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1 Motivation

Before discussing the contents of the book under review,
let me start with some motivational remarks and illus-
trative examples in order to get a feeling of the difficul-
ties that arise in the context of nonconvex and nondiffer-
entiable optimization problems. In principle, one distin-
guishes between an unconstrained minimization problem

min f (x), x ∈ R
n, (1)

for some given objective function f :Rn → R, and a con-
strained optimization problem

min f (x) subject to x ∈ X, (2)

where the feasible set X is a subset of Rn. Both problems are supposed to be easy
ones if they are convex, which means that f is convex and, for problem (2), the
feasible set is also convex. Convexity makes these problems simple since all local
minima are automatically global minima. In fact, even every stationary point can be
shown to be a global minimum, and there is a whole bunch of algorithms which are
able to find stationary points of convex optimization problems.

On the other hand, this statement already yields a first question: What is a sta-
tionary point of, say, the unconstrained problem (1) if f is nonsmooth? For smooth
objective functions, x∗ is called a stationary point if it satisfies the standard opti-
mality condition ∇f (x∗) = 0. For nonsmooth f , on the other hand, one has to use
other conditions. One possibility would be to require that f ′(x∗;d) ≥ 0 for all d , i.e.,
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the directional derivative needs to be nonnegative in all directions, provided that this
directional derivative exists. Alternatively, one can use the convex subdifferential

∂f (x∗) := {s | f (x) ≥ f (x∗) + sT (x − x∗) ∀x ∈ R
n}

which, geometrically, consists of all slopes s such that the affine function on the
right-hand side is below the mapping f and touches this function at the point x∗.
Then 0 ∈ ∂f (x∗) is another natural generalization of stationarity for convex functions
which, in this particular case, coincides with the previous one based on the directional
derivative. In a similar way, it is possible to derive stationarity conditions for the
constrained problem (2).

Now, what happens in the nonconvex case? First of all, nonconvex problems usu-
ally have local minima which are not global ones. Moreover, a stationary condition
based on the directional derivative can be directly extended to general nonconvex
objective functions and also yields a necessary optimality condition there, provided
the directional derivative exists. Furthermore, one can also generalize the convex
subdifferential to nonconvex functions, but it turns out that this is a delicate prob-
lem since there exist several generalizations having different properties. To illus-
trate the difficulty, let us define a very simple one, say ∂f (x) := R

n for all x. This
simple subdifferential has very nice properties, it is always nonempty, the sum rule
∂(f +g)(x) = ∂f (x)+∂g(x) as well as several other calculus rules hold. In addition,
if x∗ denotes a local minimum, then the necessary condition 0 ∈ ∂f (x∗) is satisfied.
Nevertheless, this subdifferential is completely useless since every point x ∈ R

n sat-
isfies the necessary optimality condition 0 ∈ ∂f (x), i.e., this subdifferential does not
distinguish between good and bad candidates for a local minimum. Consequently, the
main idea is to find a subdifferential which is as small as possible, but still possesses
at least some calculus rules.

We next present two illustrative examples which should explain some further
ideas. The first one is the portfolio problem by Markowitz

min
1

2
xT Qx subject to μT x ≥ ρ, eT x = 1, x ≥ 0,

where e is the all-one vector, Q and μ denote the covariance matrix and the mean
of n possible assets/stocks, respectively, while ρ is some lower bound for the ex-
pected return. Hence the objective is, basically, to minimize the risk, while having a
guaranteed expected return if we investigate a certain part (given by xi ) of our total
money (which sums up to 1) into asset i. Note that Q, being a covariance matrix,
is always positive semidefinite, hence the portfolio optimization problem is a con-
vex constrained minimization problem. Now, due to some additional side costs etc,
one typically invests the money such that only a few components xi are really posi-
tive, i.e., one is looking for a sparse solution of the portfolio problem. Usually, this is
modeled by adding the �1-norm to the objective function, thus we obtain the modified
problem

min
1

2
xT Qx + α‖x‖1 subject to μT x ≥ ρ, eT x = 1, x ≥ 0
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for some weight α > 0, since it is known that adding such a term (usually) improves
the sparsity of the solution. Moreover, adding the �1-norm keeps the convexity of
the portfolio problem, though it becomes nondifferentiable. But due to the particular
constraints, this sparsity term is just a constant in our case. This motivates to replace
the �1-norm either by the �0- or the �p-quasi-norm for p ∈ (0,1), where ‖x‖0 counts
the number of nonzero components of x, whereas ‖x‖p is defined in the usual way,
except that p < 1. The corresponding formulation can indeed be used to yield sparse
solutions, but the resulting problems are now nonconvex and nondifferentiable (in
case of the �0-term even discontinuous), i.e., these problems are much more realistic
models to get sparse solutions, but they are also significantly more difficult to solve.

As a second example, consider the (unconstrained) DC program (DC = difference-
of-convex)

min f (x) − g(x), x ∈R
n,

where the objective function is the difference of two convex mappings f and g and,
hence, nonconvex (and possibly nondifferentiable). The corresponding DC algorithm
is an iterative method which replaces the single DC program by a sequence of prob-
lems of the form

min f (x) − gk(x), x ∈ R
n, (3)

where gk(x) := g(xk) + (sk)T (x − xk) with an arbitrary sk ∈ ∂g(xk) is the lower
bound of g defined by the convex subdifferential at the current iterate xk . Since gk is
an affine function, the objective function of (3) is convex and, therefore, easy to min-
imize. Using the fact that f − g ≤ f − gk , the minimizer xk+1 of the majorization
function f − gk might give a good candidate for a minimum of the original DC pro-
gram. A generalization of this technique is the main idea of the surrogation methods
to be described in this book.

2 Contents of the Book

The book considers nonsmooth and nondifferentiable optimization problems, presents
the necessary theoretical background and a class of methods for the solution of these
problems. Recall, however, that nonconvex problems might have many local min-
ima, and the aim of this book is not to present methods which are able to compute a
global minimum. This would be impossible (at least within an acceptable time and
without having a very special structure). Suitable methods in continuous optimiza-
tion are typcially able to compute stationary points and, hence, candidates for a local
minimum.

The book is divided into eleven chapters. Chapter 1 presents some general back-
ground material from calculus and linear algebra including some basics from a course
on numerical mathematics. This material is probably known by most potential read-
ers. In addition, there is a short section on some elements from set-valued analysis,
which is less standard and central for some of the subsequent chapters.
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Chapter 2 covers some background material from optimization. In particular, some
basic theory regarding convex functions and projections are recalled here, as well as
the famous KKT optimality conditions (these are generalizations of the Lagrange
multiplier rule) and (some) corresponding constraint qualifications for smooth non-
linear programs. In addition, the authors also present a complete convergence theory
for the proximal gradient method and a realization of the proximal Newton idea.
These are standard methods for solving optimization problems where the objective
function is a sum of a smooth and a nonsmooth term, where the emphasis in this
background chapter is on convex problems.

Chapter 3, entitled “Structured Learning via Statistics and Optimization”, mainly
serves as a motivation to deal with nonsmooth and nonconvex optimization problems.
It covers a host of applications arising in statistics and optimization. This includes
sparse and low rank matrix problems like they occur, for example, in the famous
netflix or matrix completion problem, see also the sparse formulation of the portfolio
problem. This chapter does not contain any theoretical results.

Since this monograph deals with nonsmooth optimization, it requires some back-
ground from nonsmooth analysis. The corresponding material is presented in Chapter
4, which is more than 100 pages long. It starts with different generalizations of the no-
tion of a differentiable function and then presents some particularly relevant classes
that will be exploited in the subsequent chapters (like piecewise smooth functions,
weakly convex functions, DC-functions, semismooth functions). The corresponding
discussion on different generalizations of the notion of a differentiable function to
some nonsmooth mappings concentrates, however, on the class of B-differentiable
(i.e., directionally differentiable and locally Lipschitz continuous) functions. This is
still a very general class of nonsmooth functions, but excludes, for example, a di-
rect treatment of rank minimization problems or optimization problems involving the
�0-quasi-norm (see the introductory example). On the other hand, these classes of
problems can often be reformulated in a suitable way so that they still fit within the
framework of this monograph.

Chapter 5 is devoted to a discussion of value functions. These value functions arise
in several areas in a, more or less, natural way. For example, the (Lagrange) dual of a
nonlinear program involves a value function in its objective (which is nonsmooth, but
convex in this particular case), gap functions are used to solve variational inequal-
ities, the Nikaido-Isoda function is a value function for Nash equilibrium problems
(see also Chapter 11), and a standard approach for investigating and solving bilevel
programs is also based on value functions. Robust optimization, dealing with the
problem of how robust a solution is subject to suitable perturbations of the given
data, is another application area. The corresponding value functions are, in general,
nonsmooth and nonconvex, but still have certain smoothness properties, at least under
suitable assumptions.

Chapter 6 (almost 170 pages long) considers the highly important topic of station-
ary points of a given problem. The importance of having suitable notions of station-
arity for nonsmooth and nonconvex problems, both unconstrained and constrained
ones, was already pointed out in the motivational discussion at the beginning of this
report. Despite having these different notions of stationarity, a central practical ques-
tion is also, which kind of stationarity one can guarantee to obtain by a limit point



Y. Cui, J.-S. Pang: “Modern Nonconvex Nondifferentiable Optimization” 141

of a suitable algorithm. The directional derivative-based stationarity concepts are rel-
atively strong ones, but the mapping x �→ f ′(x;d) is, in general, nonsmooth, even
discontinuous, and therefore causes some difficulties in proving suitable convergence
results where one wants to show that a limit point x∗ of a sequence {xk} satisfies
such a stationarity condition. These considerations hopefully motivate the extensive
treatment of this topic in Chapter 6.

Chapter 7 on “Computational Algorithms by Surrogation” is the main algorith-
mic chapter for the solution of nonsmooth and nonconvex optimization problems. It
describes and investigates several surrogation methods for the solution of different
kinds of problems. The basic idea is the following: Given the (for simplicity of pre-
sentation) unconstrained problem of minimizing a possibly complicated function f , it
replaces this single minimization problem by a sequence of minimization problems,
where, in each step k, a function fk needs to be minimized, where fk is an upper
bound of f , i.e., f ≤ fk for all k ∈ N, and the minimization of fk itself is easier than
the one of f (this is sometimes also called an MM method, with MM standing for
the minimization of a majorization function). A particular instance of this idea is the
DC algorithm mentioned in the beginning. The surrogation methods extend the idea
of the DC algorithm, and particular instances of surrogation functions depend on the
structure and (smoothness) properties of the given optimization problem.

Chapter 8 investigates several error bounds whose aim is to provide a computation-
ally inexpensive evaluation of a function which gives an upper bound of the distance
of a given point to a certain set, say, the feasible set or the set of solutions/stationary
points of a given optimization problem. The most famous result in this area is proba-
bly the Hoffman error bound for a polyhedral set, whereas this chapter concentrates
on nonpolyhedral and nonconvex problems. A very popular and helpful error bound
in this area is given by the Kurdyka-Łojasiewicz theory, which is therefore also cov-
ered in this chapter. Error bounds have at least three important applications: They can
be used to prove convergence of the entire sequence generated by suitable methods,
they imply rate-of-convergence results, and they provide exact penalty results for con-
strained optimization problems (see the next chapter). The theory of error bounds is
closely linked to some regularity notions (linear regularity and metric subregularity),
and a corresponding section is therefore also devoted to such a discussion.

The following Chapter 9 presents exact penalty results for constrained optimiza-
tion problems. Hence, suppose we want to minimize an objective function f on a
feasible set given by some set X. Then, most penalty functions pα are of the form
pα(x) = f (x) + αr(x) for some penalty parameter α > 0 and a residual function
r which is nonnegative on the whole space and equal to zero exactly on X. Hence
the residual function r measures (and, therefore, penalizes) the violation of the con-
straints. Most text books do not provide a formal definition of exactness, but im-
plicitly call a penalty function exact if a minimum (or stationary point) of the given
optimization problem is also a minimum (or a stationary point) of the penalty func-
tion pα for some finite penalty parameter α > 0 (the converse directions are usually
more difficult to prove and require stronger assumptions). In the nonconvex setting,
the result on stationary points is obviously much more interesting than a statement on
(global) minima, since the former are likely to be computable, whereas the latter are
not. But then, of course, the notion of stationarity depends again on the (smoothness)
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properties of the underlying program. Basically, this chapter derives several exactness
results for different classes of nonconvex (and also some nonsmooth) optimization
problems. Since the exact penalty functions themselves are nonsmooth and (usually)
nonconvex, also a surrogate-type method is presented for the direct minimization of
exact penalty functions.

The remaining two Chapters 10 and 11 present applications of the theory and
algorithms to nonconvex stochastic programs and nonconvex Nash equilibrium prob-
lems, respectively. The former, in particular, contains optimization problems defined
by expectation functions (both in the objective function and the constraints) as well
as relatively general two-stage problems, whereas the latter presents some methods
for the solution of noncooperative games, where the standard solution concept of a
(generalized) Nash equilibrium is replaced by corresponding stationary conditions,
in order to deal with the underlying nonconvexity (in particular, depending on the
stationary concept used in this context, this leads to the notion of a quasi-Nash equi-
librium).

3 Summary

The book gives a comprehensive treatment of nonsmooth and nonconvex optimiza-
tion problems, and is, to the best of my knowledge, the first monograph exclusively
dealing with this kind of problem. Researchers already working in this area or being
interested in this subject will benefit a lot from this book. It presents the material in
a unified way which, otherwise, can only be found in several (mainly very recent)
journal articles or technical reports.

The topics covered in this monograph are, to some extend, dominated or motivated
by the idea of solving these difficult optimization problems by surrogation methods.
These methods are indeed one of the main and most successful tools for solving
nonsmooth and nonconvex minimization problems, and the authors are world-leading
experts in this area (well, Jong-Shi Pang, being the more senior author of this book,
has also contributed a lot to many other areas in optimization and its applications).

This leads to the only (and very minor) criticism: The book does not cover every-
thing . . .. Specifically, the class of surrogation methods is one (and important) attempt
to solve difficult classes of optimization problems, but not the only one. Proximal-
type methods and, in particular, augmented Lagrangian-type methods are nowadays
also able to deal with several classes of nonsmooth and nonconvex optimization prob-
lems, where the difficulties either arise in the objective function being nonsmooth
or the constraints being complicated, sometimes even under weaker smoothness as-
sumptions than B-differentiability. A corresponding treatment, however, would re-
quire some notions on the limiting normal cone by Boris Mordukhovich and related
results from variational analysis.

On the other hand, the current book is already “heavy” with more than 750 pages
. . ..
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