
Published in: European Journal of Radiology 

doi.org:10.1016/j.ejrad.2021.109817   

 Self-configuring nnU-net pipeline enables fully

automatic infarct segmentation in late enhancement MRI after

myocardial infarction 

Julius F. Heidenreicha⁎, Tobias Gassenmaiera, Markus J. Ankenbrandb,c, Thorsten A. Bleya, Tobias Wecha

a Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany
b Department of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Würzburg, Germany

c Center for Computational and Theoretical Biology, University of Würzburg, Germany

⁎Corresponding author: heidenreic_j@ukw.de

Highlights

 A 2D nnU-net trained for segmentation of myocardial scar tissue in late enhancement

MRI using magnitude and PSIR reconstructions as dual contrast input predicted labels

of myocardium with a Dice similarity coefficient of 0.83 ± 0.03 and of scar tissue with

0.72 ± 0.08.

 No significant difference was observed when comparing the performance of trained

2D nnU-net using a single contrast input (magnitude or PSIR) or a dual contrast input

(magnitude and PSIR). 

 The  nnU-net  pipeline  enables  the  training  of  a  network  with  a  high  performance

without the necessity for manual configuration of the network design and the choice of

hyperparameters. 
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Abstract

Purpose

To  fully  automatically  derive  quantitative  parameters  from  late  gadolinium  enhancement

(LGE) cardiac MR (CMR) in patients with myocardial infarction and to investigate if phase

sensitive or magnitude reconstructions or a combination of both results in best segmentation

accuracy.

Methods

In  this  retrospective  single  center  study,  a  convolutional  neural  network  with  a  U-Net

architecture with a self-configuring framework (“nnU-net”) was trained for segmentation of

left ventricular myocardium and infarct zone in LGE-CMR. A database of 170 examinations

from 78 patients with history of myocardial infarction was assembled. Separate fitting of the

model was performed, using phase sensitive inversion recovery, the magnitude reconstruction

or both contrasts as input channels.

Manual labelling served as ground truth. In a subset of 10 patients, the performance of the

trained models was evaluated and quantitatively compared by determination of the Sørensen-

Dice similarity coefficient (DSC) and volumes of the infarct zone compared with the manual

ground truth using Pearson’s r correlation and Bland-Altman analysis. 

Results

The  model  achieved  high  similarity  coefficients  for  myocardium  and  scar  tissue.  No

significant difference was observed between using PSIR, magnitude reconstruction or both

contrasts as input (PSIR and MAG; mean DSC: 0.83 ± 0.03 for myocardium and 0.72 ± 0.08

for scars). A strong correlation for volumes of infarct zone was observed between manual and

model-based approach (r = 0.96), with a significant underestimation of the volumes obtained

from the neural network.



Conclusion

The self-configuring nnU-net achieves predictions with strong agreement compared to manual

segmentation, proving the potential as a promising tool to provide fully automatic quantitative

evaluation of LGE-CMR.

Abbreviations 

2D - two dimensional

3D - three dimensional

CMR - cardiac magnetic resonance imaging

DSC - Sørensen-Dice similarity coefficient

LGE - late gadolinium enhancement

MAG - magnitude reconstruction

MI - myocardial infarction

NN - neural network

PSIR - phase sensitive inversion recovery
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Introduction 

During acute and chronic myocardial  infarction (MI), detection and quantification of non-

viable myocardium is evolving as biomarker for disease management and treatment planning,

as  it  can  be  used  as  predictor  for  disease  severity  and  for  disease  monitoring  1,2.

Cardiovascular  magnetic  resonance  (CMR) with  late  gadolinium enhancement  (LGE)  has

been established as reference technique for the measurement of the volume of viable and non-

viable tissue 3,4. For qualitative and reproducible evaluation of CMR, recommendations for a

standardized post-processing were proposed by the Task Force for Post Processing of the

Society for Cardiovascular MR (SCMR), including dedicated hard- and software as well as

instructions for a standardized manual post-processing by experienced readers 5. 

Neural networks, specifically trained with pre-labeled datasets, have evolved into promising

approaches for fully automatic image segmentation 6–8 . In particular, a plethora of studies has

proven  the  power  of  convolutional  neural  networks  in  pixel  classification  and  semantic

segmentation of myocardial tissue in recent years  9–15. For the segmentation of myocardial

infarct zones within LGE MR images, Fahmy et al. 11 trained a 2D U-net architecture using a

cohort of patients with hypertrophic cardiomyopathy. Inference on test data resulted in a mean

Sørensen-Dice  similarity  coefficient (DSC)  of  0.58.  If  the  myocardium  was  manually

segmented by a human operator as a pre-step, the performance of a NN-based myocardial scar

segmentation could be increased to a median DSC of 0.71 in Moccia et al. 10. While the latter

approach  still  requires  cumbersome  pre-processing,  DSC  of  the  fully  automatic  method

presented by Fahmy et al. was rather low.

One general issue of all cited deep learning approaches is the complex choice of the exact

design and configuration of the network architecture as well as the according training. While

the subsequent application of the networks might provide highly automatic and fast semantic

image  segmentation,  the  optimization  process  is  typically  manual  and  not  seldomly



represented  by  a  time-consuming  heuristic  search  for  the  best  setup.  Even  worse,  this

frequently results in sub-optimal solutions,  not unleashing the full potential  of the generic

model 16.

In Isensee et al. 17, a self-configuring solution for deep learning based semantic segmentation

was  introduced,  which  is  condensing  general  rules  e.g.  for  detailed  network  design  and

hyperparameter  choices  from  a  broad  spectrum  of  empirical  observations.  As  no  new

architecture, but rather an automated procedure in terms of a robust end-to-end deep learning

pipeline  was presented,  the underlying  network was dubbed nnU-net  (‘no new net’).  The

authors reported on superior performances with respect to various specialized deep learning

solutions for medical imaging, ranging from the segmentation of liver tumors, to cell tracking

to manifold types of post processing in cardiac imaging.  

In  this  paper,  we  trained  and  evaluated  a  2D  version  of  nnU-net  for  fully  automatic

segmentation  of  infarct  zones  in  LGE  MR  images,  using  MRI  data  in  phase  sensitive

reconstruction  (phase sensitive  inversion recovery,  PSIR  18)  and magnitude  reconstruction

from a cohort of patients with history of myocardial infarction. nnU-net was trained with both

contrasts (PSIR and magnitude reconstruction) separately, as well as with a combined version

using both contrasts as separate input channels. Performances of the obtained models were

ultimately evaluated using a test dataset, previously unseen by nnU-net. 



Methods

The  data  were  collected  and  analyzed  in  accordance  with  the  relevant  guidelines  and

regulations. All methods of this study were performed in accordance with the Declaration of

Helsinki.  The study was  approved by the  institutional  review board  of  the  University  of

Würzburg and the requirement of a written informed consent by the study participants was

waived due  to  the  retrospective  study design  (IRB code:  DE/EKBY13,  decision  number:

20200324-01). The data was fully anonymized for data analysis. 

Image database and data curation

In this retrospective single-center study we assembled a database of standardized contrast-

enhanced CMR examinations between 2015 and 2018 on a 3T MR system (MAGNETOM

Prisma,  Siemens  Healthcare,  Erlangen,  Germany)  from  patients  with  the  diagnosis  of

myocardial  infarction. Inclusion criterium was the known history of myocardial infarction.

Patients with acute and chronic myocardial infarction were included. The timepoints of MR

imaging were 0-5 days after infarction (acute MI), 7 days after infarction (subacute MI) up to

12 months after infarction (chronic MI). Exclusion criteria were extensive artifacts as well as

incomplete datasets due to interrupted image acquisition. The finally assembled database of

170 examinations originate from 78 patients (65 men, mean age 64.3 years, age range 35 – 87

years). 61 datasets were acquired in the setting of acute MI, 59 datasets were acquired during

subacute MI and 50 datasets  were acquired after 12 months in the setting of chronic MI.

Further demographics are summarized in Table 1.

LGE images in short axis orientation were acquired from base to apex using a 2D fast low-

angle  shot  inversion recovery  sequence  10 min after  intravenous  injection  of  a  Gd-based

contrast agent (DOTA-Gd). Both PSIR and magnitude reconstructions (MAG) of the images

as well as a dual contrast version (PSIR and MAG as separate channels, referred to as DUAL)

were stored in NIfTI format. Thereby, images were cropped to a uniform size of 128 × 128



pixels. The field of view was chosen such that a generous distance to the heart was ensured

for  typical  planning  of  short  axis  orientations.  All  segmentation  labels  were  resized

accordingly.

The  database  of  170  examinations  (1902  images)  was  separated  patient  wise  into  159

examinations  for  training  and  cross-validation  (1806  images,  68  patients)  and  11

examinations for testing (96 images, 10 patients). There was no interference between training

and testing data. Repeated examinations in a single patient were holistically attributed to one

of  the  two groups.  For  improved class  balancing,  edge  slices  without  infarct  zones  were

excluded from training  data.  In  addition,  complementing  images  acquired outside the  left

ventricle, images afflicted by artifacts and slices showing a large number of flying pixels in

the manual  segmentation masks (see next  section)  were removed.  This resulted in a  total

number of 885 images for training with present infarct in 699 images (79 %) and 96 images

for testing with present infarct in 72 images (75 %; Figure 1). 

Definition of Ground Truth     

For  the  definition  of  the  myocardium,  the  endo-  and epicardial  contours  were delineated

manually  by  an  experienced  operator  (x.x.,  board  certified  radiologist  with  8  years  of

experience in CMR) using cvi42 (Circle Cardiovascular Imaging Inc., Calgary, Canada) and

the original images in DICOM format.  Additionally,  a reference contour of at least 4 x 4

pixels was delineated for the definition of remote myocardium (myocardium without visual

late  gadolinium enhancement  at  the  opposite  site  of  infarct  zone)19.  For  quantification  of

infarct zone, enhanced areas were obtained numerically within the magnitude reconstruction

employing the n+5∙SD approach as recommended by the Society for Cardiovascular Magnetic

Resonance (SCMR)  5. In this technique, pixels with a signal intensity which is higher by 5

times of the standard deviation compared with remote myocardium are defined as infarct

zone.  Segmented  volumes  were  reviewed  by  the  experienced  operator  and  corrected,  if

needed. The according PSIR reconstructions were included in this review process. Papillary



muscles  in  the  left  ventricle  were  excluded  from  segmentation.  Areas  of  microvascular

obstruction were added manually to the area of infarction, yielding final labels with a pixel

classification for background, myocardium and infarct zone. 

Neural network

A  2D  nnU-net  was  set  up  and  trained  in  python  as  described  in  the  paper  17 and  its

accompanying  online  repository  20.  Its  fixed  design  relies  on  plain  convolutions  (conv),

instance normalization (norm) and leaky rectified linear units (ReLU). Resolution is reduced

after two blocks consisting of conv – normalization – ReLU by means of strided convolutions.

In the upsampling path transposed convolutions are employed.

The network architecture is adapted e.g. with respect to its depth by means of fixed rules on

information gathered from data fingerprints. Further rule-based adjustments are the batch and

the patch size, data normalization and resampling choices. 

Training is performed in 5-fold cross-validation with 1000 epochs for each run. Stochastic

gradient descent is used for optimization with an initial learning rate of 0.01, continuously

decreased close to zero towards the final epoch. A combination of dice loss and cross entropy

loss  is  used  as  cost  measure.  To  reduce  oversampling,  a  range  of  data  augmentation

transformation is applied including scaling, rotation, addition of Gaussian noise and blurring.  

More details of the fixed, rule-based and empirical parameter choices of the nnU-net pipeline

can be found in 17 and its supplements.

The trainings of the different models in this work were performed on two Nvidia Titan XP

and two Nvidia Titan RTX GPUs.

Evaluation

The models which were trained separately for PSIR, MAG and DUAL were applied to the

corresponding PSIR,  MAG and DUAL images of  the previously unseen 11 patients.  The

obtained areas for the two classes of myocardium and infarct  zone were compared to the

ground truth of manual segmentations by calculating the DSC. LGE areas smaller than three



pixels were set to zero in this evaluation. Analysis of variances (ANOVA) was used to test for

significant differences. 

Furthermore,  the  volume  of  infarct  zones  was  determined  and  compared  between  the

automatic  deep-learning-based and the  reference  manual  approach  by means  of  a  Bland-

Altman plot.

MATLAB (v2020a, TheMathWorks, Natick, USA) was used for all analysis.



Results

Self-configuration of the nnU-net pipeline

The preprocessing of a data fingerprint by the nnU-net pipeline resulted in a training patch

size of 128  × 128 and a batch size of 44 for all groups (PSIR, MAG, DUAL). The trained

network architecture has six resolution stages, convolution kernel sizes were [[3, 3], [3, 3], [3,

3],  [3,  3],  [3,  3],  [3,  3]]  and downsampling  strides  [[2,  2],  [2,  2],  [2,  2],  [2,  2],  [2,  2]].

Automatic segmentation of one 2D image took 0.1 s using the trained nnU-net on a Nvidia

Titan RTX GPU.

Comparison of the model’s predictions to the ground truth

Obtained DSC values are listed in Table 2 as means  ±  standard deviations.  Means are in

general higher when calculated across patients (11 3D-samples) as compared to the evaluation

per-slice (97 2D-samples).  The values differ only slightly between the different  groups of

PSIR, MAG and DUAL, indicating similar performance of the automatic segmentation. This

was confirmed by statistical testing of DSC, which did not indicate a significant difference

(p>0.05) between the three groups, neither for myocardial nor for infarct size (both slice- and

patient-wise evaluation). Exemplary images comparing the automatic segmentation performed

by the nnU-net with manual ground truth are depicted in Figure 2.

Volumetry of infarct zone

Comparison  of  the  infarct  volumes  between  nnU-net  derived  and  manual  segmentations

resulted in high Pearson correlation coefficients of r = 0.96 for the PSIR approach, r = 0.92

for  MAG and  r  =  0.96  for  DUAL.  nnU-net  underestimates  infarct  volumes  with  a  bias

(difference of means with respect to the mean of the ground truth) of 23%, 24% and 23% for

PSIR, MAG and DUAL, respectively (Figure 3). The drifts are throughout significant (p <

0.05); corresponding standard deviations for the differences appear comparatively low (8.5

cm3, 8.1 cm3 and 7.3 cm3).



Discussion

In this study a deep learning approach based on a two-dimensional neural network with a U-

net architecture and a  self-configuring training pipeline (nnU-net)  was evaluated for fully

automatic  segmentation  of  infarct  zones  in  late  gadolinium  enhanced  cardiac  MRI.  The

network was trained using a database of 885 images from 68 patients (159 examinations) and

subsequently  tested  in  10  patients  (97  images;  11  examinations).  Three  networks  were

investigated  separately,  corresponding  to  phase  sensitive  (PSIR)  and  magnitude

reconstructions (MAG) of the inversion recovery acquisition, as well as one combined group

with both contrasts as input (DUAL). 

The achieved DSC values for the test dataset were not significantly different for the three

contrast groups, suggesting that the choice between the two LGE approaches might not be

decisive for the subsequent evaluation and quantification. It is noteworthy, however, that the

results might be biased by the way ‘ground truth’ is defined in our dataset. Both MAG and

PSIR images  were  used  for  determining  the  initial  manual  segmentation:  Intensity-based

automatic  labelling  of infarct  zones  was performed on the  MAG depiction  by use of the

n+5∙SD approach, while PSIR images were used as supplemental in the final supervision and

refinement of segments by the expert radiologist. These manual segmentation labels were then

used for all three groups, both for training and testing. Even though not practical, histological

correlates would be necessary for real ‘ground truth’ and labels would need to be determined

fully independently for the three groups. While the latter point is not entirely theoretical it

comes with an extreme additional expenditure of manual segmentation time. Nevertheless, the

result proves that the initial  information gathered in both contrasts by the expert could be

extracted from each individual alone by the neural network.

The segmentation performance for infarct zones as measured by DSC was overall high for the

nnU-net approach as compared to the fully automated method presented by Fahmy et al  11,



who reported a DSC per slice of 0.58 ± 0.28 and per patient of 0.57 ± 0.23. According values

in our study were 0.67 ± 0.24 (per-slice) and 0.72 ± 0.08 (per-patient) for the DUAL approach

(other  groups  similar  and not  significantly  different).  These  values  obtained  by the  fully

automated procedure correspond well with the performance achieved by the semi-automatic

approach published by Moccia et al.10 (median DSC 0.71, inter-quartile-range 0.32), which,

however, comes with significant manual operator time for data pre-processing.

Infarct  volumes  showed  overall  strong  correlation  between  automatic  determination  and

manual reference. For the mean absolute values, however, a significant underestimation for

the nnU-net was observed. A bias of similar  extent was already observed in the study of

Fahmy et al.11, where the presented convolutional network predicted a infarct volume of 6.1 ±

7.4 cm3 compared to a volume of 7.5 ± 8.5 cm3 from the manual reference. While in11 no loss

function was specified,  the nnU-net used in our study partly relies on Dice loss, which is

known to potentially introduce a volume bias in the case of uncertainty21, which is certainly

given for the very challenging task of infarct segmentation. A study of various loss functions

and their effect on the final volume was, however, beyond the scope of our work.

A limitation of the presented study is the size and scope of our data for training and testing the

neural  network.  Diagnostics  of  LGE  imaging  in  clinical  routine  is  predominantly  of

qualitative nature such that segmentation labels are typically scarce. As only data from our

institute was applied, generalization for other scanners and sites needs to be proven in further

studies. With more data, application of 3D models as e.g. included in the nnU-net framework

become meaningful and promising. Furthermore, the network was trained using a database

comprising patients in acute and chronic state of myocardial infarction; the pixel classification

layer and the softmax were trained to segment areas of late gadolinium enhancement, but not

to  differentiate  acute  or  chronic  MI.  It  would  be  tempting  to  add  another  classifier  to

differentiate  between  acute  and  chronic  infarction  as  presented  by  Larroza  et  al.  using

machine learning driven texture analysis22. 



In  conclusion,  the  presented  model  for  automatic  segmentation  of  infarct  zones  in  late

gadolinium enhancement cardiovascular MRI showed good performance without the need of

any image pre-procession and pre-definition of region of interest and with higher mean DSC

as  presented  in  earlier  fully  automatic  deep  learning-based  approaches.  No  significant

differences  with  respect  to  DSC  was  found  between  the  typical  contrasts  of  magnitude

reconstruction and PSIR and neither with respect to a joint input using both contrasts. These

promising results suggest deep learning algorithms to replace the cumbersome and operator-

biased manual segmentation of late gadolinium enhancement CMR images in near future.
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Figures

Figure 1:  Flow chart showing study design for image assembly and distribution to training, cross-

validation and testing.

Figure 2: Exemplary illustration of automatic segmentation performed by nnU-net  for the DUAL

group. In a) an example with good performance (DSCmyo = 0.89, DSCscar = 0.89) is depicted. No reflow

areas were added to infarct zone as labelled in the training data. The second example (b) shows a

specimen with lower performance of the trained model as measured by the DSC (DSC myo = 0.67,

DSCscar = 0.33). Myocardium was interpreted thicker as in the manual reference, which both affected

the results form myocardium and infarct zone. MAG, magnitude reconstruction; PSIR, phase sensitive

inversion recovery.

Assembled Image Database, 
n = 170 patients (1903 images)

Testing
n = 11 patients

(97 images)

n = 159 patients
(1806 images)

Training and cross validation
n = 159 patients

(885 images)

Exclusion of edge slices
without myocardium for class

balancing



Figure 3: Bland Altman Analysis of Infarct Volumes. A general underestimation of the trained model

is  apparent.  Underestimation  was  statistically  significant  compared  to  the  manual  ground  truth

(indicated  by  p-value).  SD,  standard  deviation;  Vol,  volume;  man,  manual;  MAG,  magnitude

reconstruction; PSIR, phase sensitive inversion recovery; DUAL, dual input of MAG and PSIR. 



Tables

Table 1: Summary of patient demographics 

overall training testing
n patients 78 68 10

men 64 58 5
mean age 64.3

age range 35 – 87

women 14 8 5
mean age 64.1

age range 48 - 77

n examinations 170 159 11
acute MI (0-4 days) 61 56 5

subacute MI (7 days) 59 58 1

chronic MI (12 months) 50 45 5

n images 1902 1806 96
presence of infarction 699 (79 %) 72 (75 %)

Data of patients and examinations is shown in absolute numbers and regarding patient age as mean.

Patient age is shown in years. 

Table 2: Comparison of trained nnU-net predictions for myocardium and infarct zone using PSIR,

magnitude or both contrasts as input.

myocardium
per slice

myocardium
per patient

infarct zone
per slice

infarct zone
per patient

PSIR 0.80  ± 0.11 0.82  ± 0.03 0.66  ± 0.22 0.71  ± 0.08

MAG 0.81  ± 0.09 0.82 ± 0.03 0.67 ± 0.23 0.72  ± 0.10

DUAL 0.81 ± 0.10 0.83 ± 0.03 0.67 ± 0.24 0.72 ± 0.08



Data shows Dice-similarity coefficients as mean ± standard deviation across all patients and all slices,

respectively. Results are shown for the two classes myocardium and infarct zone, calculated for the

nnU-nets trained by the different groups PSIR, MAG and DUAL. PSIR, phase sensitive inversion

recovery; MAG, magnitude; DUAL, input of PSIR and MAG.  
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