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Abstract
We generalize a theorem by Titchmarsh about the mean value of Hardy’s Z -function
at the Gram points to the Hecke L-functions, which in turn implies the weak Gram
law for them. Instead of proceeding analogously to Titchmarsh with an approximate
functional equation we employ a different method using contour integration.
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1 Introduction

In the theoryof theRiemannzeta-function, theweakGram lawmakes a statement about
the distribution of the zeros of ζ(s) on the critical line. To describe this statement, we
need several definitions. Starting from the functional equation of ζ(s) in its asymmetric
form

ζ(s) = �ζ (s)ζ(1 − s) with �ζ (s) = π s− 1
2
�( 1−s

2 )

�( s2 )
(1)

we define the function ϑζ (t) as the continuous branch of the argument of �ζ (
1
2 +

i t)−1/2 for t ∈ R with ϑζ (0) = 0. Hardy’s Z -function is then defined by

Zζ (t) := eiϑζ (t)ζ
(1
2

+ i t
)
.

From the functional equation (1) it follows that Zζ (t) is real-valued. Furthermore the
ordinates of the zeros of ζ(s) on the critical line coincide with the zeros of Zζ (t).
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982 S. Weishäupl

The function ϑζ(t) increases monotonically for t ≥ 7 and grows arbitrarily large.
This allows us to define the Gram points tv as the unique solutions of ϑζ (tv) = vπ

for integers v ≥ −1. These points were first studied by Gram [4] in 1903 in the
context of numerical computations of the zeros of ζ(s). He observed that the Gram
points and the ordinates of the zeros of ζ(s) on the critical line (i.e. the zeros of
Zζ (t)) seem to alternate. Hutchinson [8] called this phenomenon Gram’s law and
showed that it first fails in the interval [t125, t126], because this interval contains no
zero of Zζ (t). Titchmarsh [19] (see also [20, §10.6]) proved a mean value result for
Zζ (t) at the Gram points, namely that we have for any fixed integer M ≥ 0, as
N → ∞,

N∑
v=M

Zζ (t2v) = 2N + O
(
N

3
4 log(N )

3
4
)
,

N∑
v=M

Zζ (t2v+1) = −2N + O
(
N

3
4 log(N )

3
4
)
.

(2)

It follows that, Zζ (t2v) is infinitely often positive, while Zζ (t2w+1) is infinitely
often negative. Hence, there are infinitely many intervals (t2v, t2w+1], that contain
an odd number of zeros of Zζ (t) (counted with multiplicities). Since (t2v, t2w+1] is
partitioned by an even number of intervals between consecutive Gram points, there are
infinitely many intervals of the form (tv, tv+1] that contain an odd number of zeros of
Zζ (t). This fact is called the weak Gram law in some literature. It implies in particular
that there are infinitely many zeros on the critical line, which has been proven first
by Hardy [6]. For a survey on results regarding Gram’s law we refer to Trudgian
[21].

Our goal is to generalize (2) and thereby the weak Gram law to the Hecke L-
functions. These originate from modular forms and have properties similar to the
Riemann zeta-function. In particular it is conjectured that an analogue of the Riemann
hypothesis holds for them. For a given Hecke L-function L(s), we can define the
analogous functions ϑL(t), ZL(t) and the corresponding Gram points tv for v ≥
v0 (depending on L(s); see Sect. 2 for the exact definitions) without difficulty. We
want to mention here that Lekkerkerker [18] already studied the zeros of Hecke L-
functions and showed among other things that there are infinitely many zeros on the
corresponding critical line. Also Guthmann [5] first generalized Gram points to Hecke
L-functions for numerical investigations.

Now (2) is proved with the aid of the approximate functional equation of ζ(s) due
to Hardy and Littlewood [7]. An improvement of the error term was recently achieved
by Cao, Tanigawa and Zhai [2] with the help of a modified approximate functional
equation with smooth weights. While approximate functional equations for Hecke L-
functions have been proven for example by Apostol and Sklar [1] and Jutila [13], the
error terms are not sufficiently small to use them in generalizing (2). We therefore use
a different approach that makes use of contour integration and leads to the following
main theorem.
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The weak Gram Law... 983

Theorem 1 We have for any ε > 0, as T → ∞,

∑
T<t2v≤2T

ω(t2v)ZL(t2v) = 1

π
T + OL,ε

(
T

3
4+ε

)
,

∑
T<t2v+1≤2T

ω(t2v+1)ZL(t2v+1) = − 1

π
T + OL,ε

(
T

3
4+ε

)

with the weight function ω(t) := log( t
2π )−1.

This theorem is sort of a weighted version of (2) for Hecke L-functions. By partial
summation, we can easily deduce an unweighted version from it.

Corollary 2 We have for any fixed integer M ≥ v0/2 and any ε > 0, as N → ∞,

N∑
v=M

ZL(t2v) = 2N + OL,ε

(
N

3
4+ε

)
,

N∑
v=M

ZL(t2v+1) = −2N + OL,ε

(
N

3
4+ε

)
.

From either Theorem 1 or Corollary 2 the weak Gram law for Hecke L-functions
follows as in the case of the Riemann zeta-function.

Concerning notation in the following sections, ε always denotes an arbitrarily small
positive constant, not necessarily the same at every occurrence. We write

∫ w

z f (s)ds
for the integral of f (s) along the straight line from z ∈ C to w ∈ C. Also we omit the
dependence of implicit and explicit constants on L and ε for clarity.

2 Preparation and preliminary results

Let f (τ ) be a cusp form of weight k ≥ 12 for the full modular group SL2(Z) with the
Fourier expansion

f (τ ) =
∞∑
n=1

a(n)e2π inτ ,

which additionally is a simultaneous eigenform of the Hecke operators. Then the

coefficients a(n) are real and fulfil the bound a(n) = O(n
k−1
2 +ε) by Deligne [3]. The

corresponding Hecke L-function

L(s) :=
∞∑
n=1

a(n)n−s
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984 S. Weishäupl

is absolutely convergent on the right half-plane σ > k+1
2 . It has an analytic continua-

tion to the whole complex plane without poles and fulfils the functional equation

L(s) = �L(s)L(k − s) with �L(s) := i k(2π)2s−k �(k − s)

�(s)
. (3)

Hence the vertical line with real part k
2 is the critical line of L(s). Also L(s) is a

function of finite order on every vertical strip σ ∈ [σ1, σ2]. For the theory of Hecke
L-functions we refer to the monograph by Iwaniec [12, Chapter 7].

We now want to construct the analogues of the functions ϑζ (t), Zζ (t) and the
Gram points tv for the Hecke L-function L(s). For reasons that will become apparent
later we do this with the help of a holomorphic logarithm of �L(s). We define this
holomorphic logarithm explicitly with the unique holomorphic logarithm log�(s),
which is real-valued for real s, by

log�L(s) := k
π i

2
+ (2s − k) log(2π) + log�(k − s) − log�(s) (4)

on the vertical strip σ ∈ (0, k). Now we can define the function ϑL(t) for t ∈ R by

ϑL(t) := i

2
log�L

(k
2

+ i t
)
. (5)

From (3), we have |�L( k2 + i t)| = 1, hence ϑL(t) is real-valued. Also by writing

�L(s)z := exp(z log�L(s)) for z ∈ C we have eiϑ(t) = �L( k2 + i t)− 1
2 , so ϑL(t) is

a continuous branch of the argument of the function �L( k2 + i t)− 1
2 analogously to

ϑζ (t). Now we define the continuous function

ZL(t) := eiϑL (t)L
(k
2

+ i t
)

for t ∈ R. By the Schwarz reflection principle, we have L(s) = L(s). From this and
the functional equation (3) it follows that ZL(t) is also real-valued.

To define the Gram points rigorously, we need to show first that ϑL(t) increases
monotonically to infinity for t large enough. From Stirling’s formula, we can deduce
the following approximations for log�L(s) and its derivative.

Lemma 3 We have uniformly in the vertical strip σ ∈ (0, k), as t → ∞,

log�L(s) = (k − 2σ) log
( t

2π

)
− 2i t log

( t

2πe

)
+ π i

2
+ O

(1
t

)
,

d

ds
log�L(s) = −2 log

( t

2π

)
− i(k − 2σ)

t
+ O

( 1

t2

)
.
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The weak Gram Law... 985

Proof From Stirling’s formula (see [17, pp. 422–430]) we have uniformly in σ ∈
(0, k), as t → ∞,

log�(s) =
(
σ − 1

2

)
log(t) − t

π

2
+ 1

2
log(2π) + i t log

( t

e

)
+ i

(
σ − 1

2

)π

2
+ O

(1
t

)

and

d

ds
log�(s) = log(t) + π i

2
− i(σ − 1

2 )

t
+ O

( 1

t2

)
.

Using this in (4) and its derivative yields the approximations of log�L(s) and
d
ds log�L(s) after lengthy computations. ��

By (5) and its derivative

ϑ ′
L(t) = d

dt

( i

2
log�L

(k
2

+ i t
))

= −1

2

d

ds
log�L

(k
2

+ i t
)

we obtain the following corollary.

Corollary 4 We have as t → ∞

ϑL(t) = t log
( t

2πe

)
− π

4
+ O

(1
t

)
, ϑ ′

L(t) = log
( t

2π

)
+ O

( 1

t2

)
.

Hence, the function ϑL(t) increases monotonically for sufficiently large t and takes
arbitrarily large values. We can therefore define the Gram points tv of L(s) as the
unique positive solutions of ϑL(tv) = vπ for integers v ≥ v0 with some constant
v0 ∈ Z. We forgo a distinction to the Gram points of ζ(s) in the notation for the sake
of readability. We also need approximations for the Gram points tv of L(s), for their
difference tv+1 − tv and for the number N (T ) of Gram points tv with 0 < tv ≤ T .
These follow easily from Corollary 4 (analogous approximations for the Gram points
of ζ(s) are proven in [11, §6.1]).

Lemma 5 We have as v → ∞ resp. T → ∞

tv ∼ vπ

log(v)
, tv+1 − tv ∼ π

log(v)
, N (T ) ∼ T log(T )

π
.

Now the idea of the proof of Theorem 1 is to construct an auxiliary function GL(s)
with poles at k

2 + i t2v , so that we can represent the sum of ZL(t) at the Gram points
t2v as a contour integral by

ress= k
2+i t2v

(
GL(s)�L(s)−

1
2 L(s)

)
= ZL(t2v) ress= k

2+i t2v
GL(s).

Using the holomorphic logarithm log�L(s) we define the auxiliary function as

GL(s) := − i

2
cot

( i

4
log�L(s)

)
,
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986 S. Weishäupl

which is meromorphic on the vertical strip σ ∈ (0, k). On the critical line we have by
(5)

GL

(k
2

+ i t
)

= − i

2
cot

(1
2
ϑL(t)

)
. (6)

Lemma 6 For some constant A > 0 the poles of GL(s) in the half-strip σ ∈ (0, k)
and t > A lie exactly at s = k

2 + i t2v with t2v > A. For the residues we have

ress= k
2+i t2v

GL(s) = 1

ϑ ′
L(t2v)

= ω(t2v) + O
( 1

t22v

)
.

Proof Since the poles of the cotangent lie on the real axis, all poles s of GL(s) fulfil
Re log�L(s) = 0. From (3) we have |�L( k2 + i t)| = 1, hence Re log�L(s) = 0 on
the critical line. Furthermore Lemma 3 implies uniformly in σ ∈ (0, k)

d

dσ
Re log�L(σ + i t) = Re

d

ds
log�L(σ + i t) = −2 log

( t

2π

)
+ O

( 1

t2

)
.

Hence the function d
dσ Re log�L(σ + i t) decreases monotonically with respect to

σ ∈ (0, k) for fixed t > A with A being sufficiently large. Thus all the poles of GL(s)
for t > A lie on the critical line. From (6) it follows that the ordinates of these poles
are exactly the Gram points with even index t2v > A.

The poles k
2 + i t2v for t > A are simple, since ϑL(t) is increasing monotonically

by Corollary 4, again assuming A to be sufficiently large. Hence we calculate for
s = k

2 + i t

d

ds
sin

( i

4
log�L(s)

)
= (−i)

d

dt
sin

(1
2
ϑL(t)

)
= − i

2
cos

(1
2
ϑL(t)

)
ϑ ′
L(t)

and conclude

ress= k
2+i t2v

GL(s) = − i

2
· cos

( 1
2ϑL(t2v)

)

− i
2 cos

( 1
2ϑL(t2v)

)
ϑ ′
L(t2v)

= 1

ϑ ′
L(t2v)

.

Again by Corollary 4 we have

1

ϑ ′
L(t)

= log
( t

2π

)−1 + O
( 1

t2

)
= ω(t) + O

( 1

t2

)
,

from which the approximation of the residues follows. ��
Lastly we need an estimate for �L(s)− 1

2 L(s), which follows from the Phragmén–
Lindelöf principle (see [17, Chapter XII, §6]).

Lemma 7 Let 1
2 < c < k

2 . Then we have �L(s)− 1
2 L(s) = O(tc) uniformly in the

strip σ ∈ [ k
2 − c, k

2 + c
]
as t → ∞. In particular ZL(t) = O

(
t
1
2+ε

)
.
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The weak Gram Law... 987

Proof Lemma 3 implies that �L( k2 + c + i t)− 1
2 = O

(|t |c) as t → ∞. However,
since log�L(s) = −kπ i + log�L(s), which follows from (4), this actually holds as
|t | → ∞. Since the Dirichlet series of L(s) is absolutely convergent on the vertical
line σ = k

2 + c and hence bounded, we have

�L

(k
2

+ c + i t
)− 1

2
L
(k
2

+ c + i t
)

= O
(|t |c)

as |t | → ∞. The function �L(s)− 1
2 L(s) takes the values of ZL(t) on the critical

line and thus is real-valued there. By the Schwarz reflection principle this yields
additionally

�L

(k
2

− c + i t
)− 1

2
L
(k
2

− c + i t
)

= O
(|t |c)

as |t | → ∞. Since L(s) and �L(s)− 1
2 are functions of finite order, we can apply the

Phragmén–Lindelöf principle to �L(s)− 1
2 L(s) in the vertical strip σ ∈ [ k

2 − c, k
2 + c

]

and obtain �L(s)− 1
2 L(s) = O(tc) uniformly in this strip as t → ∞. ��

3 Proof of Theorem 1

Since we want to show an approximation for T → ∞ we can always assume that
T > 0 is sufficiently large. Let T0 and T1 be Gram points with odd index, such that
the intervals (T0, T1] and (T , 2T ] contain the same Gram points with even index. In
view of Lemma 5 we have

T0 = T + O(1), T1 = 2T + O(1). (7)

Let 1
2 < c < k

2 be a constant. We want to integrate the function GL(s)�L(s)− 1
2 L(s)

along the positively oriented boundary of the rectangleRwith the vertices k
2 ±c+ iT0

and k
2 ± c + iT1. By Cauchy’s residue theorem we obtain in view of Lemma 6

∑
T<t2v≤2T

ress= k
2+i t2v

(
GL(s)�L(s)−

1
2 L(s)

)
= 1

2π i

∫

∂R
GL(s)�L(s)−

1
2 L(s)ds.

(8)

We first deal with the left-hand side. Lemma 6 gives

ress= k
2+i t2v

(
GL(s)�L(s)−

1
2 L(s)

)
= ω(t2v)ZL(t2v) + O

(
ZL(t2v)

t22v

)
.
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988 S. Weishäupl

Using Lemmas 7 and 5 we obtain for the sum of the error terms

∑
T<t2v≤2T

|ZL(t2v)|
t22v

�
∑

T<t2v≤2T

t
− 3

2+ε

2v � T− 3
2+εN (2T ) � T− 1

2+ε.

Hence the left-hand side of (8) is

∑
T<t2v≤2T

ω(t2v)ZL(t2v) + O
(
T− 1

2+ε
)
.

On the right-hand side of (8) we split the integral into the four integrals along the sides
of R. First we want to estimate the integrals along the horizontal sides, which have
the form

∫ k
2+c+i t

k
2−c+i t

GL(s)�L(s)−
1
2 L(s)ds

with t = t2v+1 for an integer v ≥ v0. For that we show that the function GL(s)
is bounded on the horizontal paths σ �→ σ + i t2v+1 with σ ∈ [ k2 − c, k

2 + c] as
t2v+1 → ∞. For σ = k

2 we have

i

4
log�L

(k
2

+ i t2v+1

)
= 1

2
θL(t2v+1) =

(
v + 1

2

)
π

and the real part of i
4 log�L(s) is independent of σ except for the error term O(t−1)

by Lemma 3. Hence the real part of i
4 log�L(σ + i t2v+1) for σ ∈ [ k2 − c, k

2 + c]
lies in the interval [(v + 1

4 )π, (v + 3
4 )π ] for sufficiently large t2v+1. The cotangent

cot(x + iy) is bounded in the vertical strips x ∈ [(v + 1
4 )π, (v + 3

4 )π ] because of its
periodicity and

| cot(x + iy)| = |ei(x+iy) + e−i(x+iy)|
|ei(x+iy) − e−i(x+iy)| ≤ ey + e−y

|ey − e−y | � e|y|

e|y| = 1

as y → ∞. Therefore we have GL(s) = O(1) on the horizontal paths as t2v+1 → ∞.
By Lemma 7 it follows

∫ k
2+c+i t

k
2−c+i t

GL(s)�L(s)−
1
2 L(s)ds = O(tc)

as t = t2v+1 → ∞. In view of (7) the horizontal integrals on the right-hand side of
(8) are therefore bounded by O(T c).
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The weak Gram Law... 989

Next we deal with the integral along the left vertical side ofR. Using the functional
equation (3) and L(s) = L(s) we obtain

∫ k
2−c+iT0

k
2−c+iT1

GL(s)�L(s)−
1
2 L(s)ds =

∫ k
2−c+iT0

k
2−c+iT1

GL(s)�L(s)
1
2 L(k − s)ds. (9)

From (4) we have log�L(s) = −log�L(k − s). Using this we easily obtain
the functional equations GL(s) = −GL(k − s) and �L(s)1/2 = �L(k − s)−1/2.
Together with a parametrization s = k

2 − c + i t of the path of integration we obtain
through delicate transformations

∫ k
2−c+iT0

k
2−c+iT1

GL(s)�L(s)
1
2 L(k − s)ds = −

∫ k
2+c+iT1

k
2+c+iT0

GL(s)�L(s)− 1
2 L(s)ds.

Hence the left vertical integral is equal to the negative conjugate of the right vertical
integral. Altogether we have transformed (8) to

∑
T<t2v≤2T

ω(t2v)ZL(t2v) = 1

π
Im

( ∫ k
2+c+iT1

k
2+c+iT0

GL(s)�L(s)−
1
2 L(s)ds

)
+ O(T c).

(10)

Now we approximate the term GL(s)�L(s)− 1
2 in the integrand for s = k

2 + c + i t
and t → ∞. Substituting z := i

4 log�L(s) gives

GL(s)�L(s)−
1
2 = − i

2
cot(z)e2i z = 1

2
· e

2i z + 1

e2i z − 1
e2i z = 1

2
e2i z + 1 + 1

e2i z − 1
.

By Lemma 3 the imaginary part y = Im(z) for s = k
2 + c + i t is

y = 1

4
Re log�L(s) = − c

2
log

( t

2π

)
+ O

(1
t

)
.

Hence y → −∞ and |e2i z − 1| ≥ |e−2y − 1|  e−2y as t → ∞. Thus we obtain
the approximation

GL(s)�L(s)−
1
2 = 1

2
e2i z + 1 + O(e2y) = 1

2
�L(s)−

1
2 + 1 + O(t−c) (11)
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990 S. Weishäupl

as t → ∞. Using this in (10) yields

∑
T<t2v≤2T

ω(t2v)ZL(t2v) = 1

2π
Im

( ∫ k
2+c+iT1

k
2+c+iT0

�L(s)−
1
2 L(s)ds

)

+ 1

π
Im

( ∫ k
2+c+iT1

k
2+c+iT0

L(s)ds
)

+ O(T c).

(12)

Here we have used that L(s) is bounded on the vertical line σ = k
2 + c because of

absolute convergence.We compute the second integral in (12) using theDirichlet series
L(s) = ∑∞

n=1 a(n)n−s with a(1) = 1. Interchanging integration and summation by
the theorem of Lebesgue then yields

1

π
Im

( ∫ k
2+c+iT1

k
2+c+iT0

L(s)ds
)

= 1

π
Re

( ∫ T1

T0

∞∑
n=1

a(n)n− k
2−c−i tdt

)

= 1

π
Re

( ∞∑
n=1

a(n)n− k
2−c

∫ T1

T0
n−i tdt

)

= 1

π
(T1 − T0) + O

( ∞∑
n=2

|a(n)|n− k
2−c

)
.

Using T1−T0 = T +O(1) by (7) and the absolute convergence of L(s) at s = k
2 +c

we obtain

1

π
Im

( ∫ k
2+c+iT1

k
2+c+iT0

L(s)ds
)

= 1

π
T + O(1).

We also want to interchange T0 with T and T1 with 2T in the first integral of (12).

Since both differences are O(1) by (7) and �L(s)− 1
2 L(s) = O(tc) by Lemma 7, this

yields again the error term O(T c). Hence we have transformed (12) to

∑
T<t2v≤2T

ω(t2v)ZL(t2v) = 1

π
T + 1

2π
Im

( ∫ k
2+c+2iT

k
2+c+iT

�L(s)−
1
2 L(s)ds

)
+ O(T c).

(13)

It remains to estimate the integral of �L(s)− 1
2 L(s). By Lemma 3 we have

�L

(k
2

+ c + i t
)− 1

2 = e− π i
4

( t

2π

)c
exp

(
i t log

( t

2πe

))(
1 + O

(1
t

))
.

123



The weak Gram Law... 991

We use this approximation in the integral of �L(s)− 1
2 L(s) and proceed as in the

estimation of the second integral of (12). This yields

∫ k
2+c+2iT

k
2+c+iT

�L(s)−
1
2 L(s)ds = 2πe

π i
4

∞∑
n=1

a(n)n− k
2−c I (n) + O(T c) (14)

with

I (n) := 1

2π

∫ 2T

T

( t

2π

)c
exp

(
i t log

( t

2πen

))
dt . (15)

We also define T̂ := T
2π and Fn(t) := t log

( t
en

)
. By a change of variables we can

then rewrite (15) as

I (n) =
∫ 2T̂

T̂
t c exp(2π i Fn(t))dt .

The function F ′
n(t) = log( t

n ) is zero at t = n, which lies in the interval of integration

for T̂ ≤ n ≤ 2T̂ . In view of this saddle point we split the series on the right-hand side
of (14) into

∞∑
n=1

a(n)n− k
2−c I (n) =

∑
1
+

∑
2
+

∑
3
+

∑
4
+

∑
5
, (16)

where the ranges of summation, depending on a constant d ∈ (0, 1), are the following:

∑
1

: 1 ≤ n ≤ T̂ − T̂ d ,
∑

2
: T̂ − T̂ d < n ≤ T̂ + T̂ d ,

∑
3

: T̂ + T̂ d < n ≤ 2T̂ − T̂ d ,
∑

4
: 2T̂ − T̂ d < n ≤ 2T̂ + T̂ d ,

∑
5

: 2T̂ + T̂ d < n.

First let 1 ≤ n ≤ T̂ − T̂ d . Then the function F ′
n(t) = log( t

n ) grows monotonically

in the range t ∈ [T̂ , 2T̂ ] and fulfils

F ′
n(t) = log

( t

n

)
≥ log

( T̂

T̂ − T̂ d

)
= − log(1 − T̂ d−1) � T̂ d−1.
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Applying the first derivative test (see [9, Lemma 2.1]) yields

I (n) =
∫ 2T̂

T̂
t c exp(2π i Fn(t))dt � T̂ c+1−d .

Thus we obtain using a(n) = O(n
k−1
2 +ε)

∑
1

=
∑

1≤n≤T̂−T̂ d

a(n)n− k
2−c I (n) � T̂ c+1−d

∞∑
n=1

n− 1
2−c+ε � T̂ c+1−d .

Hence
∑

1 = O(T c+1−d) and in a similar way
∑

5 = O(T c+1−d) follows.
Now let T̂ − T̂ d < n ≤ T̂ + T̂ d . Then F ′′

n (t) = t−1  T̂−1 and an application of
the second derivative test (see [9, Lemma 2.2]) yields

I (n) =
∫ 2T̂

T̂
t c exp(2π i Fn(t))dt � T̂ c+ 1

2 .

Again using a(n) = O(n
k−1
2 +ε) we obtain

∑
2

=
∑

T̂−T̂ d<n≤T̂+T̂ d

a(n)n− k
2−c I (n) � T̂ c+ 1

2
∑

T̂−T̂ d<n≤T̂+T̂ d

n− 1
2−c+ε � T̂ d+ε.

Hence
∑

2 = O(T d+ε) and
∑

4 = O(T d+ε) follows analogously.
It remains to estimate

∑
3. We use the following lemma from [15, Lemma III.§1.2].

Lemma 8 Suppose that f (t) and ϕ(t) are real-valued functions on the interval [a, b]
which satisfy the conditions

(1) f (4)(t) and ϕ′′(t) are continuous,
(2) there exists 0 < b − a ≤ U, 0 < H, A < U, such that

f ′′(t) � A−1, f (3)(t) � A−1U−1, f (4)(t) � A−1U−2,

g(t) � H , g′(t) � HU−1, g′′(t) � HU−2,

(3) f ′(t0) = 0 for some t0 ∈ [a, b].
Then

∫ b

a
ϕ(t) exp(2π i f (t))dt = ϕ(t0)√

f ′′(t0)
exp

(
2π i f (t0) + π i

4

)
+ O(H AU−1)

+ O
(
H · min

(| f ′(a)|−1,
√
A

))

+ O
(
H · min

(| f ′(b)|−1,
√
A

))
.
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Now let T̂ + T̂ d < n ≤ 2T̂ − T̂ d . We have

Fn(t) = t log
( t

en

)
, F ′

n(t) = log
( t

n

)
,

F ′′
n (t) = 1

t
, F (3)

n (t) = − 1

t2
, F (4)

n (t) = 2

t3
.

Applying Lemma 8 with f (t) = Fn(t), ϕ(t) = tc and A = T̂ ,U = 2T̂ , H =
T̂ c, t0 = n yields

I (n) = nc+
1
2 exp

(
− 2π in + π i

4

)
+ O(T̂ c)

+ O
(
T̂ c · min

(|F ′
n(T̂ )|−1,

√
T̂

))

+ O
(
T̂ c · min

(|F ′
n(2T̂ )|−1,

√
T̂

))
.

(17)

We have

|F ′
n(T̂ )| =

∣∣∣ log
( T̂
n

)∣∣∣ = log
( n

T̂

)
≥ log(1 + T̂ d−1) � T̂ d−1,

|F ′
n(2T̂ )| = log

(2T̂
n

)
≥ log

( 2T̂

2T̂ − T̂ d

)
= − log

(
1 − 1

2
T̂ d−1

)
� T̂ d−1,

hence |F ′
n(T̂ )|−1, |F ′

n(2T̂ )|−1 � T̂ 1−d . This gives the overall error term O(T̂ c+1−d)

in (17), which is independent of n. Therefore

∑
3

= e
iπ
4

∑

T̂+T̂ d<n≤2T̂−T̂ d

a(n)n− k−1
2 + O(T̂ c+1−d), (18)

where we have used the absolute convergence of L(s) at s = k
2 + c.

It remains to deal with the sum on the right-hand side of (18). We need to use a fact
about the coefficients of cusp forms of weight k, namely that

∑
n≤x

a(n) � x
k
2 log(x)

as x → ∞ (see [12, Theorem 5.3]). By partial summation we then obtain

∑

T̂+T̂ d<n≤2T̂−T̂ d

a(n)n− k−1
2 � T̂

1
2+ε,
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hence
∑

3 = O(T c+1−d). From
∑

1,
∑

3,
∑

5 = O(T c+1−d) and
∑

2,
∑

4 =
O(T d+ε) it follows in view of (14) and (16) that

∫ k
2+c+2iT

k
2+c+iT

�L(s)−
1
2 L(s)ds = O(T c+1−d) + O(T d+ε) + O(T c).

We choose c = 1
2 + ε and d = 3

4 to obtain the overall bound O(T
3
4+ε). Then (13)

gives the final approximation

∑
T<t2v≤2T

ω(t2v)ZL(t2v) = 1

π
T + O(T

3
4+ε).

Hence the treatment of the first sum in Theorem 1 is finished. We can deal with
the second sum analogously using the auxiliary function H(s) := i

2 tan(
i
4 log�L(s))

instead of G(s). Then the approximation

H(s)�L(s)−
1
2 = 1

2
�L(s)−

1
2 − 1 + O(t−c)

for s = k
2 + c + i t as t → ∞ in comparison with (11) leads to the negative dominant

term in the approximation of the second sum.

4 Proof of Corollary 2

We consider

S(T ) :=
∑
t2v≤T

ω(t2v)ZL(t2v),

where the summation ranges over all Gram points t2v less than or equal to T . Note
that S(T ) is 0 for small T . By Theorem 1 we obtain the approximation

S(T ) =
∞∑

m=1

∑
T /2m<t2v≤2T /2m

ω(t2v)ZL(t2v) = T

π
+ O(T

3
4+ε). (19)

Now we deal with the sum of ZL(t2v) for the Gram points t2v , where M ≤ v ≤ N
resp. t2M ≤ t2v ≤ t2N . An application of partial summation yields

N∑
v=M

ZL(t2v) =
∑

t2M≤t2v≤t2N

log
( t2v
2π

)
ω(t2v)ZL(t2v)

= log
( t2N
2π

)
S(t2N ) −

∫ t2N

0

S(T )

T
dT + O(1).
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Using (19) and the estimate t2N � N , which follows from Lemma 5, we obtain

N∑
v=M

ZL(t2v) = t2N
π

log
( t2N
2π

)
− t2N

π
+ O(N

3
4+ε)

= t2N
π

log
( t2N
2πe

)
+ O(N

3
4+ε).

(20)

By the definition of the Gram points and Corollary 4 we have

v = 1

π
θL(tv) = tv

π
log

( tv
2πe

)
+ O(1).

Using this for the Gram point t2N in (20) gives

N∑
v=M

ZL(t2v) = 2N + O(N
3
4+ε).

The approximation of the second sum follows analogously.

5 Concluding remarks

The most difficult part in the proof of Theorem 1 is to estimate the integral in (13).
By shifting the path of integration to the left onto the critical line using Lemma 7 we
have

Im
( ∫ k

2+c+2iT

k
2+c+iT

�L(s)−
1
2 L(s)ds

)
=

∫ 2T

T
ZL(t)dt + O(T c). (21)

Ivić [10] showed that the integral of Zζ (t) over the interval [T , 2T ] is bounded by
O(T

1
4+ε). He mentioned a possible but insufficient approach in his article, which we

have adopted to deal with the integral in (13). Hence generalizing the actual method
by Ivić might yield an improvement of the error term in Theorem 1. Jutila [14] and

Korolev [16] independently sharpened the estimate in the result of Ivić to O(T
1
4 ),

which might lead to a further improvement in our case too. Also in view of (21) we
have showed implicitly, that the integral of ZL(t) over the interval [T , 2T ] is bounded
by O(T

3
4+ε).

From Theorem 1 an analogous result for the Hecke L-functions L(s) of arbitrary
cusp forms follows, since every cusp form of weight k for the full modular group
SL2(Z) is a linear combination of simultaneous eigenforms of the Hecke operators
with complex coefficients. Then the dominant terms are ± a(1)

π
T , where a(1) is the

first coefficient of L(s). If the cusp form is a linear combination of simultaneous
eigenforms with real coefficients, the analogously defined function ZL(t) is also real-
valued.Hence in this case theweakGram law for L(s) follows, provided that a(1) �= 0.
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996 S. Weishäupl

Also Theorem 1 can be generalized to Hecke L-functions corresponding to cusp
forms for congruence subgroups of SL2(Z) without difficulty.
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11. Ivić, A.: The Theory of Hardy’s Z-Function. Cambridge University Press, Cambridge (2012)
12. Iwaniec, H.: Topics in Classical Automorphic Forms. American Mathematical Society, Providence, RI

(1997)
13. Jutila, M.: On the approximate functional equation for ζ 2(s) and other Dirichlet series. Quart. J. Math.

37(2), 193–209 (1986)
14. Jutila, M.: Atkinson’s formula for Hardy’s function. J. Number Theory 129, 2853–2878 (2009)
15. Karatsuba, A.A., Voronin, S.M.: The Riemann Zeta-Function. Walter de Gruyter, New York (1992)
16. Korolev, M.A.: On the integral of Hardy’s function Z(t). Izv. Math. 72(3), 429–478 (2008)
17. Lang, S.: Complex Analysis, 4th edn. Springer, New York (1999)
18. Lekkerkerker, C.G.: On the zeros of a class of Dirichlet series. Proefschrift, van Gorcum, NV (1955)
19. Titchmarsh, E.C.: On van der Corput’s method and the zeta-function of Riemann. Q. J. Math. 5(1),

98–105 (1934)

123

http://creativecommons.org/licenses/by/4.0/


The weak Gram Law... 997

20. Titchmarsh, E.C.: TheTheory of theRiemannZeta-Function, 2nd edn.OxfordUniversity Press,Oxford
(1986)

21. Trudgian, T.: On the success and failure of Gram’s law and the Rosser rule. Acta Arith. 148, 225–256
(2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	The weak Gram law for Hecke  L -functions
	Abstract
	1 Introduction
	2 Preparation and preliminary results
	3 Proof of Theorem 1
	4 Proof of Corollary 2
	5 Concluding remarks
	Acknowledgements
	References




