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Abstract
Purpose Dose-escalated external beam radiation therapy (EBRT) and EBRT+ high-dose-rate brachytherapy (HDR-BT)
boost are guideline-recommended treatment options for localized prostate cancer. The purpose of this study was to compare
long-term outcome and toxicity of dose-escalated EBRT versus EBRT+HDR-BT boost.
Methods From 2002 to 2019, 744 consecutive patients received either EBRT or EBRT+HDR-BT boost, of whom
516 patients were propensity score matched. Median follow-up was 95.3 months. Cone beam CT image-guided EBRT
consisted of 33 fractions of intensity-modulated radiation therapy with simultaneous integrated boost up to 76.23Gy
(DMean). Combined treatment was delivered as 46Gy (DMean) EBRT, followed by two fractions HDR-BT boost with 9Gy
(D90%). Propensity score matching was applied before analysis of the primary endpoint, estimated 10-year biochemical
relapse-free survival (bRFS), and the secondary endpoints metastasis-free survival (MFS) and overall survival (OS).
Prognostic parameters were analyzed by Cox proportional hazard modelling. Genitourinary (GU)/gastrointestinal (GI)
toxicity evaluation used the Common Toxicity Criteria for Adverse Events (v5.0).
Results The estimated 10-year bRFS was 82.0% vs. 76.4% (p= 0.075) for EBRT alone versus combined treatment,
respectively. The estimated 10-year MFS was 82.9% vs. 87.0% (p= 0.195) and the 10-year OS was 65.7% vs. 68.9%
(p= 0.303), respectively. Cumulative 5-year late GU≥ grade 2 toxicities were seen in 23.6% vs. 19.2% (p= 0.086) and
5-year late GI≥ grade 2 toxicities in 11.1% vs. 5.0% of the patients (p= 0.002); cumulative 5-year late grade 3 GU toxicity
occurred in 4.2% vs. 3.6% (p= 0.401) and GI toxicity in 1.0% vs. 0.3% (p= 0.249), respectively.
Conclusion Both treatment groups showed excellent long-term outcomes with low rates of severe toxicity.

Keywords Long-term outcome · Dose escalation · High-dose-rate brachytherapy boost · Propensity score matching ·
Toxicity
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Introduction

External beam radiation therapy (EBRT) and EBRT com-
bined with high-dose-rate brachytherapy (HDR-BT) boost
are well-established options for treating localized prostate
cancer. Both radiation therapy modalities are widely prac-
ticed, but the question arises of which modality offers the
best oncologic outcome while minimizing toxicity. Al-
though HDR-BT offers excellent dose conformity, EBRT
may be beneficial for ablating periprostatic disease exten-
sion in high-risk cancer [1]. Several randomized controlled
trials showed an increase in biochemical control by dose
escalation, which Hoskin et al. was able to demonstrate for
the addition of HDR-BT boost to EBRT [2–7]. While dose-
escalated EBRT+HDR-BT boost has proven to be superior
to EBRT with an EQD2 of 66–74Gy, data on the compar-
ison of dose-escalated treatment modalities above 80Gy
remain scarce [7]. As dose escalation above 80Gy remains
controversial and has yet to show an improvement of clini-
cally important outcome parameters, the present study aims
at improving the evidence base for dose escalation beyond
80Gy [8, 9].

In the absence of randomized controlled trials for the
comparison of dose-escalated EBRT above 80Gy versus
EBRT+HDR-BT boost, we performed a propensity score
matching-based single-center analysis to address this ques-
tion. Specifically, we compared the long-term biochemi-
cal relapse-free survival (bRFS), metastasis-free survival
(MFS), overall survival (OS), and the long-term side ef-
fects of dose-escalated EBRT with an equivalent dose in
2Gy fractions (EQD2) of 83Gy (α/β 1.5Gy) versus com-
bined dose-escalated EBRT+HDR-BT boost with an EQD2
of 100Gy for localized prostate cancer.

Materials andmethods

Study design and participants

This retrospective single-center analysis is based on
744 consecutive patients treated between 2002 and 2019
with either EBRT (n= 406) or EBRT+HDR-BT boost
(n= 338) for localized prostate cancer. All patients had
pathologically confirmed prostate cancer. Stratification
was conducted according to the risk group classification
of D’Amico et al. [10]. Additive androgen deprivation
therapy was prescribed at the discretion of the treating
urologist and recommended for patients with intermediate-
risk (6 months) and high-risk disease (24–36 months).

Treatment

The treatment procedures have been described in detail be-
fore and will be summarized briefly in the following [11,
12]. For the EBRT cohort, radiation therapy was deliv-
ered with intensity-modulated radiation therapy (IMRT) or
volumetric modulated arc therapy (VMAT) in 33 fractions
with simultaneous integrated boost and two dose levels of
1.82Gy and 2.31Gy per fraction, resulting in a prescribed
planning target volume (PTV) dose of 60.06Gy (D95) and
a PTVBoost mean dose of 76.23Gy. Concerning contouring,
a clinical target volume (CTV), CTVP–SV, was generated
which consisted of the prostate and the proximal seminal
vesicles, whereas the CTVP+SV included the prostate and
the whole seminal vesicles. The PTVBoost was defined by
placing a 5-mm margin around CTVP–SV with avoidance of
the rectum. The PTV was created with a 10-mm margin
around CTVP+SV in all but the dorsal direction, where a 7-
mm margin was applied.

For the combined treatment cohort, EBRT was delivered
with 3D-conformal radiation therapy, IMRT, or VMAT in
23 fractions with 2Gy per fraction, resulting in a prescribed
PTV dose of 46Gy (DMean). A CTV was generated consist-
ing of the prostate and the seminal vesicles. The PTV was
created by a 10-mm margin around the CTV in all but
the dorsal direction, where a 7mm margin was used. Ap-
proximately 2 weeks after completion of EBRT, two HDR-
BT boost fractions were performed with a 14-day inter-
val between the two applications. The HDR-BT boost PTV
was defined as the entire prostate without the seminal vesi-
cles and additional margin. The prescription dose for the
PTV was 9Gy (D90%) per fraction. Pinnacle3 (Philips Ra-
diation Oncology Systems, Fitchburg, WI, USA) was used
for EBRT treatment planning for both treatment cohorts.

Outcomes

Biochemical failure was defined according to the Phoenix
definition as nadir plus a≥ 2-ng/ml increase in prostate-
specific antigen (PSA). Biochemical relapse-free survival,
defined as the time between the conclusion of radiation
therapy treatment and the date of biochemical failure, was
the primary reported endpoint of this retrospective study.
Secondary endpoints were metastasis-free survival, overall
survival, and the 5-year cumulative incidence of gastroin-
testinal and genitourinary toxicity. Metastasis-free survival
was defined as the time between the end of radiation therapy
and the date of occurrence of distant metastasis diagnosed
by imaging. The time between the end of treatment and
the date of death from any cause was defined as overall
survival. Patients alive or lost to follow-up at the time of
analysis were censored at the date of last contact. Follow-
up was defined as the time between the date of the end
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Table 1 Baseline characteristics for patients who underwent external beam radiotherapy versus those who received external beam radiotherapy
plus high-dose-rate brachytherapy boost before and after propensity score matching

Characteristic Unmatched (complete) dataset Matched (1:1) dataset

EBRT (N= 406) EBRT+HDR-BT
(N= 338)

p-value* EBRT (N= 258) EBRT+HDR-BT
(N= 258)

p-valuea

Follow-up (months) 68.3 (49.3,
104.5)

101.8 (65.7, 143.0) <0.001 75.9 (53.8,
117.2)

110.2 (67.5, 150.7) <0.001

KPS (%) 90 (90, 100) 90 (90, 100) <0.001 90 (80, 100) 90 (90, 100) <0.001

Age at RT (years) 73.7 (68.6, 76.9) 69.0 (64.3, 73.3) 0.001 72.3 (66.8, 76.4) 71.0 (66.0, 74.5) 0.003

PSA at diagnosis
(ng/mL)

8.3 (5.4, 16.4) 10.1 (6.5, 20.4) 0.003 10.2 (6.3, 21.6) 10.5 (6.4, 21.5) 0.860

PSA at diagnosis, n
(%)

– – 0.010 – – 0.779

<10ng/mL 242 (59.6) 164 (48.5) – 126 (48.8) 121 (46.9) –

10–20ng/mL 81 (20.0) 88 (26.0) – 63 (24.4%) 70 (27.1) –

>20ng/mL 83 (20.4) 86 (25.4) – 69 (26.7%) 67 (26.0) –

Gleason score, n (%) – – <0.001 – – 0.197

≤6 133 (32.8) 63 (18.6) – 61 (23.6) 55 (21.3) –

7 170 (41.9) 173 (51.2) – 120 (46.5) 140 (54.3) –

≥8 99 (24.4) 100 (29.6) – 77 (29.8) 63 (24.4) –

Missing, n (%) 4 (1.0) 2 (0.6) – – – –

Stage, n (%) – – <0.001 – – 0.144

≤T2a 316 (77.8) 206 (60.9) – 175 (67.8) 165 (64.0) –

T2b 7 (1.7) 13 (3.8) – 5 (1.9) 13 (5.0) –

≥T2c 83 (20.4) 119 (35.2) – 78 (30.2) 80 (31.0) –

D’Amico risk class, n
(%)

– – <0.001 – – 0.073

Low 88 (21.7) 15 (4.4) – 23 (8.9) 13 (5.0) –

Intermediate 142 (35.0) 115 (34.0) – 85 (32.9) 105 (40.7) –

High 176 (43.3) 208 (61.5) – 150 (58.1) 140 (54.3) –

Lymph node RT, n (%) – – 0.004 – – 0.612

Yes 101 (24.9) 116 (34.3) – 85 (32.9) 79 (30.6) –

No 305 (75.1) 222 (65.7) – 173 (67.1) 177 (68.6) –

ADT, n (%) – – 0.067 – – 0.724

Yes 184 (45.3) 176 (52.1) – 138 (53.5) 134 (51.9) –

No 222 (54.7) 162 (47.9) – 120 (46.5) 124 (48.1) –

ADT duration (days) 637 (352, 1022) 594 (274, 823) 0.129 609 (348, 1013) 548 (206, 777) 0.089

MRI staging, n (%)

Yes 253 (62.3) 79 (23.4) <0.001 154 (59.7) 49 (19.0) <0.001

No 153 (37.7) 259 (76.6) – 104 (40.3) 209 (81.0) –

PET-CT after RT, n
(%)

– – 0.074 – – 0.880

Yes 30 (7.4) 38 (11.2) – 23 (8.9) 25 (9.7) –

No 376 (92.6) 300 (88.8) – 235 (91.1) 333 (90.3) –

Estimates were given as median (quartile 1, quartile 3) or frequency (percentage)
ADT androgen deprivation therapy, EBRT external beam radiation therapy, HDR-BT high-dose-rate brachytherapy, KPS Karnofsky performance
status, PET-CT positron-emission tomography computed tomography, PSA prostate-specific antigen, RT radiation therapy
ap-values were calculated using Mann–Whitney U test for continuous and χ2 test for categorical variables
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of radiation therapy and the date of last news. Assessment
of physician-recorded toxicity during radiation therapy was
performed at baseline, at the end of treatment, 6 weeks
after treatment, and at 6-month intervals thereafter. After
2 years, follow-up was changed to longer periods with an-
nual examination. Gastrointestinal (GI) and genitourinary
(GU) toxicity were scored using the Common Terminology
Criteria for Adverse Events (CTCAE) v5.0. We assessed
side effects systematically according to CTCAE v5.0 dur-
ing follow-ups as well as by reviewing the patient files.
Acute toxicity was defined as occurring between the start
of radiation therapy and until 3 months after the end of
radiation therapy. All subsequent follow-ups were included
in the late toxicity evaluation.

Statistical analysis

A propensity score-matched analysis with a 1:1 ratio and
a caliper of 0.1 was conducted to balance the significantly
different baseline patient and histopathologic characteris-
tics between the two treatment groups in order to mini-
mize their effect on the oncologic outcome. A logistic re-
gression model was used to calculate the propensity score,
which included the following variables: patient age at the
start of radiation therapy, Gleason score, initial PSA value,
stage, use of ADT, and risk group according to D’Amico.
All survival curves were estimated using the Kaplan–Meier
method with the date of the end of radiation therapy as
baseline time. For categorical data χ2 tests and for contin-
uous variables Mann–Whitney U tests were used to com-
pare baseline characteristics for unmatched and matched
datasets. The log-rank test was used to compare survival
curves. On the matched dataset, multivariable Cox propor-
tional hazard models including hazard ratios (HR) with 95%
confidence intervals (CI) were run using propensity score
matching variables and type of radiation therapy treatment

Fig. 1 Flow diagram of the
propensity score-matched analy-
sis comparing prostate external
beam radiation therapy versus
external beam radiation ther-
apy+ high-dose-rate brachyther-
apy boost. PSA prostate-specific
antigen

to uncover prognostic factors for oncologic outcome. For all
statistical analyses, the R software environment for statisti-
cal computing and graphics (version 4.1; The R Foundation
for Statistical Computing, Vienna, Austria) was used. All
tests were two sided with statistical significance indicated
by p< 0.05.

Results

Before propensity score matching, significant differences
in patient age at the start of radiation therapy, initial PSA,
Gleason score, stage, and D’Amico risk group were present.
Patients in the combined treatment group had increased un-
favorable disease characteristics (higher initial PSA, higher
Gleason score, higher stage), and belonged more often to
the high-risk group according to D’Amico. Irradiation of
the pelvic lymph nodes occurred more often in the com-
bined treatment group for the unmatched dataset. In the
matched dataset, the pelvic lymph nodes were irradiated
in 32.9% of all patients in the EBRT-only group and in
30.6% in the EBRT+HDR-BT group (p= 0.612). Addi-
tive ADT was given in 53.5% versus 51.9% (p= 0.724)
with a median duration (interquartile range) of 609 days
(348–1013 days) versus 548 days (206–777 days) for the
EBRT-only group versus the combined treatment group,
respectively (p= 0.089). All clinical, pathological, and
treatment-related characteristics before and after propen-
sity score matching are shown in Table 1.

To enable independent patient matching, propensity
scores were calculated for the use of EBRT alone and
EBRT plus HDR-BT boost, based on logistic regression
analysis. Of the 744 patients treated either with EBRT or
with combined EBRT and HDR-BT boost, 258 matched
pairs with a sample size of 516 patients remained after
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Fig. 2 Kaplan–Meier curves for biochemical relapse-free survival for
external beam radiation therapy (EBRT, red line) versus external beam
radiation therapy+ high-dose-rate brachytherapy boost (EBRT+HDR-
BT, blue line) after propensity score matching, with corresponding
95% confidence intervals

1:1 propensity score matching. The corresponding flow
diagram is presented in Fig. 1.

For the matched cohort, median follow-up (interquar-
tile range) was 95.3 months (59.2–132.4 months) in to-
tal. In the matched cohort (n= 516), the estimated 10-year
bRFS was 82.0% (95% CI 76.0–88.4%) versus 76.4% (95%
CI 70.8–82.3%) for EBRT versus EBRT+HDR-BT boost
(p= 0.075), respectively (Fig. 2). The estimated 10-year
MFS was 82.9% (95% CI 77.0–89.2%) versus 87.0% (95%
CI 82.5–91.8%) with p= 0.195 and the estimated 10-year
OS was 65.7% (95% CI 59.0–73.2%) versus 68.9% (95%
CI 62.9–75.5%) with p= 0.303 (Figs. 3 and 4).

In the high-risk group (n= 290), bRFS was worse
for EBRT+HDR-BT boost: the estimated 10-year bRFS
was 76.3% (95% CI 67.1–86.8%) and 66.8% (95% CI
58.8–75.9%) for EBRT alone versus EBRT+HDR-BT
boost, respectively (p= 0.039). No differences in bRFS
between the two treatments for the intermediate-risk group
were observable. MFS and OS were not significantly differ-
ent between the two treatments for all risk groups. Positron-
emission tomography computed tomography (PET-CT)
imaging follow-up was distributed equally (Table 1).

The matched cohort was investigated by multivariable
Cox proportional hazard model analysis for factors asso-
ciated with oncological outcome. A higher Gleason score
was prognostic for lower bRFS, MFS, and OS in multivari-
able analysis. Higher patient age at the start of radiation
therapy was prognostic for decreased MFS. The treatment

Fig. 3 Kaplan–Meier curves for metastasis-free survival for external
beam radiation therapy (EBRT, red line) versus external beam radi-
ation therapy+ high-dose-rate brachytherapy boost (EBRT+HDR-BT,
blue line) after propensity score matching, with corresponding 95%
confidence intervals

Fig. 4 Kaplan–Meier curves for overall survival for external beam ra-
diation therapy (EBRT, red line) versus external beam radiation ther-
apy+ high-dose-rate brachytherapy boost (EBRT+HDR-BT, blue line)
after propensity score matching, with corresponding 95% confidence
intervals
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Table 2 Multivariable Cox proportional hazard model analysis of the propensity score-matched cohort

Variable BRFS (N= 514) MFS (N= 512) OS (N= 514)

N HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value

Age at RT 516 0.98 0.95, 1.01 0.237 0.96 0.92, 0.99 0.007 1.02 0.99, 1.04 0.177

PSA at diagnosis 516 1.00 1.00, 1.01 0.079 1.00 1.00, 1.01 0.662 1.00 0.99, 1.00 0.648

Gleason score

≤6 115 Ref – – Ref – – Ref – –

7 259 2.49 1.09, 5.68 0.031 3.20 0.94, 10.86 0.062 1.36 0.86, 2.15 0.189

≥8 140 4.97 2.15, 11.47 <0.01 8.50 2.52, 28.63 <0.01 2.15 1.30, 3.56 0.003

Stage

≤T2a 339 Ref – – Ref – – Ref – –

T2b 17 1.05 0.32, 3.44 0.936 1.97 0.58, 6.64 0.276 0.84 0.41, 1.75 0.647

≥T2c 158 1.39 0.85, 2.27 0.192 1.75 0.95, 3.20 0.072 0.95 0.64, 1.41 0.801

D’Amico risk class

Intermediate 189 Ref – – Ref – – Ref – –

High 289 1.92 0.93, 3.94 0.077 1.42 0.55, 3.66 0.469 1.25 0.75, 2.07 0.391

ADT

No 242 Ref – – Ref – – Ref – –

Yes 272 0.66 0.41, 1.07 0.088 0.88 0.48, 1.59 0.665 0.86 0.62, 1.20 0.376

Treatment

EBRT 257 Ref – – Ref – – Ref – –

EBRT+HDR-BT 257 1.48 0.94, 2.32 0.089 0.61 0.36, 1.04 0.068 0.89 0.64, 1.24 0.491

ADT androgen deprivation therapy, bRFS biochemical relapse-free survival, CI confidence interval, EBRT external beam radiation therapy, HDR-
BT high-dose-rate brachytherapy, HR hazard ratio, MFS metastasis-free survival, NA not applicable, OS overall survival, PSA prostate-specific
antigen, Ref reference, RT radiation therapy

group was not a prognostic factor for bRFS, MFS, and OS
in multivariate analysis. The results of the Cox proportional
hazard model analysis are summarized in Table 2.

Compared to combined EBRT+HDR-BT boost, EBRT
showed significantly higher acute toxicities and higher cu-
mulative 5-year late GI toxicity≥ grade 2. Acute GU toxi-
city≥ grade 2 occurred in 25.9% versus 11.8% (p< 0.001)
and acute GI toxicity≥ grade 2 in 11.8% versus 2.7%
(p< 0.001), respectively. Cumulative 5-year late GU≥
grade 2 toxicities were seen in 23.6% versus 19.2%
(p= 0.086) and 5-year late GI≥ grade 2 toxicities were
observed in 11.1% versus 5.0% of the patients (p= 0.002),
respectively. Cumulative 5-year late grade 3 GU toxicity
occurred in 4.2% and 3.6% (p= 0.401) and GI toxicity
in 1.0% and 0.3% (p= 0.249) in the EBRT alone versus
combined treatment groups, respectively.

Discussion

Our study demonstrated excellent 10-year bRFS, MFS, and
OS for both EBRT alone and combined EBRT+HDR-BT
boost. The subgroup of high-risk prostate cancer patients
showed increased bRFS for dose-escalated EBRT alone.
This is in contrast to the literature: regarding the compari-
son of conventional fractionated EBRT and EBRT+HDR-
BT boost, several studies reported an improvement in bRFS

for the addition of HDR-BT boost to EBRT [7, 13–16]. In
the 12-year update of a randomized controlled trial, Hoskin
et al. reported a significant improvement in time to relapse
in the HDR-BT boost arm compared to EBRT alone (me-
dian time to relapse 137 versus 82 months) [7]. There are
several possible explanations for this discrepancy: Firstly,
underdosing in the seminal vesicles cannot be excluded,
since the seminal vesicles were not primarily within the
HDR-BT boost target volume. Additionally, multiparamet-
ric MRI was not performed regularly for HDR-BT boost
treatment planning, as this imaging method became an in-
stitutional standard only during the study period (Table 1).
Therefore, disease extension into the seminal vesicles may
have been undetected and undertreated in a subset of the pa-
tients [17]. Secondly, several comparative studies are retro-
spective and may suffer from underlying imbalances in pa-
tient and tumor characteristics, which makes a direct com-
parison of results challenging. Compensation of differences
in baseline patient and tumor characteristics by propensity
score matching is a strength of our study. Moreover, in
several older trials, the EBRT-alone arm used prescription
doses lower than 74Gy (EQD2). This may have influenced
the outcome and conclusions of those studies [7, 18, 19].
For example, the randomized trial by Hoskin et al. used
a dose of 55Gy in 20 fractions for the EBRT arm, which,
for an α/β value of 1.5Gy, equals an EQD2 of 66.8Gy.
Our EBRT group received an EQD2 of about 83Gy and
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the HDR-BT boost group an EQD2 of 100Gy (α/β 1.5Gy),
while the experimental arm in the Hoskin trial received an
EQD2 of 92Gy [7]. Despite higher EQD2, and in contrast
to the Hoskin et al. trial, we did not observe a benefit of
combined EBRT+HDR-BT boost over EBRT alone. The
question arises of whether an HDR-BT boost is superior
compared to dose-escalated EBRT above 80Gy.

Regarding the validity of the linear quadratic (LQ) model
for dose escalation above 80Gy, the meta-analysis by Vo-
gelius et al. highlighted an inconsistency of the existing
data in light of the results of the HYPO-RT-PC trial. Wid-
mark et al. reported an estimated α/β ratio of 3Gy instead of
1.5Gy as in the historical work of Brenner and Hall, which
lead Vogelius et al. to suggest a non-constant α/β ratio
and/or a saturation of biochemical control when 80Gy
EQD2 is exceeded [9, 20, 21]. The increased biochemical
control reported by the FLAME trial shifted the likely
hypotheses toward a decreasing relative biological effect
with increasing fraction size when moving beyond mod-
erate hypofractionation [22, 23]. Moreover, Vogelius et al.
discussed the presence of a time factor of an estimated
0.31Gy/d (95% CI 0.20–0.42) [25]. In our study, the over-
all treatment time (OTT) differed between the two groups,
with about 6.5 weeks for EBRT only versus 9 weeks for
EBRT+HDR-BT boost. As this difference could not be
adjusted for by propensity score matching, an influence of
OTT on outcome cannot be excluded. The applicability of
the LQ model at high doses per fraction and the question
of optimal dose and fractionation remains to be further
investigated in randomized trials [9, 24].

Morton et al. and Greco et al. recently demonstrated the
importance of fractionation. Morton et al. showed that sin-
gle-fraction HDR-BT was inferior to two-fraction HDR-
BT [26]. For dose-escalated prostate stereotactic body ra-
diation therapy (SBRT) up to an EQD2 of 130Gy, Greco
et al. reported a 4-year bRFS of 75.0% versus 64.0% (HR
0.76; 90% CI 0.17–3.31) for SBRT with 5× 9Gy versus
1× 24Gy for unfavorable disease, respectively [27]. Two
findings are of interest: firstly, one-fraction dose escalation
appears to be inferior to dose escalation in more fractions.
Secondly, the bRFS in the study of Greco et al. is lower
than in a meta-analysis of over 6000 patients from Jack-
son et al., in which SBRT demonstrated a 5-year bRFS
of 95.3% (95% CI 91.3–97.5%). Notably, increasing dose
was significantly associated with improved bRFS, but only
38% of all studies included patients with high-risk disease
and most studies did not report bRFS for high-risk disease
separately [28].

Dose escalation above 80Gy in unfavorable prostate
cancer is supported by the results of the FLAME trial
by Kerkmeijer et al.: dose escalation to 95Gy for the
dominant intraprostatic lesion improved 5-year bRFS up
to 92% in a cohort with 84% high-risk patients [22].

For brachytherapy, the ASCENDE-RT trial impressively
demonstrated improved bRFS with appliance of low-dose-
rate brachytherapy boost over EBRT with 78Gy, which
supports brachytherapy as valid dose-escalation strategy
[29]. To summarize, promising data for dose escalation
in localized prostate cancer exists, but further randomized
controlled trials are necessary to elucidate the interplay be-
tween biochemical control, the LQ model, and prescription
of high doses per fraction for dose escalation above 80Gy.

Besides benefits in bRFS, it is crucial to elucidate
whether dose escalation influences clinically meaningful
endpoints (for example, MFS and OS). Notably, MFS and
OS were not significantly different for the two treatment
modalities in the matched cohort of our study. In addition,
dose escalation by EBRT is often limited by increased
toxicity. In this context, dose escalation by HDR-BT has
a favorable toxicity profile: in our study, late severe toxici-
ties were not significantly different between the treatment
cohorts. The combined treatment showed decreased acute
toxicities grade≥ 2 as well as lower moderate gastrointesti-
nal toxicity compared to EBRT. Combined with excellent
MFS and OS, EBRT+HDR-BT boost represents a com-
petitive treatment regimen for intermediate- and high-risk
prostate cancer.

Our study has limitations. Despite extensive propensity
score matching, undetected differences in baseline charac-
teristics between the treatment groups may have remained.
Notably, we did not account for comorbidities and patients
in the EBRT+HDR-BT group were, despite matching,
younger, which could have influenced the outcome, espe-
cially overall survival. Differences in MRI staging may
have led to a skewed stage distribution (Table 1): in the
matched cohort, 154 out of 258 cases (59.7%) received MRI
before treatment in the EBRT-only group, whereas only
49 out of 258 cases (19.0%) had MRI in the EBRT+HDR-
BT group (p=< 0.001). Moreover, patients with known
seminal vesicle involvement may have been preferably
treated with EBRT alone, possibly resulting in a negative
selection of the EBRT group.

Conclusion

Dose-escalated EBRT with an EQD2 above 80Gy and
combined EBRT+HDR-BT boost showed no significant
differences in outcome in a large propensity score-matched
cohort. EBRT+HDR-BT boost demonstrated a trend to
worse biochemical relapse-free survival compared to EBRT
alone for the subgroup of high-risk prostate cancers. The
combined treatment provided a favorable toxicity profile
with lower acute toxicity and late gastrointestinal toxi-
city≥ grade 2. EBRT as well as EBRT+HDR-BT boost
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are both excellent options for dose-escalating radiotherapy
above 80Gy (EQD2) in localized prostate cancer.
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