algorithm uses 2N, runs
to create the excited states the Block-Lanczos only needs 2 runs with NV, initial states each.
This is very important for the usage of the earlier explained Q-matrix method as in case of
the standard Lanczos it is possible to obtain different amounts of poles for the different initial
states. This prohibits the construction of the Q-matrix. The Block-Lanczos on the other hand
avoids this problem by creating the excited states at once.



Magnetic correlations in high-T,
superconductors

Two-particle excitations and their corresponding magnetic, charge, optical and pairing suscep-
tibilities are fundamental for obtaining a microscopic understanding of the high-T. cuprate su-
perconductor physics, complementing single-particle (such as Angle-Resolved Photoemission-
Spectroscopy (ARPES), etc.) experiments. A key example is provided by the magnetic exci-
tations:

When entering the superconducting state, a resonan eak at the wave vector gar = (7, )
emerges in the cuprate compounds (@ @ é Being a universal feature also
in electron-doped cuprates dé) this magnetic mode is a promising candidate for the pairing
glue. This means a bosonic excitation which mediates a retarded pairing mechanism in con-
trast to an instantaneous mechanism via the exchange coupling J. The doping dependence of
the resonance mode's frequency wres(qar) follows the doping dependence of 7, and, hence,
further affirms theories which consider the resonance mode to be crucial for the mechanism
of superconductivity.

As the resonance lies within the superconducting gap, it was proposed to identify this mode
with a S=1 spin exciton. Apart from the peak at g4r INS experiments observed a down-
ward and an upward hourglass-like dispersion in several hole-doped compounds (@) with the
upward dispersion being strongly damped as it extends into the continuum of single spin-flip
excitations. In case of electron-doped cuprates only the resonance peak is detected as an
universal feature so far (@)

Besides the important question of a possible pairing glue a variety of experiments in the HTSC,
such as ARPES, Optical and Tunneling Spectroscopies, have been interpreted as evidence of
interactions of electrons with this mode (@; @; Iﬁ) As a consequence, a theoretical de-
scription of cuprate superconductivity must include and explain also this prominent resonance

o1
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mode and its properties.

A spin excitonic bound state has previously been suggested on the basis of an itinerant pic-
ture, most frequently invoking a weakly correlated RPA-like form of the dynamic spin sus-
ceptibility (e.g. Ref. (IE)) As a weak-coupling form it leads to a Fermi-liquid like x(q,w),
which is in contrast to some of the anomalous dynamics found in neutron scattering exper-
iments (@; B, 3d; 37, . @) On the other hand, when the two-particle interaction and
the superconducting gap are used as adjustable parameters, it qualitatively accounts for the
mode behavior near optimal and overdoped regimes (IE) In the following chapter we apply
our two-particle approach developed in section to the one-band Hubbard model to gain
information about the magnetic spectrum. As the hourglass structure is only observed in
hole-doped cuprates we focus our investigation on this part of the phase diagram. To render a
consistent picture we first analyze the antiferromagnetic phase which also serves as a test case
for our new approach. For this reason section contains a detailed discussion about finite-
size effects. The main results are then provided in section 23, where the superconducting
phase is explored and related to experimental findings. But first of all, in section T we briefly
review the phase diagram and results on one-particle excitation of the Hubbard model using
the VCA. This review mainly follows the publications (Ia; l64: l65: l66: |67; l68; l69; E) Also the
choice of the reference clusters will be discussed (section EET.Tl). The present chapter closes
with section providing a discussion of the meaning and importance of the self-consistently
obtained controlling constant « introduced in section B24

We use the one-band Hubbard model with ¢ = —0.3t and U = 8t as standard values for
the description of HTSC cuprates and we set ¢ = 1 to fix the energy scale. Since the grand
canonical ensemble is used, all one-particle energies are the difference to the chemical potential.
A broadening of 0.05¢ is used to display the results.

4.1 Preliminaries to the Hubbard model within the
VVCA

It has been shown that the VCA correctly reproduces salient features of the one-particle prop-
erties of the HTSC (@; ; @; @; H; @p @ E) First of all, we inspect the hole-doped
phase diagram (Fig. E]) for the two-dimensional one-band Hubbard model calculated in the
VCA by use of the v/10 x v/10 cluster. It is plotted the antiferromagnetic as well as the super-
conducting order parameter against the doping. For a better orientation the phase diagram
is given in different colors. At small doping an antiferromagnetic + superconducting phase
emerges, in which both the antiferromagnetic as well as the superconducting order (m > 0 and
A > 0) microscopically and coherently coexist (blue regime). A homogeneous phase with a
pure superconducting order (m = 0 and A > 0) is obtained for larger dopings (green regime).
In between a red regime occurs, i.e. a phase separation region, where the homogeneous so-
lutions antiferromagnetism + superconductivity and superconductivity become unstable and
the system prefers to separate into a mixture of two densities n; and ns. In this regime there
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Figure 4.1: Phase diagram of the hole-doped Hubbard model obtained from a VCA cal-
culation using the v/10 x /10 cluster (taken from (E))

is tendency towards the formation of inhomogeneities, such as stripes, checkerboard patterns,
etc.. At half-filling the system shows an pure antiferromagnetic phase. Hence, the Hubbard
model in the VCA recovers both the antiferromagnetism and the superconductivity. Although
not shown here, we like to mention that the VCA calculations in the Hubbard model also
account for the electron-hole asymmetry in the phase diagram (Ia) This means the much
smaller doping range of antiferromagnetism at hole-doping compared to electron doping.

As a further very important outcome the VCA treatment of the Hubbard revealed the prominent
dichotomy of nodal and antinodal superconducting gaps discovered in Raman (Iﬁp E) and
ARPES (7d; lad. @) experiments (E) This will be detailed and compared to our results on
the Raman response in chapter B

4.1.1 Choice of the reference clusters

All the clusters considered in the present thesis are depicted in Fig. E2l The choice which of
these should be employed as a reference cluster for a VCA calculation is a very subtle one.
Principally, it seems plausible to use the largest cluster that can be calculated with respect
to a given CPU power as well as main memory. Unfortunately, in practical computations we
are restricted to cluster sizes of about 10 sites which is not large enough to obtain converged
results. It is meant that the outcome of a VCA calculation is not independent of the cluster
size and geometry. This problem can only be handled by an intelligent choice of the underlying
cluster depending on the phase that should be analyzed. The phase diagram in Fig. 1l is
obtained with the v/10 x /10 cluster but is qualitatively the same for the 2 x 2 and 4 x 2
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Figure 4.2: Geometry of the clusters used in our calculations: 2 x 2, 3 x 3, 4 x 2 and

V10 x v/10

clusters. Hence, the order parameter seems to be robust against the cluster size. But if some
more specific details of the superconducting phase are investigated these clusters with an even
site turn out to be not appropriate. Such details are for example the mentioned gap dichotomy
discussed in chapter Bland (Ij; or the magnetic correlations presented in this chapter. For these
issues the 3 x 3 is employed and works best. The deeper reason is twofold and is based on
the cluster size and geometry:

It turns out that even at relative large doping x > 0.1 the reference clusters with an even
number of sites are only at about 2 ~ 0.05 doping. And as the correlated physics stems from
the cluster level, it is obvious, that this discrepancy between the doping of the physical system
and the reference clusters make these even site clusters inappropriate. In case of 3 x 3 sites
the cluster shows an intrinsic doping of z =~ é. The reason is that the ground state of the
Hubbard model tends to be in the S* = 0 state which is only possible for an even number of
electrons, i.e. 8 electrons for the 3 x 3 cluster. Hence, the dopings of the physical system is
for x > 0.1 comparable to the doping of the reference system. The same argumentation rules
out the 3 x 3 clusters for the description at small doping.

The other reason which favors the 3 x 3 cluster for the superconducting phase is its geometry.
The even site 2 x 2 and 4 x 2 clusters are adequate for the description of antiferromagnetism
since they allow for a antiferromagnetic symmetry breaking. But these clusters tend to overes-
timate the antiferromagnetic correlations even in the pure superconducting phase. The 3 x 3
overcomes this problem for reason of the odd number of sites per dimension. Again, this argu-
mentation rules out the 3 x 3 clusters for the description of antiferromagnetism at small doping.
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Figure 4.3: Density plot of Imx® (q,w) Figure 4.4: Density plot of Imx® (q,w)
at half-filling in the antiferromagnetic at half-filling in the antiferromagnetic
phase using the 2 x 2 cluster. phase using the 4 x 2 cluster.

The dependence of the employed cluster can be seen in our results. Comparison of Fig.
with the Figs. E2TIA 7] discloses the even site clusters to be inappropriate to reveal the mag-
netic structures in the pure superconducting phase. Rather, slight remnants of the magnonic
dispersion are visible, at least in the 2 x 2 case. The reason is the small cluster doping and
the cluster geometry, both overestimating antiferrognetic correlations. In addition, the small
size of the 2 x 2 cluster results in a certain mean-field character of the cluster approach which
also overestimates antiferromagnetic correlations.

We also mention that clusters should be preferred which conserve the rotational symmetry
of the original lattice as the 2 x 2 and 3 x 3 clusters do. This can be clearly seen in the
Figs. EAXTOAAATI compared to Figs. EIAXAXT The latter ones showing the 2 x 2
results provide a much more pronounced magnonic dispersion.

4.2 Antiferromagnetic phase

In this section the blue regime in Fig. -1l is explored by use of the even site clusters depicted
in Fig. £2. First, we focus on the half-filled case, i.e. in the pure antiferromagnetic phase.
Fig. displays the result for the imaginary part of the transverse magnetic susceptibility
Imx*(q,w) on the basis of the 2x 2 cluster. The dispersion follows the usual antiferromagnetic
spin wave pattern with the maximum weight around g4 = (7, 7). Here, a gap appears, which
rapidly and continuously diminishes with increasing cluster sizes as indicated by the Figs. &4
and showing the results for the 4 x 2 and V10 x /10 cluster, respectively. Hence, this
gap is identified as a finite-size effect proved by Fig. displaying the imaginary part of the
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Figure 4.5: Density plot of Imx® (q,w) Figure 4.6: Plot of Imy* (qar,w) at
at half-filling in the antiferromagnetic half-filling using various clusters.

phase using the v/10 x /10 cluster.

transverse susceptibility at the antiferromagnetic wave vector Imy®(qar = (7, 7),w) for the
three different clusters sizes. Clearly, the finite-size gap closes continuously as a function of
the cluster size.

Upon doping the mixed antiferromagnetic + superconducting phase is entered. The corre-
sponding 2 x 2 result for Imy*(q,w) at z = 0.06 doping is given in the Fig. BTl revealing
the finite-size gap being obviously diminished. To further analyze this doping dependence we
examine the 2 x 2 cluster Imy*(qar = (7, 7),w) at three different dopings, i.e. = = 0.0,
x = 0.04 and = = 0.06. Indeed, Fig. displays a rapid and continuous closure of the gap.
We attribute this to a screening effect, which renders the two-particle vertex I" significantly
more short-ranged, i.e. more local. This means that it can accurately be extracted from the
diagonalization of already small clusters.

Further support for this argument is provided by the analysis of Imx*(q,w) using the 2 x 2,
4 x 2 and /10 x v/10 at small (2 = 0.04) doping. The corresponding results for Imy*(q, w)
at x = 0.04 doping are given in the Figs. and LTIl which reveal the finite-size effects
being of minor importance compared to the half-filled case. The gap is clearly smaller for all
cluster sizes and, furthermore, the dependence of the gap size on the cluster size is even smaller
as depicted in Fig. EEI2 Here, the v/10 x /10 breaks ranks which we definitely address to
the shape of the cluster that does not conserve the rotational symmetry of the original lattice.
As already discussed in section 1.1l this broken rotational symmetry has also an effect on the
shape of the dispersion. Fig. LTl exemplifies this impressively.

Our two-particle approach also allows for a realistic calculation of the spin-flip electron-

hole continuum, as the fully dressed one-particle propagators enter the X(T’VCA(q,w) (see
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Figure 4.7: Density plot of Imx® (q,w) Figure 4.8: Plot of Imx* (qar,w) at
at x = 0.06 doping in the mixed antifer- various dopings using the 2 x 2 cluster.

romagnetic + superconducting phase
using the 2 x 2 cluster. The red line
denote the lower boundary of the spin-
flip electron-hole continuum (extracted

from Eq. [3£3)).

Eq. (B84)). Indeed, Fig. and Fig. E1 display the magnonic dispersion diving into this
continuum around the X-point and getting decayed. In addition, the latter figure depicts
as the red line the lower boundary of the continuum extracted from x3""““(q,w). To find
this borderline, we sweep at each of the g-points along the w axis starting from w = 0 until
XSE’VCA(q,w) adopts a certain threshold. Finding the appropriate threshold for the Lorentzian
declining peaks is, of course, not straight forward and requires some trying. It turns out that

a value of about 0.005 for the threshold works best.
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Figure 4.9: Density plot of Imx* (q,w)
at x = 0.04 doping in the mixed antifer-
romagnetic + superconducting phase
using the 2 x 2 cluster.
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Figure 4.11: Density plot of Imx® (q,w)
at x = 0.04 doping in the mixed antifer-
romagnetic + superconducting phase

using the /10 x /10 cluster.
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Figure 4.10: Density plot of Imx® (q,w)
at x = 0.04 doping in the mixed antifer-
romagnetic + superconducting phase
using the 4 x 2 cluster.
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Figure 4.12: Plot of Imx* (qar,w) at
x = 0.04 doping using various clusters.
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Figure 4.13: Density plot of Imx™* (q,w) Figure 4.14: Same as[EI3 but focusing
at x = 0.18 doping in the supercon- on the hourglass structure. The red line
ducting phase using the 3 x 3 cluster. denote the lower boundary of the spin-

flip electron-hole continuum (extracted

from Eq. [3£3)).

4.3 Superconducting phase

We enter in this section the most interesting, namely the pure superconducting state and
its magnetic response properties. Fig. contains a two-dimensional intensity plot of our
results (using a 3 x 3 reference cluster) for the imaginary part of the transversal magnetic
susceptibility Imy®(q,w) at x=0.18 doping. The only spin spectral weight appears around the
M point on an energy scale of about 0.2 yielding the celebrated resonance mode. Focusing on
this resonance in Fig. ET4l it is also displayed the lower boundary of the spin-flip electron-hole
continuum extracted from x3"" (¢, w) (see the latter section for explanation). Hence, this
figure reveals the resonance emerging in the superconductivity-induced gap of (S=1) electron-
hole excitations when entering this superconducting doping regime. We note, that like in the
experiments (see, in particular,Ref. (36)), the resonance has an hourglass shape with its maxi-
mum spectral weight confined to a region close to M = gar = (7, 7) and a dramatic intensity
reduction around ~ 0.8(7, 7). Therefore, our results impressively recover the experimentally
found prominent hourglass structure.

Our results can indeed consistently be summarized along the experimental findings of Ref. (@)
As shown in Fig. BT, again in an intensity plot, we find for the doping (x=0.18) considered
in Fig. and EET4] a typical Fermi surface closed around (7, 7). Fig. plots the corre-
sponding spin-flip electron-hole continuum along the Brillouin zone diagonal, obtained from
XV (g, w). Only collective modes (i.e. S=1, spin-flip electron-hole excitations) below

the electron-hole continuum (i.e. below the red line in Fig. EET0l and EET4) can actually be
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Figure 4.15:  Density plot of the Figure 4.16: Lower boundary of the
low-energy spectral weight obtained spin-flip electron-hole continuum in the
from the corresponding VCA calcula- superconducting phase at x = 0.18
tion for the one-particle Green’s func- doping. The plot follows a path along
tion displaying the Fermi surface with q = n(m,m) revealing a minimum at
the nodal scattering vector 2ky ~ 2ky ~ 0.8(m,m). The red line is
0.8(m, ). extracted from Eq. (384), while the

hatched area is only for reason of vi-

sualization.

detected, because modes within the continuum are Landau damped and, thus, weak. This
electron-hole continuum corresponds to Fig. 4b in Ref. (@) The continuum threshold exhibits
also in our case a pronounced minimum in the vicinity of the wave vector 2kx ~ 0.8(m, 7),
which corresponds to scattering between nodes of the d-wave gap function (Fig. gives
just one quadrant of the Brillouin zone). The minimum in our calculation is, however, not so
steep as in the idealistic situation in Fig. 4c of Ref. (@) The reason is the broadening of
n = 0.05¢ used in our calculations.

We would like to emphasize that a similar picture has been put forward in RPA-like descrip-
tions of the neutron resonance (see, for example, Ref. (IE)) Here, however, the d-wave gap
amplitude as well as the magnitude of the effective two-particle interaction are parameters.
They are used to reproduce the experimental energy positions of the resonance mode at (7, )
and the electron-hole threshold around 0.8(7, 7) in (IE) There is an additional difference to
our parameter-free theory: we find in Fig. EL14] the resonant magnetic excitation to have also
an upward dispersing branch originating at g4r. In Ref. (IE) this branch is missing. Instead,
it appears with very little weight only at momenta less than ky ~ 0.8(7, 7)

Figs. 117 and 219 give additional comparisons of our calculations with salient features
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Figure 4.17: wyes(qar) as a function of Figure 4.18: Doping dependence of
doping. the w-integrated spin-spectral weight at
gAF-

of the INS experiments in underdoped Y BasCuzOg. (IE)

Fig. 17 exhibits the energy of the magnetic resonance peak in the underdoped regime, which
increase as a function doping. This trend is also observed in the INS experiments as showed
in the Fig. 11.c) of Ref. ﬁ)

The energy-integrated spin spectral weight at g4 obtained at various dopings in the su-
perconducting regime given in Fig. follows again the experimental findings displayed in
Fig. 11.b) of Ref. (IE%

Finally, Fig. reproduces the difference of the transversal magnetic susceptibility at g4z in
the superconducting and normal states at & = 0.17 dopinglmAx*(qar,w). The comparison
with Fig. 10.b) of ) can only be a qualitative one, since we are at T=0, and our normal
state solutions are done without allowing for U(1) symmetry breaking in the variational pro-
cedure. Hence, we employ this paramagnetic state to simulate the normal state occurring for
T > T.. The corresponding result is displayed in Fig. and reveals the resonance mode to
be vanished except for slight remnants. Nevertheless, qualitatively, our calculations reproduce
the experimental finding, that the enhancement of the spectral weight around the resonance
peak energy is accompanied by a reduction of the spectral weight over a limited energy range
both above and below wyes(gar).

We need to provide some explanation concerning the comparison of the doping dependence
in our results with the experimental findings. The doping in the experiments does only corre-
spond to our theoretical doping in the sense that both are at a typical underdoped situation.
Although we provide results up to = 0.18 doping the reference cluster is still at < 0.15.
This is again the already discussed discrepancy between the doping of the physical and the
reference system (see section EETT]). Hence, our results in the superconducting phase incor-
porate the correlated physics of a cluster in the underdoped regime.

In summary, the calculated doping dependence of wyes(qar), the hourglass dispersion of the
resonance and its rapid decrease around a characteristic wave vector 2ky ~ 0.8(7, 7), which
coincides with the distance between nodal points on the Fermi surface, are qualitatively consis-
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Figure 4.19: Difference  between Figure 4.20: Density plot of Imx® (q,w)
Imx(qar,w) in the superconducting at r = 0.18 doping in the normal state
and normal states at x = 0.17 doping. using the 3 x 3 cluster.

tent with the experiment and support the S=1 magnetic exciton scenario. Some of these results
have been obtained before in weak-coupling, however, by fitting the two-particle interaction
to the experiment. In contrast, our results are obtained in the appropriate strong-correlation
regime and contain no adjustable parameters. Thus, when taken together with earlier results

on the phase diagram and single-particle excitations, this constitutes a rather strong support
for Hubbard model description of HTSC.

This section closes with the imaginary part of the transversal magnetic susceptibility Imy® (qar, w)
in the superconducting phase using the 2 x 2 and v/10 x /10 cluster. The corresponding re-
sults are given Fig. 2Tl and Fig. 22, respectively. For the reasons explained in section EL1T]
these even site clusters fail to describe the magnetic properties in the superconducting phase.
Rather, there are remnants of the antiferromagnetic correlation visible, at least in case of the

2 x 2 cluster which strongly overestimates these.
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Figure 4.21: Density plot of Imx® (q,w)
at x = 0.15 doping in the supercon-
ducting phase using the 2 x 2 cluster.

Figure 4.22: Density plot of Imx® (q,w)
at x = 0.15 doping in the supercon-
ducting phase using the /10 x /10

cluster.
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Figure 4.23: Dependence of the control- Figure 4.24: Doping dependence of the
ling constant on the cluster size at half- controlling constant « for the 2x2 clus-
filling. ter.

4.4 Controlling constant «

The self-consistently obtained controlling constant « introduced in section B2 serves as a
fine-tuning of the effective vertex I'.;; as well as a quality indicator for our two-particle ap-
proach. The underlying assumption of this approach and also the VCA is a relative local vertex,
respectively self-energy. Only then, we are allowed to employ already small clusters for the
calculation of these quantities. The constant « can be consulted to judge the justification of
the locality assumption. In case of a constant « deviating only small from o = 1 the sumrule
is fulfilled with nearly no fine-tuning. This hints at a justification of our cluster approach. And,
indeed, Tab. Tl reveals the values of o being absolutely close to @ = 1 and deviating only of
the order of 1% for the calculations in the antiferromagnetic and mixed antiferromagnetic +
superconducting phase presented in section E-2

[ 2x2]4x2]v10x V10 |

r=0.00| 1.01 | 1.01 1.01
r=0.04| 1.00 | 1.00 1.00
xz=0.06 | 0.99 — —

Table 4.1: Values of the controlling constant « for clusters and dopings discussed in
section L2

Fig. renders the constant a continuously decreasing towards o = 1 as a function of
increasing cluster size at half-filling. This further supports our two-particle approach being
controlled by the cluster size. The doping dependence of a by use of the 2 x 2 cluster is
given in Fig. 241 We discover the value of o decreasing continuously with increasing doping.
Interestingly, it decreases even below av = 1. This behavior holds also in the superconducting
phase using the 3 x 3 cluster discussed in section B3, for which we find values of o ~ 0.95,
while in the paramagnetic phase at the same doping and cluster we find mostly o ~ 0.92 (see
Tab. E2)). These values are still close enough to ov = 1 to justify our two-particle approach.
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Figure 4.25: Density plot of Imx® (q,w) Figure 4.26: Density plot of Imx® (q, w)
at half-filling in the antiferromagnetic at x = 0.18 doping in the supercon-
phase using the 2x2 cluster with a fixed ducting phase using the 3 x 3 cluster
a=1. with a fixed o = 1.

With a value of & = 0.69 at z = 0.15 doping the /10 x /10 breaks ranks which we address
to the shape and doping of the cluster being improper to render the magnetic properties of the
system in the superconducting phase as already discussed in section LTl Interestingly, the
value of o = 0.88 for the 2 x 2 at x = 0.15 doping is not such bad although the calculations
do not render the correct magnetic spectrum.

3x3|3%x3,5¢=0]2x2]+v10x V10
z=0.15] 0.96 0.88 0.88 0.69
z=0.16 | 0.96 0.92 — —
=017 0.95 0.92 — —
r=0.18 | 0.93 0.92 — —

Table 4.2: Values of the controlling constant « for clusters, dopings and phases discussed
in section €3

4.4.1 Results with o =1

The importance of « as a fine-tuning of the effective vertex I'. ;s can easily be analyzed by
setting & = 1 in our calculations. First, the effect on the magnetic structures in the antifer-
romagnetic phase is inspected in Fig. in comparison with Fig. displaying the results
with the self-consistently determined «. The overall dispersion is nearly unchanged compared
to the calculation with the « self-consistently determined. Only the finite-size gap is slightly
reduced. Further investigations show, that o > 1 leads to a slight reducing of the finite-size
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gap while o < 1 lets the finite-size gap slightly increase.

In the superconducting phase the controlling constant adopts unlike more importance since it
turns out that the hourglass structure is much more sensitive to the change in I, s/ effected by
a. Fig. displays the corresponding av = 1 result revealing the hourglass completely van-
ished (compare to Fig. EE13). Hence, to obtain the sophisticated small structures concerning
the resonance mode at small energy scales it is absolutely necessary to include the constant «
for the fine-tuning of I'. ;.



Raman response in high-T,
superconductors

Raman (ﬁ; E) and ARPES (E; 80 @) experiments recently revealed a quite different be-
havior of the superconducting gap of HTSC cuprates near the nodal (7/2,7/2) compared
to the antinodal point (7,0). The gap was found to increase with decreasing doping at the
antinodal point which, previously, was believed to be the generic doping dependence of the
superconducting gap ; M) However, near the nodal point the gap displays an even
qualitatively different doping dependence, where the gap decreases with decreasing doping.
While these experiments were so far interpreted as being due to two physical distinct mech-
anisms, VCA calculations showed, that this phenomenon can naturally be explained within
the Hubbard model as a different doping dependence of the spin-fluctuation mediated pairing
strength (E) In order to shed more light on this question of the gap dichotomy, we analyze
the doping dependence of the superconducting gap in yet another approach, i.e. the Raman
response.

Employing the technique described in section allows us to work out the gap features in the
Raman response. Using the Blg and B2g symmetries we can focus on the antinodal (Blg)
and nodal (B2g) region of the Brillouin zone. We also analyze the Raman response in the
paramagnetic phase to gain information about the normal state pseudogap observed it the
HTSC cuprates at 7' > T.. This will be related to the results derived in the superconducting
phase. In addition, the question of an origin of the gap in the superconducting phase apart
from superconductivity is addressed by switching off the anomalous part of the self-energy
39¢(w) = 0 in our calculation.

We use the one-band Hubbard model with ¢ = —0.3t and U = 8t as standard values for
the description of HTSC cuprates and we set t = 1 to fix the energy scale. Since the grand
canonical ensemble is used, all one-particle energies are the difference to the chemical potential.
Our main interest is in properties related to superconductivity, wherefore we employ the 3 x 3
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Figure 5.1: Exemplary plot of the spectral function calculated within the VCA at x = 0.11
hole-doping in the superconducting phase (white areas mean higher spectral weight). blue:
numerically found quasi-particle dispersion ; red: fitted tight-binding dispersion up to 4th
nearest neighbors

cluster for our calculations like we do in section B3 A broadening of 0.04¢ is used to display
the results.

5.1 Raman vertex in the effective mass approximation

First, Fig. exemplifies the one-particle spectral-function as a density plot with the nu-
merically found dispersion as the blue curve and the fitted tight-binding dispersion up to 4th
nearest neighbors as the red curve at # = 0.11 hole-doping in the superconducting phase.
More generally, Fig. shows the doping dependence of the fit-parameters at six different
fractions of hole-doping from x = 0.07 to z = 0.17, all in the superconducting regime. To
compare, Fig. yields the doping dependence in the paramagnetic phase at five different
fractions of hole-doping from x = 0.06 to z = 0.12.

Given the fit-parameters we are able to evaluate Eq. and for obtaining the Ra-
man vertex in the effective mass approximation. Density plots of the squared vertex-functions
(7" (k))* at z = 0.11 hole-doping in the superconducting phase are shown in Fig. with the
vertices in the right column are obtained from calculations based on the dispersion up to the
4th nearest neighbor hopping while for the ones in the left column the dispersion was limited
up to next-nearest neighbor hopping. It turns out, that including higher order terms yields a
stronger focusing within the Brillouin zone. As can be seen in the upper row, the vertex in
the Blg symmetry points out the antinodal while in the B2g symmetry the nodal region of
the Brillouin zone.
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Figure 5.2: Doping dependence of the
fit parameter within a fit procedure of
a tight-binding dispersion to the quasi-
particle band up to 4th nearest neigh-
bors in the superconducting phase.

Figure 5.3: Doping dependence of the
fit parameter within a fit procedure of
a tight-binding dispersion to the quasi-
particle band up to 4th nearest neigh-
bors in the paramagnetic phase.

The superconducting gap and the pseudogap can be extracted in the following sections from
the Raman spectrum as the position of the lowest peak in energy. But note that the gap out
of the Raman spectrum is twice the superconducting gap measured from p = 0 symmetrically:

A[Raman] = 2 x A[SC].
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Figure 5.4: Density plot of (7" (k))* for the Blg and B2g Raman symmetries in the
superconducting phase at x = 0.11 hole-doping (black area means higher value). The
results shown in the left column are obtained from a fitted dispersion up to next-nearest
neighbor hopping while the results in the right column stem from a fitted dispersion up
to 4th nearest neighbor hopping. The red lines indicate the paths which are used to
extract the antinodal (upper row) and near-nodal (lower row) gaps out of the one-particle
spectral-function (taken from (B))
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spectrum for various hole-dopings in
the superconducting phase. A[Raman|
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man response; yellow: gap extracted
from the one-particle spectral function,

Figure 5.6: Plot of the B2g Raman
spectrum for various hole-dopings in
the superconducting phase. A[Raman
and 2 x A[SC] are guides to the eye
(black: gap extracted from the Ra-
man response; yellow: gap extracted
from the one-particle spectral function,

taken from (d)). taken from (d)).

5.2 Superconducting phase

The main results of our calculation in the superconducting phase are given in the Figs.
and Fig. E7l The Figs. and display the Raman response for the Blg and the
B2g symmetry in the doping range described above. The first yields information about the
antinodal and the latter about the nodal region. The black curve connecting the lowest ly-
ing peaks serves as a guide to the eye for a better visualization of the doping dependence.
The yellow curve pursues the same intention but the data are gained from the gap extracted
from the one-particle spectral-function (E) We find that the gap in the Raman response at
the antinodal point increases with decreasing doping, while near the nodal point it slightly
decreases. The plot of the doping dependence of the gap (Fig. EE7]) makes this behavior even
clearer.

These Raman results can be reconciled with the ones derived from the one-particle spectral-
function (E) both of which are shown in Fig. and Fig. for comparison. Both, the
Raman and the one-particle data show qualitatively the same doping dependence of the gaps.
However, the data derived from the Raman calculation reveal an energy shift depending on
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Figure 5.7: Doping dependence of the Figure 5.8: Doping dependence of the
superconducting gap at the antinodal superconducting gap at the antinodal
and near-nodal points extracted from and near-nodal points extracted from
the Blg and B2g Raman spectra. the spectral function (taken from (B))

the Raman vertex symmetry (see the yellow and black peak interpolation in Figs. and
B6l). In the Blg symmetry (i.e., antinodal case) the Raman gap is slightly larger than the
single-particle gap, while in the B2g case (i.e., near-nodal case) a gap of approximatively half
the size compared to the gap in the spectral-function is found. This shift in the Raman data
to higher energies in the Blg case and to lower energies in the B2g case can be explained by a
closer inspection of the vertex functions (7”(k))? shown in the right plots of Fig. 4l These
vertex functions act as a weighting factor in momentum space for the electron-hole excitations

which are added up in Eq. (BI03).

In case of the Blg symmetry the vertex function (7219(k))? is largest directly at (mr,0).
Therefore, the electron-hole excitations in this region enter Eq. (BI03]) with a strong weight.
Furthermore, these electron-hole excitations near (and not directly at) the antinodal gap are
higher in energy compared to the excitations directly at the antinodal gap (see Fig. EZ1I). This
is the reason why the gap extracted from the Raman response is larger than the gap extracted
from the spectral function by use of the path indicated as the red line in the upper right plot
in Fig. B4l But as this is a deviation from the already large antinodal gap, we get a small
relative shift.

In case of the B2g symmetry the vertex function (7%%9(k))? is largest at a spot near (7/2, 7/2).
Therefore, the gapless electron-hole excitations with zero energy in this region (the Brillouin
zone diagonal) enter Eq. (BI03)) with a strong weight. This is the reason why the gap extracted
from the Raman response is smaller than the gap extracted from the spectral function which
uses a path along the Fermi surface which, on average, is further away from the nodal point
(m/2,7/2) than the Raman response (this path is indicated as the red line in the lower right
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Figure 5.9: Plot of the Blg Raman Figure 5.10: Plot of the B2g Raman
spectrum for various hole-dopings in spectrum for various hole-dopings in

the paramagnetic phase. the paramagnetic phase.

plot in Fig. B4l). And as this is a deviation from the very small near-nodal gap we get a large
relative shift of the near-nodal gap size.

5.3 Normal state - Paramagnetic phase

Some calculations revealed the Hubbard model to show a pseudogap behavior in the normal
state above T, (m; m) Hence, we are also interested in analyzing this state in order to
find a gap in the Raman spectrum. However, we are limited with our cluster solver to T'=0
and can not investigate the Raman response at finite temperature. But a suitable method
for simulating the normal state occurring for T > T, is to do not allow for U(1) symmetry
breaking in the variational procedure. We employ therefore this paramagnetic phase for our
Raman calculation to gain information about a possible pseudogap. Figs. B9 and BEI0 show
the results for the Blg and the B2g channel, respectively.

Indeed, we find near (7, 0) a pseudogap being larger compared to the superconducting gap at
the antinodal region but following the same doping dependence. With decreasing doping the
pseudogap increases. Again, this can be reconciled with the findings in (3). Furthermore, the
doping dependence agrees qualitatively with finite-T" QMC simulations ) and also ARPES
experiments ; Eﬁ; 81).

An interesting question is, whether the origin of the normal state pseudogap survives in the
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superconducting state. For this issue we switch off the anomalous part of the self-energy
39¢w) = 0 in our Raman calculation in the superconducting state. The according results
displayed in the Figs. EETTland ET21do not reveal any gap and therefore rule out a normal state
origin of the gap in the U(1) symmetry-broken superconducting phase. These results as well
as the one-particle results in (Ev) show, that with the onset of a U(1) symmetry breaking, the
normal state origin of the pseudogap is replaced with a completely superconductivity based
origin of the superconducting gap.

Our results on the Raman response combined with the results given in (E) strongly support
the Hubbard model description of the gap behavior and the microscopic mechanisms of HTSC
cuprates.



Summary

The physics of cuprate high-temperature superconductors is still
an unsolved riddle. But in more than 20 years a remarkable
progress was achieved on the experimental as well as on the
theoretical side. Nearly no one in the community of strongly
correlated physics doubts about the d-wave order parameter of
the superconducting gap, the proximity of the antiferromagnetic
Mott insulator being probably crucial for the understanding of
the materials and, related to that, the magnetic origin of the
underlying pairing mechanism. There is still a great number of ° °
open questions, maybe even more than 20 years ago, but these

©
are much more concise and aiming at more detailed topics. Such : Zu ¢ S 8.;:.;
a question is the character of the magnetic originated pairing. oy Ty
Is it instantaneous via the exchange coupling J or mediated by © Ba °
a retarded bosonic mode comparable to the phononic induced . o
pairing in conventional BCS-type superconductors? A further e i
question aims at properties of the gap in the superconducting as La o« ® .
well as in the pseudogap state. Is the dichotomy of the antin- R

odal and near-nodal gaps in the superconducting state, which
was found in ARPES and Raman experiments, arising from dis-
tinct mechanisms or from different doping dependencies of the
spin-fluctuation mediated pairing strength? And the nature of
the pseudogap state is also one of the most important topics in
cuprate superconductivity. To shed light on the cuprate riddle
it is necessary to analyze two-particle excitations complementing
the one-particle data.
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The magnetic susceptibility takes on a special position in this
context as it renders information about the magnetic excitation
spectrum which is believed to be directly related to the mech-
anism of superconductivity. And, indeed, INS experiments re-
vealed a promising candidate for a bosonic mode possibly being
the desired pairing glue. It is meant the resonance mode oc-
curring as a general feature in the under- and optimal-doped
cuprates at the wave vector g4r = (m,m) being characteristic
for the antiferromagnetism of the parent compound. In addition
to this fingerprint of antiferromagnetism in the superconducting
phase, a hourglass-like upward and downward dispersion ema-
nating from gr is obtained. Besides the role of the resonance
mode as a mediator for the pairing, some of the salient features
of the cuprates maybe described by interactions of the itinerant
electrons with this mode.

Concerning the gap dichotomy Raman experiments yield worthy
information as results from focussed regions of the Brillouin zone
can be obtained. The position in energy of the first peak in the
Raman spectrum is related to the gap in the density of states.

The present thesis provides a detailed treatment of magnetic ex-
citations and Raman spectra in the two-dimensional one-band
Hubbard model for the cuprate high-temperature superconduc-
tors. This model is believed to cover the essential microscopic
degrees of freedom producing the macroscopic properties. As the
core technical development, we derive a non-perturbative, T'= 0
cluster approach for two-particle correlation functions from the
general Bethe-Salpeter equation. This new approach contains
no free adjustable parameters besides the model parameters for
which the standard high-T, values are used. As the self-energy
in the Variational Cluster Approach (VCA, an embedded cluster

method) for the one-particle Green's function we also obtain an noo
effective electron-hole vertex from an isolated cluster. Combined - = M
with a fully dressed bubble susceptibility yo which contains the o000
one-particle VCA Green's function our new approach is only con- sl

trolled by the cluster sizes and becomes exact in the limit of
infinite sized clusters. We also introduce a controlling constant
« effecting a fine-tuning of the vertex to account for finite-size
effects. As we are restricted to clusters up to 10 sites for nu-
merical reasons this is necessary to exhibit the small magnetic
structures at small energy scales in the superconducting phase.
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The constant « serves, in addition, as a quality indicator for our
approach.

A similar approach is explained for the Raman response. How-
ever, due the more complicated k-structure of the Raman vertex
we employ the so-called effective mass approximation for this.

The application of our two-particle approach to the antiferro-
magnetic phase of the hole-doped Hubbard model exhibits the
expected spin-wave dispersion with the maximum weight around
gar = (m,m). However, due to the limited number of clus-
ter sites a finite-size gap occurs which decreases with increasing
cluster size. Furthermore, for reason of screening effects, these
finite-size effects are of minor importance for increased doping.
The vertex becomes more short-ranged and can be extracted
from already small clusters.

Upon further doping the most interesting phase, namely the su-
perconducting is reached. Our results recover the celebrated res-
onance mode with its hourglass-like dispersion occurring in the
superconductivity-induced gap of spin-flip electron-hole excita-
tions. The upward branch of the hourglass is strongly damped
as it extents into this continuum. A dramatic intensity reduction
around ~ 0.8(7, ) is observed and addressed to the minimum in
the spin-flip electron-hole continuum at exactly the wave vector
connecting nodal points of the Fermi surface.

Further salient features obtained in our calculations are in qual-
itative accord with INS experiments. We find the energy of
the resonance mode wyes(gar) increasing as a function of dop-
ing, while the energy-integrated spin spectral weight at ¢ =
(m,m) decreases. And also the difference of the imaginary part
of the susceptibility in the superconducting and normal states
ImAX*(qar,w) can be reconciled with the experiments.

In summary, the calculated doping dependence of wyes(qar),
the hourglass dispersion of the resonance and its rapid decrease
around a characteristic wave vector 2ky ~ 0.8(7, ) are qual-
itatively consistent with the experiment and support the S=1
magnetic exciton scenario for the resonance mode. Some of
these results have been obtained before in weak-coupling, how-
ever, by fitting the two-particle interaction to the experiment.
In contrast, our results are obtained in the appropriate strong-
correlation regime and contain no adjustable parameters.
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Summary

ARPES and Raman experiments revealed the gap in the su-
perconducting state having a quite different behavior at the
antinodal compared to the near-nodal region. Concerning the
first, the gap increases with decreasing doping which was so far
the believed characteristic doping dependence of the gap in the
cuprates. But in case of the near-nodal region the gap exhibits
the opposite dependence. So far, two distinct mechanism were
proposed to explain this dichotomy of the gap but VCA calcula-
tion in combination with Quantum Monte Carlo results explain
the different behavior as stemming from the doping dependence
of the spin-fluctuation mediated pairing.

Within our approach to the Raman response, we verify the Hub-
bard model to cover the gap dichotomy seen in the experiments
and found already via the spectral function analysis in a VCA cal-
culation. Furthermore, by analyzing the effect of the anomalous
self-energy on the gap in the superconducting state we proved its
roots to be solely in superconductivity. In addition, our results in
the normal state reveal a large pseudogap following the doping
dependence of the antinodal gap.

Our cluster approach to two-particle excitations proves itself
being appropriate to work out salient features of the cuprate
high-T.. superconductors on the basis of the one-band Hubbard
model. When taken together with the VCA results on the phase
diagram and single-particle excitations a rather strong support for
the Hubbard model description of HTSC materials is constituted.

As an outlook we like to suggest further improvements of
the technique developed in the present thesis. To better control
the doping of the physical system compared to the reference
cluster, additional bath sites should be included. One-particle
VCA calculations including such bath sites seem to be promising,
so far. This would, of course, enlarge the corresponding Hilbert
spaces, wherefore more numerical effort is required. One
solution can be the parallelization of the programming code
with a subsequent migration to supercomputer architectures.
Another way can be the employment of an other cluster solver
than Lanczos. Quantum Monte Carlo techniques, for example,
can be used. This also would allow for calculations at finite
temperatures.
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Appendix

A.1 Restoring the translational invariance

At the end of section BT 3 we argued that the k-space dependence of the VCA Green's function
is fully captured by k as a continuous element of the original Brillouin zone. For an illustration
we consider an one-dimensional example.

After tiling up the original lattice with the lattice constant a into N, clusters with L, sites
each, the elementary unit of the superlattice consists of L, sites. Therefore we obtain a in
principle continuous (NN, is a large number)

T T
ke [_L—CCL’L—CCL] ) (A].)

with a periodicity P = LQ—ZFG However, K is not continuous and obeys

K c [_z’ E] , (AQ)

a a

21

with the periodicity is P = 27” The smallest discrete step which K can take is AK = 77
This is exactly the periodicity of the k-lattice, wherefore k + K = k.
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Figure A.1: Contour deforming from path C over Cy to C5 in the complex plane for a
analytical summation over Matsubara frequencies of a function with an explicitly known
pole structure. Note, that we have to sum over a, in principle, infinite number of Mat-
subara frequencies. The finite number of paths C and the finite range of the paths C,
and C is only for reason of visualization.

A.2 Matsubara frequency sums

In chapter Bl we make intense use of the Matsubara formalism for Green's functions. Within
the calculations we often have to perform sums over Matsubara frequencies. For example, in
the sections 319, and B3] we need to sum up a function over fermionic Matsubara
frequencies with the poles of the function explicitly known. In the susceptibility at all
bosonic Matsubara frequencies has to be summed up numerically as the pole structure is
not given explicitly. An important easement is achievable by use of the pole structure of the
Fermi- and the Bose-function (@; 87; lad; @) The former has first order poles at the fermionic
and the latter at the bosonic Matsubara frequencies. An explicitly known pole structure of
the function that has to be summed up enables us to evaluate the sum analytically. If only
the region where the considered function shows poles is known, we can achieve at least an
easier and better converging numerical summation. Both cases are based on an intelligent
deformation of paths used in contour integrals. Of course, it is still an ambitious task to find
the ideal path.

A.2.1 Analytic evaluation of the iw-sum

Evaluations of fermionic Matsubara sums such as in the function = (q, k,iw?,) (Eq. (B6H))
will be explained generally. We consider the following sum

S=T> Fliw) (A.3)

with iw; = (20 4+ 55977 and e = —1 in case of a fermionic while € = 1 in case of a sum
over bosonic Matsubara frequencies. With a function ﬁ having first order poles at the

frequencies z = iw, = (21 + 5<)miT and assuming the function F'(z) not having poles at
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these frequencies the sum S can be obtained as a sum over the contour integrals C; (see
Fig. [Adl). Each of these C; encircles one Matsubara frequency.

T 2mi Z /C1 eﬁz i (A.4)

The proof of the latter expression is easily accomplished by use of the residue theorem. As-
suming the function F'(z) not having poles at the whole imaginary axis, the paths C; can be
deformed and merged together yielding the path Cy visualized in Fig. [AJl The vertical parts
are infinitesimal close to the imaginary axis.

F
Y B A C)
211 Jo, e —e

S —

(A.5)

If the function F'(z) declines faster than % the path (5 is equivalent to (5 also indicated in
Fig. A3l The latter contour encircles the complex plane except the imaginary axis. Hence,
C'5 captures all poles of F'(z) and the S becomes by use of the residue theorem a sum over
the residues of F'(z)

s—— [ L :—EZF (A.6)

27 652 —€
Cs RES

The minus sign stems from the mathematical negative orientation of Cj.
With the knowledge of the discrete pole structure of F'(z) we are enabled to evaluate the
infinite Matsubara sum.

A.2.2 Numerical evaluation of the iw-sum

The following numerical evaluation of Matsubara sums is used for the calculation of the check-
sum (Eq. B388) in section BZA If the pole structure of the F(z) in the above equations is
not given explicitly, we are not able to calculate the residues analytically. But in case of a
function F(z) that is analytic everywhere except a certain region on the real axis an ingenious
path in the complex plane can be created that eases the numerical summation.

We start from the path 02 indicated in Fig. Al Assuming the function F'(z) having poles
only in the interval [—€2',0[ and ]0, Y] on the real axis and declining faster than 1, the path
C5 can be deformed to the path indicated in Fig. A2 The partial paths C,, C;, C}, and C},
are infinitesimal close to the real axis while C, and C’ are infinitesimal close to the imaginary
axis. The paths Cy, Cy, Cy and '} on the other hand are at an arbitrary distance 9. As we

are considering Green's functions the cutoff €2 is an upper limit of the spectrum, i.e.
ImF(w+i07) =0 ; lw| > Q. (A.7)

Furthermore we can use the relation F'(z*) = F*(z). In the following the parts contributing
to the integration path will be analyzed in detail.
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Figure A.2: Contour for the evaluation of a Matsubara sum of a function with poles only
in the interval [—§Y,0[ and ]0,€Y] on the real axis.

The contribution from the paths C, and C! vanishes as these paths are at infinity. Next we
consider the horizontal paths which become

€ F(z € F(z
Sp = —— dz 62() + — dz ﬁz()
2 Jopregrcpre, €7 € 2 Jopionionrey, €7 €
€ F(z
= _/ dzlm Bz( ) . (A.8)
T J Cyt-Ca+Cy+Cy, e —¢€

It is noteworthy, that for a vanishing § the common real axis integration is recovered. With
Eq. (A1) the horizontal contribution reduces to

o » 0
€ Flw+id) 7—o 1 :
At last, we have to consider the vertical paths:
F F
S, = L dz (2) + L dz (2)
2mi Joopor € —€ 2miJo e €97 —€
F
£ - g g4, (A.10)
21 Jo 4o €97 — €
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The first two of the three parts defined in the above equation become:

1) ! 0 / :
o« ., F(=Y +ix) . F(=Q +ix)
Se = 27i J, ! dxeﬁ( Vi _¢ | om /_52 dxeﬁ(*g’”m) —¢€
6 / § / .
€ ., F(=Y +ix € , F(=Q —ix)
27, ! dxeﬁ( Wiz) _ ¢ 27ri/0 (=0) d$65(*9/*”) —¢€
6 / 4
G F(-Q +iz) 7—o 1 ;.
J ! .
€ F<Q + 'lx) T—0

There is only the integration close to the imaginary axis left. But as this integral is simply
given by the Matsubara sum over the frequencies |w;| < § we obtain

lmaac 5
F —o 1
s, = & i FG) = 2T 3" ReF(iw) T=°—/ dzReF(iz) ,  (A.12)
2mi Joyop €7 — e 10 T Jo

with I,,q, such that |w;| < § holds. Combining all results in case of 7" = 0 yields:

5 0 5
5 =" —l/ drReF(—Q' +ix) — l/ dwlmF (w4 id) + l/ dxReF (iz) (A.13)
T Jo T J_qn T Jo

Compared to the standard integration along the real w-axis we have to evaluate the additional
integrals along the vertical paths C. and C, which compensate the finite value of §. But
we gain a more smooth integration along C, as this integration path is at the distance ¢
from the poles of F'(z). Hence, only a few points have to be calculated for the numerical
integration. Note, that one has to use enough points for the path C, near w; = 0 in case of
small temperatures and F(z) having poles close to w; = 0.
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A.3 Particle-hole transformation in one spin-channel

The focus of this thesis is on the calculation of two-particle properties of high-temperature
superconductors for which we use the Hubbard model. To access the superconducting phase
a pairing Weiss field is introduced as a variational parameter in the VCA besides the chemical
potential. Furthermore the antiferromagnetic phase is accounted for through an antiferromag-
netic Weiss field (see section BBl for details). Hence, we explicitly break the U(1) and SU(2)
invariance of the Hubbard model, but the S* quantum number is still conserved. However,
for practical reason it is advantageous to restore the U(1) symmetry as each particle-number
subspace of the full Hilbertspace can be constructed for its own. For this reason we introduce
a particle-hole transformation (ph-trafo) for only one spin channel (here spin-down):

ph-trafo ph-trafo

Cat — Caf : clT — cLT (A.14)
ph-trafo ph-trafo

Cal — cll ; cll — Cqy (A.15)

The one-band Hubbard hamiltonian will be transformed as:

H = - Z(ti]’ - uéij)cjacjo +U Z NG|
1,0,0 i
ph-trafo
l
Hiw = =Y (tiy — n6i)(chejr = chiei)) =UD mamiy + Nu+ NyU - (AL16)
0, i

And the Weiss fields (see section BI.H for details) transform as:

Nij
ASC(Ra> = hSC Z é(caﬁcajl —+ hC)
AAF(‘Ra) = hAF Z(na“ — nail)eQAF”
AL(R,) = Z(naiT + Ngi))
ph-trafo
!
Ag’hC(Ra) = hSC Z %(Caﬁcljl + hC) (A].?)
A%(R)) = har Z(naiT + g )€RATT (A.18)
Aﬁh(Ra) = Z(naiT — Naiy) + Np/ (A.19)

Clearly, the SC-field transforms to a spin-flip term, wherefore the U(1) symmetry is restored
but the prize is the violation of the S* conservation.
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At last we present the spin-down particle-hole transformed normal and anomalous Green's

functions:
Gt (1 7) = ~(Te{ear (el ()
G, = =l () "
Fag(r,7') = (T {car (Mo (7)) "
Fis(r,7') = —(To{ch, (7)el (r))) e

)
(T {car(r)ely (7')
)

The GZ%H(T, 7') denote spin-flip Green's functions.
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A.4 Avoiding singularities in the vertex function

We mentioned in section the numerical problems occurring from the inversion of the
exact cluster susceptibility in the superconducting phase. To avoid these problems we apply
some trivial algebraic transformations to Eq. (BZ1) in order to derive an expression without
an inversion of the exact cluster susceptibility for its own. There are two possible expression

either containing the inversion of the x4 (q,iw?,) or the x§(iw?,).

x4 A (q,iwh,)
. o o/ o o/ . “1 .. -1
x(@. k) = il (X)X (i) + x5(ish) [ g, iwh)] " Xt
x x5 (iw,) (A.24)
X6 (1wy,)

. o o . . o/ 1 .. -1
Xl i) = xCiwh) (X (iwh) +xE g i) — xE a0 id,) [xaGh)] X Gl )
xxy (g, iwy,) (A.25)

In the numerical implementation the latter expression is favorable as the x§(iw?,) has to be
inverted only once for all of the values of gq.
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