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Abstract
Composite optimization problems, where the sum of a smooth and a merely lower
semicontinuous function has to be minimized, are often tackled numerically by means
of proximal gradientmethods as soon as the lower semicontinuous part of the objective
function is of simple enough structure. The available convergence theory associated
with these methods (mostly) requires the derivative of the smooth part of the objective
function to be (globally) Lipschitz continuous, and this might be a restrictive assump-
tion in some practically relevant scenarios. In this paper, we readdress this classical
topic and provide convergence results for the classical (monotone) proximal gradient
method and one of its nonmonotone extensions which are applicable in the absence
of (strong) Lipschitz assumptions. This is possible since, for the price of forgoing
convergence rates, we omit the use of descent-type lemmas in our analysis.
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1 Introduction

In this paper, we address the classical problem of minimizing the sum of a smooth
function f and a nonsmooth function φ, also known under the name composite opti-
mization. This setting received much attention throughout the last years due to its
inherent practical relevance in, e.g., machine learning, data compression, matrix com-
pletion, and image processing, see, e.g., [6, 13, 14, 20, 27, 28].

A standard technique for the solution of composite optimization problems is the
proximal gradient method, introduced by Fukushima and Mine [21] and popularized,
e.g., by Combettes and Wajs in [18]. A particular instance of this method is the cel-
ebrated iterative shrinkage/threshold algorithm (ISTA), see, e.g., [5]. A summary of
existing results for the case where the nonsmooth term φ is defined by a convex
function is given in the monograph by Beck [4].

The proximal gradient method can also be interpreted as a forward-backward split-
ting method, see [12, 31] for its origins and [3] for a modern view, and is able to handle
problemswhere the nonsmooth termφ is givenby amerely lower semicontinuous func-
tion, see, e.g., the seminal works [1, 8]. These references also provide convergence
and rate-of-convergence results by using the popular descent lemma together with the
celebrated Kurdyka–Łojasiewicz property.

To the best of our knowledge, however, the majority of available convergence
results for proximal gradient methods assume that the smooth term f is continuously
differentiable with a globally Lipschitz continuous gradient (or they require local Lip-
schitzness together with a bounded level set which, again, implies the global Lipschitz
continuity on this level set). This requirement, which is the essential ingredient for
the classical descent lemma, is often satisfied for standard applications of the proxi-
mal gradient method in data science and image processing, where f appears to be a
quadratic function.

In this paper, we aim to get rid of this global Lipschitz condition. This is motivated
by the fact that the algorithmic application we have in mind does not satisfy this
Lipschitz property since the smooth term f corresponds to the augmented Lagrangian
function of a general nonlinear constrained optimization problem, which rarely has a
globally Lipschitz continuous gradient or a bounded level set. The proximal gradient
method will be used to solve the resulting subproblems which forces us to generalize
the convergence theory up to reasonable assumptions which are likely to hold in our
framework. We refer the interested reader to [15, 19, 23, 25] where such augmented
Lagrangian proximal methods are investigated.

Numerically, a nonmonotone version of the proximal gradient method is often pre-
ferred. Based on ideas by Grippo et al. [22] in the context of smooth unconstrained
optimization problems, Birgin et al. [7] developed a nonmonotone projected gradient
method for the minimization of a differentiable function over a convex set. Later, this
theory was further refined in [34] where the authors present a nonmonotone proximal
gradient method, known under the name SpaRSA, for composite optimization prob-
lems where the nonsmooth part φ of the objective function is convex (and not just
an indicator function of a convex set as in [7]). The ideas from [7, 34] were subse-
quently generalized in the papers [15, 16] where the proximal gradient method is used
as a subproblem solver within an augmented Lagrangian and penalization scheme,
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respectively. However, the authors did not address the aforementioned problematic
lack of Lipschitzness in these papers which causes their convergence theory to be
barely applicable in their algorithmic framework. In [26, 33], the authors present non-
monotone extensions of ISTA which can handle merely lower semicontinuous terms
in the objective function. Again, for the convergence analysis, global Lipschitzness of
the smooth term’s derivative is assumed. Due to its practical importance, we therefore
aim to provide a convergence theory for the nonmonotone proximal gradient method
without using any Lipschitz assumption.

In the seminal paper [2], the authors consider the composite optimization prob-
lem with both terms being convex, but without a global Lipschitz assumption for the
gradient of the smooth part f . They get suitable rate-of-convergence results for the
iterates generated by a Bregman-type proximal gradient method using only a local
Lipschitz condition. In addition, however, they require that there is a constant L > 0
such that Lh − f is convex, where h is a convex function which defines the Bregman
distance (in our setting, h equals the squared norm). Some examples indicate that this
convexity-type condition is satisfied in many practically relevant situations. Subse-
quently, this approach was generalized to the nonconvex setting in [9] using, once
again, a local Lipschitz assumption only, as well as the slightly stronger assumption
(in order to deal with the nonconvexity) that there exist L > 0 and a convex function
h such that both Lh − f and Lh + f are convex. Note that the constant L plays a
central role in the design of the corresponding proximal-type methods. Particularly, it
is used explicitly for the choice of stepsizes. Finally, the very recent paper [17] proves
global convergence results under a local Lipschitz assumption (without the additional
convexity-type condition), but assumes that the iterates and stepsizes of the underlying
proximal gradient method remain bounded.

To the best of our knowledge, this is the current state-of-the-art regarding the con-
vergence properties of proximal gradient methods. The aim of this paper is slightly
different, since we do not provide rate-of-convergence results, but conditions which
guarantee accumulation points to be suitable stationary points of the composite opti-
mization problem. This is the essential feature of the proximal gradient method which,
for example, is exploited in [15, 19, 25] to develop augmented Lagrangian proximal
methods. We also stress that, in this particular situation, the above assumption that
Lh ± f is convex for some L > 0 is often violated unless we are dealing with linear
constraints only.

Our analysis does not require a global Lipschitz assumption and is not based on the
crucial descent lemma, contrasting [2, 9] mentioned above. The results show that we
can get stationary accumulation points only under a local Lipschitz assumption and,
depending on the properties of φ, sometimes even without any Lipschitz condition. In
any case, a convexity-type condition like Lh ± f being convex for some constant L
is not required at all. Moreover, the implementation of our proximal gradient method
does not need any knowledge of the size of any Lipschitz-type constant.

Since the aim of this paper is to get a better understanding of the theoretical con-
vergence properties of both monotone and nonmonotone proximal gradient methods,
and since these methods have already been applied numerically to a large variety of
problems, we do not include any numerical results in this paper.
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Let us recall that we are mainly interested in conditions ensuring that accumulation
points of sequences produced by the proximal gradientmethod are stationary. Themain
contributions of this paper show that this property holds (neglecting a few technical
conditions) for the monotone proximal gradient method if either the smooth function
f is continuously differentiable and the nonsmooth function φ is continuous on its
domain (e.g., this assumption holds for a constrained optimization problem where
φ corresponds to the indicator function of a nonempty and closed set), or if f is
differentiable with a locally Lipschitz continuous derivative and φ is an arbitrary lower
semicontinuous function. Corresponding statements for the nonmonotone proximal
gradient method require stronger assumptions, basically the uniform continuity of
the objective function on a level set. That, however, is a standard assumption in the
literature dealing with nonmonotone stepsize rules.

The paper is organized as follows: In Sect. 2, we give a detailed statement of the
composite optimization problem and provide some necessary background material
from variational analysis. The convergence properties of the monotone and nonmono-
tone proximal gradient method are then discussed in Sects. 3 and 4, respectively. We
close with some final remarks in Sect. 5.

2 Problem Setting and Preliminaries

We consider the composite optimization problem

min
x

ψ(x) := f (x) + φ(x), x ∈ X, (P)

where f : X → R is continuously differentiable, φ : X → R := R ∪ {∞} is lower
semicontinuous (possibly infinite-valued and nondifferentiable), and X denotes a
Euclidean space, i.e., a real and finite-dimensional Hilbert space. We assume that
the domain dom φ := {x ∈ X | φ(x) < ∞} of φ is nonempty to rule out trivial sit-
uations. In order to minimize the function ψ : X → R in (P), it seems reasonable to
exploit the composite structure of ψ , i.e., to rely on the differentiability of f on the
one hand, and on some beneficial structural properties of φ on the other one. This is
the idea behind splitting methods.

Throughout the paper, theEuclidean spaceXwill be equippedwith the inner product
〈·, ·〉 : X × X → R and the associated norm ‖·‖. For some set A ⊂ X and some point
x ∈ X, we make use of A + x = x + A := {x + a | a ∈ A} for the purpose of
simplicity. For some sequence {xk} ⊂ X and x ∈ X, xk →φ x means that xk → x and
φ(xk) → φ(x). The continuous linear operator f ′(x) : X → R denotes the derivative
of f at x ∈ X, and we will make use of ∇ f (x) := f ′(x)∗1 where f ′(x)∗ : R → X is
the adjoint of f ′(x). This way, ∇ f is a mapping from X to X. Furthermore, we find
f ′(x)d = 〈∇ f (x), d〉 for each d ∈ X.
The following concepts are standard in variational analysis, see, e.g., [29, 32]. Let

us fix some point x ∈ dom φ. Then,

̂∂φ(x) :=
{

η ∈ X

∣

∣

∣

∣

lim inf
y→x

φ(y) − φ(x) − 〈η, y − x〉
‖y − x‖ ≥ 0

}
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is called the regular (or Fréchet) subdifferential of φ at x . Furthermore, the set

∂φ(x) :=
{

η ∈ X

∣

∣

∣ ∃{xk}, {ηk} ⊂ X : xk →φ x, ηk → η, ηk ∈ ̂∂φ(xk)∀k ∈ N

}

is well known as the limiting (or Mordukhovich) subdifferential of φ at x . Clearly, we
always havê∂φ(x) ⊂ ∂φ(x) by construction. Whenever φ is convex, equality holds,
and both subdifferentials coincide with the subdifferential of convex analysis, i.e.,

̂∂φ(x) = ∂φ(x) = {η ∈ X | ∀y ∈ X : φ(y) ≥ φ(x) + 〈η, y − x〉}

holds in this situation. It can be seen right from the definition thatwhenever x∗ ∈ dom φ

is a local minimizer of φ, then 0 ∈ ̂∂φ(x∗), which is referred to as Fermat’s rule, see
[29, Proposition 1.30(i)].

Given x ∈ dom φ, the limiting subdifferential has the important robustness property

{

η ∈ X
∣

∣ ∃{xk}, {ηk} ⊂ X : xk →φ x, ηk → η, ηk ∈ ∂φ(xk)∀k ∈ N

}

⊂ ∂φ(x), (1)

see [29, Proposition 1.20]. Clearly, the converse inclusion⊃ is also valid by definition
of the limiting subdifferential. Note that in situations where φ is discontinuous at x ,
the requirement xk →φ x in the definition of the set on the left-hand side in (1) is
strictly necessary. In fact, the usual outer semicontinuity in the sense of set-valued
mappings, given by

{

η ∈ X
∣

∣ ∃{xk}, {ηk} ⊂ X : xk → x, ηk → η, ηk ∈ ∂φ(xk)∀k ∈ N

}

⊂ ∂φ(x),

(2)

would be a much stronger condition in this situation and does not hold in general.
Whenever x ∈ dom φ is fixed, the sum rule

̂∂( f + φ)(x) = ∇ f (x) +̂∂φ(x) (3)

holds, see [29, Proposition 1.30(ii)]. Thus, due to Fermat’s rule, whenever x∗ ∈ dom φ

is a local minimizer of f + φ, we have 0 ∈ ∇ f (x∗) + ̂∂φ(x∗). This condition is
potentially more restrictive than 0 ∈ ∇ f (x∗) + ∂φ(x∗) which, naturally, also serves
as a necessary optimality condition for (P). However, the latter is more interesting
from an algorithmic point of view as it is well known from the literature on splitting
methods comprising nonconvex functions φ. If φ is convex, there is no difference
between those stationarity conditions.

Throughout the paper, a point x∗ ∈ dom φ satisfying 0 ∈ ∇ f (x∗) + ∂φ(x∗) will
be called a Mordukhovich-stationary (M-stationary for short) point of (P) due to the
appearance of the limiting subdifferential. In the literature, the name limiting critical
point is used as well. We close this section with two special instances of problem (P)
and comment on the corresponding M-stationary conditions.
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Remark 2.1 Consider the constrained optimization problem

min
x

f (x) subject to x ∈ C

for a continuously differentiable function f : X → R and a nonempty and closed
(not necessarily convex) set C ⊂ X. This problem is equivalent to the unconstrained
problem (P) by setting φ := δC , where δC : X → R denotes the indicator function
of the set C , vanishing on C and taking the value ∞ on X \ C , which is lower
semicontinuous due to the assumptions regardingC . The correspondingM-stationarity
condition is given by

0 ∈ ∇ f (x∗) + ∂δC (x∗) = ∇ f (x∗) + NC (x∗),

where NC (x∗) denotes the limiting (or Mordukhovich) normal cone, see [29, Propo-
sition 1.19].

Remark 2.2 Consider the more general constrained optimization problem

min
x

f (x) + ϕ(x) subject to x ∈ C

with f : X → R and C ⊂ X as in Remark 2.1, and ϕ : X → R being another
lower semicontinuous function (which might represent a regularization, penalty, or
sparsity-promoting term, for example). Setting φ := ϕ + δC , we obtain once again an
optimization problem of the form (P). The corresponding M-stationarity condition is
given by

0 ∈ ∇ f (x∗) + ∂φ(x∗) = ∇ f (x∗) + ∂(ϕ + δC )(x∗).

Unfortunately, the sum rule

∂(ϕ + δC )(x∗) ⊂ ∂ϕ(x∗) + ∂δC (x∗) = ∂ϕ(x∗) + NC (x∗)

does not hold in general. However, for locally Lipschitz functions ϕ, for example, it
applies, see [29, Theorems 1.22, 2.19]. Note that the resulting stationarity condition

0 ∈ ∇ f (x∗) + ∂ϕ(x∗) + NC (x∗)

might be slightly weaker thanM-stationarity as introduced above. Related discussions
can be found in [24, Section 3].

3 Monotone Proximal Gradient Method

We first investigate a monotone version of the proximal gradient method applied to
the composite optimization problem (P) with f being continuously differentiable and
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φ being lower semicontinuous. Recall that the correspondingM-stationarity condition
is given by

0 ∈ ∇ f (x) + ∂φ(x).

Our aim is to find, at least approximately, an M-stationary point of (P). The following
algorithm is the classical proximal gradient method for this class of problems. Since
wewill also consider a nonmonotone variant of this algorithm in the following section,
we call this the monotone proximal gradient method.

Algorithm 3.1 (Monotone proximal gradient method)
Require: τ > 1, 0 < γmin ≤ γmax < ∞, δ ∈ (0, 1), x0 ∈ dom φ

1: Set k := 0.
2: while A suitable termination criterion is violated at iteration k do
3: Choose γ 0

k ∈ [γmin, γmax].
4: For i = 0, 1, 2, . . ., compute a solution xk,i of

min
x

f (xk) + 〈∇ f (xk), x − xk〉 + γk,i

2
‖x − xk‖2 + φ(x), x ∈ X (4)

with γk,i := τ iγ 0
k , until the acceptance criterion

ψ(xk,i ) ≤ ψ(xk) − δ
γk,i

2
‖xk,i − xk‖2 (5)

holds.
5: Denote by ik := i the terminal value, and set γk := γk,ik and xk+1 := xk,ik .
6: Set k ← k + 1.
7: end while
8: return xk

The convergence theory requires some technical assumptions.

Assumption 3.1 (a) The function ψ is bounded from below on dom φ.
(b) The function φ is bounded from below by an affine function.

Assumption 3.1 (a) is a reasonable condition regarding the given composite opti-
mization problem, whereas Assumption 3.1 (b) is essentially a statement relevant for
the subproblems from (4). In particular, Assumption 3.1 (b) implies that the quadratic
objective function of the subproblems (4) are, for fixed k, i ∈ N, coercive, and there-
fore always attain a solution xk,i (which, however, may not be unique).

The subsequent convergence theory assumes implicitly thatAlgorithm3.1generates
an infinite sequence.

We first establish that the stepsize rule in Step 4 of Algorithm 3.1 is always finite.

Lemma 3.1 Consider a fixed iteration k of Algorithm 3.1, assume that xk is not an
M-stationary point of (P), and suppose that Assumption 3.1 (b) holds. Then, the inner
loop in Step 4 of Algorithm 3.1 is finite, i.e., we have γk = γk,ik for some finite index
ik ∈ {0, 1, 2, . . .}.
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Proof Suppose that the inner loop of Algorithm 3.1 does not terminate after a finite
number of steps in iteration k. Recall that xk,i is a solution of (4). Therefore, we get

〈∇ f (xk), xk,i − xk〉 + γk,i

2
‖xk,i − xk‖2 + φ(xk,i ) ≤ φ(xk). (6)

Noting that γk,i → ∞ for i → ∞ and using Assumption 3.1 (b), we obtain xk,i → xk

for i → ∞. Taking the limit i → ∞ therefore yields

φ(xk) ≤ lim inf
i→∞ φ(xk,i ) ≤ lim sup

i→∞
φ(xk,i ) ≤ φ(xk),

where the first estimate follows from the lower semicontinuity of φ and the final
inequality is a consequence of (6). Therefore, we have

φ(xk,i ) → φ(xk) for i → ∞. (7)

We claim that

lim inf
i→∞ γk,i‖xk,i − xk‖ > 0. (8)

Assume, by contradiction, that there is a subsequence il → ∞ such that

lim inf
l→∞ γk,il ‖xk,il − xk‖ = 0. (9)

Since xk,il is optimal for (4), Fermat’s rule and the sum rule (3) yield

0 ∈ ∇ f (xk) + γk,il (xk,il − xk) +̂∂φ(xk,il ) (10)

for all l ∈ N. Taking the limit l → ∞ while using (7) and (9), we obtain

0 ∈ ∇ f (xk) + ∂φ(xk),

which means that xk is already an M-stationary point of (P). This contradiction shows
that (8) holds. Hence, there is a constant c > 0 such that

γk,i‖xk,i − xk‖ ≥ c

holds for all large enough i ∈ N. In particular, this implies

(1 − δ)
γk,i

2
‖xk,i − xk‖2 ≥ 1 − δ

2
c‖xk,i − xk‖ ≥ o

(‖xk,i − xk‖) (11)

for all sufficiently large i ∈ N. Furthermore, (6) shows that

〈∇ f (xk), xk,i − xk〉 + φ
(

xk,i ) − φ(xk) ≤ −γk,i

2
‖xk,i − xk‖2. (12)

123



632 Journal of Optimization Theory and Applications (2022) 195:624–646

Using a Taylor expansion of the function f and exploiting (11), (12), we obtain

ψ(xk,i ) − ψ(xk) = f (xk,i ) + φ(xk,i ) − f (xk) − φ(xk)

= 〈∇ f (xk), xk,i − xk〉 + φ(xk,i ) − φ(xk) + o
(‖xk,i − xk‖)

≤ −γk,i

2
‖xk,i − xk‖2 + o

(‖xk,i − xk‖)

≤ −δ
γk,i

2
‖xk,i − xk‖2

for all i ∈ N sufficiently large. This, however, means that the acceptance criterion (5)
is valid for sufficiently large i ∈ N, contradicting our assumption. This completes the
proof. ��

Let us note that the above proof actually shows that the inner loop from Step 4 of
Algorithm 3.1 is either finite, or we have γk,il ‖xk,il − xk‖ → 0 along a subsequence
il → ∞. Rewriting (10) by means of

∇ f (xk,il ) − ∇ f (xk) + γk,il (xk − xk,il ) ∈ ∇ f (xk,il ) +̂∂φ(xk,il ) (13)

and recalling that ∇ f : X → X is continuous motivates to also use

‖∇ f (xk,i ) − ∇ f (xk) + γk,i (xk − xk,i )‖ ≤ τabs

for some τabs > 0 as a termination criterion of the inner loop since this encodes,
in some sense, approximate M-stationarity of xk,i for (P) (note that taking the limit
l → ∞ in (13) would recover the limiting subdifferential of φ at xk since we have
xk,il →φ xk by (7)).

A critical step for the convergence theory of Algorithm 3.1 is provided by the
following result.

Proposition 3.1 Let Assumption 3.1 hold. Then, each sequence {xk} generated by
Algorithm 3.1 satisfies ‖xk+1 − xk‖ → 0.

Proof First recall that the sequence {xk} is well defined by Lemma 3.1. Using the
acceptance criterion (5), we get

ψ(xk+1) ≤ ψ(xk) − δ
γk

2
‖xk+1 − xk‖2 ≤ ψ(xk) (14)

for all k ∈ N. Hence, the sequence {ψ(xk)} is monotonically decreasing. Since ψ is
bounded from below on dom φ by Assumption 3.1 (a) and {xk} ⊂ dom φ, it follows
that this sequence is convergent. Therefore, (14) implies

γk‖xk+1 − xk‖2 → 0 for k → ∞.

Hence, the assertion follows from the fact that, by construction,we have γk ≥ γmin > 0
for all k ∈ N. ��

123



Journal of Optimization Theory and Applications (2022) 195:624–646 633

A refined analysis gives the following result.

Proposition 3.2 Let Assumption 3.1 hold, let {xk} be a sequence generated by Algo-
rithm 3.1, and let {xk}K be a subsequence converging to some point x∗. Then,
γk‖xk+1 − xk‖ →K 0 holds.

Proof If the subsequence {γk}K is bounded, the statement follows immediately from
Proposition 3.1. The remaining part of this proof therefore assumes that this subse-
quence is unbounded. Without loss of generality, we may assume that γk →K ∞
and that the acceptance criterion (5) is violated in the first iteration of the inner loop
for each k ∈ K . Then, for γ̂k := γk/τ , k ∈ K , we also have γ̂k →K ∞, but the
corresponding vector x̂ k := xk,ik−1 does not satisfy the stepsize condition from (5),
i.e., we have

ψ(x̂ k) > ψ(xk) − δ
γ̂k

2
‖x̂ k − xk‖2 ∀k ∈ K . (15)

On the other hand, since x̂ k solves the corresponding subproblem (4)with γ̂k = γk,ik−1,
we have

〈∇ f (xk), x̂ k − xk〉 + γ̂k

2
‖x̂ k − xk‖2 + φ(x̂ k) − φ(xk) ≤ 0. (16)

We claim that this, in particular, implies x̂ k →K x∗. In fact, using (16), the Cauchy-
Schwarz inequality, and the monotonicity of {ψ(xk)}, we obtain

γ̂k

2
‖x̂ k − xk‖2 ≤ ‖∇ f (xk)‖‖x̂ k − xk‖ + φ(xk) − φ(x̂ k)

= ‖∇ f (xk)‖‖x̂ k − xk‖ + ψ(xk) − f (xk) − φ(x̂ k)

≤ ‖∇ f (xk)‖‖x̂ k − xk‖ + ψ(x0) − f (xk) − φ(x̂ k).

Since f is continuously differentiable and −φ is bounded from above by an affine
function in view of Assumption 3.1 (b), this implies ‖x̂ k − xk‖ →K 0. In fact, if
{‖x̂ k − xk‖}K would be unbounded, then the left-hand side would grow more rapidly
than the right-hand side, and if {‖x̂ k − xk‖}K would be bounded, but staying away,
at least on a subsequence, from zero by a positive number, the right-hand side would
be bounded, whereas the left-hand side would be unbounded on the corresponding
subsequence.

Now, by the mean-value theorem, there exists ξ k on the line segment connecting
xk with x̂ k such that

ψ(x̂ k) − ψ(xk) = f (x̂ k) + φ(x̂ k) − f (xk) − φ(xk)

= 〈∇ f (ξ k), x̂ k − xk〉 + φ(x̂ k) − φ(xk).
(17)
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Substituting the expression φ(x̂ k) − φ(xk) from (17) into (16) yields

〈∇ f (xk) − ∇ f (ξ k), x̂ k − xk〉 + γ̂k

2
‖x̂ k − xk‖2 + ψ(x̂ k) − ψ(xk) ≤ 0.

Exploiting (15), we therefore obtain

γ̂k

2
‖x̂ k − xk‖2 ≤ −〈∇ f (xk) − ∇ f (ξ k), x̂ k − xk〉 + ψ(xk) − ψ(x̂ k)

≤ ‖∇ f (xk) − ∇ f (ξ k)‖‖x̂ k − xk‖ + δ
γ̂k

2
‖x̂ k − xk‖2,

which can be rewritten as

(1 − δ)
γ̂k

2
‖x̂ k − xk‖ ≤ ‖∇ f (xk) − ∇ f (ξ k)‖ (18)

(note that x̂ k �= xk in view of (15)). Since xk →K x∗ (by assumption) and x̂ k →K x∗
(by the previous part of this proof), we also get ξ k →K x∗. Using δ ∈ (0, 1) and the
continuous differentiability of f , it follows from (18) that γ̂k‖x̂ k − xk‖ →K 0.

Finally, exploiting the fact that xk+1 and x̂ k are solutions of the subproblems (4)
with parameters γk and γ̂k , respectively, we find

〈∇ f (xk), xk+1 − xk〉 + γk

2
‖xk+1 − xk‖2 + φ(xk+1)

≤ 〈∇ f (xk), x̂ k − xk〉 + γk

2
‖x̂ k − xk‖2 + φ(x̂ k),

〈∇ f (xk), x̂ k − xk〉 + γ̂k

2
‖x̂ k − xk‖2 + φ(x̂ k)

≤ 〈∇ f (xk), xk+1 − xk〉 + γ̂k

2
‖xk+1 − xk‖2 + φ(xk+1).

Adding these two inequalities and noting that γk = τ γ̂k > γ̂k yields ‖xk+1 − xk‖ ≤
‖x̂ k − xk‖ and, therefore,

γk‖xk+1 − xk‖ = τ γ̂k‖xk+1 − xk‖ ≤ τ γ̂k‖x̂ k − xk‖ →K 0.

This completes the proof. ��
The above technique of proof implies a boundedness result for the sequence {γk}K

if ∇ f satisfies a local Lipschitz property around the associated accumulation point of
iterates. This observation is stated explicitly in the following result.

Corollary 3.1 Let Assumption 3.1 hold, let {xk} be a sequence generated by Algo-
rithm 3.1, let {xk}K be a subsequence converging to some point x∗, and assume that
∇ f : X → X is locally Lipschitz continuous around x∗. Then, the corresponding
subsequence {γk}K is bounded.
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Proof Wemay argue as in the proof of Proposition 3.2. Hence, on the contrary, assume
that γk →K ∞. For each k ∈ K , define γ̂k and x̂ k as in that proof, and let L > 0 denote
the local Lipschitz constant of ∇ f around x∗. Recall that xk →K x∗ (by assumption)
and x̂ k →K x∗ (from the proof of Proposition 3.2). Exploiting (18), we therefore
obtain

(1 − δ)
γ̂k

2
‖x̂ k − xk‖ ≤ L‖x̂ k − ξ k‖ ≤ L‖x̂ k − xk‖

for all k ∈ K sufficiently large, using the fact that ξ k is on the line segment between xk

and x̂ k . Since γ̂k →K ∞ and x̂ k �= xk , see once again (15), this gives a contradiction.
Hence, {γk}K stays bounded. ��

The following is the main convergence result for Algorithm 3.1 which requires a
slightly stronger smoothness assumption on either f or φ.

Theorem 3.1 Assume that Assumption3.1holds, while either φ is continuous ondom φ

or ∇ f : X → X is locally Lipschitz continuous. Then, each accumulation point x∗ of
a sequence {xk} generated by Algorithm 3.1 is an M-stationary point of (P).

Proof Let {xk}K be a subsequence converging to x∗. In view of Proposition 3.1, it fol-
lows that also the subsequence {xk+1}K converges to x∗. Furthermore, Proposition 3.2
yields γk‖xk+1 − xk‖ →K 0. The minimizing property of xk+1, Fermat’s rule, and
the sum rule (3) imply that

0 ∈ ∇ f (xk) + γk(xk+1 − xk) +̂∂φ(xk+1) (19)

holds for each k ∈ K . Hence, if we can show φ(xk+1) →K φ(x∗), we can take the
limit k →K ∞ in (19) to obtain the desired statement 0 ∈ ∇ f (x∗) + ∂φ(x∗).

Due to (14), we find ψ(xk+1) ≤ ψ(x0) for each k ∈ K . Taking the limit k →K ∞
while respecting the lower semicontinuity of φ gives ψ(x∗) ≤ ψ(x0), and due to
x0 ∈ dom φ, we find x∗ ∈ dom φ. Thus, the condition φ(xk+1) →K φ(x∗) obviously
holds if φ is continuous on its domain since all iterates xk generated by Algorithm 3.1
as well as x∗ belong to dom φ.

Hence, it remains to consider the situation where φ is only lower semicontinuous,
but ∇ f is locally Lipschitz continuous. From xk+1 →K x∗ and the lower semiconti-
nuity of φ, we find

φ(x∗) ≤ lim inf
k∈K

φ(xk+1) ≤ lim sup
k∈K

φ(xk+1).

It therefore suffices to show that lim supk∈K φ(xk+1) ≤ φ(x∗) holds. Since xk+1

solves the subproblem (4) with parameter γk , we obtain

〈∇ f (xk), xk+1 − xk〉 + γk

2
‖xk+1 − xk‖2 + φ(xk+1)

≤ 〈∇ f (xk), x∗ − xk〉 + γk

2
‖x∗ − xk‖2 + φ(x∗)
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for each k ∈ K .We now take the upper limit over K on both sides. Using the continuity
of ∇ f , the convergences xk+1 − xk →K 0 as well as γk‖xk+1 − xk‖2 →K 0 (see
Propositions 3.1 and 3.2), and taking into account that γk‖xk − x∗‖2 →K 0 due to the
boundedness of the subsequence {γk}K in this situation, see Corollary 3.1, we obtain
lim supk∈K φ(xk+1) ≤ φ(x∗). Altogether, we therefore get φ(xk+1) →K φ(x∗), and
this completes the proof. ��

Note that φ being continuous on dom φ is an assumption which holds, e.g., if φ is
the indicator function of a closed set, see Remark 2.1. Therefore, Theorem3.1 provides
a global convergence result for constrained optimization problems with an arbitrary
continuously differentiable objective function over any closed (not necessarily convex)
feasible set. Moreover, the previous convergence result also holds for a general lower
semicontinuous function φ provided that ∇ f is locally Lipschitz continuous. This
includes, for example, sparse optimization problems in X ∈ {Rn,Rn×m} involving
the so-called �0-quasi-norm, which counts the number of nonzero entries of the input
vector, as a penalty term or optimization problems in X := R

n×m comprising rank
penalties. Note that we still do not require the global Lipschitz continuity of ∇ f .
However, it is an open question whether the previous convergence result also holds
for the general setting where f is only continuously differentiable and φ is just lower
semicontinuous.

Remark 3.1 Let {xk} be a sequence generated by Algorithm 3.1. In iteration k ∈ N,
xk+1 satisfies the necessary optimality condition (19) of the subproblem (4). Hence,
from the next iteration’s point of view, we obtain

γk−1(xk−1 − xk) + ∇ f (xk) − ∇ f (xk−1) ∈ ∇ f (xk) +̂∂φ(xk)

for each k ∈ N with k ≥ 1. This justifies evaluation of the termination criterion

∥

∥

∥γk−1(xk−1 − xk) + ∇ f (xk) − ∇ f (xk−1)

∥

∥

∥ ≤ τabs (20)

for some τabs > 0 since this means that xk is, in some sense, approximately M-
stationary for (P). Observe that, along a subsequence {xk}K satisfying xk−1 →K x∗
for some x∗, Propositions 3.1 and 3.2 yield xk →K x∗ and γk−1(xk − xk−1) →K 0
under appropriate assumptions, which means that (20) is satisfied for large enough
k ∈ K due to continuity of ∇ f : X → X, see the discussion after Lemma 3.1 as well.

Recall that the existence of accumulation points is guaranteed by the coercivity of
the function ψ . A simple criterion for the convergence of the entire sequence {xk} is
provided by the following comment.

Remark 3.2 Let {xk} be any sequence generated by Algorithm 3.1 such that x∗ is an
isolated accumulation point of this sequence. Then, the entire sequence converges to
x∗. This follows immediately from [30, Lemma 4.10] and the property of the proximal
gradient method stated in Proposition 3.1. The accumulation point x∗ is isolated,
in particular, if f is twice continuously differentiable with ∇2 f (x∗) being positive
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definite andφ is convex. In this situation, x∗ is a strict localminimumofψ and therefore
the only stationary point of ψ is a neighborhood of x∗. Since, by Theorem 3.1, every
accumulation point is stationary, it follows that x∗ is necessarily an isolated stationary
point in this situation and, thus, convergence of the whole sequence {xk} to x∗ follows.

4 Nonmonotone Proximal Gradient Method

The method to be presented here is a nonmonotone version of the proximal gradient
method from the previous section. The kind of nonmonotonicity used here was intro-
duced by Grippo et al. [22] for a class of smooth unconstrained optimization problems
and then discussed, in the framework of composite optimization problems, by Wright
et al. [34] as well as in some subsequent papers. We first state the precise algorithm
and investigate its convergence properties. The relation to the existing convergence
results is postponed until the end of this section.

Algorithm 4.1 (Nonmonotone proximal gradient method)
Require: τ > 0, 0 < γmin ≤ γmax < ∞, m ∈ N, δ ∈ (0, 1), x0 ∈ dom φ

1: Set k := 0.
2: while A suitable termination criterion is violated at iteration k do
3: Set mk := min{k, m} and choose γ 0

k ∈ [γmin, γmax].
4: For i = 0, 1, 2, . . ., compute a solution xk,i of

min
x

f (xk) + 〈∇ f (xk), x − xk〉 + γk,i

2
‖x − xk‖2 + φ(x), x ∈ X (21)

with γk,i := τ iγ 0
k , until the acceptance criterion

ψ(xk,i ) ≤ max
j=0,1,...,mk

ψ(xk− j ) − δ
γk,i

2
‖xk,i − xk‖2 (22)

holds.
5: Denote by ik := i the terminal value, and set γk := γk,ik and xk+1 := xk,ik .
6: Set k ← k + 1.
7: end while
8: return xk

The only difference between Algorithms 3.1 and 4.1 is in the stepsize rule. More
precisely, Algorithm 4.1 may be viewed as a generalization of Algorithm 3.1 since
the particular choice m = 0 recovers Algorithm 3.1. Numerically, in many examples,
the choice m > 0 leads to better results and is therefore preferred in practice. On
the other hand, for m > 0, we usually get a nonmonotone behavior of the function
values {ψ(xk)} which complicates the theory significantly. In addition, the nonmon-
tone proximal gradient method also requires stronger assumptions in order to prove a
suitable convergence result.

In particular, in addition to the requirements from Assumption 3.1, we need the
following additional conditions on the data functions in order to proceed.
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Assumption 4.1 (a) The function ψ is uniformly continuous on the sublevel set
Lψ(x0) := {x ∈ X | ψ(x) ≤ ψ(x0)}.

(b) The function φ is continuous on dom φ.

Note that we always have Lψ(x0) ⊂ dom φ by the continuity of f . Furthermore,
whenever ψ is coercive, Assumption 4.1 (b) already implies Assumption 4.1 (a) since
Lψ(x0) would be a compact subset of dom φ in this situation, and continuous func-
tions are uniformly continuous on compact sets. Observe that coercivity of ψ is an
inherent property inmany practically relevant settings.We further note that, in general,
Assumption 4.1 (a) does not imply Assumption 4.1 (b), and the latter is a necessary
requirement since, in our convergence theory, we will also evaluate the function φ in
some points resulting from an auxiliary sequence {x̂ k} which may not belong to the
level set Lψ(x0).

For the convergence theory, we assume implicitly that Algorithm 4.1 generates
an infinite sequence {xk}. We first note that the stepsize rule in the inner loop of
Algorithm 4.1 is always finite. Since

ψ(xk) ≤ max
j=0,1,...,mk

ψ(xk− j )

this observation follows immediately from Lemma 3.1.
Throughout the section, for each k ∈ N, let l(k) ∈ {k − mk, . . . , k} be an index

such that

ψ(xl(k)) = max
j=0,1,...,mk

ψ(xk− j )

is valid. We already mentioned that {ψ(xk)} may possess a nonmonotone behavior.
However, as the following lemma shows, {ψ(xl(k))} is monotonically decreasing.

Lemma 4.1 Let Assumption 3.1 (b) hold and let {xk} be a sequence generated by
Algorithm 4.1. Then {ψ(xl(k))} is monotonically decreasing.

Proof The nonmonotone stepsize rule from (22) can be rewritten as

ψ(xk+1) ≤ ψ(xl(k)) − δ
γk

2
‖xk+1 − xk‖2. (23)

Using mk+1 ≤ mk + 1, we find

ψ(xl(k+1)) = max
j=0,1,...,mk+1

ψ(xk+1− j )

≤ max
j=0,1,...,mk+1

ψ(xk+1− j )

= max

{

max
j=0,1,...,mk

ψ(xk− j ), ψ(xk+1)

}

= max
{

ψ(xl(k)), ψ(xk+1)
}
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= ψ(xl(k)),

where the last equality follows from (23). This shows the claim. ��
As a corollary of the above result, we obtain that the iterates of Algorithm 4.1

belong to the level set Lψ(x0).

Corollary 4.1 Let Assumption 3.1 (b) hold and let {xk} be a sequence generated by
Algorithm 4.1. Then {xk}, {xl(k)} ⊂ Lψ(x0) holds.

Proof Noting that l(0) = 0 holds by construction, Lemma 4.1 and (23) yield the
estimate ψ(xk+1) ≤ ψ(xl(k)) ≤ ψ(xl(0)) = ψ(x0) for each k ∈ N which shows the
claim. ��

The counterpart of Proposition 3.1 is significantlymore difficult to prove in the non-
monotone setting. In fact, it is this central result which requires the uniform continuity
of the objective function ψ from Assumption 4.1 (a). Though its proof is essentially
the one from [34], we present all details since they turn out to be of some importance
for the discussion at the end of this section.

Proposition 4.1 Let Assumption 3.1 and Assumption 4.1 (a) hold. Then, each sequence
{xk} generated by Algorithm 4.1 satisfies ‖xk+1 − xk‖ → 0.

Proof Sinceψ is bounded from below due to Assumption 3.1 (a), Lemma 4.1 implies

lim
k→∞ ψ(xl(k)) = ψ∗ (24)

for some finiteψ∗ ∈ R. From Corollary 4.1, we find {xl(k)} ⊂ Lψ(x0). Applying (23)
with k replaced by l(k)−n −1 for some n ∈ N givesψ(xl(k)−n) ≤ ψ(xl(l(k)−n−1)) ≤
ψ(x0), i.e., {xl(k)−n} ⊂ Lψ(x0) (here, we assume implicitly that k is large enough
such that no negative indices l(k) − n − 1 occur). More precisely, for n = 0, we have

ψ(xl(k)) − ψ(xl(l(k)−1)) ≤ −δ
γl(k)−1

2
‖xl(k) − xl(k)−1‖2 ≤ 0.

Taking the limit k → ∞ in the previous inequality and using (24), we therefore obtain

lim
k→∞ γl(k)−1‖xl(k) − xl(k)−1‖2 = 0.

Since γk ≥ γmin > 0 for all k ∈ N, we get

lim
k→∞ dl(k)−1 = 0, (25)

where dk := xk+1 − xk for all k ∈ N. Using (24) and (25), it follows that

ψ∗ = lim
k→∞ ψ(xl(k)) = lim

k→∞ ψ
(

xl(k)−1 + dl(k)−1) = lim
k→∞ ψ(xl(k)−1), (26)
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where the last equality takes into account the uniform continuity of ψ from Assump-
tion 4.1 (a) and (25).

We will now prove, by induction, that the limits

lim
k→∞ dl(k)− j = 0, lim

k→∞ ψ(xl(k)− j ) = ψ∗ (27)

hold for all j ∈ N with j ≥ 1. We already know from (25) and (26) that (27) holds
for j = 1. Suppose that (27) holds for some j ≥ 1. We need to show that it holds for
j + 1. Using (23) with k replaced by l(k) − j − 1, we have

ψ(xl(k)− j ) ≤ ψ(xl(l(k)− j−1)) − δ
γl(k)− j−1

2
‖dl(k)− j−1‖2

(again,we assume implicitly that k is large enough such that l(k)− j−1 is nonnegative).
Rearranging this expression and using γk ≥ γmin for all k yields

‖dl(k)− j−1‖2 ≤ 2

γminδ

(

ψ(xl(l(k)− j−1)) − ψ(xl(k)− j )
)

.

Taking k → ∞, using (24), as well as the induction hypothesis, it follows that

lim
k→∞ dl(k)− j−1 = 0, (28)

which proves the induction step for the first limit in (27). The second limit then follows
from

lim
k→∞ ψ

(

xl(k)−( j+1)) = lim
k→∞ ψ

(

xl(k)−( j+1) + dl(k)− j−1)) = lim
k→∞ ψ

(

xl(k)− j ) = ψ∗,

where the first equation exploits (28) together with the uniform continuity of ψ from
Assumption 4.1 (a) and {xl(k)− j }, {xl(k)−( j+1)} ⊂ Lψ(x0), whereas the final equation
is the induction hypothesis.

In the last step of our proof, we now show that limk→∞ dk = 0 holds. Suppose that
this is not true. Then there is a (suitably shifted, for notational simplicity) subsequence
{dk−m−1}k∈K and a constant c > 0 such that

‖dk−m−1‖ ≥ c ∀k ∈ K . (29)

Now, for each k ∈ K , the corresponding index l(k) is one of the indices k −m, k −m +
1, . . . , k. Hence,we canwrite k−m−1 = l(k)− jk for some index jk ∈ {1, 2, . . . , m+
1}. Since there are only finitely many possible indices jk , we may assume without loss
of generality that jk = j holds for some fixed index j ∈ {1, . . . , m + 1}. Then (27)
implies

lim
k→K ∞ dk−m−1 = lim

k→K ∞ dl(k)− j = 0.

This contradicts (29) and therefore completes the proof. ��
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Theorem 4.1 Assume that Assumptions 3.1 and 4.1 hold and let {xk} be a sequence
generated by Algorithm 4.1. Suppose that x∗ is an accumulation point of {xk} such
that xk →K x∗ holds along a subsequence k →K ∞. Then, x∗ is an M-stationary
point of (P), and γk(xk+1 − xk) →K 0 is valid.

Proof Since {xk}K is a subsequence converging to x∗, it follows from Proposition 4.1
that also the subsequence {xk+1}K converges to x∗. We note that x∗ ∈ dom φ follows
from Corollary 4.1 by closedness of Lψ(x0). The minimizing property of xk+1 for
(21) together with Fermat’s rule and the sum rule from (3) imply that the necessary
optimality condition (19) holds for each k ∈ K . We claim that the subsequence {γk}K

is bounded. Assume, by contradiction, that this is not true. Without loss of generality,
let us assume that γk →K ∞ and that the acceptance criterion (22) is violated in the
first iteration of the inner loop for each k ∈ K . Setting γ̂k := γk/τ for each k ∈ K ,
{γ̂ k}K also tends to infinity, but the corresponding vectors x̂ k := xk,ik−1, k ∈ K , do
not satisfy the stepsize condition from (22), i.e., we have

ψ(x̂ k) > max
j=0,1,...,mk

ψ(xk− j ) − δ
γ̂k

2
‖x̂ k − xk‖2 ∀k ∈ K . (30)

On the other hand, since x̂ k = xk,ik−1 solves the corresponding subproblem (4) with
γ̂k = γk,ik−1, we have

〈∇ f (xk), x̂ k − xk〉 + γ̂k

2
‖x̂ k − xk‖2 + φ(x̂ k) ≤ φ(xk) (31)

for each k ∈ K . Due to γ̂k →K ∞ and since φ is bounded from below by an
affine function due to Assumption 3.1 (b) while φ is continuous on its domain by
Assumption 4.1 (b) (which yields boundedness of the right-hand side of (31)), this
implies x̂ k − xk →K 0. Consequently, we have x̂ k →K x∗ as well.

Now, if γ̂k‖x̂ k − xk‖ →K ′ 0 holds along a subsequence k →K ′ ∞ such that
K ′ ⊂ K , then, due to

0 ∈ ∇ f (xk) + γ̂k(x̂ k − xk) +̂∂φ(x̂ k),

which holds for each k ∈ K ′ by means of Fermat’s rule and the sum rule (3), we
immediately see that x∗ is an M-stationary point of (P) by taking the limit k →K ′ ∞
and exploiting the continuity of φ on dom φ from Assumption 4.1 (b). Thus, for the
remainder of the proof, we may assume that there is a constant c > 0 such that

γ̂k‖x̂ k − xk‖ ≥ c

holds for each k ∈ K . Further, we then also get

(1 − δ)
γ̂k

2
‖x̂ k − xk‖2 ≥ 1 − δ

2
c‖x̂ k − xk‖ ≥ o

(‖x̂ k − xk‖)
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for all k ∈ K sufficiently large. Rearranging (31) gives us

〈∇ f (xk), x̂ k − xk〉 + φ(x̂ k) − φ(xk) ≤ − γ̂ k

2
‖x̂ k − xk‖2

for each k ∈ K . From the mean-value theorem, we obtain some ξ k on the line segment
between x̂ k and xk such that

ψ(x̂ k) − max
j=0,1,...,mk

ψ(xk− j )

≤ ψ(x̂ k) − ψ(xk)

= 〈∇ f (ξ k), x̂ k − xk〉 + φ(x̂ k) − φ(xk)

= 〈∇ f (xk), x̂ k − xk〉 + φ(x̂ k) − φ(xk) + 〈∇ f (ξ k) − ∇ f (xk), x̂ k − xk〉

≤ − γ̂ k

2
‖x̂ k − xk‖2 + o(‖x̂ k − xk‖)

≤ −δ
γ̂ k

2
‖x̂ k − xk‖2

for all k ∈ K sufficiently large. This contradiction to (30) shows that the sequence
{γk}K is bounded.

Finally, the continuity of φ fromAssumption 4.1 (b) gives φ(xk+1) →K φ(x∗) due
to xk+1 →K x∗. Thus, recalling xk →K x∗ and the boundedness of {γk}K , we find
γk(xk+1 − xk) →K 0, and taking the limit k →K ∞ in (19) gives us M-stationarity
of x∗ for (P). ��
Remark 4.1 (a) Note that Assumptions 3.1 and 4.1 do not comprise any Lipschitz

conditions on ∇ f .
(b) The results in this section recover the findings from [23, Section 4] and [25,

Section 3] which were obtained in the special situation where φ is the indicator
function associated with a closed set, see Remark 2.1 as well.

(c) Based on Theorem 4.1, (20) also provides a reasonable termination criterion for
Algorithm 4.1, see Remark 3.1 as well.

(d) In view of Proposition 4.1, it follows in the same way as in Remark 3.2 that
the entire sequence {xk} generated by Algorithm 4.1 converges if there exists an
isolated accumulation point.

The uniform continuity of ψ which is demanded in Assumption 4.1 (a) is obvi-
ously a much stronger assumption than the one used in the previous section for the
monotone proximal gradient method. In particular, this assumption rules out applica-
tions where φ is given by the �0-quasi-norm. Nevertheless, the theory still covers the
situation where the role of φ is played by an �p-type penalty function for p ∈ (0, 1)
over X ∈ {Rn,Rn×m} which is known to promote sparse solutions. More precisely,
this choice is popular in sparse optimization if the more common �1-norm does not
provide satisfactory sparsity results, and the application of the �0-quasi-norm seems
too difficult, see [6, 14, 15, 19, 27, 28] for some applications and numerical results
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based on the �p-quasi-norm or closely related expressions. We would like to note that
uniform continuity is a standard assumption in the context of nonmonotone stepsize
rules involving acceptance criteria of type (22), see [22, page 710].

We close this section with a discussion on existing convergence results for non-
monotone proximal gradient methods. To the best of our knowledge, the first one
can be found in [34]. The authors prove convergence under the assumptions that
f is differentiable with a globally Lipschitz continuous gradient and φ being real-
valued and convex, see [34, Section II.G]. Implicitly, however, they also exploit the
uniform continuity of ψ = f + φ in their proof of [34, Lemma 4], a result like
Proposition 4.1, without stating this assumption explicitly. Taking this into account,
our Assumption 4.1 (a) is actually weaker than the requirements used in [34], so that
the results of this section can be viewed as a generalization of the convergence theory
from [34].

Furthermore, [15, Section 3.1] and [16, Appendix A] consider a nonmonotone
proximal gradient method which is slightly different from Algorithm 4.1 since the
acceptance criterion (22) is replaced by the slightly simpler condition

ψ(xk,i ) ≤ max
j=0,1,...,mk

ψ(xk− j ) − δ

2
‖xk,i − xk‖2.

In [16, Theorem 4.1], the authors obtain convergence toM-stationary points whenever
ψ is bounded from below as well as uniformly continuous on the level set Lψ(x0),
f possesses a Lipschitzian derivative on some enlargement of Lψ(x0), and φ is con-
tinuous. Clearly, our convergence analysis of Algorithm 4.1 does not exploit any
Lipschitzianity of ∇ f , so our assumptions are weaker than those ones used in [16].
In [15, Theorem 3.3], the authors claim that the results from [16] even hold when
the continuity assumption on φ is dropped. The proof of [15, Theorem 3.3], however,
relies on the outer semicontinuity property (2) of the limiting subdifferential, which
does not hold for general discontinuous functions φ, so this result is not reliable.

Finally, let us mention that the two references [26, 33] also consider nonmonotone
(and accelerated) proximal gradient methods. These methods are not directly compa-
rable to our algorithm since they are based on a different kind of nonmonotonicity. In
any case, although the analysis in both papers works for merely lower semicontinuous
functions φ, the provided convergence theory requires ∇ f to be globally Lipschitz
continuous.

5 Conclusions

In this paper, we demonstrated how the convergence analysis for monotone and non-
monotone proximal gradient methods can be carried out in the absence of (global)
Lipschitz continuity of the derivative associated with the smooth function. Our results,
thus, open up these algorithms to be reasonable candidates for subproblem solvers
within an augmentedLagrangian framework for the numerical treatment of constrained
optimization problems with lower semicontinuous objective functions, see, e.g., [15]
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where this approach has been suggested but suffers from an incomplete analysis, and
[19, 23, 25] where this approach has been corrected and extended.

Let us mention some remaining open problems regarding the investigated proximal
gradient methods. First, it might be interesting to find minimum requirements which
ensure global convergence of Algorithms 3.1 and 4.1. We already mentioned in Sect. 3
that it is an open question whether the convergence analysis for Algorithm 3.1 can
be generalized to the setting where f is only continuously differentiable while φ is
just lower semicontinuous. Second, we did not investigate if the Kurdyka–Łojasiewicz
property could be efficiently incorporated into the convergence analysis in order to get
stronger results even in the absence of strong Lipschitz assumptions on the derivative
of f . Third, our analysis has shown that Algorithms 3.1 and 4.1 computeM-stationary
points of (P) in general. In the setting of Remark 2.2, i.e., where constrained programs
with a merely lower semicontinuous objective function are considered, the introduced
concept of M-stationarity is, to some extent, implicit since it comprises an unknown
subdifferential. In general, the latter can be approximated from above in terms of
initial problem data only in situations where a qualification condition is valid. The
resulting stationarity condition may be referred to as explicit M-stationarity. It seems
to be a relevant topic of future research to investigate whether Algorithms 3.1 and 4.1
can be modified such that they compute explicitly M-stationary points in this rather
general setting. Fourth, it might be interesting to investigate whether other types of
nonmonotonicity, different from the one used in Algorithm 4.1, can be exploited in
order to get rid of the uniform continuity requirement from Assumption 4.1 (a).

Finally, we note that there exist several generalizations of proximal gradient meth-
ods using, e.g., inertial terms and Bregman distances, see, e.g., [2, 9–11] and the
references therein. The corresponding convergence theory is also based on a global
Lipschitz assumption for the gradient of the smooth term or additional convexity
assumptions which allow the application of a descent-type lemma. It might be inter-
esting to see whether our technique of proof can be adapted to these generalized
proximal gradient methods in order to weaken the postulated assumptions.
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