
https://doi.org/10.1007/s10489-022-03957-8

KIETA: Key-insight extraction from scientific tables

Sebastian Kempf1 ·Markus Krug1 · Frank Puppe1

Accepted: 2 July 2022
© The Author(s) 2022

Abstract
An important but very time consuming part of the research process is literature review. An already large and nevertheless
growing ground set of publications as well as a steadily increasing publication rate continue to worsen the situation.
Consequently, automating this task as far as possible is desirable. Experimental results of systems are key-insights of high
importance during literature review and usually represented in form of tables. Our pipeline KIETA exploits these tables to
contribute to the endeavor of automation by extracting them and their contained knowledge from scientific publications.
The pipeline is split into multiple steps to guarantee modularity as well as analyzability, and agnosticim regarding the
specific scientific domain up until the knowledge extraction step, which is based upon an ontology. Additionally, a dataset of
corresponding articles has been manually annotated with information regarding table and knowledge extraction. Experiments
show promising results that signal the possibility of an automated system, while also indicating limits of extracting
knowledge from tables without any context.

Keywords Table extraction · Table understanding · Ontology · Key-insight extraction · Information extraction

1 Introduction

An important part of research is literature review, consisting
of selecting, reading and comparing scientific works that
correspond to a given research domain. This leads to some
problems, because every publication increases the amount
of literature to be reviewed. Relatively new and active
research fields ten to have a high publication rate, meaning
more papers are published in a smaller amount of time. This
problem is exemplified by the domain of computer science
for which the number of submissions per month on arxiv.org
grew from under 2500 per month in 2017 to close to 5000
per month in 2020. As a result the workload of literature
review for researchers is increasing steadily. Automating
parts of the literature review process would therefore free up

� Sebastian Kempf
sebastian.kempf@informatik.uni-wuerzburg.de

Markus Krug
markus.krug@informatik.uni-wuerzburg.de

Frank Puppe
frank.puppe@informatik.uni-wuerzburg.de

1 Chair of Computer Science VI, University of Würzburg,
Sanderring 2, Würzburg, 97070, Bavaria, Germany

time spent reviewing and increase the overall quality as the
chances of important publications being missed are lowered.

While current methods of literature review assistance
or automation like keyword searches allow narrowing
down the set of papers to be considered, the results
of these papers still have to be manually compared in
order to get an idea of their content and their relative
performance. The key during this process is extracting
key-insights, which are pieces of information relevant to
a researcher. For example a common question within the
community of machine learning is “What is the current
state-of-the-art on a given dataset?”. Here, the relevant
key-insights concern experimental results on some dataset.
Other common examples of key-insights are the task or
methodology. However, there are efforts to create so called
leaderboards, either manually maintained or supported
by algorithms, to simplify answering the first question
concerning the current state-of-the-art. Examples for these
leaderboards are paperswithcode1 and nlp-progress2. These
list the best experimental results of papers as tuples
(task, dataset, metric, value). However, a significant
amount of information is lost as all other experimental
results contained within the paper are discarded. This
data is useful for further statistical analysis, or for

1https://paperswithcode.com/
2https://nlpprogress.com/

/ Published online: 9 August 2022

Applied Intelligence (2023) 53:9513–9530

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03957-8&domain=pdf
http://orcid.org/0000-0002-5790-1649
arxiv.org
mailto: sebastian.kempf@informatik.uni-wuerzburg.de
mailto: markus.krug@informatik.uni-wuerzburg.de
mailto: frank.puppe@informatik.uni-wuerzburg.de
https://paperswithcode.com/
https://nlpprogress.com/

example checking the results were reported correctly. This
contribution is part of a bigger research effort to develop
a pipeline that can extract key-insights from scientific
publications. The current focus is knowledge concerning
experimental results, which are usually represented in form
of tables. Consequently, this approach concentrates on the
automated extraction of tables and subsequent generation
of included knowledge. This knowledge is defined using
an ontology developed within this contribution. While a
general ontology describing all possible scientific results
would be preferable, their complex nature makes the
development very challenging. In order to demonstrate the
potential of this task and the applicability of this pipeline,
it is currently necessary to limit the scope to a single
domain. The domain of coreference resolution has been
arbitrarily chosen for the purposes of this contribution.
Any other research domain containing experimental results
could have been used. We developed KIETA, a pipeline to
extract tables from scientific documents and subsequently
extract key-insights that are defined in an ontology. To this
end, a rule- and heuristic-based modular pipeline is created
that localizes tables within non-scan PDF documents. The
pipeline builds a graph-based table model based on [8]
combining structure and semantic meaning in a single
model. An ontology is defined in order to formalize the
meaning of “experimental result”, which is the key-insight
that has been chosen as an example. A dataset containing
208 tables from 49 documents is created to serve as the
basis of our experiments. Before the construction of this
dataset, a two-dimensional categorization of over 750 tables
from over 200 documents has been conducted to analyze
the real-world environment. The tables in the dataset have
been chosen to form a valid sample emulating the real-
world distribution as close as possible. Dataset tables are
annotated with information concerning every step of the
table extraction process relevant for the evaluation. A
subset of these tables was also annotated with information
regarding the subsequent extraction of knowledge. To the
best of our knowledge, KIETA is the first system combining
localization, the creation of a multi-faceted table model
and subsequent key-insight extraction to a single pipeline.
Experiments show that it outperforms popular open-source
tools regarding detecting and analyzing tables.

2 Background

This pipeline as well as the evaluation process are based on
the table model developed by [8]. A set of cell identifiers
T is paired with different restrictions to form the four
components of this model. The Physical Model represents
the typical two-dimensional grid structure of cells by
assigning each cell identifier a pair of coordinates within

that grid c = (t ∈ T , x1, y1, x2, y2, string). Tables usually
consist of two kinds of cells: labels and entries. This is
described by the Functional Model composed of two subsets
A ⊂ T , D ⊂ T , where A is the set of row Ar and
column Ac labels (access cells, headers) and D the set of
entries (data cells). Although the distinction between row
and column labels is usually clear, it fails when the stub
head is considered. The correct association of the stub head
can usually only be achieved using semantic knowledge. For
the purposes of the table model within this contribution, the
stub head is defined as a column label for the functional
evaluation, but otherwise not considered. Although the
Semantic Model contains many different aspects, this work
is focused on the semantics of relations, meaning the
interpretation of the table as a database table. Consequently,
the model is seen as a mapping of labels to data entries.
As an example, the previously described model is applied
to Table 1. Note that the stub head is mostly ignored within
this contribution, although it is included in this example.

Technically, cell identifiers c1, . . . , cn would have to be
used in every example, but for better comprehension the
cell content will be used as identifier. This results in the
following:

Tphysical = {(c1, 2,1,3,1, Weather),

(c2, 1,1,1,2, Day),

(c3, 2,2,2,2, Sun), . . .},
Tf unctional = {{Weather, Day, Sun, Rain, Monday, Friday},

{5h, 0h, 0ml, 10ml}},
Tsemantic = {((Weather,Sun), (Day,Monday), 5h),

(Weather,Sun), (Day,Friday), 0h),

(Weather,Rain), (Day,Monday), 0ml),

((Weather,Rain), (Day,Friday), 10ml)}.

3 Related work

This contribution is related to a number of different fields
of study: table extraction (TE), key-insight extraction (KIE)
and semantic table interpretation (STI). TE means detecting
the presence of a table within a given medium (detection),

Table 1 Example table with grid cell coordinates for the application
of the table model of [8]

1 2 3

1 Weather

2 Day Sun Rain

3 Monday 5h 0ml

4 Friday 0h 10ml

9514 S. Kempf et al.

defining its boundary (localization) and recovering its
structure (recognition). Each is a separate research field
being tackled by different existing systems. However,
preliminary experiments showed that these systems exhibit
issues for the given use case, necessitating the development
of a custom variant. KIE concerns the extraction of defined
pieces of knowledge from a given medium (e.g. text). The
definition of knowledge is a research field of its own and
is only briefly discussed here. The focus lies on extracting
homogeneous data in order to create a unified and queryable
datastructure. The goal of STI is annotating a table with
semantic information, i.e. semantifying web tables with
as much knowledge as possible. The process relies upon
structured tables and usually involves recognizing Named
Entities using a knowledge base or graph. As a complete
overview of all related work is difficult, the following
describes related work employed within our experiments as
well as approaches tackling similar problems.

The popular open-source Tabula3 is promising localiza-
tion and structure recognition of tables within PDF files.
While the algorithmic background is not clearly stated, the
source code of the table detection algorithm references [13]
in which two heuristic methods to detect bordered and bor-
derless tables are developed. Bordered tables are found
using the crossing points of horizontal and vertical lines
to define rectangular spaces. These are merged or sepa-
rated according to heuristically derived rules, establishing
the exact boundaries of the tables. This approach cannot be
used in case of borderless tables, therefore each row of tex-
tual elements is scored according to its probability being
a table element using heuristic factors like the presence of
numbers. High scoring areas are merged to form a rectangu-
lar area, which is defined as table. The recognition approach
of Tabula relies on vertical/horizontal lines or a distance
threshold to find the correct column/row arrangement.
TableSeer [12] is a table extraction (TE) system specifi-
cally geared towards scientific publications that is also able
to extract table captions. Textual elements within PDF files
are extracted and merged into lines based on their position.
Using a set of conditions, lines are further aggregated into
boxes and categorized using rules based on their font size.
Table candidates are generated by keyword matching and
checking if the whitespace of this area matches the general
structure of a table. Another set of rules divides these table
boxes into classes like “caption” and “column label”. The
system presented within [11] to detect and localize tables
is based on the ResNeXt [20] architecture using the Faster
R-CNN algorithm [17]. It has been trained on the Table-
Bank dataset that was also developed within the publication.
Perez-Arriaga et al. [15] presented a system with the goal

3https://github.com/tabulapdf/tabula/

of capturing the ontological concept of scientific publica-
tions. Through noun phrase analysis, named entities (NE)
are found within tables and annotated by querying DBpedia.
Disambiguation is achieved by Latent Semantic Indexing to
find the most similar concept. Relationships between these
NEs are found within the text of the publication using a
confidence score with logistic regression. A formal repre-
sentation is achieved by a defined ontology. Oelen et al [14]
propose a prototype creating knowledge graphs from tables
of scientific surveys. After pre-selecting publications based
on several defined characteristics of desirable documents
and tables, Tabula is employed to extract the tables. The per-
formance of Tabula has been deemed not satisfactory by the
authors, so errors have to be manually corrected. Knowledge
gained from the list of references is annotated to the corre-
sponding rows of a survey table, so that this table contains
all necessary information to build a knowledge graph. The
data contained within the tables is not interpreted.

Considering the extraction of key-insights, the topic
of leaderboard creation is closest to the goal of this
contribution. Hou et al. [5] model the task of automatically
creating a leaderboard using (Task, Dataset, Metric, Score)-
tuples (TDMS) as a natural language inference (NLI) task.
GROBID [4] is used to extract tables from PDF documents.
These tables are paired with additional information, such as
the sentences most likely to describe the experimental setup.
A transformer model is employed to predict (TDM)-triples
on the basis of these data pairs. Additionally, a separately
trained model predicts the relationship between the score
and a (TDM)-tuple. Only scores in bold font are considered,
as these are most likely to be relevant for a leaderboard.
In contrast, our contribution considers all experimental and
numerical results found within the table scope. The authors
of the AxCell system [9] argue that using PDF documents
as input, especially for Table Extraction, leads to noise that
can be prevented by extracting information directly from
the LATEXsource. Tables are classified as being relevant for
future processing using an ULMFiT classifier and each
cell is categorized into similar categories. Five different
contexts are generated for each cell, describing the semantic
context within caption, text fragment, abstract and the whole
paper. Finally, metric values and predefined (TDM)-tuples
are associated using evidence of the latter found within the
cell contexts. Again, only the highest values are kept, all
other values are filtered.

4 Description of KIETA

The goal of our still ongoing research is extracting key-
insights from scientific publications in addition to making
them queryable and automatically processable. Because the
amount and density of information contained within them is

9515KIETA: Key-insight extraction from scientific tables

https://github.com/tabulapdf/tabula/

high, tables are the starting building block of this endeavor.
Figure 1 gives an overview of our pipeline for extracting
tables and their knowledge.

The pipeline is built as a modular system where every
part can be exchanged, if the output stays the same. This
has the advantage that the performance of components can
be evaluated separately, enabling a more detailed evaluation
overall and easier comparison of different approaches. The
propagation of errors especially important in this pipeline,
because every step builds upon the output of the previous
one, meaning that errors happening early on in the pipeline
might cascade in subsequent steps. Therefore, evaluating as
many steps as possible is beneficial.

In contrast, end-to-end systems can only be evaluated
at the end, knowing neither origin nor propagation of
errors. Although arguably error propagation does not exist
in end-to-end systems, knowing what exactly has to be
changed in order to improve the performance of the system
is still difficult. A still unanswered question is why no
existing system has been employed for at least parts of the
pipeline. The review of existing tools (Tabula, Camelot and
TableSeer) also consisted of testing them on a small number
of documents. This experiment showed that these tools
were not suited for our purposes. The TE tools Tabula and
Camelot detect relatively few tables and those that could be
detected are usually not reconstructed correctly. At the same
time, no information useful for improving the quality is
given. Furthermore, the table caption is not extracted at all.
Although the caption is extracted by TableSeer, it is unable
to consistently detect tables. In contrast to this, ResNeXt
tends to predict too many tables, while also merging tables
on the same level or splitting a single table. Consequently,
building a pipeline meeting the requirements described
above was necessary. Excluding the KIE step, our pipeline
requires no domain-specific knowledge. Therefore, using
coreference resolution as base for the knowledge extraction
is more or less arbitrary. Developing an ontology modeling
results of different domains is intricate. Therefore, the
current focus is limited to a single domain. Nonetheless, our
pipeline could easily be adapted to work with domains other
than coreference resolution, due to its domain-agnosticism.
Each page of a given PDF document is preprocessed by
converting it into a XML file containing the text and
additionally render it as a picture. Afterwards, the presence
of tables is detected and their boundary as well as their
caption determined. The recognition module constructs a
model describing the table on the basis of a graph. This
graph represents the table structure as well as the function of
each node within the table (e.g. label). Finally, the extraction
module extracts key-insights as defined in an ontology. The
extraction consists of searching for keyword occurrences
of ontology instances within the table graph and exploiting

the graph structure to create tuples representing the desired
knowledge.

4.1 Preprocessing

In contrast to other works [9, 18], the input is assumed
to be a PDF document, meaning the exported output of a
document editor like LATEXor office programs. Although the
source of scientific articles is often available for articles
on pre-print platforms, PDF documents are considerably
more common. The PDF file is converted into a structured
XML format using pdfalto4. This tool automatically merges
characters to form words and aggregates them into units like
lines and blocks. Because this format contains the characters
as written in the PDF stream, the quality of the extracted text
is expected to be higher than the output of an OCR engine,
which would be necessary if the PDF document was a scan.
Furthermore, each textual unit is annotated with positional
information that corresponds to their visual location within
the PDF page. Additionally, the PDF document is rendered
as an image using pdf2image5, because pdfalto is (currently)
not able to extract elements like vertical and horizontal lines
reliably.

4.2 Detection

The distinction between detecting (identifying the presence)
and localizing (establishing the boundary) a table is
uncommon. Normally, the former is combined with the
latter. However within the scope of this publication, these
two steps are considered separately. The reason can easily
be seen in the following scenario. Two tables are on a given
page and the system was able to establish the bounding
box of (localize) one table, but failed to do the same for
the other table. Given a production environment, the second
table would be lost, consequently lowering the extraction
quality. However, if the system considered the Detection
step separately, the information that there are two tables on
the page would not be missed. This information could be
used to demand some kind of human input.

A convenient standard of scientific publication is that
tables are usually accompanied by captions. These captions
follow a structure that could be expressed as a tuple in
the form of (keyword, id, delimiter, string). The caption
“Table 1: Example table” would translate to (Table 1, :,
“Example table”). Ignoring the string for the moment, the
triple structure of (keyword, id, delimiter) is very common
and easy to recognize. This Detection module exploits this
fact by matching each line in the XML file against a list

4https://github.com/kermitt2/pdfalto, GPL-2.0 License
5https://github.com/Belval/pdf2image, MIT License

9516 S. Kempf et al.

https://github.com/kermitt2/pdfalto
https://github.com/Belval/pdf2image

Fig. 1 Schematic overview of KIETA

of templates describing different layouts. Since there is
a finite number of possible layouts, the list will include
all common layouts if unknown templates are simply
appended to the list. In order to filter out occurrences
of templates within the text, this module relies the on
the delimiter being consistent throughout the document,
allowing filtering out irregularities. Several heuristics are
employed to differentiate caption beginnings from regular
text occurrences. They include assumptions like these
triples being at the start of a line as well as the capitalization
of the first word after the triple.

4.3 Localization

The next step is establishing the actual boundary of the
table. This pipeline models two equivalent ways how this
boundary can be defined. The first is based on the bounding
box, meaning a quadruple B = (x1, y1, x2, y2) defining
two points of a rectangle encompassing all elements. The
second possibility is a table as a subset of elements within
the page T ⊆ E. These can be converted into each other, as
the bounding box is at least as big as the union of all element
bounding boxes and the bounding box automatically defines
a set T . Two different approaches have been developed
based on these aspects. Both assume that a caption is either
written below or above a table, meaning that side-captions
can not be detected. Furthermore, a table is only associated
with a single caption. This allows reducing the search space,
because if another caption is encountered, a table situated
“behind” this other caption makes an association between
the table and the current caption impossible. Both modules
start by finding the boundary of the table caption. Using
the previously found indicator as a starting seed, a cluster
of lines is created using a distance threshold based on
the average height of text lines. The first approach called
Cluster is based on the characteristic table structure of rows

and columns. Approaches based on similar observations
can be found in literature [12, 15, 16]. Most scientific
publications use either a one- or a two-column publication
layout. This results in three different table positions: fully
in left/right column or spanning both columns. The middle
point of the caption bounding box is used to decide which of
the three cases is applicable. This is based on the heuristic
that the table is in the left column if the middle point is
within the first 40% of the page width, and on the right
if it is in the right 60%, and in the center otherwise. The
percentage is calculated by dividing the horizontal location
of the point by the page width. This also defines the
horizontal dimension of the search space, because it is not
necessary to consider the right column if the table is only
in the left. Objects intersecting a straight line starting from
the middle point will be considered. Limiting the vertical
direction is achieved by another single-linkage clustering
to the left and right, using the caption middle as starting
point. Assuming the placement of tables and captions is
consistent throughout the document, the final direction is
defined by the direction that appears most often within the
whole document. The second implementation is based on
another frequent feature of tables, which was also exploited
in [13]: Lines. Tables in scientific publications are rarely
fully bordered, but horizontal lines between box labels and
entries are common. Initially, the Hough Transform [19]
is employed to detect straight lines on the page. Using
the caption middle as a starting point, two straight-lined
searches are conducted, one to the top and one to the bottom
of the page. If a previously found line is encountered, two
additional searches are started to the left and right at the
height of the intersection point. All horizontal lines found
at this height (± 5 px) and longer than 150 pixels are
sorted into a single “bin”. If two lines have a gap of less
than five pixels, they are regarded as being the same line.
Encountering another caption ends the search for the reason

9517KIETA: Key-insight extraction from scientific tables

explained previously. Currently, each table caption has up
to two sets of bins that could represent a table. Assuming at
least one table has just one possible bin, all other bins can be
associated per elimination. In case this assumption does not
apply, the set containing more bins is seen as table. After this
association process, all horizontal lines in one set are used to
establish an initial bounding box. Within this boundary, the
same process is executed based on vertical lines. These are
employed to modify the current table boundary in vertical
direction.

4.4 Recognition

The table model is based on the model defined in [8]. A
graph has been chosen as the underlying data structure,
which is advantageous for subsequent KIE. This is inspired
by [1], where table elements are also represented as nodes
within a graph and a graph neural network is employed
to create the edge structure. The goal of this module
is constructing a valid table model by converting textual
elements into table cells and using a rule-based algorithm to
develop the physical, functional, and semantic model of the
table. This process is illustrated in Fig. 2. There is no clear
distinction between physical and functional recognition in
this approach. The algorithm is divided into three parts,
namely aggregation of cells, recognition of columns and
recognition of rows.

4.4.1 Cell aggregation

Singular String elements within the XML file are
aggregated as table cells using the average distance
between words and the average line height as heuristics.
Additionally, each symbol sequence is analyzed whether
it is a sub- or superscript. In this case, it is automatically
assigned to the nearest cell. Afterwards, each cell is
represented as a node within a directed graph. Using these
cells, an initial row structure can be created based on a
window of twice the height of the average text line.

4.4.2 Column recognition

The recognition of columns starts with recognizing column
labels. To this end, horizontal lines that span the length of
the bounding box are detected using the Hough Transform
[2, 19]. The topmost line having at least one textual element
above it serves as an indicator for labels. If no suitable
line could be found, the elements of the topmost row are
heuristically seen as column labels. If more than one layer
(or row) of column labels was detected, it is necessary to
create the structure between these elements. Starting at the
lowest column label row, the distance to each predecessor in
the row above is calculated for each element. The distance
and the corresponding number of vertical lines crossed
are used to calculate a penalty score for each pair. If the

Fig. 2 Exemplary process of
developing a table model using
example Table 1. Each element
is represented by a node within a
graph. Using the previously
described heuristics, column
labels are recognized and the
structure of the whole box head
is developed. Nodes of the
lowest level of the box head
structure are employed to define
the columns of the table. Rows
are primarily recognized using a
simple match-up algorithm that
associates nodes of same-length
columns. Irregular tables are
handled using rules that
transform them into a structure
where the match-up algorithm is
applicable

9518 S. Kempf et al.

minimum of these scores is lower than the sum of a single
line crossing penalty and three times the average distance
between words, an edge is created. This creates a tree-like
structure of column labels. Each leaf of this structure is defined
as starting point of a column. All remaining cells are put
into a column using horizontal overlap with these leaves. If
a cell could not be associated with a column, a new column
with a dummy column label is created and associated with
this cell. Finally, all columns are sorted according to the
vertical position of their elements, and column edges are
created between neighboring nodes from top to bottom. Up
to this point, both the physical and the functional model with
regards to columns have been completed

4.4.3 Row recognition

The core of this step is a simple algorithm. Given a table
with same-length columns and without any irregularities,
the row structure can be completed by creating an edge
between each cell and its right-hand neighbor in the
following column. The cells of the first column can then
be defined as row labels. However, this is not always
the case, but every table can be transformed in such a
way so that the algorithm is applicable to a part of it.
While creating the dataset, three categories of irregularities
have been observed, one having three sub-forms. Figure 3
contains examples for each category. These three cases are

Fig. 3 Examples of possible
column structure irregularities.
Three categories have been
determined while creating the
dataset, whereas one category
has three possible forms. Two of
these forms are nearly identical,
because a semantic column as
an in-between row is a variation
of the case above. They are
united by the fact that more cells
usually imply multiple semantic
columns in a single physical
column. Fewer cells in the first
column indicates that this
column modifies the following
column. All tables not covered
by these two categories are put
into the third category

9519KIETA: Key-insight extraction from scientific tables

recognized and handled by rules. The recognition can be
achieved by simply counting the number of cells per column
and comparing all columns against these cases.

The first case handles tables with irregularities within
the last column. All other columns are regular by definition
and can be structured using the simple algorithm. Using
vertical overlap to cells in previous columns, the remaining
edges to cells of the last column are formed accordingly.
The cells in the first column are defined as row labels.
Columns with more or less nodes than the average nodes
in the first column as well as “in-between” rows form
the second category. More nodes than average within a
column indicate that a single physical column contains
more than one semantic column. It is assumed that these
semantically different cells (“modifier”) are represented
by being in an extra row without other elements in the
previously established initial row structure. An additional
assumption is that modifiers modify all following rows until
another modifier is found. Based on these assumptions,
modifiers can easily be identified by iterating through the
rows and columns. They are moved to an extra column
and labeled as row labels and all edges between modifiers
and modified nodes/cells are created accordingly. The nodes
being modified are also labeled as row labels. If the
first column contains fewer nodes than the average, the
procedure used to construct the box head structure is applied
here. Therefore, the associations between modifiers and
nodes being modified are found using the distance between
them. Both are again tagged as row labels. The overall third
case encompasses all tables that do not fit into the other
two categories. Here, the structure is recovered by just using
vertical overlap as an indicator for elements being in the
same row. Again, all cells in the first column are defined
as row labels. Note that the simple algorithm as well as
two of the cases define only a single layer of row labels
by default. Here, some kind visual indicator (indentation
or separate rows) is needed to recognize multiple layers
of row labels. Determining a higher number of row labels
usually requires a semantic interpretation and can therefore
not be handled by a mostly abstract algorithm. Obviously
the described transformation rules are incomplete, because
the number of possible layouts is too high. Nonetheless, we
expect satisfactorily results, because the layout of scientific
articles usually follow standards, which can be exploited by
the rules we created.

4.5 Ontology definition

Designing an ontology is an intricate and non-trivial
process, because the more general the task, the more
complex the ontology. Furthermore, disagreement may
occur because the definition of semantics is in parts
individual. However, as this contribution has a clearly

defined goal as well as domain, it is possible to design an
ontology that keeps the mentioned problems at a minimum.
The most controversial topic is most likely the difference
between the terms Architecture and Variant. These terms
try to capture the origin of experimental results, whereby a
Variant is a more concrete occurrence of an Architecture.
For example, a result was produced by Architecture “BERT”
of Variant “BERT-large”. However, the boundaries are
hard to define, because there are multiple possibilities
how “BERT-large+xyz” could be handled in this example.
Because tables are seen as singular objects, the same
method is applied to resolve this problem. Initially, every
“result producer” is Architecture and its own Variant. If
two Architectures share a common substring, the substring
is set as Architecture and receives the Variants. If an
occurrence starts with a “+” or “-”, it is defined as a Variant
of the most recent Architecture. Results in leaderboard
creation [5, 9] usually are defined as a tuple (Task, Dataset,
Metric, Score). This publication broadens this definition.
However, because only the task of coreference resolution
is considered here, the Task part of the tuple is omitted.
Additionally to the existingMetric theMeasure is modeled.
In contrast to the common definition, Architecture and
Variant is vital information here, because there is more
than just a single result per paper. The final Result tuple
therefore has the form (Architecture, Variant, Dataset,
Metric, Measure, Score). An overview of the ontology,
including the relationships between all classes can be seen
in Fig. 4.

Using the table in Fig. 5 as an example, the following
illustrates the use of each class. There is one Architecture
called “BERT-large + c2f-coref” with two Variants “(inde-
pendent)” and “(overlap)”. The Result having the Value
“77.5” also has the Measure “P” and the Metric “B3”
and was achieved on the Dataset “OntoNotes”. The tuple
containing every piece of information would therefore be
(“BERT-large + c2f-coref”, “(overlap)”, “OntoNotes”, “B3”
“F1”, “77.5”).

Fig. 4 Overview of the ontology. For reasons of clarity, individuals
have not been included within this graphic

9520 S. Kempf et al.

Fig. 5 “Table 1: OntoNotes: BERT [. . .]” Part of Table 1 from Joshi, M, et al (2019) BERT for coreference resolution: baselines and analysis
https://arxiv.org/abs/1908.09091 serving as an example for applying the ontology. The previously given caption is the start of the original table
caption

4.6 Key-insight extraction

The generated models are filtered according to their
relevance for the extraction by counting the occurrences of
ontology keywords and ignoring every table with fewer than
four occurrences. The remaining table graphs are processed
by classifying each node according to the content. The
spelling variants of individuals defined in the ontology
and the cell content are used to determine which of the
nodes within stub and box head are associated with which
individual. Several rules define the difference between a
Variant and an Architecture. For example, if there are
two layers of row labels, it is automatically assumed that
the first layer consists of Architectures and the second
of Variants. Excluded are some defined keywords like
“Baselines” or “Model Variants” that provide an umbrella
term for a group of systems. Another rule is: systems
starting with symbols like “+” or “-” are always Variants.
All nodes that did not match with any individual are seen
as results. The process of constructing these objects consists
of following along row and column edges and collecting
all relevant individuals. If a property of a result could
not be defined, the individuals having been found in the
caption using the same keyword matching process are used
to try finding a match. The result of this process is a data
structure containing information about Architectures, their
Variants and the associated Results, described by Metric,
Measure, Value and Dataset. Although values can be given
in many different formats, the most common one is a
percentage and it is assumed that all values are some form
of percentage. The conversion between different formats
(“50%” and “0.5”) is done automatically, if a comparison
between values is necessary. Because the ontology is based
on OwlReady2 [10], the datastructure can be queried using
SparQL and can therefore also answer the leaderboard
question as described in [5, 9], although without naming the
Task, which is implicitly added in our case.

5 Dataset

Finding a single dataset that covers all evaluation scenarios
is difficult, because this contribution tries to evaluate as

many steps as possible. Although there are a few TE datasets
concerning scientific publications, the degree of annotation
varies greatly and even the highest degree does not annotate
information regarding the functional structure of the table.
Although related, the dataset of [5, 9] and similarly TDMSci
[6] can not be used for evaluating the KIE process within
this publication. These are used to evaluate leaderboard
creation, meaning a table annotation consists of the highest
scoring results usually modeled as a tuple (task, dataset,
metric score). All other results are not considered, resulting
in most knowledge contained within the table being not
accessible. Therefore, leaderboard datasets are neither
suitable to evaluate the extraction of tables nor to evaluate
KIE from tables.
Thus, creating a dataset that covers all evaluation scenarios
was necessary.
A challenge of the creation process is generating a dataset
that is a valid sample representing the real world as close
as possible. In order to guarantee the validness, about 750
tables of scientific publications have been reviewed and
categorized according to two criteria. The first criteria is
complexity, roughly measuring the “hardness” of this table.
It is based on the common cell representation as a list
of triples (columnlabels, rowlabels, value). Flattening
this to (coll1, . . . , colln, rowl1, . . . , rowlm, value) yields
a tuple whose order defines the complexity of the cell,
whereby higher means more complex. A table is assumed
to be within a certain complexity class T , if at least one
cell tuple of the corresponding complexity was found. The
second criteria is based on the physical layout of the table.
There are many different ways how data can be represented
in tables and some are more difficult for automated
process, especially if there are many irregularities present.
Determining the distribution of these layouts prevents the
creation of a bias containing only complete and symmetric
tables. The review yielded six common layouts of tables,
the most common being “homogeneous” which includes
all symmetric tables without any irregularities. These
layouts disregard complexity, meaning that for example
“homogeneous” (L0) includes tables having a single column
label layer as well as multiple. Arguably, layout category
L0 could have been split into one two separate categories,
one encompassing tables with a single row and column

9521KIETA: Key-insight extraction from scientific tables

https://arxiv.org/abs/1908.09091

Fig. 6 Examples of each layout type. Homogeneous tables L0 are
symmetric regarding their row and column arrangement. Column
irregularities are found in L1 and L2, while L2 includes only cases
where the last column differs from all other columns. L3 includes

all row irregularities, with the exception of dividing rows, which
are covered in L4. L5 describes tables with both row and column
irregularities

9522 S. Kempf et al.

Table 2 The percentage point difference between the distribution of complexity and layout categories between this dataset and the results of the
review

Category

Layout T2 T3 T4 T5 T6

L0 −1 0 −1 0 0

L1 0 0 −3 +1 0

L2 0 0 +3 0 0

L3 0 −1 +3 0 0

L4 0 0 −2 −1 0

L5 0 0 −1 +2 0

Positive values signal a surplus in this dataset, negative values signal the reverse. The difference range is ±3 percentage points

label layer and the other encompassing all other cases.
However, it is much easier to recognize their structure,
because of their symmetry. Consequently, we decided to
create a group capturing all symmetric tables, regardless
of their number of label layers. Examples of each group
are illustrated in Fig. 6. The occurrences of complexity and
layout categories and the difference between the distribution
of this dataset and the results of the review are shown in
Tables 2 and 3. The figure shows that the selection of the
dataset is representative compared to the larger review set
and the difference range lies between ±3 percentage points.
Based on the acquired data, a dataset containing 208 tables
from 49 documents has been created. Each dataset item
contains metadata like the document id, page number, table
number and the manually determined bounding boxes of
the table as well as the caption. This metadata enables the
evaluation of the detection and localization steps. The table
is represented as a markdown-like string as well as a list of
cell tuples in form of (rowlabels, columnlabels, entry).
The former is the evaluation basis for the physical model

recognition, while the latter is used for the functional and
semantic recognition. Furthermore, the caption is included
as a string. In order to evaluate the KIE step, 31 of these 208
tables containing results on test sets have been annotated
with a list of triples (subject, predicate, object), so that
all instances and relationships defined in the ontology are
represented. There are several reasons why only 31 tables
have been annotated. This annotation step depends on
the employed ontology and cannot be easily transferred
to other domains. Furthermore, the annotation process is
very time consuming, because even small tables generate a
significant amount of triples. The most important reasons is
that the model of all tables processed by the KIE module
is structured the same way. Consequently, the applicability
of this KIE step can be inductively inferred. All steps have
been manually executed or verified.

Note that the review and this dataset exclude textual
tables, meaning tables containing a significant amount of
text, whose primary purpose is not the presentation of
numerical data.

Table 3 Number of occurrences of every complexity and layout category

Complexity

Layout T2 T3 T4 T5 T6 �

L0 - Homogeneous 1 105 26 7 1 141

L1 - Column1 0 0 3 3 0 6

L2 - Column2 0 0 20 2 0 22

L3 - Row1 0 3 14 2 2 20

L4 - Row2 0 0 2 5 0 7

L5 - Both 0 0 0 11 1 12

� 1 108 65 30 4 208

Tables are sorted into a complexity category if at least one tuple of that complexity exists. Examples of each layout category are presented in
Fig. 6

9523KIETA: Key-insight extraction from scientific tables

6 Experiments

This pipeline was designed with productive and mostly
autonomous usage in mind. Consequently, the output
quality of the system can not only be judged by raw numbers
as it is also important to know the amount of work required
to correct the output. The error rate, meaning the ratio
of erroneous tables and the overall number of tables, is a
representation of the amount of work needed. To this end,
the measure Table Error Rate (TER) has been introduced to
compare the number of erroneous tables against the overall
number of found tables. An erroneous table describes
a predicted table that produced false positives and/or
false negatives. Tables without errors are tables that only
produced true positives.

6.1 Detection

The mainly autonomous usage that this pipeline was
designed for requires that table indicators are found
reliably. Even if the boundaries of a table could not be
established successfully, knowledge of its existence allows
the extraction of the single corresponding page, obviating
the need to look through the whole document manually.
The detection rate is evaluated using the number of tables
per page, counting excess tables as false positives, missing
tables as false negatives. Therefore, precision and recall
signal a general tendency to predict too many or too few
tables. As other systems do not include this evaluation
measure, the number of objects per page resulting from a
full run of the system has been counted (Table 4).

Open-source solutions only find about a third of all
tables, if they are applied to pages without any additional
information. Like previously assumed, using the heuristic
of a common string signaling the start of table captions
seems to be a good indicator for the presence of tables.
However, the performance of this approach depends on
the table caption layout, because it has to match one
of the defined templates. An extension of the system is

easily achieved by adding new layouts to the engine if
encountered. The applicability of this approach can also be
seen in Section 6.4.

6.2 Recognition

The resulting model of the recognition module allows the
individual evaluation of several of its aspects. Although
two localization approaches have been developed, in
order to guarantee a fair comparison between all systems
and to avoid redundancy, the experiments have been
conducted with the assumption of pre-established bounding
boxes.

6.2.1 Physical evaluation

The physical structure is evaluated using unique adja-
cency relations between neighboring nodes/cells, com-
monly called proto-links (PL) [3, 7]. Assuming a fully
bordered table, neighboring cells are cells that share a bor-
der and form a single proto-link, meaning PLs (A, B) and
(B, A) are seen as being identical. Precision and recall can
thus be defined as #correctPL

#detectedPL
and #correctPL

#totalPL
.

Camelot, TableSeer and Tabula have been evaluated
using this metric in addition to our approach. It is assumed
that a perfect bounding box is given in order to guarantee
a fair comparison between all systems, although TableSeer
can not be fed with additional information and is therefore
evaluated on its raw output.

The most important goal of the table extraction step is
getting a correct semantic model of a table. Because our
model transforms irregular tables into regular tables, our
physical representation differs from the actual one, although
there is no semantic difference. Therefore, physical errors
are disregarded if the resulting semantic model contains no
errors.
The results in Table 5 show the performance of our approach
being higher than all other approaches. Additionally, our
error rate is half of the best performing comparison model.

Table 4 Evaluation result of the detection step

detected tables

Precision Recall F1 Gold Overall

Camelot 0.27 0.86 0.41 179 667

TableSeer 0.88 0.72 0.79 150 170

Tabula 0.39 0.75 0.51 155 399

KIETA 1.00 1.00 1.00 208 208

Precision and recall are calculated based on the number of predicted and ground-truth tables per page

9524 S. Kempf et al.

Table 5 Evaluation result of the recognition step, evaluated regarding the physical, functional and semantic aspect of a table

Measure KIETA Camelot TableSeer Tabula

Physical

Precision 0.97 0.97 0.67 0.82

Recall 0.94 0.89 0.54 0.57

F1 0.95 0.93 0.60 0.67

TER 52/208 114/208 135/153 206/208

Functional Row

Precision 0.93 - 0.40 -

Recall 0.92 - 0.35 -

F1 0.92 - 0.37 -

TER 33/208 - 136/153 -

Functional Column

Precision 0.89 - 0.33 -

Recall 0.93 - 0.24 -

F1 0.91 - 0.28 -

TER 30/208 - 136/153 -

Semantic (inferred
physical and functional
model)

Precision 0.82 - - -

Recall 0.81 - - -

F1 0.81 - - -

TER 62/208 - - -

Semantic (perfect phys-
ical and functional
model)

Precision 0.91 - - -

Recall 0.90 - - -

F1 0.90 - - -

TER 41/208 - - -

Camelot and Tabula only develop a physical representation of the table, while TableSeer also extracts column labels (row labels have been
generated by generally defining cells of the first column as row labels). All steps are also evaluated regarding the table error rate (TER). Semantic
evaluation has been conducted twice, once in a normal end-to-end setting and once assuming perfect results of previous steps

6.2.2 Functional evaluation

As mentioned before, labels define the semantic structure
of tables and give context to entries, which is important
regarding subsequent knowledge extraction. It is therefore
beneficial to evaluate the recognition rate of these labels.
To this end, the sets of predicted row and column labels
are compared to the ground truth. The strings are compared
directly, so any match is counted as true positive, and
mismatch as false positive or false negative respectively.
The resulting precision and recall give information about
whether too many or too few labels are recognized.

TableSeer was the only external approach attempting to
create the functional model of the table. However, only
column labels were classified, so each entry of the first
column is defined as row label to create results regarding
row label classification.
The results in Table 5 illustrate that our column label
recognition performs slightly worse than the recognition of
row labels. A common error of column label recognition
is merged cells, while an additional problem of row label
recognition is the definition of surplus layers of row labels.
The performance of TableSeer shows a clear difference
to the heuristics of our method. Both row and column

label recognition scores being similar and manual review
of some predictions indicates that its heuristic for column
label detection is also simply taking the first row.
Obviously, these heuristics are not enough to process more
sophisticated tables.

6.2.3 Semantic evaluation

The semantic model is the basis of key-insight extraction
and therefore the most important of all models for
the purposes of our contribution. The evaluation is
based on the representation of cells as tuples, including
all associated row and column labels and the value
(row1, . . . , rown, col1, . . . , colm, entry). Such a tuple is
created by simply following all row and column edges
in reverse direction starting at an entry and aggregating
all labels along the way. True positive are only full
matches, partial matches are false positives. As previously
mentioned, the stub head is ignored. No other system could
be used for comparison, as no system could be found that
created a semantic table model.

The last part of Table 5 includes the results of this
experiment. Evidently, the performance is slightly lower
than the performance of previous experiments. This follows

9525KIETA: Key-insight extraction from scientific tables

Fig. 7 Example of a table that cannot be recognized correctly because
of the assumptions that have been made. “Baselines” would modify
“A1” even though it should only modify “B1” and “B2”

the process of the pipeline, because semantic recognition
builds on top of everything else. As a consequence, previous
steps define the upper boundary of what can be achieved
here.

However, some tables cannot be fully recognized even
the physical as well as functional recognition delivered
perfect results. The assumptions made while recognizing a
table were described previously. One of these is concerns
modifiers, meaning cells that semantically belong to an
extra column but are merged with usually the first column.
All nodes not identified as modifier are associated to the
most recent modifier, which can cause errors. This is best
seen in an example. Given the table in Fig. 7, the modifier
“Baselines” would be associated to all nodes until another
modifier (“Other”) is found, resulting in an relationship

between “Baselines” and “A1”. In order to avoid these
errors, the heuristics for recognizing modifying nodes have
to be improved.

6.2.4 Error discussion

Tables 6 and 7 are overviews of the error distribution
regarding complexity and layout categories. Generally, the
more unusual the table (complexity or layout), the higher
is the error rate. The error rates of the simplest and most
common forms T3 and L0 are 17% (18

108) and 23% (32
141)

regarding semantic evaluation. However, T 4 and L2 are
neither the most complex nor the most complicated layout,
but their error rate are high in comparison.

A common error influencing both physical and functional
recognition concerns elements that are wrongly aggregated
to cells. This includes incorrect merges as well as
separations. For example if the distances between textual
elements within the box head are to small, they are merged
into a single cell, causing errors in both recognition parts.
Additionally, there are several instances of table cells with
line breaks. In these instances, the cell content does not
fit within the cell width and spills into the following line,
falsely creating a new row with a new “cell”. Solving
this problem without any semantic information is almost
impossible, because these instances are indistinguishable
from other layouts (e.g. Fig. 6, L3/2).

Incorrect relationships between cells can also be caused
by large distances between cells. Incorrect means both
a non-existing relationship where there should have been
one and genuine erroneous relationships. Both physical
and functional recognition are impacted by this problem.
Similarly, small distances can cause identical problems.

The recognition of column labels depends on the
heuristic that there is a horizontal line dividing these cells
from normal data entries. If no line is found, the topmost
row is assumed to describe the column labels. Because

Table 6 This table categorizes the errors in Table 5 (rows “TER”) with regards to the complexity of tables

Step Data T2 T3 T4 T5 T6 Overall

Physical
Absolute 0 13 25 10 4 52

TER 0% 12% 38% 33% 100% 25%

Func. Row
Absolute 0 14 9 6 4 33

TER 0% 13% 14% 20% 100% 16%

Func. Col.
Absolute 0 11 12 4 3 30

TER 0% 10% 18% 13% 75% 14%

Sem. (inferred)
Absolute 0 18 30 10 4 62

TER 0% 17% 46% 33% 100% 30%

The absolute number of errors and the Table Error Rate (TER) in percentages are given for each step. The last column describes the total error
and TER of a step and equals the TER presented in Table 5. The TER is calculated using the dataset distribution in Table 3

9526 S. Kempf et al.

Table 7 This table categorizes the errors in Table 5 (rows “TER”) based on the table layout

Step Data L0 L1 L2 L3 L4 L5 Overall

Physical
Absolute 26 2 9 8 2 5 52

TER 18% 33% 41% 40% 29% 42% 25%

Func. Row
Absolute 20 0 4 5 1 3 33

TER 14% 0% 18% 25% 14% 25% 16%

Func. Col.
Absolute 19 1 5 3 1 1 30

TER 13% 17% 23% 15% 14% 8% 14%

Sem. (inferred)
Absolute 32 2 10 11 2 5 62

TER 23% 33% 45% 55% 29% 42% 30%

The absolute number of errors and the Table Error Rate (TER) in percentages are given for each step. The last column describes the total error
and TER of a step and equals the TER presented in Table 5. The TER is calculated using the dataset distribution in Table 3

the line recognition process is a probabilistic method, an
incorrect horizontal line is possibly defined as the separating
line. This being an early step within the recognition process,
the whole subsequent process is disrupted.

Errors concerning row labels were mostly the result
of previous errors. The main area of improvement is the
aggregation of textual elements to cells, being both the first
step of the whole recognition process and the main cause of
the described errors.

6.3 KIE evaluation

The ontology used to define the desired knowledge is
modeled using OWL and RDF. Accordingly, the evaluation
is modeled using RDF-like triples (subject, verb, object).
Each of the three aspects as well as the full triple is evaluated
individually. For example, given the list of predicted triples
as well as the ground truth, it is assumed that the “subject”
of the RDF-like triple should be evaluated. To this end,
every predicted subject is compared to the remaining ground
truth. If the subject could be matched, it is counted as true
positive. All ground truths without a match are counted as
false negatives and vice versa regarding remaining predicted
tuples.
The experiment is conducted twice, once in an end-to-
end scenario (E2E) and again using the ground truth data
of the previous step as input (Gold). Because the ground
truth contains knowledge gaps as some tables are not
completely self-descriptive, the Gold scenario is evaluated
using another set of ground truth data without knowledge
gaps that cannot be closed using only tables and their
captions.

Table 8 shows that both systems produced output on
30 of the 31 tables, meaning that one table could not be
processed by the module. Predicates could be extracted
without many problems, followed by subjects and objects.
This is expected behavior, because “object” has the highest
amount of variation, while “predicate” has the lowest. The

part of the triple performing the worst (in this case “object”)
sets the upper bound for the full triple evaluation.

While recall is an important statistic, precision is more
relevant in this scenario, because it is better that a piece
of knowledge is not extracted at all than it being extracted
erroneously and consequently corrupting the knowledge
base. Assuming this point of view, the TER can additionally
be evaluated considering only tables containing false
positive errors, reducing it by 7 and 10 percentage points,
respectively.

The ground truth data being used for this evaluation
contains only knowledge that is actually included in the
tables, meaning that for example the dataset is not annotated
if it is not contained within either table body or caption.
“Full” is the evaluation with ground truth data containing
knowledge not mentioned within the table or caption. The
comparison between both sets allows for measuring the
impact of tables that do not follow the desirable practice
of being self-descriptive. The highest difference is two
percentage points considering the recall of full triples.

The small difference between full triple and the worst of
the other three evaluations suggests that the errors are spread
across a small number of triples.
Furthermore, the difference between gold input extraction
and extraction on the output of the systems suggests that
the problem lies either in the chosen method or the tables
themselves.

The error analysis shows three categories: ambiguity,
incorrect resolutions and miscellaneous errors. Considering
the “E2E” scenario, there are of course propagated errors
caused by the table extraction system. Our system currently
does not have the ability to resolve ambiguity. For example,
our ontology contains the term “CoNLL” as dataset as well
as metric, if it is used in combination with “F1”. However,
this can currently only be detected if both terms are within
a single cell. Otherwise, they are separately detected.
The differentiation between Architectures and Variants
is the leading cause for resolution errors. However, the

9527KIETA: Key-insight extraction from scientific tables

Ta
bl
e
8

E
va
lu
at
io
n
of

th
e
ke
y-
in
si
gh
te
xt
ra
ct
io
n
st
ep

us
in
g
pr
ec
is
io
n
(P
),
re
ca
ll
(R
)
an
d
F1

ba
se
d
on

se
m
an
tic

tr
ip
le
s
(s
ub
je
ct
,p

re
di
ca
te
,o

bj
ec
t)

Su
bj
ec
t

Pr
ed
ic
at
e

O
bj
ec
t

T
ri
pl
e

T
E
R

P
R

F1
P

R
F1

P
R

F1
P

R
F1

(n
)

(p
)

E
2E

0.
95
5

0.
83
6

0.
89
2

0.
97
9

0.
85
8

0.
91
4

0.
94
7

0.
82
9

0.
88
4

0.
93
3

0.
81
7

0.
87
1

19 30
16 30

G
ol
d

0.
96
9

0.
86
9

0.
91
6

0.
99
3

0.
89
1

0.
93
9

0.
95
6

0.
85
7

0.
90
4

0.
94
4

0.
84
6

0.
89
2

18 30
16 30

Fu
ll

0.
96
9

0.
85
2

0.
90
7

0.
99
3

0.
87
3

0.
92
9

0.
95
3

0.
83
7

0.
89
1

0.
94
0

0.
82
6

0.
88
0

18 30
16 30

E
ve
ry

pa
rt
of

th
e
tr
ip
le

as
w
el
l
as

th
e
fu
ll
tr
ip
le

is
co
m
pa
re
d
to

th
e
gr
ou
nd

tr
ut
h.

T
he

(n
)o
rm

al
ta
bl
e
er
ro
r
ra
te

(T
E
R
)
is
th
e
ra
tio

of
ta
bl
es

co
nt
ai
ni
ng

er
ro
rs

an
d
al
l
pr
oc
es
se
d
ta
bl
es
,
w
hi
le

(p
)

si
gn
if
ie
s
th
at
on
ly

ta
bl
es

w
ith

fa
ls
e
po
si
tiv

e
er
ro
rs

ar
e
co
un
te
d.

“E
2E

”
re
pr
es
en
ts
th
e
ex
tr
ac
tio

n
of

ke
y-
in
si
gh
ts
ba
se
d
on

th
e
ou
tp
ut

of
th
e
T
E
pi
pe
lin

e,
w
hi
le
“G

ol
d”

us
es

pe
rf
ec
tt
ab
le
ex
tr
ac
tio

n
re
su
lts
.“
Fu

ll”
ca
n
be

co
m
pa
re
d
to

“G
ol
d”
,b
ut

is
ev
al
ua
te
d
us
in
g
ad
di
tio

na
lg

ro
un
d
tr
ut
h
da
ta
th
at
ca
n
cu
rr
en
tly

no
tb

e
ex
tr
ac
te
d

overall impact of this particular error is small, because the
relationship between Results and Variants are still valid.
More relevant is that the information contained within the
caption is not correctly resolved. For example, if the system
detects an ontology instance within the caption, it happens
that this instance is associated to columns that actually
describe another ontological instance.

6.4 Field experiment

To demonstrate the practical use of our system we
conducted a field experiment on real data that has
not been pre-processed. To this end, the resulting 184
PDF documents of the query “Coreference Resolution”
on arxiv.org have been processed by the pipeline. 94
of these documents contained at least one table that
could be processed with the ontology defined within this
contribution. The 184 documents contained 947 tables
overall of which 142 tables contain processable knowledge
concerning the results of experiments. All other tables
contained other kinds of knowledge. The overall statistics
can also be seen in Table 9. Each row shows the number of
tables that should have been processed at this step and the
actual number of tables that produced any output. Clearly
the mechanism deciding whether a table is important or not
is not reliable as twice as many tables than desired have been
deemed relevant.

All PDF documents were processed by the pipeline and
the resulting knowledge data structure was queried using
SPARQL. This is not a precise analysis of the pipeline but
rather a demonstration of a possible workflow as well as
the applicability and advantages of the tool. To this end, the
main question posed in the introduction “What system is
currently SOTA on any dataset?” has been formulated as a
SPARQL query, which can be seen in Fig. 8. The result on
the right shows the top ten results, naming the arXiv ID,
the Variant name as well as the average F1 score and the

Table 9 Number of processed tables per step, whereby processed
means the production of any output

Optimal Processed Percentage

Detection 947 942 0.995

Localization 947 906 0.957

Recognition 947 876 0.925

Key-insight 142 306 2.155

Deemed not relevant 805 521 0.647

Of 947 tables overall, 942 have been found and 876 could be produced
by the pipeline. However, two times more tables than desired have
been sent through the key-insight extraction module, suggesting that
the employed heuristic based on the number of instance/keyword
appearances has to be adjusted

9528 S. Kempf et al.

arxiv.org

Fig. 8 Left: Query for best average score on any dataset; Right: Result.
The references of mentioned papers are given below

1. Wu, W et al (2020) Coreference Resolution as Query-based Span
Prediction. https://arxiv.org/abs/1911.01746

2. Xia, P et al (2020) Incremental Neural Coreference Resolution in
Constant Memory. https://arxiv.org/abs/2005.00128

3. Xu, L and Choi, J D (2020) Revealing the Myth of Higher-Order
Inference in Coreference Resolution. https://arxiv.org/abs/2009.
12013

4. Lai, T M et al (2021) End-to-end Neural Coreference Resolution
Revisited: A Simple yet Effective Baseline. https://arxiv.org/abs/
2107.01700

dataset it was achieved on. The results of the system seem
to be consistent and plausible to the best of our knowledge,
although some tables presenting results on development
sets have been processed. This shows that the mechanism
deciding the relevancy of a table has to be improved to only
process desired tables. However, as mentioned already no
detailed analysis has been conducted.

7 Conclusion

Our publication has presented a number of important find-
ings regarding the extraction of key-insights from tables.
The performance of previously available TE systems is not
good enough for the purposes of extracting knowledge.
Consequently the development of a specialized system that
can handle the oftentimes complex layout of this kind of
tables is required.
To this end a table extraction pipeline6 has been developed,
having the goal of extracting tables as well as their captions
from digital PDF files concerning coreference resolution.

6https://gitlab2.informatik.uni-wuerzburg.de/kieta/kieta

Furthermore, a graph-based table model is created that cap-
tures the physical and especially the semantic structure of
the table. Using this model, knowledge defined by an ontol-
ogy is extracted as a searchable datastructure.
A dataset6 with 208 tables from 49 documents has been cre-
ated in order to evaluate every step of the pipeline as well as
the key-insight extraction.
Experiments conducted on that dataset show that a rule and
heuristic based TE pipeline can produce results surpassing
currently available open-source projects in the domain of
sciences. Furthermore, it is possible to use the created table
model graph for the extraction of high-quality key-insights
defined by an ontology.
The focus for future work lies on improving the recog-
nition module in particular, because it is the foundation
upon which the knowledge extraction is built, but also the
hardest problem of the whole extraction pipeline. Possi-
ble extensions include for example handling more cases of
row/column irregularities and improving employed heuris-
tics in terms of performance and robustness. Furthermore,
reducing false positives and therefore increasing the preci-
sion of the key-insight extraction module has high priority,
starting with the development of an ambiguity resolution
method.

9529KIETA: Key-insight extraction from scientific tables

https://arxiv.org/abs/1911.01746
https://arxiv.org/abs/2005.00128
https://arxiv.org/abs/2009.12013
https://arxiv.org/abs/2009.12013
https://arxiv.org/abs/2107.01700
https://arxiv.org/abs/2107.01700
https://gitlab2.informatik.uni-wuerzburg.de/kieta/kieta

As has been shown, some tables are not self-explanatory
and therefore do not contain every piece of information nec-
essary to understand their content. However, analyzing a
table within the context of its whole publication, the text
as well as other tables, is necessary to gain access to the
full knowledge. The current system is not able to handle
these cases as tables together with their captions are consid-
ered self-contained objects. It is a long term goal to extend
the system to consider the text of the publication itself to
find knowledge that could not be extracted from the table.
A common example of missing knowledge is the dataset
the experiment was conducted on, which is sometimes only
mentioned in the text body of the publication.
A short term goal is implementing an interactive compo-
nent, where users can add additional data and correct errors,
so that they have a practical useful tool for remaining up-to-
date in their research field concerning the increasing number
of relevant publications with evaluations.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Competing of Interests Author Frank Puppe is a member of the
editorial board of Applied Intelligence (APIN).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Chi Z, Huang H, Xu HD et al (2019) Complicated table structure
recognition. preprint at arXiv:1908.04729

2. Duda RO, Hart PE (1972) Use of the hough transformation to
detect lines and curves in pictures. Commun ACM 15:11–15.
https://doi.org/10.1145/361237.361242

3. Göbel M, Hassan T, Oro E, Orsi G (2012) Amethodology for eval-
uating algorithms for table understanding in PDF documents. In:
DocEng. ACM Press, pp 45–48. https://doi.org/10.1145/2361354.
2361365

4. Grobid (2008)

5. Hou Y, Jochim C, Gleize M, Bonin F, Ganguly D (2019) Identi-
fication of tasks, datasets, evaluation metrics, and numeric scores
for scientific leaderboards construction. In: ACL. Association
for Computational Linguistics, pp 5203–5213. https://doi.org/10.
18653/v1/p19-1513

6. Hou Y, Jochim C, Gleize M, Bonin F, Ganguly D (2021) TDMSci:
A specialized corpus for scientific literature entity tagging of tasks
datasets and metrics. In: EACL. Association for computational
linguistics, pp 707–714. https://doi.org/10.18653/v1/2021.eacl-
main.59

7. Hurst M (2003) A constraint-based approach to table structure
derivation. In: ICDAR. IEEE Comput. Soc, pp 911–915. https://
doi.org/10. 1109/icdar.2003.1227792

8. Hurst MF (2000) The interpretation of tables in texts. PhD,
University of Edingburgh

9. Kardas M, Czapla P, Stenetorp P et al (2020) AxCell:
Automatic extraction of results from machine learning papers.
In: EMNLP. Association for computational linguistics, pp 8580–
8594. https://doi.org/10.18653/ v1/2020.emnlp-main.692

10. Lamy JB (2017) Owlready: Ontology-oriented programming
in python with automatic classification and high level con-
structs for biomedical ontologies. St Heal T 80:11–28.
https://doi.org/10.1016/j.artmed. 2017.07.002

11. Li M, Cui L, Huang S et al (2020) TableBank: Table benchmark
for image-based table detection and recognition. In: LREC.
European language resources association, pp 1918–1925

12. Liu Y, Bai K, Mitra P, Giles CL (2007) TableSeer Automatic table
metadata extraction and searching in digital libraries. In: JCDL.
ACMPress, pp 91–100. https://doi.org/10.1145/1255175.1255193

13. Nurminen A (2013) Algorithmic extraction of data in tables in
PDF documents. Master, Tampere University

14. Oelen A, Stocker M, Auer S (2020) Creating a scholarly
knowledge graph from survey article tables. In: Ishita E, Pang
NLS, Zhou L (eds) ICADL. Springer International Publishing,
pp 373–389. https://doi.org/10. 1007/978-3-030-64452-9 35

15. Perez-Arriaga MO, Estrada T, Abad-Mota S (2017) Table inter-
pretation and extraction of semantic relationships to synthe-
size digital documents. In: DATA. SCITEPRESS - Science and
technology publications, pp 223–232. https://doi.org/10.5220/
0006436902230232

16. Rastan R, Paik HY, Shepherd J (2019) TEXUS: A unified frame-
work for extracting and understanding tables in PDF documents.
Inform Process Manag 56:895–918. https://doi.org/10.1016/j.
ipm.2019.01.008

17. Ren S, He K, Girshick R, Sun J (2017) Faster r-CNN:
Towards real-time object detection with region proposal net-
works. IEEE Trans Pattern Anal Mach Intell 39:1137–1149.
https://doi.org/10.1109/tpami.2016. 2577031

18. Singh M, Sarkar R, Goyal P, Mukherjee A, Chakrabarti S (2018)
Ranking state-of-the-art papers via incomplete tournaments
induced by citations from performance tables. preprint at
arXiv:1802.04538

19. Sinha P (1962) Recognizing complex patterns. Nat Neurosci
5:1093–1097. https://doi.org/10.1038/nn949

20. Xie S, Girshick R, Dollar P, Tu Z, He K (2017) Aggregated
residual transformations for deep neural networks. In: CVPR.
IEEE, pp 5987–5995. https://doi.org/10.1109/cvpr.2017.634

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

9530 S. Kempf et al.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1908.04729
https://doi.org/10.1145/361237.361242
https://doi.org/10.1145/2361354.2361365
https://doi.org/10.1145/2361354.2361365
https://doi.org/10.18653/v1/p19-1513
https://doi.org/10.18653/v1/p19-1513
https://doi.org/10.18653/v1/2021.eacl-main.59
https://doi.org/10.18653/v1/2021.eacl-main.59
https://doi.org/10. 1109/icdar.2003.1227792
https://doi.org/10. 1109/icdar.2003.1227792
https://doi.org/10.18653/ v1/2020.emnlp-main.692
https://doi.org/10.1016/j.artmed. 2017.07.002
https://doi.org/10.1145/1255175.1255193
https://doi.org/10. 1007/978-3-030-64452-9_35
https://doi.org/10.5220/0006436902230232
https://doi.org/10.5220/0006436902230232
https://doi.org/10.1016/j.ipm.2019.01.008
https://doi.org/10.1016/j.ipm.2019.01.008
https://doi.org/10.1109/tpami.2016. 2577031
http://arxiv.org/abs/1802.04538
https://doi.org/10.1038/nn949
https://doi.org/10.1109/cvpr.2017.634

	KIETA: Key-insight extraction from scientific tables
	Abstract
	Introduction
	Background
	Related work
	Description of KIETA
	Preprocessing
	Detection
	Localization
	Recognition
	Cell aggregation
	Column recognition
	Row recognition

	Ontology definition
	Key-insight extraction

	Dataset
	Experiments
	Detection
	Recognition
	Physical evaluation
	Functional evaluation
	Semantic evaluation
	Error discussion

	KIE evaluation
	Field experiment

	Conclusion
	Declarations
	References

