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Abstract
This thesis, first, is devoted to the theoretical and numerical investigation of an augmented
Lagrangian method for the solution of optimization problems with geometric constraints,
subsequently, as well as constrained structured optimization problems featuring a composite
objective function and set-membership constraints. It is then concerned to convergence and
rate-of-convergence analysis of proximal gradient methods for the composite optimization
problems in the presence of the Kurdyka–Łojasiewicz property without global Lipschitz
assumption.

We employ an (safeguarded) augmented Lagrangian approach for the optimization
problems with structured geometric constraints, which, to the best of my knowledge, is at
the first time applied to such programs with general constraints. Specifically, we study the
situations where parts of the constraints are nonconvex and possibly complicated. The
key idea behind our method is to keep those complicated constraints explicitly in the
constraints and to penalize only the remaining constraints by an (safeguarded) augmented
Lagrangian function. The resulting subproblems are then solved by the spectral gradient
method, a problem-tailored projected gradient-type method, which generates an inexact
Mordukhovich-stationary point of these subproblems rather than Clarke-stationary point
like most works. Furthermore, spectral gradient method is first here generalized to solve
the programs with nonconvex constraint set. Nevertheless, the overall algorithm computes
so called M-stationary points of the original problem under a mild asymptotic regularity
condition. Some illustrative numerical examples visualize the power of our approach.

We then generalize such optimization problem to the composite one where the sum of a
continuously differentiable function and a merely lower semicontinuous function needs to be
minimized. Inspired by the above work, we study the stationarity and regularity concepts,
note that the latter is not a constraint qualification in the narrow sense since it is relevant
to the nonsmooth part of the objective function. Meanwhile, an (safeguarded) augmented
Lagrangian scheme is used to penalize the constraints which have been reformulated by the
slack variables, the resulting subproblems are solved approximately by PANOC+ which is a
kind of proximal gradient method. Then M-stationarity of the original problem is derived
eventually under a mild asymptotic regularity. Some numerical examples demonstrate the
effectiveness of the algorithm and the versatility of the constrained composite programs,
furthermore the accelerated PANOC+ has a good performance on the bad-scaling and
ill-conditioning.

It is well known that proximal gradient algorithms are the classical methods to solve
the composite optimization problems. Most existing papers show the convergence of the
entire sequence by means of the global Lipschitz gradient of the differentiable part of and
Kurdyka–Łojasiewicz property of the objective function. Note that the requirement of the
global Lipschitz gradient is very restrictive except if the objective function is guaranteed
to be quadratic. Therefore some recent contributions try to overcome the global Lipschitz
condition by replacing it with a local one, where, however, the convergence of the entire
sequence fails to be obtained, despite every accumulation point of the generated sequence
being M-stationary. We, in this work, recover the convergence of the entire sequence and
hence the rate-of-convergence results of proximal gradient method only with the aid of the
local Lipschitz condition as well as the Kurdyka–Łojasiewicz property, neither the global
Lipschitz condition nor the boundedness of iterates and stepsizes.
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Zusammenfassung
Diese Diplomarbeit widmet sich zunächst der theoretischen und numerischen Untersuchung
eines erweiterten Lagrange-Verfahrens zur Lösung von Optimierungsproblemen mit ge-
ometrischen Nebenbedingungen, in weiterer Folge, sowie eingeschränkten strukturierten Op-
timierungsproblemen mit einer zusammengesetzten Zielfunktion und Mengenzugehörigkeits-
beschränkungen. Es befasst sich dann mit der Konvergenz- und Konvergenzanalyse von
Proximalgradientenverfahren für zusammengesetzte Optimierungsprobleme in Gegenwart
der Kurdyka–Łojasiewicz-Eigenschaft ohne globale Lipschitz-Annahme.

Für die Optimierungsprobleme mit strukturierten geometrischen Nebenbedingungen
verwenden wir einen (abgesicherten) erweiterten Lagrange-Ansatz, der meines Wissens zum
ersten Mal auf solche Programme mit allgemeinen Nebenbedingungen angewendet wird.
Insbesondere untersuchen wir die Situationen, in denen Teile der Beschränkungen nicht
konvex und möglicherweise kompliziert sind. Die Schlüsselidee hinter unserer Methode
besteht darin, diese komplizierten Einschränkungen explizit in den Einschränkungen zu
halten und nur die verbleibenden Einschränkungen durch eine (abgesicherte) erweiterte
Lagrange-Funktion zu bestrafen. Die resultierenden Teilprobleme werden dann durch
die Spektralgradientenmethode gelöst, eine auf Probleme zugeschnittene Methode des
projizierten Gradiententyps, die einen ungenauen Mordukhovich-stationären Punkt dieser
Teilprobleme erzeugt und nicht wie die meisten Arbeiten einen Clarke-stationären Punkt.
Darüber hinaus wird hier zunächst das Spektralgradientenverfahren verallgemeinert, um
die Programme mit nichtkonvexem Beschränkungssatz zu lösen. Trotzdem berechnet
der Gesamtalgorithmus sogenannte M-stationäre Punkte des ursprünglichen Problems
unter einer milden asymptotischen Regelmäßigkeitsbedingung. Einige anschauliche Zahlen-
beispiele veranschaulichen die Leistungsfähigkeit unseres Ansatzes.

Wir verallgemeinern dann ein solches Optimierungsproblem auf das zusammengesetzte
Problem, bei dem die Summe einer stetig differenzierbaren Funktion und einer lediglich
niedrigeren halbstetigen Funktion minimiert werden muss. Inspiriert von der obigen Arbeit
untersuchen wir die Konzepte Stationarität und Regularität, beachten Sie, dass letzteres
keine Einschränkungsqualifikation im engeren Sinne ist, da es für den nicht glatten Teil der
Zielfunktion relevant ist. Währenddessen wird ein (abgesichertes) erweitertes Lagrange-
Schema verwendet, um die durch die Schlupfvariablen neu formulierten Einschränkungen
zu bestrafen, die resultierenden Teilprobleme werden ungefähr durch PANOC + gelöst,
was eine Art proximale Gradientenmethode ist. Dann wird schließlich die M-Stationarität
des ursprünglichen Problems unter einer milden asymptotischen Regelmäßigkeit abgeleitet.
Einige numerische Beispiele demonstrieren die Effektivität des Algorithmus und die Vielseit-
igkeit der eingeschränkten zusammengesetzten Programme, außerdem hat das beschleunigte
PANOC+ eine gute Leistung bei schlechter Skalierung und schlechter Konditionierung.

Es ist allgemein bekannt, dass proximale Gradientenalgorithmen klassische Methoden
sind, um die zusammengesetzten Optimierungsprobleme zu lösen. Die meisten existieren-
den Arbeiten zeigen die Konvergenz der gesamten Folge mittels des globalen Lipschitz-
Gradienten des differenzierbaren Teils von und der Kurdyka–Łojasiewicz-Eigenschaft der
Zielfunktion. Beachten Sie, dass die Anforderung des globalen Lipschitz-Gradienten sehr
restriktiv ist, es sei denn, die Zielfunktion ist garantiert quadratisch. Einige neuere Beiträge
versuchen daher, die globale Lipschitz-Bedingung zu überwinden, indem sie sie durch
eine lokale ersetzen, wobei jedoch die Konvergenz der gesamten Folge nicht erreicht wird,
obwohl jeder Häufungspunkt der erzeugten Folge M-stationär ist. Wir gewinnen in dieser
Arbeit die Konvergenz der gesamten Sequenz und damit die Konvergenzratenergebnisse
der proximalen Gradientenmethode nur mit Hilfe der lokalen Lipschitz-Bedingung sowie



der Kurdyka–Łojasiewicz-Eigenschaft, auch nicht die globale Lipschitz-Bedingung noch die
Beschränktheit von Iterationen und Schrittweiten.
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1. Introduction

Constrained optimization problems have varieties of applications in the practical areas
of physics, engineering, economics, medicine, information science, and so on. Augmented
Lagrangian or multiplier penalty methods are the most classical methods for tracing the
solution(s) of the constrained nonlinear programs, see [31] as well as the other references
on this topic [31,34,62]. In particular, the augmented Lagrangian framework can deal with
large-scale nonconvex constrained problems, enjoying good warm-starting capabilities and
avoiding ill-conditioning, which is often superior to pure penalty methods, because of a
pure penalty approach to deal with constraints without softening them, [145,148]. As the
augmented Lagrangian scheme constitutes a framework, rather than a single algorithm,
several augmented Lagrangian-type methods have been presented in the past decades,
expressing the foundational ideas in different flavors. Some prominent contributions are
those in [31,34,62,79, 101,145], and for primal-dual methods [76]. The recent book [34]
proposed a slight modification of this classical augmented Lagrangian method, which uses
a safeguarded update of the Lagrange multipliers and has stronger global convergence
properties compared to the classical augmented Lagrangian or multiplier penalty approaches.
Moreover, the so-called safeguarded augmented Lagrangian method has been applied to
many kinds of optimization problems with disjunctive constraints, see [7, 81,92,97,135].

In this thesis, a safeguarded augmented Lagrangian method is allowed to trace the
suitable stationary points of the (composite) nonlinear nonconvex optimization problems
with generally structured geometric constraints. The core idea behind the approach is
to penalize the set-membership constraints by the augmented Lagrangian function and
keep the remaining simple-to-project constraints (if they exist) explicitly in the constraints.
Then some approaches need to be sought for the solutions of the resulting subproblems.

We in this thesis take two cases of the objective function of original problem (as
well as the corresponding subproblems) into account, on the one hand, the objective
function is single and continuous, then the solution methods for the resulting (constraint
or unconstraint) subproblems are reviewed in the books [31,34]. On the other hand, the
optimization problem has a generally composite objective function with a nonsmooth part,
it can naturally fall into the above one by easily setting the nonsmooth operator as zero
mapping. Conversely, a classical program with continuously single objective function can be
interpreted as a composite one if the nonsmooth part is regarded as the indicator function
of some set constraints of this problem. Therefore it seems a nearby idea to exploit the
composite form, i.e., specifically the sum of a continuously differentiable function and a
lower semicontinuous (typically nonsmooth) function, so that the underlying problems
are solved successfully. More precisely, the so-called proximal mapping of the nonsmooth
objective function must be available. The idea behind the definition of proximal mappings
is to interrelate the search for minimizers (or at least stationary points) with a fixed-point

1



2 1. Introduction

problem, and to apply a fixed-point iteration to the proximal mapping in order to tackle the
minimization of the underlying function. Combining the available oracles for the composite
objective functions in order to construct an algorithm to minimize the composite programs
leads to the development of so-called proximal methods, inaugurated by Moreau [125],
which can handle some nonsmooth, nonconvex and extended real-valued cost functions,
see [61,95,130,149].

The relationship between augmented Lagrangian and proximal methods could be
traced back to Rockafellar [139]. These approaches have been included in [69], where
some unconstrained, composite optimization problems whose nonsmooth term is convex
are considered. Inspired by this, the proximal augmented Lagrangian method has been
considered for constrained composite programs in [63, Chapter 1], however lacking of
theoretical guarantee and convergence analysis. A first step to overcome these drawbacks is
constituted by proximal gradient method, which dates back to [75]. It is worth to note that
proximal gradient algorithms can be interpreted as so-called forward-backward splitting
methods, see [45, 131] for their origins and [19] for a modern review. Meanwhile, proximal
gradient methods can cope with local Lipschitz continuous gradient of the part of smooth
cost function in the Euclidean setting, see [67,95].

Inspired by the above works, proximal gradient-type algorithms can be adopted as inner
solvers for augmented Lagrangian subproblems arising from the composite problems with
general nonlinear constraints. When the objective function is continuously single, they are
reduced as gradient descent-type methods.

This thesis first consider the optimization problem

min
x

f(x) s.t. G(x) ∈ C, x ∈ D, (P)

where X and Y are Euclidean spaces, i.e., real and finite-dimensional Hilbert spaces,
f : X→ R and G : X→ Y are continuously differentiable, C ⊂ Y is nonempty, closed, and
convex, whereas the set D ⊂ X is only assumed to be nonempty and closed (not necessarily
convex). Later, a more general composite optimization problem is considered

min
x

q(x) := f(x) + g(x) s.t. c(x) ∈ K, (CP)

where X and Y are Euclidean spaces, f : X → R and c : X → Y are smooth functions,
g : X → R := R ∪ {∞} is proper and lower semicontinuous, and K ⊂ Y is a nonempty
closed set. (CP) is called a constrained composite optimization problem because it contains
set-membership constraints and a composite objective function q := f + g. Obviously,
(CP) covers (P) totally by setting g := 0, c := (G; Id), and K := (C;D) (misuse of
spaces). Notice that the above f , g, G, c, D, and K, can be nonconvex, then (P) and (CP)
are fully nonconvex optimization problem. These settings are pretty general and cover,
amongst others, standard nonlinear programs, second-order cone and, more generally, conic
optimization problems [26,53], as well as many so-called disjunctive programming problems
like mathematical programs with vanishing, cardinality, complementarity, or switching
constraints, see [28, 29, 72, 119] for an overview and suitable references. Since X and Y are
finite Hilbert spaces, our models also cover matrix optimization problems like semidefinite
programs, low-rank approximation problems, or matrix completion problems [116].

One of the aims of the thesis is to apply safeguarded augmented Lagrangian methods
for finding the suitable stationary points of (P) and (CP), the resulting subproblems could
then be solved by gradient-type methods and proximal gradient-type methods, respectively,
which once return the approximate stationary points, the overall approaches trace finally
so-called Mordukhovich-stationary points of the original problems with the aid of a mild
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asymptotic regularity condition. The more specific processes are described in Chapter 3
and Chapter 4.

We subsequently consider the following unconstrained composite optimization problem

min
x

q(x) := f(x) + g(x) s.t. x ∈ X, (Q)

where f : X→ R is continuously differentiable, g : X→ R := R ∪ {∞} is lower semicontinu-
ous (possibly infinite-valued and nondifferentiable), and X denotes an Euclidean space. It
is evidently a general version of (CP). In order to minimize the function q : X→ R in (Q),
as mentioned above, its composite structure which allows for gradient steps with respect to
the continuously differentiable function f on the one hand and so-called proximal steps with
respect to g on the other hand, will be exploited, i.e., a splitting approach will be applied.
Throughout the last decades, experiments on numerous practically relevant optimization
problems have shown that splitting methods are superior to the direct applications of
standard methods from nonsmooth optimization to the function g. Most of the relevant
works about such type of approaches assume that g is convex [21,35,151,157]. Subsequently,
the nonconvex setting g currently has gained more attention [67,95,112,161] like the general
setting (Q). It is worth to note that the requirement of global Lipschitz ∇f is indispensable
for the convergence theories in the majority of associated works, which recently has been
reduced in [95] by a local Lipschitz one. However, the authors just obtained the convergence
result of the generated subsequence, rather than the entire sequence. Motivated by [95], in
Chapter 5, we recall a proximal gradient method proposed by [95] for (Q) and continue
to exploit the convergence results with respect to the whole sequence. The contributions
in Chapter 5 are that the entire sequence generated by the proximal gradient method
converges to a limit point with a suitable rate, provided that this point satisfies the
Kurdyka–Łojasiewicz property with respect to the objective function. The underlying
convergence theory is still based on a merely local Lipschitz assumption on ∇f , neither
its global Lipschitzness nor the (a priori) boundedness of the iterates and stepsizes is
presumed. To this end, it is stressed that the convergence analysis is independent on any
kind of (global) descent lemma and any additional convexity assumptions.

This thesis is virtually a summary of two papers [66,94] and one preprint [93], which
will be presented in a more unified way as soon as possible.

This thesis is organized as follows: Chapter 2 is devoted to some useful notations,
definitions, and results that are required to better understand the following chapters. In
this context, Section 2.1 recalls some common notes and basic preliminaries, and some
properties of local Lipschitz function, rate-of-convergence theory, and many types of cones
and subdifferentials which play fundamental roles through this thesis. Section 2.2 introduces
some basic concepts about nonlinear optimization problems, including stationary points
as well as some well-known constraint qualifications. We give some discussions about
Kurdyka–Łojasiewicz function in Section 2.3.

In Chapter 3, an augmented Lagrangian approach is proposed to solve the optimization
problems with structured geometric constraints (P), which is based on [94]. Therefore,
Section 3.1 tells the motivation that we use the (safeguarded) augmented Lagrangian
methods to address the optimization problems with the general forms, which are always
used to solve some specific optimization problems with special constraints, such as equality
and (or) inequality constraints. In Section 3.3, we generalize the spectral gradient method,
which is initially proposed for customizing the problems with convex constraints, here in
order to solve constrained optimization problems with nonconvex sets and furthermore find
the approximate M-stationary points of the original problem. The safeguarded version of
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the augmented Lagrangian method and convergence analysis are elaborated in Section 3.4,
the resulting subproblem is evidently a optimization problem with nonconvex constraint
set, which hence can be solved by the spectral gradient method. Section 3.5 introduces
some kinds of optimization problems with different cases of nonconvex set D, for instance,
disjunctive optimization problems, sparse optimization problems, and rank-constrained
matrix optimization problems, and gives the corresponding projection formulas on D.
Section 3.6 implements the proposed safeguarded augmented Lagrangian approach based
on the general spectral gradient method as the underlying subproblem solver, and illustrates
its effectiveness by some manual examples and three test practical examples, they are
MPCCs, recommender system problems, cardinality-constrained optimization problems, as
well as the famous MAXCUT problems.

Inspired by Chapter 3, we consider the more generally composite optimization problems
with set-membership constraints in Chapter 4, and use an augmented Lagrangian method
to find the underlying stationaries, the results are mainly from [66]. Since the objective
function is composite with a lower semicontinuous part, one has to adjust the standard
definitions of M-, AM-stationarity, as well as AM-regularity according to the definition
of subdifferential in order to ensure the convergence of proposed algorithm, the more
details are presented in Section 4.1. Note that the original problem can be reformulated by
the slack variables to avoid the infeasibility of projecting on set-membership constraints,
then Section 4.2 provides the theoretical guarantee that the reformulated problem has the
same M- and AM-stationary points with the original one. In Section 4.3, the safeguarded
augmented Lagrangian method is proposed in details and the corresponding convergence
results are given. The resulting subproblems and subproblem solvers are introduced in
Section 4.4, where PANOC+ are recalled as the subproblem solver which can generate an
approximate M-stationary point eventually. Section 4.5 gives some numerical examples to
illustrate the problem model is more flexible and our approach is powerful.

Chapter 5 is concerned to the convergence results of proximal gradient methods, which
are always used to solve the composite optimization problems, the work is inspired by [95]
where the algorithm is proposed and some convergence results of subsequence are given
under the requirement of local Lipschitz gradient of the smooth part of objective function,
and mainly based the preprint [93]. Note that the underlying global Lipschitz condition
has been widely used for proximal gradient methods, Section 5.1 presents the necessity
of weakening it into the local one. The specific algorithm and some underlying known
results from [95] are recalled in Section 5.2. Then Section 5.3 is eventually devoted to the
convergence of the entire sequence generated by the proposed algorithm as well as the
rate-of-convergence results with the mild requirement of Kurdyka–Łojasiewicz property
and local Lipschitz condition, which are necessary for the desired results. To ensure that
the algorithm is smoothly applied, we in Section 5.4, introduce how its corresponding
subproblems with a class of nonconvex nonsmooth regularization functions are realized.
Section 5.5 first illustrates that these nonconvex regularizers can generate sparser solution
than the convex one by some random academic problem and then demonstrates that
our method is better than Gurobi optimizer in generating the sparse solutions by some
testproblems including the image recovery problem and the portfolio problem.

We will close this thesis with some final conclusions and future works in Chapter 6.



2. Background

This chapter aims to provide some basic concepts and fundamental results in Euclidean
spaces which are supportive for the remaining chapters. Most of the material is a careful
collection of results mainly from the references [122,123,138,140], which will be provided
in a structured and clear way. Hence, we skip the proofs of most results and please refer to
associated references for the interested readers.

2.1 Basics about Variational Analysis

2.1.1 Notations and Preliminaries

Set X and Y are two Euclidean spaces, we use ⟨·, ·⟩ to denote the inner product and ∥ · ∥
to denote the associated norm. Let R denote the set of real numbers and N denote the
set of nonnegative integers, the n-dimensional Euclidean space is denoted by Rn, and the
n-dimensional nonnegative orthant is denoted by Rn+. Given a set A ⊂ X and an element
x ∈ X, we use A+ x := x+A := {x}+A := {x+ a | a ∈ A} for brevity. Furthermore,

dist(x,A) := inf{∥y − x∥ | y ∈ A}

denotes the distance of the point x to the set A with dist(x, ∅) := ∞. For given ε > 0,
Bε(x) := {y ∈ X | ∥y − x∥ ≤ ε} denotes the closed ε-ball around x.

The continuous linear operator f ′(x) : X→ R denotes the derivative of the continuously
differentiable function f : X → R at x ∈ X, and we will make use of ∇f(x) := f ′(x)∗1
where f ′(x)∗ : R→ X is the adjoint of f ′(x). This way, ∇f is a mapping from X to X.

We will in this thesis consider the sequential properties of sets and mappings (or
functions), so the following definitions are recalled.

Definition 2.1. We say {xk} ⊂ X is convergent to x̄ and write as xk → x̄, if limk→∞ xk = x̄
is satisfied.

Definition 2.2. An arbitrary subset C ⊂ X is called
(i) convex, if for all x, y ∈ C and λ ∈ (0, 1), it holds λx+ (1− λ)y ∈ C;
(ii) bounded, if there exists r > 0 such that ∥x∥ ≤ r for all x ∈ C;
(iii) closed, if for all sequence {xk} ⊂ C with xk → x̄, it holds x̄ ∈ C;
(iv) compact, if it is bounded and closed;
(v) a cone, if for all x ∈ C and α > 0, it holds αx ∈ C.

We say that an extended real-valued function g : X → R := (−∞,∞] is proper if
its domain dom g := {x ∈ X | g(x) < ∞} ≠ ∅. Moreover, we use epi g := {(x, t) ∈
X× R | g(x) ≤ t} to denote the epigraph of g.

5
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Definition 2.3. A function f : X→ R is convex on a convex set C ⊂ X, if for all x, y ∈ C
and λ ∈ (0, 1) such that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds. We say f is convex, if it is convex on X. The function f is concave if −f is convex.

We now introduce the definitions of lower and upper semicontinuity of some mapping.

Definition 2.4. Let g : X→ R a set-valued mapping and x̄ ∈ X, then g is called
(i) lower/inner semicontinuous at x̄ if every sequence {xk} converging x̄ satisfying

g(x̄) ≤ lim inf
k→∞

g(xk);

(ii) upper/outer semicontinuous at x̄ if every sequence {xk} converging x̄ satisfying

g(x̄) ≥ lim sup
k→∞

g(xk);

It is called continuous at x if both conditions hold, i.e., limxk→x̄ g(xk)→ g(x̄).

A natural consequence of lower semicontinuity is as follows.

Proposition 2.5. For any function g : X→ R, then the following properties are equivalent
(a) g is lower semicontinuous;
(b) epi g is closed;
(c) all level sets are closed, i.e., for all α ∈ R, the level sets lev≤α g := {x ∈ X | g(x) ≤ α}

are closed.

We now introduce the concept of coercivity, which avoids in some sense the empty of
level sets.

Definition 2.6. A function g : X→ R is coercive if

lim
∥x∥→∞

g(x) = +∞.

Note that continuously coercive functions can be specified by the boundedness of their
level sets.

Proposition 2.7. Let g : X → R be continuous, g is coercive if and only if all the
underlying level sets are bounded.

Keeping the convergence of a sequence and lower semicontinuity of a function in mind,
we now introduce attentive convergence of a sequence in terms of some lower semicontinuous
function, which plays an essential role in Chapter 4.

Definition 2.8. Let g : X→ R and a point x̄ ∈ dom g a proper and lsc function, we call
g-attentive convergence of a sequence {xk}:

xk
g−→ x̄ :⇐⇒ xk → x̄ with g(xk)→ g(x̄). (2.1)

Given a parameter value γ > 0, the proximal mapping proxγg is defined by

proxγg(x) := argminz
{
g(z) + 1

2γ ∥z − x∥
2
}
,
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and we say that g is prox-bounded if it is proper and g + ∥ · ∥2/(2γ) is bounded below on
X for some γ > 0. The supremum of all such γ is the threshold γg of prox-boundedness
for g. In particular, if g is bounded below by an affine function, then γg = ∞. When g
is lsc, for any γ ∈ (0, γg) the proximal mapping proxγg is locally bounded, nonempty and
compact-valued [140, Theorem 1.25].

2.1.2 Local Lipschitz Continuity

In optimization and variational analysis, Lipschitz continuity property, used to guarantee
a mapping or function varies at some point in a bounded range in order to prevent it from
changing too rapidly, plays a very fundamental role, which supports a host of applications
where such Lipschitz constants serve to quantify the stability of a problem’s solutions or
the rate of convergence in a numerical method for determining a solution [140]. This thesis
is more concerned to the local Lipschitz continuity, which is more weaker than the global
one. Let us start with their definitions.

Definition 2.9. Let S ⊂ X be a nonempty set and ϕ : S → Y be a continuous mapping.
Then
a) ϕ is (globally) Lipschitz continuous over S with parameter L ≥ 0 if the following holds

∥ϕ(x)− ϕ(y)∥ ≤ L ∥x− y∥ ∀x, y ∈ S;

b) ϕ is locally Lipschitz continuous over S if for every y ∈ S there exist ε(y) > 0, Lε(y) ≥ 0,
and a neighborhood Nε(y) := {x ∈ S : ∥x− y∥ < ε(y)}, such that ϕ is Lε(y) (-globally)
Lipschitz continuous over Nε(y), i.e.,

∥ϕ(x)− ϕ(y)∥ ≤ Lε(y) ∥x− y∥ ∀x, y ∈ Nε(y).

When S := X, we call ∇f is globally or locally Lipschitz continuous.

We next recall the properties of local Lipschitz continuity on some compact set.

Proposition 2.10. [59] Let S ⊂ X be nonempty set. Then, a mapping ϕ : X→ Y is locally
Lipschitz continuous over S if and only if for every nonempty and compact set C ⊂ S,
there exists LC > 0 such that ϕ is LC-Lipschitz continuous over C, i.e.,

∥ϕ(x)− ϕ(y)∥ ≤ LC∥x− y∥ ∀x, y ∈ C.

[60, Proposition B.1] concluded a proposition which deals with local Lipschitz gradient.

Proposition 2.11. Let ϕ : X→ Y be continuously differentiable, then the following claims
hold:

(i) ϕ is locally Lipschitz continuous;
(ii) Let B ⊂ X be a closed ball, i.e., B = {x ∈ X | ∥x − z∥ ≤ r}, for some z ∈ X and

r ∈ (0,∞], and assume that ϕ is LB-Lipschitz continuous over B with LB ≥ 0. Then

∥∇ϕ(x)∥ ≤ LB ∀x ∈ B.

2.1.3 Rate of Convergence

We are now concerned to the rate of convergence of the sequence, which can evaluate in
some sense the effectiveness of the numerical algorithms. We summarize the definitions of
different types of convergence rate as well as the corresponding methods.
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Definition 2.12. We say that a sequence {xk} ⊂ X converges to x̄ ∈ X
a) linearly or Q-linearly, if there exists c ∈ (0, 1) such that

∥xk+1 − x̄∥ ≤ c∥xk − x̄∥ for all sufficiently large k ∈ N;

b) R-linearly, if one has
lim sup
k→∞

∥xk − x̄∥1/k < 1.

Note that this R-linear convergence holds if there exist constants ω > 0 and µ ∈ (0, 1)
such that ∥xk − x̄∥ ≤ ωµk holds for all sufficiently large k ∈ N, i.e., if the expression
∥xk − x̄∥ is dominated by a Q-linearly convergent null sequence.

The following lemmas are practical tools to obtain bounds on the rate of convergence
of the sequence. We start with introducing the widely-used one.

Lemma 2.13. [13, Lemma 1] Let {sk} be a sequence in R+ and let α, β be some nonnegative
and positive constants, respectively. Suppose that sk → 0 and that the sequence satisfies

(sk)α ≤ β(sk − sk+1) (2.2)

for all sufficiently large k. Then
(i) if α = 0, the sequence {sk} converges to 0 in a finite number of steps;
(ii) if α ∈ (0, 1], the sequence {sk} converges linearly to 0 with rate β/(1 + β);
(iii) if α > 1, then there exists η > 0 such that

sk ≤ ηk− 1
α−1 for all k sufficiently large.

This property is very prevalent and broadly utilised, e.g., [13, 104, 108]. However, it
does not suit our cases in Chapter 5, therefore the following one is illustrated.

Lemma 2.14. Let {sk} be a sequence in R+ and let α, β be some nonnegative and positive
constants, respectively. Suppose that sk → 0 and that the sequence satisfies

(sk+1)α ≤ β(sk − sk+1) (2.3)

for all sufficiently large k. Then
(i) if α = 0, the sequence {sk} converges to 0 in a finite number of steps;
(ii) if α ∈ (0, 1], the sequence {sk} converges linearly to 0 with rate β/(1 + β);
(iii) if α > 1, assuming that {sk} is decreasing sequence, then there exists η > 0 such that

sk ≤ ηk− 1
α−1 for all k sufficiently large. (2.4)

Proof. If α = 0, then (2.3) implies

0 ≤ sk+1 ≤ sk − 1
β
,

and (i) follows.
Assume that α ∈ (0, 1]. Since sk → 0, then one has sk+1 < 1 for some k ∈ N. Hence,

(2.3) implies
sk+1 ≤ (sk+1)α ≤ β(sk − sk+1)



2.1. Basics about Variational Analysis 9

holds for sufficiently large k. Therefore, one has

sk+1 ≤ β

1 + β
sk

holds for sufficiently large k, which says {sk} converges linearly to 0 with rate β
1+β .

Assume now that α > 1. Since {sk} is decreasing, then one has sk+1 ≤ sk for all k ∈ N,
which implies from α > 1 that (sk+1)1−α ≥ (sk)1−α for all k ∈ N. Then (2.3) implies

1
β
≤ (sk − sk+1)(sk+1)−α = sk(sk+1)−α − (sk+1)1−α ≤ sk(sk+1)−α − (sk)1−α

= sk
(
(sk+1)−α − (sk)−α

)
≤ s0

(
(sk+1)−α − (sk)−α

)
for sufficiently large k. Then there exists positive integer N such that

1
βs0 ≤ (sk+1)−α − (sk)−α

holds for all k ≥ N . Summing it for k from N to j − 1 ≥ N , one has

(sj)−α − (sN )−α ≥ 1
βs0 (j −N),

which gives, for all j ≥ N + 1,

sj ≤
(

(sN )−α + 1
βs0 (j −N)

)− 1
α

.

Therefore, there exists some η > 0 such that

sj ≤ ηj− 1
α for all sufficiently large j,

which completes the proof.

Note that regardless of which (2.2) or (2.3) is satisfied, the first two cases can be
achieved, however the requirement of decreasing {sk} is mandatory for the desired (iii)
in Lemma 2.14. Provided that (2.2) holds and {sk} is decreasing, Lemma 2.14 holds
automatically deduced by Lemma 2.13. However, such requirement may not be satisfied in
some sense, such as the case in Theorem 5.12 as mentioned above, it becomes valuable to
introduce the assumption (2.3).

2.1.4 Normal Cones and Differentiations

All kinds of cones and differentiations play an essential role in variational analysis and
optimization theory, which provide some theoretical guarantees when seeking for optimality
conditions. This section is first devoted to some types of tangent and normal cones in order
to describe the geometric structure of the closed, convex set C ⊂ Y and the closed (not
necessarily convex) set D ⊂ X which appear in (P). Subsequently, we introduce the concepts
and properties of some types of subdifferential of a proper and lower semicontinuous function
g mentioned in (CP). Let us start with the introduction of tangent cones as well as polar
cones.

Definition 2.15. Let D ⊂ X and x ∈ D, then we denote
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a) Bouligand tangent cone of a subset D ⊂ X at a point x̄ ∈ D, i.e.,

TD(x̄) :=
{
d ∈ X

∣∣∣∣∣ ∃{xk} ⊂ D, ∃{tk} ↓ 0 : xk → x̄,
xk − x̄
tk

→ d

}
;

b) Clarke tangent cone of a subset D ⊂ X at a point x̄ ∈ D, i.e.,

T CD (x̄) :=
{
d ∈ X

∣∣∣ ∀{xk} ⊂ D, ∀{tk} ↓ 0, ∃{dk} ⊂ X : xk → x̄, dk → d, xk + tkdk ∈ D
}
.

Definition 2.16. Let P ⊂ X a nonempty cone, then we call

P ◦ := {y∗ ∈ X | ⟨y∗, y⟩ ≤ 0 ∀y ∈ P}

the polar cone of P .

Let us turn to the normal cone, it is well known that Fréchet normal cone is defined
as the polar cone of Bouligand tangent cone, we then give the specific representations of
Fréchet normal cone, limiting and Clarke normal cones.

Definition 2.17. Let D ⊂ X and x ∈ D, then we denote
a) regular (or Fréchet) normal cone of D at x̄ ∈ D, i.e.,

NF
D (x̄) := {v | ⟨v, x− x̄⟩ ≤ o(∥x− x̄∥) ∀x ∈ D} ;

b) limiting (or Mordukhovich) normal cone of D at x̄ ∈ D, i.e.,

N lim
D (x̄) :=

{
v | ∃{xk} ⊂ D, ∃{vk} : xk → x̄, vk → v, vk ∈ NF

D (xk) ∀k ∈ N
}

;

c) Clarke normal cone of D at x̄ ∈ D, if

NC
D (x̄) =

(
T CD (x̄)

)◦
.

For x /∈ D, we set NF
D (x) := ∅, N lim

D (x) := ∅, and NC
D (x) := ∅. Applying [122,

Proposition 2.45], for all x ∈ D, one has the following inclusions

NF
D (x) ⊂ N lim

D (x) ⊂ NC
D (x). (2.5)

Note that the limiting normal cone is stable in the sense that

lim sup
x→x̄

N lim
D (x) = N lim

D (x̄) ∀x̄ ∈ X (2.6)

holds. This stability property, which might be referred to as outer semicontinuity of the
set-valued operator N lim

D : X ⇒ X, will play an essential role in our subsequent analysis.
The limiting normal cone to the convex set A coincides with the standard normal cone
from convex analysis, i.e., for ȳ ∈ A, we have

N F
A (ȳ) = N lim

A (ȳ) = NC
A (ȳ) = NA(ȳ) := {λ ∈ Y | ⟨λ, y − ȳ⟩ ≤ 0 ∀y ∈ A}.

For points y /∈ A, we set NA(y) := ∅ for formal completeness. Note that the stability
property (2.6) is also satisfied by the set-valued operator NA : Y ⇒ Y.

The relationship between the normal cones and the projections on the underlying convex
set is very closed.
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Proposition 2.18. [147, Proposition 2.36] Let C ⊂ X be a nonempty, closed, convex set.
Then, for any x ∈ X, one has y = PC(x) is and only if x− y ∈ NC(y).

Let us fix a merely lower semicontinuous function g : X→ R and pick x ∈ dom g where
dom g := {x ∈ X | g(x) <∞} denotes the domain of g. We now introduce the concepts of
regular, limiting, and horizon subdifferential of g.

Definition 2.19. Let g : X→ R be a merely lower semicontinuous function, we define
(a) regular (or Fréchet) subdifferential of g at x, i.e.,

∂F g(x) :=
{
η ∈ X

∣∣∣∣ lim inf
y→x, y ̸=x

g(y)− g(x)− ⟨η, y − x⟩
∥y − x∥

≥ 0
}

;

(b) limiting (or Mordukhovich) subdifferential of g at x, i.e.,

∂g(x) :=
{
η ∈ X

∣∣∣ ∃{xk}, {ηk} ⊂ X : xk
g−→ x, ηk → η, ηk ∈ ∂F g(xk) ∀k ∈ N

}
;

(c) horizon (or singular limiting) subdifferential of g at x, i.e.,

∂∞g(x) :=
{
η ∈ X

∣∣∣ ∃{xk}, {ηk} ⊂ X, tk ↓ 0: xk
g−→ x, ηk ∈ ∂F g(xk) ∀k ∈ N, tkηk → η

}
.

Clearly, one always has ∂F g(x) ⊂ ∂g(x) and ∂F g(x) ⊂ ∂∞g(x) by construction of these
sets.

Moreover, subdifferentials have some connections to normal vectors through the varia-
tional geometry of epigraphs.

Theorem 2.20. [140, Theorem 8.9] For g : X→ R, and any point x at which g is finite,
one has

∂F g(x) =
{
η | (η,−1) ∈ NF

epi g(x, g(x))
}

;

∂g(x) =
{
η | (η,−1) ∈ N lim

epi g(x, g(x))
}

;

∂∞g(x) =
{
η | (η, 0) ∈ N lim

epi g(x, g(x))
}
.

The above characterization can be used to prove the following result.

Lemma 2.21. Let g be lower semicontinuous, x̄ ∈ dom g, {xk} g−→ x̄, and ξk ∈ ∂g(xk) a
possibly unbounded sequence such that tkξk → s for some sequence tk ↓ 0. Then s ∈ ∂∞g(x̄).

Proof. Since ξk ∈ ∂g(xk), one has (ξk,−1) ∈ N lim
epi g(xk, g(xk)). Then cone property implies

(tkξk,−tk) = tk(ξk,−1) ∈ N lim
epi g(xk, g(xk))

holds for all k ∈ N. Taking the limit k →∞, using xk g−→ x̄ and the upper semicontinuity
of the limiting normal cone yield

(s, 0) ∈ N lim
epi g(x̄, g(x̄)).

In view of Theorem 2.20, one gets s ∈ ∂∞g(x̄).

In general, for lower semicontinuous functions g, neither the limiting nor the horizon
subdifferentials are upper semicontinuous, it is illustrated by the following counterexample.
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Example 2.22. Consider the one-dimensional function

g(x) :=
{

0, if x ≤ 0,
1− x, if x > 0.

The g is evidently lower semicontinuous, and an elementary calculation shows that ∂g(0) =
[0,∞), whereas one has

lim sup
x→0

∂g(x) = {−1} ∪ ∂g(0) = {−1} ∪ [0,∞),

which says the desired inclusion lim supx→0 ∂g(x) ⊂ ∂g(0) does not hold.

On the other hand, the limiting and horizon subdifferentials are robust in the sense
that

lim sup
x

g−→x̄

∂g(x) ⊂ ∂g(x̄) and lim sup
x

g−→x̄

∂∞g(x) ⊂ ∂∞g(x̄) (2.7)

hold, cf. [123, Proposition 1.20], where

lim sup
x

g−→x̄

∂g(x) :=
{
η | ∃{xk} g−→ x̄,∃ηk ∈ ∂g(xk) ∀k ∈ N such that ηk → η

}
and lim sup

x
g−→x̄

∂∞g(x) is defined similarly. Note that, for continuous functions g, this
robust property is the same as the ordinary upper semicontinuity of the limiting and the
horizon subdifferentials, whereas Example 2.22 illustrates that these are, in general, not
equivalent for discontinuous functions.

We now introduce some calculus rules of subdifferentials for the composite function.

Proposition 2.23. (Calculus rules)
(i) [123, Proposition 1.30(ii)] Let f : X→ R be continuously differentiable, and g : X→

R be a merely lower semicontinuous, for any x ∈ dom g, one has the following sum
rule

∂(f + g)(x) = ∇f(x) + ∂g(x);

(ii) [158, Proposition 2] Let g : X → R be a merely lower semicontinuous, for any
x ∈ dom g, if f : X→ R is Lipschitz continuous near x, then one has

∂(αf + βg)(x) ⊂ α∇f(x) + β∂g(x)

with some nonnegative scalars α and β.

Lemma 2.24. Let C ⊂ X be nonempty, closed and convex. Furthermore, let c : X→ Y
be continuously differentiable. We consider the function ϑ : X → R given by ϑ(x) :=
1
2 dist2

C(c(x)) for all x ∈ X. Then, ϑ is continuously differentiable, and for each x̄ ∈ X, one
has

∇ϑ(x̄) = c′(x̄)∗(c(x̄)− PC(c(x̄))
)
.

Proof. We define ψ : Y→ R by means of ψ(y) := 1
2 dist2

C(y) for all y ∈ Y and observe that
ϑ = ψ ◦ c. Since C is assumed to be convex, ψ is continuously differentiable with gradient
∇ψ(ȳ) = ȳ − PC(ȳ) for each ȳ ∈ Y, see [19, Corollary 12.30], and the statements of the
lemma follow trivially from the standard chain rule.
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2.2 Basic Concepts about Nonlinear Programming
This section is concerned with the optimality conditions of nonlinear optimization problems
in Euclidean spaces. We consider the following generic minimization problem

min
x
φ(x) s.t. G(x) ∈ K (2.8)

with a functional φ : X→ R (or R by situations), a continuously differentiable mapping
G : X→ Y, nonempty closed subset K ⊂ Y. We denote

F := {x ∈ X |G(x) ∈ K}

as the feasible set of (2.8) and say x̄ is feasible for (2.8) if and only if x̄ ∈ F . We now give
a classical example with inequality and equality constraints.

Example 2.25. Consider the optimization problem

min
x

φ(x)

s.t.
gi(x) ≤ 0 ∀i = 1, . . . ,m,
hj(x) = 0 ∀j = 1, . . . , p

with differentiable function φ, gi, hj : Rn → R, setting

Y := Rm × Rp, G :=
(
g

h

)
, K := (−∞, 0]m × {0}p

yields an optimization problem of type (2.8).

Definition 2.26. Let x̄ ∈ F , then x̄ is called
• a local solution of (2.8), if there exists ε > 0 such that

φ(x̄) ≤ φ(x) ∀x ∈ F ∩Bε(x̄);

• a global solution of (2.8), if

φ(x̄) ≤ φ(x) ∀x ∈ F .

In order to ensure the existence of solution of the constrained optimization problems,
we first recall the famous Weierstrass existence theorem.

Theorem 2.27 (Weierstrass Extreme Value Theorem). Every continuous function on a
compact set attains its extreme values on that set.

Based on this and the properties of coercive function, the existence result of solution(s)
of unconstrained programs can be implied.

Theorem 2.28. Let φ : X → R be continuous. If φ is coercive, then φ has at least one
global minimizer.

In fact, the objective function to be dealt with may be far from continuous, then we recall
the following theorem to introduce the attainment of a minimum for the noncontinuous
function.
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Theorem 2.29. Let φ : X→ R be lower semicontinuous, level-bounded (or coercive) and
proper. Then the value inf φ is finite and the set argminφ is nonempty and compact.

We have already built the existence theory of solution(s), which are quite useful, however
they can not provide us some constructive tests for optimality. In order to describe and
find the solution(s), we always refer to the first-order optimality conditions. The following
results provide the close connections between variational geometry and necessary optimality
conditions.

Theorem 2.30. Let x̄ be a local minimum of the program (2.8) with the continuously
differentiable function φ, then one has

⟨∇φ(x̄), d⟩ ≥ 0 ∀d ∈ TF (x̄).

This thesis is mainly concerned to the normal cones, hence we give the following
equivalent conclusion with the help of Definition 2.16.

Theorem 2.31. Let x̄ be a local minimum of the programming (2.8) with the continuously
differentiable function φ, then one has

−∇φ(x̄) ∈ NF (x̄),

which, if F is convex, can be written in the form

⟨∇φ(x̄), x− x̄⟩ ≥ 0 ∀x ∈ F .

When φ too is convex, the equivalent conditions are sufficient for x̄ to be globally optimal.

We, keeping Proposition 2.23 (i) in mind, deduce the following optimality condition
where the objective function is composite.

Theorem 2.32. Consider the programs (2.8), where φ := f + g with continuously differen-
tiable f : X→ R and proper, lower semicontinuous g : X→ R. Let x̄ is a local minimum
of such program, then one has

−∇f(x̄) ∈ NF (x̄) + ∂g(x̄).

Note that it can be reduced as generalized Fermat’s rule if F := X (equivalently
K := Y).

2.2.1 Stationarity Theory

In this section, we recall the definitions of some types of stationary point of the nonlinear
programming (2.8).

Definition 2.33. Let x̄ is a local minimum of (2.8) and φ is continuously differentiable,
then we say x̄ is
• B-stationary (Bouligand stationary) if

0 ∈ ∇φ(x̄) +NF
F (x̄);

• S-stationary (strongly stationary)/a KKT point if

0 ∈ ∇φ(x̄) +G(x̄)∗N F
K (G(x̄));
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• M-stationary (Mordukhovich stationary) if

0 ∈ ∇φ(x̄) +G(x̄)∗N lim
K (G(x̄));

• C-stationary (Clarke stationary) if

0 ∈ ∇φ(x̄) +G(x̄)∗NC
K (G(x̄)).

The concepts of S- and M-stationary points have been introduced in [27], every local
minimum is evidently also B-stationary. We here introduce C-stationarity based on the
definition of Clarke normal cone, in fact, it is mainly used to characterize the classical
MPCCs as well as second-order cone MPCCs [7,10,142,159]. From the relationship of normal
cones (2.5), one evidently has S-stationarity is also M- and C-stationary, M-stationarity
is C-stationary as well. It is deduced that every S-stationarity is also B-stationary from
the inclusion of G(x̄)∗NF

K (G(x̄)) ⊂ NF
F (x̄). If C is convex, then S-stationarity corresponds

with M-stationarity. Note that in order to ensure that an B-stationary point x̄ is also
M-stationary, one needs the requirement

NF
F (x̄) ⊂ G(x̄)∗NK(G(x̄)),

the similar requirements are appropriate for the other stationarities, such requirements can
be regarded as constraint qualifications.

2.2.2 Constraint Qualification

In optimization theory, constraint qualifications are proposed in order to establish optimality
conditions, where a local minimizer is guaranteed to be stationary. Generally speaking,
constraint qualifications are actually properties of set presented by the constraint functions
around a given feasible point, which are very crucial in the constrained optimization
problems. We start this section with some fundamental constraint qualifications.

Definition 2.34. Let x̄ be feasible of (2.8) in Example 2.25, and define the set of indices
of active inequality constraints at x̄ by

Ig := {i = 1, . . . ,m | gi(x̄) = 0}.

Then we say
• Linear independence constraint qualification (LICQ) holds at x̄, if the gradients

∇gi(x̄), i ∈ Ig,
∇hj(x̄), j = 1, . . . , p,

are linearly independent.
• Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x̄, if the gradients

∇hj(x̄), j = 1, . . . , p,

are linearly independent and there exists a s ∈ Rn satisfying

∇gi(x̄)s < 0, i ∈ Ig,
∇hj(x̄)d = 0, j = 1, . . . , p.
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• [11, 134] Constant positive linear dependence condition (CPLD) holds at x̄, if for any
I0 ⊂ Ig, J0 ⊂ {1, · · · , p} such that the set of gradients

{∇gi(x̄)}i∈I0 ∪ {∇hj(x̄)}j∈J0

is positive linearly dependent, then there exists a neighborhood Bα(x̄) of x̄ with α > 0
such that for any x ∈ Bα(x̄), the set

{∇gi(x)}i∈I0 ∪ {∇hj(x)}j∈J0

is linearly dependent.

In order to introduce more constraint qualifications, we now denote linearized tangent
cone of TF (x̄) as

T lim
F (x̄) := {d ∈ X |G′(x)∗d ∈ TF (G(x̄))}.

Definition 2.35. Let x̄ be feasible of (2.8), i.e., x ∈ F . Then we say
• Abadie constraint qualification (ACQ) holds at x̄, if

TF (x̄) = T lim
F (x̄).

• Guignard constraint qualification (GCQ) holds at x̄, if

(TF (x̄))◦ = (T lim
F (x̄))◦.

One evidently has ACQ is stronger than GCQ from the inclusion TF (x̄) ⊂ T lim
F (x̄) and

then (T lim
F (x̄))◦ ⊂ (TF (x̄))◦. Therefore, from [132,144], the following implication holds

LICQ⇒ MFCQ⇒ CPLD⇒ ACQ⇒ GCQ,

however the converse implications do not hold, please see [132] for counterexamples. Note
that LICQ, MFCQ, and CPLD are easy to verify, but they are very strong requirements.
On the other hand, ACQ and GCQ are very weak qualifications, however they are pretty
difficult to verify. As a result, one aims at finding some weaker and easily-to-verify
constraint qualifications.

After introducing those constraint qualifications, we now recall the following important
relationship between constraint qualifications, local minimizers, and KKT points.

Theorem 2.36. Let x̄ be a local minimizer for (2.8) with convex C, and assume that GCQ
holds at x̄, then x̄ is a KKT point for (2.8).

Since GCQ is the weakest constraint qualification till now, it then can be replaced by all
the mentioned ones in the above theorem. Note that some other constraint qualifications
between CPLD and ACQ have attracted more attentions, where a local minimizer maybe
fail to be a KKT point, but be some stationary point.

2.3 Kurdyka–Łojasiewicz Property
It is well known that proximal gradient-type method is a good candidate for solving the
composite programs, where the objective function is the sum of a continuously differential
one and a lower semicontinuous one. At the beginning of development of this method,
the continuously differentiable function is always required to be convex and have global
Lipschitz gradient, which have been gradually weakened, to be honest, we get rid of both in
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Chapter 5. Then in order to guarantee the underlying convergence, the requirement of error
bound or Kurdyka–Łojasiewicz property is necessary, see [15,15,36,38,109,124], hereas [38]
illustrates the relationship between error bound and Kurdyka–Łojasiewicz property. This
section is concerned to Kurdyka–Łojasiewicz property which will be used in Chapter 5.

Lechner Theresa introduced the historical process of Kurdyka–Łojasiewicz function
in her PhD thesis [105], we here recall the process roughly. Łojasiewicz [113] gave the
continuously differential function φ a powerful condition in order to obtain the convergence
results for gradient-type methods, i.e., for such φ : Rn → R, there exists ρ ∈ [1/2, 1) such
that

|φ(x)− φ(x̄)|ρ
∥∇φ(x)∥ (2.9)

remains locally bounded around any critical point x̄ of φ, which was proven by him to hold
for any real-analytic function. However, it fails obviously for some smooth functions, such
as twice- or more times differentiable functions. Later, Kurdyka [103] generalized this idea
and introduced the following property: there exists η > 0, a neighbourhood U of a critical
point x̄, and a continuous function χ : [0, η)→ R+, which is continuously differentiable on
(0, η), satisfies χ(0) = 0 as well as χ′(t) > 0 for all t ∈ (0, η), and

∥∇(χ ◦ φ)∥ ≥ 1 (2.10)

for all U ∩ {x ∈ Rn |φ(x̄) < φ < φ(x̄) + η}. Note that (2.9) is a special case of (2.10) with
χ(s) = (s− φ(x̄))1−ρ. Recently, a nonsmooth generation about φ was proposed in [14, 37].
We now recall the definition from [14].

Definition 2.37. Let φ : X → R be lower semicontinuous. We say that φ has the KL
property, where KL abbreviates Kurdyka–Łojasiewicz, at x̄ ∈ {x ∈ X | ∂φ(x) ̸= ∅} if there
exist a constant η > 0, a neighborhood U ⊂ X of x̄, and a continuous concave function
χ : [0, η] → [0,∞) which is continuously differentiable on (0, η) and satisfies χ(0) = 0 as
well as χ′(t) > 0 for all t ∈ (0, η) such that the so-called KL inequality

χ′(φ(x)− φ(x̄)
)

dist
(
0, ∂φ(x)

)
≥ 1

holds for all x ∈ U ∩
{
x ∈ X |φ(x̄) < φ(x) < φ(x̄) + η

}
. The function χ from above is

referred to as the desingularization function. Furthermore, if g satisfies the above KL
property at each point of dom ∂φ, then φ is called a KL function.

Besides generalizing the requirement of smooth function to the nonsmooth one, the
point x̄ is not required to be stationary any more, as it is pointed out in [14] that for any
proper and lower semicontinuous φ : X → R, it has KL property in any nonstationary
point. Those make Kurdyka–Łojasiewicz more superfluous.

The proofs of convergence and rate-of-convergence of the sequence where KL property
holds are usually technical and with similar structures. As mentioned in [60, Definition 4.1],
assuming that {xk} is a sequence generated by some approach in order to minimize φ, the
following assertions must be satisfied:
• (Sufficient decrease of objective function) There exists a > 0 such that

φ(xk+1)− φ(xk) ≤ −a∥xk+1 − xk∥ ∀k ∈ N; (2.11)

• (Relative error of subdifferential) There exist c > 0 and sk+1 ∈ ∂φ(xk+1) such that

dist(0, sk+1) ≤ c∥xk+1 − xk∥ ∀k ∈ N;
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• (Continuity condition) Let {xk}K be a subsequence converging to some x̄. Then

lim sup
k∈K

φ(xk) ≤ φ(x̄).

With the aid of such requirements and KL property, we can obtain the sequence is bounded
and therefore converges to some stationary point.

We note that there exist some classes of functions where the KL property holds with
the corresponding desingularization function given by χ(t) := ctκ for κ ∈ (0, 1] and some
constant c > 0, where the parameter κ is called the KL exponent, see [37,103].



3. Augmented Lagrangian Meth-
ods invoking Spectral Gradient Meth-
ods for Structured Optimization Prob-
lems

This chapter is dedicated to a detailed discussion of a (safeguarded) augmented Lagrangian
method for the optimization problems with structured geometric constraints of the form
mentioned in (P), the results in this chapter are fundamentally based on the publication
[94]. Let us start with recalling again the problem

min
x

f(x) s.t. G(x) ∈ C, x ∈ D, (P)

where X and Y are Euclidean spaces, f : X→ R and G : X→ Y are continuously differen-
tiable, C ⊂ Y is nonempty, closed, and convex, whereas the set D ⊂ X is only assumed to
be nonempty, closed, and nonconvex. Note again that the augmented Lagrangian scheme is
applied to penalize the general constraints G(x) ∈ C, but leave the comparably complicated
x ∈ D explicitly in the constraints, which leads to the resulting subproblems are constrained
programs. With the aid of projected gradient-type method as the subproblem solver (using
general spectral gradient method in this manuscript), we need to assume that the nonconvex
D is sufficiently simple in the sense that the projections on D (not necessarily unique due
to nonconvexity of D) are allowed for a fast computation. In particular, we show some
cases of D, as well as the theoretical computation of the associated projections on D in
Section 3.5.

This chapter is organized as follows. In Section 3.1, we demonstrate how augmented
Lagrangian approaches can be motivated to solve the optimization problems with abstract
constraints. Section 3.2 introduces the so-called stationaries and constraint qualification
of (P), and some underlying properties. We then present the spectral gradient method
for the optimization problems over nonconvex sets in Section 3.3. This method is used to
solve the resulting subproblems of the safeguarded augmented Lagrangian method whose
details are given in Section 3.4. Global convergence to M-type stationary points is also
shown in this section. Since, as mentioned above, in our augmented Lagrangian approach,
we penalize the constraints G(x) ∈ C, but keep the condition x ∈ D explicitly in the
constraints, we have to compute projections onto D. Section 3.5 therefore considers a
couple of situations where the corresponding projections can be calculated in a very efficient
way. Extensive computational experiments for some of these situations are documented in
Section 3.6, this includes MPCCs, either-or-constrained optimization problems, cardinality-
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constrained (sparse) optimization problems, and a rank-constrained reformulation of the
famous MAXCUT problem.

3.1 Motivation
Since, to the best of my knowledge, augmented Lagrangian methods have not yet been
applied to the general problem (P) with general nonconvex D and arbitrary convex sets
C in the setting of Euclidean spaces, and in order to get a better understanding of the
contributions, at the first step, some comments regarding the existing results for the
probably most prominent non-standard optimization problem will be added, namely the
class of mathematical programs with complementarity constraints (MPCCs). Due to the
particular structure of the feasible set, the usual KKT conditions are typically not satisfied
at a local minimum. Hence, other (weaker) stationarity concepts have been proposed, like
C- and M-stationarity, with M-stationarity being the stronger concept. Most algorithms,
such as regularization, penalty, augmented Lagrangian methods etc., for the solution of
MPCCs need to solve a sequence of standard nonlinear programs, and their limit points are
typically C-stationary points only. Some approaches can identify M-stationary points if the
underlying nonlinear programs are solved exactly, but they loose this desirable property if
these programs are solved only inexactly, see the discussion in [99] for more details.

Only three approaches currently are awared due to my limited knowledge where
convergence to M-stationary points for a general (nonlinear) MPCC is shown using inexact
solutions of the corresponding subproblems, namely [12, 81, 135]. All three papers deal
with suitable modifications of the (safeguarded) augmented Lagrangian method. The basic
idea of reference [12] is to solve the subproblems such that both a first- and a second-order
necessary optimality condition hold inexactly at each iteration, i.e., satisfaction of the
second-order condition is the key point which, obviously, causes some extra costs for the
subproblem solver and usually excludes the application of this approach to large-scale
problems. The paper [135] proves convergence to M-stationary points by solving some
complicated subproblems, but for the latter no method is specified. Finally, the recent
method described in [81] provides an augmented Lagrangian technique for the solution
of MPCCs where the complementarity constraints are kept as constraints, whereas the
standard constraints are penalized. The authors present a technique which computes
a suitable stationary point of these subproblems in such a way that the entire method
generates M-stationary accumulation points for the original MPCC. In addition, [86]
suggests to solve (a discontinuous reformulation of) the M-stationarity system associated
with an MPCC by means of a semismooth Newton-type method. Naturally, this approach
should be robust with respect to an inexact solution of the appearing Newton-type equations
although this issue is not discussed in [86].

The ideas from [81] are naturally generalized to the structured optimization problem
(P). In fact, a closer look at the corresponding proofs shows that the techniques from [81]
can also be generalized using some relatively small modifications.

3.2 Stationarities and Constraint Qualification

For optimization problem (P), noting that the abstract set D is generally nonconvex in the
exemplary settings we have in mind, the so-called concept of Mordukhovich-stationarity,
which exploits limiting normals to D, is a reasonable concept of stationarity which addresses
(P).
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Definition 3.1 (M-stationarity of (P)). Let x̄ ∈ X be feasible for the optimization problem
(P). Then x̄ is called an M-stationary point (Mordukhovich-stationary point) of (P) if there
exists a multiplier λ ∈ Y such that

0 ∈ ∇f(x̄) +G′(x̄)∗λ+N lim
D (x̄), λ ∈ NC(G(x̄)).

Note that this definition coincides with the usual KKT conditions of (P) if the set D is
convex. An asymptotic counterpart of this definition is the following one, see [117].

Definition 3.2 (AM-stationarity of (P)). Let x̄ ∈ X be feasible for the optimization
problem (P). Then x̄ is called an AM-stationary point (asymptotically M-stationary point)
of (P) if there exist sequences {xk}, {εk} ⊂ X and {λk}, {zk} ⊂ Y such that xk → x̄,
εk → 0, zk → 0, as well as

εk ∈ ∇f(xk) +G′(xk)∗λk +N lim
D (xk), λk ∈ NC(G(xk)− zk) ∀k ∈ N.

Note that the definition of an AM-stationary point is similar to the notion of an
AKKT (asymptotic or approximate KKT) point in standard nonlinear programming, see
[34], but requires some explanation: The meanings of the iterates xk and the Lagrange
multiplier estimates λk should be clear. The vector εk measures the inexactness by which
the stationary conditions are satisfied at xk and λk. The vector zk does not occur (at
least not explicitly) in the context of standard nonlinear programs, but is required here
for the following reason: the augmented Lagrangian method to be considered in this
paper generates a sequence {xk} satisfying xk ∈ D, while the constraint G(x) ∈ C gets
penalized, hence, the condition G(xk) ∈ C will typically be violated. Consequently, the
corresponding normal cone NC(G(xk)) would be empty which is why we cannot expect
to have λk ∈ NC(G(xk)), though we hope that this holds asymptotically. In order to
deal with this situation, we therefore have to introduce the sequence {zk}. Let us note
that AM-stationarity corresponds to so-called AKKT stationarity for conic optimization
problems, i.e., where C is a closed, convex cone and D := X, see [4, Section 5]. The
more general situation where C and D are closed, convex sets and the overall problem is
stated in arbitrary Banach spaces is investigated in [41]. Asymptotic notions of stationarity
addressing situations where D is a nonconvex set of special type can be found, e.g., in
[7,98,135]. As shown in [117], the overall concept of asymptotic stationarity can be further
generalized to feasible sets which are given as the kernel of a set-valued mapping. Let us
mention that the theory in this section is still valid in situations where C is merely closed.
In this case, one may replace the normal cone to C in the sense of convex analysis by the
limiting normal cone everywhere. However, the nonconvex set C causes the convergence
analysis of the proposed augmented Lagrangian approach fails.

Apart from the aforementioned difference, the motivation of AM-stationarity is similar
to the one of AKKT-stationarity: Suppose that the sequence {λk} is bounded and, therefore,
convergent along a subsequence. Then, taking the limit on this subsequence in the definition
of an AM-stationary point while using the stability property (2.6) of the limiting normal
cone shows that the corresponding limit point satisfies the M-stationarity conditions from
Definition 3.1. In general, however, the Lagrange multiplier estimates {λk} in the definition
of AM-stationarity might be unbounded. Though this boundedness can be guaranteed
under suitable (relatively strong) assumptions, the resulting convergence theory works
under significantly weaker conditions.

Here, we would like to mention the price of a slack variable xs ∈ Y, we can transfer the
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given constraint system into

G(x)− xs = 0, (xs, x) ∈ C ×D

where the right-hand side of the nonlinear constraint is trivially convex. In order to apply
the algorithmic framework of this paper to this reformulation, projections onto C have to
be computed efficiently. Moreover, there might be a difference between the asymptotic
notions of stationarity and regularity discussed here when applied to this reformulation or
the original formulation of the constraints, the more details will be exploited in Chapter 4
in a more general setting.

The following result shows that each local minimizer of (P) is AM-stationary.

Theorem 3.3. If x̄ is a local minimizer of (P), then x̄ is an AM-stationary point.

Proof. Since x̄ is local minimizer of (P), then for any δ > 0, one has

f(x̄) ≤ f(x) ∀x ∈ Bδ(x̄) ∩ F ,

where Bδ(x̄) is the closed interval around x̄ with radius δ, F := {x ∈ D |G(x) ∈ C} is the
feasible set of (P). Then obviously, x̄ is the unique global minimizer of

min
x
f(x) + 1

2∥x− x̄∥
2 s.t. x ∈ Bδ(x̄) ∩ F . (3.1)

Now for each k ∈ N, we consider the following problem

min
x,u

f(x) + k

2 ∥G(x)− u∥2 + 1
2∥x− x̄∥

2 s.t. (x, u) ∈ Bδ(x̄, G(x̄)) ∩ (D × C), (3.2)

where Bδ(x̄, G(x̄)) is the closed ball around (x̄, G(x̄)) with radius δ > 0. The objective
function of (3.2) is continuous and feasible set is compact, hence each of the problems
(3.2) attains a global minimum (xk, uk) ∈ Bδ(x̄, G(x̄))∩ (D×C), without loss of generality,
we assume (xk, uk) → (x∗, u∗). Now, we want to show that (x∗, u∗) = (x̄, G(x̄)). As
(x̄, G(x̄)) ∈ Bδ(x̄, G(x̄)) ∩ (D × C), it is feasible for (3.2) for each k ∈ N. Thus, we obtain
for each k ∈ N that

f(xk) + k

2
∥∥∥G(xk)− uk

∥∥∥2
+ 1

2∥x
k − x̄∥2 ≤ f(x̄).

Taking the limit k →∞ and using continuity arguments, it follows that G(x∗) = u∗ ∈ C
and hence

f(x∗) + 1
2∥x

∗ − x̄∥2 ≤ f(x̄) + 1
2∥x̄− x̄∥

2.

Since x̄ is the unique global solution of (3.1), we then have x̄ = x∗, which deduces
(x∗, u∗) = (x∗, G(x∗)) = (x̄, G(x̄)) by the continuity of G. This shows (xk, uk)→ (x̄, G(x̄)),
hence (xk, uk) ∈ Bδ(x̄, G(x̄)) for all k ∈ N. Then for each k ∈ N, (xk, uk) is a local
minimizer of

min
x,u

f(x) + k

2 ∥G(x)− u∥2 + 1
2∥x− x̄∥

2 s.t. (x, u) ∈ D × C.

Theorem 2.31 implies

−
(
∇f(xk) + kG′(xk)∗(G(xk)− uk) + xk − x̄

)
∈ ND(xk) ⊂ N lim

D (xk) (3.3)
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and
k(G(xk)− uk) ∈ NC(uk).

Setting εk = x̄ − xk, λk = k(G(xk) − uk), zk = G(xk) − uk, one obviously has εk → 0,
λk ∈ NC(G(xk)− zk), and zk → 0. Moreover, (3.3) can be reformulated as

εk ∈ ∇f(xk) +G′(xk)∗λk +N lim
D (xk), (3.4)

hence one has x̄ is an AM-stationary point of (P).

In order to infer that an AM-stationary point is already M-stationary, the presence of
so-called asymptotic regularity is necessary, see [117, Definition 4.4].

Definition 3.4 (AM-regularity of (P)). A feasible point x̄ ∈ X of (P) is called AM-regular
(asymptotically Mordukhovich-regular) whenever the condition

lim sup
x→x̄, z→0

M(x, z) ⊂M(x̄, 0)

holds, where M : X× Y ⇒ X is the set-valued mapping defined via

M(x, z) := G′(x)∗NC(G(x)− z) +N lim
D (x).

The concept of AM-regularity has been inspired by the notion of AKKT-regularity
(sometimes referred to as cone continuity property), which became popular as one of
the weakest constraint qualifications for standard nonlinear programs or MPCCs, see
e.g. [9, 10, 135], and can be generalized to a much higher level of abstractness. In this
regard, we would like to point the reader’s attention to the fact that AM-stationarity
and -regularity from Definitions 3.2 and 3.4 are referred to as decoupled asymptotic
Mordukhovich-stationarity and -regularity in [117] since these are already refinements of
more general concepts. For the sake of a concise notation, however, we omit the term
decoupled here.

It has been shown in [117, Section 5.1] that validity of AM-regularity at a feasible point
x̄ ∈ X of (P) is implied by

0 ∈ G′(x̄)∗λ+N lim
D (x̄), λ ∈ NC(G(x̄)) =⇒ λ = 0. (3.5)

The latter is known as NNAMCQ (no nonzero abnormal multiplier constraint qualification)
or GMFCQ (generalized Mangasarian–Fromovitz constraint qualification) in the literature.
Indeed, in the setting where we fix C := Rm1

− × {0}m2 and D := X, (3.5) boils down
to the classical Mangasarian–Fromovitz constraint qualification from standard nonlinear
programming. The latter choice for C will be of particular interest, which is why we
formalize this setting below.

Setting 3.5. Given m1,m2 ∈ N, we set m := m1 +m2, Y := Rm, and C := Rm1
− × {0}m2 .

No additional assumptions are postulated on the set D. We denote the component functions
of G by G1, . . . , Gm : X→ R. Thus, the constraint G(x) ∈ C encodes the constraint system

Gi(x) ≤ 0 i = 1, . . . ,m1, Gi(x) = 0 i = m1 + 1, . . . ,m

of standard nonlinear programming. For our analysis, we exploit the index sets

I(x̄) := {i ∈ {1, . . . ,m1} | Gi(x̄) = 0}, J := {m1 + 1, . . . ,m},
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whenever x̄ ∈ D satisfies G(x̄) ∈ C in the present situation.

RCPLD has been introduced for standard nonlinear programs (i.e., D := X = Rn in
Setting 3.5) in [6]. Some extensions to complementarity-constrained programs can be found
in [58, 82]. A more restrictive RCPLD-type constraint qualification which is capable of
handling an abstract constraint set can be found in [83, Definition 1]. Constraint regions
as characterized in Setting 3.5 can be tackled with the following version of RCPLD.

Definition 3.6. [156, Definition 1.1] Let x̄ ∈ X be a feasible point of the optimization
problem (P) in Setting 3.5. Then x̄ is said to satisfy RCPLD whenever the following
conditions hold:
(i) the family (∇Gi(x))i∈J has constant rank on a neighborhood of x̄,
(ii) there exists an index set S ⊂ J such that the family (∇Gi(x̄))i∈S is a basis of the

subspace span{∇Gi(x̄) | i ∈ J}, and
(iii) for each index set I ⊂ I(x̄), each set of multipliers λi ≥ 0 (i ∈ I) and λi ∈ R (i ∈ S),

not all vanishing at the same time, and each vector η ∈ N lim
D (x̄) which satisfy

0 ∈
∑
i∈I∪S

λi∇Gi(x̄) + η,

we find neighborhoods U of x̄ and V of η such that for all x ∈ U and η̃ ∈ N lim
D (x) ∩ V ,

the vectors from {
(∇Gi(x))i∈I∪S , η̃ if η̃ ̸= 0,
(∇Gi(x))i∈I∪S if η̃ = 0

are linearly dependent.

In case where D is a set of product structure, condition (iii) in Definition 3.6 can be
slightly weakened in order to obtain a reasonable generalization of the classical relaxed
constant positive linear dependence constraint qualification, see [156, Remark 1.1] for
details. Observing that GMFCQ from (3.5) takes the particular form

0 ∈
∑

i∈I(x̄)∪J
λi∇Gi(x̄) +N lim

D (x̄), λi ≥ 0 (i ∈ I) =⇒ λi = 0 (i ∈ I(x̄) ∪ J)

in Setting 3.5, it is obviously sufficient for RCPLD. The subsequently stated result general-
izes related observations from [9,135].

Lemma 3.7. Let x̄ ∈ X be a feasible point for the optimization problem (P) in Setting 3.5
where RCPLD holds. Then x̄ is AM-regular.

Proof. Fix some ξ ∈ lim supx→x̄, z→0M(x, z). Then we find {xk}, {ξk} ⊂ X and {zk} ⊂ Rm

which satisfy xk → x̄, ξk → ξ, zk → 0, and ξk ∈ M(xk, zk) for all k ∈ N. Particularly,
there are sequences {λk} and {ηk} satisfying λk ∈ NC(G(xk) − zk), ηk ∈ N lim

D (xk), and
ξk = G′(xk)∗λk + ηk for each k ∈ N. From G(xk)− zk → G(x̄) and the special structure of
C, we find Gi(xk)− zki < 0 for all i ∈ {1, . . . ,m1} \ I(x̄) and all sufficiently large k ∈ N,
i.e.,

λki

{
= 0 i ∈ {1, . . . ,m1} \ I(x̄),
≥ 0 i ∈ I(x̄)

for sufficiently large k ∈ N. Thus, we may assume without loss of generality that

ξk =
∑

i∈I(x̄)∪J
λki∇Gi(xk) + ηk



3.2. Stationarities and Constraint Qualification 25

holds for all k ∈ N. By definition of RCPLD, (∇Gi(xk))i∈S is a basis of the subspace
span{∇Gi(xk) | i ∈ J} for all sufficiently large k ∈ N. Hence, there exist scalars µki (i ∈ S)
such that

ξk =
∑
i∈I(x̄)

λki∇Gi(xk) +
∑
i∈S

µki∇Gi(xk) + ηk

holds for all sufficiently large k ∈ N. On the other hand, [6, Lemma 1] yields the existence
of an index set Ik ⊂ I(x̄) and multipliers µ̂ki > 0 (i ∈ Ik), µ̂ki ∈ R (i ∈ S), and σk ≥ 0 such
that

ξk =
∑

i∈Ik∪S
µ̂ki∇Gi(xk) + σk η

k

and
σk > 0 =⇒ (∇Gi(xk))i∈Ik∪S , η

k linearly independent,
σk = 0 =⇒ (∇Gi(xk))i∈Ik∪S linearly independent.

Since there are only finitely many subsets of I(x̄), there needs to exist I ⊂ I(x̄) such that
Ik = I holds along a whole subsequence. Along such a particular subsequence (without
relabeling), we furthermore may assume σk > 0 (otherwise, the proof will be easier) and,
thus, may set η̂k := σkη

k ∈ N lim
D (xk) \ {0}. From above, we find linear independence of

(∇Gi(xk))i∈I∪S , η̂k.

Furthermore, one has
ξk =

∑
i∈I∪S

µ̂ki∇Gi(xk) + η̂k. (3.6)

Suppose that the sequence {((µ̂ki )i∈I∪S , η̂k)} is not bounded. Dividing (3.6) by the
norm of ((µ̂ki )i∈I∪S , η̂k), taking the limit k → ∞, and respecting boundedness of {ξk},
continuity of G′, and outer semicontinuity of the limiting normal cone yield the existence
of a non-vanishing multiplier ((µ̂i)i∈I∪S , η̂) which satisfies µ̂i ≥ 0 (i ∈ I), η̂ ∈ N lim

D (x̄), and

0 =
∑
i∈I∪S

µ̂i∇Gi(x̄) + η̂.

Obviously, the multipliers µ̂i (i ∈ I ∪ S) do not vanish at the same time since, otherwise,
η̂ = 0 would follow from above which yields a contradiction. Now, validity of RCPLD
guarantees that the vectors

(∇Gi(xk))i∈I∪S , η̂k

need to be linearly dependent for sufficiently large k ∈ N. However, we already have shown
above that these vectors are linearly independent, a contradiction.

Thus, the sequence {((µ̂ki )i∈I∪S , η̂k)} is bounded and, therefore, possesses a convergent
subsequence with limit ((µ̄i)i∈I∪S , η̄). Taking the limit in (3.6) while respecting ξk → ξ,
the continuity of G′, and the outer semicontinuity of the limiting normal cone, we come up
with µ̄i ≥ 0 (i ∈ I), η̄ ∈ N lim

D (x̄), and

ξ =
∑
i∈I∪S

µ̄i∇Gi(x̄) + η̄.

Finally, we set µ̄i := 0 for all i ∈ {1, . . . ,m}\(I∪S). Then we have (µ̄i)i=1,...,m ∈ NC(G(x̄))
from I ⊂ I(x̄), i.e.,

ξ ∈ G′(x̄)∗NC(G(x̄)) +N lim
D (x̄) =M(x̄, 0).
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This shows that x̄ is AM-regular.

A popular situation, where AM-regularity simplifies and, thus, becomes easier to verify,
is described in the following lemma.
Lemma 3.8. [117, Theorems 3.10, 5.2] Let x̄ ∈ X be a feasible point for the optimization
problem (P) where C is a polyhedron and D is the union of finitely many polyhedrons.
Then x̄ is AM-regular if any only if

lim sup
x→x̄

(
G′(x)∗NC(G(x̄)) +N lim

D (x̄)
)
⊂ G′(x̄)∗NC(G(x̄)) +N lim

D (x̄).

Particularly, in case where G is an affine function, x̄ is AM-regular.
Let us consider the situation where (P) is given as described in Setting 3.5, and assume

in addition that D := X holds, i.e., that (P) is a standard nonlinear optimization problem
with finitely many equality and inequality constraints. Then Lemma 3.8 shows that AM-
regularity corresponds to the cone continuity property from [9, Definition 3.1], and the
latter has been shown to be weaker than most of the established constraint qualifications
which can be checked in terms of initial problem data.

For the so-called disjunctive programs of special type, such as (box) switching constraints,
complementarity constraints, and relaxed reformulated cardinality constraints, they can be
addressed in the setting mentioned below which provides a refinement of Setting 3.5.
Setting 3.9. Let W be another Euclidean space, let W ⊂W be the union of finitely many
convex, polyhedral sets, and let T ⊂ R2 be the union of two polyhedrons T1, T2 ⊂ R2. For
functions g : W → Rm1, h : W → Rm2, and p, q : W → Rm3, we consider the constraint
system given by

gi(w) ≤ 0 i = 1, . . . ,m1,

hi(w) = 0 i = 1, . . . ,m2,(
pi(w), qi(w)

)
∈ T i = 1, . . . ,m3,

w ∈W.

Setting X := W× Rm3 × Rm3, Y := Rm1 × Rm2 × Rm3 × Rm3,

G(w, u, v) :=
(
g(w), h(w), p(w)− u, q(w)− v

)
,

and
C := Rm1

− × {0}m2+2m3 , D := W × T̃ ,

where we used T̃ := {(u, v) | (ui, vi) ∈ T ∀i ∈ {1, . . . ,m3}}, we can handle this situation in
the framework of (P).

Lemma 3.8 also helps us to find a tangible representation of AM-regularity in Setting 3.9.
Lemma 3.10. Let w̄ ∈W be a feasible point of the optimization problem from Setting 3.9.
Furthermore, define a set-valued mapping M̃ : W ⇒ W by

M̃(w) :=

L(w, λ, ρ, µ, ν, ξ)

∣∣∣∣∣∣∣∣
0 ≤ λ ⊥ g(w̄),
(µ, ν) ∈ N lim

T̃
(p(w̄), q(w̄)),

ξ ∈ N lim
W (w̄)


where L : W× Rm1 × Rm2 × Rm3 × Rm3 ×W→W is the function given by

L(w, λ, ρ, µ, ν, ξ) := g′(w)∗λ+ h′(w)∗ρ+ p′(w)∗µ+ q′(w)∗ν + ξ.
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Then the feasible point (w̄, p(w̄), q(w̄)) of the associated problem (P) is AM-regular if and
only if

lim sup
w→w̄

M̃(w) ⊂ M̃(w̄). (3.7)

Proof. First, observe that transferring the constraint region from Setting 3.9 into the form
used in (P) and keeping Lemma 3.8 in mind shows that AM-regularity of (w̄, p(w̄), q(w̄))
is equivalent to

lim sup
w→w̄

M̂(w) ⊂ M̂(w̄) (3.8)

where M̂ : W ⇒ W× Rm3 × Rm3 is given by

M̂(w) :=


(
L(w, λ, ρ, µ̃, ν̃, ξ),−µ̃+ µ,−ν̃ + ν

) ∣∣∣∣∣∣∣∣
0 ≤ λ ⊥ g(w̄),
(µ, ν) ∈ N lim

T̃
(p(w̄), q(w̄)),

ξ ∈ N lim
W (w̄)

.
Observing that η ∈ M̃(x) is equivalent to (η, 0, 0) ∈ M̂(x), (3.8) obviously implies (3.7).
In order to show the converse relation, we assume that (3.7) holds and fix (η, α, β) ∈
lim supw→w̄ M̂(w). Then we find sequences {wk}, {ξk}, {ηk} ⊂ W, {λk} ⊂ Rm1 , {ρk} ⊂
Rm2 , and {µk}, {µ̃k}, {νk}, {ν̃k} ⊂ Rm3 such that wk → w̄, ηk → η, −µ̃k + µk → α, −ν̃k +
νk → β, and ηk = L(wk, λk, ρk, µ̃k, ν̃k, ξk), 0 ≤ λk ⊥ g(w̄), (µk, νk) ∈ N lim

T̃
(p(w̄), q(w̄)), as

well as ξk ∈ N lim
w (w̄) for all k ∈ N. Setting αk := −µ̃k + µk and βk := −ν̃k + νk, we find

ηk+p′(wk)∗αk+q′(wk)∗βk = L(wk, λk, ρk, µk, νk, ξk) for each k ∈ N, and due to αk → α and
βk → β, validity of (3.7) yields η+p′(w̄)∗α+q′(w̄)∗β ∈ M̃(w̄), i.e., the existence of λ ∈ Rm1 ,
ρ ∈ Rm2 , µ, ν ∈ Rm3 , and ξ ∈ W such that η + p′(w̄)∗α + q′(w̄)∗β = L(w̄, λ, ρ, µ, ν, ξ),
0 ≤ λ ⊥ g(w̄), (µ, ν) ∈ N lim

T̃
(p(w̄), q(w̄)), and ξ ∈ N lim

W (w̄). Thus, setting µ̃ := µ− α and
ν̃ := ν − β, we find (η, α, β) ∈ M̂(w̄) showing (3.8).

Let us specify these findings for MPCCs which can be stated in the form (P) via
Setting 3.9. Taking lemmas 3.8 and 3.10 into account, AM-regularity corresponds to the
so-called MPCC cone continuity property from [135, Definition 3.9]. The latter has been
shown to be strictly weaker than MPCC-RCPLD, see [135, Definition 4.1, Theorem 4.2,
Example 4.3] for a definition and this result. A similar reasoning can be used in order to
show that problem-tailored versions of RCPLD associated with other classes of disjunctive
programs are sufficient for the respective AM-regularity. This, to some extend, recovers
our result from Lemma 3.7 although we need to admit that, exemplary, RCPLD from
Definition 3.6 applied to MPCC in Setting 3.9 does not correspond to MPCC-RCPLD.

The above considerations underline that AM-regularity is a comparatively weak con-
straint qualification for (P). Exemplary, for standard nonlinear problems and for MPCCs,
this follows from the above comments and the considerations in [9, 135]. For other types of
disjunctive programs, the situation is likely to be similar, see e.g. [110, Figure 3] for the
setting of switching-constrained optimization. It remains a topic of future research to find
further sufficient conditions for AM-regularity which can be checked in terms of initial
problem data, particularly, in situations where C and D are of particular structure like in
semidefinite or second-order cone programming, see e.g. [8, Section 6]. Let us mention that
the provably weakest constraint qualification which guarantees that local minimizers of a
geometrically constrained program are M-stationary is slightly weaker than validity of the
pre-image rule for the computation of the limiting normal cone to the constraint region of
(P), see [82, Section 3] for a discussion, but the latter cannot be checked in practice. Due
to [117, Theorem 3.16], AM-regularity indeed implies validity of this pre-image rule.
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3.3 Spectral Gradient Methods as Subproblem Solver

When augmented Lagrangian methods are applied for (P), structurally, the constraints
G(x) ∈ C will be penalised by the augmented Lagrangian scheme, however the compar-
atively easy constraints x ∈ D will be left, which causes the resulting subproblems are
constrained optimization problems. In this section, an general Spectral Gradient method is
applied to solve such a problem whose constraint set is nonconvex, and generates a approx-
imately M-stationarity of the corresponding optimization problem, whereas Section 3.3.1
shows the approach exactly and tells the reason why it is employed, the analysis about
convergence results and termination criterion is shown in Section 3.3.2.

3.3.1 Motivation and Statement of the Algorithm

First the following unconstrained optimization problem is considered

min
x

φ(x) s.t. x ∈ X

where φ : X→ R is a continuously differentiable objective function, and set xj as a current
estimate for a solution of this problem. Then the unique minimizer of the local quadratic
model

min
x

φ(xj) +∇φ(xj)⊤(x− xj) + γj
2 ∥x− x

j∥2

for some γj > 0 is defined as the next iterate xj+1, which could be computed explicitly as

xj+1 := xj − 1
γj
∇φ(xj),

i.e., a steepest descent method is obtained with stepsize tj := 1/γj . Classical approaches
compute tj by using a suitable stepsize rule such that φ(xj+1) < φ(xj). On the other hand,
the update formula can be viewed as a special instance of a quasi-Newton scheme

xj+1 := xj −B−1
j ∇φ(xj)

with the very simple quasi-Newton matrix Bj := γjI as an estimate of the (not necessarily
existing) Hessian ∇2φ(xj). Then the corresponding quasi-Newton equation

Bj+1s
j = yj with sj := xj+1 − xj , yj := ∇φ(xj+1)−∇φ(xj),

see [68], reduces to the linear system γj+1sj = yj . Solving this overdetermined system in a
least squares sense, one then obtains the stepsize

γj+1 := (sj)⊤yj/(sj)⊤sj ,

which has been introduced by Barzilai and Borwein [17]. This stepsize always leads to very
good numerical results, but may not yield a monotone decrease in the function value. The
convergence analysis for general nonlinear programs is therefore difficult, even if the choice
of γj is safeguarded in the sense that it is projected onto some box [γmin, γmax] for suitable
constants 0 < γmin < γmax.

Raydan [136] then suggested to control this nonmonotone behavior by combining
the Barzilai–Borwein stepsize with the nonmonotone linesearch technique introduced by
Grippo et al. [80], which, in particular, promotes a global convergence theory for general
unconstrained optimization problems.
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This idea was then generalized by Birgin et al. [35] to constrained optimization problems

min
x

φ(x) s.t. x ∈ X

with a nonempty, closed, and convex set X ⊂ X and is called the nonmonotone spectral
gradient method. Note that the constraint set X should be convex. Then, one idea that
this approach may be popularized to solved the following optimization problems with
nonconvex constraint set is certainly arised,

min
x

φ(x) s.t. x ∈ D (3.9)

with a continuously differentiable function φ : X → R and some nonempty, closed set
D ⊂ X, where X is an arbitrary Euclidean space. Note that neither φ nor D need to be
convex in the subsequent considerations.

A detailed description of the corresponding generalized spectral gradient is given in
Algorithm 3.3.1.

Algorithm 3.3.1: General Spectral Gradient Method
Data: τ > 1, σ ∈ (0, 1), 0 < γmin ≤ γmax <∞, n ∈ N, x0 ∈ D

1 for j ← 0 to ∞ do
2 Set mj := min(j, n), i← 0 and choose γ0

j ∈ [γmin, γmax];
3 repeat
4 Set i← i+ 1, γj,i := τ i−1γ0

j and compute a solution xj,i of

min
x

φ(xj) + ⟨∇φ(xj), x− xj⟩+ γj,i
2 ∥x− x

j∥2 s.t. x ∈ D; (Q(j, i))

5 if xj,i satisfies some termination criterion then
6 return xj,i;
7 end
8 until φ(xj,i) ≤ maxr=0,1,...,mj φ(xj−r) + σ⟨∇φ(xj), xj,i − xj⟩;
9 Set ij := i, γj := γj,i, and xj+1 := xj,i;

10 end

Particular instances of the method with nonconvex sets D have already been found in
[22,55,56,81]. Note that all iterates from Algorithm 3.3.1 belong to the set D, that the
subproblems (Q(j, i)) are always solvable, and that only one solution needs to be computed,
although their solutions are not necessarily unique.

It is also emphasized that ∇φ(xj) was used in the formulation of (Q(j, i)) in order to
underline that Algorithm 3.3.1 is actually a projected gradient method. Indeed, simple
calculations reveal that the global solutions of (Q(j, i)) correspond to the projections
of xj − γ−1

j,i ∇φ(xj) onto D. Note also that the acceptance criterion in Line 8 is the
nonmonotone Armijo rule introduced by Grippo et al. [80]. In particular, the parameter
mj := min(j, n) controls the nonmonotonicity. The choice n = 0 corresponds to the
standard monotone method, whereas n > 0 typically allows larger stepsizes and then often
leads to faster convergence of the method.
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3.3.2 Convergence Analysis

The goal of Algorithm 3.3.1 is that the computation of a point is approximately M-stationary
for (3.9). Recall that x is an M-stationary point of (3.9) if

0 ∈ ∇φ(x) +N lim
D (x)

holds, and that each locally optimal solution of (3.9) satisfying some assertions is M-
stationary by [123, Theorem 6.1]. Similarly, since xj,i solves the subproblem (Q(j, i)), it is
a candicate for the corresponding M-stationarity condition

0 ∈ ∇φ(xj) + γj,i
(
xj,i − xj

)
+N lim

D (xj,i). (3.10)

Recall the fact that strong stationarity, where the limiting normal cone is replaced by
the smaller regular normal cone in the stationarity system, provides a more restrictive
necessary optimality condition for (Q) and the surrogate (Q(j, i)), see [140, Definition 6.3,
Theorem 6.12]. It is well known that the limiting normal cone is the outer limit of the
regular normal cone. In contrast to the limiting normal cone, the regular one is not robust
in the sense of (2.6), and since one is interested in taking limits later on, one either way
ends up with a stationarity systems in terms of limiting normals at the end. Thus, one
relies on the limiting normal cone and the associated concept of M-stationarity.

For the following theoretical results, the termination criterion in Line 5 will be neglected
temporally. This means that Algorithm 3.3.1 does not terminate and performs either
infinitely many inner or infinitely many outer iterations. The first result analyzes the inner
loop.

Proposition 3.11. Consider a fixed (outer) iteration j in Algorithm 3.3.1. Then the
inner loop terminates (due to Line 8) or

∥γj,i
(
xj − xj,i

)
+∇φ(xj,i)−∇φ(xj)∥ → 0 as i→∞. (3.11)

If the inner loop does not terminate, one gets xj,i → xj and xj is M-stationary.

Proof. Since xj,i is a solution of (Q(j, i)) with γj,i = τ i−1γ0
j . From xj ∈ D, the optimality

condition of xj,i for (Q(j, i)) yields

φ(xj) + ⟨∇φ(xj), xj,i− xj⟩+ γj,i
2
∥∥xj,i− xj∥∥2 ≤ φ(xj) + ⟨∇φ(xj), xj − xj⟩+ γj,i

2
∥∥xj − xj∥∥2

holds for all i ∈ N, which equals to

⟨∇φ(xj), xj,i − xj⟩+ γj,i
2
∥∥xj,i − xj∥∥2 ≤ 0 ∀i ∈ N. (3.12)

(3.12) with Cauchy–Schwarz inequality therefore gives

γj,i
2
∥∥xj,i − xj∥∥ ≤ ∥∥∇φ(xj)

∥∥ ∀i ∈ N.

This implies that xj,i → xj for i→∞. Now, there exist two cases. First, if

lim sup
i→∞

γj,i
∥∥xj,i − xj∥∥ > 0. (3.13)



3.3. Spectral Gradient Methods as Subproblem Solver 31

Hence, there exist a (sub)sequence il →∞ and a constant ρ > 0 such that

γj,il
∥∥xj,il − xj∥∥ ≥ ρ ∀l ∈ N.

Consequently, one obtains from (3.12) that

ρ

2
∥∥xj,il − xj∥∥ ≤ γj,il

2
∥∥xj,il − xj∥∥2 ≤ −⟨∇φ(xj), xj,il − xj⟩.

It, together with a Taylor expansion, therefore implies

φ
(
xj,il

)
− max
r=0,1,...,mj

φ(xj−r) ≤ φ
(
xj,il

)
− φ(xj)

= ⟨∇φ(xj), xj,il − xj⟩+ o
(∥∥xj,il − xj∥∥)

≤ σ⟨∇φ(xj), xj,il − xj⟩

for all l sufficiently large, i.e., the inner loop terminates.
In the second case, (3.13) is not satisfied, i.e., γj,i

∥∥xj,i − xj∥∥ → 0. Because ∇φ is
continuous, this yields (3.11). Together with xj,i → xj , the continuity of ∇φ, and (2.6),
one can pass to the limit i→∞ in (3.10) and obtain that xj is M-stationary.

It remains to analyze the situation where the inner loop always terminates. Let x0 ∈ D
be the starting point from Algorithm 3.3.1, and let

Sφ(x0) :=
{
x ∈ D

∣∣ φ(x) ≤ φ(x0)
}

denote the corresponding (feasible) sublevel set. With the aid of these assumptions, then
the following result holds, also see [80,154].

Proposition 3.12. Assume that the inner loop in Algorithm 3.3.1 always terminates (due
to Line 8) and denote {xj} as the infinite sequence of (outer) iterates. Assume that φ is
bounded from below and uniformly continuous on Sφ(x0). Then one has ∥xj+1 − xj∥ → 0
as j →∞.

Proof. Let us assume that l(j) ∈ {j −mj , . . . , j} is an index satisfying

φ(xl(j)) = max
r=0,1,...,mj

φ(xj−r) ∀j ∈ N.

One can rewrite the nonmonotone Armijo rule from Line 8 in Algorithm 3.3.1 as

φ(xj+1) ≤ φ(xl(j)) + σ⟨∇φ(xj), xj+1 − xj⟩. (3.14)

Since xj+1 solves

min
x

φ(xj) + ⟨∇φ(xj), x− xj⟩+ γj
2 ∥x− x

j∥2 s.t. x ∈ D, (3.15)

one has
⟨∇φ(xj), xj+1 − xj⟩+ γj

2 ∥x
j+1 − xj∥2 ≤ 0,

i.e.,
⟨∇φ(xj), xj+1 − xj⟩ ≤ −γj2 ∥x

j+1 − xj∥2.
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Hence, (3.14) implies

φ(xj+1) ≤ φ(xl(j))− σγj
2 ∥x

j+1 − xj∥2. (3.16)

One first notes that the sequence {φ(xl(j))} is monotonically decreasing. Then the fact
that mj+1 ≤ mj + 1 implies

φ(xl(j+1)) = max
r=0,1,...,mj+1

φ(xj+1−r)

≤ max
r=0,1,...,mj+1

φ(xj+1−r)

= max
(

max
r=0,1,...,mj

φ(xj−r), φ(xj+1)
)

= max
(
φ(xl(j)), φ(xj+1)

)
= φ(xl(j)),

where the last equality follows from (3.16). Since φ is bounded from below, this deduces

lim
j→∞

φ(xl(j)) = φ∗ (3.17)

for some finite φ∗ ∈ R. Applying (3.16) with j replaced by l(j)− 1 and rearranging terms
yields

φ(xl(j))− φ(xl(l(j)−1)) ≤ −
σγl(j)−1

2
∥∥xl(j) − xl(j)−1∥∥2 ≤ 0.

Taking the limit j →∞ and using (3.17) therefore implies

lim
j→∞

γl(j)−1
∥∥xl(j) − xl(j)−1∥∥2 = 0.

Since γj ≥ γmin > 0 for all j ∈ N, one has

lim
j→∞

dl(j)−1 = 0, (3.18)

where, for simplicity, one has dj := xj+1 − xj for all j ∈ N. From (3.17) and (3.18), one
then obtains

φ∗ = lim
j→∞

φ(xl(j)) = lim
j→∞

φ
(
xl(j)−1 + dl(j)−1) = lim

j→∞
φ(xl(j)−1), (3.19)

where the last equality is due to the uniform continuity of φ.
Let us now prove, by induction, that

lim
j→∞

dl(j)−r = 0 and lim
j→∞

φ(xl(j)−r) = φ∗ ∀r ∈ N. (3.20)

It has been implied from (3.18) and (3.19) that (3.20) holds for r = 1. Suppose that (3.20)
holds for some r ≥ 1. One has to show that it holds for r+ 1. Using (3.16) with j replaced
by l(j)− r − 1, one has

φ(xl(j)−r) ≤ φ(xl(l(j)−r−1))−
σγl(j)−r−1

2
∥∥dl(j)−r−1∥∥2

(it is assumed implicitly that j is large enough such that no negative indices l(j)− r − 1
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occur). Rearranging this expression and using γj ≥ γmin for all j yields

∥∥dl(j)−r−1∥∥2 ≤ 2
γminσ

(
φ(xl(l(j)−r−1))− φ(xl(j)−r)

)
.

Taking the limit j →∞ in (3.17) as well as the induction hypothesis, it follows that

lim
j→∞

dl(j)−r−1 = 0, (3.21)

which proves the induction step for the first limit in (3.20). The second limit is from

lim
j→∞

φ
(
xl(j)−(r+1)) = lim

j→∞
φ
(
xl(j)−(r+1) + dl(j)−(r+1)) = lim

j→∞
φ
(
xl(j)−r

)
= φ∗,

where the first equation follows from (3.21) and the uniform continuity of φ, whereas the
final equation is the induction hypothesis.

The final step of the proof aims to show that limj→∞ dj = 0. To be contrary, then
there exists a (suitably shifted, for notational simplicity) subsequence {dj−n−1}K and a
constant ρ > 0 such that

∥dj−n−1∥ ≥ ρ ∀j ∈ K. (3.22)

Now, for every j ∈ K, the corresponding index l(j) is one of the indices j−n, j−n+1, . . . , j.
Hence, one can write j−n− 1 = l(j)− rj for some index rj ∈ {1, 2, . . . , n+ 1}. Since there
are only finitely many possible indices rj , one may assume without loss of generality that
rj = r holds for some fixed index r. Then (3.20) implies

lim
j→K∞

dj−n−1 = lim
j→K∞

dl(j)−r = 0,

which contradicts (3.22) and therefore completes the proof.

The following gives the main convergence result of Algorithm 3.3.1.

Proposition 3.13. Assume that the inner loop in Algorithm 3.3.1 always terminates (due
to Line 8) and denote {xj} as the infinite sequence of (outer) iterates. Assume that φ is
bounded from below and uniformly continuous on Sφ(x0). Suppose that x̄ is an accumulation
point of {xj}, i.e., xj →K x̄ along a subsequence K. Then x̄ is an M-stationary point of
the optimization problem (3.9), and one has γj

(
xj+1 − xj

)
→K 0.

Proof. Let x̄ be an arbitrary accumulation point, and {xj}K be a subsequence such that
xj →K x̄.

We claim that γj
(
xj+1 − xj

)
→K 0. If {γj}K is bounded, this follows directly from

Proposition 3.12. Otherwise, in the case that {γj}K is unbounded, one can find a sub-
sequence K′ ⊂ K with γj →K′ ∞ and γj > γmax for all j ∈ K′. Then γ̂j := γj/τ =
τ ij−1γ0

j = γj,ij−1 also converges to infinity. Due to γj > γmax, one obtains ij > 0. There-
fore, x̂j+1 := xj,ij−1 solving (Q(j, ij − 1)), however violates the nonmonotone Armijo-type
condition from Line 8 in Algorithm 3.3.1, i.e., one has

φ
(
x̂j+1) > max

r=0,1,...,mj

φ(xj−r) + σ⟨∇φ(xj), x̂j+1 − xj⟩ (3.23)

for all j ∈ K′ sufficiently large. The following analysis is highly similar to the proof
of Proposition 3.11 (except that j is not fixed now). Since x̂j+1 is the solution of the
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subproblem (Q(j, ij − 1)), one has

⟨∇φ(xj), x̂j+1 − xj⟩+ γ̂j
2
∥∥x̂j+1 − xj

∥∥2 ≤ 0, (3.24)

which implies that
γ̂j
2
∥∥x̂j+1 − xj

∥∥ ≤ ∥∥∇φ(xj)
∥∥.

Since xj →K′ x̄, this yields x̂j+1 − xj →K′ 0. Hence, one also gets x̂j+1 →K′ x̄. For each
j ∈ K′, the mean value theorem implies that there exists ξj on the line segment between
x̂j+1 and xj such that

φ
(
x̂j+1)− φ(xj) = ⟨∇φ(ξj), x̂j+1 − xj⟩.

Because of x̂j+1, xj →K′ x̄, one gets ∇φ(ξj)−∇φ(xj)→K′ 0. (3.23) deduces that

σ⟨∇φ(xj), x̂j+1 − xj⟩ < φ
(
x̂j+1)− max

r=0,1,...,mj

φ(xj−r)

≤ φ
(
x̂j+1)− φ(xj)

≤ ⟨∇φ(xj), x̂j+1 − xj⟩+ ∥∇φ(ξj)−∇φ(xj)∥ ∥x̂j+1 − xj∥.

Together with (3.24), one achieves

γ̂j
2
∥∥x̂j+1 − xj

∥∥2 ≤ −⟨∇φ(xj), x̂j+1 − xj⟩ ≤ ∥∇φ(ξj)−∇φ(xj)∥
1− σ ∥x̂j+1 − xj∥.

Hence, γ̂j
∥∥x̂j+1 − xj

∥∥ →K′ 0. Using the optimality conditions of x̂j+1 and xj+1 for
(Q(j, ij − 1)) and (Q(j, ij)), respectively, one obtains

γj∥xj+1 − xj∥ = τ γ̂j∥xj+1 − xj∥ ≤ τ γ̂j∥x̂j+1 − xj∥ →K′ 0.

Now, one can use a standard subsequence-subsequence argument to conclude that γj∥xj+1−
xj∥ →K 0 holds along the entire subsequence K.

It remains to prove M-stationarity of x̄. Since xj+1 solves the subproblem (3.15), the
corresponding optimality condition yields

0 ∈ ∇φ(xj) + γj
(
xj+1 − xj

)
+N lim

D (xj+1).

Due to Proposition 3.12, one also has xj+1 →K x̄. Hence, taking the limit j →K ∞ and
exploiting once again the upper semicontinuity of the limiting normal cone, one can obtain

0 ∈ ∇φ(x̄) +N lim
D (x̄),

i.e., x̄ is an M-stationary point of (3.9).

Proposition 3.12 elaborates that the iterates of Algorithm 3.3.1 belong to the sublevel set
Sφ(x0) although the associated sequence of function values is not necessary monotonically
decreasing. Hence, whenever this sublevel set is bounded, e.g., if φ is coercive or if D is
bounded, the existence of an accumulation point as in Proposition 3.13 is ensured. Moreover,
the boundedness of Sφ(x0) implies that this set is compact. Hence, φ is automatically
bounded from below and uniformly continuous on Sφ(x0) in this situation.

By combining Propositions 3.11 and 3.13, one gets the following convergence result,
which shows that the infinite sequence of (inner or outer) iterates of Algorithm 3.3.1 always
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converges towards M-stationary points (along subsequences).

Theorem 3.14. Assume that Algorithm 3.3.1 without termination in Line 5 and Sφ(x0)
is bounded, Then exactly one of the following situations occurs.

(i) The inner loop does not terminate in the outer iteration j, xj,i → xj as i→∞, xj
is M-stationary, and (3.11) holds.

(ii) The inner loop always terminates, the infinite sequence {xj} of outer iterates possesses
convergent subsequences {xj}K and every convergent subsequence satisfies xj →K x̄,
x̄ is M-stationary, and γj

(
xj+1 − xj

)
→K 0.

Note that Sφ(x0) could be replaced by the assumptions on φ of Proposition 3.13, but
then the outer iterates {xj} might fail to possess accumulation points.

In what follows, these theoretical results also give rise to a reasonable and applicable
termination criterion which could be used in Line 5. To this end, we note that the optimality
condition (3.10) is equivalent to

γj,i
(
xj − xj,i

)
+∇φ(xj,i)−∇φ(xj) ∈ ∇φ(xj,i) +N lim

D (xj,i),

which motivates us to use

∥γj,i
(
xj − xj,i

)
+∇φ(xj,i)−∇φ(xj)∥ ≤ εtol (3.25)

with εtol > 0, as a termination criterion in Line 5. Indeed, Proposition 3.11 implies that
the inner loop always terminates when (3.25) is satisfied. Moreover, the termination
criterion (3.25) directly encodes that xj,i is approximately M-stationary for (3.9). This
is very desirable since the goal of Algorithm 3.3.1 is the computation of approximately
M-stationary points.

Furthermore, one can check that (3.25) always ensures the finite termination of Al-
gorithm 3.3.1 if the mild assumptions of Theorem 3.14 (or the even weaker assumptions
of Proposition 3.13) are satisfied. Indeed, due to γj = γj,ij and xj+1 = xj,ij , one has
γj,ij

(
xj − xj,ij

)
= γj

(
xj − xj+1) →K 0. Using xj+1, xj →K x̄ and the continuity of

∇φ : X → X show that ∇φ(xj,ij ) − ∇φ(xj) = ∇φ(xj+1) − ∇φ(xj) →K 0. Thus, the
left-hand side of (3.25) with i = ij is arbitrarily small if j ∈ K is large enough. Thus,
Algorithm 3.3.1 with the termination criterion (3.25) terminates in finitely many steps.

Let us mention that the above convergence theory differs from the one provided in [55,56],
since no Lipschitzness of∇φ : X→ X is needed. In the particular setting of complementarity-
constrained optimization, related results have been obtained in [81, Section 4]. The findings
substantially generalize the theory from [81] to arbitrary set constraints.

3.4 Augmented Lagrangian Methods for Structured Opti-
mization Problems

In this section, we are devoted to the safeguarded augmented Lagrangian method in detail
and some further analysis. In particular, Section 3.4.1 contains a detailed statement of our
augmented Lagrangian method applied to the general class of problems (P) together with
several explanations. The convergence theory is then presented in Section 3.4.2.

3.4.1 Statement of the Algorithm

We now consider the optimization problem (P) under the given smoothness of f , convexity
assumption of C, and not necessarily convex assumption of D stated there. A safeguarded
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augmented Lagrangian approach is presented here for the solution of (P). The method
penalizes the constraints G(x) ∈ C, but leaves the condition x ∈ D explicitly in the
constraints. Hence, the resulting subproblems that have to be solved in the augmented
Lagrangian framework have exactly the structure of the (simplified) optimization problems
discussed in Section 3.3.

To be specific, we consider the (partially) augmented Lagrangian of (P)

Lρ(x, λ) := f(x) + ρ

2d
2
C

(
G(x) + λ

ρ

)
, (3.26)

where ρ > 0 denotes the penalty parameter. Note that the squared distance function
of a nonempty, closed, and convex set is always continuously differentiable, see e.g. [19,
Corollary 12.30], which yields that Lρ(·, λ) is a continuously differentiable mapping. From
the definition of the distance, one can alternatively write (3.26) as

Lρ(x, λ) = f(x) + ρ

2

∥∥∥∥G(x) + λ

ρ
− PC

(
G(x) + λ

ρ

)∥∥∥∥2
.

In order to control the update of the penalty parameter ρ, we introduce the auxiliary
function

Vρ(x, u) :=
∥∥∥∥G(x)− PC

(
G(x) + u

ρ

)∥∥∥∥, (3.27)

which can also be used to obtain a meaningful termination criterion, see the discussion
after (3.29) below. The overall method is stated in Algorithm 3.4.1.

Algorithm 3.4.1: Safeguarded Augmented Lagrangian Method for Geometric Con-
straints

Data: ρ0 > 0, β > 1, η ∈ (0, 1), x0 ∈ D, nonempty and bounded set U ⊂ Y
1 for k ← 0 to ∞ do
2 if xk satisfies some termination criterion then
3 return xk;
4 end
5 Choose uk ∈ U ;
6 Compute an approximately M-stationary point xk+1 of the subproblem

min
x
Lρk

(x, uk) s.t. x ∈ D,

7 i.e., for some suitable (sufficiently small) vector εk+1 ∈ X, xk+1 needs to satisfy

εk+1 ∈ ∇xLρk
(xk+1, uk) +N lim

D (xk+1);

8 Set λk+1 := ρk
[
G(xk+1) + uk/ρk − PC

(
G(xk+1) + uk/ρk

)]
;

9 if k = 0 or Vρk
(xk+1, uk) ≤ ηVρk−1(xk, uk−1) then

10 ρk+1 := ρk;
11 else
12 ρk+1 := βρk;
13 end
14 end

Line 6 of Algorithm 3.4.1, in general, contains the main computational effort since one
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has to “solve” a constrained nonlinear program at each iteration. Due to the nonconvexity
of this subproblem, we only require to compute an M-stationary point of this program. In
fact, we allow the computation of an approximately M-stationary point, with the vector
εk+1 measuring the degree of inexactness. The choice of εk+1 = 0 corresponds to an exact
M-stationary point. As mentioned above, the subproblems arising in Line 6 have precisely
the structure of the problem investigated in Section 3.3, hence, the spectral gradient method
discussed there is a candidate for the solution of these subproblems.

Note that Algorithm 3.4.1 is called a safeguarded augmented Lagrangian method due to
the appearance of the auxiliary sequence {uk} ⊂ U where U is a bounded set. In fact, if we
replace uk by λk in Line 6 of Algorithm 3.4.1 (and the corresponding subsequent formulas),
then the classical augmented Lagrangian method will be obtained. However, the safeguarded
version has superior global convergence properties, see [34] for a general discussion and
[100] for an explicit (counter-) example. In practice, uk is typically chosen to be equal to
λk as long as this vector belongs to the set U , otherwise uk is taken as the projection of λk
onto this set. In situations where Y is equipped with some (partial) order relation ≲, a
typical choice for U is given by the box [umin, umax] := {u ∈ Y | umin ≲ u ≲ umax} where
umin, umax ∈ Y are given bounds satisfying umin ≲ umax.

In order to understand the update of the Lagrange multiplier estimate in Line 8 of
Algorithm 3.4.1, recall that the augmented Lagrangian is differentiable, with its derivative
given by

∇xLρ(x, λ) = ∇f(x) + ρG′(x)∗
[
G(x) + λ

ρ
− PC

(
G(x) + λ

ρ

)]
,

see [19, Corollary 12.30] again. Hence, if we denote the usual (partial) Lagrangian of (P)
by

L(x, λ) := f(x) + ⟨λ,G(x)⟩,

then we obtain from Line 8 that

∇xLρk
(xk+1, uk) = ∇f(xk+1) +G′(xk+1)∗λk+1 = ∇xL(xk+1, λk+1). (3.28)

This formula is actually the motivation for the precise update used in Line 8.
The updating rule in Lines 9 to 13 of Algorithm 3.4.1 is quite common, but other

formulas might also be possible. In particular, one can choose a different norm of Vρ in
the definition (3.27). Exemplary, we exploited the maximum-norm for our experiments in
Section 3.6 where X is a space of real vectors or matrices. Let us emphasize that increasing
the penalty parameter ρk based on a pure infeasibility measure does not usually work in
Algorithm 3.4.1. One usually has to take into account both the infeasibility of the current
iterate (w.r.t. the constraint G(x) ∈ C) and a kind of complementarity condition (i.e.,
λ ∈ NC(G(x))).

For the better discussion of a suitable termination criterion, one first defines

zk := G(xk)− PC
(
G(xk) + uk−1

ρk−1

)
.

Using (3.28) and the update formula for λk, Algorithm 3.4.1 ensures

εk ∈ ∇f(xk) +G′(xk)∗λk +N lim
D (xk), (3.29a)

λk ∈ NC(G(xk)− zk), (3.29b)

which is AM-stationary points from Definition 3.2. Thus, it is reasonable to require εk → 0
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and to use
∥zk∥ = Vρk−1(xk, uk−1) ≤ εtol (3.30)

for some εtol > 0 as a termination criterion. By the way, in practical implementations of
Algorithm 3.4.1, a maximum number of iterations should also be incorporated into the
termination criterion.

3.4.2 Convergence Analysis

In this section, we explore the convergence results of the proposed safeguarded augmented
Lagrangian method. It is first assumed that Algorithm 3.4.1 does not stop after finitely
many iterations.

Like all penalty-type methods in the setting of nonconvex programming, augmented
Lagrangian methods suffer from the drawback that they generate accumulation points
which are not necessarily feasible for the given optimization problem (P). The following
(standard) result therefore presents some requirements under which it is guaranteed that
limit points are feasible.

Proposition 3.15. Each accumulation point x̄ of a sequence {xk} generated by Algo-
rithm 3.4.1 is feasible for the optimization problem (P) if one of the following conditions
holds:
(a) {ρk} is bounded, or
(b) there exists some B ∈ R such that Lρk

(xk+1, uk) ≤ B holds for all k ∈ N.

Proof. Let x̄ be an arbitrary accumulation point of {xk} and {xk+1}K be a corresponding
subsequence with xk+1 →K x̄.

We start to prove the case (a). Since {ρk} is bounded, Lines 9 to 13 of Algorithm 3.4.1
imply that Vρk

(xk+1, uk)→ 0 for k →∞, which means

dC(G(xk+1)) ≤
∥∥∥∥∥G(xk+1)− PC

(
G(xk+1) + uk

ρk

)∥∥∥∥∥ = Vρk
(xk+1, uk)→ 0.

A continuity argument yields dC(G(x̄)) = 0. Since C is a closed set, this implies G(x̄) ∈ C.
Furthermore, by construction, one has xk+1 ∈ D for all k ∈ N, so that the closedness of D
also yields x̄ ∈ D. Altogether, this shows that x̄ is feasible for the optimization problem
(P).

Let us now prove the result in presence of (b). In view of (a), it suffices to consider the
situation where ρk →∞. By assumption, one has

Lρk
(xk+1, uk) = f(xk+1) + ρk

2 d
2
C

(
G(xk+1) + uk

ρk

)
≤ B ∀k ∈ N,

which could be rewritten as

d2
C

(
G(xk+1) + uk

ρk

)
≤ 2(B − f(xk+1))

ρk
∀k ∈ N. (3.31)

Taking the limit k →K ∞ in (3.31) and using the boundedness of {uk}, one has

d2
C

(
G(x̄)

)
= lim

k→K∞
d2
C

(
G(xk+1) + uk

ρk

)
= 0
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by a continuity argument. Similar to part (a), this implies feasibility of x̄.

The two conditions (a) and (b) of Proposition 3.15 are, of course, difficult to check
a priori. Nevertheless, recall that each iterate xk+1 is actually a global minimizer of the
subproblem in Line 6 of Algorithm 3.4.1, if x denotes any feasible point of the optimization
problem (P), then from the boundedness of the sequence {uk}, there exists some suitable
constant B such that

Lρk
(xk+1, uk) ≤ Lρk

(x, uk) ≤ f(x) + ∥u
k∥2

2ρk
≤ f(x) + ∥u

k∥2

2ρ0
≤ B

holds. The same argument also works if xk+1 is only an inexact global minimizer.
The following result shows that, even in the case where a limit point is not feasible, it

still contains some useful information in the sense that it is at least a stationary point for
the constraint violation. To be honest, this is the best that one can expect.

Proposition 3.16. Assume that the sequence {εk} in Algorithm 3.4.1 is bounded. Then
each accumulation point x̄ of a sequence {xk} generated by Algorithm 3.4.1 is an M-
stationary point of the so-called feasibility problem

min
x

1
2d

2
C(G(x)) s.t. x ∈ D. (3.32)

Proof. If {ρk} is bounded, in view of Proposition 3.15, then each accumulation point is a
global minimum of the feasibility problem (3.32) and, therefore, an M-stationary point of
this problem.

Hence, it remains to consider the case where {ρk} is unbounded, i.e., we have ρk →∞
as k →∞. In view of Lines 6 and 8 of Algorithm 3.4.1, see also (3.28), one has

εk+1 ∈ ∇f(xk+1) +G′(xk+1)∗λk+1 +N lim
D (xk+1)

with λk+1 as in Line 8. Dividing this inclusion by ρk and from the fact that N lim
D (xk+1) is

a cone, one therefore gets

εk+1

ρk
∈ ∇f(xk+1)

ρk
+G′(xk+1)∗

[
G(xk+1) + uk

ρk
− PC

(
G(xk+1) + uk

ρk

)]
+N lim

D (xk+1).

Now, let x̄ be an accumulation point and {xk+1}K be a subsequence satisfying xk+1 →K x̄.
Then the sequences {εk+1}K, {uk}K, and {∇f(xk+1)}K are bounded. Thus, taking the
limit k →K ∞ yields

0 ∈ G′(x̄)∗[G(x̄)− PC(G(x̄))
]

+N lim
D (x̄)

by the outer semicontinuity of the limiting normal cone. Since one also has x̄ ∈ D and due
to

∇
(1

2d
2
C ◦G

)
(x̄) = G′(x̄)∗[G(x̄)− PC(G(x̄))

]
,

see, once more, [19, Corollary 12.30], it follows that x̄ is an M-stationary point of the
feasibility problem (3.32).

We next investigate suitable properties of feasible limit points, which shows that
any such accumulation point is automatically an AM-stationary point in the sense of
Definition 3.2.
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Theorem 3.17. Assume that the sequence {εk} in Algorithm 3.4.1 satisfies εk → 0. Then
each feasible accumulation point x̄ of a sequence {xk} generated by Algorithm 3.4.1 is an
AM-stationary point.

Proof. Let {xk+1}K be the subsequence such that xk+1 →K x̄. Define

sk+1 := PC

(
G(xk+1) + uk

ρk

)
and zk+1 := G(xk+1)− sk+1

for each k ∈ N. We claim that the four (sub-) sequences {xk+1}K, {zk+1}K, {εk+1}K, and
{λk+1}K generated by Algorithm 3.4.1 or defined in the above way satisfy the properties
from Definition 3.2 and therefore show that x̄ is an AM-stationary point. By construction,
one has xk+1 →K x̄ and εk+1 →K 0. Further, it implies from Line 6 of Algorithm 3.4.1 and
(3.28) that

εk+1 ∈ ∇xLρk
(xk+1, uk) +N lim

D (xk+1) = ∇f(xk+1) +G′(xk+1)∗λk+1 +N lim
D (xk+1).

Since NC(sk+1) is a cone, the relation between PC and NC together with the definitions of
sk+1, λk+1, and zk+1 deduce

λk+1 = ρk

[
G(xk+1) + uk

ρk
− sk+1

]
∈ NC(sk+1) = NC(G(xk+1)− zk+1).

Hence, it remains to show zk+1 →K 0. To this end, we consider two cases, namely whether
the sequence {ρk} stays bounded or is unbounded. In the bounded case, Lines 9 to 13 of
Algorithm 3.4.1 imply that Vρk

(xk+1, uk)→ 0 for k →∞. The corresponding definitions
therefore yield

∥zk+1∥ = ∥G(xk+1)− sk+1∥ = Vρk
(xk+1, uk)→ 0 as k →K ∞. (3.33)

On the other hand, if {ρk} is unbounded, one has ρk → ∞. Since {uk} is bounded by
construction, the continuity of the projection operator together with the assumed feasibility
of x̄ implies

sk+1 = PC

(
G(xk+1) + uk

ρk

)
→ PC(G(x̄)) = G(x̄) as k →K ∞.

Consequently, one obtains zk+1 = G(xk+1)− sk+1 →K 0. Altogether, this implies that x̄ is
AM-stationary.

Note that (3.33) implies that stopping criterion (3.30) will be satisfied after finitely
many steps.

By definition, each AM-stationary point of (P) which is AM-regular must already be
M-stationary, then we obtain the following corollary.

Corollary 3.18. Suppose that the sequence {εk} in Algorithm 3.4.1 satisfies εk → 0.
Then each feasible AM-regular accumulation point x̄ of a sequence {xk} generated by
Algorithm 3.4.1 is an M-stationary point.

Keeping the discussions after Lemma 3.10 in mind, this result generalizes [81, Theorem 3]
which addresses a similar MPCC-tailored augmented Lagrangian method and exploits
MPCC-RCPLD.
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3.5 Realizations
Let k be a fixed iteration of Algorithm 3.4.1, we use Algorithm 3.3.1 to obtain the
approximate solution of the ALM-subproblem in Line 6 of Algorithm 3.4.1. Recall that,
given an outer iteration j of Algorithm 3.3.1, we need to solve the subproblem

min
x
Lρk

(xj , uk) + ⟨∇xLρk
(xj , uk), x− xj⟩+ γj,i

2 ∥x− x
j∥2 s.t. x ∈ D

with some given xj and γj,i > 0 in the inner iteration i of Algorithm 3.3.1, which possesses
the same solutions as

min
x

∥∥∥∥∥x−
(
xj − 1

γj,i
∇xLρk

(xj , uk)
)∥∥∥∥∥

2

s.t. x ∈ D.

Then it is required that D is simple in the sense that projections (possibly multi-valued)
onto D, i.e., ΠD

(
xj − 1

γj,i
∇xLρk

(xj , uk)
)

are easy to compute. In other words, one has to
be in position to find projections of arbitrary points onto the set D in an efficient way. In
particular, we show that this is the case for MPCCs, optimization problems with cardinality
constraints, and some rank-constrained matrix optimization problems.

3.5.1 The Disjunctive Programming Case

We consider (P) in the special Setting 3.9 with W := Rn and W := [ℓ, u] where ℓ, u ∈ Rn
satisfy −∞ ≤ ℓi < ui ≤ ∞ for i = 1, . . . , n. Recall that the set D is given by

D = {(w, y, z) ∈ Rn × Rm3 × Rm3 | w ∈ [ℓ, u], (yi, zi) ∈ T ∀i ∈ {1, . . . ,m3}} (3.34)

in this situation. For given x̄ = (w̄, ȳ, z̄) ∈ Rn × Rm3 × Rm3 , we would like to characterize
the elements of ΠD(x̄) explicitly. Therefore, we first consider the optimization problem

min
x

1
2∥x− x̄∥

2 s.t. x = (w, y, z) ∈ D, (3.35)

which can be decomposed into the n one-dimensional optimization problems

min
wi

1
2(wi − w̄i)2 s.t. wi ∈ [ℓi, ui],

i = 1, . . . , n, possessing the respective solution P[ℓi,ui](w̄i), as well as into m3 two-
dimensional optimization problems

min
yi,zi

1
2(yi − ȳi)2 + 1

2(zi − z̄i)2 s.t. (yi, zi) ∈ T, (3.36)

i = 1, . . . ,m3. Due to T = T1 ∪ T2, each of these problems can be decomposed into the
two two-dimensional subproblems

min
yi,zi

1
2(yi − ȳi)2 + 1

2(zi − z̄i)2 s.t. (yi, zi) ∈ Tj , (R(i, j))

j = 1, 2. In most of the popular settings from disjunctive programming, (R(i, j)) can be
solved with ease. By a simple comparison of the associated objective function values, we
find the solutions of (3.36). Putting the solutions of the subproblems together, we obtain
the solutions of (3.35), i.e., the elements of ΠD(x̄).
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We now consider a particularly interesting instance of this setting where T is given by

T := {(s, t) | s ∈ [σ1, σ2], t ∈ [τ1, τ2], st = 0}. (3.37)

Here, −∞ ≤ σ1, τ1 ≤ 0 and 0 < σ2, τ2 ≤ ∞ are given constants. Particularly, we find the
decomposition

T1 := [σ1, σ2]× {0}, T2 := {0} × [τ1, τ2]

of T in this case. Due to the geometrical shape of the set T , one might be tempted to refer
to this setting as “box-switching constraints”. Note that it particularly covers
• switching constraints (σ1 = τ1 := −∞, σ2 = τ2 :=∞), see [96,120],
• complementarity constraints (σ1 = τ1 := 0, σ2 = τ2 :=∞), see [115,129], and
• relaxed reformulated cardinality constraints (σ1 := −∞, σ2 :=∞, τ1 := 0, τ2 := 1), see

[47,51].
We refer the reader to Figure 3.1 for a visualization of these types of constraints.
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0
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Figure 3.1: Geometric illustrations of box-switching, switching, complementarity, and relaxed reformulated
cardinality constraints (from left to right), respectively.

It remains to consider the solutions of (R(i, 1)) and (R(i, 2)) in the setting of (3.37),
which can be easily given by (P[σ1,σ2](ȳi), 0) and (0, P[τ1,τ2](z̄i)), respectively. This yields
the following result.

Proposition 3.19. Consider the set D from (3.34) where T is given as in (3.37). For
given x̄ = (w̄, ȳ, z̄) ∈ Rn × Rm3 × Rm3, one has x̂ := (ŵ, ŷ, ẑ) ∈ ΠD(x̄) if and only if
ŵ = P[ℓ,u](w̄) and

(ŷi, ẑi) ∈


{(P[σ1,σ2](ȳi), 0)} if ϕs(ȳi, z̄i) < ϕt(ȳi, z̄i),
{(0, P[τ1,τ2](z̄i))} if ϕs(ȳi, z̄i) > ϕt(ȳi, z̄i),
{(P[σ1,σ2](ȳi), 0), (0, P[τ1,τ2](z̄i))} if ϕs(ȳi, z̄i) = ϕt(ȳi, z̄i)

for all i = 1, . . . ,m3, where we denote

ϕs(a, b) := (P[σ1,σ2](a)− a)2 + b2, ϕt(a, b) := a2 + (P[τ1,τ2](b)− b)2.

Particularly, it turns out that in order to compute the projections onto the set D under
consideration, one basically needs to compute n+ 2m3 projections onto real intervals. In
the specific setting of complementarity-constrained programming, this already has been
observed in [81, Section 4].

Let us briefly mention that other popular instances of disjunctive programs like vanishing-
and or-constrained optimization problems, see e.g. [2, 118], where T is given by

T := {(s, t) | st ≤ 0, t ≥ 0} or T := {(s, t) | min(s, t) ≤ 0},
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respectively, can be treated in an analogous fashion. Furthermore, an analogous procedure
applies to more general situations where T is the union of finitely many convex, polyhedral
sets.

3.5.2 The Sparsity-Constrained Case

We fix X := Rn and some κ ∈ N with 1 ≤ κ ≤ n− 1. Consider the set

Sκ :=
{
x ∈ Rn

∣∣ ∥x∥0 ≤ κ}
with ∥x∥0 being the number of nonzero entries of the vector x. This set plays a prominent
role in sparse optimization and for problems with cardinality constraints. Since Sκ is
nonempty and closed, projections of some vector x ∈ Rn (w.r.t. the Euclidean norm) onto
this set exist (may not be unique), and are known to consist of those vectors y ∈ Rn such
that the nonzero entries of y are precisely the κ largest (in absolute value) components of
x (which may not be unique), see e.g. [20, Proposition 3.6].

Hence, within our augmented Lagrangian framework, it is possible to take D := Sκ and
then get an explicit formula for the solutions of the corresponding subproblems arising within
the spectral gradient method. However, typical implementations of augmented Lagrangian
methods (like ALGENCAN, see [3]) do not penalize box constraints, i.e., they leave the box
constraints explicitly as constraints when solving the corresponding subproblems. Hence,
let us assume that we have some lower and upper bounds satisfying −∞ ≤ ℓi < ui ≤ ∞
for all i = 1, . . . , n, we are then forced to compute projections onto the set

D := Sκ ∩ [ℓ, u]. (3.38)

It turns out that there exists an explicit formula for this projection. Before presenting the
result, let us first assume, for notational simplicity, that

0 ∈ [ℓi, ui] ∀i = 1, . . . , n. (3.39)

We mention that this assumption is not restrictive, which in the meantime ensures D is
nonempty and we then can trace the elements of projections on D. Indeed, let us assume
that, e.g., 0 ̸∈ [ℓ1, u1]. Then the first component of x ∈ D cannot be zero, and this shows

D = Sκ ∩ [ℓ, u] = [ℓ1, u1]×
(
Ŝκ−1 ∩ [ℓ̂, û]

)
, (3.40)

where Ŝκ−1 := {x ∈ Rn−1 | ∥x∥0 ≤ κ− 1} and the vectors ℓ̂, û ∈ Rn−1 are obtained from
ℓ, u by dropping the first component, respectively. For the computation of the projection
onto Sκ, we can now exploit the product structure (3.40). Similarly, we can remove all
remaining components i = 2, . . . , n with 0 ̸∈ [ℓi, ui] from D. Thus, we can assume (3.39)
without loss of generality. We now give the following simple observation.

Lemma 3.20. Let x ∈ Rn be arbitrary. Then, for each y ∈ ΠD(x), where D is the set
from (3.38), one has

yi ∈
{

0, P[ℓi,ui](xi)
}

∀i = 1, . . . , n.

Proof. To the contrary, assume that yi ̸= 0 and yi ̸= P[ℓi,ui](xi) hold for some index
i ∈ {1, . . . , n}. Define the vector q ∈ Rn by qj := yj for j ̸= i and qi := P[ℓi,ui](xi). Due
to yi ≠ 0, one has ∥q∥0 ≤ ∥y∥0 ≤ κ, i.e., q ∈ Sκ. Additionally, q ∈ [ℓ, u] is clear from
y ∈ [ℓ, u] and qi = P[ℓi,ui](xi). Thus, one finds q ∈ D. Furthermore, ∥q − x∥ < ∥y − x∥
since qi = P[ℓi,ui](xi) ̸= yi. This contradicts the fact that y is a projection of x onto D.
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Due to the above lemma, one only has two candidates for the value of the components
associated with projections to D from (3.38). Thus, for an arbitrary index set I ⊂ {1, . . . , n}
and an arbitrary vector x ∈ Rn, we define pI(x) ∈ Rn via

pIi (x) :=
{
P[ℓi,ui](xi) if i ∈ I,
0 otherwise

∀i = 1, . . . , n.

It remains to characterize those index sets I which ensure that pI(x) is a projection of x
onto D. To this end, we define an auxiliary vector d(x) ∈ Rn via

di(x) := x2
i −

(
P[ℓi,ui](xi)− xi

)2 ∀i = 1, . . . , n.

Note that this definition directly yields

∥pI(x)− x∥2 = ∥x∥2 −
∑
i∈I

di(x). (3.41)

We state the following simple observation.

Lemma 3.21. Fix x ∈ Rn and assume that (3.39) is valid. Then the following statements
hold:
(a) di(x) ≥ 0 for all i = 1, . . . , n,
(b) di(x) = 0⇐⇒ P[ℓi,ui](xi) = 0.

Proof. (a) Since 0 ∈ [ℓi, ui], one gets

di(x) = (xi − 0)2 −
(
xi − P[ℓi,ui](xi)

)2 ≥ 0

by definition of the (one-dimensional) projection.
(b) If P[ℓi,ui](xi) = 0 holds, one immediately obtains di(x) = 0. Conversely, let di(x) = 0,
then

0 = x2
i −

(
xi − P[ℓi,ui](xi)

)2 = P[ℓi,ui](xi)
(
2xi − P[ℓi,ui](xi)

)
.

Hence, one finds P[ℓi,ui](xi) = 0 or P[ℓi,ui](xi) = 2xi. In the first case, we are done. In the
second case, we have {0, 2xi} ⊂ [ℓi, ui]. By convexity, this gives xi ∈ [ℓi, ui]. Consequently,
xi = P[ℓi,ui](xi) = 2xi. This implies P[ℓi,ui](xi) = 0.

Observe that the second assertion of the above lemma implies

∥pI(x)∥0 =
∣∣{i ∈ I | P[ℓi,ui](xi) ̸= 0}

∣∣ =
∣∣{i ∈ I | di(x) ̸= 0}

∣∣ ∀x ∈ Rn. (3.42)

This can be used to characterize the set of projections onto the set D from (3.38).

Proposition 3.22. Let D be the set from (3.38) and assume that (3.39) holds. Then, for
each x ∈ Rn, y ∈ ΠD(x) holds if and only if there exists an index set I ⊂ {1, . . . , n} with
|I| = κ such that

di(x) ≥ dj(x) ∀i ∈ I, ∀j ̸∈ I (3.43)

and y = pI(x) hold.

Proof. If y ∈ ΠD(x) holds, then y = pJ(x) is valid for some index set J , see Lemma 3.20.
Thus, it remains to check that pJ(x) is a projection onto D if and only if pJ(x) = pI(x)
holds for some index set I satisfying |I| = κ and (3.43).
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Note that pJ(x) is a projection if and only if J minimizes ∥pI(x) − x∥ over all I ⊂
{1, . . . , n} satisfying ∥pI(x)∥0 ≤ κ. This can be reformulated via d(x) by using (3.41) and
(3.42). In particular, pJ(x) is a projection if and only if J solves

max
I

∑
i∈I

di(x) s.t. I ⊂ {1, . . . , n},
∣∣{i ∈ I | di(x) ̸= 0}

∣∣ ≤ κ. (3.44)

It is clear that index sets I with |I| = κ and (3.43) are solutions of this problem. This
shows the direction ⇐=.

To prove the converse direction =⇒, let pJ(x) be a projection. Thus, J solves (3.44).
We note that the solutions of this problem are invariant under addition and removal of
indices i with di(x) = 0. Due to Lemma 3.21 (b), these operations also do not alter the
associated pI(x). Thus, for each projection pJ(x), we can add or remove indices i with
di(x) = 0, to obtain a set I with pI(x) = pJ(x) and |I| = κ. It is also clear that (3.43)
holds for such a choice of I.

Let us give some comment on the result of Proposition 3.22.

Remark 3.23. (a) Let y = pI(x) be a projection of x ∈ Rn onto D from (3.38) such that
(3.39) holds. Observe that yi = 0 may also hold for some indices i ∈ I.

(b) In the unconstrained case [ℓ, u] = Rn, we find di(x) = x2
i for each x ∈ Rn and all

i = 1, . . . , n. Thus, Proposition 3.22 recovers the well-known characterization of the
projection onto the set Sκ which can be found in [20, Proposition 3.6].

For the variational geometry of D = Sk ∩ [ℓ, u] from (3.38), observing that the sets Sκ
and [ℓ, u] are both polyhedral in the sense that they can be represented as the union of
finitely many polyhedrons, the normal cone intersection rule

N lim
D (x) = N lim

Sκ∩[ℓ,u](x) ⊂ N lim
Sκ

(x) +N lim
[ℓ,u](x) = N lim

Sκ
(x) +N[ℓ,u](x)

applies for each x ∈ D by means of [88, Corollary 4.2] and [137, Proposition 1]. While the
evaluation of N[ℓ,u](x) is standard, a formula for N lim

Sκ
(x) can be found in [20, Theorem 3.9].

3.5.3 Low-Rank Approximation

3.5.3.1 General Low-Rank Approximations

For natural numbers m,n ∈ N with m,n ≥ 2, we fix X := Rm×n. Equipped with the
standard Frobenius inner product, X indeed is a Euclidean space. Now, for fixed κ ∈ N
satisfying 1 ≤ κ ≤ min(m,n)− 1, let us investigate the set

D := {X ∈ X | rankX ≤ κ}.

Constraint systems involving rank constraints of type X ∈ D can be applied to model
numerous practically relevant problems in computer vision, machine learning, computer
algebra, signal processing, or model order reduction, see [116, Section 1.3] for an overview.
Nowadays, one of the most popular applications behind low-rank constraints is the so-called
low-rank matrix completion, particularly, the “Netflix-problem”, see [48] for details.

Observe that the variational geometry of D has been explored recently in [90]. Particu-
larly, a formula for the limiting normal cone to this set can be found in [90, Theorem 3.1].
Using the singular value decomposition of a given matrix X̃ ∈ X, one can easily construct
an element of ΠD(X̃) by means of the so-called Eckart–Young–Mirsky theorem, see e.g.
[116, Theorem 2.23].
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Proposition 3.24. For a given matrix X̃ ∈ X, let X̃ = UΣV ⊤ be its singular value
decomposition with orthogonal matrices U ∈ Rm×m and V ∈ Rn×n as well as a diagonal
matrix Σ ∈ Rm×n whose diagonal entries are in non-increasing order. Let Û ∈ Rm×κ and
V̂ ∈ Rn×κ be the matrices resulting from U and V by deleting the last m − κ and n − κ
columns, respectively. Furthermore, let Σ̂ ∈ Rκ×κ be the top left κ× κ block of Σ. Then we
have Û Σ̂V̂ ⊤ ∈ ΠD(X̃).

Note that the projection formulas from the previous sections allow a very efficient
computation of the corresponding projections, which is in contrast to the projection
provided by Proposition 3.24. Though the formula given there is conceptually very simple,
its realization requires to compute the singular value decomposition of the given matrix.

3.5.3.2 Symmetric Low-Rank Approximation

Given n ∈ N with n ≥ 2, we consider the set of symmetric matrices X := Rn×n
sym , still

equipped with the Frobenius inner product. Now, for fixed κ ∈ N satisfying 1 ≤ κ ≤ n, let
us investigate the set

D := {X ∈ X | X ⪰ 0, rankX ≤ κ}.

Above, the constraint X ⪰ 0 is used to abbreviate that X has to be positive semidefinite.
Constraint systems involving rank constraints of type X ∈ D arise frequently in several
different mathematical models of data science, see [106] for an overview, and Section 3.6.4
for an application. Note that κ := n covers the setting of pure semidefiniteness constraints.

Exploiting the eigenvalue decomposition of a given matrix X̃ ∈ X, one can easily
construct an element of ΠD(X̃).

Proposition 3.25. For a given matrix X̃ ∈ X, we denote by X̃ = ∑n
i=1 λiviv

⊤
i its

(orthonormal) eigenvalue decomposition with non-increasingly ordered eigenvalues λ1 ≥
λ2 ≥ . . . ≥ λn and associated pairwise orthonormal eigenvectors v1, . . . , vn. Then we have
X̂ := ∑κ

i=1 max(λi, 0)viv⊤
i ∈ ΠD(X̃).

Proof. We define the positive and negative part X̃± := ∑n
i=1 max(±λi, 0)viv⊤

i . This yields
X̃ = X̃+ − X̃− and ⟨X̃+, X̃−⟩ = trace(X̃+X̃−) = 0. Thus, for each positive semidefinite
B ∈ X, one has

∥X̃ −B∥2 = ∥X̃+ −B∥2 + ∥X̃−∥2 + 2⟨X̃−, B⟩ ≥ ∥X̃+ −B∥2 + ∥X̃−∥2.

Since the singular value decomposition of X̃+ coincides with the eigenvalue decomposition,
the right-hand side is minimized by B = X̂, see Proposition 3.24 while noting that we have
X̂ = X̃+ in case κ = n. Due to ⟨X̃−, X̂⟩ = 0, B = X̂ also minimizes the left-hand side.

It is clear that the computation of the κ largest eigenvalues of X̃ ∈ X is sufficient to
compute an element from the projection ΠD(X̃). This can be done particularly efficient
for small κ (note that κ = 1 holds in our application from Section 3.6.4).

3.5.4 Extension to Nonsmooth Objectives

For some lower semicontinuous functional g : X→ R, we consider the optimization problem

min
x

f(x) + g(x) s.t. G(x) ∈ C. (3.45)

Particularly, we do not assume that g is continuous. Actually, (3.45) has the same form
with (CP), the following is our motivation to discuss (CP) in Chapter 4. Exemplary, let
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us mention the special cases where g is the indicator function of a closed set, counts the
nonzero entries of the argument vector (in case X := Rn), or encodes the rank of the
argument matrix (in case X := Rm×n). In this regard, (3.45) can be used to model real-
world applications from e.g. image restoration or signal processing. Necessary optimality
conditions and qualification conditions addressing (3.45) can be found in [83]. In [55], the
authors suggest to handle (3.45) numerically with the aid of an augmented Lagrangian
method (without safeguarding) based on the (partially) augmented Lagrangian function
(3.26) and the subproblems

min
x
Lρk

(x, λk) + g(x) s.t. x ∈ X

which are solved with a nonmonotone proximal gradient method inspired by [154]. In
this regard, the solution approach to (3.45) described in [55] possesses some parallels to
our strategy for the numerical solution of (P). The authors in [55] were able to prove
convergence of their method to reasonable stationary points of (3.45) under a variant of the
basic qualification condition and RCPLD. Let us mention that the authors in [55,83] only
considered standard inequality and equality constraints, but the theory in these papers
can be easily extended to the more general constraints considered in (3.45) doing some
nearby adjustments.

We note that (P) can be interpreted as a special instance of (3.45) where g plays the
role of the indicator function of the set D. Then the nonmonotone proximal gradient
method from [55] reduces to the spectral gradient method from Section 3.3. However,
the authors in [55] did not challenge their method with discontinuous functionals g
and, thus, cut away some of the more reasonable applications behind the model (P).
Furthermore, we would like to mention that (3.45) can be reformulated (by using the
epigraph epi g := {(x, α) | g(x) ≤ α} of g) as

min
x,α

f(x) + α s.t. G(x) ∈ C, (x, α) ∈ epi g (3.46)

which is a problem of type (P). One can easily check that (3.45) and (3.46) are equivalent
in the sense that x̄ ∈ X is a local/global minimizer of (3.45) if and only if (x̄, g(x̄)) is a
local/global minimizer of (3.46). Problem (3.46) can be handled with Algorithm 3.4.1
as soon as the computation of projections onto D := epi g is possible in an efficient way.
Our result from Corollary 3.18 shows that Algorithm 3.4.1 applied to (3.46) computes
M-stationary points of (3.45) under AM-regularity (associated with (3.46)) at (x̄, g(x̄)),
i.e., we are in position to find points satisfying

0 ∈ ∇f(x̄) + ∂g(x̄) +G′(x̄)∗NC(G(x̄))

under a very mild condition which enhances [55, Theorem 3.1]. Here, we used the limiting
subdifferential of g given by

∂g(x) := {ξ ∈ X | (ξ,−1) ∈ N lim
epi g(x, g(x))}.

3.6 Numerical Results
In this section, we aim to implement Algorithm 3.4.1, based on the underlying subproblem
solver Algorithm 3.3.1, in MATLAB (R2021b) and tested it on four classes of difficult
problems which are discussed in Sections 3.6.1 to 3.6.4. All test runs use the following
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parameters:

τ := 2, σ := 10−4, β := 10, η := 0.8, m := 10, γmin := 10−10, γmax := 1010.

In iteration k of Algorithm 3.4.1, we terminate Algorithm 3.3.1 if the inner iterates xj,i
satisfy ∥∥∥γj,i(xj − xj,i)+∇φ(xj,i)−∇φ(xj)

∥∥∥
∞
≤ 10−4
√
k + 1

, (3.47)

where ∥ · ∥∞ stands for the maximum-norm for the cases X equal to Rn, equal to Rm×n

and Rn×n
sym (other Euclidean spaces do not occur in the subsequent applications), see

(3.25). Similarly, we use the infinity norm in the definition (3.27) of Vρ. Algorithm 3.4.1
is terminated as soon as (3.30) is satisfied with εtol := 10−4. These two termination
criteria ensure that the final iterate xk together with the multiplier λk is approximately
M-stationarity, see (3.29).

Given an arbitrary (possibly random) starting point x0, note that we first project this
point onto the set D and then use this projected point as the true starting point, so that
all iterates xk generated by Algorithm 3.4.1 belong to D. The choice of the initial penalty
parameter is similar to the rule in [34, p. 153] and given by

ρ0 := P[10−3,103]

(
10 max(1, f(x0))

max
(
1, 1

2d
2
C(G(x0))

)).
In all our examples, the space Y is given by Rm as in Setting 3.5. This allows us to
choose the safeguarded multiplier estimate uk as the projection of the current value λk
onto a given box [umin, umax], where this box is (in componentwise fashion) chosen to
be [−1020, 1020] for all equality constraints and [0, 1020] for all inequality constraints. In
this way, we basically guarantee that the safeguarded augmented Lagrangian method
from Algorithm 3.4.1 coincides with the classical approach as long as bounded multiplier
estimates λk are generated.

3.6.1 MPCC Examples

The specification of Algorithm 3.4.1 to MPCCs is essentially the method discussed in
[81], where extensive numerical results (including comparisons with other methods) are
presented. We therefore keep this section short and consider only two particular examples
in order to illustrate certain aspects of our method.

Example 3.26. Here, for x := (y, z) ∈ R2, we consider the two-dimensional MPCC given
by

min
x

1
2(y − 1)2 + 1

2(z − 1)2 s.t. y + z ≤ 2, y ≥ 0, z ≥ 0, yz = 0,

which is essentially the example from [141] with an additional (inactive) inequality constraint
in order to have at least one standard constraint, so that Algorithm 3.4.1 does not
automatically reduce to the spectral gradient method. The problem possesses two global
minimizers at (0, 1) and (1, 0) which are M-stationary (in fact, they are even strongly
stationary in the MPCC-terminology). Moreover, it has a local maximizer at (0, 0) which
is a point of attraction for many MPCC solvers since it can be shown to be C-stationary,
see e.g. [89] for the corresponding definitions and some convergence results to C- and
M-stationary points. Due to Lemma 3.8, each feasible point of the problem is AM-regular.
In view of our convergence theory, Algorithm 3.4.1 should not converge to the origin. To
verify this statement numerically, we generated 1000 random starting points (uniformly
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distributed) from the box [−10, 10]2 and then applied Algorithm 3.4.1 to the above example.
As expected, the method converges for all 1000 starting points to one of the two minima.
Moreover, we can even start our method at the origin, and the method still converges to
the point (1, 0) or (0, 1). The limit point itself depends on our choice of the projection
which is not unique for iterates (yk, zk) with yk = zk > 0.

The next example is used to show the spectral gradient method as a subproblem problem
has some limitations for ill-conditioned problems in details. There are examples where
this spectral gradient method reduces the number of iterations even for two-dimensional
problems from more than 100000 to just a few iterations. Nevertheless, in the end, the
spectral gradient method is a projected gradient method, which exploits a different stepsize
selection, but which eventually reduces to a standard projected gradient method if there
are a number of consecutive iterations with very small progress, i.e., with almost identical
function values during the last few iterations so that the maximum term in the nonmonotone
line search is almost identical to the current function value used in the monotone version.
This situation typically happens for problems which are ill-conditioned, and we illustrate
this observation by the following example.

Example 3.27. We consider the optimal control of a discretized obstacle problem as
investigated in [86, Section 7.4]. Using x := (w, y, z), in our notation, the problem is given
by

min
x

f(x) := 1
2∥w∥

2 − e⊤y + 1
2∥y∥

2

s.t. w ≥ 0, −Ay − w + z = 0, y ≥ 0, z ≥ 0, y⊤z = 0.

Here, A is a tridiagonal matrix which arises from a discretization of the negative Laplace
operator in one dimension, i.e., aii = 2 for all i and aij = −1 for all i = j± 1. Furthermore,
e denotes the all-one vector of appropriate size. We note that x̄ := 0 is the global minimizer
as well as an M-stationary point of this program. Again, Lemma 3.8 shows that each
feasible point is AM-regular. Viewing the constraint x ≥ 0 as a box constraint, taking
a moderate discretization with A ∈ R64×64, and using the all-one vector as a starting
point, we obtain the results from Table 3.1. The number of (outer) iterations is denoted
by k, j is the number of inner iterations, jcum the accumulated number of inner iterations,
f -ev. provides the number of function evaluations (note that, due to the stepsize rule, we
might have several function evaluations in a single inner iteration, hence, f -ev. is always
an upper bound for jcum), f(xk) denotes the current function value, the column titled “Vk”
contains Vρk−1(xk, uk−1), tj := 1/γj is the stepsize, and ρk denotes the penalty parameter
at iteration k.

The method terminates after 12 outer iterations, which is a reasonable number, especially
taking into account that the final penalty parameter ρk is relatively large, so that several
subproblems with different values of ρk have to be solved in the intermediate steps. On
the other hand, the number of inner iterations j (at each outer iteration k) is very large.
In the final step, the method requires more than one million inner iterations. This is a
typical behavior of gradient-type methods and indicates that the underlying subproblems
are ill-conditioned. This is also reflected by the fact that the stepsize tj tends to zero.

There are two types of difficulties in Example 3.27: there are challenging constraints
(the complementarity constraints), and there is an ill-conditioning. The difficult constraints
are treated by Algorithm 3.4.1 successfully, but the ill-conditioning causes some problems
when solving the resulting subproblems. In principle, this difficulty can be circumvented
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k j jcum f -ev. f(xk) Vk tj ρk
0 0 0 1 32.0000000 — — 320
1 4889 4889 8561 -30.2322093 0.017885 0.00019214 320
2 2765 7654 13171 -29.5693079 0.010772 0.00019553 320
3 2959 10613 18148 -29.1713687 0.008367 0.00019264 320
4 2734 13347 23001 -28.8787629 0.007077 0.00020241 3200
5 16380 29727 51233 -27.6160751 0.003845 0.00001961 3200
6 16412 46139 80229 -26.8702076 0.002675 0.00001967 3200
7 17708 63847 111596 -26.4929700 0.002437 0.00003231 32000
8 128146 191993 333580 -25.3129057 0.002357 0.00000196 320000
9 596930 788923 1364773 -13.1312431 0.000868 0.00000021 320000

10 756029 1544952 2686144 -5.3024263 0.000316 0.00000020 320000
11 911019 2455971 4320526 -2.0002217 0.000115 0.00000020 320000
12 1084340 3540311 6367887 -0.7376656 0.000042 0.00000020 320000

Table 3.1: Numerical results for Example 3.27.

by using another subproblem solver (like a semismooth Newton method, see [86]), but then
it is no longer guaranteed that we obtain M-stationary points at the limit.

Despite the fact that the ill-conditioning causes some difficulties, we stress again that
each iteration of the spectral gradient method is extremely cheap. Moreover, for all test
problems in the subsequent sections, we put an upper bound of 50000 inner iterations (as
a safeguard), and this upper bound was not reached in any of these examples.

3.6.2 Cardinality-Constrained Problems

We first consider an artificial example to illustrate the convergence behavior of Algo-
rithm 3.4.1 for cardinality-constrained problems.

Example 3.28. Consider the example

min
x

f(x) := 1
2x

⊤Qx+ c⊤x s.t. e⊤x ≤ 8, ∥x∥0 ≤ 2,

where Q := E + I with E ∈ R5×5 being the all one matrix, I ∈ R5×5 the identity matrix,
and c := −(3, 2, 3, 12, 5)⊤ ∈ R5. Clearly, by Lemma 3.8, all feasible points are AM-regular.
This is a minor modification of an example from [22], to which we added an (inactive)
inequality constraint for the same reason as in Example 3.26. Taking into account that
there are

(5
2
)

possibilities to choose two possibly nonzero components of x, an elementary
calculation shows that there are exactly 10 M-stationary points x̄1, . . . , x̄10 which are given
in Table 3.2 together with the corresponding function values. It follows that x̄6 is the global
minimizer. The points x̄3, x̄8, and x̄10 have function values which are not too far away
from f(x̄6), whereas all other M-stationary points have significantly larger function values.
We then took 1000 random starting points from the box [−10, 10]5 (uniformly distributed)
and applied Algorithm 3.4.1 to this example. Surprisingly, the method converged, for
all 1000 starting points, to the global minimizer x̄6. We then changed the example by
putting an upper bound x4 ≤ 0 to the fourth component. This excludes the four most
interesting points x̄3, x̄6, x̄8, and x̄10. Among the remaining points, the three vectors x̄4, x̄7,
and x̄9 have identical function values. Running our program again using 1000 randomly
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generated starting points, we obtain convergence to x̄4 in 589 cases, convergence to x̄7 in
350 situations, whereas in 61 instances only we observe convergence to the non-optimal
point x̄2.

x̄i f(x̄i) x̄i f(x̄i)
x̄1 :=

(
4/3, 1/3, 0, 0, 0

)⊤ −2.33 x̄6 :=
(
0,−8/3, 0, 22/3, 0

)⊤ −41.33
x̄2 :=

(
1, 0, 1, 0, 0

)⊤ −3.00 x̄7 :=
(
0,−1/3, 0, 0, 8/3

)⊤ −6.33
x̄3 :=

(
−2, 0, 0, 7, 0

)⊤ −39.00 x̄8 :=
(
0, 0,−2, 7, 0

)⊤ −39.00
x̄4 :=

(
1/3, 0, 0, 0, 7/3

)⊤ −6.33 x̄9 :=
(
0, 0, 1/3, 0, 7/3

)⊤ −6.33
x̄5 :=

(
0, 1/3, 4/3, 0, 0

)⊤ −2.33 x̄10 :=
(
0, 0, 0, 19/3,−2/3

)⊤ −36.33

Table 3.2: M-stationary points and corresponding function values for Example 3.28.

We next consider a class of cardinality-constrained problems of the form

min
x

1
2x

⊤Qx s.t. µ⊤x ≥ ϱ, e⊤x = 1, 0 ≤ x ≤ u, ∥x∥0 ≤ κ. (3.48)

This is a classical portfolio optimization problem, where Q and µ denote the covariance
matrix and the mean of n possible assets, respectively, while ϱ is some lower bound
for the expected return. Furthermore, u provides an upper bound for the individual
assets within the portfolio. The affine structure of the constraints in (3.48) implies that
all feasible points are AM-regular, see Lemma 3.8. The data Q,µ, ϱ, u were randomly
created by the test problem collection [74], which is available from the webpage https:
//commalab.di.unipi.it/datasets/MV/. Here, we used all 30 test instances of dimension
n := 200 and three different values κ ∈ {5, 10, 20} for each problem. We apply three different
methods:
(a) Algorithm 3.4.1 with starting point x0 := 0,
(b) a boosted version of Algorithm 3.4.1, and
(c) a CPLEX solver [91] to a reformulation of the portfolio optimization problem as a

mixed integer quadratic program.
The CPLEX solver is used to (hopefully) identify the global optimum of the optimization
problem (3.48). Note that we put a time limit of 0.5 hours for each test problem. Method (a)
applies our augmented Lagrangian method to (3.48) using the set D := {x ∈ [0, u] | ∥x∥0 ≤
κ}. Projections onto D are computed using the analytic formula from Proposition 3.22.
Finally, the boosted version of Algorithm 3.4.1 is the following: We first delete the cardinality
constraint from the portfolio optimization problem. The resulting quadratic program is
then convex and can therefore be solved easily. Afterwards, we apply Algorithm 3.4.1 to a
sequence of relaxations of (3.48) in which the cardinality is recursively decreased by 10 in
each step (starting with n− 10) as long as the desired value κ ∈ {5, 10, 20} is not undercut.
For κ = 5, a final call of Algorithm 3.4.1 with the correct cardinality is necessary since,
otherwise, the procedure would terminate with cardinality level 10. In each outer iteration,
the projection of the solution of the previous iteration onto the set D is used as a starting
point.

The corresponding results are summarized in Figure 3.2 for the three different values
κ ∈ {5, 10, 20}. This figure compares the optimal function values obtained by the above
three methods for each of the 30 test problems. The optimal function values produced
by CPLEX are used here as a reference value in order to judge the quality of the results
obtained by the other approaches. The main observations are the following: The optimal

https://commalab.di.unipi.it/datasets/MV/
https://commalab.di.unipi.it/datasets/MV/
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Figure 3.2: Optimal function values obtained by Algorithm 3.4.1 (red), Algorithm 3.4.1 with boosting
technique (yellow), and CPLEX (blue), applied to the portfolio optimization problem (3.48) with
cardinality κ = 20, κ = 10, and κ = 5 (top to bottom).
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function value computed by CPLEX is (not surprisingly) always the best one. On the
other hand, the corresponding values computed by method (a) are usually not too far
away from the optimal ones. Moreover, for all test problems, the boosted version (b)
generates even better function values which are usually very close to the ones computed by
CPLEX. Of course, if κ is taken smaller, the problems are getting more demanding and
are therefore more difficult to solve (in general). Nevertheless, also for κ = 5, especially
the boosted algorithm still computes rather good points. In this context, one should also
note that our methods always terminate with a (numerically) feasible point, hence, the
final iterate computed by our method can actually be used as a (good) approximation of
the global minimizer. We also would like to mention that our MATLAB implementation of
Algorithm 3.4.1 typically requires, on an Intel Core i7-8700 processor, only a CPU time
of about 0.1 seconds for each of the test problems, whereas the boosted version requires
roughly two seconds CPU time in average.

3.6.3 Recommender Systems

Recommender systems are used to establish direct connections between users and items
by matching their interests and preferences in order to help users discover new items and
reduce the overwhelming amount of choices available on the web. The main problem of
recommender systems is the missing data, by the given ratings of some item from the users,
one needs to infer the missing ratings, which is certainly not unique. In most recommender
systems, the underlying assumption is that the complete matrix of ratings is low-rank
[116, Section 1.3].

Let us assume there are m users and n items in a recommender system, set A ∈ Rm×n

being a matrix with observed entries indexed by the set Ω, i.e., Ω = {(i, j) |Aij is observed}.
Then, such recommender system problem can be transferred into the following rank-
constrained optimization problem

min
X∈Rm×n

1
2∥X −A∥

2
F

s.t. Xij = Aij ∀(i, j) ∈ Ω
rankX ≤ κ,

(3.49)

where ∥ · ∥F is the Frobenius norm, X is the to-be-recovered matrix, κ ≤ min(m,n)− 1 is
some certain constrained rank. Note that for the given matrix A, among its all underlying
completions, there exists a minimal rank. If κ is smaller than this minimal rank, then (3.49)
has no feasible set. In order to overcome such shortcomings, we first solve the following
optimization problem

min
X∈Rm×n

∥X∥q

s.t. Xij = Aij ∀(i, j) ∈ Ω,
(3.50)

with the Schatten-quasi-q norm ∥ · ∥q := (∑i σi(·)q)
1
q (q ∈ (0, 1)), where σ(X) denotes the

vector of singular value of a matrix X. Note that (3.50) is always used to formulate the
recommender system problems [116, Section 1.3]. We then solved (3.50) by augmented
Lagrangian method invoking monotone proximal gradient method (see Algorithm 5.1 or
[95]), the rank of solution would be regarded as the upper bound of κ. Set D := {X ∈
Rm×n | rankX ≤ κ}, we applied Algorithm 3.4.1 and its boosted version to solve (3.49),
where the projections on D can be calculated via Proposition 3.24. We chose the solution
of (3.50) as the starting point of Algorithm 3.4.1 and X0 := A as the starting point of
boosted Algorithm 3.4.1, respectively. Note that the boosted Algorithm 3.4.1 is highly



54
3. Augmented Lagrangian Methods invoking Spectral Gradient Methods for Structured

Optimization Problems

Algorithm Algorithm 3.4.1 Boosted Algorithm 3.4.1
q fq κ k j f max k j f max

0.1 26.16 911 2 63 22.96 9.8e− 5 4 211 35.17 5.2e− 5
0.3 72.75 895 2 253 50.45 6.9e− 5 6 391 61.65 9.9e− 5
0.5 291.43 867 2 356 133.82 4.1e− 5 9 1090 164.09 8.9e− 5
0.7 1556.64 813 2 795 474.75 6.1e− 5 20 2747 474.05 9.1e− 5
0.9 7601.44 740 3 1620 1563.82 4.8e− 5 27 7393 1710.37 8.2e− 5

Table 3.3: Numerical results of Algorithm 3.4.1 and its boosted version for MovieLens 100K w.r.t.
different κ.

like that in Section 3.6.2: We first delete the rank constraint from (3.49). We then apply
Algorithm 3.4.1 to solve a sequence of relaxations of (3.49) where the rank is recursively
decreased by 10 in each step starting with min{m,n} as long as the desired value κ is less
than the presolved one (note that undercutting is permitted here). In each outer iteration,
the projection of the solution of the previous iteration onto the set D is used as a starting
point.

In this section, we tested Algorithm 3.4.1 and its boosted version on MovieLens
100K dataset [87], which is available from website https://grouplens.org/datasets/
movielens/100k/. Here there are 943 users, 1682 movies, and a total of 100000 ratings from
1 to 5, making the resulting matrix 93 % missing. Since MovieLens 100K dataset is large-
scaled, We weakened the inner residual error (3.47) as 10−2√

k+1 . We chose q ∈ {0.1, 0.3, . . . , 0.9}
and hence induced 5 different problems (3.49) (we here set κ is equal to the rank of the
solution of (3.50)). The results are listed in Table 3.3, where fq := 1

2∥X −A∥
2
F where X is

the solution of (3.50) with different q, k means the total number of outer iterations and
j means the total number of inner iterations, f represents the optimal function value at
the final iterate, and max := max(i,j)∈Ω{∥Xij − Aij∥} means the max of the differences
between the predicted values and observed values where X is the final iterate.

Table 3.3 illustrates that with the increasement of q, κ becomes smaller in general,
which causes the problem becomes more demanding and hence more difficult to be solved.
Note that Algorithm 3.4.1 and its boosted version can recover matrix A successfully, though
the boosted Algorithm 3.4.1 costed more including the (outer and inner) iterations and
CPU time. Meanwhile, both of them are more robust since they generated the lower
objective functions than fq. In principle, the optimal objective function generated by
boosted Algorithm 3.4.1 should be larger than that of Algorithm 3.4.1 since overcutting is
permitted, which always occurs in Table 3.3. Let us take a closer look at κ = 813, where
the desired and presolved κ are equal, the value objective function generated by boosted
Algorithm 3.4.1 is lower than that of Algorithm 3.4.1, as indicated by the results obtained
by boosted Algorithm 3.4.1 in Section 3.6.2.

3.6.4 MAXCUT Problems

This section considers the famous MAXCUT problem as an application of our algorithm
to problems with rank constraints. To this end, let G = (V,E) be an undirected graph
with vertex set V = {1, . . . , n} and edges eij between vertices i, j ∈ V . We assume that we
have a weighted graph, with aij = aji denoting the nonnegative weights of the edge eij .
Since we allow zero weights, we can assume without loss of generality that G is a complete
graph. Now, given a subset S ⊂ V with complement Sc, the cut defined by S is the set
δ(S) := {eij | i ∈ S, j ∈ Sc} of all edges such that one end point belongs to S and the other

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/100k/
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one to Sc. The corresponding weight of this cut is defined by

w(S) :=
∑

eij∈δ(S)
aij .

The MAXCUT problem looks for the maximum cut, i.e., a cut with maximum weight.
This graph-theoretical problem is known to be NP-hard, thus very difficult to solve.

Let A := (aij) and define L := diag(Ae)−A. Then it is well known, see e.g. [77], that
the MAXCUT problem can be reformulated as

max
X

1
4 trace(LX) s.t. diagX = e, X ⪰ 0, rankX = 1, (3.51)

where the variable X is chosen from the space X := Rn×n
sym . Due to the linear constraint

diagX = e, it follows that this problem is equivalent to

max
X

1
4 trace(LX) s.t. diagX = e, X ⪰ 0, rankX ≤ 1. (3.52)

Deleting the difficult rank constraint, one gets the (convex) relaxation

max
X

1
4 trace(LX) s.t. diagX = e, X ⪰ 0, (3.53)

which is a famous test problem for semidefinite programs.
Here, we directly deal with (3.52) by taking D := {X ∈ X | X ⪰ 0, rankX ≤ 1}.

Projections onto D can be calculated via Proposition 3.25: Let X ∈ X denote an arbitrary
symmetric matrix with maximum eigenvalue λ and corresponding (normalized) eigenvector
v (note that λ and v are not necessarily unique), then max(λ, 0)vv⊤ is a projection of X
onto D. In particular, the computation of this projection does not require the full spectral
decomposition. However, it is not clear whether a projection onto the feasible set of (3.52)
can be computed efficiently. Consequently, we penalize the linear constraint diagX = e by
the augmented Lagrangian approach.

Throughout this section, we take the zero matrix as the starting point. In order to
illustrate the performance of our method, we begin with the simple graph from Figure 3.3.
Algorithm 3.4.1 applied to this example using the reformulation (3.52) (more precisely, the
corresponding minimization problem) together with the previous specifications yields the
iterations shown in Table 3.4. The meaning of the columns is the same as for Table 3.1.
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Figure 3.3: Example of a complete graph for the MAXCUT problem.

Note that the penalty parameter stays constant for this example. The feasibility
measure tends to zero, and we terminate at iteration k = 6 since this measure becomes less
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k j jcum f -ev. f(Xk) Vk tj ρj
0 0 0 1 0.0000000 — — 4
1 11 11 16 19.6691638 0.839210 1.25237254 4
2 9 20 27 12.0395829 0.027365 0.63395340 4
3 5 25 34 12.0097591 0.006361 1.25001275 4
4 3 28 38 12.0023821 0.001553 0.62522386 4
5 3 31 42 12.0005415 0.000382 0.62504390 4
6 3 34 46 12.0001534 0.000097 0.62502107 4

Table 3.4: Numerical results for MAXCUT associated to the graph from Figure 3.3.

than 10−4, i.e., we stop successfully. The associated function value is (approximately) 12
which actually corresponds to the maximum cut S := {1, 3} for the graph from Figure 3.3,
i.e., our method is able to solve the MAXCUT problem for this particular instance.

We next apply our method to two test problem collections that can be downloaded
from http://biqmac.aau.at/biqmaclib.html, namely the rudy and the ising collection.
The first class of problems consists of 130 instances, whereas the second one includes 48
problems. The optimal function value fopt of all these examples is known. The details
of the corresponding results obtained by our method are given in Appendix A.1. Let us
summarize the main observations.

All 130 + 48 test problems were solved successfully by our method since the standard
termination criterion was satisfied after finitely many iterations, i.e., we stop with an iterate
Xk which is feasible (within the given tolerance). Hence, the corresponding optimal function
value fALM is a lower bound for the optimal value fopt. For the sake of completeness,
we also solved the (convex) relaxed problem from (3.53), using again our augmented
Lagrangian method with D := {X ∈ X | X ⪰ 0}. The corresponding function value is
denoted by fSDP. Since the feasible set of (3.53) is larger than the one of (3.52), we have
the inequalities fALM ≤ fopt ≤ fSDP. The corresponding details for the solution of the
SDP-relaxation are provided in Appendix A.1 for the rudy collection.

The bar charts from Figures 3.4 and 3.5 summarize the results for the rudy and
ising collections, respectively, in a very condensed way. They basically show that the
function value fALM obtained by our method is very close to the optimal value fopt. More
precisely, the interpretation is as follows: For each test problem, we take the quotient
fALM/fopt ∈ [0, 1]. If this quotient is equal to, say, 0.91, we count this example as one
where we reach 91% of the optimal function value. Figure 3.4 then says that all 130 test
problems were solved with at least 88% of the optimal function value. There are still 106
test examples which are solved with a precision of at least 95%. Almost one third of the
test examples, namely 43 problems, are even solved with an accuracy of at least 99%. For
two examples (pm1d_80.9, and pw01_100.8), we actually get the exact global maximum.

Figure 3.5 has a similar meaning for the ising collection: Though there is no example
which is solved exactly, almost one half of the problems reaches an accuracy of at least
99%, and even in the worst case, we obtain a precision of 94%.

Altogether, this shows that we obtain a very good lower bound for the optimal function
value. Moreover, since we are always feasible (in particular, all iterates are matrices of rank
one), the final matrix can be used to create a cut through the given graph, i.e., the method
provides a constructive way to create cuts which seem to be close to the optimal cuts. Note
that this is in contrast to the semidefinite relaxation (3.53) which gives an upper bound,
but the solution associated with this upper bound is usually not feasible for the MAXCUT

http://biqmac.aau.at/biqmaclib.html


3.6. Numerical Results 57

88 89 90 91 92 93 94 95 96 97 98 99 100
0

50

100

150
130 129 129 127 126 120 117

106
96 90

75

43

2

Percentage of optimal value function

N
um

be
r

of
te

st
pr

ob
le

m
s

Figure 3.4: Summary of the results from the rudy collection.
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Figure 3.5: Summary of the results from the ising collection.

problem since the rank constraint is violated (the results in Appendix A.1 show that the
solutions of the relaxed programs for the rudy collection are matrices of rank between 4
and 7). In particular, these matrices can, in general, not be used to compute a cut for the
graph and, therefore, are less constructive than the outputs of our method. Moreover, it
is interesting to observe that fALM is usually much closer to fopt than fSDP. In any case,
both techniques together might be useful tools in a branch-and-bound-type method for
solving MAXCUT problems.





4. Augmented Lagrangian Meth-
ods invoking Proximal Gradient-type
Methods for Composite Structured
Optimization Problems

This chapter, inspired by Section 3.5.4, aims at a detailed discussion of augmented La-
grangian methods used for the composite optimization problems with set-membership
constraints, whose objective function is the sum of a continuously differentiable function
and a lower semicontinuous function, of the form as in (CP), the subsequent results are
generally based on the publication [66]. Let us recall the program again

min
x

q(x) := f(x) + g(x) s.t. c(x) ∈ K, (CP)

where X and Y are Euclidean spaces, the following blanket assumptions are considered
throughout, without further mention.

Assumption 4.1. The following hold in (CP):
(a) f : X → R and c : X → Y are continuously differentiable with locally Lipschitz

continuous derivatives;
(b) g : X→ R is proper, lower semicontinuous and prox-bounded;
(c) K ⊂ Y is a nonempty and closed set.

By (a) and (b), the cost function q := f + g has nonempty domain, that is, dom q ≠ ∅.
Similarly, (c) guarantees that it is always possible to project onto the constraint set K.
Nevertheless, these conditions do not imply the existence of feasible points for (CP). Let
us look back the set-membership constraints c(x) ∈ K, which do provide much flexible and
compact expressions. However, in fact, the projections onto the set {x ∈ X | c(x) ∈ K}
induced by the constraints c(x) ∈ K are not simple to calculate, even if K is convex and
variationally simple (like the nonnegative orthant). In order to overcome such difficulty, in
this chapter, the original problem needs to be reformulated by introducing slack variables
s ∈ K such that c(x)− s = 0, we consequently need to consider the reformulated program
equipped with the slack variables whose constraints now become c(x)−s = 0 to be penalized
by the augmented Lagrangian scheme, as well as the set {(x, s) ∈ X×K}. As a result, we
alternatively seek for the projections of s on to set K, which are in some sense available
according to Section 3.5, where the projection formulas about some different cases of set
constraints were illustrated. It is carved out that, apart from the higher number of decision
variables, this reformulation is nonhazardous.

59
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For the actual implementation, we work under the practical assumption that (only) the
following computational oracles are available or simple to evaluate:
• cost function value f(x) and gradient ∇f(x), given x ∈ dom q;
• (arbitrary) proximal point z ∈ proxγg(x) and function value g(z) therein, given x ∈ X

and γ ∈ (0, γg), γg being the prox-boundedness threshold of g;
• constraint function value c(x) and Jacobian-vector product c′(x)∗v, given x ∈ dom q

and v ∈ Y;
• (arbitrary) projected point z ∈ ΠK(v), given v ∈ Y.
Relying only on these oracles, the method considered for our numerical examples is first-
order and matrix-free by construction, it involves only simple operations and has low
memory footprint.

The chapter is organised as follows. Based on Section 3.2, we begin with the modified
definitions of M-, AM-stationary points, as well as AM-regularity customized for the
program (CP) in Section 4.1. Section 4.2 provides us some theoretical guarantees about
the feasibility of using slack variables to reformulate (CP). The associated optimization
problems with slack variables can be solved by a (safeguarded) augmented Lagrangian
method, which is proposed in Section 4.3 and its underlying convergence analysis is included
there. Section 4.4 is devoted to the solution solvers of the resulting subproblems, more
specifically, PANOC+, as a kind of proximal gradient-type method, is employed to solve
such subproblem both theoretically and numerically. Some computational experiments
are documented in Section 4.5 including nonsmooth signal recovery problems, Rosenbrock
problems, sparse portfolio optimization problems, and matrix completion problems.

4.1 Stationarities and Qualification Condition
This section aims to discuss the stationary points and the corresponding qualification
condition of (CP). Notice that its objective function is lower semicontinuous and extended-
valued, then feasibility of a point must account for its domain.

Definition 4.2 (Feasibility of (CP)). A point x̄ ∈ X is called feasible for (CP) if x̄ ∈ dom q
and c(x̄) ∈ K.

Working under the assumption that the constraint set K is nonconvex, a plausible
stationarity concept for addressing (CP) is that of Mordukhovich-stationarity, which
exploits limiting normals to K, cf. [117, Section 3] and [122, Theorem 5.48].

Definition 4.3 (M-stationarity of (CP)). Let x̄ ∈ X be a feasible point for (CP). Then, x̄
is called a Mordukhovich-stationary point of (CP) if there exists a multiplier λ̄ ∈ Y such
that

−c′(x̄)∗λ̄ ∈ ∂q(x̄) (4.1a)
λ̄ ∈ N lim

K (c(x̄)). (4.1b)

Notice that these conditions implicitly require the feasibility of x̄, for otherwise the
subdifferential and limiting normal cone would be empty. Note that this definition coincides
with the usual KKT conditions of (CP) if g is smooth and K is a convex set.

Subsequently, we study an asymptotic counterpart of this definition. In case where
q is locally Lipschitz continuous, one could apply the notions from [94, Section 2.2] and
[117, Section 5.1] for that purpose. However, since g is assumed to be merely lsc, these
concepts need to be at least slightly adjusted.
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Definition 4.4 (AM-stationarity of (CP)). Let x̄ ∈ X be a feasible point for (CP).
Then, x̄ is called an asymptotically M-stationary point of (CP) if there exist sequences
{xk}, {ηk} ⊂ X and {λk}, {ζk} ⊂ Y such that xk q−→ x̄, ηk → 0, ζk → 0 and

−c′(xk)∗λk + ηk ∈ ∂q(xk) (4.2a)
λk ∈ N lim

K (c(xk)− ζk) (4.2b)

for all k ∈ N.

The detailed explanations are highly similar with that of Definition 3.2. Note that the
convergence xk q−→ x̄ will be important later on when taking the limit in (4.2a) since we aim
to recover the limiting subdifferential of the objective function as stated in Definition 2.19,
also see for more explanations.

Next, we give that each local minimizer of (CP) is always AM-stationary. The proof is
very similar to Theorem 3.3, see Appendix A.2 for more details. Related results can be
also found in [102, Theorem 6.2] and [117, Section 5.1].

Theorem 4.5. Let x̄ ∈ X be a local minimizer for (CP). Then, x̄ is an AM-stationary
point for (CP).

Note that, by Definition 4.3, one immediately obtain

x̄ is M-stationary⇐⇒ −∇f(x̄) ∈M(x̄, 0), (4.3)

where the set-valued mapping M : X× Y→ X is defined by

M(x, z) := ∂g(x) + c′(x)∗N lim
K (c(x)− z).

A similar characterization holds for AM-stationary points.

Proposition 4.6. Let x̄ ∈ X be feasible for (CP), then x̄ is AM-stationary of (CP) if and
only if −∇f(x̄) ∈ lim sup

x
q−→x̄,z→0

M(x, z).

Proof. First assume x̄ is an AM-stationary point of (CP), then there exist sequences
{xk}, {ηk} ⊂ X, and λk, ζk ⊂ Y, such that xk q−→ x̄, ηk → 0, ζk → 0, as well as

−c′(xk)∗λk + ηk ∈ ∂q(xk), λk ∈ N lim
K (c(xk)− ζk) ∀k ∈ N.

Setting wk := ηk −∇f(xk), then one has

wk ∈ c′(xk)∗N lim
K (c(xk)− ζk) + ∂g(xk) ∀k ∈ N.

Taking the limit k →∞ and using the continuity of ∇f , one therefore obtain −∇f(x̄) ∈
lim sup

x
q−→x̄,z→0

M(x, z).
Conversely, assume that −∇f(x̄) ∈ lim sup

x
q−→x̄,z→0

M(x, z) holds. Then there exist

sequences {xk}, {wk} ⊂ X and {ζk} ⊂ Y satisfying xk
q−→ x̄, ζk → 0, wk → −∇f(x̄),

and wk ∈ M(xk, ζk) for all k ∈ N. By the definition of M(xk, ζk), there exists λk ∈
N lim
K (c(xk) − ζk) such that wk ∈ c′(xk)∗λk + ∂g(xk). Setting ηk := wk + ∇f(xk), then

ηk → 0, the statement follows.

In order to guarantee that local minimizers for (CP) are not only AM- but already M-
stationary, the presence of a qualification condition is necessary. The subsequent definition
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generalizes the constraint qualification from [117, Section 3.2] to the non-Lipschitzian
setting and is closely related to the so-called uniform qualification condition introduced in
[102, Definition 6.8].

Definition 4.7 (AM-regularity of (CP)). Let x̄ ∈ X be a feasible point for (CP), then, x̄
is called asymptotically M-regular for (CP) if

lim sup
x

g−→x̄
z→0

M(x, z) ⊂M(x̄, 0).

Let us point the reader’s attention to the fact that AM-regularity is not a constraint
qualification for (CP) in the narrower sense since it depends explicitly on the objective
function. However, note that AM-regularity of some feasible point x̄ ∈ X for (CP) reduces
to

lim sup
x→x̄
z→0

c′(x)∗N lim
K (c(x)− z) ⊂ c′(x̄)∗N lim

K (c(x̄)) (4.4)

whenever g is locally Lipschitz continuous around x̄ since x⇒ ∂g(x) is locally bounded at
x̄ in this case, see [122, Cor. 1.81].

From Definition 4.3, Definition 4.4, Definition 4.7, Theorem 4.5, we obviously obtain
the following corollary.

Corollary 4.8. Let x̄ ∈ X be an AM-regular AM-stationary point for (CP). Then, x̄ is an
M-stationary point for (CP). Particularly, each AM-regular local minimizer for (CP) is
M-stationary.

It turns out that AM-regularity guarantees that any AM-stationary point of the program
(CP) is already an M-stationary point of this program. Moreover, in some sense, AM-
regularity is the weakest strict qualification condition associated with AM-stationarity
based on the terminology coined in [9], the statement is formalized in the following result
from the lines of the proofs of [9, Theorem 3.2] or [41, Theorem 4.6].

Corollary 4.9. Let x̄ ∈ X be feasible for (CP), if for every continuously differentiable
function f , the implication

x̄ is AM-stationary point of (CP) =⇒ x̄ is M-stationary point of (CP)

holds, then x̄ satisfies AM-regularity.

Proof. Now assume that AM-stationarity of x̄ implies M-stationarity for every continuously
differentiable f . One then has to verify that lim sup

x
q−→x̄,z→0

M(x, z) ⊂ M(x̄, 0) holds.
To this end, take an arbitrary element w ∈ lim sup

x
q−→x̄,z→0

M(x, z). Then define the
particular function f(x) := −⟨w, x⟩. Since f is continuously differentiable with ∇f = −w
for all x ∈ X, one has −∇f(x̄) = w ∈ lim sup

x
q−→x̄,z→0

M(x, z). Proposition 4.6 then tells
us that x̄ is an AM-stationary point. By assumption, this implies that x̄ is already an
M-stationary point of (CP). In view of (4.3), this is equivalent to −∇f(x̄) ∈M(x̄, 0). The
definition of f therefore implies that w ∈M(x̄, 0).

There exist a couple of qualification conditions that can be formulated for the general
program (CP). We next introduce one of these qualification conditions which is, in fact,
viewed as a very weak condition, namely generalized RCPLD original introduced by [6] for
standard nonlinear programs, and later generalized in [83] and Definition 3.6. In order to



4.2. Theoretical Guarantees of Using Slack Variables 63

state this generalized RCPLD, one needs a particular setting and therefore consider the
optimization problem

min
x

f(x) + g(x)

s.t. θi(x) ≤ 0 ∀i = 1, . . . ,m,
hj(x) = 0 ∀j = 1, . . . , p,

(4.5)

which corresponds to the general setting (CP) with

c :=
(
θ

h

)
and K := (−∞, 0]m × {0}p,

where θ : X → Rm and h : X → Rp are continuously differentiable. For this particular
setting, the following definition is taken motivated by [83].

Definition 4.10. Let x̄ ∈ X be a feasible point of the optimization problem (4.5). We say
that x̄ satisfies ∂∞-RCPLD holds if the following conditions hold:
(a) the vectors {∇hj(x)}pj=1 have constant rank for all x in a neighbourhood of x̄.
(b) there exists an index set J ⊂ {1, . . . , p} such that the gradients {∇hj(x̄)}j∈J from a

basis of the subspace span{∇hj(x̄) | j = 1, . . . , p}.
(c) for each I ⊂ I(x̄) := {i | θi(x̄) = 0}, each set of multipliers λi ≥ 0 (i ∈ I) and

µj ∈ R (j ∈ J), not all vanishing at the same time, such that

0 ∈ ∂∞g(x̄) +
∑
i∈I

λi∇θi(x̄) +
∑
j∈J

νj∇hj(x̄), (4.6)

then there exists a neighbourhood U of x̄ such that the vectors

{∇θi(x)}i∈I ∪ {∇hj(x)}j∈J

are linearly dependent for all x ∈ U .

For standard nonlinear programs, it is known that RCPLD is a very weak constraint
qualification. The following result shows that the above generalized version of RCPLD,
which covers the case of nonsmooth term in the objective function, still implies AM-
regularity. The proof is highly similar to Lemma 3.7, see Appendix A.2 for more details.

Lemma 4.11. Let x̄ be a feasible point for (CP) such that ∂∞-RCPLD holds at x̄, then x̄
is AM-regular.

4.2 Theoretical Guarantees of Using Slack Variables

Constrained optimization problems such as (CP) are amenable to be addressed by means
of augmented Lagrangian methods. Here, by introducing the slack variable s ∈ Y, (CP)
can be rewritten as

min
x,s

q(x) := f(x) + g(x) s.t. c(x)− s = 0, s ∈ K. (CPS)

Notice that (CPS) is a particular problem in the form of (CP). Moreover, if g is smooth,
and thus so is q, then (CPS) falls into the problem class analyzed in Chapter 3, or see
[94]. Note that x̄ ∈ X is a global (local) minimizer of (CP) if and only if (x̄, c(x̄)) is a
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global (local) minimizer of (CPS). Similarly, the M-stationary points of (CP) and (CPS)
correspond to each other. An elementary calculation additionally reveals that even the
AM-stationary points of (CP) and (CPS) can be identified with each other.

Lemma 4.12. A feasible point x̄ ∈ X of (CP) is AM-stationary for (CP) if and only if
(x̄, c(x̄)) is AM-stationary for (CPS).

Proof. We know the implication ⇒ holds obviously, so it remains to prove the converse
one. If (x̄, c(x̄)) is AM-stationary for (CPS), then we can find sequences {xk}, {ηk1} ⊂ X
and {sk}, {λk1}, {λk2}, {ηk2}, {ζk1 }, {ζk2 } ⊂ Y such that xk q−→ x̄, sk → c(x̄), ηki → 0, ζki → 0,
i = 1, 2, and

−c′(xk)∗λk1 + ηk1 ∈ ∂q(xk), (4.7a)
λk1 − λk2 + ηk2 = 0, (4.7b)

c(xk)− sk − ζk1 = 0, (4.7c)
λk2 ∈ N lim

K (sk − ζk2 ) (4.7d)

for all k ∈ N, where we already used the Cartesian product rule for the limiting normal
cone, cf. [122, Proposition 1.2], in order to split

(λk1, λk2) ∈ N lim
{0}×K(c(xk)− sk − ζk1 , sk − ζk2 )

into (4.7c) and (4.7d). Now, for each k ∈ N, set λk := λk2, ηk := c′(xk)∗ηk2 + ηk1 and
ζk := c(xk)− sk + ζk2 . Then, (4.2a) follows from (4.7a) and (4.7b). Furthermore, (4.2b) can
be distilled from (4.7d). The convergence ηk → 0 is clear from continuous differentiability
of c, and ζk → 0 follows from c(xk)− sk → 0 which is a consequence of the continuity of c
(or (4.7c)).

Though we incorporated the slack variable in (CPS), it does not change the solution
and the stationarity behavior when compared with (CP). In light of [30], where similar
issues are discussed in a much broader context. As a result, we use the lifted reformulation
(CPS) as a theoretical tool to develop our approach for solving (CP) and investigate its
properties. For some penalty parameter ρ > 0, let us first denote the (single-valued)
augmented Lagrangian function Lρ : X× Y→ R associated to (CP) by

Lρ(x, λ) = q(x) + 1
2ρ dist2

K (c(x) + λρ)− ρ

2∥λ∥
2, (4.8)

as well as the augmented Lagrangian function LSρ : X× Y× Y→ R associated to (CPS) as

LSρ (x, s, λ) := q(x) + IK(s) + ⟨λ, c(x)− s⟩+ 1
2ρ∥c(x)− s∥2

= q(x) + IK(s) + 1
2ρ ∥c(x) + λρ− s∥2 − ρ

2∥λ∥
2. (4.9)

Observe that, by adopting the indicator IK , the constraint s ∈ K is considered hard, in the
sense that it must be satisfied exactly. These simple, nonrelaxable lower-level constraints
have been discussed, e.g., in [3, 34,62,94]. Let us compute the subdifferential of LSρ w.r.t.
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the variables x and s:

∂xLSρ (x, s, λ) = ∂q(x) + 1
ρ
c′(x)∗ (c(x) + λρ− s) , (4.10a)

∂sLSρ (x, s, λ) = N lim
K (s)− 1

ρ
(c(x) + λρ− s) . (4.10b)

The algorithm we are about to present requires, at each inner iteration, the (approximate)
minimization of LSρ (·, ·, λ), given some ρ > 0 and λ ∈ Y, while in each outer iteration, ρ and
λ are updated. This nested-loops structure naturally arises in the augmented Lagrangian
framework, as it does more generally in nonlinear programming.

In the following, we discuss why we reformulate the original problem (CP) by introducing
slack variables s ∈ K, rather than consider (CP) directly. Given some ρ > 0, x ∈ X, and
λ ∈ Y, in order to eliminate the slack variables, we first obtain the explicit minimization of
LSρ (x, ·, λ) by the set-valued mapping (due to the nonconvexity of K):

argmins LSρ (x, s, λ) = ΠK (c(x) + λρ) . (4.11)

It turns out that the evaluation of the augmented Lagrangian (4.9) on the set corre-
sponding to the explicit minimization over the slack variable s, is equal to the augmented
Lagrangian function of (CP) denoted in (4.8):

Lρ(x, λ) = min
s
LSρ (x, s, λ) = q(x) + 1

2ρ dist2
K (c(x) + λρ)− ρ

2∥λ∥
2. (4.12)

One, from [30, Section 4.1], can easily check that the problems minLρ(·, λ) and minLSρ (·, ·, λ)
are equivalent in the sense that x̄ is a local (global) minimizer of Lρ(·, λ) if and only if
(x̄, s̄), for each s̄ ∈ argminLSρ (x̄, ·, λ), is a local (global) minimizer of LSρ (·, ·, λ), cf. (4.11).
However, we highlight that the term dist2

K : Y → R is not continuously differentiable
in general, as the projection operator onto K is a set-valued mapping, thus making this
approach difficult in practice. Therefore, we focus on the lifted programming (CPS) and
need to find the approximate minimization of LSρ (·, ·, λ), cf. (4.9).

Remark 4.13. Whenever K is a convex set, the augmented Lagrangian function Lρ
from (4.8) or (4.12) is a continuously differentiable function with a locally Lipschitz
continuous gradient, cf. Lemma 2.24. Following the literature, see e.g. [2, 34,69], one can
directly augment the corresponding set-membership constraints within the corresponding
augmented Lagrangian framework without the need of additional slack variables. In
practical implementations of an augmented Lagrangian framework addressing (CP), it is,
thus, recommendable to treat only the difficult set-membership constraints with a nonconvex
right-hand side with the aid of the lifting approach discussed here. The remaining set-
membership constraints can either be augmented without slacks or remain explicitly in
the constraint set of the augmented Lagrangian subproblems if simple enough (like box
constraints).

4.3 Augmented Lagrangian Methods for Composite Struc-
tured Optimization Problems

This section presents an augmented Lagrangian method for the solution of composite
programs with general nonconvex constraints in Section 4.3.1, and analyze the corresponding
convergence results in Section 4.3.2.
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4.3.1 Statement of the Algorithm

With the aid of a safeguarded augmented Lagrangian method under Assumption 4.1, we
aim to solve (CP). The overall method is stated in Algorithm 4.3.1 and corresponds to the
popular augmented Lagrangian solver Algencan from [3] applied to (CPS). Let us mention,
however, that the analysis in [3] does neither cover composite objective functions q := f + g
nor constraints of the form c(x) ∈ K with potentially nonconvex constraint set K.

Let us first give some comments on the starting point of Algorithm 4.3.1. In [70], a merely

Algorithm 4.3.1: Safeguarded Augmented Lagrangian Method for Composite Opti-
mization Problems

Data: ρ0 > 0, θ, κ ∈ (0, 1), and nonempty and bounded set U ⊂ Y
1 for k ← 0 to ∞ do
2 Choose uk ∈ U and εk ≥ 0;
3 Compute an εk-M-stationary point (xk, sk) ∈ X×K of the subproblem

min
x,s
LSρk

(·, ·, uk) s.t. (x, s) ∈ X×K;

4 Set λk := uk + (c(xk)− sk)/ρk;
5 if k = 0 or ∥c(xk)− sk∥ ≤ θ∥c(xk−1)− sk−1∥ then
6 ρk+1 := ρk;
7 else
8 ρk+1 ∈ (0, κρk];
9 end

10 end

lower semicontinuous cost function has been considered and an augmented Lagrange method
is employed to solve the resulting problems. Inspired by [79, Algorithm 1] and leveraging
the idea behind [34, Example 4.12], the convergence properties of [70, Algorithm 1] hinge
on the upper boundedness of the augmented Lagrangian along the iterates ensured by the
initialization at a feasible point. Although possible in some cases, in general, finding a
feasible starting point can be as hard as the original problem. Therefore, we deviate in this
respect, seeking instead a method able to start from any x0 ∈ X, but the assumption of lower
boundedness of the cost function q and the employment of slack variables are necessary,
which can guarantee that the subproblems Line 3 generate approximate stationary points.
Section 4.2 gave some theoretical statements that introducing slack variables could not
change the solution of the original problem, furthermore contribute the problem to be
handled much effectively, though the increased dimension of programs leads to a little
time-consuming in some sense, but controllable.

As a result, the primal starting point is not necessarily feasible. Note that a primal-dual
starting point is not explicitly required. In practice, however, the subproblems at Line 3
should be solved starting from the current primal estimate xk−1 paired with some sk−1,
preferably an element of ΠK(c(xk−1) + ρku

k) as suggested by (4.11), thus exploiting initial
guesses. As for the update rules of safeguarded dual multipliers λk and penalty parameters
ρk, they are highly similar with that in Algorithm 3.4.1, hence we omit the corresponding
analysis.

The augmented Lagrangian functions and subproblems discussed above appear at Line 3.
Section 4.4 is devoted to the numerical solution of the subproblems, which are usually
solved only approximately, in some sense, for the sake of computational efficiency. More
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precisely, the subproblem solver needs to be able to find ε-M-stationary points of LSρ (·, ·, u)
for arbitrarily small ε > 0, ρ > 0, and u ∈ U .

Before proceeding to the convergence analysis, we highlight a different interpretation of
the method. As first observed in [139], the augmented Lagrangian method on the primal
problem has an associated proximal point method on the dual problem. Introducing the
auxiliary variable r ∈ Y, we rewrite the augmented Lagrangian subproblem minLSρ (·, ·, λ)
as

min
x,s,r

q(x) + IK(s) + 1
2ρ ∥r − λρ∥

2 s.t. c(x)− s+ r = 0

and then, by eliminating the slack variable s, as

min
x,r

q(x) + 1
2ρ ∥r − λρ∥

2 s.t. c(x) + r ∈ K.

The latter reformulation amounts to a proximal dual regularization of (CP) and corresponds
to a lifted representation of minLρ(·, λ), where Lρ is given in (4.8), thus showing that
the approach effectively consists in solving a sequence of subproblems, each one being a
proximally regularized version of (CP). Yielding feasible and more regular subproblems,
this (proximal) regularization strategy has been explored in different contexts; some recent
works are, e.g., [64, 133].

4.3.2 Convergence Analysis

Throughout our convergence analysis, we assume that Algorithm 4.3.1 is well-defined,
thus requiring that each subproblem at Line 3 admits an approximate M-stationary point.
Moreover, the following statements assume the existence of some accumulation point x̄
or (x̄, s̄) for a sequence {xk} or {(xk, sk)}, respectively, generated by Algorithm 4.3.1. In
general, coercivity or (level) boundedness arguments should be adopted to verify this
precondition, cf. Proposition 4.14 as well.

Due to their practical importance, we focus on affordable, or local, solvers, which return
merely stationary points, for the subproblems at Line 3. Instead, we do not present results
on the case where the subproblems are solved to global optimality. The analysis would
follow the classical results in [34, Chapter 5] and [101], see [102, Section 6.2] as well. In
summary, feasible problems would lead to feasible accumulation points that are global
minima, in case of existence. For infeasible problems, infeasibility would be minimized and
the objective cost would be minimized for the minimal infeasibility.

Like all penalty-type methods in the nonconvex setting, Algorithm 4.3.1 may generate
accumulation points that are infeasible for (CP). Patterning standard arguments, the follow-
ing result gives conditions that guarantee feasibility of limit points, cf. [34, Example 4.12],
[94, Proposition 4.1].

Proposition 4.14. Let Assumption 4.1 hold and consider a sequence {(xk, sk)} of iterates
generated by Algorithm 4.3.1. Then, each accumulation point x̄ of {xk} is feasible for (CP)
if one of the following conditions holds:
a) {ρk} is bounded away from zero, or
b) there exists some B ∈ R such that LSρk

(xk, sk, uk) ≤ B for all k ∈ N.
In both situations, (x̄, c(x̄)) is an accumulation point of {(xk, sk)} which is feasible to
(CPS).

Proof. Let x̄ ∈ X be an arbitrary accumulation point of {xk} and {xk}K a subsequence
such that xk →K x̄. We need to show c(x̄) ∈ K under two circumstances.
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a) If {ρk} is bounded away from zero, the conditions at Lines 5 and 9 of Algorithm 4.3.1
imply that ∥c(xk) − sk∥ → 0 for k → ∞. Due to sk ∈ K, one has ∥c(xk) − sk∥ ≥
distK(c(xk)) for all k ∈ N, taking the limit k →K ∞ and continuity yield distK(c(x̄)) =
0, hence c(x̄) ∈ K, i.e., x̄ is feasible to (CP). Further, sk →K c(x̄) holds.

b) In case where {ρk} is bounded away from zero, we have obtained the first statement.
Thus, it remains to consider the case ρk → 0. By assumption, we have

B ≥ LSρk
(xk, sk, uk) = q(xk) + 1

2ρk

∥∥∥c(xk) + ukρk − sk
∥∥∥2
− ρk

2
∥∥∥uk∥∥∥2

(4.13)

and sk ∈ K for all k ∈ N. Rearranging terms yields the inequality

q(xk) + 1
2ρk

∥∥∥c(xk) + ukρk − sk
∥∥∥2
≤ B + ρk

2
∥∥∥uk∥∥∥2

for all k ∈ N. Taking the lower limit k →K ∞ while respecting that q is lsc and {uk} is
bounded gives x̄ ∈ dom q. Particularly, {q(xk)}K is bounded from below. Rearranging
(4.13) yields ∥∥∥c(xk) + ukρk − sk

∥∥∥2
≤ 2ρk

(
B − q(xk)

)
+
∥∥∥ukρk∥∥∥2

,

and taking the upper limit k →K ∞ yields ∥c(xk)− sk∥ →K 0, again by boundedness
of {uk} and ρk → 0. On the other hand, c(xk) →K c(x̄) follows by continuity, and
this gives sk →K c(x̄), since K is closed and sk ∈ K for all k ∈ N. Hence, (x̄, c(x̄)) is
feasible to (CPS), i.e., x̄ is feasible to (CP).

The final statement of the lemma follows from the above arguments.

Constrained optimization algorithms aim at finding feasible points and minimizing
the objective function subject to constraints. Employing affordable local optimization
techniques, one cannot expect to find global minimizers of any infeasibility measure.
Nevertheless, the next result proves that Algorithm 4.3.1 with bounded {εk} finds stationary
points of an infeasibility measure. Notice that this property does not require εk → 0, but
only boundedness, cf. [34, Theorem 6.3].

Proposition 4.15. Let Assumption 4.1 hold and consider a sequence {(xk, sk)} of iterates
generated by Algorithm 4.3.1 with {εk} bounded. Let (x̄, s̄) be an accumulation point of
{(xk, sk)} and {(xk, sk)}K a subsequence such that xk q−→K x̄ and sk →K s̄. Then, (x̄, q(x̄), s̄)
is an M-stationary point of the feasibility problem

min
(x,α,s)∈epi q×K

1
2∥c(x)− s∥2. (4.14)

If q is locally Lipschitz continuous at x̄, then x̄ is an M-stationary point of the constraint
violation

min
(x,s)∈X×K

1
2∥c(x)− s∥2. (4.15)

Proof. By Proposition 4.14 a), if {ρk} is bounded away from zero, x̄ is feasible for (CP)
and s̄ = c(x̄) ∈ K. Thus, (x̄, q(x̄), c(x̄)) is a global minimizer of (4.14) and (x̄, c(x̄)) is
a global minimizer of (4.15). By continuous differentiability of the objective function,
M-stationarity w.r.t. both problems follows, see [122, Proposition 5.1]. Hence, it remains
to consider the case ρk → 0.
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Owing to Line 3 of Algorithm 4.3.1, for all k ∈ N one has

ξk ∈ ∂q(xk) + c′(xk)∗
(
uk + (c(xk)− sk)/ρk

)
, (4.16a)

νk ∈ −
(
uk + (c(xk)− sk)/ρk

)
+N lim

K (sk) (4.16b)

for some ξk ∈ X, ∥ξk∥ ≤ εk, and νk ∈ Y, ∥νk∥ ≤ εk; cf. (4.10). Particularly, (4.16a) gives
us (

ξk − c′(xk)∗
(
uk + (c(xk)− sk)/ρk

)
,−1

)
∈ N lim

epi q(xk, q(xk)).

Multiplying by ρk > 0 and exploiting that N lim
epi q(xk, q(xk)) is a cone, we have(

ρkξ
k − c′(xk)∗

(
c(xk) + ukρk − sk

)
,−ρk

)
∈ N lim

epi q(xk, q(xk)). (4.17)

Furthermore, (4.16b) yields

ρk(νk + uk) + c(xk)− sk ∈ N lim
K (sk) (4.18)

since N lim
K (sk) is a cone. Taking the limit k →K ∞ in (4.17) and (4.18), the robustness of

the limiting normal cone, xk q−→K x̄ and boundedness of {uk}, {ξk} and {νk} yield(
−c′(x̄)∗(c(x̄)− s̄), 0

)
∈ N lim

epi q(x̄, q(x̄)),
c(x̄)− s̄ ∈ N lim

K (s̄).
(4.19)

Keeping the Cartesian product rule for the computation of limiting normals in mind, see
[122, Proposition 1.2], (x̄, q(x̄), s̄) is an M-stationary point of (4.14).

Finally, assume that q is locally Lipschitz continuous at x̄. Then, due to [122, Corol-
lary 1.81], we have

(λ̄, 0) ∈ N lim
epi q(x̄, q(x̄)) =⇒ λ̄ = 0,

so that the above arguments already show M-stationarity of (x̄, s̄) for (4.15).

In case where K is convex, the assertion of Proposition 4.15 can be slightly strengthened.

Corollary 4.16. Let K be convex, let Assumption 4.1 hold and consider a sequence
{(xk, sk)} of iterates generated by Algorithm 4.3.1 with {εk} bounded. Let (x̄, s̄) be an
accumulation point of {(xk, sk)} and {(xk, sk)}K a subsequence such that xk q−→K x̄ and
sk →K s̄. Then, (x̄, q(x̄)) is an M-stationary point of the feasibility problem

min
(x,α)∈epi q

1
2 dist2

K(c(x)).

If q is locally Lipschitz continuous at x̄, then x̄ is an M-stationary point of the constraint
violation

min
x∈X

1
2 dist2

K(c(x)).

Proof. We proceed as in the proof of Proposition 4.15 in order to come up with (4.19).
By convexity of K, c(x̄)− s̄ ∈ N lim

K (s̄) is equivalent to s̄ ∈ PK(c(x̄)). Thus, the assertion
follows from Lemma 2.24.

The following convergence result provides fundamental theoretical support to Al-
gorithm 4.3.1. It shows that, under subsequential attentive convergence, any feasible
accumulation point is an AM-stationary point for (CP).
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Theorem 4.17. Let Assumption 4.1 hold and consider a sequence {(xk, sk)} of iterates
generated by Algorithm 4.3.1 with εk → 0. Let (x̄, c(x̄)) be an accumulation point of
{(xk, sk)} feasible to (CPS) and {(xk, sk)}K a subsequence such that xk q−→K x̄ and sk →K
c(x̄). Then, x̄ is an AM-stationary point for (CP).

Proof. Define ζk := c(xk)− sk for all k ∈ N. Then, from Lines 3 and 4 of Algorithm 4.3.1,
one has that

−c′(xk)∗λk + ξk ∈ ∂q(xk), (4.20)
λk + νk ∈ N lim

K (c(xk)− ζk) (4.21)

for some ξk ∈ X, ∥ξk∥ ≤ εk, and νk ∈ Y, ∥νk∥ ≤ εk. Set yk := λk + νk and ηk :=
c′(xk)∗νk + ξk for all k ∈ N.

We claim that the four subsequences {xk}K, {ηk}K, {λk}K and {ζk}K satisfy the
properties in Definition 4.4 and therefore show that x̄ is an AM-stationary point for (CP).

By construction, one has xk q−→K x̄ as well as −c′(xk)∗yk + ηk ∈ ∂q(xk) and yk ∈
N lim
K (c(xk)− ζk) for each k ∈ N. From the fact that c is continuously differentiable and
∥ξk∥, ∥νk∥ ≤ εk, one has ∥ηk∥ →K 0. Finally, ζk →K 0 follows from sk →K c(x̄), xk →K x̄
and continuity of c.

Overall, x̄ is an AM-stationary point for (CP).

The additional assumption xk
q−→K x̄ in Theorem 4.17 is trivially satisfied if g is

continuous on its domain since all iterates of Algorithm 4.3.1 belong to dom g. However,
the following one-dimensional example illustrates how this additional requirement appears
to be indispensable in a discontinuous setting.

Example 4.18. We consider n := m := 1 and set K := (−∞, 0],

∀x ∈ R : f(x) := 0, g(x) :=
{
x if x ≤ 0,
1− x otherwise,

c(x) := x.

Note that g is merely lsc at x̄ := 0, and that ∂g(x̄) = [1,∞), cf. Figure 4.1. Although x̄
is the global maximizer of the associated problem (CP), x̄ is not an M-stationary point.
Since ∇f(x̄) = 0, ∇c(x̄) = 1 and N lim

K (c(x̄)) = R+, there is no λ̄ ∈ N lim
K (c(x̄)) such that

0 ∈ ∇f(x̄) + ∂g(x̄) + c′(x̄)∗λ̄. Indeed, x̄ is not even AM-stationary. Possibly discarding
early iterates, any sequence {xk} such that xk q−→ x̄ satisfies xk ≤ 0 for each k ∈ N. Hence,
we find ∂q(xk) ⊂ [1,∞), ∇c(xk) = 1 and N lim

K (c(xk) − ζk) ⊂ R+ for each ζk ∈ Y and
k ∈ N, showing that the distance between 0 and the set ∂q(xk) + c′(xk)∗N lim

K (c(xk)− ζk)
is at least 1.

We apply Algorithm 4.3.1 with U := {0}, ρ0 := 1, θ := 1/4, and κ := 1/2. This may
yield sequences {xk}, {sk} and {ρk} given by x0 := ρ0, s0 := 0, xk := ρk := 21−k and
sk := 0 for each k ∈ N, k ≥ 1, cf. Figure 4.2. Hence, one has xk → x̄ and, crucially, not
xk

q−→ x̄.

The next result readily follows from Corollary 4.8 and Theorem 4.17.

Corollary 4.19. Let Assumption 4.1 hold and consider a sequence {(xk, sk)} of iterates
generated by Algorithm 4.3.1 with εk → 0. Let (x̄, c(x̄)) be an accumulation point of
{(xk, sk)} feasible to (CPS) and {(xk, sk)}K a subsequence such that xk q−→K x̄ and sk →K
c(x̄). Furthermore, assume that x̄ is AM-regular for (CP). Then, x̄ is an M-stationary
point for (CP).
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g(x)

x

N lim
epi g(0, 0)

epi g
∂g(0) × {−1}

1

1

−1

0

Figure 4.1: Computation of ∂g(0).

Lµk (x, 0)

x

k = 1

k = 2

k = 3

x1x2x3
0

1

Figure 4.2: Iterates xk for k ∈ {1, 2, 3}.

Figure 4.3: Visualizations for Example 4.18.

4.4 Subproblem Solvers
In this section we elaborate upon Line 3 of Algorithm 4.3.1 that aims at minimizing the
augmented Lagrangian function LSρ (·, ·, u) defined in (4.9) (setting λ := u). To this end,
let us take a closer look at the structure of this subproblem.

Using the decomposition LSρ (·, ·, u) = fS(·, ·) + gS(·, ·) with component functions fS :
X× Y→ R and gS : X× Y→ R given by

fS(x, s) := f(x) + 1
2ρ∥c(x) + uρ− s∥2 − ρ

2∥u∥
2, (4.22)

gS(x, s) := g(x) + IK(s), (4.23)

one immediately sees that this split recovers the classical setting of an unconstrained
composite optimization problem with fS being continuously differentiable, while gS is
merely lsc, but of a particular structure. In principle, proximal gradient-type methods can
therefore be applied as approximate solvers for our subproblems, see [21] for an introduction
of this class of methods. Let us also mention that, at least in [95], it has been verified
that accumulation points of sequence generated by proximal gradient-type methods are
M-stationary while along the associated subsequence, the iterates are εk-M-stationary
for a null sequence {εk}. This requirement is essential in Algorithm 4.3.1. A standing
assumption of the corresponding convergence theory in [21] and all previous works on
proximal gradient-type methods, is a global Lipschitz condition regarding the gradient of
the smooth part fS. Note that this gradient is given by

∇fS(x, s) =
[
∇f(x) + 1

ρc
′(x)∗ (c(x) + uρ− s)

−1
ρ (c(x) + uρ− s)

]
.

some recent contributions on proximal gradient-type methods show that these methods also
work under suitable assumptions if the smooth term has a locally Lipschitz gradient only;
cf. [18, 67,93,95] for more details. Hence, the standing assumptions from Assumption 4.1
is enough for the associated convergence analysis, which implies that the gradient is locally
(not globally) Lipschitz continuous. For a practical implementation of these proximal
methods, it is advantageous to exploit the nonsmooth term gS. In fact, due to the
separability of gS with respect to x and s, it follows that the corresponding proximal
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mapping is easily computable. More precisely, one obtains

proxγgS(x, s) =
[
proxγg(x)

ΠK(s)

]

for any γ ∈ (0, γg).
A special proximal gradient-type approach from [67], called PANOC+, is applied to

solve the resulting subproblems and used in our numerical setting (see Section 4.5 for
more details). In Section 4.4.1, it is recalled and the corresponding convergence results are
given. In addition, Section 4.4.2 discusses more about the other solution solvers for the
subproblems.

4.4.1 PANOC+ as Subproblem Solver

For simplicity of notation, let us consider the abstract unconstrained, composite optimiza-
tion problem

min
z∈Z

ω(z) := φ(z) + ψ(z) (Q)

where Z is an Euclidean space, φ, ψ, and ω satisfy the following standing assumptions.

Assumption 4.20. The following hold in (Q):
a) φ : Z→ R is continuously differentiable with locally Lipschitz continuous gradient;
b) ψ : Z→ R is proper, lower semicontinuous and prox-bounded with threshold γψ > 0;
c) infz∈Z ω(z) > −∞.

In order to make the optimization problem (Q) and Line 3 of Algorithm 4.3.1 equivalent,
the following settings are necessary: z := (x, s), Z := X×Y, ω := LSρ , φ := fS , and ϕ := gS

as in (4.22) and (4.23). Moreover, we introduce a set-valued mapping Tγ : Z → Z for
arbitrary γ ∈ (0, γψ) by means of

Tγ(z) := proxγψ(z − γ∇φ(z)). (4.24)

Furthermore, the algorithm makes use of the so-called forward-backward envelope (FBE)
relative to (Q) with stepsize γ ∈ (0, γψ) given by

ωFB
γ (z) := min

w∈Z
φ(z) + ⟨∇φ(z), w − z⟩+ ψ(w) + 1

2γ ∥w − z∥
2.

Clearly, for any z̄ ∈ Tγ(z), one has

ωFB
γ (z) = φ(z) + ⟨∇φ(z), z̄ − z⟩+ ψ(z̄) + 1

2γ ∥z̄ − z∥
2. (4.25)

The pseudo code for PANOC+ will be provided in Algorithm 4.4.1, whose peculiarity is
the intricate structure emerging at Lines 6 and 12. The two backtracking linesearches are
entangled, concurrently affecting both the direction stepsize τk and the proximal stepsize
γk. These persistent adjustments allow PANOC+ to construct a tighter merit function
ωFB
γ that better captures the (local) landscape of ω, obviating the need for global Lipschitz

gradient continuity for the smooth term in (Q).
The analysis in [67] provides global convergence guarantees for PANOC+ under Assump-

tion 4.20. Let us recall the basic result associated with Algorithm 4.4.1 that is important
in the context of Algorithm 4.3.1. For the reader’s convenience, we present a brief proof of
the result as it is not explicitly stated in [67].
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Algorithm 4.4.1: PANOC+ [67]
Data: z0 ∈ Z, γ0 ∈ (0, γψ), ∆ ≥ 0, α, β ∈ (0, 1), ε > 0

1 k ← 0, and start from Line 5;
2 γk ← γk−1;
3 Select an update direction dk ∈ Z with ∥dk∥ ≤ ∆∥z̄k−1 − zk−1∥ and set τk = 1;
4 Set zk = (1− τk)z̄k−1 + τk(zk−1 + dk);
5 Compute z̄k ∈ Tγk

(zk) and set Φk := ωFB
γk

(zk) as in (4.25);
6 if φ(z̄k) > φ(zk) +

〈
∇φ(zk), z̄k − zk

〉
+ α

2γk
∥z̄k − zk∥2 then

7 γk ← γk/2, and go back to Line 3 if k > 0, or Line 5 if k = 0;
8 end
9 if ∥ 1

γk
(z̄k − zk)−∇φ(z̄k) +∇φ(zk)∥ ≤ ε then

10 return z̄k;
11 end
12 if k > 0 and Φk > Φk−1 − β 1−α

2γk−1
∥z̄k−1 − zk−1∥2 then

13 τk ← τk/2 and go back to Line 4;
14 end
15 k ← k + 1 and start the next iteration at Line 2;

Proposition 4.21. Let {zk} and {z̄k} be sequences generated by Algorithm 4.4.1. Further-
more, let z∗ be an accumulation point of {zk} and {zk}K a subsequence such that zk →K z∗.
Then, z∗ is an M-stationary point of ω. Additionally, z̄k →K z∗ holds, and for each ε > 0
and any large enough k ∈ K, z̄k is an ε-M-stationary point of ω.

Proof. Owing to [67, Thm 4.3], one has z̄k →K z∗, and γk = γ holds for some γ > 0 and
large enough k ∈ K. Furthermore, this result gives

Φk = φ(zk) +
〈
∇φ(zk), z̄k − zk

〉
+ ψ(z̄k) + 1

2γk
∥z̄k − zk∥2,

so that taking the lower limit k →K ∞ yields z∗ ∈ domψ due to Line 12, Line 13, and
Line 14 of Algorithm 4.4.1. Next, Line 5 of Algorithm 4.4.1 yields from zk →K z∗ and
continuity of ϕ that

ω(z∗) ≤ lim inf
k→K∞

Φk

≤ lim inf
k→K∞

(
φ(zk) +

〈
∇φ(zk), z∗ − zk

〉
+ ψ(z∗) + 1

2γk
∥z∗ − zk∥2

)
≤ lim sup

k→K∞

(
φ(zk) +

〈
∇φ(zk), z∗ − zk

〉
+ ψ(z∗) + 1

2γk
∥z∗ − zk∥2

)
= ω(z∗),

which gives z̄k ω−→K z∗ by continuity of φ. Considering the stationarity condition resulting
from evaluation of the proximal map Tγk

,

0 ∈ ∇φ(zk) + ∂ψ(z̄k) + 1
γk

(z̄k − zk)

holds for each k ∈ K, giving

1
γk

(zk − z̄k) +∇φ(z̄k)−∇φ(zk) ∈ ∇φ(z̄k) + ∂ψ(z̄k) = ∂ω(z̄k).
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Taking the limit k →K ∞ while respecting continuous differentiability of φ, the result
follows.

Let us recall again the resulting subproblem Line 3 of Algorithm 4.3.1, Proposition 4.21
implies PANOC+ is available to obtain the corresponding approximate M-stationary point,
which gives exactly what we want.

Finally, in order to serve for Section 4.5, we shall comment on the acceleration mechanism
in PANOC+. Although robust to arbitrary choices of (bounded) directions dk, the practical
performance of Algorithm 4.4.1 is strongly affected by the specific selection; we refer to
[149, Section 4.3] for an overview on some potential update directions. In the numerical
experiments, we consider two strategies for executing Line 3 of Algorithm 4.4.1. First, we
may select dk := z̄k−1− zk−1, so that zk = z̄k−1 holds, effectively reducing the algorithm to
an adaptive proximal gradient method, without any acceleration [67, Section 4.4]. Second,
as a baseline, we use the default acceleration strategy in ProximalAlgorithms.jl, namely
LBFGS directions with memory 5. Inspired by quasi-Newton methods, these are recursively
constructed by keeping memory of pairs zk+1 − zk and rk+1 − rk, with rk := zk − z̄k, and
retrieving dk := −Hkrk by simply performing scalar products [111]. Herein, the linear
operator Hk mimics the (inverse) fixed-point residual mapping associated to the splitting
scheme in a neighborhood of zk [148, 150]. Notice that, as the geometry of the residual
mapping depends on the proximal stepsize, (the memory of) the LBFGS approximation is
reset every time the stepsize is adapted [67, Section 3.1].

4.4.2 Comments on other subproblem solvers

We stress that there exist other candidates for the numerical solution of the resulting
augmented Lagrangian subproblems. To this end, recall that the previous discussion looked
at these subproblems as an unconstrained composite optimization problem. Alternatively,
we may view these subproblems from the point of view of machine learning, where
(essentially) the same class of optimization problems is solved by (possibly) different
techniques. We refer the interested reader to [146,155] for a survey of optimization methods
for machine learning and data analysis problems. These techniques might be applicable very
successfully at least in certain situations. For example, if the smooth term fS is convex (the
gradient does not have to be globally Lipschitz), whereas the nonsmooth term gS is still just
assumed to be lsc (and not necessarily convex), it is possible to adapt the idea of cutting
plane methods to this setting by applying the cutting plane technique to fS only, whereas
one does not change the nonsmooth term. The resulting subproblems then use a piecewise
affine lower bound for the function fS and add the (possibly complicated) function gS. Of
course, and similar to the proximal gradient-type approaches, these subproblems need to
be easily solvable for the overall augmented Lagrangian method to be efficient, and this, in
general, is true only for particular classes of problems.

4.5 Numerical Results
This section is concerned to implement Algorithm 4.3.1, based on the resulting subproblem
solver PANOC+ as well as its accelerated version (see Section 4.4.1) and test it on some
classes of different problems. In all examples, the space X is given by Rn and Y is given by
Rm.

Algorithm 4.3.1 runs by requiring the data functions f , g, c and constraint set K
specified as objects returning the oracles discussed at the beginning of this chapter. As
mentioned in Section 4.3.1, the primal starting points are not necessarily feasible for (CP).

https://github.com/JuliaFirstOrder/ProximalAlgorithms.jl
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Hence, we choose the initialization by requiring a primal starting point xinit ∈ X with an
arbitrary element of proxγg(xinit) ⊂ dom q, where γ = ϵM and ϵM denotes the machine
epsilon of a given floating-point system. The examples presented in the following are in
double precision (Float64), so ϵM ≈ 2.22 · 10−16. Moreover, the safeguarded estimate
uk(k > 0) is chosen as the projection of λk−1 onto a given box U := [umin, umax], where this
box is chosen to be [−1020, 1020] for all equality constraints and [0, 1020] for all inequality
constraints. Note that u0 is chosen as the projection of dual starting point λinit on U ,
where λinit ∈ Rm is chosen arbitrarily.

The inner tolerances εk at Line 2 of Algorithm 4.3.1 are constructed as a sequence of
decreasing values, defined by

εk+1 = max{κεεk, εdual},

starting from ε0 := (εdual) 1
3 and given some εdual, κε ∈ (0, 1) [33]. The initial penalty

parameter ρ0 is automatically chosen by default, similarly to [34, Equation 12.1]. Given
xinit ∈ dom q, we evaluate the constraints cinit := c(xinit), select an arbitrary element
sinit ∈ ΠK(cinit) and compute the vector ∆init := cinit − sinit. Then, the vector ρ0 ∈ Y of
penalty parameters is selected componentwise as follows:

(ρ0)i := max
{

10−8,min
{

1
10

max{1, (∆init
i )2/2}

max{1, q(xinit)} , 108
}}

,

effectively scaling the contribution of each constraint [34,62]. Then, according to the overall
feasibility-complementarity of the iterate, the penalty parameters are updated in unison
at Line 9, since using a different penalty parameter for each constraint is theoretically
worse than using a common parameter [5, Section 3.4]. We set ρk+1 := κρk, for some
fixed κ ∈ (0, 1). At the kth iteration, the subsolver at Line 3 is warm-started from the
previous estimate (xk−1, sk−1) ∈ dom q × K; from (xinit, sinit) for k = 0. The default
parameters in Algorithm 4.3.1 are θ = 0.8, κ = 0.5 and κε = 0.1, termination tolerances
εprim = εdual = 10−6 and a maximum number of (outer) iterations is 100.

In the following, we consider some challenging problems where the cost function
is nonsmooth and nonconvex or where the constraints are inherently nonconvex by a
disjunctive structure of the respective set K. Section 4.5.1 deals with some collections
of signal recovery problems with different classes of measurement matrices and signals,
where the minimization of zero norm is considered. The results show that PANOC+ has
difficulty in dealing with bad scaling and ill-conditioning. Subsequently, Section 4.5.2
demonstrates the benefit of accelerated PANOC+ for solving the subproblems by means of
a simple two-dimensional problem where a nonsmooth variant of the Rosenbrock function is
minimized over a set of combinatorial structure. Section 4.5.3 is devoted to a test collection
of portfolio optimization problems from [74] which are equipped with a nonconvex sparsity-
promoting term in the objective function. Finally, in Section 4.5.4 we address a class of
matrix recovery problems discussed e.g. in [143] where the rank of the unknown matrix
has to be minimized.

I claim that the numerical experiments in Section 4.5.2 is independently done by
my co-worker Alberto De Marchi, thank him for allowing me to show this part for the
completeness of the numerical results.

https://aldma.github.io
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4.5.1 Sparse Signal Recovery

Sparse signal recovery problems are concerned to recover a r-sparse signal x∗ ∈ Rn from
relatively few incomplete measurements b = Ax∗ with carefully chosen A ∈ Rm×n, and
solve the following optimization problem

min
x∈Rn

∥x∥0 s.t. Ax = b, (4.26)

where ∥x∥0 is the number of nonzero x, r ≤ m ≤ n (always r ≪ m ≪ n). It can be
reformulated into (CP) by setting f := 0 and K := {0}m, which means slack variables s
vanish.

Next, we implement Algorithm 4.3.1 invoking PANOC+ by the following randomly
generated problems. Given the dimension n of a signal, the number of observations m and
the number of nonzero r, we generated a random measurement matrix A ∈ Rm×n and a
random signal x∗ ∈ Rn in the way as [32, 152]. More specifically, we first generated the
matrix A by one of the following types:

Type 1: Gaussian matrix whose elements are generated independently and identically
distributed from the normal distribution N(0, 1);
Type 2: Orthogonalized Gaussian matrix whose rows are orthogonalized using a QR
decomposition;
Type 3: Bernouli matrix whose elements are ±1 independently with equal probability.

We then randomly selected m rows from this matrix to construct the matrix A. In order to
generate the signal x∗, we first generated randomly r between 1 and n, and then assigned
a value to the component x∗

i for each i ∈ {1, · · · , r} by one of the following methods:
Type 1: A normally distributed random variable (Gaussian signal);
Type 2: A uniformly distributed random variable in (−1, 1);
Type 3: One (zero-one signal);
Type 4: A signal x with power-law decaying entries (known as compressible sparse
signals) whose components satisfy

|xi| ≤ cxi−p with cx = 105, p = 1.5;

Type 5: A signal x with exponential decaying entries whose components satisfy

|xi| ≤ cxe−pi with cx = 1, p = 0.005.

Then, the observation b was computed as b = Ax∗. Note that all types of matrix were
stored explicitly. We call a signal recovered successfully by a solver if the relative error
between the solution xs generated and the original signal x∗ is less than 5× 10−5.

In order to detect whether or not Algorithm 4.3.1 solves (4.26) successfully, as well as the
influence of the number of measurements m on the recovery of Algorithm 4.3.1 (since too
small m is easier to lead to the ill-conditioning which causes Algorithm 4.3.1 not effective,
even failed), we choose all types of matrix to match all types of signal by setting r = 40,
n = 600, m ∈ {80, 90, 100, · · · , 260}. For each m, we generated 50 problems randomly, and
test the frequency of successful recovery for Algorithm 4.3.1 invoking PANOC+. The results
are depicted in Figure 4.4. Let us mention that Algorithm 4.3.1 solved all problem instances
around average 45 iterations, however subproblem solver PANOC+ always terminated at
the maximum number limit of inner iterations (here we set 1000) for the problems where
m < 170 and terminated within 100 inner iterations when m ≥ 170. Figure 4.4 shows that
the signal with different types is sensitive with different matrices, more specifically, for
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Figure 4.4: Frequency of successful recovery for all types of matrices matched with all types of signals.

Matrix 1 and Matrix 3, our algorithm can recover every type of signals effectively when
m ≥ 180 and m ≥ 170, respectively, which, by contrast, has a bad performance on Matrix
2. Generally speaking, Signal 4 is easier to be recovered by our algorithm.

From [44, Lemma 2], (4.26) is equivalent to the following mixed integer optimization
problem

min
x∈Rn

v∈{0,1}n

n∑
i=1

vi s.t. Ax = b, −Mv ≤ x ≤Mv

with some sufficiently large pre-defined value M > 0 satisfying ∥x∗∥∞ ≤ M , which can
be solved by CPLEX optimizer [91]. Hence, we now compare Algorithm 4.3.1 invoking
PANOC+ with CPLEX by some random problems, where Matrix 1 and 3 were employed
and we chose n = 600,m ∈ {250, 260}, r = 40 in order to ensure that those random
problems can be solved Algorithm 4.3.1 from the result of Figure 4.4. Note that the
termination time of CPLEX is set as 30 minutes for each problems, the results are depicted
in Table 4.1. The testproblems are named as MiSj with i ∈ {1, 3} and j ∈ {1, . . . , 5}, for
example, M1S1 represents that Matrix 1 and Signal 1 are combined for a testproblem. fALM
and fCPLEX denote the optimal function value generated by Algorithm 4.3.1 and CPLEX,
respectively, which we know should be equal to r = 40 if the signal is recovered successfully.
i means the number of (outer) iterations and icum denotes total accumulated number of
iterations (sum of the outer and inner iterations), which can evaluate the performance of
PANOC+ in some sense.

We claim that Algorithm 4.3.1 recovered signals successfully for all testproblems,
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m problem fCPLEX fALM i icum

250

M1S1 246 40 22 1732
M1S2 40 40 16 1732
M1S3 40 40 23 1932
M1S4 40 40 42 6239
M1S5 40 40 15 1570
M3S1 246 40 11 1444
M3S2 40 40 24 2272
M3S3 40 40 22 1682
M3S4 40 40 50 7155
M3S2 40 40 1 790

260

M1S1 252 40 17 1944
M1S2 40 40 11 1457
M1S3 40 40 1 901
M1S4 40 40 48 8157
M1S5 40 40 23 1899
M3S1 256 40 17 1549
M3S2 40 40 20 1375
M3S3 40 40 52 6822
M3S4 40 40 43 6686
M3S5 40 40 1 461

Table 4.1: Numerical results generated by Algorithm 4.3.1 and CPLEX, respectively.

however CPLEX can not recover Signal 1. The number of outer iteration is average 23,
and the accumulated number of iteration shows that PANOC+ did not terminate at the
maximum for every inner iteration, even performed well, which is better than the case
m < 170 as mentioned above. Furthermore, CPLEX always terminated in 30 seconds for
Signal 3 and 5.

All results illustrate that Algorithm 4.3.1 can solve (4.26) where different types of
measurement matrix and signal are chosen, however we have to admit that PANOC+ has
difficulty in dealing with the bad-scaled and ill-conditioned programs. If PANOC+ solves
the subproblems effectively, then Algorithm 4.3.1 invoking PANOC+ performs well, even
better than CPLEX optimizer sometimes. The next example will compare PANOC+ with
its accelerated version to demonstrate that the later can deal with the bad-scaling and
ill-conditioning in some sense.

4.5.2 Nonsmooth Rosenbrock and Either-Or Constraints

Let us consider a two-dimensional optimization problem involving a nonsmooth Rosenbrock-
like objective function and either-or constraints, namely set-membership constraints entail-
ing an inclusive disjunction. It reads

min
x

10
(
x2 + 1− (x1 + 1)2

)2
+ |x1| s.t. x2 ≤ −x1 ∨ x2 ≥ x1 (4.27)

and admits a unique (global) minimizer x∗ = (0, 0). The feasible set is nonconvex and
connected; see Figure 4.5. One casts (4.27) into the form of (CP) by defining the data
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Figure 4.5: Setup and results for the illustrative problem (4.27). Left: Feasible region (gray background),
objective contour lines, global minimizer x∗ = (0, 0) and grid of starting points. Right: Comparison of
inner iterations needed without acceleration against LBFGS acceleration; each mark corresponds to a
starting point and the gray line has unitary slope.

functions as

f(x) := 10
(
x2 + 1− (x1 + 1)2

)2
, g(x) := |x1|, c(x) :=

(
−x1 − x2
−x1 + x2

)
,

and let the constraint set be K := KEO, where the (nonconvex) set

KEO := {(a, b) | a ≥ 0 ∨ b ≥ 0} = {(a, b) | a ≥ 0} ∪ {(a, b) | b ≥ 0}

describes the either-or constraint.
We consider a uniform grid of 112 = 121 starting points x0 in [−5, 5]2 and let the initial

multiplier estimate be λ0 = 0. Also, we compare the performance of Algorithm 4.3.1 by
solving the subproblems using PANOC+ without or with (LBFGS) acceleration, see the
last paragraph of Section 4.4.1 for more details.

Algorithm 4.3.1 solves all the problem instances, approximately (tolerance 10−3 in
Euclidean distance) reaching x̄ = (0, 0) in all cases. Figure 4.5 depicts the feasible region of
(4.27), some contour lines of its objective function and the grid of starting points x0. Over
all problems, Algorithm 4.3.1 with no acceleration takes at most 17 870 346 (cumulative)
inner iterations to find a solution (median 291 756), whereas with LBFGS directions only
140 inner iterations are needed at most (median 86). A closer look at Figure 4.5 indicates
that not only the accelerated PANOC+ usually requires far less iterations, but also that its
behavior is more consistent, as the majority of cases spread over a narrow interval. These
results support the claim that (quasi-Newton) acceleration techniques can give a mean to
cope with bad scaling and ill-conditioning [148,149], meanwhile can generate approximate
M-stationary point. Hence, we in the following use the accelerated PANOC+ rather than
the original one.

4.5.3 Sparse Portfolio Optimization

Inspired by Section 3.6.2, we consider the following portfolio optimization problems

min
x

1
2x

⊤Qx+ α∥x∥0

s.t. µ⊤x ≥ ϱ, 1⊤
n x = 1, 0 ≤ x ≤ u,

(4.28)



80
4. Augmented Lagrangian Methods invoking Proximal Gradient-type Methods for Composite

Structured Optimization Problems

101 102

101

102

# nonzeros with ℓ0 regularization

#
no

nz
er

os
w

ith
ot

he
r

fo
rm

ul
at

io
ns

CPLEX
ℓ1, ℓ0
ℓp

p, ℓ0

Figure 4.6: Results for the portfolio problem (4.28): Comparison of the solutions found with ℓ0
regularization against those obtained with CPLEX and ℓ0 warm-started with ℓ1 or ℓp
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depict the number of nonzero entries of the solutions returned for α = 10 (dot) and α = 100 (circle).
The gray line has unitary slope.

where ℓ0 quasi-norm is used as a regularization term that penalizes the number of chosen
assets within the portfolio. Recall that Q ∈ Rn×n and µ ∈ Rn denote the covariance matrix
and the mean of n ∈ N possible assets, respectively, while ϱ ∈ R is a lower bound for the
expected return. Furthermore, u ∈ Rn provides an upper bound for the individual assets
within the portfolio. All the problem data are taken from the test problem collection [74].

We reformulate the model in the form of (CP) by letting f be the quadratic cost,
g the nonsmooth cost and indicator of the bounds, c : Rn → Rm, m := 2, defined by
c(x) := [µ, 1n]⊤x and K := [ϱ,∞)× {1}.

Through a mixed-integer quadratic program formulation of (4.28), which can be obtained
via the theory provided in [71], we compute a solution using CPLEX [91], for comparison.
We also solve (4.28) using a continuation procedure: the ℓ0 minimization is warm-started
at a primal-dual point found by replacing the discontinuous ℓ0 function with either the
norm ℓ1 := ∥ · ∥1 or the p-th power of the ℓp quasi-norm, i.e., ℓpp := ∥ · ∥pp (p = 0.5) and
solving the corresponding problems. Notice that (4.28) with the ℓ0- replaced by the ℓ1-term
boils down to a convex quadratic program; in fact, it is ∥x∥1 = 1 for each feasible point of
(4.28) by the nonnegativity and equality constraints. Here, we used all 30 test instances of
dimension n := 200 and the two different values α ∈ {10, 100} for each problem.

The results of our experiments are depicted in Figure 4.6. Let us mention that
Algorithm 4.3.1 with PANOC+ as the subproblem solver solved all problem instances.
Below, we comment on some median values for our experiments with parameters α = 10/100:
a direct use of ℓ0 minimization resulted in 10/13 outer and 908/1633 inner iterations, while
warm-starting with the continuous ℓpp (p = 0.5) function required 13/9 outer and 686/1830
inner iterations. Let us point the reader’s attention to the fact that the ℓpp-warm-started ℓ0
minimization did not affect the solution sparsity. In other words, the numbers of nonzero
components of the obtained solutions were the same with and without an additional round
of ℓ0 minimization after the ℓpp (p = 0.5) warm-start. Although one cannot expect to find a
global minimum in general, we recall that the standard ℓ1 regularization does not work in
this example, as confirmed by the poor performance depicted in Figure 4.6, whereas the
nonconvex ℓpp (p = 0.5) penalty already leads to very sparse solutions.
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4.5.4 Matrix Completion with Minimum Rank

For some ℓ ∈ N, ℓ ≥ 2, let us consider N ∈ N points x1, . . . , xN ∈ Rℓ and define a block
matrix X ∈ RN×ℓ by means of X := [x1, x2, . . . , xN ]⊤. Let ∆ ∈ RN×N denote the Euclidean
distance matrix associated with these points, given by ∆ij := ∥xi−xj∥2 = (xi−xj)⊤(xi−xj)
for all i, j ∈ I := {1, . . . , N}. We aim at recovering X based on a partial knowledge of
∆. In particular, we assume that Ω ⊂ I2 is a set of pairs such that only the entries ∆ij ,
(i, j) ∈ Ω, of ∆ are known.

Following [143], we lift the problem by introducing a symmetric matrix B := XX⊤

whose rank is, by construction, smaller than or equal to ℓ. Hence, we seek a matrix
B ∈ RN×N that satisfies the symmetry constraint B = B⊤ and the distance constraints
associated with the observations, i.e., Bii + Bjj − Bij − Bji = ∆ij has to hold for all
(i, j) ∈ Ω. Among these admissible matrices, those with minimum rank are preferred.

Let us consider the following problem

min
B

g(B)

s.t. Bii +Bjj −Bij −Bji = ∆ij ∀(i, j) ∈ Ω,
Bij = Bji ∀i, j ∈ I, j < i

(4.29)

where the function g : RN×N → R encodes a matrix regularization term. In the following,
we consider g := rank := ∥σ(·)∥0, the nuclear norm g := ∥ · ∥∗ := ∑

i σi(·) or the p-powered
Schatten p-quasi-norm g := ∥ · ∥pp := ∑

i σi(·)p, p ∈ (0, 1), where σ(A) denotes the vector
of singular values of a matrix A. Denoting mo := |Ω| and ms := N(N − 1)/2 the number
of observation and symmetry constraints, respectively, there are n := N2 variables and
m := mo + ms constraints in (4.29). We reformulate the model in the form of (CP)
by setting f := 0, K := {0} and a constraint function c : RN×N → Rm returning the
observation and symmetry constraints stacked in vector form.

For our experiments, we chose N ∈ {10, 20}, ℓ = 5, mo = ⌊(n−ms)/3⌋, p = 0.5 and
consider 30 randomly generated instances for each value of N . We generate X ∈ RN×ℓ

by sampling the standard normal distribution, i.e., Xij ∼ N (0, 1), (i, j) ∈ I2, and then
compute ∆. Finally, we sample observations by selecting mo different entries of ∆ with
uniform probability.

We run our solver Algorithm 4.3.1 with default options, and abstain from setting an
iteration limit for the subproblem solver. The initial guess B0 ∈ RN×N is chosen randomly
based on B0

ij ∼ N (0, 1), (i, j) ∈ I2, whereas the safeguarded dual initial guess is fixed
to u0 := 0. We invoke Algorithm 4.3.1 directly for solving (4.29) with the different cost
functions mentioned above. Additionally, the solutions obtained with nuclear norm and
Schatten quasi-norm as cost functions, which are at least continuous, are used as initial
guesses for another round of minimization exploiting the discontinuous rank functional.

We depict the results of our experiments in Figure 4.7. Minimization based on the
(convex) nuclear norm produces matrices with rank between 3 and 8, while the use of
the Schatten quasi-norm culminates in solutions having rank between 2 and 5. These
findings outperform the direct minimization of the rank which results in matrices of rank
between 9 and 20. This behavior is not surprising since (4.29) possesses plenty of non-
global minimizers in case where minimization of the discontinuous rank is considered, and
Algorithm 4.3.1 can terminate in such solutions. Let us mention that, out of 60 instances,
the warm-started rank minimization yields further reduction of the rank in one case after
minimization of the Schatten quasi-norm and 11 cases after minimization of the nuclear
norm; in all other cases, no deterioration has been observed. In summary, Algorithm 4.3.1
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Figure 4.7: Results for the matrix recovery problem (4.29): Comparison of (accumulated) inner iteration
numbers and rank of the solutions found with different formulations, including warm-started rank
minimization (circle).

manages to find feasible solutions of (4.29) in all cases, and with adequate objective value in
cases where we minimize the nuclear norm or the Schatten quasi-norm. These solutions can
be used as initial guesses for a warm-started minimization of the rank via Algorithm 4.3.1
or tailored mixed-integer numerical methods.



5. Convergence Analysis of Proxi-
mal Gradient Methods

This chapter is concerned to the global convergence and the rate of convergence of the
entire sequence generated by a proximal gradient method, proposed in [95], which is a good
candidate for solving the composite programs (Q), where no any accelerated techniques,
e.g., involving inertial terms or Bregman distances (see [18,40,42,43] and the references
therein), are used. The following results are mainly from the preprint [93].

Let us recall again (Q),

min
x

q(x) := f(x) + g(x) s.t. x ∈ X, (Q)

where f : X → R is continuously differentiable, g : X → R is assumed merely lower
semicontinuous. We claim that the unconstrained composite optimization problem (Q) is
in totally nonconvex settings.

Note that proximal gradient methods for solving (Q) can reduce to other well-known
algorithms in some special cases. For example, when g := ID where ID is the indicator
function on some set constraint D, they reduce to projected gradient methods [78, 107].
When g := 0, they boil down to gradient descent methods [49]. When f := 0, they become
proximal minimization methods [50,121].

In [95], the authors show global convergence results for proximal gradient methods
in the sense that every accumulation point is shown to be a suitable stationary point of
the composite optimization problem. The analysis in [95] is based on the local Lipschitz
continuity of ∇f , and does not require the iterates to be bounded. To be honest, this is a
great breakthrough for the convergence results of proximal gradient methods by weakening
the global Lipschitz condition into a local one, and can be carried over to more general
versions. However, the convergence of entire sequence is not addressed in [95], hence
no associated rate-of-convergence results are given. This chapter is devoted to filling
the gaps, more specifically, the desired global convergence of the entire sequence and
rate-of-convergence results can be achieved by just requiring the merely local Lipschitz
continuity of ∇f and together with the Kurdyka–Łojasiewicz property of q, without the
global one nor the boundedness of the iterates and stepsizes.

This chapter is organised as follows. Section 5.1 illustrates the necessity of reducing the
global Lipschitz condition into the local one. Section 5.2 recalls again the algorithm and
some known conclusions from [95]. Section 5.3 is the most core part, where the convergence
of the entire iterates and therefore the rate-of-convergence results are presented in the
presence of Kurdyka–Łojasiewicz property. The main key using the algorithm is that the
corresponding subproblems can be solved successfully, so in Section 5.4, we introduce a
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class of nonconvex nonsmooth regularization functions for the realization. Section 5.5
shows some numerical results about the image recovery problem and the portfolio problem
by comparing our method with Gurobi optimizer.

5.1 Motivation

For the proximal gradient method, the popular instances are the iterative shrinkage/threshold
algorithm (ISTA) and its accelerated version (FISTA = fast ISTA), see [24], where g has
to be convex. The monograph [21] presents a nice overview of existing results addressing
proximal gradient methods where the nonsmooth part enjoys convexity. Later, the seminal
works [16,39] pointed out that the convergence theory can be extended to situations where
the nonsmooth part g is merely lower semicontinuous and not necessarily convex. In
both aforementioned papers, the analysis, which covers both (global) convergence and
rate-of-convergence results, requires a so-called descent lemma as well as the celebrated
Kurdyka–Łojasiewicz property, originating from [103,113,114]. The majority of available
convergence results regarding proximal gradient methods seems to indicate that the price
one has to pay for allowing g to be nonsmooth is that the gradient ∇f of the smooth part
has to be globally Lipschitz continuous. This requirement, which holds naturally when f
is a (convex) quadratic function, turns out to be rather restrictive in the non-quadratic
situation which also is of practical interest. See the following examples where the standard
global Lipschitz assumption on the gradient of f is typically violated, whereas a local
Lipschitz condition is often satisfied.

Example 5.1. (Augmented Lagrangian Methods)
Let us consider the following programs

min
x

f(x) + g(x) s.t. c(x) ∈ C,

where f : X → R and g : X → R are as in (Q). In addition, c : X → Y is continuously
differentiable, C ∈ Y is assumed a nonempty, closed, and convex set. Given a current
iterate xk ∈ X and a corresponding Lagrange multiplier estimate λk ∈ Y, augmented
Lagrangian techniques then compute the next iterate xk+1 by solving (approximately) the
subproblem

min
x
f(x) + g(x) + ρk

2 dist2
(
c(x) + λk

ρk
, C

)
s.t. x ∈ X

for some penalty parameter ρk > 0. From Lemma 2.24, this subproblem has exactly the
structure of the composite optimization problem (Q) and can therefore, in principle, be
solved by a proximal gradient method, see [55,66,81,94] for suitable realizations of this
approach.

Assuming that the gradient of the smooth part of this objective function (with respect
to the variable x) is globally Lipschitz continuous, however, is pretty strong in this setting
and, basically, requires the constraint function c to be linear and the set C to be polyhedral,
whereas local Lipschitzness of this gradient holds under mild conditions on the smoothness
of f and c.

The following example makes use of conjugate functions, see [19, Definition 3.1]. Since,
within this chapter, they only occur in this particular application, we refrain from stating
their precise definitions and properties, and refer the interested reader to the excellent
monographs [19,21,140] for more details.
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Example 5.2. (Dual Proximal Gradient Methods)
Consider the (primal) optimization problem

min
x

g(x) + h(Ax), x ∈ X (5.1)

where both functions g : X→ R and h : Y→ R are lower semicontinuous and convex while
possessing nonempty domains, and A : X→ Y is a linear operator. Above, Y is another
Euclidean space. Note that none of the functions g or h is assumed to be (continuously)
differentiable.

The (Fenchel) dual problem of (5.1) is given by

min
y

g∗(A∗y) + h∗(−y), y ∈ Y (5.2)

with the two conjugate functions g∗ : X→ R and h∗ : Y→ R being lower semicontinuous
and convex, and A∗ : Y→ X being the adjoint of A. Under suitable assumptions, the pair
(5.1), (5.2) enjoys strong duality, i.e., the optimal objective function values of these problems
coincide, see [138], which motivates to solve (5.2) instead of (5.1) in some applications
where the conjugate functions are explicitly available.

Assuming, in addition, that g is uniformly convex, it is known that g∗ is real-valued
everywhere and continuously differentiable with a globally Lipschitz continuous gradient,
see [140, Proposition 12.60]. Consequently, as promoted in [25], a standard proximal
gradient algorithm can be applied to the dual problem (5.2). On the other hand, if g is only
strictly convex, then the domain of g∗ is, in general, no longer the entire space, but g∗ can
still be shown to be continuously differentiable on the interior of its domain. Its gradient,
however, is no longer guaranteed to be globally Lipschitz continuous on the domain.

The current work is based on [95] where the global convergence results for proximal
gradient methods are presented in the sense that every accumulation point is shown to be
M-stationary point of (Q). The analysis in [95] is based on the local Lipschitz continuity of
∇f , and does not require the iterates to be bounded. An extension of this work, using a
nonmonotone line search, is given in [65]. In contrast to most existing papers on proximal
gradient methods, however, convergence of the entire sequence is not addressed in [65, 95].
Hence, no associated rate-of-convergence results could be given ([65] presents some standard
worst-case rate-of-convergence results addressing the difference of two subsequent iterates
along convergent subsequences). The aim of this work is to fill this gap.

Provided that such accumulation point satisfies the KL property and a local Lipschitz
assumption on ∇f , without any boundedness assumption of whole iterative sequence, we
aim at the convergence of entire iterative sequence and associated rate-of-convergence result.
Based on some recent contributions in the area of proximal gradient and related first-order
methods, it seems reasonable to expect such a result to hold. For example, [39,128] consider
a class of first-order methods and investigate their (essentially local) convergence showing,
in particular, that the entire sequence {xk} generated by their methods stays within a
certain neighborhood of a solution provided that the KL property holds at this solution.
Their approach is not directly applicable to our situation since, on the one hand, we do
not use the a priori assumption that our iterates are bounded, and, on the other hand,
because the adaption of the methods considered in [39,128] to the proximal gradient setting
would result in an algorithm with a constant stepsize. However, we know from the local
Lipschitz assumption on ∇f that a respective global Lipschitz condition holds in a suitable
neighborhood of the accumulation point, which then can be used to verify that the stepsizes
computed by proposed algorithm remain bounded in case that such accumulation point
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satisfies KL property. This – more or less heuristic – idea fortifies us to believe that one
can also get convergence and rate-of-convergence results under the KL property in the
presence of the local Lipschitz gradient of f .

5.2 Algorithm and Known Results
This section begins with a formal description of a proximal gradient method for the
composite optimization problem (Q), and then summarizes the associated global conver-
gence properties established in [95]. Note that the proximal gradient method uses a line
search which is important to get global convergence properties without a global Lipschitz
assumption. We start with a precise statement of the algorithm.

Algorithm 5.1 Proximal Gradient Method [95]
Require: τ > 1, 0 < γmin ≤ γmax <∞, δ ∈ (0, 1), x0 ∈ domϕ

1: Set k := 0.
2: while A suitable termination criterion is violated at iteration k do
3: Choose γ0

k ∈ [γmin, γmax].
4: For i = 0, 1, 2, . . ., compute a solution xk,i of

min
x

f(xk) + ⟨∇f(xk), x− xk⟩+ γk,i
2 ∥x− x

k∥2 + g(x), x ∈ X (5.3)

with γk,i := τ iγ0
k , until the acceptance criterion

q(xk,i) ≤ q(xk)− δ γk,i2 ∥x
k,i − xk∥2 (5.4)

holds.
5: Denote by ik := i the terminal value, and set γk := γk,ik and xk+1 := xk,ik .
6: Set k ← k + 1.
7: end while
8: return xk

Note that the convergence analysis requires some technical assumptions as well as a
local Lipschitz condition on the gradient of the continuously differentiable function f .

Assumption 5.3.
(a) The function q is bounded from below on dom g.
(b) The function g is bounded from below by an affine function.
(c) The function ∇f : X→ X is locally Lipschitz continuous.

Keeping in mind that our goal is to minimize the function q in (Q), Assumption 5.3 (a)
is reasonable. Furthermore, Assumption 5.3 (b) is employed to guarantee existence of
solutions for the appearing subproblems (5.3). To be precise, Assumption 5.3 (b) implies
that the objective function of the subproblem (5.3) is, for fixed k, i ∈ N, coercive, and
therefore always attains a global minimizer xk,i (which does not need to be unique). Finally,
the local Lipschitz condition for ∇f from Assumption 5.3 (c) will play a crucial role
especially in Section 5.3 where we consider situations where a sequence generated by
Algorithm 5.1 converges as a whole and present associated rate-of-convergence results.

We now recall that the stepsize rule in 4 of Algorithm 5.1 is always finite if the current
iterate is not already stationary. Hence, the overall method is well-defined.
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Lemma 5.4. [95] Consider a fixed iteration k ∈ N of Algorithm 5.1, assume that xk is
not an M-stationary point of (Q), and suppose that Assumption 5.3 (b) holds. Then the
inner loop in 4 of Algorithm 5.1 is finite, i.e., one has γk = γk,ik for some finite index
ik ∈ {0, 1, 2, . . .}.

The following results summarize some of the properties and global convergence of
Algorithm 5.1 that will later be used in Section 5.3.

Proposition 5.5. Let Assumption 5.3 (a) and (b) hold, and let {xk} be a sequence
generated by Algorithm 5.1. Then the following statements hold:

(i) ∥xk+1 − xk∥ → 0 as k →∞,
(ii) for any convergent subsequence {xk}K, γk∥xk+1 − xk∥ →K 0 holds as k →K ∞,
(iii) if, additionally, Assumption 5.3 (c) is valid, then for any convergent subsequence

{xk}K, {γk}K is bounded.

Theorem 5.6. Let Assumption 5.3 be satisfied. Then each accumulation point of a sequence
{xk} generated by Algorithm 5.1 is an M-stationary point of (Q).

5.3 Convergence Analysis in the Presence of the KL Prop-
erty

The aim of this section is to show convergence of the entire sequence {xk} generated
by Algorithm 5.1 provided that there exists an accumulation point x̄ which, in addition,
satisfies the KL property, and to present associated rate-of-convergence results. The proofs
of these results are based on a local Lipschitz assumption on ∇f only, without the a priori
assumption that the whole sequence {xk} is bounded.

We begin with a result which shows that, locally around an accumulation point of the
sequence {xk}, the associated stepsizes γk remain bounded. This observation and its proof
are related to [95, Corollary 3.1]. Note that this statement is essentially different from the
boundedness of stepsizes along convergent subsequences of iterates which is inherent in the
presence of Assumption 5.3, see Proposition 5.5 (iii).

Lemma 5.7. Let Assumption 5.3 hold, let {xk} be any sequence generated by Algorithm 5.1,
and let x̄ be an accumulation point of this sequence. Then, for any ρ > 0, there is a constant
γ̄ρ > 0 (usually depending on ρ) such that γk ≤ γ̄ρ holds for all k ∈ N such that xk ∈ Bρ(x̄).

Proof. First, recall from Lemma 5.4 that the stepsize γk is well-defined for each k ∈ N.
Let ρ > 0 be fixed, and recall that the assumed local Lipschitz continuity of ∇f implies
that this gradient mapping is (globally) Lipschitz continuous on the compact set B2ρ(x̄)
(note that we took 2ρ as the radius of this ball here). Let us denote the corresponding
Lipschitz constant by L2ρ. Since x̄ is an accumulation point of the sequence {xk}, there
are infinitely many iterates of this sequence belonging to Bρ(x̄).

Now, assume, by contradiction, that there is a subsequence {γk}K with xk ∈ Bρ(x̄)
for all k ∈ K such that {γk}K is unbounded. Without loss of generality, we may assume
that γk →K ∞, that the subsequence of iterates {xk}K converges to some point x̃ (not
necessarily equal to x̄), and that, for each k ∈ K, the acceptance criterion (5.4) is violated
in the first iteration of the inner loop. Then, for the trial stepsize γ̂k := γk/τ = τ ik−1γ0

k ,
one also has γ̂k →K ∞, whereas the corresponding trial vector x̂k := xk,ik−1 does not
satisfy the acceptance criterion from (5.4), i.e., one has

q(x̂k) > q(xk)− δ γ̂k2 ∥x̂
k − xk∥2 ∀k ∈ K. (5.5)



88 5. Convergence Analysis of Proximal Gradient Methods

On the other hand, since x̂k solves the corresponding subproblem (5.3) with γ̂k, one has

⟨∇f(xk), x̂k − xk⟩+ γ̂k
2 ∥x̂

k − xk∥2 + g(x̂k)− g(xk) ≤ 0. (5.6)

We claim that this, in particular, implies x̂k →K x̃. In fact, using (5.6), the Cauchy-
Schwarz inequality, and the fact that {ψ(xk)} is monotonically decreasing by construction
of Algorithm 5.1, we obtain

γ̂k
2 ∥x̂

k − xk∥2 ≤ ∥∇f(xk)∥∥x̂k − xk∥+ g(xk)− g(x̂k)

= ∥∇f(xk)∥∥x̂k − xk∥+ q(xk)− f(xk)− g(x̂k)
≤ ∥∇f(xk)∥∥x̂k − xk∥+ q(x0)− f(xk)− g(x̂k).

Since f is continuously differentiable and −g is bounded from above by an affine function
in view of Assumption 5.3 (b), the above estimate implies ∥x̂k − xk∥ →K 0. In fact, if
{∥x̂k − xk∥}K would be unbounded, then the left-hand side would grow more rapidly
than the right-hand side, and if {∥x̂k − xk∥}K would be bounded, but staying away, at
least on a subsequence, from zero by a positive number, the right-hand side would be
bounded, whereas the left-hand side would be unbounded on the corresponding subsequence.
Consequently, we have ∥x̂k − xk∥ →K 0, and since xk →K x̃, this implies x̂k →K x̃. In
particular, since x̃ ∈ Bρ(x̄), this implies that, for all sufficiently large k ∈ K, we have both
xk ∈ B2ρ(x̄) and x̂k ∈ B2ρ(x̄).

Let us fix some k ∈ K. Using the mean-value theorem yields the existence of a point ξk
on the line segment connecting xk with x̂k such that

q(x̂k)− q(xk) = f(x̂k) + g(x̂k)− f(xk)− g(xk)
= ⟨∇f(ξk), x̂k − xk⟩+ g(x̂k)− g(xk).

Substituting the resulting expression for g(x̂k)− g(xk) into (5.6) yields

⟨∇f(xk)−∇f(ξk), x̂k − xk⟩+ γ̂k
2 ∥x̂

k − xk∥2 + q(x̂k)− q(xk) ≤ 0. (5.7)

Exploiting (5.5), one therefore obtains

γ̂k
2 ∥x̂

k − xk∥2 ≤ −⟨∇f(xk)−∇f(ξk), x̂k − xk⟩+ q(xk)− q(x̂k)

≤ ∥∇f(xk)−∇f(ξk)∥∥x̂k − xk∥+ δ
γ̂k
2 ∥x̂

k − xk∥2

which can be rewritten as

(1− δ) γ̂k2 ∥x̂
k − xk∥ ≤ ∥∇f(xk)−∇f(ξk)∥.

Since ξk in an element from the line connecting xk and x̂k, it follows that ξk ∈ B2ρ(x̄) for
all k ∈ K sufficiently large. Hence, the Lipschitz continuity of ∇f on this ball yields

(1− δ) γ̂k2 ∥x̂
k − xk∥ ≤ L2ρ∥xk − ξk∥ ≤ L2ρ∥xk − x̂k∥

for all sufficiently large k ∈ K. Since x̂k ̸= xk in view of (5.5), this implies that {γ̂k}K is
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bounded which, in turn, yields the boundedness of the subsequence {γk}K, contradicting
our assumption. This completes the proof.

We next show that the entire sequence {q(xk)} converges to q(x̄), where x̄ is an arbitrary
accumulation point of a sequence {xk} generated by Algorithm 5.1. Note that this result is
not completely obvious since q is only lower semicontinuous but not continuous in general.
Indeed, this property results from the construction of the iterates xk+1 of Algorithm 5.1.

Lemma 5.8. Let Assumption 5.3 hold, and let x̄ be an accumulation point of a sequence
{xk} generated by Algorithm 5.1. Then the entire sequence {q(xk)} converges to q(x̄).

Proof. Let {xk}K be a subsequence converging to x̄. By means of Proposition 5.5 (i), one
also has xk+1 →K x̄. Since q is lower semicontinuous, one then has

q(x̄) ≤ lim inf
k→K∞

q(xk+1). (5.8)

On the other hand, by construction, the entire sequence {q(xk)} is monotonically decreasing.
Since it is also bounded from below by q(x̄) as a consequence of (5.8), it follows that the
whole sequence {q(xk)} converges. It remains to show that its limit is equal to (the lower
bound) q(x̄).

To this end, we first note that xk+1 solves the subproblem (5.3) with stepsize γk. Hence,
one has

⟨∇f(xk), xk+1 − xk⟩+ γk
2 ∥x

k+1 − xk∥2 + g(xk+1)

≤ ⟨∇f(xk), x̄− xk⟩+ γk
2 ∥x̄− x

k∥2 + g(x̄)

for each k ∈ N. Taking the upper limit as k →K ∞, and using the continuity of ∇f as well
as Proposition 5.5, one obtains

lim sup
k→K∞

g(xk+1) ≤ g(x̄).

Combining this with (5.8) and using the continuity of f yields q(xk+1) →K q(x̄). Since
{q(xk)} converges, the assertion follows.

Note that all results stated so far are independent of the KL property. The remaining
part of the analysis, however, is heavily based on the assumption that objective function q
satisfies the KL property at a given accumulation point x̄ of a sequence {xk} generated
by Algorithm 5.1. In particular, let η > 0 be the corresponding constant from the
definition of the associated desingularization function χ. Furthermore, we will assume that
Assumption 5.3 is valid. In view of Proposition 5.5 (i), one can find a sufficiently large
index k̂ ∈ N such that

sup
k≥k̂
∥xk+1 − xk∥ ≤ η. (5.9)

We then define
ρ := η + 1

2 (5.10)

as well as the compact set
Cρ := Bρ(x̄) ∩ Lq(x0), (5.11)

where Lq(x0) := {x ∈ X | q(x) ≤ q(x0)} is the sublevel set of q with respect to x0,
the starting point exploited in Algorithm 5.1. By monotonicity of {q(xk)}, one has
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{xk} ⊂ Lq(x0). Finally, throughout the section, let Lρ > 0 be a (global) Lipschitz constant
of ∇f on Cρ from (5.11). Finally, in view of Lemma 5.7, one has

γk ≤ γ̄ρ ∀xk ∈ Cρ (5.12)

with some suitable upper bound γ̄ρ > 0 (depending on our choice of ρ from (5.10)). Using
this notation, one can formulate the following result.

Lemma 5.9. Let Assumption 5.3 hold, and let {xk} be any sequence generated by Algo-
rithm 5.1. Suppose that {xk}K is a subsequence converging to some limit point x̄, and that
q has the KL property at x̄ with desingularization function χ. Then there is a sufficiently
large constant k0 ∈ K such that the corresponding constant

α := ∥xk0 − x̄∥+

√
8
(
q(xk0)− q(x̄)

)
δγmin

+
2
(
γ̄ρ + Lρ

)
δγmin

χ
(
q(xk0)− q(x̄)

)
(5.13)

satisfies α < 1
2 , where ρ > 0 and γ̄ρ > 0 are the constants defined in (5.10) and (5.12),

respectively, while Lρ > 0 is a Lipschitz constant of ∇f on Cρ from (5.11), and δ > 0 as
well as γmin > 0 are the parameters from Algorithm 5.1.

Proof. The statement follows from the fact that each part on the right-hand side of (5.13)
can be made arbitrarily small. This is clear for the first one since the subsequence {xk}K
converges to x̄. This is also true for the second part as a consequence of Lemma 5.8. Finally,
the third one can be made arbitrarily small since we have q(xk) → q(x̄) by Lemma 5.8,
taking into account that the desingularization function χ is continuous at the origin. Hence,
the statement follows by taking an index k0 ∈ K sufficiently large.

We next state another technical result.

Lemma 5.10. Let Assumption 5.3 hold, and let {xk} be any sequence generated by
Algorithm 5.1. Suppose that {xk}K is a subsequence converging to some limit point x̄, and
that q has the KL property at x̄ with desingularization function χ. Then

dist
(
0, ∂q(xk+1)

)
≤
(
γ̄ρ + Lρ

)
∥xk+1 − xk∥

holds for all sufficiently large k ∈ N such that xk ∈ Bα(x̄), where α < 1
2 denotes the

constant from (5.13), γ̄ρ > 0 is the constant from (5.12), and Lρ > 0 is the Lipschitz
constant of ∇f on Cρ from (5.11).

Proof. For any k ∈ N, since xk+1 is a solution of (5.3), one obtains

0 ∈ ∇f(xk) + γk(xk+1 − xk) + ∂g(xk+1)

from the corresponding M-stationary condition. This implies

γk(xk − xk+1) +∇f(xk+1)−∇f(xk) ∈ ∇f(xk+1) + ∂g(xk+1) = ∂q(xk+1) (5.14)

for all k ∈ N, where we used the sum rule Proposition 2.23 (i) for the limiting subdifferential.
Now, take an arbitrary index k ∈ N sufficiently large such that xk ∈ Bα(x̄) and k ≥ k̂,

where k̂ is the index from (5.9). In view of (5.10) and Lemma 5.9, one has α ≤ ρ. Therefore,
Lemma 5.7 shows that

γk ≤ γ̄ρ. (5.15)
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Moreover, using (5.9), (5.10), and Lemma 5.9, one obtains

∥xk+1 − x̄∥ ≤ ∥xk+1 − xk∥+ ∥xk − x̄∥ ≤ η + α ≤ ρ.

Hence, xk, xk+1 ∈ Cρ holds with the compact set Cρ from (5.11). Therefore, one has∥∥∇f(xk+1)−∇f(xk)
∥∥ ≤ Lρ∥xk+1 − xk∥

by definition of Lρ. Together with (5.14) and (5.15), we thus obtain

dist
(
0, ∂q(xk+1)

)
≤
∥∥γk(xk − xk+1) +∇f(xk+1)−∇f(xk)

∥∥
≤ γk∥xk+1 − xk∥+ Lρ∥xk+1 − xk∥
≤ (γ̄ρ + Lρ

)
∥xk+1 − xk∥

for all k ∈ N satisfying k ≥ k̂ and xk ∈ Bα(x̄).

The following result shows that the entire sequence {xk}, generated by Algorithm 5.1,
already converges to one of its accumulation points x̄ provided that the objective function
q satisfies the KL property at this point. The proof combines our previous results with a
technique used in [39].

Theorem 5.11. Let Assumption 5.3 hold, and let {xk} be any sequence generated by
Algorithm 5.1. Suppose that {xk}K is a subsequence converging to some limit point x̄, and
that q has the KL property at x̄. Then the entire sequence {xk} converges to x̄.

Proof. In view of Lemma 5.8, we know that the whole sequence {q(xk)} is monotonically
decreasing and converging to q(x̄). This implies that q(xk) ≥ q(x̄) holds for all k ∈ N.

Now, suppose one has q(xk) = q(x̄) for some index k ∈ N. Then, by monotonicity, one
also gets q(xk+1) = q(x̄). Consequently, one obtains from (5.4) that

0 ≤ δγmin
2 ∥xk+1 − xk∥2 ≤ q(xk)− q(xk+1) = 0

and, thus, xk+1 = xk. Since, by assumption, the subsequence {xk}K converges to x̄, this
implies that xk = x̄ for all k ∈ N sufficiently large. In particular, one has convergence of
the entire (eventually constant) sequence {xk} to x̄ in this situation.

For the remainder of this proof, one can therefore assume that q(xk) > q(x̄) holds for
all k ∈ N. Let α ∈ (0, 1/2) be the constant from (5.13), and k0 ∈ K be the corresponding
iteration index which is used in the definition of α, see Lemma 5.9. One then has
0 < q(xk)− q(x̄) ≤ q(xk0)− q(x̄) for all k ≥ k0. Without loss of generality, we may also
assume that k0 ≥ k̂ (the latter being the index defined by (5.9)) and that k0 is sufficiently
large to satisfy

q(xk0) < q(x̄) + η. (5.16)

Let χ : [0, η]→ [0,∞) be the desingularization function which comes along with the validity
of the KL property at x̄. Due to χ(0) = 0 and χ′(t) > 0 for all t ∈ (0, η), one obtains

χ
(
q(xk)− q(x̄)

)
≥ 0 ∀k ≥ k0. (5.17)

We now claim that the following two statements hold for all k ≥ k0:
(i) xk ∈ Bα(x̄),
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(ii) ∥xk0 − x̄∥+∑k
i=k0 ∥x

i+1 − xi∥ ≤ α, which is equivalent to

k∑
i=k0

∥xi+1 − xi∥ ≤

√
8
(
q(xk0)− q(x̄)

)
δγmin

+
2
(
γ̄ρ + Lρ

)
δγmin

χ
(
q(xk0)− q(x̄)

)
. (5.18)

We verify these two statements jointly by induction. For k = k0, statement (i) holds simply
by the definition of α in (5.13). Furthermore, the acceptance criterion (5.4) together with
the monotonicity of {q(xk)} implies

∥xk0+1 − xk0∥ ≤

√
2
(
q(xk0)− q(xk0+1)

)
δγmin

≤

√
2
(
q(xk0)− q(x̄)

)
δγmin

. (5.19)

In particular, this shows that (5.18) holds for k = k0. Suppose that both statements hold
for some k ≥ k0. Using the triangle inequality, the induction hypothesis, and the definition
of α, one obtains

∥xk+1 − x̄∥ ≤
k∑

i=k0

∥xi+1 − xi∥+ ∥xk0 − x̄∥ ≤ α,

i.e., statement (i) holds for k + 1 in place of k. The verification of the induction step for
(ii) is more involved.

To this end, first note that (5.16) implies

q(x̄) < q(xi) < q(x̄) + η ∀i ≥ k0. (5.20)

Since q has the KL property at x̄, one has

χ′(q(xi)− q(x̄)
)

dist
(
0, ∂q(xi)

)
≥ 1 ∀i ≥ k0. (5.21)

Since xi ∈ Bα(x̄) for all i ∈ {k0, k0 + 1, . . . , k} by the induction hypothesis, one can apply
Lemma 5.10 and obtain (after a simple index shift)

dist
(
0, ∂q(xi)

)
≤
(
γ̄ρ + Lρ

)
∥xi − xi−1∥ ∀i ∈ {k0 + 1, k0 + 2, . . . , k + 1}.

In view of (5.21), one therefore obtains

χ′(q(xi)− q(x̄)
)
≥ 1(

γ̄ρ + Lρ
)
∥xi − xi−1∥

∀i ∈ {k0 + 1, k0 + 2, . . . , k + 1}. (5.22)

To simplify some of the subsequent formulas, we follow [39] and introduce the short-hand
notation

∆i,j := χ
(
q(xi)− q(x̄)

)
− χ

(
q(xj)− q(x̄)

)
for i, j ∈ N. The assumed concavity of χ then implies

∆i,i+1 ≥ χ′(q(xi)− q(x̄)
)(
q(xi)− q(xi+1)

)
. (5.23)
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Using (5.22), (5.23), and the acceptance criterion (5.4), one therefore gets

∆i,i+1 ≥ χ′(q(xi)− q(x̄)
)(
q(xi)− q(xi+1)

)
≥ q(xi)− q(xi+1)

(γ̄ρ + Lρ)∥xi − xi−1∥
≥ δγmin

2(γ̄ρ + Lρ)
∥xi+1 − xi∥2

∥xi − xi−1∥
= β
∥xi+1 − xi∥2

∥xi − xi−1∥

for all i ∈ {k0 + 1, k0 + 2, . . . , k + 1}, with the constant β := δγmin
2(γ̄ρ+Lρ) . Noting that

a+ b ≥ 2
√
ab holds for all real numbers a, b ≥ 0, one therefore obtains

1
β

∆i,i+1 + ∥xi − xi−1∥ ≥ 2
√

1
β

∆i,i+1∥xi − xi−1∥ ≥ 2∥xi+1 − xi∥

for all i ∈ {k0 + 1, k0 + 2, . . . , k + 1}. Summation yields

2
k+1∑

i=k0+1
∥xi+1 − xi∥ ≤

k+1∑
i=k0+1

∥xi − xi−1∥+ 1
β

k+1∑
i=k0+1

∆i,i+1

=
k∑

i=k0+1
∥xi+1 − xi∥+ ∥xk0+1 − xk0∥+ 1

β
∆k0+1,k+2

≤
k+1∑

i=k0+1
∥xi+1 − xi∥+ ∥xk0+1 − xk0∥+ 1

β
∆k0+1,k+2.

Subtracting the first summand from the right-hand side, exploiting the estimate (5.19),
and using the nonnegativity as well as monotonicity of the desingularization function χ,
we obtain

k+1∑
i=k0+1

∥xi+1 − xi∥ ≤

√
2
(
q(xk0)− q(x̄)

)
δγmin

+ 1
β
χ
(
q(xk0)− q(x̄)

)
.

Adding the term ∥xk0+1 − xk0∥ to both sides and using (5.19) once again, one gets

k+1∑
i=k0

∥xi+1 − xi∥ ≤

√
8
(
q(xk0)− q(x̄)

)
δγmin

+ 1
β
χ
(
q(xk0)− q(x̄)

)
.

Hence, statement (ii) holds for k + 1 in place of k, and this completes the induction.
In particular, it follows from (i) that xk ∈ Bα(x̄) for all k ≥ k0. Taking k → ∞ in

(5.18) therefore shows that {xk} is a Cauchy sequence and, thus, convergent. Since one
already knows that x̄ is an accumulation point, it follows that the entire sequence {xk}
converges to x̄.

Note that Theorem 5.11 says that, in the presence of Assumption 5.3 and the KL
property (on the overall domain of g), any sequence {xk} generated by Algorithm 5.1 either
satisfies ∥xk∥ → ∞ or converges to a limit point (which is an M-stationary point of (Q)
by Theorem 5.6). This alternative behavior, which typically comes along with the KL
property, see e.g. [15, Theorem 3.2], first has been observed in [1, Theorem 3.2] in the
context of descent methods for analytic functions.

We finally state our rate-of-convergence result for one general class of desingularization
functions.



94 5. Convergence Analysis of Proximal Gradient Methods

Theorem 5.12. Let Assumption 5.3 hold, and let {xk} be any sequence generated by
Algorithm 5.1. Suppose that {xk}K is a subsequence converging to some limit point x̄, and
that q has the KL property at x̄. Then the entire sequence {xk} converges to x̄, and if
the corresponding desingularization function has the form χ(t) = ctθ for some c > 0 and
θ ∈ (0, 1], the following statements hold:

(i) if θ ∈ (0, 1
2 ], then the sequence {q(xk)} converges Q-linearly to q(x̄), and the sequence

{xk} converges R-linearly to x̄.
(ii) if θ ∈ (1

2 , 1), then there exist some positive constants η1 and η2 such that

q(xk)− q(x̄) ≤ η1k
− 1

2θ−1 ,

∥xk − x̄∥ ≤ η2k
− 1

2(2θ−1)

for sufficiently large k.
(iii) if θ = 1, then the sequences {q(xk)} and {xk} converge in a finite number of steps

to q(x̄) and x̄, respectively.

Proof. In view of Theorem 5.11, we only need to verify the quantitative statements (i),
(ii), and (iii) of the theorem. As noted at the beginning of the proof of Theorem 5.11, one
may assume, without loss of generality, that q(xk) > q(x̄) holds for all k ∈ N. In view of
Lemma 5.8, one then has

xk ∈ Bα(x̄) ∩
{
x ∈ dom g | q(x̄) < q(x) < q(x̄) + η

}
for all k ∈ N sufficiently large, where α > 0 is the constant from (5.13) and η > 0 denotes
the constant from the definition of the desingularization function χ. Since q satisfies the
KL property at x̄ with χ(t) = ctθ, we have

1 ≤ χ′(q(xk+1)− q(x̄)
)

dist
(
0, ∂q(xk+1)

)
= cθ

(
q(xk+1)− q(x̄)

)θ−1 dist
(
0, ∂q(xk+1)

)
for all sufficiently large k ∈ N. Taking into account Lemma 5.10, this yields

1 ≤ cθ(γ̄ρ + Lρ)
(
q(xk+1)− q(x̄)

)θ−1∥xk+1 − xk∥

for all k ∈ N sufficiently large, where γ̄ρ > 0 is the constant from (5.12) and Lρ > 0 is the
global Lipschitz constant of ∇f on Cρ from (5.11). Rearranging this expression yields

∥xk+1 − xk∥ ≥ 1
cθ(γ̄ρ + Lρ)

(
q(xk+1)− q(x̄)

)1−θ
. (5.24)

On the other hand, by the acceptance criterion (5.4) and γk ≥ γmin, one has

q(xk+1)− q(xk) ≤ −δ γmin
2 ∥x

k+1 − xk∥2. (5.25)
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Combining (5.24) and (5.25) implies(
q(xk+1)− q(x̄)

)
−
(
q(xk)− q(x̄)

)
= q(xk+1)− q(xk)

≤ −δ γmin
2 ∥x

k+1 − xk∥2

≤ − δγmin
2c2θ2(γ̄ρ + Lρ)2

(
q(xk+1)− q(x̄)

)2(1−θ)

= −σ
(
q(xk+1)− q(x̄)

)2(1−θ)

(5.26)

for all k ∈ N sufficiently large, with the constant σ := δγmin
2c2θ2(γ̄ρ+Lρ)2 for brevity. Set

qk := q(xk)− q(x̄) for short, rearranging these terms yields

q
2(1−θ)
k+1 ≤ 1

σ
(qk − qk+1) (5.27)

for all k ∈ N large enough. Since qk is deceasing, θ ∈ (0, 1], and σ > 0, then the statements
(i), (ii), and (iii) regarding the sequence {q(xk)} follow from Lemma 2.14. More specifically,
when θ ∈ (0, 1/2], the sequence {q(xk)} converges Q-linearly to q(x̄) with rate 1/(1 + σ).

It remains to verify the convergence rate with respect to the sequence {xk}. We now
consider the different cases of θ.
• θ = 1 : then from (5.18), for all k ≥ k0, one has

∥xk − x̄∥ ≤
∞∑
i=k0

∥xi+1 − xi∥ ≤

√
8
(
q(xk0)− q(x̄)

)
δγmin

+
2c
(
γ̄ρ + Lρ

)
δγmin

(
q(xk0)− q(x̄)

)
.

Since {q(xk)} converges to q(x̄) in finite steps when θ = 1, then one has {xk} also
converges to x̄ in finite steps.

• θ ∈ (1/2, 1) : from the general setting that q(xk) > q(x̄) for all k ∈ N, χ(t) = ctθ is
continuous, and t > 1/2, as well as the fact q(xk)→ q(x̄), then for sufficiently large k0,
one has

(q(xk0)− q(x̄))θ ≤ (q(xk0)− q(x̄))
1
2 ,

which, together with (5.18) implies

∥xk − x̄∥ ≤
∞∑
i=k0

∥xi+1 − xi∥ ≤

√
8
(
q(xk0)− q(x̄)

)
δγmin

+
2c
(
γ̄ρ + Lρ

)
δγmin

(
q(xk0)− q(x̄)

)θ
≤

√
8
(
q(xk0)− q(x̄)

)
δγmin

+
2c
(
γ̄ρ + Lρ

)
δγmin

√
q(xk0)− q(x̄)

= τ
√
q(xk0)− q(x̄)

holds for all k ≥ k0, with τ :=
√

8
δγmin

+ 2c
(
γ̄ρ+Lρ

)
δγmin

. From the conclusion of (ii) regarding

{q(xk)}, there exists some η1 > 0 satisfying q(xk)− q(x̄) ≤ η1k
− 1

2θ−1 for k sufficiently
large, then one has

∥xk − x̄∥ ≤ τ(η1k
− 1

2θ−1 )
1
2 = τη1

1
2k

− 1
2(2θ−1)

for sufficiently large k. Setting η2 := τη11/2 completes the proof of (ii).
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• θ ∈ (0, 1/2] : observe that the descent test (5.4) and the monotonicity of the sequence
{q(xk)} yield

δγmin
2 ∥xk+1 − xk∥2 ≤ q(xk)− q(xk+1) ≤ q(xk)− q(x̄) = qk,

and that the sequence {qk} is Q-linearly convergent. Taking this into account, it is not
difficult to see that there exist constants ω > 0 and µ ∈ (0, 1) such that

∥xk+1 − xk∥ ≤ ωµk

holds for all sufficiently large k ∈ N. Hence, for given integers ℓ > k > 0 large enough,
one therefore obtains

∥xℓ+1 − xk∥ ≤
ℓ∑

j=k
∥xj+1 − xj∥ ≤ ω

ℓ∑
j=k

µj ≤ ωµk
∞∑
j=0

µj = ω

1− µµ
k.

Taking the limit ℓ→∞ yields

∥xk − x̄∥ ≤ ω

1− µµ
k

for all large enough k ∈ N. This completes the proof of the (local) R-linear convergence
of {xk} to its limit x̄.

So far, all the convergence and rate-of-convergence results of Algorithm 5.1 have been
done. Note that Algorithm 5.1 is one of the most simple but fundamental proximal gradient
methods, then keeping these findings in mind, it might be promising to check whether the
technique of proof can be applied in several generalizations of the this method.

5.4 Realization for a Class of Nonconvex Regularizers

In fact, (Q) has many practical applications, such as signal processing [46,52, 61], machine
learning [73], compressed sensing [160], and image processing [23,57] et al., where, typically,
f models a tracking-type term and g is used to promote sparse structures of solutions, which
is usually called the regularization function, penalty function or regularizer. Note that g is
usually nonsmooth and possibly also nonconvex, since such function are advantageous in
that they usually yield sparser solutions [54].

As mentioned above, Algorithm 5.1 requires the global minimum of (5.3) at each
iteration, this section is concerned to the solution of (5.3) resulting from Algorithm 5.1.
By adding and subtracting constant terms (constant with respect to the variable x), it
follows that (5.3) can be rewritten as

min
x∈X

γk
2

∥∥∥∥x− (xk − 1
γk
∇f(xk)

)∥∥∥∥2
+ g(x), (5.28)

which obviously has the unique solution if g is convex. In this section, we consider a useful
class of nonconvex, nonsmooth regularization function g [127] and therefore set X := Rn:

g(x) :=
n∑
i=1

ϕ(xi),



5.4. Realization for a Class of Nonconvex Regularizers 97

where ϕ is always called a potential function. Then (5.28) can be reformulated to

min
x∈Rn

γk
2

∥∥∥∥x− (xk − 1
γk
∇f(xk)

)∥∥∥∥2
+

n∑
i=1

ϕ(xi),

which is totally separable, therefore reduces to the n one-dimensional subproblems

min
xi∈R

γk
2
∥∥∥xi − pki ∥∥∥2

+ ϕ(xi)

for i = 1, . . . , n, where we set pk := xk − 1
γk
∇f(xk). Multiplying the objective function by

λk := 1
γk

, we have

min
xi∈R

1
2
∥∥∥xi − pki ∥∥∥2

+ λkϕ(xi).

To simplify the notation, we therefore consider the problem

min
t∈R

ψ(t) := 1
2(t− p)2 + λϕ(t) (5.29)

with ϕ(t) satisfying the following assumption:

Assumption 5.13. We assume that ϕ : R→ R+ is continuous function and satisfies
(a) ϕ(t) ≥ 0, ϕ(t) = ϕ(−t); in other words, ϕ is nonnegative and symmetric.
(b) ϕ is continuously differentiable on R except at 0, ϕ′(t)t > 0 holds for all t ̸= 0, and

lim
t↓0

ϕ′(t) = ϕ′(0+) = − lim
t↑0

ϕ′(t) = −ϕ′(0−) ∈ (0,∞].

(c) ϕ is twice differentiable on R except at 0 with ϕ′′(t) < 0 for all t ≠ 0, and ϕ′′(t) is
monotonically increasing for t > 0 and monotonically decreasing for t < 0, respectively.

Obviously, the basic requirements are satisfied by the following functions:

ϕ0(t) = |t|q, ϕ1(t) = α|t|
1 + α|t|

, ϕ2(t) = log(1 + α|t|), (5.30)

with α > 0 and q ∈ (0, 1) satisfying the assumptions on ϕ. [54] also considered a
family of penalty functions, where ϕ2 is satisfied, however ϕ0 and ϕ1 can not be included.
ϕ0 (q = 0.1, 0.5, 0.9), ϕ1, and ϕ2 with α = 0.8 are illustrated in Figure 5.1, which have
an almost fast growth beyond an interval surrounding the origin. As for the motivation
of Assumption 5.13 (a) and (b), discontinuity of ϕ′ at the origin plays a very important
role in generating sparser solution, which is proposed in the following lemma using the
technique from [126, Lemma 3.1].

Lemma 5.14 (Discontinuity of ϕ′(t) at t = 0 implies existence of global minimum of
(5.29)). If ϕ′(0−) ̸= ϕ′(0+) ̸= 0, there exists a nonzero neighborhood of p = 0 such that 0 is
the global minimum of (5.29).

Proof. Since the objective function of (5.29) is coercive, then it has a global minimum by
Weierstrass’ theorem. From Assumption 5.13 (a), then the solution of (5.29) is either equal
to 0 or satisfies

t− p+ λϕ′(t) = 0. (5.31)

From Assumption 5.13 (b), t and ϕ′(t) have the same sign, hence one has |t| < |p|. Due
to ϕ′(0+) ̸= 0, there exists some neighborhood [−p0, p0] of p = 0 such that (5.31) has no
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Figure 5.1: Several sparsity promoting regularizations satisfying Assumption 5.13.

solution. So in the case, the only possible solution for |p| ≤ p0 is 0.

In other words, Assumption 5.13 (a) and (b) aim to generate the sparser solution,
at least than the case of convex regularization functions. However, the countless local
mimimizers causes much difficulty in seeking for the global one, as a result, Assumption 5.13
(c) is introduced for the analytical solution. We in the following present the solution analysis
of (5.29).

Due to Assumption 5.13 (a) and (b), we have argmint∈R ϕ(t) = 0. As a result, if p = 0,
then t∗ := 0 is the unique global minimum of (5.29).

We next consider the case where p > 0. Since ψ is obviously coercive, then (5.29) has a
global minimum by Weierstrass’ theorem. Moreover, since it has an isolated point at the
origin, then we know 0 is always a local minimum (not necessarily a global one). In order
to check whether the origin is a global minimum, due to the decrement of ψ on (−∞, 0)
from Assumption 5.13 (b), we only need to take a closer look at the function ψ on the
open interval (0,∞). Observe that ψ is continuous, whose derivative on (0,∞) is given by

ψ′(t) = t− p+ λϕ′(t), t > 0. (5.32)

Meanwhile ψ′ and ψ′′ are continuous except at 0 from Assumption 5.13. By again
Assumption 5.13 (b), p, λ > 0, we get

ψ′(t) > 0, t ≥ p. (5.33)

We next have to explore whether the nonlinear equation ψ′(t) = 0 has solution(s) on the
open interval (0, p). The twice derivative of ψ over (0, p) is given by

ψ′′(t) = 1 + λϕ′′(t), 0 < t < p.

Now, with the aid of the monotone increasement of ϕ′′(t) for t > 0, we need to consider
whether ψ′′(t) = 0 has a solution, i.e., ϕ′′(t) != − 1

λ on (0, p).
Case 1: ϕ′′(t) < − 1

λ , ∀t ∈ (0, p) (or ϕ′′(p) < − 1
λ). Then ψ′ is monotonically decreasing

over (0, p), since ψ′ is continuous on (0, p) and ψ′(p) > 0, hence ψ′(t) > 0,∀t ∈ (0, p). It,
together with (5.33), implies t∗ := 0 is the unique global minimum of (5.29) with p > 0 by
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continuity of ψ.
Case 2: ϕ′′(t) > − 1

λ ,∀t ∈ (0, p) (or ϕ′′(0+) > − 1
λ). Then ψ′ is monotonically increasing

over (0, p), in this case, we have to distinguish whether ψ′(t)=0 has a solution over (0, p).
• If ψ′(0+) ≥ 0, which says ψ′(t)=0 has no solution on (0, p), so that t∗ := 0 is the unique

global minimum of (5.29) with p > 0 by continuity of ψ.
• Otherwise, we set ψ′(t̃)=0 with t̃ ∈ (0, p). Then from (5.33), we have

ψ′(t)


< 0, if 0 < t < t̃

= 0, if t = t̃

> 0, if t > t̃,

(5.34)

by continuity of ψ, we know t∗ := t̃ is the unique global minimum of (5.29) with p > 0,
though it has no analytic formula. One can apply Newton’s methods to obtain a very
good approximation of t̃, by choosing a suitable starting point t0 > 0.

Case 3: There exists the unique t̄ ∈ (0, p) satisfying ϕ′′(t̄) = − 1
λ (or ϕ′′(0+) < − 1

λ < ϕ′′(p)).
Since ϕ′′ is increasing on (0, p), and consequently ψ′′ is increasing on (0, p), then ψ′ is
decreasing first till at t = t̄ and then increasing to ψ′(p)(> 0) at t = p.
• If ψ′(t̄) ≥ 0, then from (5.33), we have

ψ′(t) ≥ 0, t > 0.

Hence, t∗ := 0 is the global minimum of (5.29) with p > 0 by continuity of ψ.
• Otherwise, ψ′(t) = 0 has one or two solutions.

– If ψ′(0+) ≤ 0, then ψ′(t) = 0 has one solution on (0, p), setting as t̃ again, then from
t̃ > t̄. From (5.33), we also have (5.34), which says t∗ := t̃ ∈ (t̄, p) is the global
minimum, and could be obtained by Newton’s method where starting point satisfies
t0 > t̄.

– If ψ′(0+) > 0, then ψ′(t) = 0 has two solutions on (0, p), one is smaller than t̄, which
is the local maximum of ψ, and the other one is larger than t̄, which is the local
minimum of ψ, setting the larger solution as t̂. We use Newton’s method aims to
find pretty approximate t̂ by choosing any starting point t0 > t̄. By comparing the
corresponding function values of ψ(t̂) and ψ(0), one then decides which candidate is
the global minimum.

We now finish the solution analysis of (5.29). For p < 0, the analysis is highly similar with
the case p > 0, so we just list the solution of different cases.
Case 1: ϕ′′(t) < − 1

λ ,∀t ∈ (p, 0), t∗ := 0 is the global minimum of f .
Case 2: ϕ′′(t) > − 1

λ ,∀t ∈ (p, 0), if ψ′(0−) ≤ 0, t∗ := 0 is the global minimum of ψ.
Otherwise, the point satisfying ψ′(t) = 0 with t ∈ (p, 0) is the global minimum of ψ.
Case 3: There exists the unique t̄ ∈ (p, 0) satisfying ϕ′′(t̄) = − 1

λ , since ϕ′′, and therefore
ψ′′ are decreasing on (−∞, 0), we have ψ′(t) is increasing till t = t̄ and then decreasing.
Hence, if ψ′(t̄) ≤ 0, then t∗ := 0 is the global minimum of ψ. Otherwise,
• if ψ′(0−) ≥ 0, the solution ψ′(t) = 0 with t ∈ (p, 0) is the global minimum of ψ.
• if ψ′(0−) < 0, calculate the solution of ψ′(t) = 0 with t ∈ (p, t̄), setting as t̂. By

comparing ψ(t̂) and ψ(0) to obtain the global minimum.
In order to give an unified framework about the solution of the subproblem (5.29) for both
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cases p > 0 and p < 0, we set

ψ′(c) :=
{
ψ′(0+), if p > 0
ψ′(0−), if p < 0,

(5.35)

and
ϕ′′(c) :=

{
ϕ′′(0+), if p > 0
ϕ′′(0−), if p < 0.

(5.36)

We now summarize the method Algorithm 5.2 for the computation of a global minimum t∗
of the subproblem (5.29). In order to guarantee the feasibility of (S.3), we maybe need to

Algorithm 5.2 (Newton-type Method for solving (5.29))

(S.0) Input p, if p = 0, set t∗ := 0 and STOP. Otherwise, compute ψ′(c) and ϕ′′(c) as
(5.35) and (5.36), respectively.

(S.1) If ϕ′′(p) < − 1
λ , then t∗ := 0 and STOP. Else if ϕ′′(c) > − 1

λ , go to (S.2). Otherwise,
go to (S.3).

(S.2)
(S.2.1) If ψ′(c)p ≥ 0, then t∗ := 0 and STOP, else go to (S.2.2).
(S.2.2) Apply Newton’s Method for minimization the unconstrained function ψ with

starting point t0 satisfying t0p > 0 until it converges to some point t̃, set
t∗ := t̃ and STOP.

(S.3) Compute the solution t̄ of equation

ϕ′′(t) = − 1
λ
.

If ψ′(t̄)p ≥ 0, set t∗ := 0 and STOP. Otherwise
(S.3.1) If ψ′(c)p ≤ 0, go to (S.2.2) by replacing t0p > 0 with t0 := p. Otherwise go

to (S.3.2) .
(S.3.2) Apply Newton’s Method for minimization the unconstrained function ψ with

starting point t0 satisfying (t0 − t̄)p > 0 until it converges to some point t̄∗,
if ψ(0) ≤ ψ(t̄∗), set t∗ := 0, else set t∗ := t̄∗.

assume that ϕ′′ is differential except at the origin if Newton method is employed for the
solution of ψ′′ = 0. The following result illustrates the sequence (or point 0) generated by
Algorithm 5.2 converges to the global minimum of (5.29).

Theorem 5.15. Let the sequence {tk} generated by Algorithm 5.2, then its limit point is
the global minimum of subproblem (5.29).

Proof. It is obvious that 0 is the global minimimum when p = 0. We only need to consider
the case where p ̸= 0, let us recall Algorithm 5.2 again, {tk} is either directly equal to 0
(here k = 0), or generated by the Newton method. If tk = 0 and k = 0, then the underlying
cases in Algorithm 5.2 imply that ψ′(t) ≤ 0,∀t > 0 when p > 0 and ψ′(t) ≥ 0, ∀t < 0 when
p < 0. Both situations imply from Assumption 5.13 (a) that 0 is global minimum of (5.29).
It remains to consider the case where {tk} is generated from the Newton method, due to
the choice of starting points in Algorithm 5.2, then its limit point satisfies evidently the
corresponding equation, we now give the following specific analysis.
Case 1: If {tk} is generated by (S.2.2), then its limit t̃ satisfies the equation ψ′(t) = 0 for
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t ∈ (0, p) with p > 0 or t ∈ (p, 0) with p < 0. Due to ψ′(c)p < 0 and ϕ′′(c) > 0, where ψ′(c)
and ϕ′′(c) are as in (5.35) and (5.36), respectively, then one has

ψ′(t)


< 0, if t < t̃

= 0, if t = t̃

> 0, if t > t̃,

(5.37)

which says that t̃ is the global mimimum of (5.29) from Assumption 5.13 (b).
Case 2: If {tk} is generated by (S.3.1), then its limit t̃ satisfies the equation ψ′(t) = 0
for t ∈ (t̄, p) with p > 0 or t ∈ (p, t̄) with p < 0, where t̄ satisfies ϕ′′(t) = −1/λ. Due to
ψ′(t̄)p < 0 and ψ′(c)p ≤ 0, one has (5.37) again, hence t̃ is the global mimimum of (5.29).
Case 3: If {tk} is generated by (S.3.2), then its limit t̄∗ satisfies the equation ψ′(t) = 0
for t ∈ (t̄, p) with p > 0 or t ∈ (p, t̄) with p < 0, where t̄ satisfies ϕ′′(t) = −1/λ. Due to
ψ′(t̄)p < 0 and ψ′(c)p > 0, one has t̄∗ is a local minimum on (0,∞) with p > 0 or (−∞, 0)
with p < 0. Since 0 is a local minimum too, we have to compare ψ(t̄∗) with ψ(0), the
smaller is the minimizer of (5.29).

The following example shows a specific analysis with the aid of ϕ1.

Example 5.16. We now set ϕ = ϕ1, then (5.29) becomes

min
t∈R

ψ(t) := 1
2(t− p)2 + λ

α|t|
1 + α|t|

, (5.38)

where α > 0 and λ > 0. To easily apply the approach, we need to calculate the first and
second derivatives of ψ except at the origin:

ψ′(t) =



t− p+ λ
α

(1 + αt)2 , if t > 0

t− p+ λ
−α

(1− αt)2 , if t < 0

−p+ λα, if t = 0+

−p−λα, if t = 0−,

and

ψ′′(t) =



1 + λ
−2α2

(1 + αt)3 , if t > 0

1 + λ
2α2

(1− αt)3 , if t < 0

1−2λα2, if t = 0+

1 + 2λα2, if t = 0−.

Evidently, ψ′′(t) > 0, ∀t < 0 always holds, which says the approach will be easier for the
case p < 0. As a result, we will be careful for p > 0. We first notice that ψ′′(t) is increasing
when t > 0. So, it is easy to check

ψ′′(t) != 0, t ∈ (0, p), (5.39)

i.e., if ψ′′(0+) > 0, then ψ′′(t) > 0, ∀t ∈ (0, p), if ψ′′(p) < 0, then ψ′′(t) < 0, ∀t ∈ (0, p),
which says (5.39) has no solution. Otherwise, (5.39) has an unique solution, which is
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obviously given by

t̄ := 1− 3√2λα2

α
> 0. (5.40)

Then we know ψ′′(t) is strictly monotonically increasing for both t > 0 and t < 0, so if
ϕ′′(a) > − 1

λ , then ϕ′′(t) > − 1
λ ,∀t ∈ (a, b), similarly ϕ′′(b) < − 1

λ , then ϕ′′(t) < − 1
λ ,∀t ∈

(a, b). Meanwhile, ψ′′(t) > 0, ∀t < 0 and ψ has third-order derivative except at the origin,
so we can apply Newton’s method for the computation of the solution of ψ′′(t) = 0 and the
solution furthermore is positive. In total, we conclude the solution method Algorithm 5.3.

Algorithm 5.3 (Newton-type Method for Solving (5.38))

(S.0) Input p, λ and α. If p = 0, then t∗ = 0 and STOP. If p < 0, go to (S.1). Otherwise,
go to (S.2)

(S.1)
(S.1.1) If p+ λα ≥ 0, then t∗ := 0 and STOP. Otherwise, go to (S.1.2),
(S.1.2) Apply Newton’s Method for minimization the unconstrained function ψ with

starting point t0 satisfying t0p > 0 until it converges to some point t̃, set
t0 := t̃ and STOP.

(S.2) If 1− λ 2α2

(1+αp)3 < 0, then t∗ := 0 and STOP, else if 1− 2λα2 > 0, then go to (S.2.1),
otherwise, go to (S.2.2).
(S.2.1) If λα ≥ p, then t∗ := 0 and STOP, else go to (S.1.2).
(S.2.2) Calculate t̄ as in (5.40). If ψ′(t̄) ≥ 0, then t∗ := 0 and STOP. Otherwise,

(S.2.2.1) If λα ≤ p, go to (S.1.2) by replacing t0p > 0 with t0 := p, otherwise
go to (S.2.2.2).

(S.2.2.2) Apply Newton’s Method for minimization the unconstrained func-
tion ψ with starting point t0 > t̄ until it converges to some point
t̄∗, if ψ(0) ≤ ψ(t̄∗), set t∗ := 0, else set t∗ := t̄∗.

The following example aims to obtain the sparse solution of the famous portfolio
problem.

Example 5.17. We first recall the portfolio optimization problem

min
x

1
2x

TQx s.t. rTx ≥ ρ, eTx = 1, x ≥ 0 (5.41)

by leaving the nonnegative box constraints of the augmented Lagrangian approach and
using a regularization based on the lq-quasi-norm, possibly with different value of q ∈ (0, 1).
Finally we consider the one-dimensional subproblem of this approach

min
t
ψ(t) := 1

2(t− p)2 + λ|t|q s.t. t ≥ 0, (5.42)

where u > 0 denotes a given upper bound. The idea of solving this modified subproblem is
very much the same as the one for solving the previous one, it is evidently shown that

t̄ =
(
− 1
λq(q − 1)

)1/(q−2)
> 0 (5.43)

is the unique solution of twice derivative of the objective function of (5.42) on (0,+∞).
Now, the solution method can be described in the following way
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Algorithm 5.4 (Newton-type Method for solving (5.42))

(S.0) If p ≤ 0, then t∗ := 0 and STOP. Otherwise, go to (S.1).
(S.1) Compute t̄ as in (5.43).
(S.2) If ψ′(t̄) ≥ 0, set t∗ := 0 and STOP. Otherwise go to (S.3) .
(S.3) Apply Newton’s Method for minimization the unconstrained function ψ with starting

point t0 > t̄ until it converges to some point t̄∗, if ψ(0) ≤ ψ(t̄∗), set t∗ := 0, else set
t∗ := t̄∗.

Note that all realizations and results in this section can be applied in Chapter 4 by
penalizing the constraint c(x) ∈ K.

5.5 Numerical Results
In this section, we use a series of test problems to demonstrate the power of Algorithm 5.1,
where the subproblem (5.3) is solved by Algorithm 5.2. For the constrained problems,
we first employ augmented Lagrangian function to penalize the constraints and use the
classical augmented Lagrangian method (Algorithm 4.3.1 without slack variables) to solve
it, the corresponding subproblem is solved by Algorithm 5.1.

We terminate Algorithm 5.1 if the iterates xk,i satisfy∥∥∥γk,i(xk − xk,i)+∇f(xk,i)−∇f(xk)
∥∥∥

∞
≤ ε, (5.44)

where ∥·∥∞ stands for the maximum-norm. The parameters are chosen as τ := 2, δ := 10−6,
γmin = 10−10, and γmax = 1010. Moreover, we terminate Algorithm 5.2 for the case where
Newton’s method is used if the underlying error is less than 1e− 6. If Algorithm 4.3.1 is
used, the termination criteria and parameters are the same as the rules in Section 4.5.

To show the effectiveness of our method, we compare it with Gurobi optimizer by
the following numerical examples, which hence must be reformulated into some forms
recognized by Gurobi solver. For the convenience of our readers, we here summarize useful
information from the Gurobi optimizer reference manual [84]: “We first refer to the class
of an optimization problem model. If the objective is quadratic, the model is quadratic
program (QP). If any of constraints are quadratic, the model is a quadratically-constraint
program (QCP). We sometimes refer to a few special cases of QCP: QCPs with convex
constraints, QCPs with nonconvex constraints, bilinear programs, and second-order cone
programs. Gurobi solver handles all of these model class, as well as linear programs and
many kinds of mixed integer programs (MIPs). In addition, Gurobi accepts a number
of additional constraints to the existing models, which are designed to allow you to de-
fine certain variable relationships. In particular, max, min, abs, and, or, indicator, and
piecewise-linear constraints are permitted by Gurobi, which will be transferred into a MIP
eventually. What’s more, Gurobi also supports the following function constraints, like
polynomial, (natural) exponential, (natural) logarithm, power, sine, cosine, and tangent.”
All problems are implemented in MATLAB (R2020a).

We start with a random testproblem in order to illustrate that the nonconvex regu-
larizarion functions satisfying Assumption 5.13 generate sparser solution than the convex
one.
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λ := 0.1 λ := 0.5
g(x) nnz nnz
∥x∥1 92 51
∥x∥0.10.1 8 0
∥x∥0.50.5 12 47
∥x∥0.90.9 14 39
α∥x∥

1+α∥x∥ 12 12
log(1 + α∥x∥) 12 12

Table 5.1: Numerical results generated by Algorithm 5.1 with different regularizations.

5.5.1 Random Testproblems

This section aims to solve the following optimization problem

min
x∈Rn

1
2∥Ax− b∥

2 + λ
n∑
i=1

ϕ(xi)

s.t. x ≥ 0,
(5.45)

where A ∈ Rn×n and b ∈ Rn are random uniformly distributed matrix and vector, re-
spectively, λ > 0 is the penalty parameter. In order to compare the sparsity of solution
between the nonconvex and convex ϕ, we here set n := 100 and employ nonconvex ϕ0 with
q ∈ {0.1, 0.5, 0.9}, ϕ1, ϕ2 with arbitrary α ∈ {0.01, 0.1, 0.5, 0.8, 1}, as well as convex | · | as
ϕ to obtain the corresponding solutions. Note that λ should not be too large, otherwise
the solution of (5.45) with the above ϕ is all 0 from Figure 5.1 and the graph of | · |, hence
we here chose λ = 0.1 and λ = 0.5, and employed Algorithm 5.1 with Algorithm 5.2 as
the subproblem solver to generate the corresponding solutions, the results are listed in
Table 5.1, where g(x) := ∑n

i=1 ϕ(xi), nnz means the number of nonzero components of
the solution. Note that for both ϕ1 and ϕ2 with different α ∈ {0.01, 0.1, 0.5, 0.8, 1}, nnz
always equals to 12 for both case λ := 0.1 and λ := 0.5. It demonstrates that the solution
of (5.45) with ϕ1 and ϕ2 are not sensitive with the λ and α, however we can not provide
theoretical guarantee till now. Meanwhile, ϕ1 and ϕ2 generate more stable solution than
ϕ0. Table 5.1 illustrates that the nonconvex regularizations do generate sparser solutions
than the convex ones.

5.5.2 Image Restoration

The image restoration aims to restore the blurred or degraded image into the original one.
The most classical image degradation model is

b = Ax+ η,

where η ∈ Rm is the noise, x ∈ Rn is the undermined image, b ∈ Rm is the observed image,
respectively, and A is an m× n blurring matrix, for details on its different kinds of choices,
please see the book [85]. In order to obtain the underlying image x, since η is always
unknown, we alternatively solve

min
x∈Rn

∥Ax− b∥.
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However we still could not get a satisfactory solution because the system is very sensitive
to the noise and lack of information [57]. To overcome the difficulty, some regularization
functions are used. In this numerical experiment, we consider the following optimization
problem

min
x∈Rn

+

1
2∥Ax− b∥

2 + β
n∑
i=1

ϕ1(xi), (5.46)

where ϕ1 is stated in (5.30). Note that a nonnegative constraint is given in (5.46), which
promotes Algorithm 5.2 (or Algorithm 5.3) more easier, since in this case, 0 is the global
minimimum of subproblem (5.3) when pk := xk − 1

γk
∇f(xk) ≤ 0.

Employing the auxiliary variables y ∈ Rn and z ∈ R, (5.46) is equivalent to

min
x,y,z

1
2(Ax)⊤Ax− b⊤Ax+ 1

2∥b∥
2 + 01×ny + βz

s.t. z =
n∑
i=1

yi, yi = αxi
1 + αxi

∀i = 1, . . . , n, (x, y, z) ∈ R2n+1
+ ,

where 01×n defines all-0 1 × n-row vector. By introducing r := (−b⊤A, 01×n, β), s :=
(x, y, z)T , and Q is a 2n+ 1× 2n+ 1 dimensional matrix whose diagonal entries are 1

2A
⊤A,

0n×n, and 0, the remaining entries are 0, it can be rewritten as

min
s∈R2n+1

+

s⊤Qs− rs+ 1
2∥b∥

2

s.t. (01×n, I1×n,−1)s = 0, sn+j = αsj
1 + αsj

∀j = 1 . . . n,
(5.47)

with I1×n as all-1 1× n-row vector and 0n×n as n×n dimensional zero matrix. By rewriting
the last nonlinear constraints, (5.47) is equivalent to

min
s∈R2n+1

+

s⊤Qs− rs+ 1
2∥b∥

2

s.t. (01×n, I1×n,−1)s = 0,
αsn+jsj + sn+j − αsj = 0 ∀j = 1 . . . n,

(5.48)

such (5.48), with a quadratic objective function and linear plus quadratic constraints, is
a QCP, and thus could be solved by Gurobi. Note that the increased dimension maybe
cause some difficulties, such as time consumption, especially for the large-scale problems.

For the image restoration problem, the corresponding optimization problem (5.46) is
always large-scale, because the discretized scenes have a large number n = l × l of pixels,
which probably causes Gurobi solver is pretty time-consuming, even fails to generate the
solution. As a result, we first consider 8 different n−dimensional random test instances
with n := 10, 20, 50, 100, 200, 500, 1000, 2000. We stop the iteration if (5.44) is satisfied
with ε = 10−3. Meanwhile, the termination time of Gurobi is set as 30 minutes. The
results are listed in Table 5.2, where

n: dimension of random (5.46),
It.: iterations of Algorithm 5.1,
fopt: optimal function value generated by Algorithm 5.1 and Gurobi,
t(s): cost time taken from Algorithm 5.1 and Gurobi.
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Table 5.2: Numerical results for n-dimensional random problems.

Proximal Gradient Method Gurobi
n It. fopt t(s) fopt t(s)
10 99 0.3792 0.30 0.3868 3.32
20 200 0.8635 0.53 0.8807 4.18
50 182 1.9497 0.35 1.9889 14.33
100 335 4.3875 0.64 4.4754 1800
200 469 8.4859 1.29 8.65712 1800
500 534 19.8123 2.33 20.2100 1800
1000 729 40.3168 31.45 171.4790 1800
2000 752 78.8754 36.95 334.3280 1800

The main observations are as follows: The optimal function value computed by Al-
gorithm 5.1 is always superior than Gurobi, and the CPU time is completely shorter.
Meanwhile, Gurobi has much difficulty in dealing with large-scale optimization problems.

Let us look back the image restoration problem. We here test the Cameraman images
and the Phantom image. The pixels of the observed image are contaminated by Gaussian
white noise with signal-to-noise ratios of 60 dB with blurring, the blurring function is
chosen to be a two-dimensional Gaussian:

a(i, j) = e−2(i/3)2−2(j/3)2

truncated such that the function has a support of 7× 7. The corresponding blurring matrix
is chosen as the Kronecker product of Toeplitz-plus-Hankel matrices.

We use Algorithm 5.1 and Gurobi to recover the Cameraman images by solving (5.46).
Due to our limited understanding of the Gurobi solver’s code, we represent the matrix A
explicitly (i.e., not as a operator), which results in only low-pixel images being processed
when MATLAB interface is invoked. The parameters are chosen as: α := 1 and β := 0.001.
For Algorithm 5.1 with Algorithm 5.2 as the subproblem solver, we stop the algorithm
if (5.44) is satisfied with ε := 10−3 and Algorithm 5.2 terminates if the corresponding
residual is less than 10−3. The termination time of Gurobi is set as 30 minutes. We
first choose very small 36× 36 Cameraman image, the corresponding observed image is
pretty blurred due to the too low pixels, Gurobi eventually generated a totally grey image,
which seems reasonable from the observation of Table 5.2. Then we decided to recover
the 128× 128 Cameraman image (we did not detect more big image, since Gurobi costs
pretty much time on presolution), Gurobi failed too, and we then used Algorithm 5.1 by
choosing the observed image as the initial point, then the Cameraman image was restored
after 31 iteration, which costed about 31.54s. For comparison, we also chose quasi-l1 norm
as the regularization function, the numerical results are listed in Figure 5.2, from which,
nonconvex ϕ1 does achieve a better recovery of Cameraman image than the convex quasi-l1
norm. However, to be honest, the smoothly varying regions are a little deficient to be
recovered. The reason is given in the following: Let us consider again (5.46) with a more
general class of regularization function, which is addressed as

min
x∈Rn

+

1
2∥Ax− b∥

2 + β
n∑
i=1

ϕ(w⊤
i x), (5.49)

where wi ∈ Rn are difference operators. [127] mentioned: “Edges in images and breaking
points in signals concentrate critically important information. Hence we have the require-
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Figure 5.2: First line: the original (left), observed (right) Cameraman Image; Second line: restored
Cameraman image with ϕ1 (left) and quasi-l1 norm (right) as regularization using Algorithm 5.1.

ment that ϕ leads to minimizers x involving large differences |w⊤
i x| at the location of edges

in the original signal or image and smooth differences elsewhere. However, ϕ′(0+) > 0 gives
rise to local minimum x̂ such that w⊤

i x̂ = 0 for some i ∈ {1, . . . , n}.” The numerical results
from [127] also showed the same deficiency in the smoothly varying regions. As a result, we
also tested the 128× 128 Phantom image, which has fewer smooth varying regions, whose
results are depicted in Figure 5.3. Note that quasi-l1 norm as the regularization function
hardly achieves a recovery from the observed images, and the blurred diaphragms in the
restored images seem caused by the low pixels from the numerical results of [57].

5.5.3 Portfolio Problems

Example 5.17 aimed to find the sparse solution of the classical portfolio optimization
problem, by using the augmented Lagrangian approach and then regularizing it by lq-quasi-
norm. In this section, lq-quasi-norm is directly applied as a regularization of the objective
function in order that Gurobi can generate the sparse solution which provides a reference
of solution. We now introduce the problem:

min
x

1
2x

TQx+ α∥x∥qq

s.t. µTx ≥ ϱ, eTx = 1, 0 ≤ x ≤ u,
(5.50)

where Q ∈ Rn×n and µ ∈ Rn denote the covariance matrix and the mean of n ∈ N possible
assets, respectively. ϱ ∈ R is some lower bound for the expected return, and u ∈ R
provides an upper bound for the individual assets with the portfolio, α is a constant as the
regularization parameter. The data Q,µ, ϱ, u are created by the test problem collection
[74]. which is available from the webpage https://commalab.di.unipi.it/datasets/MV/.
Here, we used all 30 test instances of dimension n := 200, three different value q ∈
{0.1, 0.5, 0.9}, and α := 1 for each problem. We apply Algorithm 4.3.1 without slack

https://commalab.di.unipi.it/datasets/MV/
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Figure 5.3: First line: the original (left), observed (right) Phantom Image; Second line: restored Phantom
image with ϕ1 (left) and quasi-l1 norm (right) as regularization using Algorithm 5.1.

variables and Gurobi for the test problems. Highly like the analysis of Section 5.5.2, we
need to give more comments about how to reformulate (5.50) into some form recognized
by Gurobi.

By introducing two auxiliary variables y ∈ Rn and z ∈ R, which then naturally causes
the dimension of (5.50) increased, to avoid abuse of notations we need to express all matrix
(or vector)’s dimension clearly. Denoting 0p×q as all-0 p×q matrix, then (5.50) is equivalent
to

min
x,y,z

1
2x

TQx+ 01×ny + αz

s.t. µTx ≥ ϱ, eTx = 1, 0n×1 ≤ x ≤ u,

z =
n∑
i=1

yi, yi = |xi|q ∀i = 1, . . . , n, (x, y, z) ∈ R2n+1,

with 01×n as all-0 n-row vectors. Setting s := (x, y, z)T , r := (01×n, 01×n, α), µ̂ :=
(µ; 0n×1; 0), ê := (e; 0n×1; 0), Q̂ as a 2n+ 1× 2n+ 1 dimensional matrix whose diagonal
entries are 0.5Q, 0n×n (n× n dimensional zero matrix), 0 and the remaining entries are 0,
the problem can be transferred as

min
s∈R2n+1

s⊤Q̂s+ rs

s.t. µ̂⊤s ≥ ϱ, ê⊤s = 1, 0(2n+1)×1 ≤ s ≤ (u;u;∞)
(01×n, I1×n,−1)s = 0, sn+j = |sj |q ∀j = 1, . . . , n.

(5.51)
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where I1×n is all-1 n-row vector (Please ignore the overuse of s ≤ (u;u;∞)). It, rewriting
the constraints by c := (01×n, I1×n,−1), û := [u;u;∞), is then equivalent to

min
s∈R2n+1

s⊤Q̂s+ rs

s.t. µ̂⊤s ≥ ϱ, ê⊤s = 1, cs = 0,
sn+j = |sj |q ∀j = 1, . . . , n, 0(2n+1)×1 ≤ s ≤ û.

(5.52)

The objective function of (5.52) is obviously quadratic, some parts of whose constraints are
linear and additive power functional constraints are included, which, from the mentioned
above, can be solved by Gurobi. Because of the equivalence of (5.50) and (5.52), (5.50)
can be traced a global minimizer. We put 0.5 hours as the time termination of Gurobi for
each test problem.

Note that an extra box constraint from (5.52) needs to consider in Algorithm 4.3.1 and
Algorithm 5.1 invoking Algorithm 5.2, which makes Algorithm 5.2 more easier since 0 is
the global minimum of subproblem (5.3) only if pk := xk − 1

γk
∇f(xk) ≤ 0. As a result,

we just consider Algorithm 5.2 for the case where pk > 0, and project the solution on the
box set. The corresponding results are summarized in Figure 5.4 for the three different
q ∈ {0.1, 0.5, 0.9}. This figure compares the optimal function values obtained by the above
two methods for each of the thirty test problems. It evidently shows that the function
value generated by our method is lower than Gurobi solver (within 30 minutes) for the vast
majority of the test problems, the latter provides a reference for optimal function value
of (5.50). On the other hand, like the analysis in Section 3.6.2 (or see [94]), when q is
taken smaller, even near to 0, the optimization problem (5.50) is getting more demanding
and is therefore difficult to solve, hence the gap between the optimal function values
obtained by the two methods are larger. In addition, our method finished the whole 90
optimization problems (three different q with 30 test problems) in 150 seconds. By above,
it is well-found that our method computes better sparse solution effectively than Gurobi
(within 30 minutes).
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Figure 5.4: Optimal function values obtained by Algorithm 4.3.1 (red) and Gurobi(blue), applied to the
portfolio optimization problem (5.50) regularized by q-norm with q = 0.1, q = 0.5, and q = 0.9 (top to
bottom).



6. Conclusions and Outlooks

I will close my thesis with the final conclusions, as well as some future works.

Conclusions

This thesis concluded my research works [66,93,94], where the general optimization problem
was considered

min
x∈X

f(x) + g(x) s.t. G(x) ∈ C, x ∈ D, (F)

where X and Z are two Euclidean spaces, f : X→ R is continuously differentiable, g : X→ R
is lower semicontinuous, G : X→ Z is also continuously differentiable, C ⊂ Z is nonempty
closed convex, and D ⊂ X is nonempty closed (possibly nonconvex). This model is very
general, in totally nonconvex setting, and matrix-free, which hence can be encoded into
many types of well-known programs, e.g., norm or rank minimization programs, problems
with complementarity or cardinality constraints, as well as matrix optimization problems.

This thesis exploited the stationarity and associated regularity concepts of (F), the
algorithms (including subproblem solvers) for solving (F) numerically and theoretically, as
well as the convergence and rate-of-convergence results of of entire sequence generated by
proximal gradient methods for solving the unconstrained (F).

Note that (F) reduces to (P) discussed in Chapter 3 by setting

g := 0, Z := Y, (6.1)

boils down to (CP) stated in Chapter 4 by setting

c :=
(
G

Id

)
, K :=

(
C

D

)
, with identity mapping Id, (6.2)

as well as Z := Y× X, and becomes (Q) described in Chapter 5 by setting

C := Z := Y, D := X. (6.3)

Stationarities and Regularities

In Chapter 3, Definition 3.1 and Definition 3.2 gave the definitions of M- and AM-stationary
point of (F) with setting (6.1), respectively. They are well-understood from the respective of
KKT and AKKT, and M-stationarity (AM-stationarity) corresponds with KKT (AKKT) if
D is convex. A constraint qualification called AM-regularity was recalled in Definition 3.4,
which ensures that an AM-stationary point is also M-stationary. To be honest, AM-
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regularity is comparatively weak constraint qualification, there Lemma 3.7, Lemma 3.8,
Lemma 3.10 gave the sufficient condition (also necessary condition in Lemma 3.10) of the
attainment of AM-regularity.

In order to make the above stationary points suitable well to the composite optimization
problem (F) with setting (6.2), Definition 3.1 and Definition 3.2 need to be adjusted in
some sense where the nonsmooth objective function has to be taken into consideration for
the convergence analysis. Therefore, Definition 4.3 and Definition 4.4 in Chapter 4 denoted
the (another) M- and AM-stationary point of (F) with setting (6.2), respectively. In order
to guarantee that underlying AM-stationary point is already M-stationary, some regularity
condition in Definition 4.7 was introduced, which has been proved in Corollary 4.9 as the
weakest qualification condition associated with AM-stationarity based on the terminology
coined in [9]. Note that it is not a real constraint qualification in a narrow sense since it is
relevant with the (partial) objective function.

Note that the AM-regularity of (F) with setting (6.2) can be reduced into the one with
setting (6.1) provided that the nonsmooth part of function g has local Lipschitz gradient
and the constraints are slightly adjusted in some sense.

Augmented Lagrangian Methods

This thesis is concerned to safeguarded augmented Lagrangian methods (Algorithm 3.4.1
and Algorithm 4.3.1) to solve (F), which have been never applied to solve the programs
with generally structured nonconvex constraints. The augmented Lagrangian scheme is
employed to penalize the constraints, more specifically, which, in Chapter 3 penalizes the
constraint G(x) ∈ C and leaves x ∈ D explicitly, in Chapter 4 penalizes the constraint
c(x) − s = 0 with added slack variable s which can avoid the difficulties caused by the
discontinuity of distance operator on the nonconvex set D and the hard calculation of
projections directly on the set {x ∈ X | c(x) ∈ K}, cf. Remark 4.13. We claim that the
underlying subproblems in this thesis need to be addressed inexactly and their limit point
should be hence approximate M-stationary point, which guaranteed that every feasible
accumulation point of the sequence generated by the safeguarded augmented Lagrangian
method is AM-stationary and furthermore M-stationary point under AM-regularity, cf.
Corollary 3.18 and Corollary 4.19.

Subproblem solvers

As mentioned above, the resulting subproblems deduced from the augmented Lagrangian
methods need to generate an approximate M-stationary limiting point, which is a little
challenging for (F) with the general constraints since some subproblem solvers normally
achieve C-stationary point in some special cases, like MPCCs.

In Chapter 3, we employ the spectral gradient method Algorithm 3.3.1 for solving the
constrained problems (Q(j, i)) with constraint x ∈ D, which is first applied to solve the
programs with nonconvex constraint. Theorem 3.14 illustrated that the infinite sequence of
iterates of Algorithm 3.3.1 converges towards M-stationary point along some subsequences.
Note that (Q(j, i)) of Algorithm 3.3.1 in every iteration has to be solved effectively,
which actually is a mathematical programming with a quadratic objective function and a
comparatively complicated constraint x ∈ D, in other words, the projections on D must
be shown explicitly. Section 3.5 analyzed the projection principles for some cases of D, in
particular, complementarity constraints, cardinality constraints, and rank constraints.

In Chapter 4, a proximal gradient method, called PANOC+, was used for the composite
subproblems with slack variables, whose pseudocodes were shown in Algorithm 4.4.1.
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Proposition 4.21 demonstrated that the accumulation point of the sequence generated
by Algorithm 4.4.1 is an M-stationary point of this subproblem. Meanwhile, accelerated
PANOC+ can get rid of the bad-scaling and ill-conditioning in some sense from the
numerical results of Section 4.5.2.

Convergence analysis for proximal gradient method

Proximal gradient methods are always used for the unconstrained composite optimization
problems (F) with setting (6.3). In Chapter 5, Algorithm 5.1 and its some known results
were recalled in Section 5.2, whose every accumulation point is M-stationary with the aid of
local Lipschitz ∇f , which is the weaker version of widely-used (global) Lipschitz gradient,
however no convergence of entire sequence was proposed there. Hence, Section 5.3 filled
the gaps by showing that the entire sequence generated by Algorithm 5.1 converges to
a limit with a suitable rate, provided that this point satisfies the Kurdyka–Łojasiewicz
property. The underlying convergence theory is only based on a merely local Lipschitz
assumption on ∇f , no more requirements were used, e.g., the boundedness of iterates and
stepsizes. More specifically, Lemma 5.7 showed that when the iterates are locally around
the accumulation point, then the corresponding stepsizes are bounded. Lemma 5.8 stated
that the entire sequence of objective function converges globally. They are together to
generate a sufficiently small constant (5.13) which was then used as to characterize a closed
ball centered at the accumulation point with this constant as the radium, subsequently the
famous assertion of error bound of the subdifferential was obtained in Lemma 5.10 only
if iterates belong to such closed ball. Based on these, a technique proof in Theorem 5.11
was given to obtain the convergence of the entire sequence, hence some rate-of-convergence
results were following, cf. Theorem 5.12.

Future Works
I hope the theory and practical results presented through this thesis will be useful and
helpful to the other researchers. There are still some ideas for the future research.
• Projections of D: In Chapter 3, in order to ensure that (Q(j, i)) of Algorithm 3.3.1 can

be solved successfully, it is necessary to find the projections of any points onto the set D.
Though Section 3.5 discussed some cases of D, it still needs to exploit more interesting
and meaningful ones in order our model and algorithm becoming more practical and
applicable.

• Exploitation of g: Highly similar with the above idea, we are devoted to find the
element of proximality operator of g at any point as in (4.24) (g := ψ), in other words,
solve the following problems

min
x

ϕ(z) + ⟨∇ϕ(z), x− z⟩+ 1
2γ ∥x− z∥

2 + g(x)

with some z ∈ X, then the structure of g plays more important role for the solution of
this problem.

• Subproblem Solvers: As Example 3.27 and Section 4.5.1 are shown, the corresponding
(proximal) gradient-type solver has difficulty in dealing with ill-conditioned or bad-scale
problems, we will therefore exploit the other algorithms as subproblem solvers in order
to avoid such drawbacks and ensure that limit point (or accumulation point) of the
generated sequence is M-stationary.
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• Convergence of nonmonotone proximal gradient methods: In [65], the author
showed that the global convergence properties of Algorithm 5.1 from Theorem 5.6
remain valid if, instead of the exploited monotone line search, a nonmonotone scheme
is used to determine the step sizes. In the future, it should be clarified whether the
results of Theorems 5.11 and 5.12 can be carried over to nonmonotone proximal gradient
methods.
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A. Appendix

A.1 Complete Numerical Results for MAXCUT Problems
Tables A.1 and A.2 present the details of Algorithm 3.4.1 applied to the MAXCUT problem
as described in Section 3.6.4. The columns have the following meanings:

probl.: name of the test problem,
vert.: number of vertices of the underlying graph,

edges: number of edges with positive weights of the underlying graph,
k: number of (outer) iterations of Algorithm 3.4.1,
j: number of inner iterations of the spectral gradient method (accumulated),

f -ev.: number of function evaluations (accumulated),
fALM: function value at the final iterate generated by Algorithm 3.4.1,
feas.: feasibility measure at the final iterate generated by Algorithm 3.4.1,

ρ: penalty parameter at the final iterate generated by Algorithm 3.4.1,
fopt: optimal function value taken from the report [153],
fSDP: function value obtained by the SDP relaxation, and

rk: rank of the final matrix obtained by solving the SDP relaxation.
Recall that the SDP relaxation was also solved by Algorithm 3.4.1 with the semidef-

initeness constraint taken as the complicated constraint, whereas the remaining linear
equality constraint was penalized by the augmented Lagrangian approach.

Table A.1: Numerical results for MAXCUT problems, rudy collection.

probl. vert. edges k j f -ev. fALM feas. ρ fopt fSDP rk
g05_100.0 100 2475 14 310 349 1420 2.8e-5 20.0 1430 1463.52 6
g05_100.1 100 2475 32 396 448 1420 9.4e-5 2.0 1425 1464.05 6
g05_100.2 100 2475 21 339 378 1431 9.9e-5 2.0 1432 1461.65 5
g05_100.3 100 2475 28 500 572 1411 1.0e-4 2.0 1424 1456.68 7
g05_100.4 100 2475 24 475 550 1430 9.7e-5 2.0 1440 1468.80 6
g05_100.5 100 2475 36 409 507 1415 9.8e-5 2.0 1436 1464.66 6
g05_100.6 100 2475 26 476 535 1429 8.8e-5 2.0 1434 1463.17 6
g05_100.7 100 2475 12 292 328 1428 5.5e-5 20.0 1431 1464.27 5
g05_100.8 100 2475 30 325 361 1425 8.3e-5 2.0 1432 1464.75 5
g05_100.9 100 2475 35 344 391 1415 8.2e-5 2.0 1430 1462.39 5
g05_60.0 60 885 20 286 322 530 7.6e-5 3.3 536 550.05 5
g05_60.1 60 885 18 290 323 524 9.5e-5 3.3 532 543.11 5
g05_60.2 60 885 19 283 313 524 6.3e-5 3.3 529 543.18 4
g05_60.3 60 885 18 253 302 523 6.2e-5 3.3 538 548.65 4
g05_60.4 60 885 18 326 413 526 9.6e-5 3.3 527 541.39 5
g05_60.5 60 885 18 219 252 523 6.5e-5 3.3 533 542.59 6
g05_60.6 60 885 18 278 311 520 9.7e-5 3.3 531 544.72 5
g05_60.7 60 885 20 277 306 530 6.8e-5 3.3 535 550.42 5
g05_60.8 60 885 16 338 381 520 6.1e-5 3.3 530 543.98 5
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Table A.1: Numerical results for MAXCUT problems, rudy collection (continued).

probl. vert. edges k j f -ev. fALM feas. ρ fopt fSDP rk
g05_60.9 60 885 20 216 245 529 6.4e-5 3.3 533 549.89 5
g05_80.0 80 1580 17 241 263 918 6.9e-5 2.5 929 950.92 5
g05_80.1 80 1580 22 380 465 929 8.3e-5 2.5 941 957.25 4
g05_80.2 80 1580 24 307 341 923 9.2e-5 2.5 934 955.55 5
g05_80.3 80 1580 28 324 362 906 7.9e-5 2.5 923 947.59 5
g05_80.4 80 1580 26 303 346 923 8.2e-5 2.5 932 955.32 5
g05_80.5 80 1580 22 299 343 915 7.5e-5 2.5 926 947.51 6
g05_80.6 80 1580 27 257 293 920 7.8e-5 2.5 929 948.68 5
g05_80.7 80 1580 22 289 321 915 9.0e-5 2.5 929 949.86 5
g05_80.8 80 1580 27 436 504 918 7.6e-5 2.5 925 946.67 5
g05_80.9 80 1580 25 266 296 918 8.7e-5 2.5 923 943.66 6

pm1d_100.0 100 4901 13 373 475 338 2.5e-5 20.0 340 405.39 6
pm1d_100.1 100 4901 13 517 612 310 3.2e-5 20.0 324 396.09 6
pm1d_100.2 100 4901 12 489 571 370 3.0e-5 20.0 389 453.98 7
pm1d_100.3 100 4901 15 419 492 396 2.8e-5 20.0 400 459.03 5
pm1d_100.4 100 4901 14 450 526 349 6.0e-5 20.0 363 430.32 6
pm1d_100.5 100 4901 16 345 383 440 2.6e-5 20.0 441 510.72 5
pm1d_100.6 100 4901 14 511 623 360 4.0e-5 20.0 367 431.92 5
pm1d_100.7 100 4901 12 246 278 348 3.8e-5 20.0 361 421.52 5
pm1d_100.8 100 4901 14 414 494 365 2.3e-5 20.0 385 438.03 6
pm1d_100.9 100 4901 13 355 408 404 7.8e-5 20.0 405 470.66 5
pm1d_80.0 80 3128 16 395 445 214 2.0e-5 25.0 227 269.97 5
pm1d_80.1 80 3128 25 431 497 239 7.0e-5 2.5 245 292.60 5
pm1d_80.2 80 3128 25 320 354 270 9.4e-5 2.5 284 325.99 6
pm1d_80.3 80 3128 13 405 475 283 4.4e-5 25.0 291 331.31 5
pm1d_80.4 80 3128 11 307 355 248 2.0e-5 25.0 251 290.75 5
pm1d_80.5 80 3128 28 342 381 233 8.9e-5 2.5 242 290.50 5
pm1d_80.6 80 3128 15 376 430 192 5.5e-5 25.0 205 253.56 5
pm1d_80.7 80 3128 11 684 895 244 5.0e-5 25.0 249 292.52 4
pm1d_80.8 80 3128 27 343 373 288 8.5e-5 2.5 293 329.98 5
pm1d_80.9 80 3128 24 310 346 258 9.0e-5 2.5 258 294.31 5

pm1s_100.0 100 495 16 252 289 118 2.0e-6 20.0 127 143.23 6
pm1s_100.1 100 495 17 329 376 119 1.9e-6 20.0 126 144.61 5
pm1s_100.2 100 495 17 281 312 116 9.5e-5 20.0 125 140.23 5
pm1s_100.3 100 495 17 357 429 100 8.8e-5 2.0 111 130.09 6
pm1s_100.4 100 495 16 298 369 127 9.0e-5 2.0 128 145.61 6
pm1s_100.5 100 495 17 335 367 117 9.0e-5 2.0 128 144.66 5
pm1s_100.6 100 495 16 252 274 118 9.0e-5 20.0 122 139.91 6
pm1s_100.7 100 495 17 422 491 105 6.6e-5 2.0 112 126.80 5
pm1s_100.8 100 495 16 288 329 118 7.9e-5 2.0 120 135.86 6
pm1s_100.9 100 495 17 248 273 125 7.0e-7 20.0 127 143.52 5
pm1s_80.0 80 316 14 291 342 73 4.6e-5 2.5 79 90.29 4
pm1s_80.1 80 316 14 255 287 81 6.2e-5 2.5 85 96.18 4
pm1s_80.2 80 316 14 416 492 80 7.6e-5 2.5 82 94.02 6
pm1s_80.3 80 316 13 231 265 77 4.8e-5 2.5 81 92.14 5
pm1s_80.4 80 316 15 298 374 62 5.4e-5 2.5 70 82.06 5
pm1s_80.5 80 316 13 219 243 86 7.9e-5 2.5 87 98.69 4
pm1s_80.6 80 316 13 246 297 70 6.1e-5 2.5 73 85.69 5
pm1s_80.7 80 316 15 346 411 81 4.4e-5 2.5 83 95.45 5
pm1s_80.8 80 316 13 341 394 79 7.5e-5 2.5 81 95.47 5
pm1s_80.9 80 316 15 198 230 66 4.3e-5 2.5 70 82.00 5

pw01_100.0 100 495 16 352 421 1963 9.7e-5 20.0 2019 2125.43 5
pw01_100.1 100 495 16 438 538 2025 5.9e-5 20.0 2060 2161.61 5
pw01_100.2 100 495 17 365 432 2009 3.4e-5 20.0 2032 2135.62 5
pw01_100.3 100 495 16 357 443 2053 6.7e-5 20.0 2067 2167.93 5
pw01_100.4 100 495 15 361 432 1990 4.5e-5 20.0 2039 2116.66 5
pw01_100.5 100 495 16 371 420 2068 8.9e-5 20.0 2108 2195.59 5
pw01_100.6 100 495 17 387 442 2010 5.8e-5 20.0 2032 2135.28 5
pw01_100.7 100 495 17 260 304 2068 6.0e-5 20.0 2074 2182.48 5
pw01_100.8 100 495 15 253 293 2022 7.0e-5 20.0 2022 2102.02 6
pw01_100.9 100 495 17 612 748 1986 5.5e-5 20.0 2005 2114.21 5
pw05_100.0 100 2475 24 334 405 8118 8.9e-5 20.0 8190 8427.71 6
pw05_100.1 100 2475 12 299 360 7954 5.3e-5 200.0 8045 8260.33 5
pw05_100.2 100 2475 27 403 519 7915 7.6e-5 20.0 8039 8271.30 6
pw05_100.3 100 2475 29 446 576 8002 6.7e-5 20.0 8139 8320.32 6
pw05_100.4 100 2475 23 472 600 8024 7.3e-5 20.0 8125 8350.81 6
pw05_100.5 100 2475 24 939 1193 8149 6.7e-5 20.0 8169 8373.47 5
pw05_100.6 100 2475 20 349 424 8133 6.4e-5 20.0 8217 8467.12 6
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Table A.1: Numerical results for MAXCUT problems, rudy collection (continued).

probl. vert. edges k j f -ev. fALM feas. ρ fopt fSDP rk
pw05_100.7 100 2475 21 365 445 8186 7.3e-5 20.0 8249 8487.57 5
pw05_100.8 100 2475 23 371 466 8051 7.8e-5 20.0 8199 8382.98 5
pw05_100.9 100 2475 22 289 358 8076 9.4e-5 20.0 8099 8304.87 5
pw09_100.0 100 4455 30 398 504 13497 7.9e-5 20.0 13585 13805.97 6
pw09_100.1 100 4455 31 491 603 13357 9.8e-5 20.0 13417 13643.51 6
pw09_100.2 100 4455 38 485 665 13324 8.7e-5 20.0 13461 13645.66 6
pw09_100.3 100 4455 32 432 543 13554 9.8e-5 20.0 13656 13842.17 6
pw09_100.4 100 4455 14 350 440 13480 3.1e-5 200.0 13514 13712.77 5
pw09_100.5 100 4455 34 386 505 13487 9.1e-5 20.0 13574 13790.21 5
pw09_100.6 100 4455 31 353 448 13587 8.4e-5 20.0 13640 13835.51 5
pw09_100.7 100 4455 36 385 486 13451 9.3e-5 20.0 13501 13712.94 6
pw09_100.8 100 4455 35 401 516 13516 8.3e-5 20.0 13593 13804.64 6
pw09_100.9 100 4455 24 358 438 13523 8.8e-5 20.0 13658 13864.02 5

w01_100.0 100 495 17 335 389 624 4.2e-5 20.0 651 740.89 5
w01_100.1 100 495 17 467 560 671 5.4e-5 20.0 719 811.83 5
w01_100.2 100 495 17 345 406 642 4.0e-5 20.0 676 781.40 6
w01_100.3 100 495 18 365 449 793 6.8e-5 20.0 813 910.42 5
w01_100.4 100 495 15 222 259 618 5.3e-5 20.0 668 747.01 5
w01_100.5 100 495 16 349 405 610 7.9e-5 20.0 643 737.14 5
w01_100.6 100 495 17 373 435 627 4.2e-5 20.0 654 740.11 5
w01_100.7 100 495 17 451 531 667 5.4e-5 20.0 725 828.69 4
w01_100.8 100 495 16 331 395 713 7.2e-5 20.0 721 792.74 4
w01_100.9 100 495 16 302 369 721 7.9e-5 20.0 729 816.08 5
w05_100.0 100 2475 23 424 537 1612 5.7e-5 20.0 1646 1918.05 7
w05_100.1 100 2475 23 502 605 1524 6.0e-5 20.0 1606 1857.11 5
w05_100.2 100 2475 22 385 476 1815 5.9e-5 20.0 1902 2182.08 5
w05_100.3 100 2475 21 362 429 1617 7.1e-5 20.0 1627 1893.10 5
w05_100.4 100 2475 22 534 654 1512 5.7e-5 20.0 1546 1838.11 5
w05_100.5 100 2475 22 391 492 1491 5.7e-5 20.0 1581 1871.73 5
w05_100.6 100 2475 22 476 595 1367 8.7e-5 20.0 1479 1747.94 6
w05_100.7 100 2475 22 402 501 1896 8.4e-5 20.0 1987 2248.94 5
w05_100.8 100 2475 21 386 468 1263 6.9e-5 20.0 1311 1598.22 5
w05_100.9 100 2475 20 304 382 1747 7.9e-5 20.0 1752 2017.39 4
w09_100.0 100 4455 27 402 525 2011 6.6e-5 20.0 2121 2500.30 5
w09_100.1 100 4455 25 392 512 2085 8.5e-5 20.0 2096 2511.47 5
w09_100.2 100 4455 26 439 547 2675 9.5e-5 20.0 2738 3130.01 6
w09_100.3 100 4455 13 372 464 1958 1.8e-5 200.0 1990 2333.06 6
w09_100.4 100 4455 26 477 606 1921 8.4e-5 20.0 2033 2424.99 6
w09_100.5 100 4455 25 429 558 2357 9.5e-5 20.0 2433 2733.65 4
w09_100.6 100 4455 26 385 503 2172 6.6e-5 20.0 2220 2552.12 6
w09_100.7 100 4455 28 636 823 2122 7.0e-5 20.0 2252 2639.74 6
w09_100.8 100 4455 15 447 575 1665 7.8e-5 200.0 1843 2213.13 6
w09_100.9 100 4455 24 367 446 2041 1.0e-4 20.0 2043 2409.78 6

Table A.2: Numerical results for MAXCUT problems, ising collection.

probl. vert. edges k j f -ev. fALM feas. ρ fopt
ising2.5-100_5555 100 4950 40 687 1619 2406360.19 9.8e-5 20000.0 2460049
ising2.5-100_6666 100 4950 17 472 794 1978286.63 3.3e-5 200000.0 2031217
ising2.5-100_7777 100 4950 36 590 1370 3333168.11 8.0e-5 20000.0 3363230
ising2.5-150_5555 150 11175 18 739 1198 4315079.10 9.2e-5 133333.3 4363532
ising2.5-150_6666 150 11175 25 959 1648 4041057.48 7.2e-5 133333.3 4057153
ising2.5-150_7777 150 11175 31 734 1389 4224911.34 5.5e-5 133333.3 4243269
ising2.5-200_5555 200 19900 24 651 1148 6267758.47 4.5e-5 100000.0 6294701
ising2.5-200_6666 200 19900 19 630 1005 6752676.03 6.9e-5 100000.0 6795365
ising2.5-200_7777 200 19900 19 586 948 5506984.49 9.4e-5 100000.0 5568272
ising2.5-250_5555 250 31125 22 692 1154 7864741.24 8.1e-5 80000.0 7919449
ising2.5-250_6666 250 31125 19 896 1437 6852662.07 8.8e-5 80000.0 6925717
ising2.5-250_7777 250 31125 22 624 1030 6462343.01 6.9e-5 80000.0 6596797
ising2.5-300_5555 300 44850 22 1076 1705 8523955.32 5.9e-5 66666.7 8579363
ising2.5-300_6666 300 44850 21 1304 2075 9058514.43 6.7e-5 66666.7 9102033
ising2.5-300_7777 300 44850 25 887 1420 8168651.28 6.0e-5 66666.7 8323804
ising3.0-100_5555 100 4950 38 711 1690 2431408.96 9.8e-5 20000.0 2448189
ising3.0-100_6666 100 4950 35 510 1238 1975552.41 9.2e-5 20000.0 1984099
ising3.0-100_7777 100 4950 36 694 1505 3327994.14 8.0e-5 20000.0 3335814
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Table A.2: Numerical results for MAXCUT problems, ising collection (continued).

probl. vert. edges k j f -ev. fALM feas. ρ fopt
ising3.0-150_5555 150 11175 15 456 761 4246560.88 8.2e-5 133333.3 4279261
ising3.0-150_6666 150 11175 26 647 1189 3935446.60 6.7e-5 133333.3 3949317
ising3.0-150_7777 150 11175 31 840 1582 4205069.88 5.3e-5 133333.3 4211158
ising3.0-200_5555 200 19900 20 592 1014 6209779.63 8.1e-5 100000.0 6215531
ising3.0-200_6666 200 19900 18 599 973 6697966.13 7.0e-5 100000.0 6756263
ising3.0-200_7777 200 19900 18 721 1120 5529450.26 8.1e-5 100000.0 5560824
ising3.0-250_5555 250 31125 22 753 1247 7790361.34 5.3e-5 80000.0 7823791
ising3.0-250_6666 250 31125 20 1003 1642 6879016.15 7.2e-5 80000.0 6903351
ising3.0-250_7777 250 31125 20 1670 2935 6287504.49 6.3e-5 80000.0 6418276
ising3.0-300_5555 300 44850 20 942 1598 8426148.11 5.6e-5 66666.7 8493173
ising3.0-300_6666 300 44850 23 928 1515 8907934.89 4.9e-5 66666.7 8915110
ising3.0-300_7777 300 44850 23 816 1375 8169591.67 5.4e-5 66666.7 8242904

t2g10_5555 100 200 18 411 775 5778570.15 5.4e-5 200000.0 6049461
t2g10_6666 100 200 18 463 820 5503220.56 6.9e-5 200000.0 5757868
t2g10_7777 100 200 19 492 882 6261175.46 4.1e-5 200000.0 6509837
t2g15_5555 225 450 25 601 1108 14446186.29 7.6e-5 88888.9 15051133
t2g15_6666 225 450 27 605 1191 15454604.55 6.0e-5 88888.9 15763716
t2g15_7777 225 450 27 1351 2153 14798901.82 7.9e-5 88888.9 15269399
t2g20_5555 400 800 22 919 1408 24487271.71 4.6e-5 500000.0 24838942
t2g20_6666 400 800 19 1131 1782 28725534.39 4.2e-5 500000.0 29290570
t2g20_7777 400 800 19 1026 1515 27294253.39 7.4e-5 500000.0 28349398
t3g5_5555 125 375 22 496 951 10843693.83 9.4e-5 160000.0 10933215
t3g5_6666 125 375 22 724 1187 11358698.15 8.4e-5 160000.0 11582216
t3g5_7777 125 375 25 668 1225 11196295.63 9.1e-5 160000.0 11552046
t3g6_5555 216 648 30 1092 1819 17046996.57 7.2e-5 92592.6 17434469
t3g6_6666 216 648 26 671 1252 20014468.29 8.9e-5 92592.6 20217380
t3g6_7777 216 648 32 1403 2282 18487004.21 8.3e-5 92592.6 19475011
t3g7_5555 343 1029 20 1201 1665 26773833.26 9.4e-5 583090.4 28302918
t3g7_6666 343 1029 19 912 1342 32934614.99 8.0e-5 583090.4 33611981
t3g7_7777 343 1029 21 871 1332 27953083.17 1.9e-5 583090.4 29118445

A.2 Proofs

Proof of Theorem 4.5. By local optimality of x∗ for (CP), one finds some ε > 0 such that
q(x) ≥ q(x∗) is valid for all x ∈ Bε(x∗) := {x ∈ X | ∥x− x∗∥ ≤ ε} which are feasible for
(CP). Consequently, x∗ is the uniquely determined global minimizer of

min
x

q(x) + 1
2∥x− x

∗∥2

s.t. c(x) ∈ K, x ∈ Bε(x∗).
(A.1)

Let us now consider the penalized surrogate problem

min
x,s

q(x) + k

2∥c(x)− s∥2 + 1
2∥x− x

∗∥2

s.t. x ∈ Bε(x∗), s ∈ K ∩B1(c(x∗))
(P(k))

where k ∈ N is arbitrary. Noting that the objective function of this optimization problem
is lsc, while its feasible set is nonempty and compact, it possesses a global minimizer
(xk, sk) ∈ X×Y for each k ∈ N. Without loss of generality, we assume xk → x̃ and sk → s̃
for some x̃ ∈ Bε(x∗) and s̃ ∈ K ∩B1(c(x∗)).

We claim that x̃ = x∗ and s̃ = c(x∗). To this end, we note that (x∗, c(x∗)) is feasible to
(P(k)) which yields the estimate

q(xk) + k

2∥c(x
k)− sk∥2 + 1

2∥x
k − x∗∥2 ≤ q(x∗) (A.2)
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for each k ∈ N. Using lower semicontinuity of q as well as the convergences c(xk)→ c(x̃)
and sk → s̃, taking the limit k →∞ in (A.2) gives c(x̃) = s̃ ∈ K. Particularly, x̃ is feasible
for (A.1). Therefore, the local optimality of x∗ implies q(x∗) ≤ q(x̃). Furthermore, we find

q(x̃) + 1
2∥x̃−x

∗∥2 ≤ lim inf
k→∞

(
q(xk) + k

2∥c(x
k)− sk∥2 + 1

2∥x
k − x∗∥2

)
≤ q(x∗) ≤ q(x̃).

Hence, x̃ = x∗, and noting that (A.2) gives q(xk) ≤ q(x∗) for each k ∈ N,

q(x∗) ≤ lim inf
k→∞

q(xk) ≤ lim sup
k→∞

q(xk) ≤ q(x∗),

i.e., xk q−→ x∗ follows.
Due to xk → x∗ and sk → c(x∗), one may assume without loss of generality that {xk}

and {sk} are taken from the interior of Bε(x∗) and B1(c(x∗)), respectively. Thus, for each
k ∈ N, (xk, sk) is an unconstrained local minimizer of

(x, s) 7→ q(x) + k

2∥c(x)− s∥2 + 1
2∥x− x

∗∥2 + IK(s).

Let us introduce θ : X× Y → R by means of θ(x, s) := g(x) + IK(s) for each pair
(x, s) ∈ X× Y. Applying [122, Proposition 1.107 and 1.114], one finds

(0, 0) ∈
(
∇f(xk) + kc′(xk)∗(c(xk)− sk) + xk − x∗, k(sk − c(xk)

)
+ ∂θ(xk, sk)

)
for each k ∈ N. The decoupled structure of θ and Proposition 2.23 yield the inclusion
∂θ(xk, sk) ⊂ ∂g(xk)×N lim

K (sk) for each k ∈ N. Thus, setting ηk := x∗−xk, λk := k(c(xk)−
sk) and ζk := sk − c(xk) for each k ∈ N while observing that ∂q(xk) = ∇f(xk) + ∂g(xk)
holds, one has shown that x∗ is AM-stationary for (CP).

Proof of Lemma 4.11. Fix some w ∈ lim sup
x

q−→x̄,z→0
M(x, z), then there exist sequences

{xk}, {ζk}, {wk} satisfying xk q−→ x̄, ζk → 0, wk ∈ w, and wk ∈ M(xk, ζk) for all k ∈ N.
Hence, due to the special structure of the optimization problem (4.5), each wk can be
represented as

wk =
m∑
i=1

λki∇θi(xk) +
p∑
j=1

µkj∇hj(xk) + ξk

with ξk ∈ ∂g(xk), µkj ∈ R, and λki ∈ R satisfying

λki

{
= 0 if i /∈ I(x̄),
≥ 0 if i ∈ I(x̄)

for all k ∈ N sufficiently large. Thus, without loss of generality, we assume that

wk − ξk =
∑
i∈I(x̄)

λki∇θi(xk) +
p∑
j=1

µkj∇hj(xk)

with λki ≥ 0 for all i ∈ I(x̄), µkj ∈ R for all j = 1, . . . , p, and ξk ∈ ∂g(xk) for all k ∈ N.
Due to Definition 4.10 (a), (b), there exists an index set J ⊂ {1, . . . , p} such that this
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representation can be rewritten as

wk − ξk =
∑
i∈I(x̄)

λki∇θi(xk) +
∑
j∈J

µ̂kj∇hj(xk)

with suitable scalars µ̂kj ∈ R (j ∈ J) and the gradient {∇hj(xk)}j∈J being linearly
independent. In view of [6, Lemma 1], for each k ∈ N, there exist an index set Ik ⊂ I(x̄)
and multipliers λ̄ki (i ∈ Ik), ūkj ∈ R (i ∈ J) such that

wk − ξk =
∑
i∈Ik

λ̄ki∇θi(xk) +
∑
j∈J

µ̄kj∇hj(xk)

and the gradients {∇θi(xk)}i∈Ik
∪ {∇hj(xk)}j∈J being linearly independent. Since there

are only finitely many index sets Ik ⊂ I(x̄), we may assume, subsequencing if necessary,
that

wk − ξk =
∑
i∈I

λ̄ki∇θi(xk) +
∑
j∈J

µ̄kj∇hj(xk) (A.3)

holds for all k ∈ N with some fixed index set I ⊂ I(x̄).
We claim that the sequence {tk} defined by

tk :=
∥∥∥(λ̄ki (i ∈ I), µ̄kj (j ∈ J)

)∥∥∥
is bounded. Assume that it is unbounded, say, tk → ∞. Then, dividing the expression
(A.3) by tk and then taking the limit k →∞, one has

0− ξ̄ =
∑
i∈I

ūi∇θi(x̄) +
∑
j∈J

µ̄j∇hj(x̄) (A.4)

for some suitable limits λ̄i ≥ 0 (i ∈ I), µ̄j ∈ R (j ∈ J), not vanishing at the same time, and
the (obviously existing) limit ξ̄ := limk→∞ ξk/tk. Since ξk ∈ ∂g(xk), xk g−→ x̄ and tk →∞,
it follows from Lemma 2.21 that η̄ ∈ ∂∞g(x̄). In view of (A.4) and Definition 4.10 (c), it
then follows that the gradients {∇θi(x̄)}i∈I ∪ {∇hj(x̄)}j∈J are linearly dependent for all
k ∈ N sufficiently large. This, however, contradicts the choice of the index sets I = Ik.

Consequently, the sequences {λ̄ki }i∈I and {µ̄kj }j∈J are bounded, which in view of (A.3),
also deduces that {ξk} is bounded. Subsequencing if necessary, we may therefore assume
that these sequences converge to suitable limits λ∗

i ≥ 0 (i ∈ I), µ∗
j (j ∈ J), and ξ∗,

respectively. Then, taking the limit k →∞ in (A.3) yields

w =
∑
i∈I

λ∗
i∇θi(x̄) +

∑
j∈J

µ∗
j∇hj(x̄) + ξ∗.

Since ξk ∈ ∂g(xk) for all k ∈ N, xk g−→ x̄, and ξk → ξ∗, it follows from the robustness
property (2.7) of the limiting subdifferential that ξ∗ ∈ ∂g(x̄). Setting λ∗

i := 0 (i /∈ I) and
µ∗
j := 0 (j /∈ J), it follows that w ∈M(x̄, 0). Hence, x̄ satisfies AM-regularity.
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