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Abstract: A well-known result for the interference of two single-mode fields is that the degree of coherence and the

degree of indistinguishability are the same when we consider the detection of a single photon. In this article, we present the

relation between the degree of coherence, path indistinguishability and the fringe visibility considering interference of

multiple numbers of single-mode fields while being interested in the detection of a single photon only. We will also

mention how Born’s rule of interference for multiple sources is reflected in these results.
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1. Introduction

Double-slit interference experiment is one of the most

remarkable experiments, ever proposed in Physics. From

its initial purpose of understanding the nature of light to

later explaining the non-trivial nature of quantum

mechanics, it has always been of prime interest. Richard P.

Feynman’s discussions of the double-slit experiment and

how the visibility of quantum interference of states is

dependent on the path information is very useful for

understanding why this is one of the defining features of

quantum mechanics [1]. By the first half of the nineteenth

century, it was clear that two-point amplitude correlation

function was an important tool to understand the nature of

the optical phenomena observed till that point. A system-

atic development of this study was done by E. Wolf. In the

classical case where the electric field can be written as sum

of positive (EðþÞ) and negative frequency (Eð�Þ) part, the

second-order correlation function can be defined as the

statistical average of the product of these two,

Cð2Þ ¼ hEð�Þðx1ÞEðþÞðx2Þi ð1Þ

The need for higher-order correlation functions became

clear after the HBT intensity interferometry in 1956.

Mandel did some pioneering works with these newly

developed tools by doing semi-classical treatment of light.

Here, we note that there is some ambiguity in the

nomenclature of the correlation functions. The correlation

function of 1 is called second order by some authors [4]

and first order by another group of authors [12]. We here

follow the convention followed by Mandel and call it

second order. In quantum theory of optical coherence,

photon correlation function was first defined by Glauber

[2, 3]. Using the methods of light detection due to

absorption of photons from the field, Glauber was able to

derive the most useful measure of partial coherence of the

quantized electromagnetic field at the two-point level and

generalized it to correlation functions of arbitrary order. In

this article, we are interested in the study of the equiva-

lence of coherence and indistinguishability which is an

very important result in the perspective of wave-particle

duality. Coherence is one of the main criteria for interfer-

ence of light beams. On the other hand in single-photon

interference experiment, the lack of photon’s path infor-

mation plays a crucial role. In his famous article, Mandel

[4] has shown that the modulus of degree of second-order

coherence is identical to the degree of indistinguishability

for the case of two single-mode fields emitted from two

sources and by considering the detection a single photon
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only. The experimental verification of the double-slit

thought experiment for single electron [5] and single

photon [6] has been successfully performed, and in recent

times, the study of coherence [7–9] and experiments of

interference for more than two slits [10] has been of prime

interest for proving the validity of Born’s rule. In this

paper, we describe the generalisation of L. Mandel’s result

for 3 single-mode fields followed by N number of single-

mode fields while considering the detection of a single

photon only. We also discuss how the equivalent form of

Born’s rule is obtained in the context of coherence and

fringe visibility.

2. Interference of three single-mode fields

Before we discuss the generalised version of the interfer-

ence, we consider the case of interference of three single-

mode fields and the detection of a single photon only. The

schematic diagram of the experiment under consideration

is shown at Fig. 1. Here, we have three sources and so a

photon detected at any point on the detector may take three

possible paths. We write the state of the photon before the

detection process takes place as

jwi ¼ aj1i1j0i2j0i3 þ bj0i1j1i2j0i3 þ cj0i1j0i2j1i3 ð2Þ

where jaj2, jbj2 and jcj2 are the probability of the photon

being produced by the first, second and third source,

respectively, and jaj2 þ jbj2 þ jcj2 ¼ 1. Considering this

state the density matrix of this pure state can be written as

q̂ID ¼ jwihwj

¼
jaj2 ab� ac�

a�b jbj2 bc�

a�c b�c jcj2

0
B@

1
CA ð3Þ

On the other hand, we could have an incoherent mixture

of states and the corresponding density matrix of this

photon represented by a diagonal density matrix of the

form

q̂D ¼
jaj2 0 0

0 jbj2 0

0 0 jcj2

0
B@

1
CA ð4Þ

In the second case, we do not have the off-diagonal terms

implying that the intrinsic indistinguishability of the

photon path is lost. So, now for the density matrix q̂D in

principle we will be able to detect the source of this photon

experimentally and the interference pattern will be lost.

Following the notation of L. Mandel, here also the

subscript of q̂ID and q̂D signifies the path

indistinguishability and this potential path

distinguishability for those two density matrices,

respectively. Now in this Hilbert space, we take a general

density matrix of the form

q̂ ¼
X3

n;m¼1

qnmjnihmj ð5Þ

and we can decompose it in the terms of q̂ID and q̂D to

determine the degree of indistinguishability for the system.

We write the general density matrix as

Detector

Source 1

Source 2

Source 3

Path 1

Path 2

Path 3

Fig. 1 Schematic diagram of

the interference experiment
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q̂ ¼ PIDq̂ID þ PDq̂D where PID þ PD ¼ 1 ð6Þ

From Eqs. 6, 5 and 4, we get

q11 ¼ jaj2; q22 ¼ jbj2; q33 ¼ jcj2 ð7Þ

q12 ¼ PIDab
�; q13 ¼ PIDac

�; q23 ¼ PIDbc
�: ð8Þ

Due to the hermiticity of the density matrix, we can

evaluate the lower triangular elements as the complex

conjugate of the upper triangular ones. Now using very

simple calculation, we see that

PID ¼ q12ffiffiffiffiffiffiffiffiffiffiffiffiffi
q11q22

p e�i�argðq12Þ ¼ q13ffiffiffiffiffiffiffiffiffiffiffiffiffi
q11q33

p e�i�argðq13Þ

¼ q23ffiffiffiffiffiffiffiffiffiffiffiffiffi
q22q33

p e�i�argðq23Þ

¼ jq21jffiffiffiffiffiffiffiffiffiffiffiffiffi
q11q22

p ¼ jq31jffiffiffiffiffiffiffiffiffiffiffiffiffi
q11q33

p ¼ jq32jffiffiffiffiffiffiffiffiffiffiffiffiffi
q22q33

p

ð9Þ

which indicates that PID can be written in three equivalent

forms where we only have pairwise terms out of the three

slits.

Now we calculate the degree of coherence for the sys-

tem and for that We denote the positive frequency com-

ponent of the single-mode electric field of the source as

ÊðþÞðrjÞ ¼ Kâj wherej ¼ 1; 2; 3 ð10Þ

where K is a constant. The normalised second-order

coherence function of the form [11, 12]

gð1Þðxi; xjÞ ¼
Gð1Þðxi; xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gð1Þðxi; xiÞGð1Þðxj; xjÞ
p ð11Þ

where

Gð1Þðxi; xjÞ ¼ Trfq̂Êð�ÞðxiÞÊðþÞðxjÞg ð12Þ

and Gð1Þðxi; xjÞ is the general second-order coherence

function. For the first pair of sources ðx1; x2Þ, we get

Gð1Þðx1; x2Þ of the form

Gð1Þðx1; x2Þ ¼ Trfq̂Êð�Þðx1ÞÊðþÞðx2Þg
¼ jKj2q21

ð13Þ

similarly we get,

Gð1Þðx1; x1Þ ¼ jKj2q11 ð14Þ

Gð1Þðx2; x2Þ ¼ jKj2q22 ð15Þ

Now from Eqs. 11, 13, 14 and 15, we get,

gð1Þðx1; x2Þ ¼
q21

ðq11q22Þ
1
2

ð16Þ

We can do similar calculation for other pair of sources and

we will get

gð1Þðx1; x3Þ ¼
q31

ðq11q33Þ
1
2

ð17Þ

gð1Þðx2; x3Þ ¼
q32

ðq22q33Þ
1
2

ð18Þ

Now from Eqs. 9, 16, 17 and 18, we see that

PID ¼jgð1Þðx1; x2Þj; PID ¼ jgð1Þðx1; x3Þj and

PID ¼ jgð1Þðx2; x3Þj
ð19Þ

So, we see that the degree of indistinguishability is equal to

the degree of coherence even for the case of interference

with three sources but in a pair wise manner for all possible

combinations of two sources and we also note that the

degree of coherence for all pairs of sources are equal to

each other.

Now it is very straight forward to show that only the

second-order normalised coherence of this system is non-

zero. Any higher-order coherence of the following form

will be zero for this system;

gð2Þðxi; xj; xj; xiÞ ¼
Gð2Þðxi; xj; xj; xiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð1Þðxi; xiÞGð1Þðxj; xjÞ

p ¼ 0

where Gð2Þðxi; xjÞ ¼ Trfq̂Êð�ÞðxiÞÊð�ÞðxjÞÊðþÞðxjÞÊðþÞðxiÞg
is the general fourth-order coherence function [12] or the

three-point fourth-order coherence function

gð3Þðxi; xj; xk; xk; xj; xiÞ

¼ Gð3Þðxi; xj; xk; xk; xj; xiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð1Þðxi; xiÞGð1Þðxj; xjÞGð1Þðxk; xkÞ

p ¼ 0:

So, we see that when we are interested in the detection of a

single photon the modulus of degree of indistinguishability

and the degree of second-order two-point coherence will be

equal for all possible pairs of the three sources.

Now we look at the relation of fringe visibility with the

degree of path indistinguishability. Up to an overall scaling

and write the total positive component of electric field at

the point of detection as,

ÊðþÞ ¼ â1e
i/1 þ â2e

i/2 þ â3e
i/3 ð20Þ

Here, the phases /1, /2 and /3 are acquired during the
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propagation of the field from source to the point of

detection. The overall scaling factor has been chosen to

properly normalise correlation function. So, the probability

of the photon being detected at this point is

TrðÊð�ÞÊðþÞq̂Þ ¼ Tr â
y
1e

�i/1 þ â
y
2e

�i/2 þ â
y
3e

�i/3

� �h

â1e
i/1 þ â2e

i/2 þ â3e
i/3

� �
q̂
�

¼ q11 þ q22 þ q33 þ 2 jq21j cosð/21Þðð
þjq31j cosð/31Þ þ jq32j cosð/32ÞÞÞ

ð21Þ

where /ij ¼ /i � /j. The visibility of interference fringe is

defined as [11]

V ¼ Imax � Imin

Imax þ Imin

ð22Þ

In Eq. 21, the angle difference /ij can be varied to get Imax

and Imin. Then from Eqs. 16, 17, 18, 19 and 22, we get

V ¼ 2 jq21j þ jq31j þ jq32jð Þ
q11 þ q22 þ q33

¼ 2 jgð1Þðx1; x2Þj ðq11q22Þ
1
2 þ jgð1Þðx1; x3Þj ðq11q33Þ

1
2

�

þjgð1Þðx2; x3Þj ðq22q33Þ
1
2

�

¼ 2PID ðq11q22Þ
1
2 þ ðq11q33Þ

1
2 þ ðq22q33Þ

1
2

� �

ð23Þ

Here, we see that the fringe visibility is related to all three

possible combinations of the modulus of two-point

coherence functions of slits which is the famous Born’s

rule of multi-source interference. Very simple calculation

shows how according to Born’s rule in quantum

mechanics, the multi-slit interference experiment’s fringe

intensity is nothing but the sum of contribution’s of all

possible pairs of slits [10]. In that paper [10], they

experimentally proved the validity of Born’s rule for

three slit experiments that rules out the possibility of any

multi-path, or higher-order interference. We note that for a

single-mode field, only the second-order coherence

function is nonzero and so only the pairwise two-slit

correlations are possible. Following the unit trace of the

density matrix and the pairwise two-slit correlation

condition for all the possible combination of two slits i

and j, it implies that, qii þ qjj ¼ 1 and qkk ¼ 0 where k

designate the last remaining slit. Using the inequality

2
ffiffiffiffiffiffiffiffi
I1I2

p
� I1 þ I2, we can write 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q11q22

p � q11 þ q22 and

similarly for all the combinations we get,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q11q22

p � 1

2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q11q33

p � 1

2
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q22q33

p � 1

2

ð24Þ

As only two of the qii for i ¼ 1; 2; 3, the diagonal elements

can be nonzero simultaneously; from Eqs. 23 and 24 it

implies that,

V�PID ð25Þ

This generalises the famous result of Mandel for the case of

triple slit interference.

3. Coherence and indistinguishability for interference

with N sources

Now we generalise our result for N sources where we are

interested in detection of one photon. For the generalisation

of the problem, we use a new notation for simplification of

the calculation. We denote the state j1i1 � j0i2 � j0i3 �
j0i4::j0iN simply as jj1i. So when the photon will be

generated by the m th source the state will be denoted as

jjmi which in our old notation would be j0i1 � j0i2 �
j0i3 � :::j1im � :::j0iN and so on. So the state of the photon

for this case can be written as

jwi ¼
XN
i¼1

aijjii ð26Þ

where jaij2 is the probability of the state w being in the i th

state. Now for this the density matrix can be written as

q̂ID ¼ jwihwj ¼
XN
i;j¼1

aia
�
j jjiihjjj ð27Þ

and likewise we denote the diagonal form of the density as

q̂D ¼
XN
i¼1

aia
�
i jjiihijj ¼

XN
i¼1

jaij2jjiihijj ð28Þ

Now any general density matrix can be written as

q̂ ¼
XN
i;j¼1

qijjjiihjjj ð29Þ

Now by decomposing this density matrix in terms of the qD
and qID, we can write

q̂ ¼ PIDq̂ID þ PDq̂D

¼ PID

XN
i;j¼1

aia
�
j jjiihjjj þ PD

XN
i¼1

jaij2jjiihijj
ð30Þ
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¼
XN
i¼1

jaij2jjiihijj þ PID

XN
i 6¼j¼1;

aia
�
j jjiihjjj ð31Þ

Now by comparing Eqs. 31 and 29, we can write

qii ¼ jaij2 and qij ¼ PIDaia
�
j ð32Þ

By hermiticity of density matrix, we can write

qji ¼ q�ij ¼ PIDa
�
i aj ð33Þ

So, from Eqs. 32 and 33, we can write,

qijqji ¼ P2
IDqiiqjj ð34Þ

From Eqs. 32 and 34, we write

ðaia�j Þ
2 ¼

q2
ij

P2
ID

¼
q2
ij � qiiqjj
qijqji

ð35Þ

Due to hermiticity of density matrix

qij ¼ qjie
2i�argðqijÞ ð36Þ

Using Eqs. 35, 36 and 32, we can get,

PID ¼
qijffiffiffiffiffiffiffiffiffiffiqiiqjj

p e�i�argðqijÞ ¼
jqijjffiffiffiffiffiffiffiffiffiffiqiiqjj

p ¼
jqjijffiffiffiffiffiffiffiffiffiffiqiiqjj

p ð37Þ

PID can be expressed in NC2 equivalent ways considering

all possible pairs of N sources. This result boils down to

Eq. 19 for N ¼ 3 case and Mandel’s result [4] for N ¼ 2

case. Equation 37 suggests that the degree of path indis-

tinguishability is equal for all possible NC2 pairs of

sources.

Now to calculate the degree of coherence, we denote the

positive frequency part of the single-mode electric fields of

these sources as

ÊðþÞðrjÞ ¼ Kâj where j ¼ 1; 2; :::N ð38Þ

Now as we have N sources, we will have NC2 pairs of

sources for which we can calculate the second-order

coherence function. We calculate the general second-order

coherence function for a pair of points ðxi; xjÞ from Eqs. 11

and 29 as

Gð1Þðxi; xjÞ ¼ jKj2Trðâyi âjq̂Þ

¼ jKj2
XN
n¼1

njjâyi âjq̂jjn
D E

¼ jKj2
XN
n¼1

njjâyi âj
XN
l;k¼1

qlkjjlihkjj
 !

jjn
* +

¼ jKj2
XN
k;l¼1

qlkdkidjl ¼ jKj2qji

ð39Þ

From Eqs. 39 and 11, we see that

gð1Þðxi; xjÞ ¼
qjiffiffiffiffiffiffiffiffiffiffiqiiqjj

p : ð40Þ

We also note any higher-order coherence function than this

will be zero for this generalised case also. From Eqs. 37

and 40, one sees that these pairwise second-order

coherence functions are equal to the modulus of degree

of indistinguishability,

jgð1Þðxi; xjÞj ¼ PID ð41Þ

Therefore, for N single-mode fields when we consider the

detection of a single photon only we see that the degree of

coherence is exactly equal to the modulus of degree of

indistinguishability when we consider all possible pairs of

the sources. Now to relate degree of indistinguishability

with the degree of coherence, we denote the total positive

component at the point of detection without the scaling

factor as

ÊðþÞ ¼
XN
m¼1

âme
i/m ð42Þ

where /n is the phase acquired by the field while

propagating to the point of detection from the n th

source. We denote the intensity as well as the detection

probability at this point of detection as expectation of the

operator Êð�ÞÊðþÞ as

Tr Êð�ÞÊðþÞq
� �

¼
XN
i¼1

qii þ 2
XN

i;j¼1;i[ j

jqijj cosð/ijÞ ð43Þ

From Eqs. 22, 2 and 43, we write the visibility as

V ¼ 2

PN
i;j¼1;i[ j jqijjPN

i¼1 jqiij
¼ 2

XN

i;j¼1;i[ j
jgð1Þðxi; xjÞjðqiiqjjÞ

1
2

where i[ j

ð44Þ
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�PID

XN
i;j¼1;i[ j

ðqii þ qjjÞ ð45Þ

� PID ð46Þ

Equation 44 is the general form for interference fringe

visibility of N single-mode fields. Equations 45 and 46 are

the generalised relations between the fringe visibility,

degree of coherence and degree of indistinguishability. The

multi-slit interference of single-mode field being dependent

on all the possible combinations of 2-slits was mentioned

by Sorkin [13]. Here also as discussed for the case of three

slits, for a state of the form Eq. 26, only the second-order

correlation and two of the diagonal elements of the density

matrix can be nonzero. Using this property, we get relation

between visibility, degree of coherence and the probability

of path indistinguishability.

4. Conclusions

In this article, we present a generalised relation between

degree of indistinguishability and the degree of coherence.

We also see how these quantities are related to the visi-

bility of interference fringe for N single-mode fields for

detection of one photon only. We note all the multi-path

interference can be thought as contributions from all pos-

sible two-slit correlations as expected from Born’s rule

also. These results present a good picture or relations

between wave and particle nature of photon.
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