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Abstract
For a graph �, let K be the smallest field containing all eigenvalues of the adjacency
matrix of �. The algebraic degree deg(�) is the extension degree [K : Q]. In this
paper, we completely determine the algebraic degrees of Cayley graphs over abelian
groups and dihedral groups.
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1 Introduction

The algebraic degree of a graph was defined in [10] in order to generalize the concept
of integral graphs. The spectrum of a graph � is defined as the multiset of eigenvalues
of the adjacency matrix of�. In particular, those eigenvalues are the roots of the monic
characteristic polynomial of the adjacency matrix associated with �. Therefore, every
eigenvalue of � is an algebraic integer in some algebraic extension K of the rationals,
where K is called the splitting field of �. The algebraic degree deg(�) is defined as
the degree [K : Q]. In particular, � is called integral if deg(�) = 1.

The Cayley graph Cay(G, S) is defined as the graph with vertex set G, where
G denotes a finite group and S ⊆ G, and edges from g ∈ G to h ∈ G whenever
gh−1 ∈ S. Note that Cay(G, S) is an undirected graph if and only if S = S−1, and has
loops if and only if e ∈ S. If S �= S−1, then Cay(G, S) is also called Cayley digraph.
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In [8] and [9], Mönius precisely determined the algebraic degree of circulant
digraphs, i.e. Cayley digraphs over cyclic groups. Moreover, integral Cayley graphs
were studied intensively by several authors, e.g. Lu [7], Klotz and Sander [5, 6] and
Ahmady et al. [1].

In this paper, we completely determine the splitting fields of Cayley graphs over
abelian and dihedral groups. In particular, we precisely compute the algebraic degree
of Cayley graphs and digraphs over abelian groups. We also give an upper bound for
the algebraic degree of Cayley graphs and digraphs over dihedral groups, as well as a
lower bound for the algebraic degree of Cayley graphs over dihedral groups.

2 Cayley graphs and digraphs over abelian groups

Let G be an abelian group of order n and let S ⊆ G be a subset of G. Denote by
� = Cay(G, S) the respective Cayley (di)graph, and let K be the splitting field of
�, i.e. the minimum field containing all eigenvalues of �. Without loss of generality,
assume that G = Zn1 × Zn2 × · · · × Znr , where n = n1n2 · · · nr . Therefore, each
element g ∈ G can be expressed as g = (g1, g2, . . . , gr ). For a positive integer
m, denote by ζm = e2π i/m the primitive m-th root of unity, where i = √−1. The
eigenvalues of � were obtained by Babai [3]:

Lemma 1 ([3]) The eigenvalues λg of � are given by λg = ∑
s∈S

∏r
i=1 ζ

gi si
ni , for

g ∈ G.

It is clear that Gal(Q(ζn)/Q) ∼= Z∗
n . Let η: Gal(Q(ζn)/Q) → Z∗

n be the iso-
morphism defined by η(σ ) = k for any σ ∈ Gal(Q(ζn)/Q), where k ∈ Z∗

n is
the integer such that σ(ζn) = ζ k

n . Let Z∗
n act on G by ag = a(g1, g2, . . . , gr ) =

(ag1, ag2, . . . , agr ) for any a ∈ Z∗
n and g ∈ G. This leads to σ(ζ k

ni ) = σ(ζ
kn/ni
n ) =

ζ
η(σ)kn/ni
n = ζ

η(σ)k
ni . Therefore, for any σ ∈ Gal(Q(ζn)/Q) and g ∈ G, we have

σ(λg) = σ

(
∑

s∈S

r∏

i=1

ζ
gi si
ni

)

=
∑

s∈S

r∏

i=1

σ(ζ
gi si
ni ) =

∑

s∈S

r∏

i=1

ζ
η(σ)gi si
ni . (1)

Let S = {(s1, . . . , sr ) | si ∈ Zni }. We say that a subgroup H ⊆ Z∗
n is fixing S if

and only if hS = {(hs1 mod n1, . . . , hsr mod nr ) | si ∈ Zni } = S for all h ∈ H .
Subsequently, let H = η(Gal(Q(ζn)/K )). According to (1), Li [4] showed the

following result:

Lemma 2 ([4]) For all g ∈ G, the eigenvalue λg is contained in K if and only if S is
a union of some orbits Hx for x ∈ G.

Note that ϕ(n) = [Q(ζn) : Q] = [Q(ζn) : K ][K : Q]. From Lemma 2, we
immediately get the following result:

Theorem 1 LetH = {h ∈ Z∗
n | hS = S} be the largest subgroup of Z∗

n fixing S. Then,
the splitting field of � is given by

K = Q(ζn)
η−1(H) = {x ∈ Q(ζn) | σ x = x,∀σ ∈ η−1(H)}.
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Therefore, H = H and the algebraic degree of � is

deg(�) = ϕ(n)

|H | .

Proof Since H is a subgroup fixing S, we see that S is a union of some orbits and,
therefore, by Lemma 2, all eigenvalues of � belong to Q(ζn)

η−1(H). Now, let L be a
field containing all eigenvalues of �, then, again by Lemma 2, S is a union of some
orbits η(Gal(Q(ζn)/L)x for x ∈ G. This means that η(Gal(Q(ζn)/L) fixes S. Since
H is the largest subgroup of Z∗

n fixing S, we have that η(Gal(Q(ζn)/L) ≤ H and,

thus, Q(ζn)
η−1(H) ⊆ L . Therefore, Q(ζn)

η−1(H) must be the smallest field containing
all eigenvalues of �, i.e. K = Q(ζn)

η−1(H) and H = H . ��
Example 1 (Integral Cayley graph over abelian group) Let G = Z2 × Z4 and S =
{(0, 1), (1, 0), (0,−1)}. Note that Z∗

8 = {1, 3,−3,−1}, and

3S = −3S = {(0,−1), (1, 0), (0, 1)} = S = −S.

Therefore, H = Z∗
8 and deg(�) = 1, i.e., � is integral. In fact, the spectrum of � is{±3, [±1]3}.

Example 2 (Cayley graph over abelian group of algebraic degree 2) Let G = Z4 × Z6
and S = {(1, 1), (−1,−1), (0, 1), (0,−1)}. Note that Z∗

24 = {1, 5, 7, 11,−11,−7,
−5,−1}, and

{
5S = −5S = 7S = −7S = {(1,−1), (−1, 1), (0,−1), (0, 1)} �= S,

11S = −11S = {(−1,−1), (1, 1), (0, 1), (0,−1)} = S = −S.

Therefore, H = {1, 11,−11,−1} and deg(�) = 2. In fact, the spectrum of � is

{
±4, [±2]4, [±1 ± √

3]2, [0]6
}

.

Example 3 (Cayley digraph over abelian group of algebraic degree 4) LetG = Z4×Z6
and S = {(1, 1), (0, 1), (0,−1)}. We observe that

⎧
⎪⎪⎨

⎪⎪⎩

−7S = 5S = {(1,−1), (0,−1), (0, 1)} �= S,

7S = −5S = {(−1, 1), (0, 1), (0,−1)} �= S,

11S = {(−1,−1), (0,−1), (0, 1)} �= S,

−11S = {(1, 1), (0, 1), (0,−1)} = S.

Thus, H = {1,−1} and deg(�) = 4.

In [9], Mönius solved the Inverse Galois problem for circulant graphs showing that
every finite abelian extension of the rationals is the splitting field of some circulant
graph. A similar result can be obtained for (non-circulant) Cayley graphs over abelian
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groups: Let G = Zn1 × Zn2 × · · · × Znr be a non-cyclic abelian group, i.e. n =
n1n2 · · · nr where each ni is a prime power. For any subgroup H of Z∗

n , let

S = (H mod n1) × (H mod n2) × · · · × (H mod nr )

for (H mod ni ) = {h mod ni | h ∈ H}, i = 1, . . . , r . Then, H is the largest subgroup
of Z∗

n fixing S and, therefore, the splitting field of � = Cay(G, S) equals K =
Q(ζn)

η−1(H). Together with the well-known Kronecker–Weber theorem, we get the
following result.

Corollary 1 (Inverse Galois problem for Cayley graphs over abelian groups) Every
finite abelian extension K of the rationals (of order n) is the splitting field of some
Cayley graph over an abelian group. In particular, if n has at least one prime divisor
of order ≥ 2, then there is a non-circulant Cayley graph over an abelian group with
splitting field K .

3 Cayley graphs over dihedral groups

In this section, we restrict our considerations to Cayley graphs over dihedral groups,
i.e. we always assume that G = Dn = Cn � C2 = 〈a, b | an = b2 = 1, bab = a−1〉
and S ⊂ G is a subset with e /∈ S and S = S−1. Let S = S1 ∪ S2, where S1 ⊆ 〈a〉
and S2 ⊆ b〈a〉, and I1 = {i ∈ Zn | ai ∈ S1}. It is clear that I1 = −I1 since S = S−1.
Moreover, let � = Cay(G, S) denote the respective Cayley graph and let K be the
minimum field containing all eigenvalues of �. Let χl be the irreducible characters
of Dn of degree 2 for 1 ≤ l ≤ � n−1

2 �, where χl(ak) = 2 cos 2πlk
n and χl(bak) = 0.

For a subset A ⊆ G, let χl(A) = ∑
x∈A χl(x) and χl(A2) = ∑

x,y∈A χl(xy). The
eigenvalues of � were obtained by Babai [3] and were restated by Lu [7].

Lemma 3 ([3, 7]) The eigenvalues of � consist of some integers and the roots of

fl(x) = x2 − χl(S1)x + 1

2

(
χl(S1)

2 −
(
χl(S

2
1 ) + χl(S

2
2 )

))
,

for 1 ≤ l ≤ � n−1
2 �. In particular, all possibly non-integral eigenvalues are contained

in the set

{
bl ± √

cl
2

| 1 ≤ l ≤ �(n − 1)/2�
}

,

where bl = χl(S1) and cl = 2(χl(S21 ) + χl(S22 )) − (χl(S1))2.

Since I1 = −I1, it is clear that

bl = χl(S1) =
∑

as∈S1
2 cos

2πls

n
= 2

∑

i∈I1
ζ lin
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and bl , cl ∈ Q(ζn). Let K0 be a field such that Q ⊆ K0 ⊆ Q(ζn). Therefore,
Gal(Q(ζn)/K0)) ≤ Gal(Q(ζn)/Q) ∼= Z∗

n . Recall that η is the isomorphism from

Gal(Q(ζn)/Q) toZ∗
n such that σ(ζn) = ζ

η(σ)
n . In what follows, we always assume that

H = η(Gal(Q(ζn)/K0)). We first get the following result:

Lemma 4 If b1, c1 ∈ K0, then bl , cl ∈ K0 for 1 ≤ l ≤ � n−1
2 �.

Proof For 1 ≤ l ≤ � n−1
2 �, let σl : Q(ζn) → Q(ζn) be defined by σl(ζn) = ζ ln . It is

clear that σl is a homomorphism and bl = σl(b1). Thus, for any σ ∈ Gal(Q(ζn)/K0),
we have

σ(bl) = σ(σl(b1)) = σ

⎛

⎝σl

⎛

⎝2
∑

i∈I1
ζ in

⎞

⎠

⎞

⎠ = 2
∑

i∈I1
ζ η(σ)li
n = σl(σ (b1)) = σl(b1) = bl .

This leads to bl ∈ K0. Analogously, we also get cl ∈ K0. ��
For a subset A ⊆ {1, . . . , n}, denote by δA the characteristic vector of A, that is

δA ∈ Qn with δA(i) = 1 if i ∈ A and 0 otherwise.

Lemma 5 The number b1 is an element of K0 if and only if I1 is a union of some orbits
Hk for k ∈ Zn.

Proof To show the sufficiency, we only need to consider the case where I1 is exactly
one orbit. Suppose that I1 = Hk. For any σ ∈ Gal(Q(ζn)/K0), we have

σ(b1) = σ
(
2

∑
i∈I1 ζ in

) = σ
(
2

∑
hk∈Hk ζ hk

n

)

= 2
∑

hk∈Hk σ(ζ hk
n ) = 2

∑
hk∈Hk ζ

η(σ)hk
n

= 2
∑

h′k∈η(σ)Hk ζ h′k
n = 2

∑
h′k∈Hk ζ h′k

n
= 2

∑
i∈I1 ζ in = b1.

This leads to b1 ∈ K0.
Conversely, assume that A1, A2, . . . , Ar have the form Ai = Hki for some ki ∈

Zn . Let M be the n × n square matrix indexed by Zn with (i, j)-entry being ζ
i j
n .

It is clear that M is non-singular. Let V ,W be vector spaces over K0 defined by
V = {v ∈ Kn

0 | Mv ∈ Kn
0 } and W = 〈δA1 , . . . , δAr 〉, where 〈δA1 , . . . , δAr 〉 denotes

the span of the characteristic vectors δA1 , . . . , δAr with δAi ∈ Kn
0 . On the one hand,

for any v ∈ W , we get Mv ∈ Kn
0 by the same arguments as above, which leads to

W ⊆ V . On the other hand, if s, t ∈ Ai = Hki , then there exists h ∈ H such that

t = hs. Let σ = η−1(h), i.e. σ(ζn) = ζ h
n , and v ∈ V . Since σ ∈ K η−1(H)

0 , we
have that σ((Mv)s) = (Mv)s where (Mv)s denotes the s-th entry of the vector Mv.
Moreover, we get

(Mv)s = σ((Mv)s) = σ

(
n−1∑

x=0

ζ sx
n v(x)

)

=
n−1∑

x=0

ζ hsx
n v(x) =

n−1∑

x=0

ζ t x
n v(x) = (Mv)t .
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Thus, for all v ∈ V we have (Mv)s = (Mv)t whenever s, t ∈ Ai . Therefore, Mv

is a linear combination of δA1 , . . . , δAr , i.e. Mv ∈ W . Hence, MV ⊆ W and, thus,
dim V ≤ dimW . Since W ⊆ V , we get V = W . Moreover, since b1 = 2(MδI1)1 ∈
K0, by Lemma 4, we have bl = 2(MδI1)l ∈ K0. Therefore, MδI1 ∈ Kn

0 and, thus,
δI1 ∈ V by definition of V . Since V = W , it follows that I1 is the union of some
orbits. ��
Lemma 6 For 1 ≤ l ≤ � n−1

2 �, the number cl is equal to 2χl(S22 ).

Proof Since I1 = −I1, we have bl = χl(S1) = 2
∑

i∈I1 ζ lin . By simple calculations,
we get

2χl(S21 ) = 2
∑

ai ,a j∈S1 χl(aia j ) = 2
∑

i, j∈I1 2 cos
(
2πl(i+ j)

n

)

= 2
∑

i, j∈I1(ζ
l(i+ j)
n + ζ

−l(i+ j)
n ) = 2

∑
i∈I1 ζ lin

∑
j∈I1 ζ

l j
n

+2
∑

i∈I1 ζ−li
n

∑
j∈I1 ζ

−l j
n

= ∑
i∈I1 ζ lin bl + ∑

i∈I1 ζ−li
n bl = bl(2

∑
i∈I1 ζ in) = b2l .

Therefore,

cl = 2(χl(S
2
1 ) + χl(S

2
2 )) − (χl(S1))

2 = 2χl(S
2
2 ). ��

A multiset X is a collection of elements where an element may appear more than
once. For x ∈ X , denote by mX (x) the multiplicity of x in X . To avoid confusion,
we use [·] to denote a multiset. For example, X = [1, 1, 2, 3, 3] is a multiset and
mX (1) = 2. Given two multisets X ,Y , their multiple XY is a multiset, that is, XY =
[xy | x ∈ X , y ∈ Y ], where xymayoccurmore than once. Themulti-union X�Y is the
multiset withmX�Y (z) = mX (z)+mY (z) for any element z. For example, consider the
two multisets of integers X = [1, 1,−1],Y = [1, 2], then XY = [1, 2, 1, 2,−1,−2]
and X � Y = [1, 1, 1,−1, 2]. Denote by I2 = [k | ak ∈ S22 ] the multiset of all indices
k such that ak ∈ S22 . By Lemma 6, we get the following result. Since the proof is very
similar to the one of Lemma 5, we omit it.

Lemma 7 The number c1 is contained in K0 if and only if I2 is a multi-union of some
orbits Hk for k ∈ Zn.

Combining Lemma 5 and Lemma 7, we get the following result. The proof is very
similar to the one of Theorem 1 and, therefore, we omit it, too.

Theorem 2 Let H = {h ∈ Z∗
n | hI1 = I1, hI2 = I2} be the subgroup fixing both, I1

and I2. Then, K = K0(
√
c1, . . . ,

√
cl), where K0 = Q(ζn)

η−1(H) = {x ∈ Q(ζn) |
σ x = x,∀σ ∈ η−1(H)}.

Assume that {k1, . . . , kr } is a maximum subset of Zn such that all the orbits
Hk1, Hk2, . . . , Hkr are distinct. The set R(H) = {k1, . . . , kr } is called a repre-
sentative of H . Suppose that I2 = m1 ◦ Hk1 � m2 ◦ Hk2 � · · · � mr ◦ Hkr , where
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mi ◦ Hki indicates that the orbit Hki appears mi times. By simple calculations, we
immediately get

χl(S
2
2 ) = 2

r∑

i=1

mi

∑

hki∈Hki

ζ lhkin .

Note that, if s, t ∈ Hk, then there exists h0 ∈ H such that h0s = t . Let σ = η−1(h0).
We have

σ(χs(S
2
2 )) = σ

⎛

⎝2
r∑

i=1

mi

∑

hki∈Hki

ζ shki
n

⎞

⎠ = 2
r∑

i=1

mi

∑

hki∈Hki

ζ h0shki
n

= 2
r∑

i=1

mi

∑

hki∈Hki

ζ thki
n = χt (S

2
2 ).

Since χs(S22 ) ∈ K0, we have χs(S22 ) = χt (S22 ). Let N = {ki | {1, 2, . . . , �(n −
1)/2�} ∩ Hki �= ∅}. Therefore, all possible values of cl are

cki = 4
r∑

j=1

m j

∑

hk j∈Hk j

ζ
ki hk j
n ,

for ki ∈ N . The following result is obtained:

Corollary 2 The algebraic degree of � is bounded by

ϕ(n)

|H | ≤ deg(�) ≤ ϕ(n)

|H | 2
|N |.

Example 4 (Cayley graph over dihedral group of algebraic degree 2) Let G = D8 and
S = {a, a7, b}. Then, I1 = {1,−1} and I2 = [0]. Therefore, H = {1,−1} ≤ Z∗

8, the
representative is R(H) = {0, 1, 2, 3, 4} andN = {1, 2, 3}. By simple calculations, we
have c1 = c2 = c3 = 4. Thus, K = Q(ζ8)

η−1(H) = Q(
√
2) and deg(�) = 2 = ϕ(8)

|H | .

Example 5 (Cayley graph over dihedral group of algebraic degree 4) Let G = D12
and S = {a, a−1, a5, a−5, b, ba, ba5}. Then, I1 = {1,−1, 5,−5} and I2 =
[0, 0, 0, 1, 4, 5,−1,−4,−5}. Therefore, H = Z∗

12, R(H) = {0, 1, 2, 3, 4, 6} and
N = {1, 2, 3, 4}. By simple calculations, we get c1 = 8, c2 = 16, c3 = 20 and
c4 = 0. Thus, K = Q(

√
2,

√
5) and deg(�) = 4.

Though the field K0 = Qη−1(H) is very clear, it is not easy to determine K . From
the examples above, K completely relies on the values ck for k ∈ N . However, it
seems that such values could not be described clearly since H is just a subgroup of
Z∗
n . In what follows, we therefore consider a special case of H .
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If H = Z∗
n , then K0 = Q. Moreover, R(H)\{0} consists of all divisors of n and,

hence, N = {1 ≤ k ≤ �(n − 1)/2� | k | n}. Furthermore, for each d | n, we have
Hd = Z∗

n/dd. Therefore, for any k ∈ N , we have

ck = 4
∑

d|n
md

∑

t∈Zn/d

ζ ktd
n = 4

∑

d|n
md

∑

t∈Zn/d

ζ kt
n/d = 4

∑

d|n
mdrn/d(k),

where rq(m) = ∑
1≤ j≤q,gcd( j,q)=1 ζ

mj
q is the famous Ramanujan sum. Note that

rq(m) = ϕ(q)

ϕ
(

q
gcd(m,q)

)μ

(
q

gcd(m, q)

)

,

where μ is the Möbius function. Thus, we have

ck = 4
∑

d|n
md

ϕ(n/d)

ϕ
(

n/d
gcd(k,n/d)

)μ

(
n/d

gcd(k, n/d)

)

and, in particular, c1 = 4
∑

d|n mdμ(n/d).

Example 6 (Integral Cayley graph over dihedral group) Let G = D8 and S =
{a, a3, a5, a7, b, ba4}. Then, I1 = {1, 3, 5, 7} and I2 = [0, 0, 4,−4]. This leads to
H = Z∗

8 and R(H) = {0, 1, 2, 4}. Therefore,N = {1, 2}. Since I2 = 2◦H8�2◦H4,
we get

c1 = 4(2μ(1) + 2μ(2)) = 0, c2 = 4(2μ(1) + 2
ϕ(2)

ϕ(1)
μ(1)) = 16.

Thus, K = Q and deg(�) = 1.

4 An upper bound for the algebraic degree of Cayley digraphs over
dihedral groups

So far, we restricted our considerations to undirected Cayley graphs. If we omit the
restrictions on S, then I1 = −I1 does not hold anymore in general. This makes the
computation of the cl ’s and the field K0 much more difficult. At least we could find
an upper bound for the algebraic degree of Cayley digraphs over dihedral groups:

Theorem 3 Let � denote a Cayley digraph over the dihedral group Dn, then

deg(�) ≤ ϕ(n)

|H | 2
|N |.

Proof Note that Lemma 3 still holds for digraphs. For 1 ≤ l ≤ � n−1
2 �, we now get

bl = χl(S1) = ∑
as∈S1 2 cos

2πls
n = ∑

i∈I1(ζ
li
n + ζ−li

n ) = ∑
i∈I1�−I1 ζ lin . Similar

as in the proofs of Lemma 4 and Lemma 5, we can show that if b1, c1 ∈ K0, then
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bl , cl ∈ K0, and that b1 ∈ K0 if and only if I1 � −I1 is a multi-union of some orbits
Hk for k ∈ Zn .

Again, let I2 = {k | ak ∈ S22 }. Note that I2 = −I2. With similar, but a bit more
cumbersome computations as above, we now get

cl = 2χl(S
2
2 ) + b2l − 4

∑

i∈I1
ζ lin

∑

j∈I1
ζ

−l j
n .

It is clear that with I1 being a union of orbits Hk, so are−I1 and I1�−I1. Therefore,
if I1 is a union of orbits and I2 is a multi-union of orbits, then bl , cl ∈ K0 for all l.
Thus, if H denotes the subgroup fixing both, I1 and I2, then the splitting field K of �

must be contained in the field K0(
√
c1, . . . ,

√
cl) where K0 = Q(ζn)

η−1(H). Hence,
the statement follows. ��
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