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Abstract
Efficient spatial orientation in the natural environment is crucial for the survival of most animal species. Cataglyphis desert 
ants possess excellent navigational skills. After far-ranging foraging excursions, the ants return to their inconspicuous nest 
entrance using celestial and panoramic cues. This review focuses on the question about how naïve ants acquire the necessary 
spatial information and adjust their visual compass systems. Naïve ants perform structured learning walks during their transi-
tion from the dark nest interior to foraging under bright sunlight. During initial learning walks, the ants perform rotational 
movements with nest-directed views using the earth’s magnetic field as an earthbound compass reference. Experimental 
manipulations demonstrate that specific sky compass cues trigger structural neuronal plasticity in visual circuits to integra-
tion centers in the central complex and mushroom bodies. During learning walks, rotation of the sky-polarization pattern 
is required for an increase in volume and synaptic complexes in both integration centers. In contrast, passive light exposure 
triggers light-spectrum (especially UV light) dependent changes in synaptic complexes upstream of the central complex. 
We discuss a multisensory circuit model in the ant brain for pathways mediating structural neuroplasticity at different levels 
following passive light exposure and multisensory experience during the performance of learning walks.

Keywords Central complex · Mushroom body · Multisensory navigation · Visual memory · Neuronal and synaptic 
plasticity

Introduction

Many insect species, particularly social insects like ants or 
social bees and wasps, heavily depend on navigational skills 
for food provisioning of their brood. As offspring is raised in 
a common nest, the ants search for profitable food locations 
and then return to their nest (central place foraging). Desert 
ants of the genus Cataglyphis are excellent experimental 
models to study the mechanisms underlying insect navi-
gation (Wehner 2008, 2020). These thermophilic ants live 
under mostly harsh conditions. Cataglyphis ants leave their 
underground nest even during the hottest times of the day for 
far-ranging food searches. These excursions may extend to 

walking distances of up to 1,500 m and distances of 350 m 
or more away from the nest (e.g. Huber and Knaden 2015; 
Ronacher 2008). Cataglyphis species inhabiting feature-
less desert environments employ path integration as their 
main navigational routine to find their way back to the nest 
(Knaden and Graham 2016; Ronacher 2008; Wehner 2020). 
Foraging ants use the position of the sun and the associated 
sky-polarization cues to determine the directions of all path 
segments during the outbound walks, while a step integrator 
(Wittlinger et al. 2006, 2007) estimates the distances used to 
calculate a home vector that encodes both the direction and 
distance back to the nest entrance. Especially Cataglyphis 
ant species living in more cluttered environments use the 
panoramic scenery and landmarks as additional visual cues 
(Fleischmann et al. 2017; Fleischmann et al. 2018a; Huber 
and Knaden 2015; Wehner 2020; for a review see Cheng 
et al. 2014).

The navigational routines of mainly visually guided for-
aging ants have been characterized in much detail at the 
level of behavior and generated valuable models (for an 
excellent and extensive recent review see Wehner 2020). 

Handling editor: Uwe Homberg.

 * Wolfgang Rössler 
 roessler@biozentrum.uni-wuerzburg.de

1 Behavioral Physiology and Sociobiology (Zoology II), 
Biocenter, University of Würzburg, 97074 Würzburg, 
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00359-022-01600-y&domain=pdf
http://orcid.org/0000-0002-5195-8214
http://orcid.org/0000-0002-0096-4040
http://orcid.org/0000-0002-5051-884X


606 Journal of Comparative Physiology A (2023) 209:605–623

1 3

The question of how naïve ants acquire their navigational 
information during so-called learning walks at the begin-
ning of their foraging careers, particularly the underlying 
neuronal processes, have gained attention only more recently 
(for reviews: Grob et al. 2019; Rössler 2019; Wehner and 
Rössler 2013). Path integration, visual learning, and learn-
ing walks are widespread in other species of ants including 
other desert-ant species like Ocymyrmex or Melophorus and 
non-desert ant species like Myrmecia bull ants and Formica 
wood ants (e.g. Deeti and Cheng 2021; Jayatilaka et al. 2018; 
Müller and Wehner 2010; Nicholson et al. 1999; Wystrach 
et al. 2014a, b).

In the present review, we integrate results from studies 
on learning walks with a special focus on Cataglyphis ants. 
We provide a synthesis of the knowledge gained on neuronal 
plasticity (neuroplasticity) in visual circuits of the ant’s brain 
triggered by multisensory experience during learning walks 
that are performed during a sensitive period before the onset 
of foraging behavior. Most studies on neuroplasticity have 
been done in Cataglyphis ants. We complement these by 
looking at select neuroanatomical, neurophysiological, and 
behavioral studies on multisensory pathways in the brain 
of other insects. This synthesis aims at understanding the 
neuronal circuits mediating multisensory experience during 
learning walks and at stimulating future studies to unravel 
the neuronal mechanisms underlying the striking flexibil-
ity of navigational systems in the brain of these remarkable 
navigators.

Multisensory experience 
during the performance of learning‑walks

Cataglyphis foragers use path integration to return to their 
nest on the shortest distance possible by integrating direc-
tional (compass) and distance information. The resulting 
home vector leads the ants back to their nest entrance along 
an almost straight path (Wehner 2020). A recent study 
manipulated path integration memory by experimental cool-
ing of ants that had built up a full home vector after finding 
food (Pisokas et al. 2022). In this study, the behavioral anal-
yses of homing trajectories were combined with computer 
simulations of homing strategies based on different path-
integration memory models. The results suggest that path 
integration memory is most likely stored in a redundant Car-
tesian coordinate system in the ant’s brain. However, despite 
such an efficient mechanism, the underlying neuronal pro-
cesses are prone to cumulative errors, especially over long 
distances. To compensate for these errors and to optimize 
homing, the ants, whenever available, use panoramic scener-
ies, the skyline, and landmarks as additional visual guidance 
cues (e.g., Wehner et al. 2016; Wystrach et al. 2015).

How do naïve ants that leave their nest for the first time 
acquire the necessary information about relevant sky-
compass cues and the panoramic scenery around the nest 
entrance to ensure efficient homing? Using a sun-based com-
pass for navigation comprises additional challenges (for the 
definition of navigation see Grob et al. 2021c). How do the 
ants calibrate their sky compass system? The ants use the 
azimuthal position of the sun and associated sky-polarization 
patterns as compass cues. However, the azimuthal course of 
the sun over the day (solar ephemeris) is a non-linear func-
tion that depends on the time of the year and the geographi-
cal position. Consequently, an internal representation of the 
solar ephemeris cannot be inherited genetically, and the ants 
somehow need to calibrate their internal compass systems 
with the function representing the azimuthal path of the sun 
(Wehner 2020; Wehner and Lanfranconi 1981; Wehner and 
Müller 1993). How do naïve ants acquire this function and 
what is used as the earthbound compass reference during 
learning the relevant visual information? What are the neu-
roplastic changes underlying visual learning and long-term 
memory formation before the ants are heading out on their 
first foraging trips (Rössler 2019)?

The individual life history of Cataglyphis ants comprises 
a period of about 4 weeks with varying tasks inside the dark-
ness of the underground nest followed by an outdoor forag-
ing period of on average 7 days in bright sunlight when the 
ants actively search for food (Schmid-Hempel and Schmid-
Hempel 1984). Because of this drastic transition and striking 
differences in the associated behavioral phenotypes (poly-
ethism), Cataglyphis ants are ideal experimental models 
for investigating the neuronal mechanisms underlying this 
behavioral plasticity (Rössler 2019). The interior-exterior 
transition will be the focus of the following chapters.

Behavioral studies over recent years revealed important 
insights into so-called learning walks (also termed explo-
ration or orientation walks) that naïve ants perform before 
they head out on their first foraging excursions (for recent 
reviews on learning walks: Fleischmann et al. 2020a; Freas 
et al. 2019; Zeil and Fleischmann 2019). To understand how 
naïve ants acquire the relevant visual information, quantita-
tive analyses of learning-walk behavior at high spatial and 
temporal resolution in the natural habitat was a crucial step. 
Naïve ants perform structured learning walks comprising 
sequences of loops that explore different sectors around the 
nest entrance (Fleischmann et al. 2016, 2017; Stieb et al. 
2012; Wehner et al. 2004) (Fig. 1). The ants perform these 
behavioral routines in an extending radius around the nest 
entrance over a period of 2–3 days. During that time, they do 
not collect any food items (Fleischmann et al. 2016). High-
resolution video analyses revealed that the ants frequently 
stop their forward movements to perform rotational elements 
(pirouettes) interrupted by 100–200 ms stops. During the 
longest stop in a pirouette, the ants look back in the direction 
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of the nest entrance. Similar findings were made earlier in a 
study on re-learning walks in Ocymyrmex ants (Müller and 
Wehner 2010). As the nest entrance is not visible from the 
ants’ perspectives, the ants must use path integration for the 
alignments of their body axis during these repeated turn-
back behaviors.

The highly structured behavior during learning walks 
suggests that ants and other insects like wasps (during their 
learning flights) systematically acquire and memorize nest-
directed panoramic views around the nest entrance (Gra-
ham et al. 2010; Zeil 2012). However, the acquisition of 
nest-related views may vary across species. Furthermore, 
recent work on wasps suggests that they do not pause when 
acquiring views 45° left and right from the nest entrance 
(Stürzl et al. 2016). Another study on ants indicates that 
views are memorized in other directions than the nest 
direction (Wystrach et al. 2020). In addition to acquiring 
panoramic snapshot memories, the ants most likely cali-
brate their internal solar ephemeris representation during 
learning walks (Grob et al. 2019). Evidence supporting this 
assumption most recently came from a study showing that 
only learning walks under a rotating sky polarization pat-
tern resulted in plastic neuronal changes in visual integration 
centers of the ant’s brain (Grob et al. 2022) (see details in 
the following chapters). Furthermore, displacement experi-
ments show that Cataglyphis ants need at least 2 days and 
a minimum distance of 0.5 m from the nest entrance for the 

proper performance of learning walks to memorize pano-
ramic cues for successful homing (Fleischmann et al. 2016, 
2018a). These findings are supported by earlier studies in 
Melophorus desert ants (Wystrach et al. 2012).

What provides the compass reference for path integration 
and panoramic snapshot learning during initial (or naïve) 
learning walks, at a time when the celestial compass has not 
yet been calibrated? To ask whether naïve ants neverthe-
less use the sun as a compass for path integration during 
their short learning walks, different filter settings above the 
nest entrance were used to manipulate relevant skylight cues 
(Grob et al. 2017). With important celestial cues blocked 
(sun position, sky polarization pattern, UV light), the ants 
still perform stops with accurately aligned goal-directed 
views during learning-walk pirouettes. Although it had been 
shown that spectral and light intensity gradients can also 
be used for a celestial compass (Wehner 1997; Wystrach 
et al. 2014a, b), the ants might as well use other compass 
cues at this early stage. The earth’s magnetic field came into 
focus as a candidate for an alternative compass used during 
initial learning walks. Under experimental conditions using 
disarray of the earth’s magnetic field by a circular flat coil 
or elimination of the horizontal component of the earth’s 
magnetic field by a Helmholtz coil setup, the ants gazed 
into random directions even with all natural celestial cues 
accessible (Fleischmann et al. 2018b). Moreover, systematic 
rotation of the horizontal component of the earth’s magnetic 
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Fig. 1  Learning walks and their experimental manipulation in Cat-
aglyphis ants. Left: Typical example of an elaborated learning walk in 
Cataglyphis nodus (modified from Grob et al. 2019; data from Fleis-
chmann et al. 2017). The ants walk in small loops around their nest 
entrance (black dot). During repeated interruptions of their forward 
movements, the ants perform pirouettes and look back (black arrows) 
to the nest entrance. Time is color coded. Insets lower and upper 
right. The ants perform rotations (pirouettes) about their own vertical 
body axes (lower right) while making brief stops (> 100 ms) (arrows). 
During the longest stopping phase (black arrow), their views are 
directed towards the nest entrance. In addition to pirouettes, C. nodus 

ants perform small, walked circles (voltes) with only very rare stops. 
For both rotations, the tracking positions of the mandibles (green) 
and the thorax (gray) are indicated (modified from Fleischmann et al. 
2017). Right Symbols depicting manipulations that have been applied 
during learning-walk experiments and during passive light exposure 
of the ants. From top to bottom: under natural skylight (control); 
under a rotating linear polarizer; under a stationary linear polarizer; 
under UV block and with the sun shaded; under a diffusor; with a 
manipulated magnetic field; unexperienced workers from the dark 
nest interior that have not yet performed learning walks (control)
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field resulted in gazes towards a fictive nest entrance rotated 
by the same angle as the magnetic field. This provided the 
first unambiguous evidence that an insect can use the earth’s 
magnetic field as a compass cue that is both necessary and 
sufficient for path integration. This also suggests that the 
geomagnetic field provides the earthbound compass refer-
ence for path integration during initial learning walks. Con-
sequently, the magnetic sense of Cataglyphis ants provides 
the compass reference during view-based learning of the 
visual panorama and can potentially be used to calibrate the 
celestial compass systems. Finally, the unambiguous role of 
the magnetic sense in path integration renders Cataglyphis 
ants as a highly promising experimental model for the study 
of magnetoreception in an insect (Fleischmann et al. 2020b). 
Compared to the clear-cut results in Cataglyphis, the use 
of the earth’s magnetic field for directional orientation in 
other insect species, so far, was less distinct or only evident 
in combination with other cues (e.g. Dreyer et al. 2018; see 
reviews in Fleischmann et al. 2020b; Wajnberg et al. 2010). 
Interestingly, experienced Cataglyphis foragers still sense 
the magnetic field but the function of magnetic field infor-
mation in orientation is different from the one in naïve ants. 
This was recently shown by using magnetic manipulations 
in the natural habitat and during so-called re-learning walks 
of foragers (Fleischmann et al. 2022).

Overall, the behavioral results in Cataglyphis suggest that 
during their first learning walks the ants experience pano-
ramic snapshot views, skylight compass cues, and direc-
tional cues provided by the earth’s magnetic field as impor-
tant sensory information. In the following chapters, we will 
have a closer look into the ants’ brains and the associated 
sensory pathways to then focus on neuroplasticity in visual 
pathways triggered during different phases of the interior-
exterior transition.

The brain of Cataglyphis and sensory 
pathways associated with navigation

How does the relatively small brain of Cataglyphis ants pro-
cess and memorize multisensory navigational information 
during learning walks? Where in the brain are sky-compass 
cues and local panoramic views computed and stored? How 
is visual information integrated with input from a magnetic 
compass and from other sensory modalities? While the 
first two questions can be addressed more easily, the third 
question, particularly regarding the magnetic sense, is more 
difficult to answer. Recently a comprehensive 3D atlas of 
the entire brain of Cataglyphis nodus has been published 
and provides a solid ground for neuroanatomical analyses 
(Habenstein et al. 2020) (Fig. 2a, c). For comparability, the 
nomenclature for individual neuropils was adapted to the 
unified nomenclature applied to the brain atlas in the fly, 

Drosophila melanogaster (Ito et al. 2014). The 3D brain 
atlas in Cataglyphis nodus workers revealed 33 distinct 
brain neuropils and 30 connecting fiber tracts including six 
visual fiber tracts between the optic lobes and the central 
brain (Habenstein et al. 2020). The Cataglyphis brain atlas 
is accessible in 3D on the Insect Brain Database website 
(https:// www. insec tbrai ndb. org/) (Habenstein et al. 2020; 
Heinze et al. 2021). Neuroanatomical analyses in another 
study revealed differences in 3D structures and volumes of 
brain compartments between the two female castes (work-
ers and queens) and males (Grob et al. 2021b), most likely 
reflecting differences in their lifestyles and navigational 
skills.

In addition to the neuroanatomical studies, analyses of 
neuropeptides and their localization in the Cataglyphis 
brain have recently been performed. For this, transcriptomal 
analyses were combined with mass spectrometry detection 
and localization to reveal the most comprehensive neuro-
peptidome that has been obtained from an ant’s brain so far 
(Habenstein et al. 2021a, 2021b; Schmitt et al. 2017). Both 
the neuroanatomical and neuropeptidome databases provide 
rich sources for future structure–function analyses in the 
brain of Cataglyphis ants, for example, to detect life-stage 
dependent changes in brain neuropils and neuromodulators, 
and for comparison of those attributes with other ant species.

Visual pathways from the optic lobes

Where in the ant’s brain are sky compass cues and pano-
ramic information processed and stored? Early behavioral 
manipulations have already indicated that local panoramic 
information is stored as long-lasting (lifetime) memories, 
whereas path integration information expresses a faster 
memory decay. This early discovery was already highly 
suggestive of two distinct channels for visual information 
transfer (Ziegler and Wehner 1997). Neuroanatomical stud-
ies revealed the anatomical details of two separate major 
visual pathways leading from the optic lobes to two high-
order visual integration centers in Cataglyphis’ brain, the 
mushroom bodies (MB) and the central complex (CX) (Grob 
et al. 2017; Rössler 2019; Schmitt et al. 2016) (Fig. 2b, d). 
The presence of a visual pathway to the MB in ants was first 
shown by Gronenberg and Hölldober (1999) and Gronenberg 
(2008). In Cataglyphis these neuronal pathways were traced 
using fluorescent dye injections, confocal imaging, and 3D 
reconstructions. Recently, Habenstein et al. (2020) mapped 
four additional tracts and commissures from the optic lobes 
to the central brain in Cataglyphis nodus. In the following, 
we outline the two major visual circuits from the optic lobes 
to the CX and MB in Cataglyphis and compare these with 
the conditions in other insect species.

https://www.insectbraindb.org/
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Fig. 2  The brain of Cataglyphis nodus with visual pathways into 
different brain neuropils. a Overview of a 3D-reconstruction of the 
brain with color-coded major neuropils and partly exposed neuronal 
tracts (from Habenstein et  al. 2020—modified by Jens Habenstein). 
Scale bar is 200 µm. b Confocal images of original fluorescent trac-
ings (rhodamine dextran with biotin, microruby) of the anterior optic 
tract (AOT) and the anterior superior optic tract (ASOT) (modified 
from Grob et al. 2017). Scale bar is 100 µm. c 3D-reconstruction of 
the left brain hemisphere highlighting neuropils that receive input 
from afferent sensory projections of Johnston's organ in C. nodus 
(modified from Habenstein et  al. 2020 using Insect Brain Database; 
https:// www. insec tbrai ndb. org/). Scale bar is 200 µm. d 2D confocal 
projection of the brain of C. nodus labeled with an antibody to syn-
apsin with the schematic courses of the two major visual tracts (modi-

fied from Grob et al. 2017 and Rössler 2019). The anterior pathway 
with the AOT is labeled in green, the ASOT in magenta. Scale bar is 
200µm. Left inset Large synaptic boutons of visual projection neu-
rons in the mushroom-body (MB) collar (anti synapsin immunoreac-
tivity labeled in magenta). Right inset Anti synapsin- (magenta) and 
phalloidin-labeled (green) microglomerular synaptic complexes in 
the bulb of the lateral complex. Scale bar in both insets is 10 µm. AL 
antennal lobe, AMMC antennal mechanosensory and motor center, 
AOT anterior optic tract, AOTU anterior optic tubercle, ASOT ante-
rior superior optic tract, BU bulb, CO collar, CX central complex, LA 
lamina, LAL lateral accessory lobe, LI lip, LO lobula, MB mushroom 
body, ME medulla, OL optic lobe, PS posterior slope, VL vertical 
lobe, VLP ventrolateral protocerebrum

https://www.insectbraindb.org/
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One pathway starts from the dorsal rim area (the polar-
ization-sensitive part of the compound eye) and proceeds 
via the lamina, medulla, and lobula along the anterior optic 
tract (AOT) to the anterior optic tubercle (Schmitt et al. 
2016) (Fig. 2b, d). From there, neurons project to the bulbs 
of the lateral complex where they form exceptionally large 
microglomerular synaptic complexes that are synaptically 
connected with the dendrites of tangential neurons which 
project to the lower unit of the central body, a subdivision 
of the CX (Grob et al. 2017, 2019; Schmitt et al. 2016). 
Accordingly, this pathway was termed CX pathway. Physi-
ological and neuroanatomical studies in the locust, bee, 
dung beetle and monarch butterfly combined with modeling 
approaches show that this highly conserved pathway to the 
CX integrates sky-compass information and receives infor-
mation about movement, the two parameters required for 
path integration (e.g. Heinze and Homberg 2007; Heinze and 
Reppert 2011; Held et al. 2016; Homberg et al. 2011; Kaiser 
et al. 2022; Stone et al. 2017; Webb and Wystrach 2016).

The second pathway leads from the medulla of the optic 
lobes via the anterior superior optic tract (ASOT) without 
any further relay to the visual compartments (collar) of the 
MB and was termed MB pathway (Ehmer and Gronen-
berg 2002; Grob et al. 2017, 2019) (Fig. 2b, d). Phyloge-
netic comparison within the Hymenoptera suggests that 
this prominent visual pathway to the MBs has evolved in 
the higher Hymenoptera, particularly parasitoid and social 
Hymenoptera (Farris and Schulmeister 2011). Two recent 
ablation studies in ants, one using injections of local anes-
thetics at the level of the visual projection neuron input in 
Formica wood ants (Buehlmann et al. 2020), and another 
study in Myrmecia bull ants using local applications of anes-
thetics to the vertical lobes, major output structures of the 
MBs (Kamhi et al. 2020) came to the coincident conclusion 
that the MBs are required for panoramic landmark orienta-
tion during homing. In the MB collar of the honeybee and 
Cataglyphis, visual projection neurons from the medulla of 
the optic lobe form very large presynaptic boutons compris-
ing many (~ 60) active zones (synaptic contacts) connected 
to numerous dendrites of postsynaptic Kenyon cells (the MB 
intrinsic neurons) forming microglomerular synaptic com-
plexes (Groh et al. 2012; Stieb et al. 2010, 2012).

While both the CX and MB visual pathways comprise 
large synaptic complexes at the input of their target neuropils 
including many postsynaptic contacts, there is a significant 
difference between the two circuits (Fig. 2d). Whereas the 
total number of microglomerular synapses in the MB col-
lars of both brain hemispheres was estimated at ~ 400,000 
in Cataglyphis, only ~ 100 microglomerular synapses are 
implemented in the bulbs of both hemispheres, the terminal 
synaptic relay stations in the CX pathway (reviewed in Grob 
et al. 2019; Rössler 2019). The enormously large and highly 
divergent synaptic matrix in the MB collar stands in contrast 

to the CX pathway converging on only ~ 100 synaptic com-
plexes on both sides. Increasing evidence from physiologi-
cal studies supports the function of the CX pathway as the 
crucial sky-compass pathway transferring relevant skylight 
cues including light polarization in the UV range, sun posi-
tion, and UV-green chromatic gradients (el Jundi et al. 2014; 
Homberg et al. 2011). For the MB pathway, the enormous 
capacity of the MB collars for the storage of view-based 
panoramic information is further supported by modeling 
studies (Ardin et al. 2016; Peng and Chittka 2017) and by 
the above-mentioned ablation studies.

Sensory projections from Johnston’s organ

The important role of magnetic information for goal-directed 
views during learning walks of Cataglyphis nodus (Fleis-
chmann et al. 2018b) provokes the question of how mag-
netic information is integrated with input from the two visual 
pathways described above. The hymenopteran antenna has 
repeatedly been proposed as a promising candidate for the 
potential location of a magnetic sensor (reviewed in Fleis-
chmann et al. 2020b; Wajnberg et al. 2010; and study by 
de Oliveira et al. 2010) with Johnston’s organ (JO) repre-
senting a potential candidate. The JO is located at the base 
of the insect antenna and was shown to function primarily 
as a mechanosensory organ with highly sensitive chordo-
tonal sensilla inserted into a delicate membrane at the joint 
between the antennal pedicellus and flagellum (for a review 
see Yack 2004). The number of sensilla varies between 
species and depends on the main function of the organ. In 
general, the JO serves the detection of antennal deflections 
caused by wind, gravity, vibration (air- and substrate-borne) 
or touch (Kamikouchi et al. 2009). Interestingly, during 
learning walks, Cataglyphis ants perform very characteristic 
antennal movements (Wehner et al. 2004, and own unpub-
lished observations), which may suggest that specific anten-
nal movement patterns are necessary to receive the magnetic 
information in an active sensing process (Fleischmann et al. 
2020b).

A recent anatomical study mapped the sensilla and 
associated sensory structures (scolopidia) of the JO in the 
antenna of Cataglyphis nodus workers, queens, and males 
(Grob et al. 2021a). In workers, about 40 scolopidia, each 
comprising three sensory neurons, project axons to the 
antennal mechanosensory and motor center and extend sen-
sory afferents to neuropils in the posterior brain including 
the saddle, ventrolateral protocerebrum, ventral complex, 
and the posterior slope (Grob et al. 2021a; Habenstein et al. 
2020). The overall architecture of the JO in Cataglyphis 
shows many similarities with the JO in the honeybee (Ai 
et al. 2007). Most interestingly, in both Cataglyphis and 
the honeybee, the posterior slope also receives projections 
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from interneurons of the ocelli that are in close apposition 
with sensory terminals from JO afferents. In addition, in 
the ventrolateral protocerebrum, ventral complex, and pos-
terior slope neuronal projections from the optic lobes via 
the posterior and inferior optic tracts converge with sensory 
afferents from the JO (Grob et al. 2021a; Habenstein et al. 
2020). Connectome studies in Drosophila (Scheffer et al. 
2020) revealed that visual input from the optic lobe in these 
regions is preferentially from the lobula. Importantly, the 
posterior slope together with the lateral accessory lobe and 
ventrolateral protocerebrum contain post-synaptic compart-
ments of descending neurons relaying motor commands to 
the ventral nerve cord (Currier and Nagel 2020; Hsu and 
Bhandawat 2016; Namiki et al. 2018a). This classifies these 
neuropils as premotor centers. In Drosophila, many descend-
ing neurons are bimodal and respond to mechanosensory and 
visual input (Namiki et al. 2018b).

Before we draw further conclusions on the role of multi-
sensory convergences in these neuropils in the ant’s central 
brain, the next chapter reviews the results from experimen-
tal manipulations of sensory input during the performance 
of learning walks in the natural habitat, particularly their 
consequences for neuroplastic changes along the two visual 
pathways described above.

The role of multisensory experience 
in rewiring visual circuits

Recent studies have applied various manipulations of sen-
sory input during learning walks in the natural habitat and 
subsequently screened the brains of the experimental ants 
for neuroplastic changes in visual circuits along the CX and 
MB pathways (Grob et al. 2019). For a behavioral readout, 
high-resolution video analyses of the pirouetting behavior 
with different stopping phases during learning walks were 
used as a reliable tool to test the ants’ information about the 
direction of the nest entrance and as an indicator of their 
path-integration abilities under the various experimental 
conditions (Fleischmann et al. 2017, 2018b, 2022; Grob 
et al. 2017). Subsequently in the laboratory, structural neu-
roplasticity along the CX and MB visual pathways served 
as a readout (or measure) for the role of sensory experience 
in triggering neuroplastic changes or calibrations in visual 
circuits (Grob et al. 2017, 2019, 2022; Schmitt et al. 2016; 
Stieb et al. 2010, 2012). Structural neuroplasticity was quan-
tified either as changes in neuropil volume (CX and MB) or 
as variations in the number of synaptic complexes (MBs and 
bulbs of the lateral complex).

Before we bring together the outcome of these studies, let 
us first consider the nature of the different types of visual 
stimulation by differentiating two forms of experience—
light exposure in the absence of learning-walk behavior (in 

the following termed “light exposure”) and learning-related 
visual experience during learning walks (in the following 
termed “learning walk”). Naïve ants experience light for the 
first time when they reach a point in their natural ontogeny 
where they approach the nest entrance for the first time from 
the inside of the nest and when ants, for example during 
nest-building activities, perform so-called short digging 
walks to expel material from the interior of the nest to the 
outside (Fleischmann et al. 2017; Wehner 2020; Zeil and 
Fleischmann 2019). In contrast, view-based sensory percep-
tion while performing pirouettes with goal-directed stops 
during learning walks may be regarded as an active learning 
process, and therefore, best characterized as learning-related 
experience. In addition to visual cues, the behavioral analy-
ses have shown that the ants use the earth’s magnetic field as 
a compass reference for path integration during initial learn-
ing walks. If we assume that path integration combined with 
the experience of a nest-directed view, the homing direction, 
may function as an internal reward, we can assign this type 
of learning to a form of associative (Hebbian) learning and 
plasticity. Contrary to this, passive light exposure during an 
experimental situation where naïve ants do not (yet) perform 
leaning walks can be considered as non-associative sensory 
exposure. Consequently, the two types of experimental con-
ditions for visual input were classified as light-exposure and 
learning-walk related visual experience. However, we must 
keep in mind that under natural conditions, the first com-
bined experience of skylight and magnetic field may already 
happen during digging walks, or even earlier, when the ants 
sit in the nest entrance for the first time. Therefore, both 
behaviors may comprise transitions between the two forms 
of sensory experience.

Structural neuroplasticity in visual pathways 
triggered by first light exposure

Effects of light exposure have been tested in young ants that 
had not yet been outside the dark nest. When young Cat-
aglyphis ants were precociously exposed to light, microglo-
merular synaptic complexes in both the CX and MB visual 
pathways exhibited structural plasticity (Schmitt et al. 2016; 
Stieb et al. 2010, 2012) (Fig. 3). Repeated application of 
45 min light pulses over a period of four to five days resulted 
in a decrease in the number of microglomeruli in the visual 
compartments of the MB calyx, an indication of synaptic 
pruning. Interestingly, in the MB collar such light-exposure 
dependent synaptic changes could still be triggered in six- 
and twelve-month old ants that had been kept in constant 
darkness. This suggests that this type of plasticity adapts 
visual processing to different light conditions throughout 
the entire lifespan of the ants (Stieb et al. 2010). Similarly, 
precocious visual exposure in honeybees (Scholl et al. 2014) 
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and olfactory sensory exposure to diverse plant odors in leaf-
cutting ants over three to five days (Falibene et al. 2015) 
resulted in a decrease in the numbers of microglomeruli 
(pruning) in the MB collar and lip, respectively. Light expo-
sure was also shown to induce changes in the expression of 
neuroplasticity-related genes in the honeybee (Becker et al. 
2016).

Contrary to a decrease of microglomeruli in the MB col-
lar following light exposure, the number of microglomerular 
synaptic complexes in the bulbs of the CX pathway showed 
an increase by up to 30% after first light exposure, even when 
applied to one-day old ants (Grob et al. 2022; Schmitt et al. 
2016) (Fig. 3). At a first glance, the diverging effects on 
microglomerular synapses in the two pathways look contradic-
tory. The reason for this difference likely resides in the func-
tion, particularly different neurotransmitter systems involved 
in the respective neuronal circuits. In both cases, structural 
synaptic plasticity was observed in microglomerular syn-
aptic complexes comprising a large presynaptic bouton and 
numerous postsynaptic profiles (Rössler 2019). While visual 

projection neurons in the MB collar in Cataglyphis are most 
likely cholinergic and excitatory, tangential neurons that relay 
the information from bulb microglomeruli to the lower unit 
(ellipsoid body) of the central body in the CX are GABAergic 
(Schmitt et al. 2016). This feature is highly conserved in other 
insects (e.g. locust, Träger et al. 2008, and Drosophila, Seelig 
and Jayaraman 2015). If we consider the structural synaptic 
changes following first exposure to bright sunlight as a form 
of homeostatic plasticity that helps to maintain neuronal activ-
ity in a dynamic range, we can expect a reduction of excita-
tory synapses in the MB collars (synaptic pruning) and an 
increase of inhibitory (GABAergic) synapses in the bulb at 
the entrance to the CX. However, the exact function of this 
plasticity at the input remains to be determined as neuronal 
activity in both the MB and CX is also modulated through 
internal inhibitory feedback. Normalization of activity in the 
MB calyx is achieved through a set of GABAergic feedback 
neurons in the honeybee and the APL neuron in Drosophila 
(Grünewald 1999; Haehnel and Menzel 2012; Prisco et al. 
2021). Normalization of activity in the ellipsoid body (input 
of the CX from the bulb) is controlled by CX local inhibition 
(Kim et al. 2017). A possible explanation might be that the 
intrinsic inhibitory circuits act on a smaller dynamic range 
compared to the changes at the input synapses, which may be 
required during the drastic changes in sensory input during 
the interior-exterior transition. Future synaptic connectivity 
studies at the ultrastructural level, especially of convergence-
divergence ratios, are necessary to further determine the role 
of structural synaptic changes in both circuits in homeostatic 
plasticity.

Interestingly, the increase of microglomerular synaptic 
complexes in the bulbs of the CX pathway is light-quality 
dependent and especially sensitive to the presence of UV 
light (Grob et al. 2022; Schmitt et al. 2016). No structural 
changes were found in both the MB and CX pathways when 
artificially dark-kept ants were passively exposed to either a 
static or moving pattern of polarized light, even with the UV 
spectrum included (Grob et al. 2022). Similarly, no changes 
were found after passive light exposure regarding the overall 
volume of the MB calyx and CX neuropils. This shows that 
one or three days of passive light exposure were not sufficient 
to induce a decrease (pruning) of synaptic complexes in the 
MB collar (Stieb et al. 2012; Grob et al. 2022). We conclude 
that passive exposure to skylight over more than three days 
triggers a form of most likely homeostatic synaptic plasticity 
at the input to the CX and MB. In the CX pathway, the degree 
of change depends on the chromatic composition of the light 
stimulus.

MB-co-MGMB-co-MG

CX-vol

BU-MG

LWUV

Fig. 3  Summary of results on neuronal plasticity following passive 
light-exposure experiments in Cataglyphis ants. The top row depicts 
the different manipulations (the different symbols are explained in 
Fig. 1). The following rows summarize changes in the different neu-
ropils. Arrows pointing upwards indicate significant increase in the 
number of synaptic complexes within neuropils or in the volumes of 
neuropils, arrows pointing downwards indicate respective significant 
decreases compared to the dark control conditions. No arrow means 
no significant change. The first row shows changes in the number of 
microglomerular synaptic complexes (microglomeruli) in the mush-
room body (MB) collar (MB-co-MG). The second row summarizes 
changes in the volume of the central complex (CX-vol) under the 
various conditions. The bottom row shows changes in the numbers 
of microglomerular synaptic complexes in the bulb (BU-MG). For 
comparison, the column on the very right with light arrows depicts 
respective changes after the active performance of learning walks 
(LW) under natural skylight. See text for further details. Based on 
data from (Grob et  al. 2017, 2022; Schmitt et  al. 2016; Stieb et  al. 
2010, 2012)
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Structural neuroplasticity in visual pathways 
triggered by learning walks

The study by Grob et al. (2017) had shown that the ants were 
still able to perform the turn back towards the nest entrance 
behavior while pirouetting during learning walks when UV 
light and the position of the sun were blocked (Grob et al. 
2017). The structural changes in the volume and/or numbers 
of synaptic complexes in the CX and MB visual pathways 
were used as an experimental readout to quantify the effects 
of different experimental conditions. The resulting structural 
plasticity in the ants’ brains was quite distinct between pas-
sive light exposure and following visual experience during 
learning walks (Stieb et al. 2010; Grob et al. 2017, 2022) 
(Figs. 3 and 4).

In the bulbs of the CX pathway, the number of microglo-
merular synaptic complexes remained unchanged following 
all conditions that had been applied during learning walks. 
As the total number of synaptic complexes in the bulbs was 
already high compared to dark-kept naïve ants, this supports 
the idea that plasticity in bulb synaptic complexes occurs 
before the performance of learning walks (Fig. 3). This most 
likely happens when the ants approach the nest entrance for 

the first time and while performing digging walks close to 
the nest entrance. Most importantly, the volumes of the CX 
and MB calyx including the numbers of microglomeruli 
in the MB calyx collar increased, but only when the ants 
performed learning walks under natural skylight (Grob 
et al. 2017, 2022) (Fig. 4). The brains of ants that had been 
excluded from UV light or that had performed learning 
walks under a static linear polarization pattern were not dif-
ferent from those that had remained in constant darkness or 
had been treated by light exposure without the performance 
of learning walks. This suggests that learning-walk depend-
ent plasticity requires the active performance of learning-
walk behavior and, at the same time, access to natural sky-
light. A more sophisticated follow-up experiment narrowed 
down the most relevant skylight cue (Grob et al. 2022). In 
the experiment, the ants performed learning walks under 
a special setup mounted above the nest entrance compris-
ing an automatically rotating linear polarizer. The results 
show that only ants that had experienced a rotating UV sky-
polarization pattern responded with a volume increase in 
the CX and an increase of microglomeruli in the MB calyx 
collar (Fig. 4). Interestingly, a rotating linear polarizer was 
sufficient to induce this effect. Most importantly, already a 
single 90° rotation per day was sufficient to trigger structural 
plasticity in both CX and MB circuits. An hourly rotation 
by 45° increased this effect, but both the linear rotation by 
15°/h or unrestricted exposure to the natural skylight did 
not lead to any significant further increase of neuroplastic 
changes. Most interestingly, under all experimental condi-
tions (except for the dark kept control group) the ants were 
able to perceive the natural course of the sun (as a celestial 
body) across the sky. This means that the rotating sky-polar-
ization pattern is the necessary and most important cue for 
inducing learning-walk related neuroplasticity in both the 
CX and MB pathways. The moving sun alone is not suf-
ficient to induce this effect. As could be expected, under all 
conditions the number of bulb synapses in the CX pathway 
remained unchanged after learning walks (not shown) (Grob 
et al. 2022).

An interesting outcome of the experiments described 
above was that neuroplasticity triggered by a dynamic 
sky-polarization pattern did also occur in the MBs (Grob 
et al. 2022) (Fig. 4). It seems likely that UV information is 
transferred to the MBs, but this has not yet been shown for 
Cataglyphis ants. In the honeybee, for example, MB output 
neurons show a sensitive response to UV light (Schmalz 
et al. 2022; Strube-Bloss and Rössler 2018). However, it is 
not known whether the MBs receive any direct input from 
polarization-sensitive neurons. The results on plasticity in 
the MB collar mediated by a rotating polarization pattern 
indicate that information about sky polarization must some-
how be relayed to the MBs, whether via a direct or indirect 
route needs to be explored in the future.

MB-co-MG
UV

CX-vol

Fig. 4  Summary of results on neuronal plasticity following the active 
performance of learning walks in Cataglyphis ants under various con-
ditions. The top row depicts the different manipulations (the differ-
ent symbols are explained in Fig. 1). The following rows summarize 
changes in the different neuropils. Arrows pointing upwards indicate 
significant increase in the numbers of synaptic complexes or neuropil 
volumes, arrows pointing downwards indicate a respective significant 
decrease compared to the dark control conditions. No arrow means 
no significant change. The first row shows changes in the number of 
microglomerular synaptic complexes in the mushroom-body calyx 
collar (MB-co-MG) after the various treatments. Only learning walks 
under natural skylight and under a rotating linear polarizer trigger 
a significant increase in the numbers of MB-co-MG. The second 
row shows changes in the central complex volume (CX-vol) follow-
ing learning walks under the various treatments. Like effects in the 
mushroom bodies, the volume of the CX-vol shows only a significant 
increase after learning walks under natural skylight or a rotating lin-
ear polarizer. See text for further details. Based on data from (Grob 
et al. 2017, 2022)
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Another important aspect is that Cataglyphis ants per-
form several learning walks over at least two days (Fleis-
chmann et al. 2016, 2017; Freas et al. 2019). This period 
correlates well with the time required to induce structural 
neuronal changes in high-order sensory integration centers. 
This is also the case for structural synaptic plasticity in the 
MB calyx associated with the formation of stable long-term 
memories after associative learning, which, for example, has 
been shown for both long-term appetitive olfactory memory 
in the honeybee (Hourcade et al. 2010; Scholl et al. 2015) 
and for long-term aversive olfactory memory in leaf cutting 
ants (Falibene et al. 2015). In the same line, light-exposure 
related (most likely homeostatic) structural neuroplasticity 
in the MB pathway of both the honeybee and ant requires at 
least three days of light exposure (Scholl et al. 2014; Stieb 
et al. 2012). Both associative and non-associative plasticity 
related structural neuronal changes almost certainly involve 
protein-synthesis dependent processes and the necessary 
activation of gene expression and subsequent protein syn-
thesis is likely to involve a minimum of 24 h (Becker et al. 
2016).

If we combine the results on the effects of a rotating sky 
polarization pattern with the known necessity for the experi-
ence of the earth’s magnetic field for path integration and 
goal-directed views during learning walks (Fleischmann 
et al. 2018b), we can conclude that both geostable compass 
information from the earth’s magnetic field together with a 
rotating UV sky-polarization pattern are necessary prerequi-
sites to induce structural neuroplasticity in the CX and MB 
during initial learning walks. Considering the earlier results 
on the role of initial learning walks and re-learning walks in 
memorizing the panoramic scenery (Deeti and Cheng 2021; 
Fleischmann et al. 2016, 2018a; Jayatilaka et al. 2018; Mül-
ler and Wehner 2010; Wystrach et al. 2014a, b), this means 
that sensory reception of the earth’s magnetic field, access 
to the panoramic scenery, and the experience of a dynamic 
(rotating) sky-polarization pattern over a minimum period of 
two days and with a minimum distance of 0.5 m are neces-
sary for successful learning walks. Although neuroplasticity 
in both the CX and MB strongly suggests that the experience 
of a dynamic sky-polarization pattern during learning walks 
is crucial for acquiring or calibrating an internal representa-
tion of the solar ephemeris, this hypothesis still needs further 
behavioral and functional proof.

Conclusions, open questions, and outlook

The results from visual manipulation studies during learn-
ing walks unambiguously demonstrate the role of celestial 
input, particularly a dynamic sky-polarization pattern, for 
inducing learning-related rewiring of visual neuronal cir-
cuits in the CX and MB. In addition, synaptic changes in the 

CX and MB pathways of naïve ants also occur after passive 
light exposure, most likely reflecting homeostatic plasticity 
before the start of learning walks. In the MBs, this form of 
plasticity can still be induced in old ants that have been kept 
in darkness. As the earth’s magnetic field is an important 
compass cue for goal-directed views during initial learn-
ing walks, the most obvious follow-up experiments will be 
long-term manipulations of the magnetic field during learn-
ing walks under natural skylight conditions and their conse-
quences for neuroplastic calibrations in the visual pathways. 
The most likely outcome of this experiment is that plastic 
changes are absent when the magnetic field is eliminated or 
strongly disturbed and, therefore, not available as a compass 
reference during learning walks.

Many other questions and follow-up studies come to 
mind. For example, what is the sensory mechanism for mag-
netoreception in Cataglyphis? A recent review (Fleischmann 
et al. 2020b) has elaborated extensively on this question and 
put forward arguments favoring a magnetic particle-based 
mechanism that would enable light-independent and polar-
ity-sensitive perception of the earth’s magnetic field. A study 
on the honeybee (Lambinet et al. 2017) provided evidence 
for polarity-sensitive (most likely magnetic-particle based) 
magnetoreception, at least in an artificial experimental setup. 
Systematic manipulation experiments in Cataglyphis using 
a 3D Helmholtz coil system can now test this hypothesis in 
the natural habitat using high-speed video analyses of nest-
directed views during learning-walk pirouettes as a readout.

Where are the magnetoreceptors located, and what is the 
neuronal pathway mediating magnetosensation? Where in 
the brain does the information converge with visual input? 
Several lines of evidence have promoted the idea that the 
ants’ antennae might be sites for magnetoreception (de 
Oliveira et al. 2010; Fleischmann et al. 2020b; Wajnberg 
et al. 2010). The JO is a potential candidate and has recently 
been studied anatomically—both the peripheral structures 
in the receptor organ and afferent projections in the ant 
brain (Grob et al. 2021a). Each JO scolopidium comprises 
three receptor neurons, and sensory afferents from the JO in 
Cataglyphis converge with visual input from the ocelli and 
the optic lobes in posterior brain regions, the ventrolateral 
protocerebrum, ventral complex, saddle, and posterior slope 
(Grob et al. 2021a; Habenstein et al. 2020). Future tracking 
of antennal movements during magnetic manipulation exper-
iments may give further hints to the potential role of the 
antennae in magnetoreception (Fleischmann et al. 2020b).

Further important questions come up regarding the kind 
of navigational information that is acquired during learning 
walks and how subsequent navigational performance is dis-
turbed by visual and magnetic manipulations during learning 
walks. What are the behavioral consequences after manipu-
lations of specific sky compass cues and/or the magnetic 
field during learning walks concerning view-based spatial 
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orientation and the precision in the calibration of the internal 
representation of the solar ephemeris in foragers? Some of 
the required behavioral experiments are straightforward, but 
others are more difficult as they require follow-up studies 
on individually marked ants and/or experiments employing 
several experimental groups under the same treatment and 
with the necessary controls for parallel behavioral and neu-
robiological analyses.

It will be highly interesting and important, but also most 
difficult, to test whether ants experiencing manipulations 
during learning walks that prevent structural neuroplasti-
city in the CX and MB also fail in navigational tasks that 
require a time-compensated skylight compass. Cataglyphis 
fortis inhabits featureless environments in North African 
salt flats without or with less prominent landmarks or pano-
ramic sceneries. The accessibility of “test fields” devoid of 
a prominent visual panorama in this environment provides 
ideal conditions for performing experiments to answer this 
question. It is very interesting in this context that previous 
high-resolution analyses of learning walk behavior in closely 
related C. fortis, C. nodus, and C. aenescens have shown that 
only C. fortis does not perform pirouettes (rotations on the 
spot about the vertical body axis including stops with nest-
directed gazes) during learning walks (Fleischmann et al. 
2017). Unlike the other two Cataglyphis species, C. fortis 
exclusively performs voltes—small, walked circles, with 
only rare and less distinct stops—but not pirouettes. This 
fuels the hypothesis that pirouettes with goal-directed stops 
and views are important for panoramic snapshot learning, 
whereas voltes might serve celestial compass calibration. 
Ants in cluttered habitats would then be able to efficiently 
perform both tasks at the same time—a collection of pano-
ramic views, and calibration of the celestial compass—by 
performing two distinct behavioral routines for actively 
exploring both sets of visual parameters. However, close 
quantitative comparisons with similar body rotations that 
have been observed in other ant species (e.g., Deeti and 
Cheng 2021; Jayatilaka et al. 2018; Müller and Wehner 
2010; Wystrach et al. 2014a, b) are needed to substantiate 
this hypothesis and to clarify the role of different types of 
body rotations during learning walks. Interestingly, dung 
beetles occasionally perform rotational movements on their 
dung ball to acquire celestial snapshots for strait-line orienta-
tion (el Jundi et al. 2016). This implies that the employment 
of body rotations for visual snapshot learning and skylight 
compass orientation may be based on behavioral routines 
that are conserved over phylogenetically large scales.

Do additional sensory modalities affect learning-walk 
experience? From the behavioral experiments and analyses 
of neuroplasticity described above, we can conclude that 
learning walks at least require the multisensory experience 
of dynamic sky polarization cues, magnetosensory informa-
tion, and (if available) panoramic cues. Previous studies have 

shown that a minimum requirement of time (at least 2 days) 
and space (at least 0.5 m distance from the nest entrance) 
are required to learn the panoramic scenery around the nest 
(Fleischmann et al. 2016, 2018a). However, in addition to 
vision and magnetoreception, we cannot exclude that input 
from other sensory modalities come into play during ini-
tial learning walks. In Cataglyphis, olfactory orientation, 
especially in response to  CO2, but also other odorants, is 
important during the final nest approach after homing and 
for exploring olfactory landscapes close to the nest site, 
which is combined with visual information (Buehlmann 
et al. 2012, 2014; Steck et al. 2009, 2011). Furthermore, 
when the ants screen the desert for finding food, they can 
form long-lasting olfactory memories for a substantial num-
ber of different odorants (Huber and Knaden 2018). Ants 
of the genus Cataglyphis possess well developed antennal 
lobes containing more than 200 olfactory glomeruli, the 
functional units for odorant processing (Grob et al. 2021b; 
Stieb et al. 2011). Based on this, it is conceivable that the 
ants also explore the olfactory landscape around the nest 
during their initial learning walks. Finally, wind orientation 
and the neuronal underpinnings of a wind compass have 
been explored in Cataglyphis and, for example, in the dung 
beetle and Drosophila (Dacke et al. 2019; Okubo et al. 2020; 
Wehner 2020). In some desert habitats, like North African 
salt flats, wind direction can be quite constant or even pre-
dictable, at least over some time periods (Wehner 2020). 
Much like in Drosophila, the JO in the antenna is likely to 
play an important role in using wind direction as a compass 
cue in Cataglyphis (Grob et al. 2021a). This is also sup-
ported by the demonstration of the transformation of wind 
perception to celestial compass coordinates (Wystrach and 
Schwarz 2013). Future studies are needed to characterize 
the importance of olfactory and mechanosensory modalities 
during initial learning walks.

Input from the sky compass requires time compensation, 
most likely by linking an internal (learned) function of the 
solar ephemeris to the internal clock (Wehner 2020; Wehner 
and Müller 1993). Neurons expressing the neuropeptide Pig-
ment-Dispersing Factor (PDF) play important roles in neu-
ronal clock networks of Drosophila and are potential candi-
dates relaying day-time information to neuronal processing 
centers involved in visual navigation (Helfrich-Förster 2005; 
Helfrich-Förster et al. 2020). A recent study revealed a broad 
distribution of PDF neurons in the honeybee brain and sug-
gested their potential role in circadian rhythmicity (Beer 
et al. 2018). Another study on the honeybee has identified 
the optic lobes as a potential site of modulatory input from 
PDF neurons (Zeller et al. 2015). It will be highly interesting 
for future studies to investigate PDF neurons and the pres-
ence of clock-related neurons in the Cataglyphis brain, par-
ticularly their association with visual processing and integra-
tion centers. In principle, time compensation via modulatory 
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influences from the endogenous circadian clock could be 
implemented both upstream or downstream the CX and MB.

Working model for learning‑walk related 
multisensory input and neuroplasticity

We propose a working model for multisensory input during 
learning walks and related rewiring of sensory pathways in 
the Cataglyphis brain (Fig. 5). In the scheme, color-coded 
solid lines indicate the known sensory pathways for visual 
input from the compound eyes via the optic lobes and the 
ocelli, mechanosensory (and potentially magnetosensory) 
input from the JO of the antennae, and olfactory input from 
the antennae. In addition to connections between brain 

neuropils known from studies in Cataglyphis (Grob et al. 
2017, 2021a; Habenstein et al. 2020; Schmitt et al. 2016) 
(solid lines), connections between brain neuropils known 
from other insects are included, particularly from recent con-
nectome studies in Drosophila, tracing studies in moths, or 
preliminary results in Cataglyphis (in all cases indicated by 
dashed lines in Fig. 5). For obvious reasons, this scheme is 
far from being complete. Its main purpose is to provide a 
ground for discussions and future planning for combinations 
of behavioral experiments, neuroanatomical and neurophysi-
ological analyses, modeling studies, and functional studies 
on neuroplasticity. This also concerns studies on multi-
sensory convergence in brain neuropils that have not been 
looked at so far and analyses on rewiring of circuits during 
the early ontogeny of foraging behavior (either measured 

Olfactory
Sensilla

Compound
Eye Ocelli

Johnston
OrganDRA

AL OL

AOTU

BU

CXMB

PS PLVLAL VX

Motor
Control

Olfactory
Cues

Sky Compass Cues
Panoramic Cues Sky Compass Cues

Wind Compass Cues
Gravity Cues

Magnetic Compass Cues?

AOT

AS
O

T

POC / IOC

sTL
A

T6

Learning
walks

Plasticity

AMMC

Light
exposure

Fig. 5  Working model for learning-walk related multisensory input 
and neuroplasticity in the brain of Cataglyphis ants. Different sen-
sory modalities involved during learning walks and the respective 
receptor organs are depicted color coded in the top rows. The sensory 
projections to brain neuropils (shown as boxes) are drawn as arrows 
in the same colors. Labels show the abbreviated names of sensory 
tracts. The types of plasticity shown for the target neuropils of the 
two major visual tracts (BU, CX, MB) are color coded, where yel-
low depicts plasticity related to passive light exposure and magenta 
plasticity related to learning walks (explanatory box lower left). Solid 
lines indicate neuroanatomically traced pathways in the Cataglyphis 
brain. Dashed gray and black lines depict connections between neuro-

pils that have been found in tracing or connectome studies from other 
insects, particularly Drosophila, Bombyx, and in locusts. See text 
for further details and for detailed references to the various sources 
of information depicted in the model. AL antennal lobe, ALTs anten-
nal lobe tracts, AMMC antennal mechanosensory and motor center, 
AOT anterior optic tract, AOTU anterior optic tubercle, ASOT anterior 
superior optic tract, BU bulb, CO collar, CX central complex, DRA 
dorsal rim area, IOC inferior optic commissure, LA lamina, LAL lat-
eral accessory lobe, LI lip, MB mushroom body, OL optic lobe, POC 
posterior optic commissure, PS posterior slope, T6 Johnston's organ 
afferent tract 6, VL vertical lobe, VLP ventrolateral protocerebrum, 
VX ventral complex
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as volume changes or, ideally, structural synaptic plasticity 
in identifiable circuits). Neuroplastic changes in brain neu-
ropils that have already been demonstrated are indicated as 
magenta (learning-walk related) and yellow (sensory-expo-
sure related) borders highlighting neuropils in Fig. 5. Due to 
the difficult neurophysiological access (e.g. electrophysiol-
ogy or functional imaging) in ants, Fig. 5 is also intended to 
stimulate comparative studies in Drosophila and other insect 
models or modeling studies inspired by data on behavioral 
and neuronal plasticity in Cataglyphis. In the following, we 
will mainly focus on convergences of neuronal pathways 
that are likely to play a role in neuroplasticity triggered by 
multisensory learning during learning walks and sensory 
exposure prior to learning walks.

Connections between the MB and CX 
pathways

One obvious question is how information from panoramic 
view memories in the MBs is integrated with heading and 
path integration information processed in CX circuits (Seelig 
and Jayaraman 2015; Stone et al. 2017). Possible solutions 
have been proposed in models by Collett and Collett (2018), 
Sun et al. (2020), and Wystrach et al. (2020). This is not 
only important for view memories, but also for connect-
ing olfactory memories to path integration information in 
the CX. Recent studies in Drosophila, elegantly shown by 
transsynaptic staining or in serial electron microscopy con-
nectome studies, revealed that a substantial number of MB 
output neurons are synaptically connected with fan shaped 
body neurons of the CX, mainly in the superior medial 
protocerebrum (Hulse et al. 2021; Li et al. 2020a; Scaplen 
et al. 2021). This confirms earlier predictions by Collett and 
Collett (2018) or in a model by Hoinville and Wehner (2018) 
(Fig. 5, dashed line between MB and CX). MB output neu-
rons were shown to express learning-related changes and 
categorize multisensory input in the honeybee, and to exhibit 
changes in aversive and appetitive responses to odorants 
after olfactory conditioning in Drosophila, in this case, inde-
pendent of the original valence of the odorants (Hige et al. 
2015; Owald and Waddell 2015; Strube-Bloss et al. 2011; 
Strube-Bloss and Rössler 2018). The activation of responses 
in ‘aversive’ and ‘attractive’ MB output neurons might 
modulate navigational decisions in CX circuits via direct 
interactions with fan-shaped body neurons. The combina-
tion of aversive and attractive MB output in ant navigation 
was suggested in recent behavioral analyses and modeling 
approaches (Le Möel & Wystrach 2020; Murray et al. 2020). 
How such learning-dependent modulatory interactions may 
influence behavioral decisions at a mechanistic level will 
be a most interesting focus for future investigations. In the 
same context, it is highly interesting that the CX fan-shaped 

body of Cataglyphis ants is innervated by a large variety of 
neuropeptidergic neurons (Habenstein et al. 2021a, 2021b; 
Schmitt et al. 2017). These neurons may convey input from 
further modulatory systems that mediate internal age- or 
status-dependent changes, and external context-dependent 
influences.

Studies in the honeybee have shown that more than 30% 
of MB output neurons are multimodal and respond to both 
olfactory and visual input (Strube-Bloss and Rössler 2018). 
This means that both modalities converge at the level of 
the MB output. Therefore, panoramic view memories might 
interact with olfactory input at the level of the MBs and, for 
example, lead to cross-modal interactions during learning as 
it has been shown for color learning and olfaction (Becker 
et al. 2019; Schmalz et al. 2022; Strube-Bloss and Rössler 
2018). Computation of path integration information in the 
CX and view-based information in the MBs have recently 
also been implemented in models for optimal integration 
of navigational information (Hoinville and Wehner 2018; 
Sun et al. 2020). Interestingly, long-term memory after color 
learning was also shown to induce structural plasticity in the 
fan-shaped body of the central complex of Camponotus ants 
(Yilmaz et al. 2019).

In Cataglyphis and, for example, in the honeybee, mas-
sive visual input is relayed from the optic lobes to the collar 
of the MB calyx, whereas in the fly only very few direct 
projections from the optic lobes mediate visual input to the 
MB calyx (Ehmer and Gronenberg 2002; Grob et al. 2017; 
Habenstein et al. 2020; Li et al. 2020b; Vogt et al. 2016; 
Yilmaz et al. 2016, 2019). The differences in visual inner-
vation patterns of the MB calyces between basal and higher 
hymenopteran species (Farris and Schulmeister 2011) and 
the small number of visual connections to the MB calyx in 
Drosophila can be expected to cause differences in the way 
how visually activated MB output neurons may affect CX 
processing. These circuit differences reflect different sen-
sory ecologies between insect species. It also emphasizes the 
general importance of comparative studies on multimodal 
information processing (Thiagarajan and Sachse 2022) and 
the role of differences in visual pathways on visual behaviors 
(Ryu et al. 2022).

Like in other Hymenoptera, olfactory information in 
Cataglyphis is relayed from the antennal lobe to the MB 
and lateral horn via multiple antennal lobe tracts (Kirsch-
ner et al. 2006). During learning walk behavior, in addition 
to memorizing the panoramic scenery, Cataglyphis might 
acquire additional homing information by learning olfactory 
landmarks around the nest entrance. During homing, much 
like view-based information, olfactory memories might be 
relayed to the CX via olfactory MB output neurons and influ-
ence navigational decisions. The connections of MB output 
neurons with the fan shaped body (also termed upper unit 
of the central body) suggests a prominent role of this part 
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of the CX in multisensory integration and modulation of 
spatial orientation.

Convergence of visual pathways with input 
from Johnston’s organ

Where does information from the JO converge with visual 
information and how could it be relayed to the CX? Interest-
ingly, in both the honeybee and Cataglyphis, projections in 
the posterior slope are in very close apposition with input 
from ocellar interneurons (Ai et al. 2007; Grob et al. 2021a). 
Furthermore, anatomical and behavioral evidence suggest 
that the ocelli mediate information about celestial compass 
information in desert ants (Penmetcha et al. 2019; Schwarz 
et al. 2011). The convergence of sensory pathways from the 
ocelli and JO provides further evidence that the posterior 
slope represents a multimodal integration center (Currier 
and Nagel 2020). In Cataglyphis, this brain region likely 
integrates visual input from the ocelli, mechanosensory 
input (wind compass, gravity) from the JO, and, although 
still speculative, potentially magnetosensory information 
from the JO (Fleischmann et al. 2020b; Grob et al. 2021a). 
Furthermore, projections from the optic lobes are relayed to 
the posterior slope, ventrolateral protocerebrum, and ven-
tral complex via the posterior and inferior optic commis-
sures indicating that visual information from the compound 
eyes, too, may converge with multisensory input from the 
JO (Habenstein et al. 2020). Although for Cataglyphis it is 
still an open question how information from the posterior 
slope and ventrolateral neuropils might be relayed to the 
CX, several pathways shown in Drosophila provide poten-
tial candidates. For example, connections of auditory cir-
cuits from the JO to the CX (Lai et al. 2012) and for wind 
compass information from the anterior mechanosensory 
and motor center to the CX (Okubo et al. 2020). Similarly, 
studies in the locust and Drosophila revealed connections 
between the CX and lateral accessory lobe with the poste-
rior slope and other neuropils in the central brain (Hadeln 
et al. 2020; Scheffer et al. 2020). Such feedback connec-
tions in Cataglyphis might be relevant for plasticity in CX 
neuropils observed during the active performance of learn-
ing walks under a rotating sky-polarization pattern, while 
the ants use the earth’s magnetic field as a compass refer-
ence (Fleischmann et al. 2018b; Grob et al. 2017, 2022). 
Although the posterior neuropils and central brain are not 
as easy to access as the CX, the bulbs, or the MBs, future 
studies on learning-walk induced structural neuroplasticity 
should also analyze these brain centers. Clearly, future trac-
ing studies are needed to anatomically characterize the con-
nections between these neuropils including their neurotrans-
mitter and neuromodulator systems. The Cataglyphis brain 
atlas will be a helpful tool for such experiments (Habenstein 

et al. 2020). Furthermore, recent studies have revealed stage-
related changes in neuropeptide modulators (e.g. Corazonin, 
Allatostatin) in distinct neuropils or brain regions of the Cat-
aglyphis brain (Habenstein et al. 2021a, 2021b). Future stud-
ies should also characterize the neurochemistry associated 
with multisensory interactions and analyze potential changes 
in neurotransmitters and neuromodulators. As an alternative 
approach to live imaging techniques like calcium imaging, 
activity- or learning-related changes in the expression of 
immediate early genes in relevant brain neuropils receiving 
convergent multisensory input may give important insights 
into neuronal effects of learning-walk behavior (Sommer-
landt et al. 2017, 2019).

Pathways to premotor centers

The connections between the output from the CX and MBs 
to premotor centers have not yet been investigated in Cat-
aglyphis ants. Clearly, future tracing studies are necessary to 
characterize these pathways. However, as the CX circuitry 
appears to be highly conserved across insect taxa (Straus-
feld 2012), we can at least make some predictions from the 
connections already known in other insects (Steinbeck et al. 
2020). The CX output is mainly relayed to the lateral acces-
sory lobe (Pfeiffer and Homberg 2014). The lateral acces-
sory lobe, posterior slope and ventrolateral protocerebrum 
can be viewed as premotor control centers as they are tar-
geted by descending neurons that relay the information to 
thoracic motor control centers (Namiki et al. 2018a, 2018b; 
Namiki and Kanzaki 2016) (dashed black lines in Fig. 5). 
Therefore, in addition to information that is relayed to the 
CX, it appears likely that input from the JO may also exert 
direct modulatory influences on visually mediated responses 
via these descending pathways, for example by modulatory 
interactions in the posterior slope, ventrolateral protocere-
brum, or even downstream of these neuropils. These aspects 
require future studies at the synaptic and ultrastructural lev-
els. There are no indications that information from the JO is 
relayed to the MBs, but interactions with MB output neurons 
may be possible at the level of their connections with down-
stream neuropils like the lateral accessory lobe. These open 
questions related to processing of multisensory input and 
the role of learning and memory during the performance of 
learning walk behavior in Cataglyphis ants represent a most 
exciting field for multidisciplinary neuroethological research 
aimed at elucidating the ontogeny of spatial orientation in a 
highly skilled insect navigator.
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