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supply energy (Bauen 2006; IPCC, 2014; de Andrade et al. 
2021). A sustainable energy future will, therefore, require 
a deviation from the business-as-usual dependence on fos-
sil fuels and a move toward renewable energy. This greener 
way of producing energy provides a win-win situation by 
fulfilling societal energy demands while at the same time 
reducing environmental damage. While the pros of wind 
energy are apparent (Li et al. 2020), some studies have 
cited its disturbance of habitats as a con (Kuvlesky et al. 
2007; Straka et al. 2020), however, developing wind energy 
infrastructure on disturbed lands instead of erecting them in 
intact habitats would significantly reduce negative impacts 
on wildlife (Kiesecker et al. 2011).

Wind energy is one of the renewables considered not 
only viable but also sustainable because of its ability to 
contribute to the reduction of emissions (Forbes and Zam-
pelli 2019). The International Renewable Energy Agency 
estimates that in the past 20 years, global installed wind 

Introduction

Since 1967, population growth in Africa has been the fast-
est in the world. The continent is estimated to be growing 
at ~ 2.4% annually and is projected to remain well above 
2% in the next couple of decades (UN, 2019). Further, 
more than 50% of global population growth between now 
and 2050 is projected to occur in Africa. As Africa’s popu-
lation continues to swell and urbanise, energy demand is 
equally rapidly increasing (Akintande et al. 2020) leading 
to an exponential growth in greenhouse gas (GHG) emis-
sions thus, threatening the long-term ability of the planet to 
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Abstract
There is no single solution to cutting emissions, however, renewable energy projects that are backed by rigorous ex-ante 
assessments play an important role in these efforts. An inspection of literature reveals critical knowledge gaps in the 
understanding of future wind speed variability across Zambia, thus leading to major uncertainties in the understanding of 
renewable wind energy potential over the country. Several model performance metrics, both statistical and graphical were 
used in this study to examine the performance of CORDEX Africa Regional Climate Models (RCMs) in simulating wind 
speed across Zambia. Results indicate that wind speed is increasing at the rate of 0.006 m s− 1 per year. RCA4-GFDL-
ESM2M, RCA4-HadGEM2-ES, RCA4-IPSL-CM5A-MR, and RCA4-CSIRO-MK3.6.0 were found to correctly simulate 
wind speed increase with varying magnitudes on the Sen’s estimator of slope. All the models sufficiently reproduce the 
annual cycle of wind speed with a steady increase being observed from April reaching its peak around August/September 
and beginning to drop in October. Apart from RegCM4-MPI-ESM and RegCM4-HadGEM2, the performance of RCMs 
in simulating spatial wind speed patterns is generally good although they overestimate it by ~ 1 m s− 1 in the western and 
southern provinces of the country. Model performance metrics indicate that with a correlation coefficient of 0.5, a root 
mean square error of 0.4 m s− 1, an RSR value of 7.7 and a bias of 19.9%, RCA4-GFDL-ESM2M outperforms all other 
models followed by RCA4-HadGEM2, and RCA4-CM5A-MR respectively. These results, therefore, suggest that studies 
that use an ensemble of RCA4-GFDL-ESM2M, RCA4-HadGEM2, and RCA4-CM5A-MR would yield useful results for 
informing future renewable wind energy potential in Zambia.
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energy generation capacity has increased by > 7000% and it 
accounts for 16% of the electricity sourced from renewables 
(IRENA, 2019). While at the global scale renewable wind 
energy is rapidly increasing, its use across Africa is still lim-
ited. With ~ 630 million people lacking access to electricity 
(Sawadogo et al. 2020), energy poverty has continued to be 
a stark challenge in sub-Saharan Africa and investment in 
renewable wind resources has the potential of addressing 
this challenge (Morrissey, 2017).

Sustainable wind energy generation relies heavily, among 
other things, on understanding spatial and temporal wind 
speed variations across the region of interest. Studies that 
focus on future wind speed variability in light of climate 
change are especially useful in informing policy dialogues 
that seek to boost investments in renewable wind power 
generation. Many studies have since been done to under-
stand potential climate change impacts on wind energy 
generation. For instance, Moemken et al. (2018) examined 
future wind speed and potential wind energy changes using 
a multimodel ensemble of EURO-CORDEX simulations 
and found a considerable decrease in potential wind energy 
output during summers across Europe. Most recently, Akin-
sanola et al., (2021) studied future wind energy potential 
across West Africa using CMIP6 models and found a 70% 
increase in wind power density over the Guinea coast.

Central to the entire discipline of wind speed projections 
is the use of general circulation models (GCMs) whose per-
formance is usually improved by downscaling techniques as 
is the case with regional climate models (RCMs; Xu et al. 
2019). While significant advances have been made by mod-
elling institutions in improving the performance of RCMs, 
critical biases are still being reported by several studies 
around the world (Yang et al. 2018; Krishnan and Bhas-
karan 2019), and model performance has continued to vary 
from one region to another thus, necessitating the need for 
systematic model performance assessments for any given 
region before any future projections are done.

The objective of this study is to assess the skill of the 
Coordinated Regional Climate Downscaling Experiment 
(CORDEX Africa) models in simulating wind speed across 
Zambia. Findings will be beneficial to current renewable 
wind energy studies and to those seeking to understand 
potential changes in future wind power densities across the 
country. Findings will also be beneficial to policy dialogues 
in the country, especially considering that as a lower-mid-
dle-income country with 70% of its population having no 
access to electricity, Zambia has been seeking to expand its 
electrification capacity (OXFAM, 2021).

Data sources and methodology

Study area and wind fields climatology

This study focuses on Zambia, a humid subtropical southern 
African country (Fig. 1). Unlike neighbouring countries like 
Tanzania, Mozambique, Angola, and Namibia, Zambia does 
not have a seacoast, as such, while the long-term wind field 
climatology receives oceanic influences, diurnal changes 
are mainly controlled by local factors such as topographical 
variations (Helbig et al. 2017), frictional effect (Wu et al. 
2018), and the spatial spread of water bodies and vegeta-
tion (Meng et al. 2018). While studies that focus on wind 
speed are scanty in Zambia, earlier analyses show that wind 
speeds tend to peak in August but rarely go beyond 5 m s− 1 
(Munyeme and Jain 1994).

Data sources

Reference dataset

The European Centre for Medium-Range Weather Fore-
casts’ (ECMWF) ERA5 was used as a reference dataset in 
this study. As the name suggests, ERA5 is the fifth-genera-
tion global climate reanalysis data developed with a resolu-
tion of 0.25° x 0.25° covering the period 1979 to the near 
present. It should be noted however that ECMWF has now 
released an updated version of the ERA5 back extension 
data covering the period 1959–1978 and it is available in 
the Climate Data Store. ERA5 was developed by combining 
outputs from models and in situ observations from meteo-
rological stations across the globe (Hersbach et al. 2020). 
ERA5 is a state-of-the-art dataset that is widely used in 
wind speed and renewable wind energy studies across the 
globe (Olauson 2018; Molina et al. 2021; Pryor and Bar-
thelmie 2021).

The World Meteorological Organization (WMO) recom-
mends the 30-year period from 1981 to 2010 as a suitable 
reference period for climatological normal calculations 
(WMO, 2017). However, historical simulations of RCMs 
do not cover the entire 30-year period, therefore, a 20-year 
period from 1981 to 2000 is used in this study to address this 
mismatch. The 1981 to 2000 reference period is widely used 
in renewable wind energy studies across the globe (Shahab 
et al. 2021; Matthew and Ohunakin 2022).

Regional climate models

The historical runs of Regional Climate Models from the 
Coordinated Regional Climate Downscaling Experiment 
(CORDEX Africa; Giorgi et al. 2009) were assessed against 
ERA5. Considering that ensemble members differ in their 
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initial conditions, only members of the first realization 
ensemble r1i1p1 were used in this study (Table 1). To fur-
ther ease comparisons, only models with 0.44° resolution 
were considered. Further details of the models are given on 
the IS-ENES Climate4Impact website: https://climate4im-
pact.eu/impactportal/general/index.jsp.

Methods

Trends in the wind speed data were detected using the 
Modified Mann-Kendall test for serially correlated data as 
suggested in the Hamed and Rao (1998) variance correc-
tion approach. The ‘modifiedmk’ Package was used in R 
Programming Language for trend detection (R Core Team, 
2022; Patakamuri and O’Brien 2021). The hypothesis set in 
this study was:

H0 no trend detected.
H1 monotonic trend found.
Mathematically, the m-MK test can be given as follows:

	
Zi = ϕ−1

(
Ri

n + 1

)
for i = n : n, � (1)

Zi is the rank of the detrended wind speed time series, n is 
the wind speed time series length, and ϕ−1 is the inverse 
standard normal distribution function with a mean of 0 and 
a standard deviation of 1.

In addition to assessing the skill of Regional Climate 
Models to reproduce trends observed in ERA5, correlation 

Table 1  Overview of the global and regional climate models used in 
this study. GCM = General Circulation Model; RIP = index of the con-
sidered ensemble member; RCM = Regional Climate Model
Driving GCM RIP RCM Scenario Period
CanESM2 r1i1p1 RCA4 Historical 1981–2000
IPSL-CM5A-MR r1i1p1 RCA4 Historical 1981–2000
CNRM-CM5 r1i1p1 RCA4 Historical 1981–2000
CSIRO-MK3.6.0 r1i1p1 RCA4 Historical 1981–2000
EC-EARTH r1i1p1 RCA4 Historical 1981–2000
MPI-ESM-LR r1i1p1 RCA4 Historical 1981–2000
GFDL-ESM2M r1i1p1 RCA4 Historical 1981–2000
HadGEM2-ES r1i1p1 RCA4 Historical 1981–2000
MIROC5 r1i1p1 RCA4 Historical 1981–2000
NorESM1-M r1i1p1 RCA4 Historical 1981–2000
HadGEM2-ES r1i1p1 RegCM4 Historical 1981–2000
MPI-ESM-MR r1i1p1 RegCM4 Historical 1981–2000

Fig. 1  a) Map of Africa with green square showing the geographical location of Zambia, b) Map of Zambia with shading showing topography 
based on Hastings and Dunbar (1999). Blue shading indicates major water bodies in the country
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show that the model underestimates it (Gupta et al. 1999). 
Mathematically, PBias is expressed as follows:

	

PBias =





n∑
i=1

(Y obs
i − Y sim

i ) ∗ 100

n∑
i=1

(Y obs
i )



� (5)

Where: PBias is the deviation of model outputs expressed 
as a percentage, Y obs

i  is ERA5, and Y sim
i are RCM outputs.

Results

Temporal wind speed variations

The annual cycle of wind speed across Zambia shows a 
steady increase from April reaching its peak around August/
September with noticeable drops in October (Fig. 2). All the 
models were able to sufficiently reproduce the annual cycle 
of wind speed as depicted by ERA5 which is presented as 
the thickest curve (red) for ease of comparison. It is further 
notable that the RegCM4-HadGEM2 consistently underes-
timates ERA5 while RegCM4-MPI-ESM closely matches it 
apart from in January and December when it overestimates 
it. While RegCM4-HadGEM2 consistently underestimates 
ERA5, it correctly captures the month-month changes. All 
other models overestimate ERA5 by as high as 0.7 m s− 1 in 
some months e.g., August and September.

Similar to the mean annual cycle (Fig. 2), RegCM4-Had-
GEM2 was found to consistently underestimate ERA5 at 
the interannual scale while all other models overestimated 
it (Fig.  3). Overall, RegCM4-HadGEM2 estimates wind 
spend to range between 1.6 and 2 m s− 1 while ERA5 and all 
other models estimate wind speed at ≥ 2.4 m s− 1. The con-
stant model overestimations suggest that any future projec-
tions would result in false estimations of cut-in wind speeds 
i.e., the speeds at which blades of a turbine start rotating 
thus, generating power.

When annual trends in wind speed were considered, 
results indicate an increase at the rate of 0.006 m s− 1 per year 
across the country and the increase is statistically significant 
at the α 0.05 (Table 2). 4 RCMs i.e., RCA4-GFDL-ESM2M, 
RCA4-HadGEM2-ES, RCA4-IPSL-CM5A-MR, RCA4-
CSIRO-MK3.6.0 were found to correctly simulate wind 
speed increase with varying magnitudes on the Sen’s slope. 
However, RCA4-GFDL-ESM2M and RCA4-HadGEM2-
ES outperform all other models by correctly simulating a 
statistically significant increase of 0.006  m s− 1 thus, sug-
gesting that the two RCMs would be most suitable for future 
wind speed trend analyses. Shifts in different climate vari-
ables can lead to major changes in the generation of future 

coefficient (R) and root mean square error (RMSE) were 
used. Mathematically, R is given as:

	

R =

n∑
i=1

(xi − x).(yi − y)
√

n∑
i=1

(xi − x)2.
n∑

i=1
(yi − y)2

� (2)

Where x is the reference dataset, in this case, ERA5 while 
y are the RCM outputs. The correlation ranges between − 1 
and 1 with positive numbers showing an upward linear rela-
tionship and the opposite is true for negative numbers.

RMSE is mathematically given as follows:

	
RMSE =

√∑n
i=1 (Xobs,i − Xmodel,i)

2

n
� (3)

Where Xobs are ERA5 values and Xmodel are RCM outputs at 
time/place i (Chai et al., 2014). Although RMSE is widely 
used, Singh et al. (2005) found it problematic because there 
are no guidelines on what exactly constitutes a low RMSE 
value. This observation led to the development of another 
model evaluation statistic. Since it is an improvement of 
the RMSE, the new evaluation statistic was simply called 
the RMSE-observations standard deviation ratio (RSR). 
The RSR metric standardizes RMSE based on the standard 
deviation of observations. It combines both an error-index 
and the additional information as recommended in the work 
of Legates and McCabe (1999). Mathematically, the RSR is 
expressed as follows:

	

RSR =
RMSE

STDEVobs
=

[√
n∑

i=1
(Y obs

i − Y sim
i )2

]

[√
n∑

i=1
(Y obs

i − Y mean
i )2

]� (4)

The scale of the RSR metric is optimal at 0 and denotes zero 
residual variation thus, perfect model predictions. There-
fore, the closer the RSR is to 0, the lower the RMSE, and 
the better the model prediction performance (Singh et al. 
2005; Moriasi et al. 2007). In this study, to implement the 
RSR, the hydroGOF package (Zambrano-Bigiarini 2020) in 
R Programming Language (R Core Team, 2022) was used.

Percent bias (PBias) which can be thought of as an error 
index was used to compute the average tendency of model 
outputs to be larger or smaller than ERA5 (Moriasi et al. 
2007). As the name suggests, PBias is given as a percentage 
with 0% being the optimal value. Positive values indicate 
that the model overestimates ERA5 while negative values 
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adds credence to their usefulness for future estimations of 
wind power potential.

wind power (de Andrade et al. 2021), therefore, the ability 
of RCMs to model retrospective wind speed trends correctly 

Fig. 3  Interannual wind speed (m s− 1) variations for the period 1981–2000, averaged across longitude 21°E − 34°E and latitude 17.4°S and 7.6°S 
for 11 Regional Climate Models (RCMs) and ERA5 (Red thick curve)

 

Fig. 2  Mean annual cycle of wind speed (m s− 1) for the period 1981–2000, averaged across longitude 21°E − 34°E and latitude 17.4°S and 7.6°S 
for 12 Regional Climate Models (RCMs) and ERA5 (Red thick curve)
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projecting future wind speed to inform wind power invest-
ments in Zambia would produce large underestimations and 
uncertainties.

Model score of RCMs

Model performance metrics indicate that with a correlation 
coefficient of 0.5, a root mean square error of 0.4  m s− 1, 
an RSR value of 7.7 and a bias of 19.9%, RCA4-GFDL-
ESM2M outperforms all other models followed by RCA4-
HadGEM2, and RCA4-CM5A-MR respectively (Table 3). 
The observation that RCA4-GFDL-ESM2M, RCA4-Had-
GEM2, and RCA4-CM5A-MR perform well re-echoes 
their good performance in simulating wind speed trends 
(Table  2). Apart from the 3 models, RCA4-CAN-ESM2, 
and RCA4-CSIRO-MK, all other models were found to 
have an inverse relationship with ERA5.

While the 3 models simulate mean wind speed relatively 
well, they struggle with maximum wind speeds (Fig.  5). 
Overall, results show a positive correlation between ERA5 
and RCA4-HadGEM2 (R = 0.3) and RCA4-GFDL-ESM2M 
(R = 0.03) while RCA4-CM5A-MR shows a negative rela-
tionship (R =-0.2).

Discussion

The ability of RCMs to simulate the annual cycle of wind 
speed (Fig.  2) indicates that they can reliably be used to 
project future wind speed cycles over the country or across 
regions of interest in the country. Understanding the future 
wind speed cycles is of interest because this information 
can be used as an input variable into decision-making pro-
cesses for wind power investments. For instance, months of 
high wind speeds ordinarily translate into more wind energy 
potential while those with very low wind speeds would 
entail a need to be supplemented by other power sources 
such as solar and hydropower which currently accounts for 
96% of Zambia’s electricity grid system (Banda et al. 2019). 
An energy mix of wind and solar has especially been found 
to be complementary by previous studies (Campos et al., 
2020). Yüksel and Ateş (2014) also recommend the wind-
solar hybrid system i.e., the concurrent use of wind energy 
and solar power during months when they can both sup-
port power generation, while at other times only the more 
efficient one should be used. When establishing a hybrid 
system, monthly variations of both wind energy and solar 
power should be considered to fully understand the extent to 
which these two energy sources support each.

The Observation that CORDEX Regional Climate Mod-
els overestimate observed wind speed compliments the 
findings of several other studies elsewhere such as that 

Spatial wind speed variations

Spatial analyses indicate that the highest wind speeds of ~ 3 
to 3.9 m s− 1 occur in the central parts of the country and 
along the Muchinga escarpment area (Fig. 4 A). The Much-
inga escarpment has an average terrain elevation of about 
932  m above sea level and greater than 1800  m at some 
points, therefore, higher wind speeds at this elevation can be 
attributed to the reduced effect of gravity and friction (López 
and Arboleya 2022). Other high elevations such as Mbala in 
the Northern Province of the country are also observed to 
experience generally high wind speeds (Fig. 4A). The low-
est wind speeds of ~ 1.5 m s− 1 are experienced in the eastern 
parts of the country, especially along the Luangwa Valley 
(Fig. 4A).

The performance of RCMs in simulating spatial wind 
speed patterns is generally good with all models captur-
ing higher wind speeds in the central and the lowest in the 
eastern parts of the country. However, it is notable that all 
models overestimate wind speed in the western and south-
ern provinces of the country where they depict it to range 
between 3 and 3.6  m s− 1 which is ~ 1  m s− 1 higher than 
ERA5. The only models that underestimate spatial patterns 
are those driven by The Regional Climate Model system 
i.e., RegCM4-MPI-ESM and RegCM4-HadGEM2 (Fig. 4G 
and I respectively). RegCM4-MPI-ESM shows that wind 
speeds range between 2.4 and 2.7 m s− 1 across the country 
while RegCM4-HadGEM2 simulates it to range between 
1.5 and 1.8 m s− 1. Given the near uniform wind speed spa-
tial patterns simulated by the two models, they do not show 
any spatial variability thus, suggesting that their use in 

Table 2  Z-score for trend significance tests of wind speed at 5% sig-
nificance level for the period 1981–2000, averaged across longitude 
21°E − 34°E and latitude 17.4°S and 7.6°S
RCM P-value Sen’s 

slope
Significant increase
ERA5 0.001 0.006
RCA4-GFDL-ESM2M 0.003 0.006
RCA4-HadGEM2-ES 0.003 0.006
RCA4-IPSL-CM5A-MR 0.02 0.003
RCA4-CSIRO-MK3.6.0 0.05 0.003
Insignificant increase
RCA4-CNRM-CM5 0.3 0.001
Significant decrease
RCA4-MIROC5 0.02 -0.003
Insignificant decrease
RCA4-EC-EARTH 0.3 -0.002
RCA4-MPI-ESM-LR 0.5 -0.002
RCA4-NorESM1-M 0.22 -0.002
RegCM4-MPI-ESM 0.5 -0.002
RegCM4-HadGEM2-ES 0.3 -0.001
RCA4-CanESM2 1 -0.00005
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Fig. 4  Spatial variations of wind speed across Zambia for (A) ERA5 (B) RCA4-GFDL-ESM2M (C) RCA4-CSIRO-MK (D) RCA4-EC-EARTH 
(E) RCA4-HadGEM2 (F) RCA4-MIROC5 (G) RegCM4-MPI-ESM (H) RCA4-NorESM1 (I) RegCM4-HadGEM2 (J) RCA4-CAN-ESM2 (K) 
RCA4-CM5A-MR (L) RCA4-CNRM-CM5 (M) RCA4-ESM-LR covering the period 1981–2000
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Concluding thoughts

of Kulkarni et al. (2018) who examined skill addition by 
RCMs to the parent GCMs while simulating wind speed and 
wind potential over the Indian offshore region. Similar find-
ings are also documented in the work of Soares et al. (2018) 
who applied RCMs to study the climate of the North Afri-
can coastal low-level jet. This observed overestimation sug-
gests that efforts using these models to inform wind energy 
investments would benefit from empirical adjustments such 
as quantile mapping which was developed with the aim of 
adjusting the distribution of modelled data so that it matches 
observed climates (Gudmundsson et al. 2012). Other bias 
correction techniques that have been found useful in mod-
elling studies include linear scaling which computes the 
difference between observed data and model outputs and 
applies it to simulations (Shrestha et al. 2017).

While mean wind speed across Zambia is slow (2.8 m 
s− 1), the observed increasing trend suggests that the capac-
ity factor of wind plants has likely risen over the years. This 
rise in capacity factor can be complemented by improved 
technology transfer from elsewhere to maximise energy 
capture per unit capacity (Albadi and El-Saadany 2009).

Models were found to struggle with simulating maximum 
wind speeds (Fig. 5). Maximum wind speeds are necessary 
for determining cut-out turbine wind speeds. By extension, 
maximum wind speeds enable turbine manufacturers to 
know how fast the turbine can go in any given area before 
winds reach damaging speeds thus, this contributes to wind 
turbine selection and cost (Pryor and Barthelmie 2021). 
When maximum wind speeds are known, turbines can be 
installed with brake mechanisms that stall them before 
reaching the danger zone. Although Models do not appear to 
simulate maximum wind speeds very well, it is notable that 
at maximum speeds of < 5 m s− 1 (Fig. 5), damaging winds 
cannot be considered a major concern in Zambia.

Table 3  Performance metrics of models in simulating wind speed for 
the period 1981–2000, averaged across longitude 21°E − 34°E and lati-
tude 17.4°S and 7.6°S
Model

R RMSE 
(m s− 1)

RSR PBias 
(%)

ERA5 1 0 0
RCA4-CAN-ESM2 0.03 0.5 13.4 24.1
RCA4-CM5A-MR (3) 0.5 0.5 9.9 23.4
RCA4-CNRM-CM5 -0.2 0.3 7.2 15.9
RCA4-CSIRO-MK 0.2 0.5 9.8 22.2
RCA4-EC-EARTH -0.1 0.5 11 20.7
RCA4-ESM-LR -0.2 0.5 10.7 22.3
RCA4-GFDL-ESM2M (1) 0.5 0.4 7.7 19.9
RCA4-HadGEM2 (2) 0.5 0.5 9.2 22.8
RCA4-MIROC5 -0.6 0.5 15.7 23
RCA4-NorESM1 -0.2 0.5 9.3 21.2
RegCM4-HadGEM2 -0.3 0.6 23.4 -28.2
RegCM4-MPI-ESM -0.4 0.2 3.1 8.4

Fig. 5  Performance of Regional Climate Models in simulating max-
imum wind speeds relative to ERA5 for (A) RCA4-HadGEM2 (B) 
RCA4-GFDL-ESM2M and (C) RCA4-CM5A-MR covering the 
period 1981–2000, averaged across longitude 21°E − 34°E and lati-
tude 17.4°S and 7.6°S
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