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Abstract
Purpose As α-emitters for radiopharmaceutical therapies are administered systemically by intravenous injection, blood will 
be irradiated by α-particles that induce clustered DNA double-strand breaks (DSBs). Here, we investigated the induction 
and repair of DSB damage in peripheral blood mononuclear cells (PBMCs) as a function of the absorbed dose to the blood 
following internal ex vivo irradiation with  [223Ra]RaCl2.
Methods Blood samples of ten volunteers were irradiated by adding  [223Ra]RaCl2 solution with different activity concen-
trations resulting in absorbed doses to the blood of 3 mGy, 25 mGy, 50 mGy and 100 mGy. PBMCs were isolated, divided 
in three parts and either fixed directly (d-samples) or after 4 h or 24 h culture. After immunostaining, the induced γ-H2AX 
α-tracks were counted. The time-dependent decrease in α-track frequency was described with a model assuming a repair 
rate R and a fraction of non-repairable damage Q.
Results For 25 mGy, 50 mGy and 100 mGy, the numbers of α-tracks were significantly increased compared to baseline at 
all time points. Compared to the corresponding d-samples, the α-track frequency decreased significantly after 4 h and after 
24 h. The repair rates R were (0.24 ± 0.05)  h−1 for 25 mGy, (0.16 ± 0.04)  h−1 for 50 mGy and (0.13 ± 0.02)  h−1 for 100 mGy, 
suggesting faster repair at lower absorbed doses, while Q-values were similar.
Conclusion The results obtained suggest that induction and repair of the DSB damage depend on the absorbed dose to the 
blood. Repair rates were similar to what has been observed for irradiation with low linear energy transfer.
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Introduction

In nuclear medicine, the number of systemic treatments with 
α-particle emitters in patients with prostate cancer is increas-
ing. The ALSYMPCA trial disclosed that  [223Ra]RaCl2 
treatment prolonged the lives of castration-resistant prostate 

cancer patients with widespread bone metastatic disease. 
Consequently,  [223Ra]RaCl2 (Xofigo®, Bayer) obtained mar-
keting authorization as the first α-particle emitting radiop-
harmaceutical [1, 2]. Furthermore, reports on compassionate 
use treatment with  [225Ac]Ac-PSMA were published that 
describe the successful treatment in patients with prostate 
cancer metastases [3, 4] or in patients with neuroendocrine 
tumours [5].

α-Particles have a short range below 0.1 mm, a high lin-
ear energy transfer (LET) and have been found to induce 
complex DNA damage [6–8] and complex chromosome 
aberrations [9, 10]. When α-particle emitting radiopharma-
ceuticals such as  [223Ra]RaCl2 are administered systemi-
cally by intravenous injection, target and non-target tissues 
will be exposed to ionising radiation [11]. After adminis-
tration, the activity clears from the patients’ blood. Some 
activity remains in the blood for several days after the start 
of therapy, leading to prolonged internal irradiation with a 
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decreasing absorbed dose rate [12, 13]. Consequently, the 
α-particles induce DNA double-strand breaks (DSBs) in the 
nuclei of the hit peripheral blood mononuclear cell (PBMC) 
[8, 14].

For the detection of DSBs in the low dose range  
< 100 mGy, the biomarkers γ-H2AX and 53BP1 are widely 
used [15]. Radiation-induced DSBs can be detected and 
quantified by microscopically visible DSB damage protein 
foci that display both γ-H2AX and 53BP1 [16–19]. DSB foci 
disappear by 53BP1 dissociation and γ-H2AX dephospho-
rylation after DSB repair has been completed [20, 21]. Low-
LET electrons and photons induce localized focal assemblies 
relating to the generation of mostly simple isolated DSBs 
[22]. After irradiation with α-emitting radionuclides, not 
only distinct foci, but also γ-H2AX + 53BP1-containing 
DNA damage tracks, so-called α-tracks, are detected in hit 
cells’ nuclei [6, 23–25].

Ex vivo studies of ionising radiation-induced DSB for-
mation in PBMCs indicate a linear relationship between the 
number of microscopically visible α-tracks and the absorbed 
dose to the blood after internal irradiation with α-emitters in 
the low dose range < 100 mGy [6, 7]. This observation was 
also confirmed in an in vivo study, when patient blood was 
examined in the first hours after  [223Ra]RaCl2 administration 
[13]. However, the aforementioned studies mainly focused 
on the induction of DNA damage. The second study pro-
vided only limited data on the in vivo repair of the damage 
induced by the α-emitters in patients. Due to slow excretion 
of the activity from the blood in patients, the DNA dam-
age induction competes with the DNA damage repair, thus 
affecting quantitative information on repair rates of DNA 
damage caused by α-particles. As high LET-induced com-
plex DNA damage is considered difficult to repair [14, 26], a 
detailed analysis of these repair rates is of particular interest. 
Quantitative data on the repair after ex vivo internal irradia-
tion with α-emitting radionuclides have to the best of our 
knowledge not been published so far.

Therefore, the aim of this study was to analyse ex vivo 
the induction and repair of DSBs in isolated PBMCs after an 
internal ex vivo irradiation of whole blood with  [223Ra]RaCl2 
with nominal absorbed doses between 3 mGy and 100 mGy.

Materials and methods

Blood sampling, irradiation and isolation of PBMCs

Ten healthy volunteers (5 female and 5 male) aged 
between 23 and 64 years were included in the study. On 
the day of the test, 35 ml of blood were taken from each 
subject using Li-Heparin blood-collecting tubes (S-Mon-
ovette®; Sarstedt). The blood was then divided into five 

samples of 7 ml each. One of the five samples remained 
unirradiated and thus served as a control. Each of the 
other samples was supplemented with 1 ml  [223Ra]RaCl2 
solution diluted in phosphate-buffered saline (PBS) in 
different concentrations, resulting in four different pre-
determined absorbed doses to the blood: 3 mGy, 25 mGy, 
50 mGy and 100 mGy. During incubation at 37 °C for 
1 h, the samples were on a roller mixer to ensure uniform 
irradiation from 223Ra and its progeny. Subsequently, 1 ml 
of each sample was pipetted into round-bottom tubes to 
determine the exact activity concentration, while the 
remaining sample was transferred to CPT Vacutainer 
tubes (BD) and centrifuged according to the manufac-
turer’s instructions in order to separate the PBMCs from 
the rest of the blood and the radioactive solution. The 
isolated PBMCs of each of the five blood samples were 
split into three parts and washed twice in PBS, so that less 
than 0.1% of the initially added activity was still detect-
able in the cell pellet. Then, PBMCs were fixed either 
directly by adding 70% ice-cold ethanol solution (d = 0 h) 
to investigate DNA damage induction (d-sample) or after 
4 h or 24 h of culture in RPMI medium containing HEPES 
(Life Technologies) to determine DNA repair. Thus, a 
total of 15 cell samples per volunteer were processed. 
The cells were stored at − 20 °C before they were shipped 
to the Bundeswehr Institute of Radiobiology in Munich, 
Germany, for further processing.

Immunofluorescent staining and evaluation of DNA 
damage

The immunofluorescent staining of the ethanol-fixed 
PBMCs with γ-H2AX and 53BP1 antibodies was carried 
out as described by Scherthan et al. [27]. The classifica-
tion and evaluation of DNA damage followed the protocol 
described by Schumann et al. [6]. γ-H2AX-positive tracks 
were considered as “α-tracks” and were counted manually 
in 500 cells per sample by the same experienced investigator 
(H.S.). From this, the average number of α-tracks per 100 
cells and the corresponding counting errors (by assuming a 
Poisson distribution) were calculated.

Activity quantification and absorbed dose 
calculation

An aliquot of 1 ml of each irradiated blood sample was 
measured in a calibrated, high-purity germanium detector 
(Canberra). The activity in each blood sample was deter-
mined by evaluating three different γ-emission lines of 223Ra 
and its progeny as described by Schumann et al. [6]. The 
activity concentration was then decay corrected to the start 
of incubation.
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For the calculation of the absorbed dose coefficient, it was 
assumed that all α-particles emitted by 223Ra and its progeny, 
i.e. four α-particles per decay, deposit their energy locally 
in the blood sample. The number of 223Ra disintegrations 
within 1 h in 1 ml of blood was calculated. This resulted 
in an absorbed dose coefficient of 15.5 mGy  kBq−1, as 
described by Schumann et al. [6]. To calculate the absorbed 
dose to the blood, this absorbed dose coefficient was mul-
tiplied by the activity concentration in the corresponding 
blood sample.

Modelling of DNA damage repair

Schumann et al. [28] described the reduction of radiation-
induced γ-H2AX + 53BP1 foci after internal irradiation 
with 131I in analogy to Lobachevsky et  al. [29]. This 
approach can also be used to model the number of α-tracks 
per 100 cells N(t) at time t :

Here, N
0
 is the maximum number of α-tracks per 100 

cells and Q the fraction of unrepaired α-tracks, i.e. the 
residual damage. R denotes the repair rate in  h−1.

Statistical analysis

OriginPro 2019b (Origin Lab Corporation) was used for 
statistical analysis and plotting. The Shapiro-Wilk test was 
used to test the data for normal distribution. To compare 
datasets, paired-sample t-tests (for normally distributed 
data) and Wilcoxon signed-rank tests (for not normally 
distributed data) were conducted. The results were con-
sidered as statistically significant for p < 0.05.

(1)N(t) = N
0
⋅ ((1 − Q) ⋅ exp(−Rt) + Q)

Results

Absorbed dose‑dependent α‑track induction 
and decrease

The calculated values of the absorbed dose to the blood 
of the ten experiments conducted are given in Table 1. 
Examples of nuclei with α-tracks are shown in Fig. 1. The 
average number of α-tracks in 100 cells for each absorbed 
dose value and for each of the three time points (d, 4 h, 
and 24 h) studied is shown in the boxplot in Fig. 2A, and 
the corresponding values are given in Table 1. In 26 of 
the 30 unirradiated samples, no α-tracks were detected, 
whereas in the other four samples, one α-track per 500 
cells was observed. This corresponds to 0.03% α-tracks in 
the baseline samples. A significant increase of the aver-
age number of α-tracks was observed for all irradiated 
d-samples compared to baseline. For the absorbed doses 
to the blood of 25 mGy, 50 mGy and 100 mGy, the average 
number of α-tracks decreased significantly after 4 h and 
after 24 h cell culture in RPMI medium. After 4 h, 48% 
to 62% of the initial numbers of α-tracks in the d-samples 
were still detectable. After 24 h, this number decreased 
to 10% to 16% (Table 2). For 3 mGy, a similar trend of 
α-track reduction was visible (4 h: 50% persistent α-tracks; 
24 h: 22% persistent α-tracks), however, not being sig-
nificant due to the high uncertainty of the comparatively 
low α-track numbers. The number of α-tracks after 24 h 
in culture was still significantly increased compared to 
baseline in the 25 mGy, 50 mGy and 100 mGy samples, 
indicating that DNA repair in some cells with α-tracks is 
not completed after 24 h.

The absorbed dose-dependent α-track frequency is plotted 
in Fig. 2B. Linear fits to the pooled data for the three time 
points investigated demonstrated that the α-track induction 
is linearly dependent on the absorbed dose to the blood in 
the directly fixed samples (r2 = 0.95) and in the samples fixed 

Table 1  Absorbed dose to the blood, activity concentration and average number of α-tracks per 100 cells. In each case, the median value (includ-
ing the minimum and maximum value) is given and below, if applicable, the mean value with the standard deviation

Nominal absorbed dose to 
the blood (mGy)

Nominal activity concentration 
in the blood (kBq  ml−1)

Absorbed dose to the 
blood (mGy)

Average number of α-tracks in 100 cells

d 4 h 24 h

0 (baseline) 0 0 0.0 (0.0–0.2) 0.0 (0.0–0.2) 0.0 (0.0–0.0)
3 0.2 2.9 (2.8–3.3) 0.6 (0.2–1.2) 0.4 (0.0–0.8) 0.0 (0.0–0.6)
25 1.6 24.4 (23.7–25.1)

24.4 ± 0.4
4.0 (2.4–5.2)
3.8 ± 1.0

1.7 (0.8–3.4)
1.9 ± 0.8

0.4 (0.0–1.0)
0.5 ± 0.3

50 3.2 48.4 (47.4–49.4)
48.4 ± 0.6

7.3 (4.4–10.0)
7.3 ± 1.8

4.7 (2.6–5.2)
4.4 ± 0.8

1.2 (0.4–2.0)
1.2 ± 0.5

100 6.5 97.8 (94.8–99.9)
97.7 ± 1.6

13.0 (11.6–18.0)
13.9 ± 2.2

8.6 (6.4–11.0)
8.6 ± 1.5

1.6 (0.8–2.0)
1.4 ± 0.5
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after 4 h (r2 = 0.91) (Table 3). After 24 h, linearity between 
the absorbed dose to the blood and the number of residual 
α-tracks is no longer evident (r2 = 0.56). The coefficients 
of determinations, the slope and the intercept values of the 
linear fits are listed in Table 2.

Modelling of DNA damage repair

Figure 3 shows the time-dependent α-track reduction for the 
different absorbed doses to the blood (25 mGy, 50 mGy and 
100 mGy) including monoexponential fits to the pooled data 
of all volunteers according to Eq. 1. Data on the 3 mGy sam-
ples were excluded from these analyses due to low statistical 
power. The α-track repair rates R were (0.24 ± 0.05)  h−1 for 
25 mGy, (0.16 ± 0.04)  h−1 for 50 mGy and (0.13 ± 0.02)  h−1 
for 100 mGy and thus decrease with increasing absorbed 
doses, suggesting more rapid repair at lower absorbed doses. 
The fractions of unrepaired α-tracks Q were 0.09 ± 0.03 
for 25 mGy, 0.12 ± 0.03 for 50 mGy and 0.06 ± 0.03 for 
100 mGy and therefore similar for all absorbed dose values 
within the range of the errors. All fit parameters are listed 
in Table 2.

Discussion

In this study, the time course of α-particle-induced DNA 
damage was systematically investigated by internal ex vivo 
irradiation of blood samples. This setup was chosen to 
mimic the irradiation in vivo in a patient during radionu-
clide therapy with an α-emitter, such as the radiopharma-
ceutical  [223Ra]RaCl2 used here. The absorbed dose range 
between 3 mGy and 100 mGy was chosen since it reflects 
the absorbed doses to the blood that can be expected during 

Fig. 2  Average number of α-tracks per 100 cells for each absorbed 
dose value and for each of the three time points (d, 4  h and 24  h) 
studied (n = 10). For each data point, α-tracks were counted in 500 

cells. A Boxplot of all data points. B Plot of the absorbed dose-
dependency with separate linear fits for the three time points

Fig. 1  Selection of PBMC nuclei with α-particle hits (α-tracks) after 
irradiation with  [223Ra]RaCl2. DNA was stained with DAPI (blue) 
and γ-H2AX as DNA damage marker (green). All images show the 
linear morphology of the damage clusters. Additionally, γ-H2AX 
signals across the entire affected nuclei can be seen. This is a typical 
finding after exposure of cells to high LET irradiation [13, 42]. In all 
unaffected nuclei, almost no γ-H2AX is visible. A One of the four 
cell nuclei contains a single α-track. B Rare event of two α-tracks 
within one nucleus
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corresponding radionuclide therapies [13, 30, 31]. For 
this dose range, there were no data yet that systematically 
describe the repair of DNA DSBs after internal irradiation 
with α-emitters.

The duration of the internal irradiation process in this 
study was set at 1 h in order to be able to examine several 
blood samples with different absorbed doses at the same day. 
Longer irradiation durations might have better mimicked the 
behaviour in the patient but would have resulted in a more 
complicated experimental setup, which in turn would have 
meant that fewer samples could have been processed.

After 1 h irradiation, the average number of α-tracks per 
100 cells increased linearly with the absorbed dose to the 
blood and was (0.141 ± 0.005)  mGy−1. This value is in the 
same order of magnitude, but lower than the expected value 
of (0.222 ± 0.014)  mGy−1 according to an ex vivo calibra-
tion curve [6]. The reason for the different induction rates 
could be the slightly different protocol of the blood sam-
ple preparation as well as the enumeration of the α-tracks. 
While Schumann et al. evaluated 100 cells per sample [6], 
500 cells per sample were evaluated in the present study, 
thereby reducing counting errors. Moreover, the absorbed 
dose ranges in the two studies were slightly different. The 
induction of α-tracks was also investigated in vivo by ana-
lysing the α-track frequency in PBMCs of patients during 
therapy with  [223Ra]RaCl2 [13]. In the in vivo study, sig-
nificantly increased α-track frequencies were observed 1.5 h 
after administration of  [223Ra]RaCl2, at absorbed doses to 
the blood of only 0.5 mGy to 3.2 mGy [13]. The number 
of α-tracks per 100 cells induced after 1.5 h in vivo (mean: 
0.93 ± 0.33) is similar to the number of α-tracks in the 
directly fixed 3 mGy samples that ranged between 0.2 and 
1.2 [13].

After 4 h cell culture, a significant reduction of the 
α-track frequency compared to the directly fixed PBMCs 
was demonstrable for absorbed doses ≥ 25 mGy. This decline 
in the number of α-tracks can be interpreted as the progres-
sion of DNA repair. Alternatively, cells with α-particle dam-
age might have been removed by cell death. However, we 
only occasionally noted PBMCs displaying pan-γ-H2AX 
pattern (< 0.7%) indicative of cell death [32, 33] in our sam-
ples without significant differences among the time points 
and absorbed doses investigated. Therefore, it is unlikely that 
an elimination of damaged cells influenced the reduction of 
the frequency of α-tracks over time.

After 24 h cell culture, up to 89% of the α-particle-
induced damage was repaired: Only 11% to 23% of the ini-
tially detected α-tracks remained. The fraction of remaining 
α-tracks after 24 h matches the assumption that approxi-
mately 15% of radiation-induced DSBs are repaired with 
slow kinetics and require ATM and the nuclease Artemis 
[34, 35]. The decline in the α-track frequency ex vivo con-
trasts the observations in vivo [13]. In the in vivo study, 
the average number of α-tracks per 100 cells 24 h after the 
administration of  [223Ra]RaCl2 (at absorbed doses to the 
blood below 11 mGy) ranged between 0.82 and 2.37 and is 
similar to the α-track numbers within in the first hours after 
therapy start [13]. In comparison to the situation ex vivo, 
the irradiation in vivo is not stopped after 1 h, but contin-
ues. The absorbed dose increases further in vivo, albeit at 
a decreasing dose rate. This may explain why the reduction 
of the α-track frequency observed in this ex vivo study was 
not seen in vivo.

The decrease of the number of α-tracks with time can 
be adequately described by a model with a monoexponen-
tial decay function. However, the number of time points 
examined in this study was restricted to 3 due to the limited 
amount of blood we could draw from each volunteer. This 
limitation also meant that separate fits could not be per-
formed for the individual subjects, allowing only a general 
fit of the pooled data.

From the fit parameters, it is evident that a certain pro-
portion Q of DNA damage, ranging from 5% to 11% in the 
studied dose range, remained unrepaired. This matches the 
observation that 11% to 23% of the α-tracks are still detect-
able after 24 h repair time ex vivo, and it also agrees with 

Table 2  Fit parameters of the 
DNA damage repair model and 
percentage of persistent α-tracks 
as a function of the repair time

* Relative to the initial number of α-tracks in the directly fixed samples (d)

Nominal absorbed dose to 
the blood (mGy)

Persistent α-tracks 
(%)*

Fit parameters

4 h 24 h N0 R  (h−1) Q r2

25 48 11 3.51 ± 0.29 0.24 ± 0.05 0.09 ± 0.03 0.83
50 58 16 7.24 ± 0.48 0.16 ± 0.04 0.12 ± 0.03 0.88
100 62 10 13.66 ± 0.61 0.13 ± 0.02 0.06 ± 0.03 0.96

Table 3  Results of the linear fits for the three time points (d, 4 h and 
24 h) investigated

Slope  (mGy−1) Intercept r2

d 0.141 ± 0.005 0.131 ± 0.084 0.95
4 h 0.080 ± 0.004 0.062 ± 0.073 0.91
24 h 0.012 ± 0.002 0.162 ± 0.067 0.56
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the observations of incomplete repair of the complex DNA 
damage even days and weeks after therapy start in vivo [13].

The model presented here was also used to describe 
the reduction of radiation-induced γ-H2AX + 53BP1 DSB 
foci after internal ex vivo irradiation with the β−-emitter 
131I [28]. For an absorbed dose to the blood of 50 mGy, 
the foci repair rate was R = (0.28 ± 0.03)  h−1 compared to 
(0.16 ± 0.04)  h−1 for α-tracks in the present study [28]. 
This indicates that the repair of α-particle-induced com-
plex DNA damage progresses slower than the repair of 
β-emitter-induced simple DSB damage. The fraction of 
unrepaired radiation-induced γ-H2AX + 53BP1 foci after 
irradiation with 131I was Q = 0.06 ± 0.02 [28]. This value is 
similar to the Q-values of the remaining α-tracks obtained 
in the present study, suggesting that the percentage of resid-
ual damage does not differ for ex vivo irradiation with α- or 
β-emitting radionuclides in the absorbed dose range studied. 
The latter may be puzzling, but given that DSB repair is 
difficult or retarded in the heterochromatin compartment of 
the nucleus [34–37], it may well be that the cells display-
ing persistent DNA damages may be those that carry DSBs 
buried in heterochromatin [35]. It should also be noted 
that the parameter Q describes the relative proportion of 
residual damage and does not represent an absolute value. 
Since the number of DSBs per track can be estimated to 
be 12 ± 9 [23], the absolute number of persistent damages 
after α-irradiation is higher than after low-LET irradiation. 
This agrees with observations of persistent complex DNA 
damage after high-LET irradiation [8, 14, 38]. The fate of 
the α-particle-induced persistent damage in PBMCs at time 
points > 24 h remains to be determined.

The observation that the α-track repair rates differ for 
the various absorbed doses investigated indicates that DSB 
repair depends on the absorbed dose. The decrease of the 
R-values with increasing absorbed doses above 25 mGy 
suggests more rapid repair at lower absorbed doses after 
internal irradiation. This is in contrast to studies investigat-
ing DSB repair after external low-LET irradiation which 
showed a compromised DSB repair rate at very low doses 
[39–41]. Rothkamm and Löbrich reported a decreasing 
repair capacity for X-ray doses below 20 mGy and a com-
plete lack of repair at 1.2 mGy [39]. In the current study, 
we did not obtain significant results when investigating the 
repair of DSB damage induced by internal irradiation with 
3 mGy absorbed dose to the blood. A potential explana-
tion is that the uncertainty in the α-track frequency was too 
high in 500 evaluated cell nuclei. The study of the repair 
after α-particle exposure in the absorbed dose range below 
25 mGy, therefore, requires further studies with a signifi-
cantly higher number of evaluated cells. However, this will 
only be possible upon the development of automatic count-
ing systems that can reliably quantify α-tracks in larger cell 
numbers per sample.

Conclusion

The time- and dose-dependency of track-like DSB dam-
age induced by internal irradiation with the clinically used 
α-emitter  [223Ra]RaCl2 was investigated ex  vivo under 
defined conditions and modelled using appropriate fit 
functions. The obtained results suggest that induction and 

Fig. 3  Average number of α-tracks per 100 cells as a function of the 
repair time for 25  mGy, 50  mGy and 100  mGy. The black curves 
represent population-based fits according to Eq.  1. The resulting fit 

parameters, i.e. the maximum number of α-tracks N0, the repair rate 
R in  h−1 and the fraction of unrepaired α-tracks Q, are given in each 
case. Additionally, the coefficient of determination r2 is given
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repair of the DSB damage depend on the absorbed dose to 
the blood, yielding repair rates similar to what has been 
observed for low-LET irradiation.
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