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Abstract
This paper studies differential graded modules and representations up to homotopy of
Lie n-algebroids, for general n ∈ N. The adjoint and coadjoint modules are described,
and the corresponding split versions of the adjoint and coadjoint representations up
to homotopy are explained. In particular, the case of Lie 2-algebroids is analysed in
detail. The compatibility of a Poisson bracket with the homological vector field of a Lie
n-algebroid is shown to be equivalent to a morphism from the coadjoint module to the
adjoint module, leading to an alternative characterisation of non-degeneracy of higher
Poisson structures.Moreover, theWeil algebra of aLie n-algebroid is computed explic-
itly in terms of splittings, and representations up to homotopy of Lie n-algebroids are
used to encode decomposed VB-Lie n-algebroid structures on double vector bundles.
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1 Introduction

Lie n-algebroids, for n ∈ N, are graded geometric structures which generalise the
notion of Lie algebroids. They have become a field of much interest in mathemati-
cal physics, since they form a nice framework for higher analogues of Poisson and
symplectic structures.

Courant algebroids [29] give an important example of such higher structures. The
work of Courant and Weinstein [12] and of Hitchin and Gualtieri [19, 20, 22] shows
that Courant algebroids serve as a convenient framework forHamiltonian systemswith
constraints, as well as for generalised geometry. A significant result from Roytenberg
[40] and Ševera [42] shows that Courant algebroids are in one-to-one correspondence
with Lie 2-algebroids equipped with a compatible symplectic structure.

The standard super-geometric description of a Lie n-algebroid generalises the dif-
ferential algebraic way of defining a usual Lie algebroid as a vector bundle A over
a smooth manifold M together with a degree 1 differential operator on the space
�•(A) := �(∧•A∗). In the language of graded geometry, this is equivalent to a graded
manifold of degree 1 equipped with a homological vector field [45], i.e. a degree 1
derivation on its sheaf of functions which squares to zero and satisfies the graded
Leibniz rule. A Lie n-algebroid is then defined as a graded manifold M of degree n,
whose sheaf of functions C∞(M) is equipped with a homological vector field Q. In
more “classical” geometric terms, a (split) Lie n-algebroid can also be defined as a
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graded vector bundle A = ⊕n
i=1 Ai [i] over a smooth manifold M together with some

multi-brackets on its space of sections �(A) which satisfy some higher Leibniz and
Jacobi identities [43]. A Lie n-algebroid (M,Q) is called Poisson if its underlying
graded manifold carries a degree −n Poisson structure {· , ·} on its sheaf of functions
C∞(M), such that the homological vector field is a derivation of the Poisson bracket.

A well-behaved representation theory of Lie n-algebroids for n ≥ 2 has not been
developed yet. In the case n = 1, i.e. in the case of usual Lie algebroids, Gracia-
Saz and Mehta [18], and independently Abad and Crainic [2], showed that the notion
of representation up to homotopy is a good notion of representation, which includes
the adjoint representation. Roughly, the idea is to let the Lie algebroid act via a dif-
ferential on Lie algebroid forms which take values on a cochain complex of vector
bundles instead of just a single vector bundle. This notion is essentially a Z-graded
analogue of Quillen’s super-representations [39]. After their discovery, representa-
tions up to homotopy have been extensively studied in other works, see e.g. [3–5, 8,
10, 15, 17, 25, 35, 36, 44, 48]. In particular, the adjoint representation up to homo-
topy of a Lie algebroid is proving to be as fundamental in the study of Lie algebroids
as the adjoint representation of a Lie algebra is in the study of Lie algebras. As is
well known, the adjoint representation controls deformations and symmetries of Lie
algebras (see e.g. [13] and references therein), and it is a key to the classification and
the algebraic integration of Lie algebras [46, 47]. Similarly, the deformations of a Lie
algebroid are controlled by the cohomology with values in its adjoint representation
up to homotopy [35, 45], and an ideal in a Lie algebroid is a subrepresentation of the
adjoint representation up to homotopy [15]. While a Lie bialgebra is a matched pair
of the adjoint and coadjoint representations, a Lie bialgebroid is a matched pair of
the adjoint and coadjoint representations up to homotopy [17]. From another point of
view, 2-term representations up to homotopy, which are equivalent to decompositions
of VB-algebroids [18], have proved to be a powerful tool in the study of multiplicative
structures on Lie groupoids (se e.g. [1, 9, 15, 27]), which, at the infinitesimal level,
can be described as linear structures on algebroids.

One of the authors proved in [35] that representations up to homotopy of Lie alge-
broids are equivalent, up to isomorphism, to Lie algebroid modules in the sense of
[45]. This paper extends this notion of modules, and consequently of representations
up to homotopy, to the context of higher Lie algebroids. The definition is the natu-
ral generalisation of the case of usual Lie algebroids explained above, i.e. differential
gradedmodules over the space of smooth functions of the underlying gradedmanifold.
The obtained notion is analysed in detail, including the two most important examples
of representations, namely, the adjoint and the coadjoint representations (up to homo-
topy). An equivalent geometric point of view of a special class of representations is
given by split VB-Lie n-algebroids, i.e. double vector bundles with a graded side and
a linear split Lie n-algebroid structure over a split Lie n-algebroid.

In addition to the impact of representations up to homotopy in the study of Lie
algebroids in the last ten years, our general motivation for studying representations up
to homotopy of higher Lie n-algebroids comes from the case n = 2, and in particular
from Courant algebroids. In light of AKSZ theory, it seems reasonable to expect that
the category of representations (up to homotopy) of Courant algebroids might have
interesting connections to 3-dimensional topology. The results in this paper should
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be useful in the study of such representations. The first step is the search for a good
notion not only of the adjoint representation of a Courant algebroid, but also of its
ideals, similar to the work done in [27]. Since Courant algebroids are equivalent to Lie
2-algebroids with a compatible symplectic structure [40, 42], the following question
arises naturally:

Question Is a compatible Poissonor symplectic structure on aLien-algebroid encoded
in its adjoint representation?

The answer to this question is positive, since it turns out that a Poisson bracket on
a Lie n-algebroid gives rise to a natural map from the coadjoint to the adjoint repre-
sentation which is a morphism of right representations (see Theorem 4.13, Corollary
4.14 and Sect. 7.2), i.e. it anti-commutes with the differentials of their structure as
left representations and commutes with the differentials of their structure as right
representations. Further, the Poisson structure is symplectic if and only if this map
is in fact a right isomorphism. This result is already known in some special cases,
including Poisson Lie 0-algebroids, i.e. ordinary Poisson manifolds (M, {· , ·}), and
Courant algebroids over a point, i.e. quadratic Lie algebras (g, [· , ·], 〈· , ·〉). In the
former case the map reduces to the natural map � : T ∗M → T M obtained from the
Poisson bracket on M , and in the latter case it is the inverse of the map defined by the
nondegenerate pairing g → g∗, x 
→ 〈x, ·〉.

Let us conclude by explaining why the study of representations up to homotopy of
split Lie n-algebroids is prominent in this paper. Our approach in this paper empha-
sises the similarity of the formulas in the split case with the usual formulas for the
now well-known representations up to homotopy of Lie algebroids [2, 18]. More
precisely, we construct objects evidently generalising this “classical” theory, and we
employ techniques and constructions that are similar to those that are well-known.
The correspondence between decomposed split VB-Lie n-algebroids and (n + 1)-
representations of Lie n-algebroids is an example of this, since it is a generalisation
of the correspondence of decomposed VB-algebroids with 2-representations of Lie
1-algebroids [18].

In addition, some examples naturally have the split form and are easier to work
with in this setting. For instance, the symplectic Lie 2-algebroids corresponding to
Courant algebroids [40, 42] are often given as split Lie 2-algebroids, after a choice of
metric connection on the Courant algebroid.

Outline of the paper

This paper consists of seven sections and is organised as follows. Section 2 sets the
notation and conventions, and recalls the definitions and constructions of graded vector
bundles and Lie algebroids.

Section 3 offers a quick introduction to graded manifolds, (split) Lie n-algebroids,
and Poisson and symplectic structures on Lie n-algebroids. In particular, it discusses
the space of generalised functions of a Lie n-algebroid, gives the geometric description
of a split Lie 2-algebroid [25] which is used in the rest of the paper, and defines the
Weil algebra of a Lie n-algebroid—as it is done in [33] in the case n = 1.
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Sections 4 and 5 generalise the notions of Lie algebroidmodules and representations
up to homotopy to the setting of Lie n-algebroids. They offer a detailed explanation
of the theory and give some useful examples, including the classes of the adjoint and
coadjoint modules, whose properties are discussed thoroughly, especially in the case
of Lie 2-algebroids. Section 4 provides the answer to the question expressed above
about the connection between higher Poisson or symplectic structures and the adjoint
and coadjoint modules.

Section 6 recalls some basic definitions and examples from the theory of double
vector bundles and defines VB-Lie n-algebroids together with the prototype example
of the tangent prolongation of a Lie n-algebroid. It also shows that there is a 1-1 cor-
respondence between split VB-Lie n-algebroids and representations up to homotopy
of degree n + 1, which relates again the adjoint representation of a Lie algebroid with
its tangent prolongation.

Finally, Sect. 7 discusses in the split case the results of this paper. It analyses the
Weil algebra of a split Lie n-algebroid using vector bundles and connections, and it
gives more details about the map between the coadjoint and adjoint representations
for split Poisson Lie algebroids of degree n ≤ 2.

Relation to other work

During the preparation of this work, the authors learnt that Caseiro and Laurent–
Gengoux also consider representations up to homotopy of Lie n-algebroids, in
particular the adjoint representation, in their article [11], which was then also in
preparation.

In [48], Vitagliano considers representations of strongly homotopy Lie–Rinehart
algebras. Strongly homotopy Lie Rinehart algebras are the purely algebraic versions
of graded vector bundles, over graded manifolds, equipped with a homological vector
field that is tangent to the zero section. If the base manifold has grading concentrated
in degree 0 and the vector bundle is negatively graded, the notion recovers the one
of split Lie n-algebroids. In that case, Vitagliano’s representations correspond to the
representations up to homotopy considered in this paper.

In addition, since the DG M-modules considered in this paper are the sheaves of
sections of Q-vector bundles, they are themselves also special cases of Vitagliano’s
strongly homotopy Lie–Rinehart algebras.

2 Preliminaries

This section recalls basic definitions and conventions that are used later on. In what
follows, M is a smooth manifold and all the considered objects are supposed to be
smooth even if not explicitly mentioned. Moreover, all (graded) vector bundles are
assumed to have finite rank.
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2.1 (Graded) vector bundles and complexes

Given two ordinary vector bundles E → M and F → N , there is a bijection between
vector bundle morphisms φ : E → F covering φ0 : M → N and morphisms of mod-
ules φ� : �(F∗) → �(E∗) over the pull-back φ∗

0 : C∞(N ) → C∞(M). Explicitly,
the map φ� is defined by φ�( f )(m) = φ∗

m fφ0(m), for f ∈ �(F),m ∈ M .
Throughout the paper, underlined symbols denote graded objects. For instance,

a graded vector bundle is a vector bundle q : E → M together with a direct sum
decomposition

E =
⊕

n∈Z
En[n]

of vector bundles En over M . The finiteness assumption for the rank of E implies that
E is both upper and lower bounded, i.e. there exists a n0 ∈ Z such that En = 0 for
all |n| > n0. Here, an element e ∈ En is (degree-)homogeneous of degree |e| = −n.
That is, for k ∈ Z, the degree k component of E (denoted with upper index Ek) equals
E−k .

All the usual algebraic constructions from the theory of ordinary vector bundles
extend to the graded setting. More precisely, for graded vector bundles E, F , the dual

E∗ =
⊕

n∈Z
E∗
n [−n],

the direct sum E ⊕ F , the space of graded homomorphisms Hom(E, F), the tensor
product E ⊗ F , and the symmetric and antisymmetric powers S(E) and A(E) are
defined.

A (cochain) complex of vector bundles is a graded vector bundle E overM equipped
with a degree one1 endomorphism over the identity on M

. . .
∂→ Ei+1

∂→ Ei
∂→ Ei−1

∂→ . . .

which squares to zero; ∂2 = 0, and is called the differential.
Given two complexes (E, ∂) and (F, ∂), one may construct new complexes by

considering all the constructions that were discussed before. Namely, the bundles
S(E), A(E), E∗, Hom(E, F) and E ⊗ F inherit a degree one operator that squares
to 0. The basic principle for all the constructions is the graded derivation rule. For
example, for φ ∈ Hom(E, F) and e ∈ E :

∂(φ(e)) = ∂(φ)(e) + (−1)|φ|φ(∂(e)).

This can also be expressed using the language of (graded) commutators as

∂(φ) = [∂, φ] = ∂ ◦ φ − (−1)|φ|φ ◦ ∂ = ∂ ◦ φ − (−1)|φ|·|∂|φ ◦ ∂.

1 Recall that for i ∈ Z the elements of Ei have degree −i by convention.
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The shift functor [k], for k ∈ Z, yields a new complex (E[k], ∂[k]) whose i-th
component is E[k]i = Ei+k = E−i−k with differential ∂[k] = ∂ . Formally, E[k] is
obtained by tensoring with (R[k], 0) from the right.2 A degree k morphism between
two complexes (E, ∂) and (F, ∂) over M , or simply k-morphism, is, by definition, a
degree preserving morphism φ : E → F[k] over the identity on M ; that is, a family
of vector bundle maps φi : Ei → F[k]i over the identity on M that commutes with
the differentials:3 φ ◦ ∂ = ∂ ◦ φ.

2.2 Dull algebroids vs Lie algebroids

A dull algebroid [23] is a vector bundle Q → M endowed with an anchor ρQ : Q →
T M and a bracket (i.e. anR-bilinear map) [· , ·] : �(Q)×�(Q) → �(Q) on its space
of sections �(Q), such that

ρQ [q1, q2] = [
ρQ (q1) , ρQ (q2)

]
(1)

and the Leibniz identity is satisfied in both entries:

[ f1q1, f2q2] = f1 f2 [q1, q2] + f1ρQ(q1) f2 · q2 − f2ρQ(q2) f1 · q1,
for all q1, q2 ∈ �(Q) and all f1, f2 ∈ C∞(M).

A dull algebroid is a Lie algebroid if its bracket is also skew-symmetric and satisfies
the Jacobi identity

Jac[· ,·] (q1, q2, q3) := [q1, [q2, q3]] − [[q1, q2] , q3] − [q2, [q1, q3]] = 0,

for all q1, q2, q3 ∈ �(Q).
Given a skew-symmetric dull algebroid Q, there is an associated operator dQ of

degree 1 on the space of Q-forms �•(Q) = �(∧•Q∗), defined by the formula

dQτ (q1, . . . , qk+1) =
∑

i< j

(−1)i+ jτ
([
qi , q j

]
, q1, . . . , q̂i , . . . , q̂ j , . . . , qk+1

)

+
∑

i

(−1)i+1ρQ(qi )
(
τ

(
q1, . . . , q̂i , . . . , qk+1

))
,

for τ ∈ �k(Q) and q1, . . . , qk+1 ∈ �(Q); the notation q̂ means that q is omitted. The
operator dQ satisfies as usual

dQ (τ1 ∧ τ2) = (
dQτ1

) ∧ τ2 + (−1)|τ1|τ1 ∧ dQτ2,

for τ1, τ2 ∈ �•(Q). In general, the operator dQ squares to zero only on 0-forms
f ∈ �0(M) = C∞(M), since d2Q f = 0 for all f ∈ C∞(M) is equivalent to the

2 If one chose to tensor from the left, the resulting complex would still have i-th component E[k]i = Ei+k ,
but the Leibniz rule would give the differential ∂[k] = (−1)k∂ .
3 This becomes φ ◦ ∂ = (−1)k∂ ◦ φ for the other convention.
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compatibility of the anchor with the bracket (1). The identity d2Q = 0 on all forms is
equivalent to (Q, ρQ, [· , ·]) being a Lie algebroid.

2.3 Basic connections and basic curvature

Let Q → M be a skew-symmetric dull algebroid and E → M another vector bundle.
A Q-connection on E is defined similarly as usual, as a map ∇ : �(Q) × �(E) →
�(E), (q, e) 
→ ∇qe that is C∞(M)-linear in the first argument and satisfies

∇q( f e) = £ρQ(q) f · e + f ∇qe,

for all q ∈ �(Q), e ∈ �(E) and f ∈ C∞(M). The dual connection ∇∗ is the
Q-connection on E∗ defined by the formula

〈
∇∗
q ε, e

〉
= £ρQ(q)〈ε, e〉 − 〈

ε,∇qe
〉
,

for all ε ∈ �(E∗), e ∈ �(E) and q ∈ �(Q), where 〈· , ·〉 is the natural pairing between
E and its dual E∗.

A Q-connection on a graded vector bundle (E = ⊕
n∈Z En[n], ∂) is a family of Q-

connections ∇n , n ∈ N, on each of the bundles En . If E is a complex with differential
∂ , then the Q-connection is a connection on the complex (E, ∂) if it commutes with
∂ , i.e. ∂(∇n

q e) = ∇n−1
q (∂e) for q ∈ �(Q) and e ∈ �(En).

The curvature R∇ of a Q-connection on a vector bundle E is defined by

R∇(q1, q2)e = ∇q1∇q2e − ∇q2∇q1e − ∇[q1,q2]e,

for all q1, q2 ∈ �(Q) and e ∈ �(E), and generally, it is an element of �(Q∗ ⊗
Q∗ ⊗ E∗ ⊗ E). In this situation (where we are assuming Q is skew-symmetric), the
curvature is a 2-form with values in the endomorphism bundle End(E) = E∗ ⊗ E ,
i.e. R∇ ∈ �2(Q,End(E)). A connection is called as usual flat if its curvature R∇
vanishes identically.

A Q-connection∇ on E induces an operator d∇ on the space of E-valued Q-forms
�•(Q, E) = �•(Q) ⊗C∞(M) �(E) given by the usual Koszul formula

d∇τ (q1, . . . , qk+1) =
∑

i< j

(−1)i+ jτ
([
qi , q j

]
, q1, . . . , q̂i , . . . , q̂ j , . . . , qk+1

)

+
∑

i

(−1)i+1∇qi

(
τ

(
q1, . . . , q̂i , . . . , qk+1

))
,

for all τ ∈ �k(Q, E) and q1, . . . , qk+1 ∈ �(Q). It satisfies

d∇ (τ1 ∧ τ2) = dQτ1 ∧ τ2 + (−1)kτ1 ∧ d∇τ2,

for all τ1 ∈ �k(Q) and τ2 ∈ �•(Q, E), and squares to zero if and only if Q is a Lie
algebroid and ∇ is flat.
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Suppose that∇ : X(M)×�(Q) → �(Q) is a T M-connection on the vector bundle
Q. The induced basic connections on Q and T M are defined similarly as the ones
associated to Lie algebroids [2, 18]:

∇bas = ∇bas,Q : �(Q) × �(Q) → �(Q), ∇bas
q1 q2 = [q1, q2] + ∇ρQ(q2)q1

and

∇bas = ∇bas,T M : �(Q) × X(M) → X(M), ∇bas
q X = [

ρQ(q), X
] + ρQ(∇Xq).

The basic curvature is the form Rbas∇ ∈ �2(Q,Hom(T M, Q)) defined by

Rbas∇ (q1, q2) X = −∇X [q1, q2] + [q1,∇Xq2] + [∇Xq1, q2] + ∇∇bas
q2

Xq1 − ∇∇bas
q1

Xq2.

Simple computations show that the basic connections and the basic curvature satisfy

∇bas,T M ◦ ρQ = ρQ ◦ ∇bas,Q, (2)

ρQ ◦ Rbas∇ = R∇bas,T M , (3)

Rbas∇ ◦ ρQ + Jac[· ,·] = R∇bas,Q . (4)

3 (Split) Lie n-algebroids andNQ-manifolds

This section recalls basic results about N-manifolds and Lie n-algebroids (based on
[24]), and describes the Weil algebra of a Lie n-algebroid for general n (see [34] for
n = 1). It focuses on the category of split N-manifolds, which is equivalent to the
category of N-manifolds ([7, 40]).

3.1 (Split)N-manifolds and homological vector fields

Graded manifolds of degree n ∈ N are defined as follows, in terms of sheaves over
ordinary smooth manifolds.

Definition 3.1 An N-manifold M of degree n and dimension (m; r1, . . . , rn) is a
sheaf C∞(M) ofN-graded, graded commutative, associative, unitalC∞(M)-algebras
over a smooth m-dimensional manifold M , which is locally freely generated by r1 +
. . . + rn elements ξ11 , . . . , ξ

r1
1 , ξ12 , . . . , ξ

r2
2 , . . . , ξ1n , . . . , ξ

rn
n with ξ

j
i of degree i for

i ∈ {1, . . . , n} and j ∈ {1, . . . , ri }.
A morphism of N-manifolds μ : N → M over a smooth map μ0 : N → M

of the underlying smooth manifolds is a morphism of sheaves of graded algebras
μ� : C∞(M) → C∞(N) over μ∗

0 : C∞(M) → C∞(N ).
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For short, “[n]-manifold” means “N-manifold of degree n”. The degree of a
(degree-) homogeneous element ξ ∈ C∞(M) is written |ξ |. Note that the degree 0
elements of C∞(M) are just the smooth functions of the manifold M . By definition,
a [1]-manifold M is a locally free and finitely generated sheaf C∞(M) of C∞(M)-
modules. That is, C∞(M) = �(∧E∗) for a vector bundle E → M . In that case,
M =: E[1]. Recall that this means that the elements of E have degree −1, and so
the sections of E∗ have degree 1.

Consider now a (non-graded) vector bundle E of rank r over the smooth manifold
M of dimensionm. Similarly as before, assigning the degree n to the fibre coordinates
of E defines an [n]-manifold of dimension (m; r1 = 0, . . . , rn−1 = 0, rn = r) denoted
by E[n], with C∞(E[n])n = �(E∗). More generally, let E1, . . . , En be vector bundles
of ranks r1, . . . , rn , respectively, and assign the degree i to the fibre coordinates of
Ei , for each i = 1, . . . , n. The direct sum E = E1[1] ⊕ · · · ⊕ En[n] is a graded
vector bundle with grading concentrated in degrees −1, . . . ,−n. When seen as an
[n]-manifold, E1[1] ⊕ · · · ⊕ En[n] has the local basis of sections of E∗

i as local
generators of degree i and thus its dimension is (m; r1, . . . , rn).
Definition 3.2 An [n]-manifold of the form E1[1] ⊕ · · · ⊕ En[n] as above is called a
split [n]-manifold.

The relation between [n]-manifolds and split [n]-manifolds is explained by the
following theorem, which is implicit in [40] and explicitly proved in [7].

Theorem 3.3 Any [n]-manifold is non-canonically diffeomorphic to a split [n]-
manifold.

Note that under the above correspondence, the structure sheaf of an [n]-manifold
M � E = E1[1] ⊕ · · · ⊕ En[n] becomes

C∞(M) � �
(
S

(
E∗)) ,

and a different choice of splitting leaves the bundles unchanged, up to isomorphism.
In particular, for the case of a split [2]-manifoldM = E = E1[1]⊕ E2[2] the graded
functions are

C∞(M) = �
(
S

(
E∗)) = �

(∧E∗
1 ⊗ SE∗

2

)
,

where the grading is defined such that

C∞(M)i =
⊕

k+2�=i

�
(
∧k E∗

1 ⊗ S�E∗
2

)
.

Using the language of graded derivations, the usual notion of vector field can be
generalized to a notion of vector field on an [n]-manifold M.

Definition 3.4 A vector field of degree j on M is a degree j (graded) derivation
of C∞(M), i.e. a map X : C∞(M) → C∞(M) such that |X(ξ)| = j + |ξ | and
X(ξζ ) = X(ξ)ζ + (−1) j |ξ |ξX(ζ ), for homogeneous elements ξ, ζ ∈ C∞(M).
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As usual, |X| denotes the degree of a homogeneous vector field X. The Lie bracket of
two vector fields X,Y on M is the graded commutator

[X,Y] = XY − (−1)|X||Y|YX.

The following relations hold:

(i) [X,Y] = −(−1)|X||Y|[Y,X],
(ii) [X, ξY] = X(ξ)Y + (−1)|X||ξ |ξ [X,Y],
(iii) (−1)|X||Z|[X, [Y,Z]] + (−1)|Y||X|[Y, [Z,X]] + (−1)|Z||Y|[Z, [X,Y ]] = 0,

for X,Y,Z homogeneous vector fields on M, and ξ a homogeneous element of
C∞(M).

Local generators ξ
j
i of C∞(M) over an open setU ⊆ M given by the definition of

M define the (local) vector fields ∂
ξ
j
i
of degree − j , which sends ξ

j
i to 1 and the other

local generators to 0. The sheaf DerU (C∞(M)) of graded derivations of C∞
U (M) is

freely generated as aC∞
U (M)-module by ∂xk and ∂

ξ
j
i
, where x1, . . . , xm are coordinates

for M defined on U .
Note that in the case of a split [n]-manifold E1[1] ⊕ · · · ⊕ En[n], each section

e ∈ �(E j ) defines a derivation ê of degree − j on M by the relations: ê( f ) = 0 for
f ∈ C∞(M), ê(ε) = 〈ε, e〉 for ε ∈ �(E∗

j ) and ê(ε) = 0 for ε ∈ �(E∗) with |ε| �= j .

In particular, êij = ∂εij
for {eij } a local basis of E j and {εij } the dual basis of E∗

j .

Given T M-connections ∇ i : X(M) → Der(Ei ) for all i , the space of vector fields
over a split [n]-manifoldM is generated as a C∞(M)-module by

{
∇1
X ⊕ · · · ⊕ ∇n

X | X ∈ X(M)
}

∪ {
ê | e ∈ � (Ei ) for some i

}
.

The vector fields of the form∇1
X ⊕· · ·⊕∇n

X are of degree 0 and are understood to send

f ∈ C∞(M) to X( f ) ∈ C∞(M), and ε ∈ �(E∗
i ) to ∇ i,∗

X ε ∈ �(E∗
i ). The negative

degree vector fields are generated by those of the form ê.

Definition 3.5 A homological vector field Q on an [n]-manifold M is a degree 1
derivation of C∞(M) such that Q2 = 1

2 [Q,Q] = 0.

A homological vector field on a [1]-manifold M = E[1] is a differential dE associ-
ated to a Lie algebroid structure on the vector bundle E over M [45]. The following
definition generalizes this to arbitrary degrees.

Definition 3.6 A Lie n-algebroid is an [n]-manifoldM endowed with a homological
vector field Q—the pair (M,Q) is also called NQ-manifold of degree n. A split Lie
n-algebroid is a split [n]-manifoldM endowed with a homological vector fieldQ. A
morphism of (split) Lie n-algebroids is a morphism μ of the underlying [n]-manifolds
such that μ� commutes with the homological vector fields.

The homological vector field associated to a split Lie n-algebroid A = A1[1] ⊕
· · ·⊕ An[n] → M can be equivalently described by a family of brackets which satisfy
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some Leibniz and higher Jacobi identities [43]. More precisely, a homological vector
field on A is equivalent to an L∞-algebra structure4 on �(A) that is anchored by a
vector bundle morphism ρ : A1 → T M . Such a structure is given by multibrackets
[[· , . . . , ·]]i : �(A)i → �(A) of degree 1 for 1 ≤ i ≤ n + 1 such that

(1) [[· , ·]]2 satisfies the Leibniz identity with respect to ρ,
(2) [[· , . . . , ·]]i is C∞(M)-linear in each entry for all i �= 2,
(3) (graded skew symmetry) each [[·, . . . , ·]]i is graded alternating: for a permutation

σ ∈ Si and for all a1, . . . , ai ∈ �(A) degree-homogeneous sections

[[
aσ(1), aσ(2), . . . , aσ(k)

]]
i = Ksgn (σ, a1, . . . , ak) · [[a1, a2, . . . , ak]]i ,

and
(4) (strong homotopy Jacobi identity) for k ∈ N and a1, . . . , ak ∈ �(A) sections of

homogeneous degree:

∑

i+ j=k+1

(−1)i( j−1)
∑

σ∈Shi,k−i

Ksgn(σ, a1, . . . , ak)[[[[aσ(1), . . . , aσ(i)]]i ,

aσ(i+1), . . . , aσ(k)]] j = 0.

Here, Shi,k−i is the set of all (i, k − i)-shuffles5 and Ksgn(σ, a1, . . . , ak) is the
(a1, . . . , ak)-graded signature of the permutation σ ∈ Sk , i.e.

a1 ∧ . . . ∧ ak = Ksgn(σ, a1, . . . , ak)aσ(1) ∧ . . . ∧ aσ(k).

This gives the following alternative geometric description of a split Lie 2-algebroid
(M = A1[1] ⊕ A2[2],Q), see [25]. For consistency with the notation in [25], set
A1 := Q and A∗

2 =: B.

Definition 3.7 A split Lie 2-algebroid Q[1] ⊕ B∗[2] is given by a pair of an anchored
vector bundle (Q → M, ρQ) and a vector bundle B → M , together with a vector
bundle map � : B∗ → Q, a skew-symmetric dull bracket [· , ·] : �(Q) × �(Q) →
�(Q), a linear Q-connection ∇ on B, and a vector valued 3-form ω ∈ �3(Q, B∗)
such that

(i) ∇∗
�(β1)

β2 + ∇∗
�(β2)

β1 = 0, for all β1, β2 ∈ �(B∗),
(ii) [q, �(β)] = �(∇∗

qβ) for all q ∈ �(Q) and β ∈ �(B∗),
(iii) Jac[· ,·] = � ◦ ω ∈ �3(Q, Q),

(iv) R∇∗(q1, q2)β = −ω(q1, q2, �(β)) for q1, q2 ∈ �(Q) and β ∈ �(B∗),
(v) d∇∗ω = 0.

4 We note that the sign convention agrees with, e.g. [28, 49]. In [41], the term “L∞[1]-algebra” was used
for brackets with this sign convention.
5 A (i, k − i)-shuffle is an element σ ∈ Sk such that σ(1) < · · · < σ(i) and σ(i + 1) < · · · < σ(k).

123



Modules and representations up to homotopy of Lie n-algebroids 35

To pass from the definition above to the homological vector field Q, set Q( f ) =
ρ∗d f ∈ �(Q∗),Q(τ ) = dQτ + ∂Bτ ∈ �2(Q) ⊕ �(B), andQ(b) = d∇b − 〈ω, b〉 ∈
�1(Q, B) ⊕ �3(Q) for f ∈ C∞(M), τ ∈ �(Q) and b ∈ �(B), where ∂B := �∗.

On the other handwemayobtain the data ofDefinition 3.7 fromagiven homological
vector fieldQ as follows. Define the vector bundle map � to be the 1-bracket and ρ to
be the anchor. The 2-bracket induces the skew-symmetric dull bracket on Q and the
Q-connection on B∗ via the formula

[[q1 ⊕ β1, q2 ⊕ β2]]2 = [q1, q2]Q ⊕
(
∇∗
q1β2 − ∇∗

q2β1

)
.

Finally, the 3-bracket induces the 3-form ω via the formula

[[q1 ⊕ 0, q2 ⊕ 0, q3 ⊕ 0]]3 = 0 ⊕ ω (q1, q2, q3) .

Example 3.8 (Lie 2-algebras) If we consider a Lie 2-algebroid over a point, then we
recover the notion of Lie 2-algebra [6]. Specifically, a Lie 2-algebroid over a point
consists of a pair of vector spaces g0, g1, a linear map � : g0 → g1, a skew-symmetric
bilinear bracket [· , ·] : g1 × g1 → g1, a bilinear action bracket [· , ·] : g1 × g0 → g0,
and an alternating trilinear bracket [· , · , ·] : g1 × g1 × g1 → g0 such that

(1) [�(x), y] + [�(y), x] = 0 for x, y ∈ g0,
(2) [x, �(y)] = �([x, y]) for x ∈ g1 and y ∈ g0,
(3) Jac[·,·](x, y, z) = �([x, y, z]) for x, y, z ∈ g1,
(4) [[x, y], z] + [y, [x, z]] − [x, [y, z]] = [x, y, �(z)] for x, y ∈ g1 and z ∈ g0,
(5) and the higher Jacobi identity

0 = [x, [y, z, w]] − [y, [x, z, w]] + [z, [x, y, w]] − [w, [x, y, z]] − [[x, y], z, w]

+ [[x, z], y, w]− [[x, w], y, z] − [[y, z], x, w] + [[y, w], x, z] − [[z, w], x, y] .

holds for x, y, z, w ∈ g1.

Example 3.9 (Derivation Lie 2-algebr(oid)) For any Lie algebra (g, [· , ·]g), the
derivation Lie 2-algebra is defined as the complex

ad : g → Der(g)

with brackets given by [δ1, δ2] = δ1δ2 − δ2δ1, [δ, x] = δx , [δ1, δ2, δ3] = 0 for all
δ, δi ∈ Der(g), i = 1, 2, 3, and x ∈ g.

A global analogue of this construction can be achieved only under strong assump-
tions on the Lie algebroid A → M . Precisely, let A → M be a Lie algebra bundle.
Then the space of all derivations D of the vector bundle A which preserve the bracket

D[a1, a2] = [Da1, a2] + [a1, Da2]

is the module of sections of a vector bundle over M , denoted Der[·,·](A) → M .
Together with the usual commutator bracket and the anchor ρ′(D) = X , where D
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is a derivation of �(A) covering X ∈ X(M), the vector bundle Der[·,·](A) is a Lie
algebroid over M [30]. Since the anchor of A is trivial, the complex

A
ad→ Der[· ,·](A)

ρ′
→ T M

becomes a Lie 2-algebroid with Der[·,·](A)-connection on A given by∇Da = Da and
ω = 0.

Example 3.10 (Courant algebroids) Let E → M be a Courant algebroid with pairing
〈· , ·〉 : E ×M E → E , anchor ρ and Dorfman bracket [[· , ·]], and choose a metric
linear connection ∇ : X(M) × �(E) → �(E). Then E[1] ⊕ T ∗M[2] becomes as
follows a split Lie 2-algebroid. The skew-symmetric dull bracket is given by [e, e′] =
[[e, e′]] − ρ∗〈∇.e, e′〉 for all e, e′ ∈ �(E). The basic connection is ∇bas : �(E) ×
X(M) → X(M), ∇bas

e X = [ρ(e), X ] + ρ(∇Xe), and the basic curvature is given by
ω∇ ∈ �2(E,Hom(T M, E))

ω∇
(
e, e′) X = −∇X

[[
e, e′]] + [[∇Xe, e

′]] + [[
e,∇Xe

′]] + ∇∇bas
e′ Xe −

∇∇bas
e X e

′ − P−1
〈
∇∇bas

. Xe, e
′〉 ,

where P : E → E∗ is the isomorphism defined by the pairing, for all e, e′ ∈ �(E) and
X ∈ X(M). The map � is ρ∗ : T ∗M → E , the E-connection on T ∗M is ∇bas,∗ and
the form ω ∈ �3(E, T ∗M) is given by ω(e1, e2, e3) = 〈ω∇(e1, e2)(·), e3〉. The kind
of split Lie 2-algebroids that arise in this way are the split symplectic Lie 2-algebroids
[40]. They are splittings of the symplectic Lie 2-algebroid which is equivalent to the
tangent prolongation of E , which is an LA-Courant algebroid [25, 26].

3.2 Generalized functions of a Lie n-algebroid

In the following, (M,Q) is a Lie n-algebroid with underlying manifold M . Consider
the space C∞(M) ⊗C∞(M) �(E) for a graded vector bundle E → M of finite rank.
For simplicity, C∞(M)⊗C∞(M) �(E) is sometimes written C∞(M)⊗�(E). That is,
these tensor products in the rest of the paper are always of C∞(M)-modules.

First suppose that (M,Q) = (A[1], dA) is a Lie algebroid. The space of E-valued
differential forms �(A; E) := �(A) ⊗C∞(M) �(E) = C∞(A[1]) ⊗C∞(M) �(E) has
a natural grading given by

�
(
A; E)

p =
⊕

i− j=p

�i (
A; E j

)
.

It iswell-known (see [2]) that any degree preserving vector bundlemap h : E⊗F → G
induces a wedge product operation

(· ∧h ·) : �(A; E) × �(A; F) → �(A;G)
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which is defined on ω ∈ �p(A; Ei ) and η ∈ �q(A; Fj ) by

(ω ∧h η)
(
a1, . . . , ap+q

) =
∑

σ∈Shp,q
(−1)qi sgn(σ )h

(
ω

(
aσ(1), . . . , aσ(p)

)
,

η
(
aσ(p+1), . . . , aσ(p+q)

))
,

for all a1, . . . , ap+q ∈ �(A).
In particular, the above rule reads

θ ∧h ζ = (−1)qi (ω ∧ η) ⊗ h(e, f ),

for all θ = ω ⊗ e and ζ = η ⊗ f where ω is a p-form, η is a q-form, and e and f are
homogeneous sections of E and F of degree i and j , respectively.

Some notable cases for special choices of the map h are given by the identity, the
composition of endomorphisms, the evaluation and the ‘twisted’ evaluation maps, the
graded commutator of endomorphisms and the natural pairing of a graded vector bun-
dlewith its dual. In particular, the evaluation (�, e) 
→ �(e) and the twisted evaluation
(e,�) 
→ (−1)|�||e|�(e) make �(A; E) a graded �(A;End(E))-bimodule.

In the general case of a Lie n-algebroid (M,Q), the space �(A) is replaced by the
generalized smooth functions C∞(M) of M. The space C∞(M) ⊗C∞(M) �(E) has
a natural grading, where the homogeneous elements of degree p are given by

⊕

i− j=p

C∞(M)i ⊗ �
(
E j

)
.

Similarly as in the case of a Lie algebroid, given a degree preserving map

h : E ⊗ F → G,

one obtains the multiplication

(C∞(M) ⊗ �(E)
) × (C∞(M) ⊗ �(F)

) → C∞(M) ⊗ �(G)

(ω, η) 
→ ω ∧h η.

In particular, for elements of the form ξ ⊗e ∈ C∞(M)i ⊗�(E j ), ζ ⊗ f ∈ C∞(M)k ⊗
�(F�) the above rule reads

(ξ ⊗ e) ∧h (ζ ⊗ f ) = (−1)(− j)kξζ ⊗ h(e, f ),

where on the right hand side the multiplication ξζ is the one in C∞(M). The special
cases above are defined similarly for the n-algebroid case.Moreover, C∞(M)⊗C∞(M)

�(E) is endowedwith the structure of a gradedC∞(M)⊗C∞(M)�(End(E))-bimodule.
Finally, the following fact will be useful later as it is a generalisation of [2, Lemma

A.1], and gives the connection between the space C∞(M) ⊗ �(Hom(E, F)) and the
homomorphisms from C∞(M) ⊗ �(E) to C∞(M) ⊗ �(F).
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There is a 1-1 correspondence between the degree n elements of C∞(M) ⊗
�(Hom(E, F)) and the operators � : C∞(M)⊗�(E) → C∞(M)⊗�(F) of degree
n which are C∞(M)-linear in the graded sense:

�(ξ ∧ η) = (−1)nkξ ∧ �(η),

for all ξ ∈ C∞(M)k , and all η ∈ C∞(M) ⊗ �(E). The element � ∈ C∞(M) ⊗
�(End(E)) induces the operator �̂ given by left multiplication by �:

�̂(η) = � ∧ η.

This clearly satisfies �̂(ξ ∧ η) = (−1)nkξ ∧ �̂(η), for all ξ ∈ C∞(M)k, η ∈
C∞(M)⊗�(E). Conversely, an operator� of degree nmust send a section e ∈ �(Ek)

into the sum

�(Fk−n) ⊕
(
C∞(M)1 ⊗ � (Fk−n+1)

)
⊕

(
C∞(M)2 ⊗ � (Fk−n+2)

)
⊕ . . . ,

defining the elements

�i ∈ C∞(M)i ⊗ �
(
Homn−i (E, F)

)
.

Thus, this yields the (finite) sum �̃ = ∑
�i ∈ (C∞(M) ⊗ �

(
Hom

(
E, F

)))n .
Clearly,

˜̂� = � and ̂̃� = �.

��
Schematically, for a Lie n-algebroid M, the above discussion gives the following

diagram:

In particular, if E = F , then

3.3 TheWeil algebra associated to a Lie n-algebroid

Let M be an [n]-manifold over a smooth manifold M and ξ11 ,

. . . , ξ
r1
1 , ξ12 , . . . , ξ

r2
2 , . . . , ξ1n , . . . , ξ

rn
n be its local generators over some open U ⊂ M

with degrees 1, 2, . . . , n, respectively. By definition, the tangent bundle TM ofM is
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an [n]-manifold over T M [33, 34], whose local generators over TU ⊂ T M are given
by

C∞
TU (TM)0 = C∞(TU ) and ξ1i , . . . , ξ

ri
i , dξ1i , . . . , dξ rii ∈ C∞

TU (TM)i .

The shifted tangent prolongation6 T [1]M is an [n + 1]-manifold over M , with local
generators over U given by

degree 0 C∞(U )

degree 1 ξ11 , . . . , ξ
r1
1 , �1(U )

degree 2 ξ12 , . . . , ξ
r2
2 , dξ11 , . . . , dξr11

.

.

.
.
.
.

degree n ξ1n , . . . , ξ
rn
n , dξ1n−1, . . . , dξ

rn−1
n−1

degree n + 1 dξ1n , . . . , dξrnn

It carries a bigrading (p, q), where p comes from the grading of M and q is the
grading of “differential forms”. In other words, the structure sheaf of T [1]M assigns
to every coordinate domain (U , x1, . . . , xm) of M that trivialises M, the space

C∞
U (T [1]M) =

⊕

i

C∞
U (M)i

︸ ︷︷ ︸
(i,0)

〈
(
dxk

)m

k=1︸ ︷︷ ︸
(0,1)

,
(
dξ k1

)r1

k=1︸ ︷︷ ︸
(1,1)

, . . . ,
(
dξ kn

)rn

k=1︸ ︷︷ ︸
(n,1)

〉

.

Suppose now that (M,Q) is a Lie n-algebroid over M . Then T [1]M is an [n +
1]-manifold, which inherits the two commuting differentials £Q and d defined as
follows:

• the de Rham differential d : C∞(T [1]M)• → C∞(T [1]M)•+1 is defined on gen-
erators by C∞(M) � f 
→ d f , ξ

j
i 
→ dξ j

i , d f 
→ 0 and dξ j
i 
→ 0, and is

extended to the whole algebra as a derivation of bidegree (0, 1).
• £Q : C∞(T [1]M)• → C∞(T [1]M)•+1 is the Lie derivative with respect to the
vector field Q, i.e. the graded commutator £Q = [iQ,d] = iQ ◦ d − d ◦ iQ , and
it is a derivation of bidegree (1, 0). Here, iQ is the bidegree (1,−1)-derivation
on T [1]M, which sends ξ ∈ C∞(M) to 0, dξ to Q(ξ) for ξ ∈ C∞(M), and is
extended to the whole algebra as a derivation of bidegree (1,−1). The differential
£Q can be seen as a [1]-shifted version of the tangent lift of the vector field Q from
M to T [1]M.

By checking their values on local generators, it is easy to see that £2Q = 0,d2 = 0 and
[£Q,d] = £Q ◦ d + d ◦ £Q = 0. Hence,

W p,q(M) := {
elements of C∞(T [1]M) of bidegree (p, q)

}

6 Note that here there is a sign difference in the notation with [33, 34]. T [1]M here is the same as T [−1]M
in these papers.
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together with £Q and d forms a double complex.

Definition 3.11 The Weil algebra of a Lie n-algebroid (M,Q) is the differential
graded algebra given by the total complex of W p,q(M):

W (M) :=
⎛

⎝
⊕

i∈Z

⊕

i=p+q

W p,q(M), £Q + d

⎞

⎠ .

In the case of a Lie 1-algebroid A → M , this is theWeil algebra from [33, 34]. For the
1-algebroid case, see also [2] for an approach without the language of supergeometry.

4 Differential gradedmodules

This section defines the notion of a differential graded module over a Lie n-algebroid
(M,Q) and gives the two fundamental examples of modules which come canonically
with any Lie n-algebroid, namely the adjoint and the coadjoint modules. Note that the
case of differential graded modules over a Lie 1-algebroid A → M is studied in detail
in [35].

4.1 The category of differential gradedmodules

Let A → M be a Lie 1-algebroid. A Lie algebroid module [45] over A is defined
as a sheaf E of locally freely and finitely generated graded �(A)-modules over M
together with a map D : E → E which squares to zero and satisfies the Leibniz rule

D(αη) = (dAα)η + (−1)|α|αD(η),

for α ∈ �(A) and η ∈ E . For a Lie n-algebroid (M,Q) over M , this is generalised
to the following definitions.

Definition 4.1 A (left) differential graded module of (M,Q) is a sheaf E of locally
freely and finitely generated left graded C∞(M)-modules over M together with a map
D : E → E of degree 1, such that D2 = 0 and

D(ξη) = Q(ξ)η + (−1)|ξ |ξD(η)

for all ξ ∈ C∞(M) and η ∈ E (M).

Note that a right differential graded module of (M,Q) is a sheaf E of right graded
modules as above together with a mapD : E → E of degree 1, such thatD2 = 0 and

D(ηξ) = D(η)ξ + (−1)|η|ηQ(ξ)

for all ξ ∈ C∞(M) and η ∈ E (M). Any left-module can be made into a right-module
(and vice versa) by setting η · ξ := (−1)|η|·|ξ |ξ · η for ξ ∈ C∞(M) and η ∈ E .
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A differential graded bimodule of (M,Q) is then a sheaf E as above together with
left and right differential graded module structures such that the gradings and the
differentials coincide, and the two module structures commute: (ξ1η)ξ2 = ξ1(ηξ2) for
all ξ1, ξ2 ∈ C∞(M) and η ∈ E . Occasionally, a module structure naturally arises in
a given direction and so, although left and right modules are essentially equivalent,
considering them distinctly helps to minimize the signs in the formulas.

For short we write (left or right) DG (M,Q)-module, or simply (left or right) DG
M-module. The cohomology of the induced complexes is denoted by H•

L(M,Q;E )

and H•
R(M,Q;E ), respectively, or simply by H•

L(M,E ) and H•
R(M,E ). If there is

no danger of confusion, the prefixes “left" and “right", as well as the subscripts “L"
and “R", will be omitted.

Definition 4.2 Let (E1,D1) and (E2,D2) be two differential graded modules over the
Lie n-algebroids (M,QM) and (N,QN), respectively, and let k ∈ Z. A degree 0
morphism, or simply a morphism, from E1 to E2 consists of a morphism of Lie n-
algebroids φ : N → M and a degree preserving map μ : E1 → E2 which is linear:
μ(ξη) = φ�(ξ)μ(η), for all ξ ∈ C∞(M) and η ∈ E (M), and commutes with the
differentials D1 and D2.

Remark 4.3 The sheaves E1 and E2 in the definition above are equivalent to sheaves of
linear functions onQ-vector bundles overM [33]. From this point of view, it is natural
that the definition of a morphism of differential graded modules has a contravariant
nature.

As in the case of Lie algebroids, new examples of DG M-modules of Lie n-
algebroids are obtained by considering the usual algebraic constructions. In the
following, we describe these constructions only for left DG modules but the case
of right DG modules can be deduced from this.

Definition 4.4 (Dual module) Given a DG M-module E with differential DE , one
defines a right-DG M-module structure on the dual sheaf E ∗ := Hom(E , C∞) with
differential DE ∗ defined via the property

Q(〈ψ, η〉) = 〈DE ∗(ψ), η〉 + (−1)|ψ |〈ψ,DE (η)〉,

for all ψ ∈ E ∗(M) and η ∈ E (M), where 〈· , ·〉 is the pairing of E ∗ and E [33].

Definition 4.5 (Tensor product) For DGM-modules E andF with operatorsDE and
DF , the corresponding operator DE⊗F on E ⊗ F is uniquely characterised by the
formula

DE⊗F (η ⊗ η′) = DE (η) ⊗ η′ + (−1)|η|η ⊗ DF (η′),

for all η ∈ E (M) and η′ ∈ F (M).

Definition 4.6 (Hommodule) For DGM-modules E ,F with operatorsDE andDF ,
the differential DHom(E ,F ) on Hom(E ,F ) is defined via
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DF (ψ(η)) = DHom(E ,F )(ψ)(η) + (−1)|ψ |ψ(DE (η)),

for all ψ ∈ Hom(E (M),F (M)) and η ∈ E (M).

Definition 4.7 ((Anti)symmetric powers) For a DG M-module E with operator DE ,
the corresponding operator DS(E ) on Sk(E ) is uniquely characterised by the formula

DS(E )(η1η2 . . . ηk) =
k∑

i=1

(−1)|η1|+...+|ηi−1|η1 . . .DE (ηi ) . . . ηk,

for all η1, . . . , ηk ∈ E (M). A similar formula gives also the characterisation for the
operator DA(E ) of the antisymmetric powers Aq(E ).

Definition 4.8 (Direct sum) For DG M-modules E ,F with operators DE and DF ,
the differential operator DE⊕F on E ⊕ F is defined as

DE⊕F = DE ⊕ DF .

Definition 4.9 (Shifts) For k ∈ Z, the DG M-module R[k] is defined as C∞(M) ⊗
�(M×R[k])with differential given byQ; here, M×R[k] is the [k]-shift of the trivial
line bundle over M , i.e. M ×R in degree −k and zero otherwise. Given now a module
E with differential DE , we define the shifted module E [k] := E ⊗ R[k]. Due to the
definition of the tensor module, its differential D[k] acts via

DE [k](η ⊗ 1) = DE (η) ⊗ 1

for all η ∈ E (M). Abbreviating the element η⊗1 simply as η, the shifted differential
DE [k] coincides7 with DE .

Definition 4.10 Let (M,QM) and (N,QN) be Lie n-algebroids, and suppose that
E1 and E2 are DG-modules over M and N, respectively. A degree k-morphism, for
k ∈ Z, from E1 to E2 is defined as a degree 0 morphism μ : E1 → E2[k]; that is, a
map sending elements of degree i in E1 to elements of degree i + k in E2, such that
it is linear over a Lie n-algebroid morphism φ : N → M and commutes with the
differentials. A k-isomorphism is a k-morphism with an inverse.

Remark 4.11 (1) The inverse of a k-isomorphism is necessarily a−k-morphism.
(2) For all k ∈ Z and all DG M-modules E , there is an obvious k-isomorphism

E → E [k] over the identity on M.

Considering the special case ofM = N in the definition above yields k-morphisms
between DG M-modules over the same Lie n-algebroid. The resulting graded cat-
egory of DG M-modules is denoted by Mod(M,Q) or simply by Mod(M). The
isomorphism classes of these categories are denoted by Mod(M,Q), or simply by
Mod(M).

7 Again one could choose to tensor with R[k] from the left. Then on elements of the form 1 ⊗ η, the
resulting differential would act as DE [k] = (−1)kDE .
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4.2 Adjoint and coadjoint modules

Recall that every [n]-manifold M comes with the sheaf of graded derivations
Der(C∞(M)) of C∞(M), which is called the sheaf of vector fields over M. It is
a natural sheaf of locally freely and finitely generated graded C∞(M)-modules over
the smooth manifold M , with (left) C∞(M)-module structure defined by the property
(ξ1X)(ξ2) = ξ1X(ξ2) for all ξ1, ξ2 ∈ C∞(M) andX ∈ Der(C∞(M)). In addition to the
left module structure, the space of vector fields are also endowed with a right C∞(M)-
module structure. The right multiplication with functions in C∞(M) is obtained by
viewing the elements of Der(C∞(M)) of degree i as functions of bidegree (i, 1) of
the graded manifold T ∗[1]M, similarly to the shifted tangent bundle defined before.
The two module structures on Der(C∞(M)) are related by8 Xξ = (−1)|ξ |(|X|+1)ξX,
for all homogeneous ξ ∈ C∞(M) andX ∈ Der(C∞(M)). In particular, we emphasize
that the two structures are not simply the same module structure viewed from the right
and left.

Suppose now that M is endowed with a homological vector field Q, i.e. (M,Q)

is a Lie n-algebroid. Then the Lie derivative on the space of vector fields £Q := [Q, ·]
is a degree 1 operator which squares to zero and has both the left and right Leibniz
identities with respect to the left and right module structures explained above. That is,
the sheaf of vector fields over (M,Q) has a canonical DG M-bimodule structure. It
is called the adjoint module of M and denoted by

(X(M), £Q).

The dual module
⊕

p C∞(T [1]M)(p,1) of 1-forms over M carries the grading
obtained from the horizontal grading of the Weil algebra – that is, the elements of
C∞(T [1]M)(p,1) have degree p. Its structure operator as a (left) DG module is given
by the Lie derivative £Q = [iQ,d]. This DGM-module is called the coadjoint module
of (M,Q) and denoted by

(�1(M), £Q).

The corresponding right-DG module has the structure operator −£Q .

4.3 Poisson Lie n-algebroids: coadjoint vs adjoint modules

This section shows that a compatible pair of a homological vector field and a Poisson
bracket on an [n]-manifold gives rise to a degree −n map from the coadjoint to the
adjoint module which is an morphism of right DG M-modules.

Let k ∈ Z. A degree k Poisson bracket on an [n]-manifold M is a degree k R-
bilinear map {· , ·} : C∞(M) × C∞(M) → C∞(M), i.e. |{ξ1, ξ2}| = |ξ1| + |ξ2| + k,
such that {ξ1, ξ2} = −(−1)(|ξ1|+k)(|ξ2|+k){ξ2, ξ1} and it satisfies the graded Leibniz

8 Here, |χ | is the degree of χ as an element of Der(C∞(M)). Its degree as a function on T ∗[1]M equals
then |χ | + 1.
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and Jacobi identities

{ξ1, ξ2ξ3} = {ξ1, ξ2} ξ3 + (−1)(|ξ1|+k)|ξ2|ξ2{ξ1, ξ3}
{ξ1, {ξ2, ξ3}} = {{ξ1, ξ2}, ξ3} + (−1)(|ξ1|+k)(|ξ2|+k) {ξ2, {ξ1, ξ3}} ,

for homogeneous elements ξ1, ξ2, ξ3 ∈ C∞(M). We remark that the role of k in the
above formulas can be explained by viewing the comma in the bracket as having
degree k.

A morphism between two Poisson [n]-manifolds (N, {· , ·}N) and (M, {· , ·}M)

is a morphism of [n]-manifolds F : N → M which respects the Poisson brackets:
F�{ξ1, ξ2}M = {F∗ξ1,F∗ξ2}N for all ξ1, ξ2 ∈ C∞(M).

As is the case for ordinary Poisson manifolds, a degree k Poisson bracket on M
induces a degree k map

Ham : C∞(M) → Der
(C∞(M)

)

which sends ξ to its Hamiltonian vector field Xξ = {ξ , ·}. An [n]-manifold is called
symplectic if it is equipped with a degree k Poisson bracket whose Hamiltonian vector
fields generate all of Der(C∞(M)).

If an [n]-manifold M carries both a homological vector field Q and a degree k
Poisson bracket {· , ·}, then the two structures are compatible if

Q{ξ1, ξ2} = {Q(ξ1), ξ2} + (−1)|ξ1|+k {ξ1,Q(ξ2)}

for homogeneous ξ1 ∈ C∞(M) and all ξ2 ∈ C∞(M). Using the Hamiltonian map
defined above, the compatibility of Q and {· , ·} can be rewritten as XQ(ξ) = [Q,Xξ ]
for all ξ ∈ C∞(M).

Definition 4.12 A Poisson Lie n-algebroid (M,Q, {· , ·}) is an [n]-manifold M
endowed with a compatible pair of a homological vector field Q and a degree −n
Poisson bracket {· , ·}. If in addition the Poisson bracket is symplectic, then it is called
a symplectic Lie n-algebroid. A morphism of Poisson Lie n-algebroids is a morphism
of the underlying [n]-manifolds which is also a morphism of Lie n-algebroids and a
morphism of Poisson [n]-manifolds.

APoisson (symplectic) Lie 0-algebroid is a usual Poisson (symplectic)manifoldM .
A Poisson Lie 1-algebroid corresponds to a Lie bialgebroid (A, A∗) and a symplectic
Lie 1-algebroid is again a usual Poisson manifold—Sect. 7 explains this in detail. A
result due to Ševera [42] and Roytenberg [40] shows that symplectic Lie 2-algebroids
are in one-to-one correspondence with Courant algebroids.

In [31], it was shown that a Lie algebroid A with a linear Poisson structure satisfies
the Lie bialgebroid compatibility condition if and only if themap T ∗A → T A induced
by the Poisson bivector is a Lie algebroid morphism from T ∗A = T ∗A∗ → A∗
to T A → T M . This is now generalized to give a characterisation of Poisson Lie
n-algebroids.
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LetM be an [n]-manifold equipped with a homological vector fieldQ and a degree
−n Poisson bracket {· , ·}. The Poisson bracket on M induces a map � : �1(M) →
X(M)[−n] defined on the generators via the property

(�(dξ1)) ξ2 = {ξ1, ξ2} , (5)

for all ξ1, ξ2 ∈ C∞(M), and extended odd linearly by the rules

� (ξ1dξ2) = (−1)|ξ1|ξ1� (dξ2) and � (dξ1ξ2) = (−1)|ξ2|� (dξ1) ξ2.

Theorem 4.13 Let M be an [n]-manifold equipped with a homological vector field
Q and a degree −n Poisson bracket {· , ·}. Then (M,Q, {· , ·}) is a Poisson Lie n-
algebroid if and only if � : �1(M) → X(M) is a morphism of right DGM-modules,
i.e. � ◦ £Q = −£Q ◦ �.

Proof From (5),

(£Q(�(dξ1)) + �(£Q(dξ1))) ξ2 = Q{ξ1, ξ2} − (−1)|ξ1|−n{ξ1,Q(ξ2)} − {Q(ξ1), ξ2}.

In other words, the compatibility of Q with {· , ·} is equivalent to £Q ◦ � = −� ◦ £Q.

Adetailed analysis of thismap in the cases of PoissonLie algebroids of degreen ≤ 2
is given in Section 7.2. The two following corollaries can be realised as obstructions
for a Lie n-algebroid with a Poisson bracket to be symplectic. In particular, for n = 2
one obtains the corresponding results for Courant algebroids.

Corollary 4.14 LetM be an [n]-manifold equipped with a homological vector fieldQ
and a degree −n Poisson bracket {· , ·}. Then (M,Q, {· , ·}) is symplectic if and only
if � is an isomorphism of right DG M-modules.

Corollary 4.15 ForanyPoissonLie n-algebroid (M,Q, {· , ·}) there is anatural degree
−n map in cohomologies � : H•

R(M,�1) → H•−n
R (M,X) which is an isomorphism

if the bracket is symplectic.

5 Representations up to homotopy

This section generalises the notion of representation up to homotopy of Lie algebroids
from [2, 18] to representations of higher Lie algebroids. Some basic examples are
given, and 3-term representations of a split Lie 2-algebroid are described in detail. The
adjoint and coadjoint representations of a split Lie 2-algebroid are special examples,
which this section describes with explicit formulas for their structure objects and their
coordinate transformation. Lastly, it shows how to define these two representations
together with their objects for general Lie n-algebroids for all n.
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5.1 The category of representations up to homotopy

Recall that a representation up to homotopy of a Lie algebroid A is given by an A-
module of the form �(A, E) = �(A) ⊗ �(E) for a graded vector bundle E over
M . In the same manner, a (left) representation up to homotopy of a Lie n-algebroid
(M,Q) is defined as a (left) DGM-module of the form C∞(M)⊗�(E) for a graded
vector bundle E → M .

Following the notation from [2], we denote the category of representations up to
homotopy by Rep∞(M, Q), or simply by Rep∞(M). The isomorphism classes of
representations up to homotopy of this category are denoted by Rep∞(M,Q), or by
Rep∞(M). A representation of the form E = E0 ⊕ · · · ⊕ Ek−1 is called a k-term
representation, or simply a k-representation.

Remark 5.1 Any DG M-module is non-canonically isomorphic to a representation
up to homotopy of (M,Q). The proof, similar to that of the n = 1 case [35], is
as follows: an M-module is, by definition, the sheaf of sections �(B) of a vector
bundle B over M in the category of graded manifolds. The pull-back 0∗

MB, where
0M : M → M is the zero embedding, is an ordinary graded vector bundle E over M
and hence splits as E = ⊕

i Ei [i]. According to [35, Theorem 2.1], the double pull-
back π∗

M0∗
MB is non-canonically isomorphic to B as vector bundles over M, where

πM : M → M is the projection map. Then, as a sheaf over M , �(B) is identified with
�(π∗

M0∗
MB) = �(π∗

ME), which in turn is canonically isomorphic to C∞(M)⊗�(E).

Example 5.2 (Q-closed functions) Let (M,Q) be a Lie n-algebroid and suppose ξ ∈
C∞(M)k such thatQ(ξ) = 0. Then one can construct a representation up to homotopy
C∞(M)⊗�(Eξ ) ofMon the graded vector bundle Eξ = (R[0]⊕R[1−k])×M → M
(i.e. R in degrees 0 and k − 1, and zero otherwise). Its differential Dξ is given in
components by the map

Dξ =
∑

i

Di
ξ ,

where

Di
ξ : C∞(M)i ⊕ C∞(M)i−k+1 → C∞(M)i+1 ⊕ C∞(M)i−k+2

is defined by the formula9

Di
ξ (ζ1, ζ2) =

(
Q(ζ1) + (−1)i−k+1ζ2ξ,Q(ζ2)

)
.

If there is an element ξ ′ ∈ C∞(M)k which isQ-cohomologous to ξ , i.e. ξ−ξ ′ = Q(ξ ′′)
for some ξ ′′ ∈ C∞(M)k−1, then the representations Eξ and Eξ ′ are isomorphic via

9 Note that, up to some signs, this construction can be understood as a mapping cone construction for the
chain map fξ : C∞(M) → C∞(M)[k], η 
→ η · ξ .
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the isomorphism μ : Eξ → Eξ ′ defined in components by

μi : C∞(M)i ⊕ C∞(M)i−k+1 → C∞(M)i ⊕ C∞(M)i−k+1

given by the formula

μi (ζ1, ζ2) = (
ζ1 + ζ2ξ

′′, ζ2
)
.

Hence, one obtains a well-defined map H•(M) → Rep∞(M). In particular, ifM is
a Lie algebroid, the above construction recovers Example 3.5 in [2].

5.2 The case of (split) Lie 2-algebroids

Fix now a split Lie 2-algebroid M, and recall that from the analysis of Sect. 3.1, M
is given by the sum Q[1] ⊕ B∗[2] which forms the complex

B∗ �−→ Q
ρQ−→ T M .

Unravelling the data of the definition of representations up to homotopy for the special
case where E is concentrated only in degree 0 yields the following characterisation.

Proposition 5.3 A representation of the Lie 2-algebroid Q[1] ⊕ B∗[2] consists of a
(non-graded) vector bundle E over M, together with a Q-connection ∇ on E such
that10 :

(i) ∇ is flat, i.e. R∇ = 0 on �(E),
(ii) ∂B ◦ d∇ = 0 on �(E).

Proof Let (E,D) be a representation of the Lie 2-algebroid. Due to the Leibniz rule,
D is completely characterised by what it does on �(E). By definition, it sends �(E)

into �1(Q, E). Using the Leibniz rule once more together with the definition of the
homological vector field Q on �1(Q), for all f ∈ C∞(M) and all e ∈ �(E) yields

D( f e) = (
ρ∗
Qd f

) ⊗ e + fD(e),

which implies that D = d∇ for a Q-connection ∇ on �(E). Moreover, by definition
ofD one must haveD2(e) = 0 for all e ∈ �(E). On the other hand, a straightforward
computation yields

D2(e) = D (d∇e) = d2∇e + ∂B (d∇e) ∈ �2(Q, E) ⊕ �(B ⊗ E).

��
10 Note that all the objects that appear in the following equations act via the generalised wedge products
that were discussed before. For example, ∂(d∇e) andω2(ω2(e))mean ∂∧d∇e andω2∧ω2(e), respectively.
This is explained in detail in the Appendix of [2].

123



48 M. Jotz et al.

Example 5.4 (Trivial line bundle) The trivial line bundle R[0] over M with Q-
connection defined by

d∇ f = dQ f = ρ∗
Qd f

is a representation of the Lie 2-algebroid Q[1]⊕ B∗[2]. The operatorD is given by the
homological vector fieldQ and thus the cohomology induced by the representation is
the Lie 2-algebroid cohomology: H•(M,R) = H•(M). The shifted version of this
example was used before to define general shifts of DG M-modules.

Example 5.5 More generally, for all k > 0, the trivial vector bundle Rk of rank k over
M with Q-connection defined component-wise as in the example above becomes a
representation with cohomology H•(M,Rk) = H•(M) ⊕ · · · ⊕ H•(M) (k-times).

Remark 5.6 Given a split Lie n-algebroid A1[1]⊕· · ·⊕ An[n] over a smooth manifold
M , with n ≥ 2, the vector bundle A1 → M carries a skew-symmetric dull algebroid
structure induced by the 2-bracket and the anchor ρ : A1 → T M given by Q( f ) =
ρ∗d f , for f ∈ C∞(M). Hence, Proposition 5.3, Examples 5.4 and 5.5 can be carried
over verbatim to the general case.

We will be particularly interested in the case of 3-term representations of (split)
Lie 2-algebroids. As we will see later, such representations correspond to VB-
Lie 2-algebroids. In particular, the adjoint and coadjoint representations are 3-term
representations.

The reader should note the similarity of the following proposition with the
description of 2-term representations of Lie algebroids from [2].

Proposition 5.7 A 3-term representation up to homotopy (E = E0 ⊕ E1 ⊕ E2,D) of
Q[1] ⊕ B∗[2] is equivalent to the following data:

(i) A degree 1 map ∂ : E → E such that ∂2 = 0,
(ii) a Q-connection ∇ on the complex ∂ : E• → E•+1,
(iii) an element ω2 ∈ �2(Q,End−1(E)),
(iv) an element ω3 ∈ �3(Q,End−2(E)), and an element φ j ∈ �(B) ⊗

� j (Q,End− j−1(E)) for j = 0, 1

such that11

(1) ∂ ◦ ω2 + d2∇ + ω2 ◦ ∂ = 0,
(2) ∂ ◦ φ0 + ∂B ◦ d∇ + φ0 ◦ ∂ = 0,
(3) ∂ ◦ ω3 + d∇ ◦ ω2 + ω2 ◦ d∇ + ω3 ◦ ∂ = 〈ω, φ0〉,
(4) d∇φ0 + ∂ ◦ φ1 + ∂B ◦ ω2 + φ1 ◦ ∂ = 0,
(5) d∇ ◦ ω3 + ω2 ◦ ω2 + ω3 ◦ d∇ = 〈ω, φ1〉,
(6) d∇φ1 + ω2 ◦ φ0 + ∂B ◦ ω3 + φ0 ◦ ω2 = 0,
(7) φ0 ◦ φ0 + ∂B ◦ φ1 = 0,

11 In the following equations, the map ∂B : �1(Q) → �(B) extends to ∂B : �k (Q) → �k−1(Q, B) by
the rule ∂B (τ1 ∧ · · · ∧ τk ) = ∑k

i=1(−1)i+1τ1 ∧ . . . ∧ τ̂i ∧ · · · ∧ τk ∧ ∂Bτi , for τi ∈ �1(Q).
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where ∇ is the Q-connection on B ⊗ End− j−1(E) induced by ∇ on B and ∇End on
End(E).

Remark 5.8 (1) If both of the bundles E1 and E2 are zero, the equations agree with
those of a 1-term representation.

(2) The equations in the statement can be summarised as follows:

[∂, φ0] + ∂B ◦ d∇ = 0, φ0 ◦ φ0 + ∂B ◦ φ1 = 0,

and for all i :

[∂, ωi ] + [d∇ , ωi−1] + ω2 ◦ ωi−2 + ω3 ◦ ωi−3 + · · · + ωi−2 ◦ ω2 = 〈ω, φi−3〉,
∂B ◦ ωi+2 + [∂, φi+1] + d∇φi +

∑

j≥2

[ω j , φi− j+1] = 0.

(3) Of course, there are similar descriptions of higher term representations up to homo-
topy of general split Lie n-algebroids. The proof below can easily be adapted to
higher degrees. Since only the 3-term representations of split Lie 2-algebroids are
explicitly needed later on, only this setting is worked out in detail here.

Proof It is enough to check that D acts on �(E). Since D is of degree 1, it maps each
�(Ei ) into the direct sum

�(Ei+1) ⊕
(
C∞(M)1 ⊗ �(Ei )

)
⊕

(
C∞(M)2 ⊗ �(Ei−1)

)
⊕

(
C∞(M)3 ⊗ �(Ei−2)

)
.

Considering the components of D, this translates to the following three equations:

D(e) = ∂(e) + d(e) ∈ �(E1) ⊕ �1(Q, E0)

for e ∈ �(E0),

D(e) = ∂(e) + d(e) + ω2(e) + φ0(e) ∈ �(E2) ⊕ �1(Q, E1) ⊕ �2(Q, E0)

⊕ (�(B) ⊗ �(E0))

for e ∈ �(E1), and

D(e) = d(e) + ω2(e) + φ0(e) + ω3(e) + φ1(e)

∈ �1(Q, E2) ⊕ �2(Q, E1) ⊕ (�(B) ⊗ �(E1))

⊕ �3(Q, E0) ⊕
(
�(B) ⊗ �1(Q, E0)

)

for e ∈ �(E2). Due to the correspondence in (5) and the Leibniz rule for D, ∂ ∈
End1(E), d = d∇ where∇ are Q-connections on the vector bundles Ei for i = 0, 1, 2,
ωi ∈ �i (Q,End1−i (E)) for i = 2, 3, and φi ∈ �(B) ⊗ �i (Q,End−i−1(E)) for
i = 0, 1.
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A straightforward computation and a degree count in the expansion of the equation
D2 = 0 shows that (E, ∂) is a complex, ∇ commutes with ∂ , and the equations in the
statement hold.

5.3 Adjoint representation of a Lie 2-algebroid

This section shows that any split Lie 2-algebroid Q[1] ⊕ B∗[2] admits a 3-term
representation up to homotopy which is called the adjoint representation. It is a
generalisation of the adjoint representation of a (split) Lie 1-algebroid studied in [2].

Proposition 5.9 Any split Lie 2-algebroid Q[1]⊕B∗[2] admits a 3-term representation
up tohomotopyas follows:Choosearbitrary T M-connections on Q and B∗ anddenote
both by ∇. Then the structure objects are12

(i) the adjoint complex B∗[2] → Q[1] → T M[0] with maps −� and ρQ,
(ii) the two Q-connections ∇bas on Q and T M, and the Q-connection ∇∗ on B∗

given by the split Lie 2-algebroid,
(iii) the element ω2 ∈ �2(Q,Hom(Q, B∗) ⊕ Hom(T M, Q)) defined by

ω2(q1, q2)q3 = −ω(q1, q2, q3) ∈ �(B∗) and ω2(q1, q2)X = −Rbas∇ (q1, q2)X ∈ �(Q)

for q1, q2, q3 ∈ �(Q) and X ∈ X(M),
(iv) the element ω3 ∈ �3(Q,Hom(T M, B∗)) defined by

ω3(q1, q2, q3)X = −(∇Xω)(q1, q2, q3) ∈ �(B∗)

for q1, q2, q3 ∈ �(Q) and X ∈ X(M),
(v) the element φ0 ∈ �(B) ⊗ (Hom(Q, B∗) ⊕ Hom(T M, Q)) defined by

φ0(β)X = �(∇Xβ) − ∇X (�(β)) ∈ �(Q) and φ0(β)q = ∇ρ(q)β − ∇∗
qβ ∈ �(B∗)

for β ∈ �(B∗), q ∈ �(Q), X ∈ X(M),
(vi) the element φ1 ∈ �(B) ⊗ �1(Q,Hom(T M, B∗)) defined by

φ1(β, q)X = ∇X∇∗
qβ − ∇∗

q∇Xβ − ∇∗∇Xqβ + ∇∇bas
q Xβ ∈ �(B∗)

for β ∈ �(B∗), q ∈ �(Q), X ∈ X(M).

The proof can be done in two ways. First, one could check explicitly that all the
conditions of a 3-representation of Q[1]⊕ B∗[2] are satisfied. This is an easy but long
computation and it can be found in [37]. Instead, the following section shows that
given a splitting and T M-connections on the vector bundles Q and B∗, there exists an
isomorphism of sheaves of C∞(M)-modules between the adjoint module X(M) and

12 Some signs are chosen so that the map given in 5.4 is an isomorphism for the differential of the adjoint
module defined earlier.
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C∞(M)⊗�(T M[0]⊕Q[1]⊕ B∗[2]), such that the objects defined above correspond
to the differential £Q. Another advantage of this approach is that it gives a precise
recipe for the definition and the explicit formulas for the components of the adjoint
representation of a Lie n-algebroid for general n.

Remark 5.10 The adjoint representation of a Courant algebroid E → M can be
deduced from the formulas above and from Example 3.10. Choose a linear con-
nection ∇ : X(M) × �(E) → �(E) that preserves the metric underlying the
Courant algebroid structure on E . As in Example 3.10, define the basic connection
∇bas : �(E) ×X(M) → X(M), ∇bas

e X = [ρ(e), X ] + ρ(∇Xe). Recall that ∇ defines
as well the dull bracket [· , ·] on sections of E :

[e1, e2] = [[e1, e2]] − ρ∗ 〈∇·e1, e2〉 .

The dull bracket and the T M-connection on E defines the basic E-connection
∇bas : �(E) × �(E) → �(E), ∇bas

e1 e2 = [e1, e2] + ∇ρ(e2)e1 = [[e1, e2]] −
ρ∗〈∇·e1, e2〉 + ∇ρ(e2)e1. Choose in addition a T M-connection ∇ on T M .

The complex for the adjoint representation is T ∗M[2] → E[1] → T M[0] with
maps −ρ∗ and ρ. The E-connections on T ∗M , E and T M are ∇bas∗, ∇bas and ∇bas

defined as above, respectively. The form ω2 ∈ �2(E,Hom(E, T ∗M)) is given by

〈
ω2

(
e, e′) , X

〉 = ∇X
[[
e, e′]] − [[∇Xe, e

′]] − [[
e,∇Xe

′]] − ∇∇bas
e′ Xe + ∇∇bas

e X e
′

+P−1
〈
∇∇bas

. Xe, e
′〉

for e, e′ ∈ �(E) and X ∈ X(M), while the second summand ω2 ∈
�2(E,Hom(T M, E)) is given by

ω2
(
e, e′) X = ∇X

[
e, e′] − [

e,∇Xe
′] − [∇Xe, e

′] − ∇∇bas
e′ Xe + ∇∇bas

e X e
′.

This data can be compared with the components of the representation up to homotopy
of a Lie algebroid A → M , after the choice of a T M-connection on A, see [18]. The
remaining terms are given by (iv), (v) and (vi) in Proposition 5.9, and as they do not
seem more instructive than the general form in the proposition, they are not computed
in more detail here.

5.4 Adjoint module vs adjoint representation

Recall that for a split [n]-manifold M = ⊕
Ei [i], the space of vector fields over M

is generated as a C∞(M)-module by two special kinds of vector fields. Namely, the
degree−i vector fields ê for e ∈ �(Ei ), and the family of vector fields∇1

X ⊕· · ·⊕∇n
X

for X ∈ X(M) and a choice of T M-connection ∇ i on each vector bundle Ei , for
i = 1, . . . , n.

Consider now a Lie 2-algebroid (M,Q) together with a splitting M � Q[1] ⊕
B∗[2] and a choice of T M-connections ∇B∗

and ∇Q on B∗ and Q, respectively.
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These choices give as follows the adjoint representation ad∇ , whose complex is given
by T M[0]⊕Q[1]⊕B∗[2]. Define amapμ∇ : C∞(M)⊗�(T M[0]⊕Q[1]⊕B∗[2]) →
X(M) on the generators by

�(B∗) � β 
→ β̂, �(Q) � q 
→ q̂, X(M) � X 
→ ∇B∗
X ⊕ ∇Q

X

and extend C∞(M)-linearly to the whole space to obtain a degree-preserving
isomorphism of sheaves of C∞(M)-modules.

A straightforward computation shows that

£Q(β̂) = μ∇ (−�(β) + d∇∗β) ,

£Q(q̂) = μ∇
(
ρQ(q) + d∇basq + ω2(· , ·)q + φ0(·)q

)
,

£Q(∇B∗
X ⊕ ∇Q

X ) = μ∇
(
d∇basX + φ0(·)X + ω2(· , ·)X + ω3(· , · , ·)X + φ1(· , ·)X

)

and therefore, the objects in the statement of Proposition 5.9 define the differential
Dad∇ := μ−1

∇ ◦ £Q ◦ μ∇ of a 3-representation of Q[1] ⊕ B∗[2], called the adjoint
representation and denoted as (ad∇ ,Dad∇ ). The adjoint representation is hence, up
to isomorphism, independent of the choice of splitting and connections (see the fol-
lowing section for the precise transformations), and so gives a well-defined class
ad ∈ Rep∞(M).

Due to the result above, one can also define the coadjoint representation of a Lie
2-algebroid (M,Q) as the isomorphism class ad∗ ∈ Rep∞(M). To find an explicit
representative of ad∗, suppose that Q[1] ⊕ B∗[2] is a splitting of M, and consider
its adjoint representation ad∇ as above for some choice of T M-connections ∇ on B∗
and Q. Recall that given a representation up to homotopy (E,D) of (M,Q), its dual
E∗ becomes a representation up to homotopy with operator D∗ characterised by the
formula

Q (
ξ ∧ ξ ′) = D∗(ξ) ∧ ξ ′ + (−1)|ξ |ξ ∧ D (

ξ ′) ,

for all ξ ∈ C∞(M) ⊗ �(E∗) and ξ ′ ∈ C∞(M) ⊗ �(E). Here, ∧ = ∧〈· ,·〉, with 〈· , ·〉
the pairing of E with E∗. Unravelling the definition of the dual for the representation
ad∇ , one finds that the structure differential of ad∗∇ = C∞(M)⊗�(B[−2]⊕Q∗[−1]⊕
T ∗M[0]) is given by the following objects:

(1) the coadjoint complex T ∗M → Q∗ → B obtained by −ρ∗
Q and −�∗,

(2) the Q-connections ∇ on B and ∇bas,∗ on Q∗ and T ∗M ,
(3) the elements

ω∗
2(q1, q2)τ = τ ◦ ω2(q1, q2), ω∗

2(q1, q2)b = −b ◦ ω2(q1, q2),
φ∗
0 (β)τ = τ ◦ φ0(β), φ∗

0 (β)b = −b ◦ φ0(β),

ω∗
3(q1, q2, q3)b = −b ◦ ω3(q1, q2, q3), φ∗

1 (β, q)b = −b ◦ φ1(β, q),

for all q, q1, q2, q3 ∈ �(Q), τ ∈ �(Q∗), b ∈ �(B) and β ∈ �(B∗).
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Remark 5.11 The coadjoint representation can also be obtained from the coad-
joint module �1(M) by the right C∞(M)-module isomorphism μ�∇ : �1(M) →
�(B[−2]⊕Q∗[−1]⊕T ∗M[0])⊗C∞(M)which is dual toμ∇ : C∞(M)⊗�(T M[0]⊕
Q[1] ⊕ B∗[2]) → X(M) above. Explicitly, it is defined as the pull-back map
μ�∇(ω) = ω ◦ μ∇ for all ω ∈ �1(M), whose inverse is given on the generators
by �(B[−2] ⊕ Q∗[−1] ⊕ T ∗M[0]) ⊗ C∞(M) → �1(M),

�(B) � b 
→ db − d∇∗b, �(Q∗) � τ 
→ dτ − d∇∗τ, and �1(M) � θ 
→ θ.

5.5 Coordinate transformation of the adjoint representation

The adjoint representation up to homotopy of a Lie 2-algebroid was constructed after
a choice of splitting and T M-connections. This section explains how the adjoint
representation transforms under different choices.

First, a morphism of 3-representations of a split Lie 2-algebroid can be described
as follows.

Proposition 5.12 Let (E,DE ) and (F,DF ) be 3-term representations up to homotopy
of the split Lie 2-algebroid Q[1] ⊕ B∗[2]. A morphism μ : E → F is equivalent to
the following data:

(i) For each i = 0, 1, 2, an element μi ∈ �i (Q,Hom−i (E, F)).
(ii) An element μb ∈ �(B ⊗ Hom−2(E, F)).

The above objects are subject to the relations

(1) [∂, μi ] + [d∇ , μi−1] +
∑

j+k=i, i≥2

[ω j , μk] = 〈ω,μb
i−3〉,

(2) [∂, μb] + [φ0, μ0] + ∂B ◦ μ1 = 0,
(3) d∇μb + [φ0, μ1] + [φ1, μ0] + ∂B ◦ μ2 = 0.

Proof As before it suffices to check howμ acts on�(E), by the same arguments. Then
it must be of the type

μ = μ0 + μ1 + μ2 + μb,

where μi ∈ �i (Q,Hom−i (E, F)) and μb ∈ �(B) ⊗ �(Hom−2(E, F)). It is easy to
see that the three equations in the statement come from the expansion of μ ◦ DE =
DF ◦ μ when μ is written in terms of the components defined before.

The transformation of ad ∈ Rep∞(M) for a fixed splitting Q[1] ⊕ B∗[2] of M
and different choices of T M-connections is given by their difference. More precisely,
let ∇ and ∇′ be the two T M-connections. Then the map μ = μ−1

∇′ ◦μ∇ : ad∇ → ad∇′
is defined by μ = μ0 + μ1 + μb, where

μ0 = id

μ1(q)X = ∇′
Xq − ∇Xq
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μb(β)X = ∇′
Xβ − ∇Xβ,

for X ∈ X(M), q ∈ �(Q) and β ∈ �(B∗). The equations in Proposition 5.12 are
automatically satisfied since by construction

Dad∇′ ◦ μ = Dad∇′ ◦ μ−1
∇′ ◦ μ∇ = μ−1

∇′ ◦ £Q ◦ μ∇ = μ−1
∇′ ◦ μ∇ ◦ Dad∇ = μ ◦ Dad∇ .

This yields the following result.

Proposition 5.13 Given two pairs of T M-connections on the bundles B∗ and Q, the
isomorphism μ : ad∇ → ad∇′ between the corresponding adjoint representations is

given by μ = id ⊕
(
∇′ − ∇

)
.

The next step is to show how the adjoint representation transforms after a
change of splitting of the Lie 2-algebroid. Fix a Lie 2-algebroid (M, Q) over the
smooth manifold M and choose a splitting Q[1] ⊕ B∗[2], with structure objects
(�, ρ, [· , ·]1,∇1, ω1) as before. Recall that a change of splitting does not change
the vector bundles B∗ and Q, and it is equivalent to a section σ ∈ �2(Q, B∗).
The induced isomorphism of [2]-manifolds over the identity on M is given by:
F�

σ (τ ) = τ for all τ ∈ �(Q∗) and F�
σ (b) = b + σ�b ∈ �(B) ⊕ �2(Q) for all

b ∈ �(B). If (�, ρ, [· , ·]2,∇2, ω2) is the structure objects of the second splitting, then
the compatibility of σ with the homological vector fields reads the following:

• The skew-symmetric dull brackets are related by [q1, q2]2 = [q1, q2]1 −
�(σ (q1, q2)).

• The connections are related by ∇2
qb = ∇1

qb + ∂B〈σ(q, ·), b〉, or equivalently on
the dual by ∇2∗

q β = ∇1∗
q β − σ(q, �(β)).

• The curvature terms are related by ω2 = ω1 + d2,∇1σ , where the operator

d2,∇1σ : �•(Q, B∗) → �•+1(Q, B∗)

is defined by the usual Koszul formula using the dull bracket [· , ·]2 and the
connection ∇1∗.

The above equations give the following identities between the structure data for the
adjoint representations13 ad1∇ and ad2∇ .

Lemma 5.14 Let q, q1, q2 ∈ �(Q), β ∈ �(B∗) and X ∈ X(M). Then

(i) �2 = �1 and ρ2 = ρ1.
(ii) ∇2,bas

q1 q2 = ∇1,bas
q1 q2 − �(σ (q1, q2))

∇2,bas
q X = ∇1,bas

q X

∇2,∗
q β = ∇1,∗

q β − σ(q, �(β)).

13 Note that the two pairs of T M-connections are identical.

123



Modules and representations up to homotopy of Lie n-algebroids 55

(iii) ω2
2(q1, q2)q3 = ω1

2(q1, q2)q3+d2,∇1σ(q1, q2, q3) ω2
2(q1, q2)X = ω1

2(q1, q2)X+
∇X (�(σ (q1, q2))) − �(σ (q1,∇Xq2)) + �(σ (q2,∇Xq1)).

(iv) ω2
3(q1, q2, q3)X = ω1

3(q1, q2, q3)X + (∇X (d2,∇1σ))(q1, q2, q3).

(v) φ2
0(β)q = φ1

0(β)q + σ(q, �(β)) φ2
0(β)X = φ1

0(β)X.

(vi) φ2
1(β, q)X = φ1

1(β, q)X − σ(∇Xq1, �(β)) − σ(q, �(∇Xβ)) + ∇X (σ (q, �(β))).

Consider now two Lie 2-algebroids M1 and M2 over M , and an isomorphism

F : (M1,Q1) → (M2,Q2)

given by themapsFQ : Q1 → Q2,FB : B∗
1 → B∗

2 , andF0 : ∧2Q1 → B∗
2 . Recall that

a 0-morphism between two representations up to homotopy (E1,D1) and (E2,D2)

of M1 and M2, respectively, is given by a degree 0 map

μ : C∞(M2) ⊗ �
(
E2

) → C∞(M1) ⊗ �
(
E1

)
,

which is C∞(M2)-linear:μ(ξ ⊗e) = F�ξ ⊗μ(e) for all ξ ∈ C∞(M2) and e ∈ �(E2),
and makes the following diagram commute

C∞(M2) ⊗ �(E2)
μ

D2

C∞(M1) ⊗ �(E1)

D1

C∞(M2) ⊗ �(E2) μ
C∞(M1) ⊗ �(E1).

The usual analysis as before implies thatμmust be given by amorphism of complexes
μ0 : (E2, ∂2) → (E1, ∂1) and elements

μ1 ∈ �1
(
Q1,Hom

−1 (
E2, E1

))
,

μ2 ∈ �2
(
Q1,Hom

−2 (
E2, E1

))
,

μb ∈ �(B) ⊗ �
(
Hom−2 (

E2, E1

))
,

which satisfy equations similar to the set of equations in Proposition 5.12.
A change of splitting of the Lie 2-algebroid transforms as follows the adjoint repre-

sentation. Since changes of choices of connections are now fully understood, choose
the same connection for both splittings M1 � Q[1] ⊕ B∗[2] � M2. Suppose that
σ ∈ �2(Q, B∗) is the change of splitting and denote by Fσ the induced isomorphism
of the split Lie 2-algebroids whose components are given by F�

σ,Q = idQ∗ ,F�
σ,B =

idB,F�
σ,0 = σ�. The composition map μσ : ad1∇ → X(M) → ad2∇ is given in

components by

μσ
0 = id
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μσ
1 (q1)q2 = σ(q1, q2)

μσ
2 (q1, q2)X = (∇Xσ)(q1, q2).

A similar argument as before implies that μσ is a morphism between the two adjoint
representations and therefore the following result follows.

Proposition 5.15 Given two splittings of a Lie 2-algebroid with induced change of
splitting σ ∈ �2(Q, B∗) and a pair of T M-connections on the vector bundles B∗
and Q, the isomorphism between the corresponding adjoint representations is given
by μ = id ⊕ σ ⊕ ∇·σ .

5.6 Adjoint representation of a Lie n-algebroid

The construction of the adjoint representation up to homotopy of a Lie n-algebroid
(M,Q) for general n is similar to the n = 2 case. Specifically, choose a splitting
M � ⊕n

i=1 Ei [i] and T M-connections ∇Ei on the bundles Ei . Then there is an
induced isomorphism of C∞(M)-modules

μ∇ : C∞(M) ⊗ � (T M[0] ⊕ E1[1] ⊕ · · · ⊕ En[n]) → X(M),

which at the level of generators is given by

�(Ei ) � e 
→ ê and X(M) � X 
→ ∇En
X ⊕ · · · ⊕ ∇E1

X .

Then μ is used to transfer £Q from X(M) to obtain the differential Dad∇ :=
μ−1 ◦ £Q ◦ μ on C∞(M) ⊗ �(T M[0] ⊕ E1[1] ⊕ · · · ⊕ En[n]).

6 Split VB-Lie n-algebroids

This section gives a picture of representations up to homotopy in more “classical”
geometric terms. That is, in terms of linear Lie n-algebroid structures on double vector
bundles. It introduces the notion of split VB-Lie n-algebroids and explains how they
correspond to (n+1)-representations of Lie n-algebroids. In particular, the tangent of a
Lie n-algebroid is a VB-Lie n-algebroid which is linked to the adjoint representation.
The main result in this section is a generalisation of the correspondence between
decomposed VB-algebroids and 2-representations in [18].

6.1 Double vector bundles

Recall that a double vector bundle (D, V , F, M) is a commutative diagram

123



Modules and representations up to homotopy of Lie n-algebroids 57

such that all the arrows are vector bundle projections and the structure maps of the
bundle D → V are vector bundle morphisms over the corresponding structure maps
of F → M (see [30]). This is equivalent to the same condition holding for the structure
maps of D → F over V → M . The bundles V and F are called the side bundles of
D. The intersection of the kernels C := π−1

V (0V ) ∩ π−1
F (0F ) is the core of D and

is naturally a vector bundle over M , with projection denoted by qC : C → M . The
inclusion C ↪→ D is denoted by Cm � cm 
→ c ∈ π−1

V (0Vm) ∩ π−1
F (0Fm).

A morphism (GD,GV ,GF , g) of two double vector bundles (D, V , F, M) and
(D′, V ′, F ′, M ′) is a commutative cube

such that all the faces are vector bundle maps.
Given a double vector bundle (D, V , F, M), the space of sections of D over V ,

denoted by �V (D), is generated as aC∞(V )-module by two special types of sections,
called core and linear sections and denoted by �c

V (D) and �l
V (D), respectively (see

[30]). The core section c† ∈ �c
V (D) corresponding to c ∈ �(C) is defined as

c†(vm) = 0Dvm +F c(m), for m ∈ M and vm ∈ Vm .

A section δ ∈ �V (D) is linear over f ∈ �(F), if δ : V → D is a vector bundle
morphism V → D over f : M → F .

Finally, a section ψ ∈ �(V ∗ ⊗ C) defines a linear section ψ∧ : V → D over the
zero section 0F : M → F by

ψ∧(vm) = 0Dvm +F ψ(vm)

for allm ∈ M and vm ∈ Vm . This type of linear section is called a core-linear section.
In terms of the generators θ ⊗ c ∈ �(V ∗ ⊗ C), the correspondence above reads
(θ ⊗ c)∧ = �θ · c†, where �θ is the linear function on V associated to θ ∈ �(V ∗).

Example 6.1 (Decomposed double vector bundle) Let V , F,C be vector bundles over
the same manifold M . Set D := V ×M F ×M C with vector bundle structures D =
q !
V (F ⊕C) → V and D = q !

F (V ⊕C) → F . Then (D, V , F, M) is a double vector
bundle, called the decomposed double vector bundle with sides V and F and with core
C . Its core sections have the form c† : fm 
→ (0Vm , fm, c(m)), for m ∈ M, fm ∈ Fm
and c ∈ �(C), and the space of linear sections �l

V (D) is naturally identified with
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�(F) ⊕ �(V ∗ ⊗ C) via ( f , ψ) : vm 
→ ( f (m), vm, ψ(vm)) where ψ ∈ �(V ∗ ⊗ C)

and f ∈ �(F). This yields the canonical linear horizontal lift h : �(F) ↪→ �l
V (D).

Example 6.2 (Tangent bundle of a vector bundle) Given a vector bundle q : E → M ,
its tangent bundle T E is naturally a vector bundle over the manifold E . In addition,
applying the tangent functor to all the structuremaps of E → M yields a vector bundle
structure on Tq : T E → T M which is called the tangent prolongation of E . Hence,
(T E, T M, E, M) has a natural double vector bundle structure with sides T M and E .
Its core is naturally identified with E → M and the inclusion E ↪→ T E is given by
Em � em 
→ d

dt

∣
∣
t=0 tem ∈ T q

0Em
E . For e ∈ �(E), the section T e ∈ �l

T M (T E) is linear

over e. The core vector field e† ∈ �T M (T E) is defined by e†(vm) = Tm0E (vM ) +E
d
dt |t=0te(m) for m ∈ M and vm ∈ TMM and the vertical lift e↑ ∈ �E (T E) = X(E)

is the (core) vector field defined by the flow R × E → E, (t, e′
m) 
→ e′

m + te(m).
Elements of �l

E (T E) =: Xl(E) are called linear vector fields and are equivalent to
derivations δ : �(E) → �(E) over some element in X(M) [30]. The linear vector
field which corresponds to the derivation δ is written Xδ .

6.2 Linear splittings, horizontal lifts and duals

A linear splitting of a double vector bundle (D, V , F, M) with core C is a double
vector bundle embedding � of the decomposed double vector bundle V ×M F into
D over the identities on V and F . It is well-known that every double vector bundle
admits a linear splitting, see [14, 16, 38] or [21] for the general case. Moreover, a
linear splitting is equivalent to a decomposition of D, i.e. to an isomorphism of double
vector bundles S : V ×M F×M C → D over the identity on V , F andC . Given�, the
decomposition is obtained by setting S(vm, fm, cm) = �(vm, fm) +F (0 fm +V cm),
and conversely, given S, the splitting is defined by �(vm, fm) = S(vm, f,, 0Cm).

A linear splitting of D, and consequently a decomposition, is also equivalent to a
horizontal lift, i.e. a right splitting of the short exact sequence

0 → �(V ∗ ⊗ C) → �l
V (D) → �(F) → 0

of C∞(M)-modules. The correspondence is given by σF ( f )(vm) = �( f (m), bm) for
f ∈ �(F), m ∈ M and bm ∈ B(m). Note that all the previous constructions can be
done similarly if one interchanges the roles of V and F .

Example 6.3 For the tangent bundle T E of a vector bundle E → M , a linear splitting
is equivalent to a choice of a T M-connection on E . Specifically, given a horizontal
lift σ : X(M) → Xl(E), the corresponding connection ∇ is defined by σ(Y ) = X∇Y

for all Y ∈ X(M).

Double vector bundles can be dualized in two ways, namely, as the dual of D either
over V or over F [30]. Precisely, from a double vector bundle (D, V , F, M)with core
C , one obtains the double vector bundles
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with cores F∗ and V ∗, respectively.
Given a linear splitting� : V ×M F → D, the dual splitting�∗ : V ×M C∗ → D∗

V
is defined by

〈
�∗(vm, γm),�(vm, fm)

〉 = 0 and
〈
�∗(vm, γm), c†(vm)

〉
= 〈γm, c(m)〉 ,

for all m ∈ M and vm ∈ Vm , fm ∈ Fm , γm ∈ C∗
m , c ∈ �(C).

6.3 VB-Lie n-algebroids and (n+ 1)-representations

Suppose now that (D, V , A, M) is a double vector bundle together with graded vector
bundle decompositions D = D1[1] ⊕ · · · ⊕ Dn[n] and A = A1[1] ⊕ · · · ⊕ An[n],
over V and M , respectively, which are compatible with the projection D → A. This
means that each of the individual squares (Di , V , Ai , M) also forms a double vector
bundle. Schematically, this yields the following sequence of diagrams

where all the “planes" are double vector bundles. This yields that the core of
(D, V , A, M) is the graded vector bundle C = C1[1] ⊕ · · · ⊕ Cn[n], where Ci is
the core of (Di , V , Ai , M), for i = 1, . . . , n.

Definition 6.4 The quadruple (D, V , A, M) is a (split) VB-Lie n-algebroid if

(1) the graded vector bundle D → V is endowed with a homological vector fieldQD ,
(2) the Lie n-algebroid structure of D → V is linear, in the sense that

(a) the anchor ρD : D1 → T V is a double vector bundle morphism,
(b) the map ∂Di fits into a morphism of double vector bundles (∂Di , idV , ∂Ai , idM )

between (Di , V , Ai , M) and (Di+1, V , Ai+1, M) for all i ,
(c) the multi-brackets of D satisfy the following relations:
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(i) the i-bracket of i linear sections is a linear section;
(ii) the i-bracket of i − 1 linear sections with a core section is a core section;
(iii) the i-bracket of i − k linear sections with k core sections, i ≥ k ≥ 2, is

zero;
(iv) the i-bracket of i core sections is zero.

Remark 6.5 (1) A VB-Lie n-algebroid structure on the double vector bundle
(D, V , A, M) defines uniquely a Lie n-algebroid structure on A → M as follows:
the anchor ρD : D1 → T V is linear over the anchor ρ : A1 → T M , and if all
dk ∈ �l

V (D) cover ak ∈ �(A) for k = 1, 2, . . . , i , then [[d1, . . . , di ]]D ∈ �l
V (D)

covers [[a1, . . . , ai ]]A ∈ �(A). Therefore, the graded vector bundles D → V and
A → M are endowed with homological vector fields QD and QA for which the
bundle projection D → A is a morphism of Lie n-algebroids over the projection
V → M .

(2) A VB-Lie 1-algebroid as in the definition above is just a VB-algebroid.
(3) More concisely, a VB-Lie n-algebroid can be defined as an [n]-vector bundle E

over an [n]-manifold M, together with a homological vector field QE on E, that
is linear over a homological vector field Q on M. Then the set of sections of
E∗, equipped with QE, is a DG (M,Q)-module, see also Remark 5.1. The goal
of this section is however to provide explicit formulas in the split case, for the
convenience of the reader.

Example 6.6 (Tangent prolongation of a (split) Lie n-algebroid) The basic example of
a split VB-Lie n-algebroid is obtained by applying the tangent functor to a split Lie
n-algebroid A = A1[1] ⊕ · · · ⊕ An[n] → M . The double vector bundle is given by
the diagram

where the Lie n-algebroid structure of T A = T A = T A1[1]⊕ · · ·⊕ T An[n] over the
manifold T M is defined by the relations

(1) ρT A = JM ◦ TρA : T A1 → T T M , where JM : T T M → T T M is the canonical
involution, see e.g. [30],

(2) [[Tak1 , . . . , Taki ]] = T [[ak1 , . . . , aki ]],
(3) [[Tak1 , . . . , Taki−1 , a

†
ki

]] = [[ak1 , . . . , aki−1 , aki ]]†,
(4) [[Tak1 , . . . , Tak j , a†k j+1

, . . . , a†ki ]] = 0 for all 1 ≤ j ≤ i − 2,

(5) [[a†k1 , . . . , a†ki ]] = 0,

for all sections ak j ∈ �(Ak j ) with pairwise distinct k j and all i .

Applying the above construction to a split Lie 2-algebroid Q[1] ⊕ B∗[2] → M
with structure (ρQ, �,∇∗, ω) yields as follows the objects (ρT Q, T �, T∇∗, Tω) of the
split Lie 2-algebroid structure of T Q[1] ⊕ T B∗[2] → T M : The complex T B∗ →
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T Q → T T M consists of the anchor of T Q given by ρT Q = JM ◦ TρQ , and the
vector bundle map T � : T B∗ → T Q. The bracket of T Q is defined by the relations

[Tq1, Tq2]T Q = T [q1, q2]Q, [Tq1, q†2 ]T Q = [q1, q2]†Q, [q†1 , q†2 ]T Q = 0,

for q1, q2 ∈ �(Q). The T Q-connection T∇∗ : �T M (T Q) × �T M (T B∗) →
�T M (T B∗) is defined by

(T∇∗)Tq(Tβ) = T (∇∗
qβ), (T∇∗)Tq(β†) = (∇∗

qβ)† = (T∇∗)q†β,

(T∇∗)q†(β†) = 0,

for q ∈ �(Q) and β ∈ �(B∗). Finally, the 3-form Tω ∈ �3(T Q, T B∗) is defined by

(Tω)(Tq1, Tq2, Tq3) = T (ω(q1, q2, q3)), (Tω)(Tq1, Tq2, q
†
3 ) = ω(q1, q2, q3)

†,

(Tω)(q1, q
†
2 , q

†
3 ) = 0 = (Tω)(q†1 , q

†
2 , q

†
3 ),

for q1, q2, q3 ∈ �(Q).
As it is shown in [18], an interesting fact about the tangent prolongation of a Lie

algebroid is that it encodes its adjoint representation. The same holds for a split Lie
n-algebroid A1[1]⊕ · · ·⊕ An[n], since by definition the adjoint module is exactly the
space of sections of the Q-vector bundle T (A1[1] ⊕ · · · ⊕ An[n]) → A1[1] ⊕ · · · ⊕
An[n]. The next example shows this correspondence explicitly in the case of split Lie
2-algebroids Q[1] ⊕ B∗[2].
Example 6.7 Choose two T M-connections on Q and B∗, both denoted by ∇. These
choices induce the horizontal lifts �(Q) → �l

T M (T Q) and �(B∗) → �l
T M (T B∗),

both denoted by h. More precisely, given a section q ∈ �(Q), its lift is defined
as h(q) = Tq − (∇.q)∧. A similar formula holds for h(β) as well. Then an easy
computation yields the following:

(1) ρT Q(q†) = ρ(q)↑ and (T �)(β†) = �(β)↑
(2) ρT Q(h(q)) = X∇bas

q

(3) (T �)(h(β)) = h(�(β)) + (∇.(�(β)) − �(∇.β))∧
(4) [h(q1), h(q2)]T Q = h[q1, q2]Q − Rbas∇ (q1, q2)∧

(5) [h(q1), q
†
2 ]T Q = (∇bas

q1 q2)†

(6) (T∇∗)h(q)(β
†) = (∇∗

qβ)†

(7) (T∇∗)q†(h(β)) = (∇∗
qβ − ∇ρ(q)β)†

(8) (T∇∗)h(q)(h(β)) = h(∇∗
qβ) +

(
∇∗∇·qβ − ∇ρ(∇·q)β + ∇∗

q∇·β − ∇·∇∗
qβ

−∇[ρ(q),·]β
)∧

(9) (Tω)(h(q1), h(q2), h(q3)) = h(ω(q1, q2, q3)) + ((∇·ω)(q1, q2, q3))∧
(10) (Tω)(h(q1), h(q2), q

†
3 ) = (ω(q1, q2, q3))†.

In fact, this result is a special case of a correspondence betweenVB-Lie n-algebroid
structures on a decomposed graded double vector bundle (D, V , A, M) and (n + 1)-
representations of M = A on the complex E = V [0] ⊕ C1[1] ⊕ · · · ⊕ Cn[n]. In the
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general case (for n-arbitrary), it is easier to give the correspondence in terms of the
homological vector field on D and the dual representation on E∗ = C∗

n [−n] ⊕ · · · ⊕
C∗
1 [−1] ⊕ V ∗[0].
Suppose that (D, V , A, M) is a VB-Lie n-algebroid with homological vector

fields QD and QA, and choose a decomposition for each double vector bundle
(Di , V , Ai , M)14, and consequently for (D, V , A, M). Consider the dual D∗

V and
recall that the spaces �V (D∗

i ) are generated as C∞(V )-modules by core and linear
sections. For the latter, use the identification�l

V (D∗
i ) = �(A∗

i ⊗V ∗)⊕�(C∗
i ) induced

by the decomposition. Accordingly, the element α ∈ �(A∗
i ) is identified with the core

section π�
A(α) ∈ �c

V (D∗).
For all ψ ∈ �(V ∗), the 1-form d�ψ is a linear section of T ∗V → V over ψ and

the anchor ρD1 : D1 → T V is a morphism of double vector bundles. This implies that
the degree 1 function QD(�ψ) = ρ∗

D1
d�ψ is a linear section of �V (D∗) and thus

QD(�ψ) ∈ �l
V

(
D∗
1

) = �
(
A∗
1 ⊗ V ∗) ⊕ �

(
C∗
1

)
.

Moreover, due to the decomposition, Di = q !
V (Ai ⊕ Ci ) as vector bundles over V

for all i = 1, . . . , n. Given γ ∈ �(C∗
i ), the function QD(γ ) lies in �(Si+1(D∗

V )),
where D∗

V = q !
V (A∗

1 ⊕ C∗
1 ) ⊕ · · · ⊕ q !

V (A∗
n ⊕ C∗

n ). A direct computation shows that
the components of QD(γ ) which lie in spaces with two or more sections of the form
�(q !

VC
∗
i ) and �(q !

VC
∗
j ) vanish due to the bracket conditions of a VB-Lie n-algebroid.

Therefore, define the representationD∗ of A on the dual complex E∗ by the equations

QD(�ψ) = D∗(ψ) and QD(γ ) = D∗(γ ),

for all ψ ∈ �(V ∗) and all γ ∈ �(C∗
i ).

Conversely, given a representation D∗ of A on E∗, the above equations together
with

QD
(
q∗
V f

) = π�
A

(QA( f )
)
and QD

(
π�
A(α)

)
= π�

A

(QA(α)
)

for all f ∈ C∞(M) and α ∈ �(A∗), define a VB-Lie n-algebroid structure on the dou-
ble vector bundle (D, V , A, M). As discussed in Remark 6.5, this yields the following
theorem.

Theorem 6.8 Let (D, V , A, M) be a decomposed graded double vector bundle as
above with core C. There is a 1-1 correspondence between VB-Lie n-algebroid struc-
tures on (D, V , A, M) and (n+1)-representations up to homotopy of A on the complex
V [0] ⊕ C1[1] ⊕ · · · ⊕ Cn[n].

14 In the case of the tangent Lie n-algebroid, this corresponds to choosing the T M-connections on the
vector bundles of the adjoint complex.
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7 Constructions in terms of splittings

This section presents in terms of splittings two of the applications of the adjoint and
coadjoint representations thatwere defined before. First, there is an explicit description
of the Weil algebra of a split Lie n-algebroid together with its structure differentials,
in terms of vector bundles and connections, similarly to [2]. Second, the map between
the coadjoint and the adjoint representations in the case of a Poisson Lie n-algebroid
for degrees n ≤ 2 is examined in detail.

7.1 TheWeil algebra of a split Lie n-algebroid

Suppose first that M = Q[1] ⊕ B∗[2] is a split Lie 2-algebroid and consider two
T M-connections on the vector bundles Q and B∗, both denoted by ∇. Recall from
Sect. 5.4 the (non-canonical) isomorphism of DG M-modules

X(M) ∼= C∞(M) ⊗ �
(
T M[0] ⊕ Q[1] ⊕ B∗[2]) .

This implies that

�1(M) ∼= C∞(M) ⊗ �
(
B[−2] ⊕ Q∗[−1] ⊕ T ∗M[0]) ,

and thus the generators of the Weil algebra can be identified with

C∞(M)t
︸ ︷︷ ︸

(t,0)

, �(∧uT ∗M)
︸ ︷︷ ︸

(0,u)

, �(SυQ∗)
︸ ︷︷ ︸

(υ,υ)

, �(∧wB)
︸ ︷︷ ︸

(2w,w)

.

Using also that C∞(M)t = ⊕
t=r+2s �(∧r Q∗) ⊗ �(Ss B), the space of (p, q)-forms

is decomposed as

W p,q(M,∇) =
⊕

p=t+v+2w
q=u+w+v

C∞(M)t ⊗ �
(∧uT ∗M ⊗ SvQ∗ ⊗ ∧wB

)

=
⊕

p=r+2s+v+2w
q=u+w+v

�
(∧uT ∗M ⊗ ∧r Q∗ ⊗ SvQ∗ ⊗ ∧wB ⊗ Ss B

)
.

Therefore, after a choice of splitting and T M-connections ∇ on Q and B∗, the total
space of the Weil algebra of M can be written as

W (M,∇) =
⊕

r ,s,u,v,w

�
(∧uT ∗M ⊗ ∧r Q∗ ⊗ SvQ∗ ⊗ ∧wB ⊗ Ss B

)
.

The next step is to express the differentials £Q and d on W (M,∇) in terms of the
two T M-connections ∇. For the horizontal differential, recall that by definition the
q-th row of the double complex W (M,∇) equals the space of q-forms �q(M) on
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M with differential given by the Lie derivative £Q. Due to the identification of DG
M-modules

�q(M) = �1(M) ∧ . . . ∧ �1(M) = C∞(M) ⊗ �
(
ad∗∇ ∧ · · · ∧ ad∗∇

)

(q-times) and the Leibniz identity for £Q, it follows that the q-th row of W (M,∇)

becomes the q-symmetric power of the coadjoint representation Sq(ad∗∇) and £Q =
DSq (ad∗∇ ).

The vertical differential d is built from two 2-representations of the tangent Lie
algebroid T M , namely the dualization of the T M-representations on the graded vector
bundles EQ = Q[0] ⊕ Q[−1] and EB∗ = B∗[0] ⊕ B∗[−1] whose differentials are
given by the chosen T M-connections (idQ,∇, R∇) and (idB∗ ,∇, R∇), respectively.
Indeed, suppose first that τ ∈ �(Q∗) and b ∈ �(B) are functions onM, i.e. 0-forms.
Then from Remark 5.11, it follows that d acts via

dτ = τ + d∇∗τ and db = b + d∇∗b.

If now τ ∈ �(Q∗), b ∈ �(B) are 1-forms onM, then

dτ = d (τ + d∇∗τ − d∇∗τ) = d2τ − d (d∇∗τ) = d∇∗τ − d2∇∗τ,

db = d (b + d∇∗b − d∇∗b) = d2b − d (d∇∗b) = d∇∗b − d2∇∗b.

Remark 7.1 Note that if B∗ = 0, i.e. M is an ordinary Lie algebroid A → M , the
above construction recovers (up to isomorphism) the connection version of the Weil
algebra W (A,∇) from [1, 2, 34].

In the general case of a split Lie n-algebroid M = A1[1] ⊕ · · · ⊕ An[n] with a
choice of T M-connections on all the bundles Ai , one may apply the same procedure
as above to obtain the (non-canonical) DGM-module isomorphisms

X(M) ∼= C∞(M) ⊗ � (T M[0] ⊕ A1[1] ⊕ · · · ⊕ An[n])
�1(M) ∼= C∞(M) ⊗ �

(
A∗
n[−n] ⊕ · · · ⊕ A∗

1[−1] ⊕ T ∗M[0]) ,

and hence the identification of the generators of the Weil algebra with

C∞(M)t
︸ ︷︷ ︸

(t,0)

, �(∧uT ∗M)
︸ ︷︷ ︸

(0,u)

, �(Sυ1 A∗
1)︸ ︷︷ ︸

(υ1,υ1)

, �(∧υ2 A∗
2)︸ ︷︷ ︸

(2υ2,υ2)

, . . . , �(∧υn A∗
n)︸ ︷︷ ︸

(nυn ,υn)

.

This then yields

W p,q (M, ∇) =
⊕

p=t+v1+2v2+...
q=u+v1+v2+...

C∞(M)t ⊗ �
(∧uT ∗M ⊗ Sv1 A∗

1 ⊗ ∧v2 A∗
2 ⊗ . . .

)

=
⊕

p=r1+v1+2r2+2v2+...
q=u+v1+v2+...

�
(∧uT ∗M ⊗ ∧r1 A∗

1 ⊗ Sv1 A∗
1 ⊗ Sr2 A∗

2 ⊗ ∧v2 A∗
2 ⊗ . . .

)
.
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Similar considerations as before imply that the q-th row of W (M,∇) is given by
Sq(ad∗∇) with £Q = DSq (ad∗∇ ), and that d is built again by the dualization of the 2-
representations of T M on the graded vector bundles E Ai

= Ai [0] ⊕ Ai [−1], for
i = 1, . . . , n, whose differentials are given by (idAi ,∇, R∇).

7.2 Poisson Lie algebroids of low degree

This section describes in detail the degree −n morphism � : ad∗∇ → ad∇ of right n-
representations in the case of Poisson Lie n-algebroids for n = 0, 1, 2. Recall that the
map � sends an exact 1-form dξ of the graded manifold M to the vector field {ξ, ·}.

First, consider a Poisson Lie 0-algebroid, i.e. a usual Poisson manifold (M, {· , ·}).
Then the Lie 0-algebroid is just M , with a trivial homological vector field – it can
be thought of as a trivial Lie algebroid A = 0 × M → M with trivial differential
dA = 0, and consequently trivial homological vector field. The coadjoint and adjoint
representations are just the vector bundles T ∗M[0] and T M[0], respectively, with
zero module differentials, and the map � simply becomes the usual vector bundle map
induced by the Poisson bivector field that corresponds to the Poisson bracket

� : T ∗M[0] → T M[0].

Consider a Lie algebroid A → M with anchor ρ : A → T M and a linear Poisson
structure {· , ·}, i.e. a Lie algebroid structure on the dual A∗ → M . It is easy to
see that this means that the [1]-manifold A[1] has a Poisson structure of degree −1.
This Poisson structure is the Schouten bracket defined on �•(A) by the Lie algebroid
bracket on A∗. Then it is immediate that (A[1], dA, {· , ·}) is a Poisson Lie 1-algebroid
if and only if (A, A∗) is a Lie bialgebroid. The latter is equivalent to (A, {· , ·}) being
a Poisson Lie algebroid [32].

Let ρ′ : A∗ → T M , α 
→ {α, ·}|C∞(M) and [· , ·]∗ := {· , ·}|�1(A)×�1(A) be the
anchor and bracket of A∗, respectively. After a choice of a T M-connection ∇ on the
vector bundle A, the map � : ad∗∇ → ad∇ acts via

�(d f ) = �0(d f ) = { f , ·} = −ρ′∗(d f ) ∈ �(A)

�(β) = �0(β) + �1(·)β ∈ X(M) ⊕ (�(A∗) ⊗ �(A))

for all f ∈ C∞(M), β ∈ �1(A), where we identify β with dβ − d∇∗β, i.e. �(β) =
�(dβ) − �(d∇∗β) = {β, ·} − �(d∇∗β). Computing how these act on α ∈ �1(M) and
g ∈ C∞(M), viewed as functions of the graded manifold A[1], gives the components
of �(β): From the right-hand-side of the equation we obtain

(�0(β) + �1(·)β) g = �0(β)g ∈ C∞(M)

while from the left-hand-side we obtain

�(β)g = �(dβ − d∇∗β)g = {β, g} − �(d∇∗β)g = ρ′(β)g.
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From this, it follows that �0(β) = ρ′(β). Using now this, the right-hand-side gives

(�0(β) + �1(·)β) α = ∇∗
ρ′(β)α + (�1(·)β) α ∈ �(A∗) ⊕ �(A∗)

while the left-hand-side gives

�(β)α = �(dβ − d∇∗β)α = {β, α} − �(d∇∗β)α = [β, α]∗ + ∇∗
ρ′(α)β = (∇∗)basβ α.

This implies that (�1(·)β)α = (∇∗)basβ α−∇∗
ρ′(α)

β and thus � consists of the (−1)-chain
map �0 given by the anti-commutative diagram

together with �1(a)β = 〈(∇∗)basβ (·) − ∇∗
ρ′(β)

(·), a〉 ∈ �(A∗∗) � �(A), for all β ∈
�(A∗) and a ∈ �(A).

By Theorem 4.13, � is an anti-morphism of 2-representations if and only if
(A[1], dA, {· , ·}) is a Poisson Lie 1-algebroid. Hence, � is an anti-morphism of 2-
representations if and only if (A, A∗) is a Lie bialgebroid. Similarly, Ref. [17] shows
that ad∗∇ and ad∇ form a matched pair if and only if (A, A∗) is a Lie bialgebroid.

Note that (A, {· , ·}) is a Poisson Lie algebroid if the induced vector bundle mor-
phism � : T ∗A → T A over A is a VB-algebroid morphism over ρ′ : A∗ → T M
[32]. Then the fact that � : ad∗∇ → ad∇ is an anti-morphism of 2-representations fol-
lows immediately [15], since ad∗∇ and ad∇ are equivalent to decompositions of the
VB-algebroids (T ∗A → A∗, A → M) and (T A → T M, A → M), respectively.

Now consider the case of 2-algebroids. First recall that a symplectic Lie 2-algebroid
over a point, that is, a Courant algebroid over a point, is a usual Lie algebra (g, [· , ·])
together with a non-degenerate pairing 〈· , ·〉 : g × g → g, such that

〈[x, y], z〉 + 〈y, [x, z]〉 = 0 for all x, y, z ∈ g.

Using the adjoint and coadjoint representations ad : g → End(g), x 
→ [x, ·], and
ad∗ : g → End(g∗), x 
→ −ad(x)∗, and denoting the canonical linear isomorphism
induced by the pairing by P : g → g∗, the equation above reads

P(ad(x)y) = ad∗(x)P(y) for all x, y ∈ g.

In other words, this condition is precisely what is needed to turn the vector space
isomorphism P into an isomorphism of Lie algebra representations between ad and
ad∗. In fact, themap � : ad∗ → ad for PoissonLie 2-algebroids is a direct generalisation
of this construction.

Let B → M be a usual Lie algebroid with a 2-term representation (∇Q,∇Q∗
, R)

on a complex ∂Q : Q∗ → Q. The representation is called self dual [24] if it equals
its dual, i.e. ∂Q = ∂∗

Q , the connections ∇Q and ∇Q∗
are dual to each other, and
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R∗ = −R ∈ �2(B,Hom(Q, Q∗)), i.e. R ∈ �2(B,∧2Q∗). Ref. [24] further shows
that Poisson brackets {· , ·} on a split Lie 2-algebroid Q[1] ⊕ B∗[2] correspond to self
dual 2-representations of B on Q∗[1]⊕Q[0] as follows: the bundlemap ∂Q : Q∗ → Q
is τ 
→ {τ, ·}|�1(Q), the anchor ρB : B → T M is b 
→ {b, ·}|C∞(M), the B-connection

on Q∗ is given by ∇Q∗
b τ = {b, τ }, and the 2-form R and the Lie bracket of B are

defined by {b1, b2} = [b1, b2] − R(b1, b2) ∈ �(B) ⊕ �2(Q).
Fix now a Poisson Lie 2-algebroid (M,Q, {· , ·}) together with a choice of a split-

ting Q[1] ⊕ B∗[2] for M, a pair of T M-connections on B∗ and Q, and consider the
representations ad∇ and ad∗∇ . Similarly as before, we have that

�(d f ) = �0(d f ) = { f , ·} = −ρ∗
B(d f ) ∈ �(B∗)

�(τ ) = �0(τ ) + �1(·)τ ∈ �(Q) ⊕ (�1(Q) ⊗ �(B∗))
�(b) = �0(b) + �1(·)b + �2(· , ·)b + �b(·)b ∈ X(M) ⊕ �1(Q, Q) ⊕ �2(Q, B∗)

⊕(�(B) ⊗ �(B∗))

for f ∈ C∞(M), τ ∈ �(Q∗), b ∈ �(B), where we identify τ with dτ − d∇∗τ and b
with db − d∇∗b. Then the map � : ad∗∇ → ad∇ consists of the (−2)-chain map given
by the anti-commutative diagram

and the elements

�1(q)τ = 〈τ,∇Q· q − ∇ρB (·)q〉 ∈ �(B∗)
�1(q)b = ∇Q

b q − ∇ρB (b)q ∈ �(Q)

for q ∈ �(Q), τ ∈ �(Q∗), b ∈ �(B),

�2(q1, q2)b = −〈R(b, ·)q1, q2〉 ∈ �(B∗)

for q1, q1 ∈ �(Q), b ∈ �(B), where R is the component that comes from the self-dual
2-representation of B from the Poisson structure,

�b(β)b = 〈β,∇bas
b (·) − ∇∗

ρB (b)(·)〉 ∈ �(B∗)

for β ∈ �(B∗), b ∈ �(B).
Suppose now that the split Lie 2-algebroid is symplectic, i.e. that it is of the form

E[1] ⊕ T ∗M[2] for a Courant algebroid E → M . The only thing that is left from the
construction in the Example 3.10 is a choice of a T M-connection on T M , and hence
on the dual T ∗M . The (anti-)isomorphism � : ad∗∇ → ad∇ consists of the (-2)-chain
map of the anti-commutative diagram

123



68 M. Jotz et al.

where P : E
∼→ E∗ is the pairing, and the elements 〈�2(e1, e2)X ,Y 〉 =

−〈R∇(X ,Y )e1, e2〉 and 〈�b(α)X ,Y 〉 = −〈α, T∇(X ,Y )〉. Its inverse consists of the
2-chain map given by the anti-commutative diagram

and the elements 〈�−1
2 (e1, e2)X ,Y 〉 = −〈R∇(X ,Y )e1, e2〉 and 〈(�−1)b(α)X ,Y 〉 =

−〈α, T∇(X ,Y )〉. In other words, �2 = id. If the connection on T M is torsion-free,
then the terms �b and (�−1)b vanish, as well. In particular, if the base manifold M is
just a point, then the bundles T M and T ∗M , and the elements �2 and �−1

2 are zero.
Therefore, the map ad∗∇ → ad∇ reduces to the linear isomorphism of the pairing and
agrees with the one explained above.
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