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Abstract
The current study evaluates the regional climate model REMO (v2015) and its new version REMO-iMOVE, including 
interactive vegetation and plant functional types (PFTs), over two Central Asian domains for the period of 2000–2015 at two 
different horizontal resolutions (0.44° and 0.11°). Various statistical metrices along with mean bias patterns for precipitation, 
temperature, and leaf area index have been used for the model evaluation. A better representation of the spatial pattern of 
precipitation is found at 0.11° resolution over most of Central Asia. Regarding the mean temperature, both model versions 
show a high level of agreement with the validation data, especially at the higher resolution. This also reduces the biases in 
maximum and minimum temperature. Generally, REMO-iMOVE shows an improvement regarding the temperature bias 
but produces a larger precipitation bias compared to the REMO conventional version with interannually static vegetation. 
Since the coupled version is capable to simulate the mean climate of Central Asia like its parent version, both can be used for 
impact studies and future projections. However, regarding the new vegetation scheme and its spatiotemporal representation 
exemplified by the leaf area index, REMO-iMOVE shows a clear advantage over REMO. This better simulation is caused 
by the implementation of more realistic and interactive vegetation and related atmospheric processes which consequently 
add value to the regional climate model.

1  Introduction

The countries Kazakhstan, Kyrgyzstan, Tajikistan, Turk-
menistan, and Uzbekistan as well as the Xinjiang province 
of China altogether comprise Central Asia, covering an area 
close to 5 million km2. The climate of this region is amongst 
the most sensitive climate zones around the world which also 
contains one of the largest drylands (Seddon et al. 2016). 
Observational data reveal general warming in mean annual 
temperature which ranges between 0.18 and 0.42 °C per 
decade in Central Asia (Unger-Shayesteh et al. 2013). The 
following decrease in the glaciated area in the Tian Shan 
(Aizen et al. 2007; Duishonakunov et al. 2014; Kenzhebaev 
et al. 2017), and Pamir-Alay (Hagg et al. 2007; Chevallier 
et al. 2014) mountain system in the south and the drying of 
the Aral Sea in the north contribute to increased water stress 
caused by the reduction of these important water storages. 
Additionally, there is a very high precipitation variability 

along with non-consistent trends on small scales due to the 
heterogeneity of the land surface (Lioubimtseva et al. 2005). 
The decrease of water resources along with the partially 
intense agricultural production, which has decreased quan-
titatively over the last few decades, are exposed to a growing 
risk with respect to climate change (Perelet 2007). There is 
increased water stress, especially in Kyrgyzstan and Uzbeki-
stan with its high population (Pritchard 2017) which also 
influences the socio-economic development and enhances 
the potential of conflicts about food security (Fischer et al. 
2005; Reyer et al. 2017). Hence, it is of utmost importance 
to improve the spatio-temporal climate variability in climate 
models for articulating regional adaptation and mitigation 
strategies considering the expected threats from climate 
change (Huang et al. 2014).

In order to dynamically downscale the coarser scale 
global climate simulations of General Circulation Mod-
els (GCMs) to a finer and regional scale, Regional Cli-
mate Models (RCMs) have proven to be a useful tool in 
the last few decades since they are able to represent com-
plex land surface variables like orography and vegetation 
in more detail (e.g. Prein et al. 2015; Rummukainen et al. 
2015; Giorgi and Gao 2018). By using the lateral boundary 
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conditions of either GCMs or reanalysis, which act as so-
called perfect boundary conditions, the lateral forcing is 
done (Wang et al. 2004). These models have been used in 
impact assessment studies and led to a better understand-
ing of the climatic processes on regional scales in various 
parts of the world (e.g. Mannig et al. 2013; Kumar et al. 
2020). However, increasing the resolution and complexity 
of the RCMs leads to the necessity to put extensive efforts 
into their continuous development and improvement (Giorgi 
2019). Despite this enormous effort and known limitations 
like the dependence of the model’s quality on the bound-
ary conditions and the physical parameterizations (Paeth 
et al. 2005, 2009; Rummukainen 2010), using RCMs and 
dynamically downscale spatially coarse information has a 
clear advantage over statistical downscaling. The statisti-
cal downscaling is based upon the empirical relationship 
between several predictors and a variable of interest, which 
requires significantly fewer computing resources. However, 
the results are not achieved on a physical basis, which leads 
to problems when it comes to the investigation of time peri-
ods without observational data and in the generation of more 
consistent and comprehensive datasets.

Although Central Asia is a hotspot of climate change, 
only a few modeling studies have tried to investigate the 
climatological features in that region, including temperature 
and precipitation (Small et al. 1999; Lee and Suh 2000; Fu 
et al. 2005). One reason for that is the sparse and uneven dis-
tribution of meteorological stations in Central Asia which is 
challenging for the model validation since gridded validation 
data is negatively affected by a low station density (e.g., Hof-
stra et al. 2010; Prein and Gobiet 2017; Gibson et al. 2019). 
Regarding the existing modeling studies, some indicate the 
rising trend of temperature along with an increased precipi-
tation variability in the region (Mannig et al. 2013; Li et al. 
2015). Recently, Top et al. (2021) evaluated the performance 
of the regional climate models REMO and ALARO-0 over 
the Coordinated Regional Climate Downscaling Experiment 
domain of Central Asia (CORDEX-CAS) at a resolution of 
0.22° and for the period of 1980–2017. They found a bet-
ter performance of REMO in simulating the temperature 
while the ALARO-0 was better at simulating the precipita-
tion over Central Asia. Russo et al. (2019) ran and evalu-
ated the COSMO-CLM 5.0 at the resolution of 0.22° over 
CORDEX-CAS and find their model to be more sensitive to 
the parametrizations that deals with soil and surface proper-
ties. Ozturk et al. (2012, 2016) used the RegCM model at 
0.44° for the climate projection with different emission sce-
narios for the period of 1971–2100. However, there is still 
a need for high-resolution datasets from the climate models 
over the CORDEX-CAS region in order to conduct environ-
mental assessment applications along with impact model-
ling (Kotova et al. 2018). Additionally, Gessner et al. (2013) 
highlighted the sensitivity of the vegetation’s development 

on precipitation over about 80% of Central Asian land sur-
faces, particularly in areas with annual precipitation ranging 
between 100 and 400 mm. Consequently, the present study 
is an attempt to generally broaden our knowledge of model 
performances over Central Asia for the RCM REMO. A spe-
cific focus lies on the effect that the coupling of an interac-
tive vegetation model has on the performance of REMO.

As already mentioned, and also suggested by various 
studies in the past, the quality of the simulated climate can 
be highly influenced by the representation of land surface 
processes within climate models. Since the RCM REMO 
(v2015, Jacob et al. 2012) considers vegetation whose char-
acteristics vary on the intra-annual scale but not inter-annu-
ally, there is a need for improvement. For this purpose, we 
consider the coupling of REMO with an interactive mosaic-
based vegetation (iMOVE) scheme proposed by Wilhelm 
et al. (2014), called REMO-iMOVE. With the new land 
surface scheme, the phenology reacts directly to simulated 
weather and climate conditions instead of being static. This 
new scheme has been used for different land use and land 
cover studies as well as RCM comparisons over Europe 
(Breil et al. 2020; Davin et al. 2020; Sofiadis et al. 2021).

For the current study, iMOVE is implemented and 
adapted for the first time out of Europe. Additionally, the 
target resolution is higher than any comparable RCM study 
done for Central Asia which becomes possible since we per-
form the model simulations ourselves. Thus, the aim of this 
paper is to validate the performance of REMO and iMOVE 
and to show the effect of the new interactive vegetation, 
has on temperature and precipitation. We are particularly 
interested in the representation of the leaf area index and 
the mean temperature and precipitation variability of the 
two model versions. Additionally, the investigation is under-
gone for two different horizontal resolutions to estimate the 
effect of the higher spatial resolution in the heterogeneous 
land surface of Central Asia. This work is fundamental to 
estimate the model biases and shortcomings when it comes 
to the investigation of future projections.

The paper is organized as follows: In Section 2, we will 
present the model description and experimental design as 
well as the datasets used to validate the model and the related 
validation metrices. Section 3 contains a detailed description 
of the results we obtained which are discussed in Section 4. 
The conclusion and summary are done in Section 5.

2 � Methodology

2.1 � Model description

In this study, we use the three-dimensional and hydro-
static RCM REMO2015 (Jacob and Podzun 1997; Jacob 
2001; Jacob et al. 2012). Its dynamical core is based on 
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the GCM ECHAM4 (Roeckner et  al. 1996), although 
numerous improvements have been made since (e.g., 
Hagemann 2002; Semmler et al. 2004; Pfeifer 2006; Kot-
larski 2007; Teichmann 2010; Wilhelm et al. 2014). The 
prognostic variables on 27 atmospheric levels are surface 
pressure, wind speed, specific humidity, air temperature, 
cloud liquid water, and ice. REMO has been successfully 
adapted to Central Asia in its former version REMO2009 
(Mannig et al. 2013; Paeth et al. 2015) and in the frame 
of CORDEX and CORDEX-CORE (Giorgi et al. 2021) 
where it has shown that it can capture the features of the 
Central Asian climate well.

Wilhelm et al. (2014) have coupled REMO (v2009) 
with the dynamic land surface scheme JSBACH (Jena 
Scheme for Biosphere–Atmosphere Coupling in Ham-
burg) (Reick et al. 2013). JSBACH was developed in order 
to improve the efficiency of GCMs towards Earth Sys-
tem Models (ESMs) (for further details about JSBACH, 
we refer to Reick et al. (2013) and the explanation of its 
adaptation in Wilhelm et al. (2014)). Because of many 
advantages of JSBACH, such as its similarity in coding 
with REMO and its ability to exchange surface fluxes on 
model time step basis, it was adapted to REMO. Apart 
from the carbon pool parametrization, the iMOVE version 
includes all biophysical parameterizations for vegetation 
modelling from JSBACH, including precompiled Plant 
Functional Types (PFTs).

The introduction of PFTs by the coupled iMOVE-ver-
sion is one of the most relevant advancements towards 
the coupling process. Based upon the comparable func-
tional peculiarity and biophysical characterization, differ-
ent plant species are aggregated to constitute the PFTs. 
Due to the aggregation, there is the possibility of choos-
ing and handling a small but a representative number of 
functional types which may coexist inside a model grid 
box. Up to 16 PFTs which represent different biophysical 
biome characteristics (net primary productivity, stoma-
tal conductance, surface albedo, rooting depth, leaf area 
index) can be represented within a single grid cell (Wil-
helm et al. 2014).

The GLOBCOVER 2000 (GLC2000) dataset with a 
horizontal resolution of 1 km × 1 km is used to distribute 
the PFT classes horizontally (Bartholome and Belward 
2005). GLC2000 also contains mixed vegetation classes 
such as shrubs and a mixture of trees, which need to be 
separated, along with classes such as needle leaf trees, 
which can be mapped into PFTs directly. Additionally, 
the climate zones following Holdridge (1967) are consid-
ered for the global distribution of PFTs. In the present 
study, the coupled version of REMOv2015 and iMOVE is 
used for the first time in Central Asia / out of Europe. The 
authors refer to Wilhelm et al. (2014) for further details 
on JSBACH and iMOVE.

2.2 � Experimental design

A total of four simulations, two each with REMO and 
iMOVE on two different spatial resolutions, are performed 
over Central Asia for a period of 16 years starting from 
January 2000 till December 2015. The time step for the 
coarser runs (0.44°) is 240 s while it is 60 s for the 0.11° 
runs. The resolutions are run on two different domains 
(cp. Figure 1) from which the area of the inner domain is 
clipped from the coarse resolution runs when it comes to 
the comparison of different spatial resolutions. This inner 
domain is called CAS-44. The inner domain with 0.11° 
resolution was created to better resolve the land surface 
characteristics and small-scale meteorological processes. 
The ERA-Interim dataset with a horizontal resolution of 
80 km (0.75°) (Dee et al. 2011) has been used to force 
the models at their lateral boundaries with an update fre-
quency of 6h. There is a necessity for a spin-up period in 
order to allow the model and its inert land surface vari-
ables accommodate to the model internal physics and forc-
ing (Giot et al. 2016). For this purpose, the model ran as a 
cold-start with the initial values from the forcing data for 
the period of 2000–2015 to spin up the lower-frequency 
variables like soil moisture and soil temperature which are 

Fig. 1   Model domain with orography (m). a 0.44° (3.2°N to 61.1°N 
and 16°E to 141.6°E), and b 0.11° (24.3°N to 54.7°N and 45.6°E to 
88.9°E) resolution. The red box in a marks the smaller domain within 
the larger domain
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not in an equilibrium state. According to Sieck (2013), the 
state of the spin-up variables is taken from the end of the 
cold-start simulation and replaces one of the first forcing 
steps at the beginning of the simulations.

2.3 � Observational and reanalysis datasets

For the purpose of model validation, various observational 
and reanalysis datasets have been used in the present study. 
To validate the simulated precipitation, the rain gauge 
measured and gridded Global Precipitation Climatology 
Centre (GPCC, v2018) data (Schneider et al. 2018) from 
the German Weather Service has been used in monthly 
form. We have used a horizontal resolution of 0.25° of 
GPCC to compare the model simulated precipitation after 
remapping them to the model grids of 0.44° and 0.11°. In 
general, GPCC data underestimate the precipitation during 
springtime and in mountainous regions (Hu et al. 2018). 
However, Hu et al. (2018) also reported a higher similarity 
of GPCC with observed station data in comparison to Cli-
mate Research Unit (CRU) and Matsuura-Wilmott (MW) 
precipitation data over Central Asia. Following Top et al. 
(2021), who have already used different observational 
datasets for comparison, we went for the bias calculation 
based on only one gridded dataset, which showed good 
results in their study, i.e., GPCC for precipitation and CRU 
for temperature.

To validate the temperature at 0.11°, the ERA5-Land 
reanalysis dataset from the European Centre for Medium-
Range Weather Forecasts (ECMWF) is taken, having a 
native resolution of 0.1° × 0.1° has been used (Muñoz 
Sabater 2019). This reanalysis product is available from 
1950 to the present and is a specialized version of ERA5 
with a series of improvements making it more accurate for 
all types of land applications. Generally, reanalysis data-
sets are more continuous in space and time than station 
data, but they do contain biases as well such as overestima-
tion of precipitation globally and especially in mountain-
ous regions (Sun et al. 2018).

To take the plant dynamics of iMOVE into account, the 
Leaf Area Index (LAI) of the model is considered. The LAI 
is a critical variable of an ecosystem to scale various plant-
related processes such as transpiration, respiration, and pho-
tosynthesis. It is defined as the total one-sided leaf area per 
unit of ground area and therefore acts as a strong indicator of 
volumetric biomass within an ecosystem (Asner et al. 1998; 
Jarlan et al. 2008). For the validation, the Advanced Very 
High-Resolution Radiometer (AVHRR) sensors’ LAI daily 
data at 0.05° × 0.05° grids (1983–2017) is used from the 
National Climatic Data Centre (Vermote and NOAA CDR 
Program 2019). One shortcoming of AVHRR is that there 
is no data whenever cloud cover is present.

2.4 � Statistical methods

For the comparison of variables simulated by the model, 
which have a different grid size with the observation and 
re-analysis datasets, interpolation is required to get the 
variables on a common grid (Kotlarski et al. 2014). In this 
study, we have used bilinear interpolation from the grids of 
observational and reanalysis datasets, respectively, to the 
original model grids. REMO’s output variables are avail-
able at an hourly interval. Convective and stratiform rain 
variables are accumulated to get the monthly, seasonal, 
and annual sums of precipitation. LAI, mean, maximum, 
and minimum temperatures are taken from the hourly scale 
to seize their monthly, seasonal, and annual means. The 
spatial patterns of seasonal and annual biases from the 
monthly values are computed for the period from 2000 
to 2015. The mean annual cycle of precipitation is calcu-
lated to assess the intra-annual variability in REMO and 
iMOVE.

The comparison of model performances with valida-
tion data is facilitated through the computation of different 
statistical metrics. E.g., the Index of Agreement (IOA) by 
Willmott (1982) is calculated as:

where Fi and Oi represent the forecast and validation data 
for the ith year, respectively, while O is the climatological 
mean of the validation. The range of IOA is between 0 and 
1, where a value of 1 represents the perfect index score with 
the best performance. In order to summarize the mean differ-
ence between observed and model simulation, the root mean 
squared error (RMSE) is quite effective. For the validation 
of precipitation, we use the normalized RMSE (NRMSE) 
that relates the RMSE to the mean value of the observed 
precipitation. The closer the NRMSE value is to 0 the better 
the score.

3 � Results

The monthly, seasonally December-January–Febru-
ary (DJF; Winter), March–April-May (MAM; Spring), 
June-July–August (JJA; Summer), September–October-
November (SON; Autumn), and annually averaged values 
for LAI, precipitation, and temperature are compared with 
the respective reference datasets.
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3.1 � LAI

The annual bias of the LAI in REMO and iMOVE with 
respect to AVHRR and the differences between the simula-
tions are shown in Fig. 2 for the 0.44° (a, b, and c) and 0.11° 
(d, e, and f) domains, respectively. Taking the coarse reso-
lution into account, the bias between the two REMO ver-
sions and AVHRR—where AVHRR is available—is either 
similar or lower which is also true for the seasons (Fig. s3) 
and in most subregions by using iMOVE. The only excep-
tions to this are related to smaller areas in south-eastern 
Russia and some local, tropical areas. The difference in the 
REMO versions further shows a strong decline in LAI in 
Southeast Asia and India (all seasons) and in most parts 
of China (JJA), where no AVHRR data exist. The reduc-
tion of the LAI is also present in the 0.11° resolution where 
only some northern areas of Kazakhstan and Afghanistan 
reveal higher biases in iMOVE than in REMO compared to 
AVHRR across most seasons (Fig. s4). Lowering the LAI 
values generally leads to a bias reduction. However, it has to 
be mentioned that the bias is not only reduced but becomes 
negative mainly during MAM and JJA in some Central 
Asian countries.

The investigation of the annual cycles of LAI for REMO 
and iMOVE and their comparison with the AVHRR data 
along with its temporal variation at 0.44° and 0.11° reso-
lution is shown in Fig. 3a, b, and c, respectively. At both 
resolutions, iMOVE matches better with AVHRR in terms 
of magnitude than REMO does. For the coarser resolution 
and larger domain, it can be stated that REMO captures 
the annual cycle better than iMOVE which is due to the 
lower decline of LAI in SON. Nevertheless, iMOVE shows 
a good agreement of the annual cycle in the CAS-11 domain 
where most tropical areas are excluded. We conclude that the 
reduction of the LAI-bias within iMOVE is an advantage 

over REMO which is to be expected since a more advanced 
vegetation parameterization is used in this model version. 
Similar findings regarding the seasonal variations of LAI 
were also reported by Wilhelm et al. (2014). They described 
it as a result of the interactive coupling of LAI directly to its 
atmospheric and hydrological drivers in iMOVE, whereas 
REMO is based on a static annual cycle for LAI.

This behaviour is clearly shown in Fig. 3c. Here, a con-
stant time series of annual LAI means shows the static 
vegetation of REMO and a consistent overestimation. The 
introduction of iMOVE leads to the representation of inter-
annually varying LAIs. Thus, this is a clear improvement 
regarding the realisation of LAI variable where the more 
complex interactive vegetation scheme adds value compared 
to the former version. The comparison with AVHRR shows 
that the more realistic behaviour in addition to the general 
lowering of the values is also an absolute improvement of 
the model’s representation of vegetation characteristics. It 
can be also stated that the finer resolution shows a generally 
lower bias than the coarse one.

3.2 � Precipitation

Precipitation over the oceanic areas of the 0.44° domain 
has been masked in order to focus on the land areas. The 
monthly mean relative bias for seasonal and annual total 
precipitation from the simulations at 0.44° is based on rema-
pped GPCC data and is shown in Fig. 4. The larger 0.44° 
domain accounts for the precipitation from different mon-
soon regions, especially the East Asian and South Asian 
Monsoon (SAM) systems. As far as Central Asia is con-
cerned, the precipitation’s spatial pattern and magnitude are 
mostly determined by its location between a northern tem-
perate and southern subtropical climate along with its conti-
nentality. The large-scale circulation, especially jet streams 

Fig. 2   a–f Mean monthly leaf 
area index bias (0.44°) for the 
period 2000–2015. Bias is cal-
culated with respect to AVHRR. 
The last column shows the 
difference between iMOVE and 
standard REMO simulation runs
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whose location is changing over the year, is an important 
factor in controlling the seasonal precipitation over Central 
Asia. Located over the northern part of the domain during 
summer, it moves to the south of Central Asia during win-
ter. This leads to an extension of the Siberian High into the 
northern part of the model domain. Additionally, the over-
lying jet streams are responsible for the less stable weather 
conditions in the southern part.

All important climatological features of the precipita-
tion pattern such as mountain ranges with higher amount 
of precipitation, the drier Central Asian plains and Tarim 
Basin, and the belt of very high precipitation in the Tibetan 
Plateau region occur in both models and observations (not 
shown). The bias pattern shows a slight wet bias in precipita-
tion during the winter season over the Central Asian plains 
in both REMO and iMOVE, while precipitation is highly 
overestimated over higher-elevation regions, especially over 
the Tibetan Plateau and in southern and north-eastern parts 
of the domain (Fig. 4a and b). The drier regions like the 
Gobi Desert and Taklamakan are partially the reason for 
the large wet bias in winter as stated by Top et al. (2021). 
A similar pattern of wet bias during the winter season in 
REMO is also reported by Mannig et al. (2013) and Top 
et al. (2021). Russo et al. (2019) found a similar behaviour 
using the COSMO-CLM. The wet bias persists in the north-
ern part of Central Asia during spring and, with slightly 
higher magnitude, in summer (Fig. 4d, e, g, and h).

Interactive vegetation in iMOVE produces a higher wet 
bias during summer as compared to REMO over Central 
Asia. Both models, especially iMOVE, are simulating a very 
large dry bias over the central and northern Indian regions. It 

shows the deficiency of both models in capturing the SAM 
system properly. The early monsoon onset in the models 
can be a possible reason for the dry bias during summer in 
India. Over the Mongolian region, a large wet bias can also 
be seen during summer which further intensifies in autumn. 
The lowest bias can be seen during autumn in both models 
(Fig. 4j and k). Since the wet biases are quite erroneous 
over the southern and north-eastern part of the domain, the 
absolute bias for precipitation is presented in the supple-
mentary figure (Fig. s5a and b), where the overestimation 
during winter is quite small compared to the large relative 
bias shown in Fig. 4. In summary, iMOVE tends to enhance 
the precipitation bias compared with the REMO standard 
version across southern Asia.

A wet bias similar to the 0.44° simulation is present dur-
ing the winter season over the Central Asian plains at 0.11° 
but with a lower magnitude as shown in Table 1. Further-
more, it is restricted mostly to the central, northern, and 
north-western parts of the domain (Fig. 5a and b) while most 
of the Central Asian plains are occupied by a dry bias during 
spring (Fig. 5d and e). A dry bias is present over the south-
western part of the domain during all seasons. A decreased 
wet bias during summer as compared to the 0.44° resolu-
tion can be observed over the northern part of the domain, 
which is again slightly higher in iMOVE than REMO, while 
improvements in the orographic precipitation are also visible 
(Fig. 5g and h). Except for the southern slopes of the Hima-
layan region, where a large wet bias persists, northern India 
and most parts of Pakistan show a dry bias during the sum-
mer monsoon season. Again, the least amount of precipita-
tion bias is present during autumn (Fig. 5j and k), whereas a 

Fig. 3   a–c Mean annual cycle 
of leaf area index averaged over 
the model domains (0.44° and 
0.11°) for the period 2000–2015
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Fig. 4   a–o Mean monthly total precipitation relative bias (%) at 0.44° for the period 2000–2015. Bias is calculated with respect to GPCC. The 
last column shows the difference between iMOVE, and standard REMO simulation runs

Table 1   Mean absolute Bias 
value for total precipitation 
(mm/month) over CAS-44 (the 
red box region in Fig. 1) and 
0.11° domain

DJF MAM JJA SON ANN

REMO_0.44 12.718601 10.974119 11.527166 13.045518 12.066352
iMOVE_0.44 14.024334 14.712525 14.161978 16.911936 14.952696
REMO_0.11 5.174127 4.1128383 2.7613745 3.242991 3.8228328
iMOVE_0.11 5.5818667 5.165372 4.6919956 4.925424 5.0911646
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dipole pattern of the biases can be seen on annual time scales 
with an overestimation in the north and an underestimation 
in the south of Central Asia (Fig. 5m and n). The difference 
between iMOVE and REMO (Fig. 5c, f, i, l, and o) dem-
onstrates the higher simulated precipitation in the northern 
and north-eastern parts of the domain during all seasons. 
The southern areas are characterized by higher precipita-
tion amounts in REMO. Thus, the bias pattern is enhanced 

in both directions when interactive vegetation is considered 
in the model. The absolute bias for 0.11° is shown in Fig. s6 
which reveals a lower wet bias during winter which increases 
in the northern part of the domain as can be seen in Fig. 5.

As mentioned earlier, the larger 0.44° domain is char-
acterized by the presence of various monsoon regions and 
related with very high precipitation magnitudes in the east-
ern and southern parts of the domain which come along with 

Fig. 5   a–o Same as Fig. 4, but for 0.11° runs and the bias is calculated with respect to the GPCC
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the arid climate of Central Asia. Consequently, a uniform 
seasonal cycle for this large model domain with different 
climates is not to be expected which complicates the model 
validation. Therefore, a principal component analysis (PCA) 
based on GPCC’s precipitation has been performed to iden-
tify the major precipitation regions of the domain. For this, 
the monthly precipitation sum of the study period is consid-
ered. These 192 precipitation values act as variables while 
the number of land grid points in the domain acts as the 
sample size for the PCA.

The two leading principal components (PCs) explain 
40.59% (PC1) and 20.68% (PC2) of the variance, respec-
tively. Figure 6a shows that the patterns of PC1 lie in the 
monsoon regions. Consequently, this PC represents the sum-
mer monsoon precipitation. Contrary to that, PC2 (Fig. 6b) 

highlights mainly the drier regions of Central Asia, Eastern 
Europe, and Western Asia and represents precipitation of the 
winter months. The third and fourth PC (not shown) together 
explain further 10% of the variance.

The annual cycle of precipitation from REMO and 
iMOVE is compared with the GPCC for the 0.44° and 
0.11° domain and is shown in Fig.  7a and b, respec-
tively. We have also selected a region (red box in Fig. 1a, 
CAS-44 hereafter) similar to the 0.11° domain to show 
the effect of increased horizontal resolution. The annual 
cycle of GPCC (black solid line, Fig. 7a) shows the sea-
sonal evolution of the precipitation with a strong increase 
from May onwards. This is a clear signal of the monsoon 
onset. Precipitation reaches its peak during July and after-
wards decreases gradually in the following months. This 

Fig. 6   a, b Covariance maps based on principal components (PC1 and PC2) over the 0.44° domain using monthly total precipitation of GPCC 
observation for the period 2000–2015

Fig. 7   a, b Mean annual cycle of total precipitation of GPCC obser-
vation (remapped to respective model domain grids from original 
0.25° resolution) and different model experiments averaged over the 

various model domains i.e. 0.44°, CAS-44, and 0.11° for the period 
2000–2015. The dashed lines in b represent the CAS-44 region 
described in Fig. 1
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differentiation has already been shown by the PCA. Both, 
REMO and iMOVE, are able to capture the monthly and 
seasonal evolution of precipitation, yet with signatures of 
a strong wet bias during all months. The northern part of 
the 0.44° domain contributes to the wet bias during the 
winter months as seen in Fig. 4. As shown earlier, iMOVE 
tends to produce a slightly higher precipitation bias than 
REMO. Especially the precipitation during spring is 
noticeably higher in iMOVE compared to REMO.

The annual cycle at 0.11° resolution shows an improve-
ment in capturing the monthly and seasonal evolution of pre-
cipitation for both models with respect to the observations 
(Fig. 7b). The wet bias in REMO and iMOVE still persists 
during the winter season but with a lower magnitude. One 
can observe a decreasing pattern in precipitation magni-
tude during spring season in GPCC. This is captured well 
by REMO and iMOVE. The peak precipitation during July 
and August for REMO almost overlaps with GPCC while 
iMOVE shows slightly higher precipitation. The comparison 
of the annual cycle for the CAS-44 region with the 0.11° 
domain reflects the clear added value of the higher model 
resolution.

The models’ performance is measured by IOA (Will-
mott 1982). At 0.44° resolution, both, REMO and 
iMOVE, show a good agreement with observations espe-
cially over the Central Asian plains while the orographic 
regions exhibit a lower value in both simulations (Fig. 8a 
and b). However, in mountainous regions and the eastern 
part of the domain, REMO shows slightly higher con-
formity (0.15–0.35) with observations representing the 
spatial pattern of precipitation as compared to iMOVE 
(0.05–0.25). The IOA at 0.11° resolution shows a better 

agreement between the models and GPCC over the north-
ern and western parts of the domain (Fig. 8c and d). Over 
the SAM region, a better agreement of REMO at 0.11° 
resolution in comparison to iMOVE can be observed 
(Fig. 8c). Interestingly, the areas with lower precipita-
tion amounts like the Central Asian plains and desert 
regions are captured better by both models, showing the 
highest degree of agreement irrespective of the model 
resolution. Vice versa, orographic and monsoon regions 
have lower degrees of agreement. Precipitation’s IOA at 
0.11° resolution is in the range of 0.25–0.65 and dem-
onstrates a clear improvement in simulated precipitation 
compared to the 0.44° resolution. This behaviour has also 
been found by Prein et  al. (2015) who conducted the 
added value of higher resolutions for precipitation over 
Europe.

To compare the latitudinal and seasonal variations of 
monthly precipitation, a Hovmöller plot is presented in 
Fig. 9. At 0.44° resolution (Fig. 9a, b, and c), one can 
observe a strong precipitation band in GPCC during sum-
mer over the SAM regions (15°N–35°N). This precipita-
tion pattern is captured well by the simulations within 
a similar latitudinal band but with a higher magnitude, 
mostly contributed by orographic precipitation, and spread 
over a longer period (Fig. 9b and c). For Central Asia, 
both models are in better agreement with the precipita-
tion variability, but the northern part of the domain shows 
increased precipitation amounts in the models and a higher 
seasonal variation compared to GPCC. The improved rep-
resentation of the simulated precipitations’ magnitude can 
be seen at the finer resolution of 0.11° while the higher 
seasonal variation is still present (Fig. 9d, e, and f). The 

Fig. 8   a–d Willmott’s Index 
of Agreement for total pre-
cipitation against GPCC for 
the period 2000–2015 for both 
model domains and REMO 
versions
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precipitation variability at higher latitudes is more com-
parable with the magnitude demonstrated by GPCC than 
at the coarser resolution. A higher amount of precipitation 
can be observed during winter and spring in REMO and 
iMOVE at around 30°N in both resolutions.

3.3 � Temperature

3.3.1 � Mean temperature

We have used ERA5-Land to calculate the monthly 2m mean 
temperature bias of REMO and iMOVE during different sea-
sons and on an annual scale. The plots are shown in Figs. 10 
and 11 for the coarse and the fine resolution, respectively.

On seasonal scales, both models show a substantial 
warm bias over the eastern part of the domain, especially 
the Mongolian region, during winter while the Central Asian 
plains have the lowest magnitude of warm bias (Fig. 10a 
and b). A similar pattern of warm bias during winter was 
also reported by Top et al. (2021) while Ozturk et al. (2012, 
2016) and Russo et al. (2019) found similar warm bias sig-
natures in the north-eastern part of the domain for RegCM 
and COSMO-CLM, respectively. Over the Indian region and 
the south-western part of the domain, iMOVE tends to show 
a lower warm bias than REMO during the winter season. 
This becomes more clear when focusing on the difference 
between iMOVE and REMO in Fig. 10c where REMO tends 

to show higher temperatures over these regions. A moderate 
warm bias is present over Central Asia and northern and cen-
tral India in REMO during spring (Fig. 10d). For iMOVE, 
the warm bias is lower, especially over the Indian region, and 
again evident in the difference maps (Fig. 10e and f). Dur-
ing summer, the southern and mountainous regions of Cen-
tral Asia show a significant warm bias in REMO (Fig. 10g) 
while the bias magnitude decreases for iMOVE. This is also 
the case for the northern part of Central Asia and over Paki-
stan and Afghanistan as demonstrated by the difference plot 
(Fig. 10h and i). Both models are in good agreement with 
the validation data during autumn with a better performance 
of iMOVE (Fig. 10j, k, and l). The models are able to pro-
duce an almost identical pattern of mean temperature bias at 
the annual scale. However, REMO simulates slightly higher 
temperatures in some parts of the domain (Fig. 10m, n, and 
o). The slight cold bias at latitudes above 55°N and over 
some parts of the Tibetan Plateau persists throughout all the 
seasons and, thus, on the annual scale.

The mean temperature bias at the 0.11° simulations 
shows an improvement across all seasons (Fig. 11). The 
seasonal pattern during winter and spring shows a decrease 
in the warm bias for both simulations especially over the 
Central Asian plains in comparison to the coarse resolu-
tion (Fig. 11a, b, d, and e). For the eastern part, a reduction 
of the warm bias can also be observed in the finer resolu-
tion. Ozturk et al. (2012, 2016) found that the forcing of 

Fig. 9   a–f Hovmöller plot showing the latitudinal variation of total precipitation averaged over all longitudes of the model domains (0.44° and 
0.11°) for the period 2000–2015
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ERA-Interim results in a warm bias in RCMs which occurs 
also during winter over the northern part of CAS-CORDEX 
and is related to the inefficiency of ERA-Interim to repre-
sent snow cover. In our study, the bias over the orographic 
regions also shows an improvement due to the higher reso-
lution but the overestimation persists. The slight cold bias 
in iMOVE during summer and autumn is clearly visible 
over Central Asia (Fig. 11h and k). Again, the precipitation 
pattern during autumn is in close agreement with ERA5-
Land (Fig. 11j and k). Interestingly, the difference between 
iMOVE and REMO shows higher temperatures across all 
seasons in REMO except for winter. Here, iMOVE shows 
an overestimation in Central Asia (Fig. 11c, f, i, l, and o).

3.3.2 � Maximum temperature

The models’ biases of the maximum temperature compared 
to ERA5-Land are presented in Fig. 12 on the annual scale. 

We show solely the annual maps since the bias patterns of 
the maximum temperature during the seasons barely differ. 
At 0.44°, the annual mean biases in maximum temperature 
are showing a significant underestimation. This is pro-
nounced during summer and autumn, while during winter 
and spring season, these colder biases have the smallest 
range especially over the Central Asian part (Fig. s7a, b, d, 
and e). iMOVE shows a stronger cold bias over orographic 
regions, especially the Tibetan Plateau (Fig. 12b). On an 
annual scale, the northern part of the domain is marked 
by higher maximum temperatures in iMOVE. Vice versa, 
REMO shows higher values in the southern and south-west-
ern parts of the domain (Fig. 12c).

Significant improvements in the maximum tempera-
ture can be observed at at 0.11° resolution (Fig. 12d, e, 
and f). On an annual scale, the cold bias is still present but 
clearly reduced over the northern and western parts of the 
domain. A heterogeneous spatial pattern of the maximum 

Fig. 10   a–o Mean monthly 2m 
temperature bias (0.44°) for 
the period 2000–2015. Bias 
is calculated with respect to 
ERA5-Land. The last column 
shows the difference between 
iMOVE and standard REMO 
simulation runs
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Fig. 11   a–o The same as Fig. 12 
but for 0.11° runs and the bias 
is calculated with respect to the 
ERA5-Land

Fig. 12   Mean monthly 2m 
maximum temperature bias at 
0.44° (a–c) and at 0.11° (d–f) 
for the period 2000–2015. Bias 
is calculated with respect to 
ERA5-Land. The last column 
shows the difference between 
iMOVE and standard REMO 
simulation runs
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temperature is present in the difference plot of iMOVE 
and REMO (Fig. 12f). The temperature’s underestimation 
is again more pronounced in iMOVE during summer and 
autumn (Fig. s8g, h, j, and k). An overestimation of the max-
imum temperature, which persists throughout each season 
and on an annual scale, can be seen over the mountainous 
region of Kyrgyzstan, Tajikistan, northern part of India and 
Pakistan. Overall, both models capture the maximum tem-
perature better by applying finer resolution.

3.3.3 � Minimum temperature

The spatial bias pattern of the minimum temperature rela-
tive to ERA5-Land is presented in Fig. 13 for both resolu-
tions. At 0.44° resolution, the overestimation of the mini-
mum temperature is clearly visible during all the seasons 
(Fig. s9a-l) and, consequently, also on the annual scale. The 
bias is present over the entire study area with a relatively 
high magnitude (Fig. 13a and b). The presence of such a 
strong warm bias compared to the mean and maximum tem-
perature over the eastern part of the domain, especially the 
Mongolian region during winter, causes the warm bias in 
the mean temperature as it was seen in Fig. 10a and b. Inter-
estingly, REMO is simulating higher values of minimum 
temperature, especially over the southern part of the 0.44° 
domain whereas iMOVE shows slightly higher values over 
the Central Asian part (Fig. 13c).

The magnitude of warm biases in minimum tempera-
ture reduces significantly at the higher resolution of 0.11° 
(Fig. 13). The improvement of the warm bias can be seen 
on an annual scale over Central Asia which is most notable 

during winter and autumn in both models (Fig. s10a, b, j, 
and k). The bias patterns during spring and summer show 
the highest magnitude of bias among all the seasons with 
a slightly strong warm bias in spring (Fig. s10d, e, g, and 
h). The magnitude of the biases is slightly lower in iMOVE 
compared to REMO especially during summer and autumn 
(Fig. s10g, h, j, and k). Similar to the difference in iMOVE 
and REMO at 0.44° resolution, the simulated minimum tem-
perature is higher during most of the seasons except winter 
(Fig. s10c).

The mean annual cycle for the models’ simulated mean, 
maximum, and minimum temperatures along with the data of 
ERA5-Land at 0.44°, CAS-44, and 0.11° is presented in Fig. 14. 
For the 2m mean temperature at 0.44°, both models show too 
high mean temperature during summer and too low mean 
temperatures during winter months compared to ERA5-Land. 
However, REMO is closer to the validation data in capturing 
the mean temperature at 0.44° during summer. Over CAS-44 
and 0.11°, both models capture the seasonal variations of the 
mean temperature well with an improvement at the higher reso-
lution of 0.11° (Fig. 14a and d). Out of both models, iMOVE is 
closer to the reference dataset, especially at the higher resolu-
tion which was also intended by the spatial pattern (Figs. 10 and 
11). The seasonal cycle of the maximum temperature shows 
the inability of both models to capture the seasonal variations 
(Fig. 14b and e) at a coarser resolution. In contrast, the finer 
resolution can reproduce the seasonal variation compared to 
ERA5-Land. Regarding the minimum temperature, iMOVE is 
closer to the observational and reanalysis data than REMO at 
both resolutions, while some bias still occurs in both resolutions 
(Fig. 14c, f, and i). The reduction of that large bias by the usage 
of iMOVE is an advantage of the new model component.

Fig. 13   Mean monthly 2m 
minimum temperature bias at 
0.44° (a–c) and at 0.11° (d–f) 
for the period 2000–2015. Bias 
is calculated with respect to 
ERA5-Land. The last column 
shows the difference between 
iMOVE and standard REMO 
simulation runs
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4 � Discussion

4.1 � LAI

In the case of vegetation parameters, the behaviour of the 
LAI was investigated. Using the interactive vegetation which 
enables this index to show inter-annual variances instead 
of static values. With the related representation of the veg-
etation’s dependency on atmospheric variables instead of 
the prescription of inter-annually static values, an impor-
tant added value is introduced to the simulation. Further-
more, the LAI is generally reduced in the iMOVE-simula-
tions which leads to a systematic improvement compared 
to AVHRR. The improvement is also demonstrated by the 
climatological cycle and the difference maps. Additionally, 

we can state that the combination of LAI and the higher-
resolved simulation delivers the best results for this impor-
tant vegetation index.

Wilhelm et al. (2014) showed that the consideration of 
iMOVE does not lead to a clear systematic effect on precipi-
tation and temperature in Europe. While, e.g., the prominent 
cold bias over Russia was reduced for winter and spring, 
Central Europe, the Mediterranean, and the Balkan showed 
strong warming for all seasons except winter. The iMOVE 
version also introduced a dry bias for precipitation over the 
Balkan during summer and was able to reduce the same 
bias in autumn. This heterogeneity and complexity are also 
observed in our study as it is described in detail in the results 
and the subsequent discussion section. Nevertheless, follow-
ing Di Luca et al. (2015), it has to be stated that the usage of 

Fig. 14   Mean annual cycle of 2m mean (a, d), maximum (b, e), and minimum (c, f) temperature averaged over the model domains (0.44° and 
0.11°) for the period 2000–2015
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iMOVE comes along with an added value since it (i) intro-
duces more and more detailed processes and (ii) improves 
the representation of vegetation which is directly related to 
the introduced processes.

4.2 � Precipitation

Observed gridded precipitation datasets’ accuracy decreases 
in mountainous regions with elevation, especially above 
1500 m (Zhu et al. 2015). Additionally, they underestimate 
solid precipitation (Palazzi et al. 2013; Sun et al. 2018). The 
strong wet bias and, hence, the overestimated precipitation 
in both REMO and iMOVE on seasonal and annual scales 
over the mountains of Central Asia and the Tibetan Plateau 
is in accordance with the study by Zhu et al. (2015) because 
of the mentioned underestimation by gridded precipitation 
data. Similar patterns of large wet biases over the Tibetan 
Plateau using COSMO-CLM were also reported in the study 
of Russo et al. (2019). This wet bias, which is common for 
several RCMs in regions with complex orography (Gao et al. 
2015; Guo et al. 2018), is possibly coming from inaccu-
rately simulated planetary boundary layer (Xu et al. 2016) 
and/or enhanced orographic precipitation estimation in the 
models (Gerber et al. 2018). The presented bias patterns 
of precipitation across different seasons and on the annual 
scale were also reported by Ozturk et al. (2012; 2016), Russo 
et al. (2019), and Top et al. (2021), using RCM simulations 
at resolutions of 0.50°and 0.22°, respectively. The behaviour 
of the simulated precipitation, especially at the resolution of 
0.11° as shown in Fig. 5 and the overestimation of precipita-
tion over the orographic regions and in the eastern part of 
the domain during most seasons and on the annual scale, is 
comparable with their findings. Furthermore, the dry bias 
observed mostly over the north-western and SAM region, 
which is most prevalent during summer, is also reported 
in the mentioned studies. A possible mechanism for biases 
in precipitation is explained by Ozturk et al. (2012). The 
authors observed a decreased precipitation during summer 
because of lower regional temperatures and thus weakened 
pressure gradients over the region. In our study, both mod-
els are in accordance with the observations in capturing the 
precipitation variability, especially at the higher resolution, 
which has a better representation of the spatial heterogene-
ity. The effect of orography and land cover, which affects 
the temperature more systematically than precipitation, 
is one of the reasons for the lower accuracy of simulated 
precipitation (Kotlarski et al. 2014). Additionally, in order 
to improve the precipitation evaluation, it is important to 
reduce the uncertainty range and error in the gridded obser-
vational products (Russo et al. 2019). Mannig et al. (2013) 
also reported lower precipitation biases at finer resolution in 
REMO in comparison to the coarsely resolved simulations. 

They argued that the inefficiency in simulating precipita-
tion does not necessarily arise from bad parametrization but 
from a poor representation of land surface properties which 
are especially important in the southern part of Central 
Asia where irrigation and land cover have a strong impact 
on precipitation (Lioubimtseva et al. 2005). Furthermore, 
the inability of REMO to reproduce the mean annual cycle, 
especially over the Asian monsoon region, is also reported in 
the study of Top et al. (2021). Similarly, over the subtropical 
regions, which are influenced by the Asian monsoon system, 
Remedio et al. (2019) also observed a wet bias on the annual 
timescale.

4.3 � Temperature

Overall, REMO and iMOVE capture the mean temperature 
variability and annual cycle well at 0.44° and show signifi-
cant improvements at higher resolution of 0.11° (Figs. 10, 
11, and 14). Additionally, regarding the biases, the models 
are in a comparable range with other RCMs from COR-
DEX-CAS following the studies from Ozturk et al. (2012, 
2016), Russo et al. (2019), and Top et al. (2021) and over 
the sub-region of Central Asia (Wang et al. 2020; Zhu et al. 
2020). The highest agreement between models and reference 
datasets for mean temperature was observed during autumn, 
while warm biases are strongest during spring and winter 
with a better performance of the finer resolution (Figs. 10 
and 11). The strong warm bias (> 5 °C) during winter over 
Mongolia and the north-eastern part of the domain at 0.44° 
was also observed in the studies of Ozturk et al. (2012, 2016) 
and Top et al. (2021). Ozturk et al. (2012, 2016) concluded 
that it emerges from the driving ERA-Interim data which has 
a warm bias over this part of the domain due to its inability 
to simulate the snow cover adequately. Top et al. (2021) 
also concluded that the warm bias in the eastern part of the 
0.44° domain is caused by the warm forcing data. Addition-
ally, CRU has a tendency to show a cold temperature bias 
over Russia in winter (New et al. 1999). Note that our 0.11° 
domain is not extended northward as it is in Top et al. (2021) 
for their 0.22° resolution.

The cold bias during spring in the north-eastern part 
of the 0.44° domain was also reported by Ozturk et al. 
(2012, 2016) for their 0.50° run and by Top et al. (2021). 
All studies attributed this to the fact that either snow-
related processes are simulated incorrectly by the models 
or the occurrence of snow cover is delayed. However, 
Russo et al. (2019) did not observe a significant reduction 
of warm bias over the north-eastern part of their domain 
after changing the snow scheme in COSMO-CLM. Ozturk 
et al. (2012) obtained significantly improved tempera-
ture patterns in the north of CORDEX-CAS after the 
use of a cloud correction scheme in RegCM. Thus, the 
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simulated total cloud cover can be another possible expla-
nation for the temperature bias in the northern part of the 
domain. During summer, a weak cold bias in the north of 
the domain and the warm bias in the south of the 0.44° 
simulation as well as a similar but more pronounced bias 
pattern at 0.11° resolution is observed. This is coher-
ent with the findings from Russo et al. (2019) and Top 
et al. (2021). They also observed a similar bias pattern 
except for some areas on the Tibetan Plateau region for 
COSMO-CLM.

For maximum and minimum temperatures of the coarse 
resolution, strong cold and warm biases were observed, 
respectively (Figs. 12 and 13). Both, REMO and iMOVE, 
underestimate the maximum temperature and overestimate 
the minimum temperature which is also quite evident from 
their annual cycle, and hence, it shows the models’ inabil-
ity to capture the diurnal temperature range (Fig. 14b and 
c). Yet, iMOVE tends to reduce that bias. The respective 
cold and warm biases in maximum and minimum tem-
peratures were also present in the higher resolved simula-
tions but with substantially reduced magnitude compared 
to the 0.44° simulation (Figs. 12 and 13). This suggests 
that increasing the horizontal resolution of RCMs is an 
effective way to reduce the magnitude of biases. Studies 
by Laprise et al. (2003) and Kyselý and Plavcová (2012) 
over different regions and by Russo et al. (2019) and Top 
et al. (2021) over the CORDEX-CAS domain also found 
the underestimation in the diurnal range within differ-
ent RCMs. Thus, this seems to be a general weakness of 
RCMs that can be effectively reduced by the interactive 
vegetation which is a clear added value. The cold bias 
pattern in high orographic regions, especially over the 
Tibetan Plateau and the Himalayas, may be primarily due 
to the gridded observations which are less reliable in these 
regions (Russo et al. 2019).

Generally, it can be said that there are some shortcom-
ings of regional climate modeling independent of the tar-
get resolution (e.g., Lucas-Picher et al. 2021 and studies 
cited in there). On the one hand, the results of an RCM 
depend on the boundary forcing data provided by a rea-
nalysis (in our case ERA-Interim) or a GCM. Thus, if 
the boundary forcing shows systematic errors, the RCM 
might show a higher resolved representation of those as 
well—depending on the domain size and setting (Laprise 
et al. 2008). Additionally, excluding convection-permitting 
simulations, an RCM—like in present simulations—uses 
the same parameterization schemes to discretize processes 
smaller than the simulated grid. With this, a systematic 
error can occur depending, e.g., on the examined season or 
region. In the present work, soil hydrological processes are 
barely represented which is influencing the energy fluxes 
between the land surface and the atmosphere and has 

already been a point of critique in Wilhelm et al. (2014). 
This is tackled in currently ongoing work by the introduc-
tion of a multilayer soil scheme and the consideration of 
irrigation.

5 � Summary and conclusion

In the present study, the evaluation of RCM simulations 
over Central Asia at the horizontal resolution of 0.44° and 
0.11° has been carried out. The regional climate model 
REMO (v2015) and its vegetation-coupled version REMO-
iMOVE, which is used for the first time out of Europe, 
have been considered. Both model versions are generally 
able to capture the precipitation variability very well at 
the finer resolution of 0.11° with a relatively higher mag-
nitude of simulated precipitation in iMOVE, especially 
in northern and north-eastern parts of the domain. A wet 
bias during winter and summer and a dry bias in spring 
over northern Central Asia were found in both models. 
Over high-elevated regions, mainly the Tibetan Plateau 
and Himalayas, erroneous precipitation was observed at 
both resolutions. Both models are also able to capture the 
seasonal cycle of precipitation, with REMO performing 
relatively better, especially during summer at 0.11° resolu-
tion. The best performance from both versions is observed 
in autumn where precipitation biases are within the obser-
vational uncertainty at both resolutions.

In terms of mean temperature, a warm bias in the north-
eastern part of the domain occurs during the winter sea-
son at both resolutions, which probably arises from the 
driving ERA-Interim data (Ozturk et al. 2012, 2016) and 
inaccurate simulation of snow cover (Russo et al. 2019; 
Top et al. 2021). Regarding the temperature extremes, 
the underestimation of maximum and overestimation of 
minimum temperature, respectively, results in an inaccu-
rate simulation of the diurnal temperature range which 
becomes visible in the investigated monthly values as well. 
At the higher resolution of 0.11°, this aspect is clearly 
improved compared to the coarser resolution. Again, the 
lowest bias of temperature is also observed during autumn 
for both versions. There is a need to consider more vari-
ables to get a more thorough picture of the added value of 
the high resolution instead of only analysing precipitation 
and temperature.

Overall, the vegetation-coupled version iMOVE per-
forms quite similarly to its parent version REMO in cap-
turing the mean climate over the Central Asian region. 
As the biases in temperature are reduced but still being 
present in iMOVE, this indicates the involvement of 
other processes apart from surface variables (Wilhelm 
et  al. 2014). According to them, major differences in 
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near-surface climate between iMOVE and REMO can be 
restricted to some regions and are mostly related to the 
new representation of vegetation phenology. Furthermore, 
Wilhelm et al. (2014) attributed the differences in REMO 
and iMOVE to the different temporal dynamics of vegeta-
tion cover and density and changes in the soil scheme. 
The moisture and surface heat flux gets affected by these 
parameters leading to a modification in the simulated near-
surface climate. Indeed, the representation of the LAI 
shows a clear improvement in inter-annual variability and 
magnitude for both domains and in seasonal cycle and 
spatial patterns for Central Asia.

In summary, the finer resolved simulations at 0.11° of 
both REMO versions represent the spatial details in cli-
mate variables much better and can be used for climate 
impact studies and future climate change projections. The 
coupled iMOVE version is able to simulate the tempera-
ture patterns better in comparison to REMO, especially at 
a higher resolution. However, the main point of iMOVE is 
the clear improvement of LAI’s simulation by implement-
ing an interactive instead of a static and, thus, more com-
plex vegetation scheme. Thus, an added value is achieved 
(Di Luca et al. 2015).

Further studies are required in the future to analyse 
the cloud cover and snow-related processes in detail at 
a finer resolution to better understand the bias patterns 
in precipitation and temperature. We recommend the 
usage of iMOVE in future studies due to its clear advan-
tage in reproducing the diurnal temperature range and the 
annual cycle of LAI, e.g., to examine vegetation dynam-
ics and land use and land cover changes and their effects 
on local and regional climate dynamics in Central Asia. 
Additionally, we follow the recommendation of Wilhelm 
et al. (2014) to combine iMOVE with a multilayer soil 
scheme and undertake that task for upcoming studies. A 
subsequent step can be the coupling to dynamic vegeta-
tion schemes which are able to change the plant functional 
types depending on long-term changing climate condi-
tions. It has been shown that the consideration of these 
models adds value to the climate models and creates new 
research opportunities (Rachmayani et al. 2015; Shi et al. 
2018; Drüke et al. 2021; Zhang et al. 2022).
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