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Abstract. We develop a joint formalism and numerical framework for analyzing the superconducting insta-
bility of metals from a weak coupling perspective. This encompasses the Kohn–Luttinger formulation of
weak coupling renormalization group for superconductivity as well as the random phase approximation
imposed on the diagrammatic expansion of the two-particle Green’s function. The central quantity to
resolve is the effective interaction in the Cooper channel, for which we develop an optimized numerical
framework. Our code is capable of treating generic multi-orbital models in two as well as three spatial
dimensions and, in particular, arbitrary avenues of spin-orbit coupling.

1 Introduction

Correlated metals can be the parent state for unconven-
tional superconductivity [1]. Opposed to doped Mott
insulators such as the famous copper oxide super-
conductors [2,3] where a strong coupling perspective
appears unavoidable at low doping, condensed matter
research in the past decades has witnessed a plethora
of superconducting materials where the parent state
is metallic and yet the pairing mechanism is likely to
be mediated by electrons rather than phonons. As an
indication for its nevertheless correlated character, the
metallic state often experiences itinerant magnetism, a
pronounced profile of dynamic spin fluctuations, or even
charge-type species of seeding particle hole fluctuations.
Their impact on pairing, within a leading approxima-
tion, is included in the random phase approximation
(RPA) treatment of the superconducting instability in
the particle–particle channel of the two-particle Green’s
function [4–6]. There, the RPA reduces to a geometric
series summation of the particle–hole bubble, which in
principle tracks all types of particle–hole fluctuations
that can result in an instability of the metallic state
to superconducting pairing. While the assignment of
a rigorous convergence radius to the RPA approxima-
tion is an open problem, it is apparent that the error
should increase with the electronic coupling strength,
since most higher order diagrammatic contributions are
neglected in the RPA. Nevertheless, the RPA remains a
useful tool for a qualitative analysis of superconductiv-
ity at intermediate coupling. It rests on the hypothesis
that the particle–hole bubble is the central source of
pairing and its resummation to arbitrary orders yields
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a valid description even beyond the limit of pertur-
bative coupling strengths. Further refinements from a
metallic parent state can be accomplished by functional
renormalization group (FRG) where leading vertex cor-
rections are retained and all two-particle channels are
treated on equal footing [7,8].

From a somewhat complementary perspective, Kohn
and Luttinger [1] analyzed the emergence of Fermi
surface instabilities in the infinitesimal coupling limit.
Decades later, this was the basis for a related more
systematic treatment for superconducting instabilities
by Raghu, Scalapino, and Kivelson [9–14]. The result-
ing ansatz is henceforth labelled weak coupling renor-
malization group (wcRG). Its central motif is to retain
analytical control over the expansion in the particle–
particle channel and thus obtain a rigorous formula-
tion of unconventional pairing in the limit of vanishing
coupling. The wcRG and RPA approach hence incor-
porate a different teleological background even though
they still exhibit strong formal similarities. In particu-
lar, with respect to numerical performance, everything
condenses into the efficient computation of the particle–
hole bubble as the central building block for the effec-
tive particle–particle interaction in the Cooper channel.

In this article, we develop a joint formalism and
numerical framework for the analysis of unconventional
superconductivity in correlated metals from the per-
spective of RPA and wcRG. We show that the gener-
alized susceptibility enables a unified numerical formu-
lation of the RPA and wcRG methods and propose a
generalization for the exact treatment of generic long
range interactions in both approaches. Including arbi-
trary types of spin orbit coupling into general multi
orbital models can cause problems due to the residual
gauge degree of freedom in the choice of eigenstates.
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This problem and its implications on the exploitation
of symmetries is spelled out explicitly and resolved for
the two particle Cooper vertex. We present a sophis-
ticated Fermi surface discretization scheme as well as
a controlled approximation for the integration of the
particle–hole bubble and show that our approach allows
for the numerically efficient reproduction of various lit-
erature results within the same numerical framework.
The model systems we choose for this purpose include
the single orbital Hubbard model on the square lat-
tice and the honeycomb Hubbard model, and also con-
sider spin orbit coupling, long-range Coulomb interac-
tions, and hoppings from long-range hybridization. To
approach three spatial dimensions, we investigate the
transition from a layered square lattice to a simple cubic
and body centered cubic lattice.

2 Methods and mathematical formalism

In this section we begin by outlining the class of model
Hamiltonians considered in our method description.
This is followed by a general formulation of the wcRG
in Sect. 2.2. Here we focus on an approach centering
around the calculation of the generalized susceptibility
χ and introduce a strictly more general object ℵ that
may be used to implement long range interactions effi-
ciently. Section 2.3 shows that the same object can be
used to calculate the susceptibility in the RPA approx-
imation. This equalizes the scaling of numerical cost in
both methods.

2.1 Generalized Hubbard model

The formalism developed in this article concerns a gen-
eralized Hubbard type model with combined orbital
and sublattice degrees of freedom denoted wi occupied
by spinful electrons. The kinetic part of such a model
can be generically represented by a tight-binding type
Hamiltonian

H0 =
∑

r0,r2

∑

a0,a2

ta2a0(r2 − r0)c
†
2c0 , (1)

where ai = (wi, si) is a fused spin, orbital and sublattice
index, c†

i denotes the creation operator of an electron
with indices ai on a lattice site ri and t describes the
amplitude and phase of a translation invariant hopping
process between states c†

i |0〉 and c†
j |0〉.

Such a model is readily simplified by utilizing its
translation invariance with a Fourier transformation

H0 =
∑

k

∑

a0,a2

( ∑

r

ta2a0(r)e
−ikr

)
c†
a2,kca0,k , (2)

and subsequently solved by numerical diagonalization
of the matrix

ha2a0(k) =
∑

rk

ta2a0(rk)e−ikrk

=
∑

αi

va2αi
(k)εαi

(k)v∗
a0αi

(k) .
(3)

The solution is described by (possibly degenerate) band
energies εαi

(k) (eigenvalues) and a complete set of
orthonormal eigenvectors vaiαi

(k) of the matrix, encod-
ing the orbital-spin structure of the energy eigenstates.
For multi site models it is important to note that we use
the Fourier transform to momentum space in “proper”
gauge as defined in Ref. [15]. In short this amounts
to a transformation which acts as if all orbital posi-
tions lie in the center of the Brillouin zone, ensuring
the momentum space Hamiltonian’s periodicity under
reciprocal lattice vectors. This allows the definition of
all other operations without explicit specialization of
the Brillouin zone (BZ) in which to evaluate as they
are equivalent.

A crucial observation to make at this point is the fact
that the vaiαi

(k) are only defined up to gauge transfor-
mations i.e., eiϕαi

(k)vaiαi
(k) are equally valid solutions

to the eigenvalue problem given by Eq. (3). Additional
care must be taken in the case of degenerate bands
where not only the phase but also the basis in the space
of degenerate states is undefined by the eigenvalue prob-
lem. While the second issue is easily circumvented by
analytical separation of the spin degree of freedom in
the case of non spin orbit coupled systems, the first
is ubiquitous for models requiring a numerical solution
of Eq. (3). This ambiguity in the choice of eigenstates
poses difficulties in the analysis of Hubbard type mod-
els due to the gauge-dependence of the bare interaction
in band space as we will elaborate now.

The most general interaction we consider in this arti-
cle is given by the quartic Hamiltonian

HI =
∑

{ri}

∑

{ai}
Ua0a1a2a3(r̂1, r̂2, r̂3)c

†
2c

†
3c1c0 , (4)

where we define r̂i = ri − r0 to compactify notation
and emphasize translational invariance. The sums run
over {xi} = x0, x1, x2, x3. Employing the same Fourier
transform as before we find

HI =
∑

{ki}

∑

{ai}
U{ai}({ki})c†

a2,k2,c
†
a3,k3,ca1,k1,ca0,k0,

(5)

by introducing the definition

U{ai}{ki}) = δ(k0 + k1 − k2 − k3)
∑

r̂1,r̂2,r̂3

U{ai}(r̂1, r̂2, r̂3)

e+i(k1r̂1−k2r̂2−k3r̂3) . (6)
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A subsequent transformation into band space seems
natural and would result in

U{αi}({ki}) =
∑

{ai}
va2α2(k2)va3α3(k3)

v∗
a1α1

(k1)v∗
a0α0

(k0)U{ai}({ki}) .
(7)

From the prior discussion about the gauge freedom in
the eigenvectors vaiαi

it is clear that this expression is
manifestly gauge variant, making it a useful analytical
device but not a computationally advantageous quan-
tity. One can trivially avoid this issue by considering the
interaction in orbital space only. This, however is not
common practice in the wcRG and functional renor-
malization group (fRG) literature, where calculations
in band space are standard. Unfortunately performing
calculations in orbital space lead to limitations of the
applicability and performance of the established Fermi
surface patch formulation of the fRG. The reason is
that a restriction of the interaction to the Fermi sur-
face is most useful if the interaction is also decidedly
constrained to one band at the Fermi surface, result-
ing in a reduction of the vertex function by a factor of
N4

orb [8,16]. Contrarily, our formulation of the weak cou-
pling renormalization group (wcRG) via the generalized
susceptibility allows for gauge invariant calculations in
band space.

Having established the representation of models to be
analyzed for unconventional superconducting instabili-
ties we are going to discuss two approaches to the prob-
lem in the following. We first propose a gauge invari-
ant formulation of the wcRG method that is based on
a further generalization of the generalized susceptibil-
ity tensor known from the RPA. In a second step we
will discuss how this allows a direct analytical connec-
tion and results in the natural numerical equivalence
between the wcRG and the RPA.

2.2 Weak coupling renormalization group (wcRG)

The central assumption in the weak coupling renor-
malization group (wcRG) approach to unconventional
superconductivity is the proposition of perturbative
coupling strength. This allows a twofold simplification
of the problem: Firstly we can employ the arguments
thoroughly explored in Refs. [1,9], which deduce that
a generic Fermi liquid subject to repulsive interac-
tions has a superconducting and only a superconduct-
ing instability under the assumption of interactions
much smaller than the bandwidth. This allows restrict-
ing the investigations to divergences of couplings in the
Cooper channel. Secondly we can calculate perturbative
corrections to the bare interactions using second order
perturbation theory i.e., one-loop diagrams and neglect
all diagrams of higher order. While this approach as
well as the possibility for unconventional pairing has
been first pointed out by Kohn and Luttinger [1] it was
later refined via the language of the perturbative renor-
malization group [17,18] and subsequently reformulated

for computational convenience and applications to lat-
tice models [9]. Expanding on this work we will now
present a generalized formulation of the method appli-
cable to generic tight-binding Hamiltonians described
by Eq. (1).

The kinetic energy scale of such a model is given by
it’s bandwidth W i.e., the energy difference between
the states with highest and lowest energy possible in the
system. Including interactions into the problem can now
be done perturbatively in powers of U/W � 1 where U
is the largest interaction added and acts as a reference
scale for all other interactions Ui <

∝
U . This procedure

is appropriate for the investigation of thermodynamic
quantities even at temperature T = 0 if an artificial
cutoff Ω0 is introduced into the problem [9]. As long
as this scale is chosen larger than the most divergent
terms in the perturbative expansion e.g. the Cooper
logarithms in the problem we are allowed to neglect
many-body effects on the renormalization of the bare
interaction. If we further restrict the cutoff to be signifi-
cantly smaller then the relevant interaction energy scale
for the non-singular i.e., magnetic and charge channels
we can neglect it for the calculation of particle–hole
fluctuations [10]. In the following ρ denotes the density
of states at the Fermi level. In summary the cutoff Ω0

is restricted to a parameter range

W � ρU2 � Ω0 � ε(kF ) exp
[ − (ρU)−1

]
, (8)

such that an effective interaction including the renor-
malization effects of modes with energies larger than
Ω0 can be calculated via perturbation theory in U/W .
Due to our lower bound for Ω0 we are also guaranteed
that the resulting interaction will still be small enough
for the application of one loop renormalization group
equations to the new theory.

Formally we start by formulating our fermionic many
body problem in terms of a generating functional for
vertex functions written out as a Grassman path inte-
gral with the quadratic part of the action given by H0.
We then integrate out all modes with energies larger
than Ω0 using perturbation theory up to second order in
U/W . The resulting theory is now composed of modes
restricted to a small annulus of size Ω0 around the
Fermi energy ε(kF ) that interact via a weak renormal-
ized interaction U eff such that one can easily apply the
standard Fermi-liquid RG procedure by Shankar and
Polchinksi to it [17,18]. It has been shown by explicit
calculations up to fourth order in perturbation theory
that this two-step procedure removes any dependence
of system properties on the intermediate and artificial
cutoff Ω0 [9]. The authors also clarified that the central
property to be calculated is the effective interaction
in the Cooper channel U eff

{αi}(kF ,qF ) up to one loop
where the cutoff Ω0 can be neglected in the particle–
hole diagrams. From the setup of our calculation it
is also clear that we may restrict this calculation to
momenta kF ,qF from the Fermi surface since these are
the only relevant degrees of freedom in the second step
of the renormalization. We thus adapt our notation to
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reflect this constraint to the Cooper channel:

U{αi}(kF ,−kF ,qF ,−qF ) → U{αi}(kF ,qF ) (9)

In the notation of this review, this effective interac-
tion on the Fermi level may be written as

U eff
{αi}(kF ,qF ) = Ubare

{αi}(kF ,qF )

+U2nd order
{αi} (kF ,qF ) , (10)

where kF and qF are restricted to lie on the Fermi
surface and we are only interested in band indices αi

corresponding to zero energy modes at these momenta.
The second order correction is given by the sum of the
particle–particle (PP), direct particle–hole (PH) and
crossed particle–hole (cPH) diagrams

U2nd order
{αi} (kF ,qF ) = +

1
2
UPP

{αi}(kF ,qF )

+UPH
{αi}(kF ,qF )

−U cPH
{αi}(kF ,qF ) . (11)

Sticking to band space notation as in related works [9,
19] the different contributions are calculated via the
following integrals:

UPP
{αi} =

∑

βl,βo

∫

Ω0

dlUkF ,−kF ,l,−l
α0α1βlβo

LPP
βlβo

(l)U l,−l,qF ,−qF

βlβoα2α3

(12)

UPH
{αi} =

∑

βl,βm

∫
dlUkF ,m,qF ,l

α0βmα2βl
LPH

βlβm
(l,m)U l,−kF ,m,−qF

βlα1βmα3

(13)

UcPH
{αi} =

∑

βl,βn

∫
dlUkF ,n,−qF ,l

α0βnα3βl
LPH

βlβn
(l,n)U l,−kF ,n,qF

βlα1βnα2
,

(14)

where

m = l − kF + qF and
n = l − kF − qF

(15)

are given by momentum conservation. The dependen-
cies on (kF ,qF ) on the left side of the equation have
been suppressed for notational convenience. In the sec-
ond step, the fermionic RG treatment of the vertex,
couplings at ωi �= 0 will turn out to be irrelevant in an
RG sense, which allows a restriction to the static case
without any further approximation [17]. With this in
mind we drop all frequency labels already at this point
to simplify the notation of the subsequent formulas.

In restricting our focus to the zero energy sector
of the effective interaction Matsubara summation was
used to solve the frequency integration analytically. The

propagator pairs reduce to the well known fractions

LPP
βlβo

(l) =
f
( − T−1εβl

(l)
) − f

(
T−1εβo

(−l)
)

εβl
(l) + εβo

(−l)
(16)

and

LPH
βlβm

(l,m) =
f
(
T−1εβl

(l)
) − f

(
T−1εβm

(m)
)

εβl
(l) − εβm

(m)
(17)

with the Fermi Dirac distribution

f(x) =
1

ex + 1
, (18)

and a temperature parameter T that may be set to
zero for the weak coupling approach but is kept explicit
to illustrate the generality of the derivation. Note that
the particle–particle diagram is explicitly regularized
by restricting its integration to modes l satisfying
|εβl

(±l)| > Ω0 while no such restriction is needed in the
particle–hole diagrams due to the prior assumptions on
Ω0. However, the removal of the regulator introduces
divergences in LPH when l = m on degenerate bands,
that restrict the BZ integration to the respective zero
energy states. We explicitly calculate these occurrences
via a line integral along the FS using

∫

BZ

dl δ(εβl
(l)) =

∫
dεβl

1
∇lεβl

δ(εβl
(l))

=
∫

FSβl

dl
vFβl

(l)
, (19)

where vFβl
(l) denotes the Fermi velocity on band βl.

The calculation of the particle–particle diagram in Eq.
(12) on the other hand would indeed require a care-
ful implementation of the cutoff since its divergence is
of physical origin. Fortunately, closer inspection of the
formula results in the insight that the vanishing total
momentum of Cooper pairs disallows the emergence of
new momentum dependencies kF or qF . Combining
this perception, namely that the particle–particle dia-
gram will always be limited to the momentum depen-
dence of the bare interaction, with the fact that the
diagram scales with U2 compared to U for the bare
interaction, allows us to neglect it completely in the
limit of vanishing U [9,10].

As hinted at in Sect. 2.1 the formulation of the dia-
grams in band space is useful for the analysis of models
with a closed analytical solution for H0 but disadvanta-
geous for models where H0 can only be solved by numer-
ical matrix diagonalization. To formulate everything
in terms of gauge invariant and thereby numerically
preferable quantities we explicitly insert the orbital
band transformation matrices from Eq. (7) into the
expression for the direct particle–hole bubble above
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UPH
{αi}(kF ,qF )

=
∑

βl,βm

∫
dl

∑

{ai}

∑

{bi}
LPH

βlβm
(l,m)

v∗
a0α0(kF )v∗

b1βm
(m)UkF ,m,qF ,l

a0b1a2b3
va2α2(qF )vb3βl(l)

v∗
b0βl

(l)v∗
a1α1(−kF )U l,−kF ,m,−qF

b0a1b2a3
vb2βm(m)va3α3(−qF )

=
∑

{ai}
v∗

a0α0(kF )v∗
a1α1(−kF )va2α2(qF )va3α3(−qF )

∑

{bi}

∫
dlUkF ,m,qF ,l

a0b1a2b3
U l,−kF ,m,−qF

b0a1b2a3

∑

βl,βm

v∗
b1βm

(m)vb2βm(m)LPH
βlβm

(l,m)v∗
b0βl

(l)vb3βl(l)

(20)

and notice that the expression in the last line is indeed
gauge invariant. If we were able to remove the interac-
tion terms in orbital space from the l integration, the
object to calculate would equal the generalized suscep-
tibility known from random phase approximation cal-
culations

χb0b1b2b3(l − m) = χb0b1b2b3(kF − qF )

= −
∫

dl
∑

β,γ

v∗
b0β(l)vb2β(l)

LPH
βγ (l,m)v∗

b1γ(m)vb3γ(m) . (21)

Clearly this is possible for the case of local interac-
tions where U{ai}({ki}) is momentum independent but
we can go beyond local interactions by rewriting the
momentum dependence of the bare interaction. Let us
first introduce the integrand of this generalized suscep-
tibility as

Xb0b1b2b3(l,m)

=
∑

β,γ

v∗
b0β(l)vb2β(l)LPH

βγ (l,m)v∗
b1γ(m)vb3γ(m) , (22)

for notational convenience.
Inspired by the channel decomposition of singular

mode [20] and truncated unity fRG [21] we explicitly
write our bare interaction in the direct particle–hole
diagram representation of these approaches

U{ai}({ki}) = δ(k0 + k1 − k2 + k3)
∑

i,j

U ij
{ai}(k0 − k2)f∗

i (k0)fj(k3) ,

(23)

where the fi(k) are a set of envelope functions adapted
to the specifics of the input interaction. In the subse-
quent we will refer to them as form factors. In Appendix
A we show that such a reformulation is generically
possible for reasonable translationally invariant inter-
actions involving a finite number of bonds and that the

number of form factors is bounded by the number of
sites involved in the interaction with a reference site.

Plugging Eq. (23) into our expression for the direct
particle–hole diagram yields

UPH
{αi}(kF ,qF )

=
∑

{ai}
v∗

a0α0
(kF )v∗

a1α1
(−kF )va2α2(qF )va3α3(−qF )

∑

{bi}

∑

{gi}
U

g0g2,(kF −qF )
a0b1a2b3

U
g1g3,(kF −qF )
b0a1b2a3

∫
dlXb1b0b2b3(l,m)f∗

g0
(kF )fg2(l)f

∗
g1

(l)fg3(−qF ) .

(24)

This approves the replacement of Eq. (22) by an even
more generalized susceptibility

ℵgh
b0b1b2b3

(kF ,qF ) =
∫

dl f∗
g (l)Xb0b1b2b3(l,m)fh(l) ,

(25)

where we chose the Hebrew letter ℵ (Aleph) due to its
similarity with the letter χ. Repeating the same calcu-
lation for the crossed particle–hole channel reduces to
the same integral i.e., the knowledge of ℵ for all points
kF and qF on the discretized Fermi surface is sufficient
for the calculation of both the PH and cPH diagrams
without further integration.

The decomposition Eq. (23) may seem peculiar at
a first glance, since absorbing the whole momentum
dependence in the newly defined ℵ may reduce the num-
ber of required form factors. Yet we are willing to accept
the additional numerical effort in the generalized sus-
ceptibility calculation to obtain a quantity, which will
turn out to be ideally suited as the starting point for a
resummation in the RPA approximation (cf. Sect. 2.3).
In fact the proposed form factor decomposition is equiv-
alent to the procedure utilized to incorporate long range
Coulomb interactions in FLEX implementations [22].
Here however, we only imposed translational invariance
on the interaction.

While we have now established a gauge invariant for-
mulation for the numerically expensive momentum inte-
gration, the gauge of the effective interaction in band
space is not yet fixed. We tackle this problem by enforc-
ing the calculation of the pair interaction between time
reversal partner states. This is possible and trivial for
generic models as the time reversal operator does not
affect the real space, i.e. orbital or sublattice degrees of
freedom and can always be represented by

T̂ = iσyK , (26)

where σy acts in spin space, K represents complex con-
jugation and the orbital sublattice structure is trivial.
Instead of analyzing an interaction between states cre-
ated by operators c†

kαc†
−kβ we rephrase the problem to

an interaction between states created by
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c†
kαT̂ c†

kβT̂−1 =
∑

a,b

vaα(k)v∗
bβ(k)c†

kaT̂ c†
kbT̂

−1

=
∑

a,b

vaα(k)v∗
bβ(k)c†

ka

∑

c

D†
cb(T )c†

−kc

=
∑

a,b

Vαβ,ab(k)pairc†
kac†

−kb , (27)

and define the quantity

V pair
αβ,ab(k) = vaα(k)

∑

c

D†
cb(T )v∗

cβ(k) . (28)

This object has the key advantage that it eliminates
possible gauge differences between states at k and −k
arising from numerics by using the state at k to define
the state at −k in a natural way.

Since we inspect pairing exclusively in the Cooper
channel, the paired states may carry different pseudo-
spins but belong to the same band. To ensure invariance
under any U(1) gauge transformation also for systems
with degenerate bands we only consider one pseudo-
spin orientation vaω↑ and construct the state with σ =↓
by manual orthogonalization. Thus both pseudo-spin
states feature the same phase and Eq. (28) remains U(1)
invariant. However, the choice of the pseudo-spin basis
is not fixed by this procedure leaving a residual degree
of freedom. A completely gauge invariant formulation
of the effective vertex with time reversal partners there-
fore requires a consistent pseudo-spin base along the FS.
For band degeneracies originating from spin rotational
invariance this is naturally given and does not have to
be enforced. The same holds for systems akin to the spin
orbit coupled Sr2RuO4, where rearranging the orbital
spin basis properly renders the Hamiltonian block diag-
onal [23]. For generic systems an unambiguous pseudo-
spin basis can be achieved by adiabatically switching on
the spin orbit interaction implying a smooth and trace-
able evolution of the natural spin basis to a pseudo-spin
basis as suggested in Ref. [16].

Putting both the gauge invariance of the ℵ object and
the time reversal partner states together we summarize
the formulas for the particle–hole diagrams contribut-
ing to the effective interaction in the Cooper channel

UPH
{αi}(kF ,qF )

=
∑

{gi}
f∗
g0(kF )fg3(−qF ) .

∑

{ai}
V * pair

α0α1,a0a1(kF )V pair
α2α3,a2a3(qF )

∑

{bi}
U

g0g2,(kF −qF )
a0b1a2b3

ℵg1g2
b1b0b2b3

(kF ,qF )U
g1g3,(kF −qF )
b0a1b2a3

(29)

and

UcPH
{αi}(kF ,qF ) =

∑

{gi}
f∗

g0(kF )fg3(+qF )

∑

{ai}
V * pair

α0α1,a0a1(kF )V pair
α2α3,a2a3(qF )

∑

{bi}
U

g0g2,(kF +qF )
a0b1a3b3

ℵg1g2
b1b0b2b3

(kF , −qF )U
g1g3,(kF +qF )
b0a1b2a2

.

(30)

The significance of this rewriting is condensed into the
fact that the ℵ object only contains information about
the kinetic model chosen and the set of form factors
used. In other words calculating it once allows a detailed
scan of the interaction parameter phase diagram with-
out the necessity to calculate additional integrals over
the BZ. By using a basis of time reversal partner states
for the calculation we simplify the problem of symme-
try reduction explored in Sect. 3.3.1 significantly and fix
the U(1) gauge of the effective interaction completely.

Having calculated the effective interaction in the
Cooper channel at an intermediate scale Ω0 the wcRG
procedure continues with the second renormalization
step: the analytical RG flow into the superconducting
instability. This is done according to standard one-loop
Fermi liquid RG since the action generated by the first
step is of the exact form required for the input of these
approaches: (1) all states in the theory are confined to
a small annulus of width Ω0 around the Fermi surface
such that we can linearise the dispersion for the RG
and (2) the effective interaction between the states is
still small enough to allow for the application of a one-
loop expansion of the RG equations. Phase space argu-
ments for this RG flow indicate that most interactions
are marginal i.e., do not renormalize under the flow
from Ω0 to low energy (smaller cutoffs) [17,18]. These
couplings are called Fermi liquid parameters and are
neglected in the wcRG approach. Among these one can
also locate all finite transfer momentum instabilities,
which are ruled out by the same line of reasoning: The
accessible phase space tends to zero when approach-
ing the Fermi level in the absence of perfect FS nest-
ing. Since this requires fine tuning it is neglected within
the wcRG [9]. Similar arguments render the frequency
dependence of the electronic response irrelevant in the
RG flow, which we consequently neglected already in
Eq. (17). The interactions in the Cooper channel on
the other hand renormalize significantly upon further
reduction of the cutoff and their flow can be calculated
by the one loop RG equations arising from the particle–
particle diagram to be

dgik = −gijgjk d
[
log(Ω0/Ω)

]
(31)

where the indices i, j, k run over all degrees of freedom
for Cooper pairs on the Fermi surface and where the
integration measure is absorbed into the definition of
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g(α0α1,kF ),(α2α3,qF )

=
√

ρα0ρα2

√
v̄Fα0 v̄Fα2

vFα0(kF )vFα2(qF )
√

dAFα0(kF )dAFα2(qF )
AFα0AFα2

Ueff
{αi}(kF ,qF ) . (32)

Here dAFα(kF ) and vFα(kF ) denote the Fermi surface
area and Fermi velocity associated to each discretized
point kF on the Fermi surface, α only runs over the
bands at zero energy for these points. ρα and AFα

meanwhile denote the total density of states and total
Fermi surface area contributed by a specific band α.
The mean of the Fermi velocity on a band is defined
via an inverse average

v̄Fα =

(
∑

kF ∈α

dAFα(kF )
AFα

1
vFα(kF )

)−1

(33)

over all Fermi surface momenta on this band. Solving
the flow Eq. (31) can now be done trivially via matrix
diagonalization of

gij = φ∗
inλnφjn (34)

and realizing that all eigenvalues renormalize indepen-
dently due to the fact that the set of eigenvectors is
orthonormal i.e.,

dλn = −λ2
n d

[
log(Ω0/Ω)

]
. (35)

Clearly the smallest (i.e., most negative) eigenvalue
indicates the strongest superconducting instability of
the system while all positive eigenvalues renormalize to
zero under this flow equation. We will call the smallest
eigenvalue λ0 and refer to it as the leading eigenvalue
in the following. From the definition of g we can see
that it is a dimensionless matrix scaling with U2ρW .
Since its eigenvalues λ will scale identically they are not
independent of the chosen ratio U/W , making them a
non ideal quantity to analyze in the limit of vanishing
interactions. We therefore display |λ| or Veff = |λ|/ρ in
units of t/U2 for all numerical results in Sect. 4. A link
between |λ| and an estimate for the superconducting
transition temperature is given [9] to be

Tc ∼ W exp
[ − 1/|λ|] = W exp

[ − 1/(ρVeff)
]
, (36)

which is only defined up to a multiplicative constant of
order 1. In conventional BCS theory the prefactor of the
exponential is given by the typical energy scale of the
phonons, the Debye frequency, which allows for a quan-
titative estimate of the critical temperature of phonon
based superconductors [24]. Contrarily, Eq. (36) only
provides informations about the scaling behavior of Tc

with the coupling constant, as the wcRG procedure is
lacking an overall scale. This is based on the fact, that
an explicit calculation of the crossover regime between

Fermi liquid and superconducting behaviour in the RG
flow is explicitly avoided via the separation of scales
in Eq. (8). Consequently no quantitative estimate of
the physical energy scale and therefore the proportion-
ality factor can be given [9]. The eigenvector φj0 cor-
responding to λ0 encodes the information about the
spin momentum structure of the leading superconduct-
ing instability gap function on the Fermi surface

ΔSC
α0α1

(kF ) ∝
√

v̄Fα

vFα0(kF )
φ0(α0α1,kF ) , (37)

which may be subsequently analyzed in terms of lattice
harmonics, orbital texture or singlet/triplet character.
However the central information extracted in our anal-
ysis is the more fundamental symmetry character of the
gap function: Upon inspection of the eigenvalue prob-
lem Eq. (34) its relation to the linearised superconduct-
ing gap equation

λΔSC
α0α1

(kF ) =
∑

α2,α3

〈
U eff

{αi}(kF ,qF )ΔSC
α2α3

(qF )
〉

qF

(38)

becomes clear and group theory dictates that all solu-
tions Δα0α1(kF ) must transform under irreducible rep-
resentations (irreps) of the effective interaction’s sym-
metry group [8]. Since different irreps can’t mix under
the effective interaction the information about the
symmetry of the superconducting order parameter is
expected to be significantly more robust to changes in
model parameters or the computational approach for
large gaps in the eigenvalue spectrum of Eq. (34), mak-
ing the distance λ1 − λ0 a valuable measure for the
robustness of this result.

In summary our formulation paves the way towards a
generic and numerically efficient implementation of the
wcRG for a wide class of models discussed in Sect. 2.1.
The key ingredients necessary for such an implementa-
tion are the discretization of the Fermi surface and an
efficient solver for the integral in Eq. (25). Our approach
to these problems as well as a reduction of the compu-
tational effort via the use of symmetries is discussed in
Sect. 3 and a variety of benchmark results are shown in
Sect. 4.

2.3 Random phase approximation (RPA)

From the notational setup of the wcRG method a
striking parallel to the random phase approximation
(RPA) becomes apparent: the generalized susceptibility
is the central calculational device. We will abstain from
repeating the theoretical background of the RPA here
and instead point the reader to references on the RPA
and fluctuation exchange approaches to the unconven-
tional superconductivity problem [25–29]. Instead the
following section of the article focuses on the concep-
tual discrepancy between wcRG and RPA, explains the
notational benefits of using ℵ for the inclusion of long
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range interactions in the latter, and shows computa-
tional equivalence between the two methods.

As stated in Sect. 2.2 the expansion of the Cooper
pair scattering vertex up to second order in the bare
interaction Eq. (10) is justified by an appropriate choice
of interaction scales. Yet this restriction also exists in
the second step of the RG procedure, where all modes
above zero energy are integrated out to yield a low
energy effective theory at the Fermi level. This is only
possible if no finite scale ΩPT in the system remains,
that restricts the renormalization of the bare interac-
tion by higher order effects to energies larger than ΩPT

[9]. Examples of such a physical scale are finite interac-
tions (see Eq. (8)) or temperature. Therefore, the diag-
onalization of Eq. (32) as the solution of the effective
theory on the FS is only the true ground state of the
system at T = 0 and infinitesimal couplings. In this
limit the wcRG offers an unbiased and exact solution
to the generic correlated electron problem.

The RPA on the other hand abandons this aim in
order to relax the constraint of infinitesimal interac-
tions, which allows higher order terms to enter in the
expansion of the Cooper vertex Eq. (10). By assuming
the spin and charge fluctuations of the unrenormalized
electronic system drive phase transitions in the Fermi
liquid, a small set of resummable diagrams is extracted
from all possible extensions of the bare vertex [25,27].
Because we are interested only in attractive interac-
tions in the Cooper channel it is sufficient to perform
the RPA resummation for the particle–hole bubble.
The remaining contributions of the one-loop expansion
UPH and U cPH give rise to longitudinal and exchange
(transverse) fluctuations [30] respectively. This permits
expressing Ueff in the fluctuation exchange approxima-
tion.

In the case of SU(2) invariant systems the resum-
mation for the spin and charge sector can be carried
out independently allowing a decomposition of both
the interaction tensor Ubare and the susceptibility into
respective channels. This removes the spin indices from
the resummation. For spin orbit coupled systems this
is not possible as the bare propagator is non-diagonal
in spin components. Instead we must summarize both
channels in a joint resummation by explicitly keeping
the spin index in Ubare and the generalized suscepti-
bility [31]. In order to simplify the resulting equations
we first rewrite these tensor functions of the transfer
momentum q into matrices where each matrix index
Ai is comprised of a form factor index g and a pair of
spin orbital indices ai, representing one particle–hole
pair

ℵgh
a0a1a2a3

(q) → ℵ(a0a3g),(a1a2h)(q) = ℵA0A1(q)

Ugh
{ai}(q) → U(a0a3g),(a1a2h)(q) = UA0A1(q) .

(39)

In this notation the dressed ℵ can be written as an
infinite series of particle–hole bubbles

ℵRPA
A0A1

(q) = ℵA0A1(q) − ℵA0B0(q)UB0B1(q)ℵB1A1(q)
+ℵA0B0(q)UB0B1(q)ℵB1B2(q)UB2B3(q)ℵB3A1(q)
−ℵA0B0(q)UB0B1(q)ℵB1B2(q)UB2B3(q)... ,

(40)

where all repeated Bi indices are summed over. Note
that the alternating sign originates from the varying
definition of the generalized susceptibility Eq. (25) com-
pared to common RPA convention Eq. (22) [28]. This
can be simplified to a recursive expression

ℵRPA
A0A1

(q) = ℵA0A1(q) − ℵA0B0(q)UB0B1(q)ℵRPA
B1A1

(q) ,
(41)

which is commonly solved by a resummation of the geo-
metric series

ℵRPA
A0A1

(q) = [δA0B1 + ℵA0B0(q)UB0B1(q)]−1 ℵB1A1(q) .
(42)

Inserting the result back into Eqs. (29) and (30) yields
the effective interaction in the fluctuation exchange
approximation , which corresponds to evaluating the
particle–particle ladder diagrams in an analogous resum-
mation procedure [32]. Possible particle hole instabili-
ties are already indicated by a divergence of the newly
defined particle–hole susceptibility in Eq. (42), which
also provides the ordering vector q of the condensate. If
no such divergence is found, we know the systems insta-
bility to be superconducting and proceed analogously
to Sect. 2.2, i.e. apply the linearised gap equation Eq.
(38).

Similar to the wcRG approach we restrict our anal-
ysis to the static sector of the susceptibility. While it
was shown in Ref. [17], that this is exact in the limit of
infinitesimal coupling, the employed phase space argu-
ments can not be transferred to the finite coupling
regime. Keeping the loop frequency in Eq. (17) would
amount to an additional term in the denominator of
the integrand. We can therefore deduce, that the dom-
inant contribution will be the static one already at
the bare level. As the RPA is only able to perform
channel resummations independently, the differences
between the individual contributions will accumulate
such that the dominant channel is heavily enhanced in
comparison to subleading ones. Keeping the backbone
of the diagrams in the RPA series should therefore cap-
ture the main features of the particle–hole fluctuations.
Good qualitative agreement between dressed suscepti-
bilities from static RPA calculations and self consistent
FLEX treatments, which take into account self energy
effects, has indeed been found in the literature [33].
We therefore rely on the static approximation to avoid
increasing the complexity of the susceptibility integral
by another dimension in favor of applicability to realis-
tic 3D multiband materials with complicated FS topol-
ogy, spin orbit coupling and long range interactions.

In the presented scheme we do not calculate the RPA
susceptibilities explicitly. Nevertheless a connection to
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standard RPA can be obtained for momentum inde-
pendent - i.e., onsite - interactions. In this case the
employed formfactor basis collapses to f0(k) = 1 and
Eq. (25) just depicts the bare susceptibility

ℵ00
{bi}(kF ,qF ) = −χ0

{bi}(kF − qF ) . (43)

Inserting this in the above reveals the well known
expression for the RPA susceptibility tensor [31]

χRPA
A0A1

(q) = −ℵRPA
A0A1

(q)

=
[
δA0B1 − χ0

A0B0
(q)UB0B1(q)

]−1
χ0

B1A1
(q) .
(44)

For general long range interactions the presented
approach exceeds the established formulas for long
range RPA susceptibilities, which focus on the treat-
ment of density density interactions in spin rotational
invariant systems [22,34].

2.4 Summary

In conclusion we remark on similarities and differences
between the two approaches: Firstly the matrix oper-
ations performed here are dwarfed by the cost of the
integrations necessary to calculate the ℵ object itself
i.e., the RPA and wcRG are almost identical in compu-
tational cost, even for the case of an exact treatment of
the long range interactions.

Secondly, the finite interaction scales in RPA offers
opportunities for significant performance benefits. As
discussed previously the wcRG scheme aims at zero
temperature results. However, the fundamental origin
for pairing in repulsive systems now poses a serious
computational challenge: the sharpness of the Fermi
level at T = 0 yields equally sharp features of the inte-
grand Eq. (17), that require prudent calculation of the
ℵ object. It would be therefore desirable to perform the
crucial integral at finite temperature where the smooth-
ing of the Fermi distribution simplifies the convergence.
Unfortunately the effective interaction and the thereof
derived superconducting order parameters are heavily
dependent on temperature in wcRG as the sole scale
present at low energy. This prohibits an approximation
of the true ground state of the system by finite temper-
ature calculations.

In RPA the bare interaction sets out a reference
energy. Consequently one can restrict the temperature
to be small compared to the interaction and still mimic
the system at T = 0. This reduces the effort needed for
the particle–hole integral in Eq. (17) significantly com-
pared to the wcRG scheme. The physical explanation
is that finite interactions extend the possible pairing
channel to all states in a shell of width U around the
Fermi level. Then a dilution of the Fermi surface in this
energy range does not noticeably decrease the nesting.
Combined with the new formulation of the generalized
susceptibility this renders extensive long range studies

as presented in Ref. [35–37] accessible for complex spin
orbit coupled three dimensional materials.

Finally we stress that the parallels between the two
presented methods exceed the formal level and reside
on physical grounds. In either method the bare inter-
action is screened and modified by the response of the
electron gas, leading to Cooper pair formation. In the
wcRG the small coupling allows us to truncate the cal-
culation of this effect to one loop perturbation theory
i.e. we can calculate the particle–hole susceptibility of
the unperturbed system. Contrarily the RPA allows for
a phase coherent accumulation of particle–hole fluctua-
tions with fixed transfer momentum q in each order of
Eq. (40). The susceptibility is therefore evaluated in a
Fermi liquid with low energy collective excitations [25].

However, one can reobtain the wcRG results from
RPA in the U → 0 limit while keeping terms up to order
U2 in the Cooper channel interaction, under which Eq.
(42) reveals ℵRPA → ℵ. Studies based on a Kohn–
Luttinger type of pairing mechanism (such as wcRG)
are therefore only a limiting case of RPA studies. While
the derivation of the effective interaction coincides for
U → 0, the central merit of the wcRG treatment is the
subsequent and transparent propagation from U eff to
the linearised gap equation in Eq. (38) in an asymptoti-
cally exact manner. This rigour in the infinitesimal cou-
pling limit is unique to the wcRG approach and requires
the careful analysis presented in Ref. [9].

We want to conclude with some remarks on the phys-
ical validity of the obtained results. The irreducible
representation deduced in either method is expected
to accurately represent the symmetries of the super-
conducting gap. The eigenvalue separation provides a
meaningful way to determine the competition between
different superconducting instabilities in a given sys-
tem. The precise values λ on the other hand are numer-
ically difficult to converge and do not reflect physical
transition temperatures [9]. Under these considerations
several seemingly crude approximations employed dur-
ing the evaluation of the RPA are put into perspec-
tive. Indeed both methods provide reasonable quali-
tative estimates on the pairing tendencies when com-
pared to more sophisticated and thereby numerically
more expensive frameworks [33,38].

3 Numerical implementation

To nevertheless increase the performance of the wcRG
for complicated systems in the absence of temperature
regularizations we introduce several ideas for reducing
the computational cost of the calculation in this sec-
tion. We also compare our approach to other methods
presented in the literature and demonstrate numerical
equivalence with a variety of literature results in the
following Sect. 4.
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3.1 Caching of the kinetic Hamiltonian

The computationally most expensive part of the cal-
culation is the integration of the propagator pair in
the first BZ and its transformation into orbital space
Eq. (25). To reduce the complexity of this operation
we calculate the energies and orbital band transfor-
mation matrices for every momentum required before
starting the integration - caching them. This prevents
recalculations of the diagonalized form of the kinetic
Hamiltonian otherwise required as each momentum will
need to be accessed twice for each pair of FS momenta
kF ,qF at li and mj = lj − kF + qF guaranteed at
one lj ∈ BZ. This reduction becomes especially signifi-
cant if the system under consideration is described by
many bands or long-range orbital dependencies, raising
the cost of each diagonalization. In order to cache for
all momenta required during the integration, we must
know their position prior to the start of the evalua-
tion. This discourages the use of an adaptive integra-
tion scheme which would iteratively refine the mesh.
Instead we span an equispaced grid within the space of
the first BZ and obtain a fixed set of momenta. Even
without this choice adaptive integrators are unsuitable
for our uses as the sharp features along the FS will
inhibit their convergence. There has been an attempt
to remedy this by custom adaptive integrators [39] but
our scheme reaches equivalent resolution compared to
the last iteration of these custom integrators and is thus
more accurate. While the loss of adaptive integrators
may seem like a downside at first, in their absence the
integration is reduced to fixed-size tensor contraction.
As this is a common problem in the evaluation of neural
networks we can use highly optimized libraries, in our
case TensorFlow [40] for the evaluations.

We do however require an approximation that is not
present in adaptive schemes: As seen above the caching
is needed for the integration mesh’s momentum l but
also on m = l−kF +qF . To ensure that m is a cached
momentum point we need to ensure all summands are
elements of the grid. We achieve this by constraining the
patched Fermi surface points - their exact construction
is described in Sect. 3.2 - to the closest available point
of the integration grid as shown in Fig. 2. While this
may seem like a crude approximation at first, it should
be noted that the quality improves linearly in the reso-
lution of the integration grid as shown in Fig. 1. For a
sufficiently dense (converged) grid of momentum points
the approximation is insignificant.

3.2 Patching

Since the evaluation of the particle–hole bubble remains
expensive despite the aforementioned efforts, a key
avenue of optimization is a reduction of the number of
integrals to be calculated. This number scales quadrat-
ically with the number of Fermi surface points in the
discretization of the RG equations Eq. (32). In the fol-
lowing we will address the previously neglected issue of
obtaining a valid set of points (patches) to represent
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Fig. 1 Analysis of the program performance. a Change of
maximal relative difference in ℵ with grid size. We itera-
tively increase the number of momenta (N2

x) in the equis-
paced grid spanning the first BZ while approximating the FS
points onto grid points as discussed in Sect. 3.1. To gauge
the quality of this approximation we determine the aver-
age relative difference in the resulting ℵ when compared to
the exact calculation where we refrain from constraining the
FS points to the grid. The relative difference we evaluate is
defined as δℵ =

∑|ℵ − ℵref |/
∑|ℵref | where the maximum

and sum are taken with respect to all possible index com-
binations. As expected the quality of the approximation is
low when using few integration points but improves drasti-
cally at high resolutions of the integration mesh. The data
was calculated employing a two band model for LaNiO3 as
discussed in Ref. [38] with the 32 FS momenta shown in Fig.
2. We want to stress, that due to the utilized error metric δℵ
decreases as the number of FS points increases. Hence negli-
gible deviations can be expected for the parameter sets used
in Sect. 4. In subfigure b we analyze the development of the
execution time with the number of threads used in the cal-
culation. We notice two effects: Firstly the drop in speedup
beyond 16 threads can be attributed to the advent of Intel
Hyper-Threading at thread-counts higher than the number
of physical cores. This seems to disrupt the sequentiality of
the calculations. Secondly we see deviations from the ideal
speedup even at smaller thread counts. We attribute this
to the single-threaded overhead of the calculations in the
caching

the FS. We name this process the patching of the FS.
Let us first define the requirements imposed on the set
of momenta:

– Each momentum kF is close to the FS: ∃α :
εα(kF ) ≈ 0.

– The set is dense enough to properly represent all FS
features.

– They are reducible to the irreducible wedge of the
BZ, the full set can be recovered via symmetry oper-
ations.

– We know the Fermi velocity vF (kF ) at and Fermi
surface element dAF (kF ) associated with each point

– Fewest possible momenta in set while maintaining
all of the above.

It is apparent that even the “best” solution for the
patching will remain a balancing act between sufficient
resolution and reasonable computation times. In the fol-
lowing we present an approach to obtain such an opti-
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Fig. 2 Fermi surface patching schemes. a shows a set of momentum space points (set at equal angular distances for each
pocket) along the FS as well as an equispaced grid of points spanning the BZ the area of which is marked in gray. The inset
b shows the mapping of the FS points to the closest grid points. It should be noted that this approximation looks rather
crude here but improves significantly when using resolutions far exceeding the 20 × 20 points used here. The second inset
d shows the workings of the marching cube algorithm for one exemplary square. For each cube (square in 2D) we find the
edges crossed by the FS (green line) by finding adjacent corners with opposing signs. Along these lines we interpolate the
corner weights to find the (approximate) intersection of the FS with the cube. The dashed line then defines one surface
element, the sum of which over all cubes makes up the FS. We search along the orthogonal to the center of this surface
element for the intersection with the FS, defining this to be the FS point. The area of the associated marching cube triangle
(line in 2D) is then used as the size of FS patch for this point. The middle figure c displays the resulting patching from
a marching cube calculation. The issues are apparent when observing the inner pocket which is only sparingly patched
while less interesting sections of the outer band have multiple points in close proximity. Raising the density to properly
represent the inner pocket also introduces more points along the outer pocket. The final figure e is an example of the three
dimensional patchings which can now be produced. We patched the same system as in Fig. 2 (i) of [14] but note that instead
of 3000 to 4000 patch points only require around 1000 while maintaining resolution of the important features

mized set of points in systems with arbitrary FS topol-
ogy, which allows a fine tuning of the patching proper-
ties to adapt it for the system under study. Special con-
siderations for the establishing of symmetry reducibility
are discussed in Sect. 3.3.1.

3.2.1 Marching cubes

The starting point for the creation of our Fermi sur-
face patches is the marching cubes algorithm [41]. It
spans a grid of equispaced cubes within the BZ and
evaluates the non-interacting Hamiltonian for each ver-
tex (corner) in the grid. For each cube we discern edges
intersecting the FS by connecting adjacent vertices with
opposing signs of the energy. Having thus determined
the approximate geometric shape of the FS (from the
finite number of possibilities) we approximate the shape
within the cube using triangles whose vertices are deter-
mined by finding approximate roots of the energy along
the edge. For ease of presentation we show the two-
dimensional equivalent of this algorithm in Fig. 2.

Building upon the triangles obtained from the march-
ing cubes algorithm we determine their centers c. While
these are sufficiently close to the FS to be used as a valid
patching, we can increase accuracy by finding the inter-
sect of the line perpendicular on the triangle through
c with the FS. The set of all these points within the
BZ is a valid patching. We assume the area covered by

a point in the patching to be equal to the area of the
corresponding marching cubes triangle. This approx-
imation improves as the number of marching cube
squares increases (and the FS curvature between points
decreases). Note that this method is highly dependent
upon the density and position of the initial cubes rela-
tive to the Fermi surface features. While a high density
of cubes will yield the proper features of the FS, it will
also result in a high number of patches. Meanwhile, a
low number of initial cubes can be inapt in the descrip-
tion of features as shown in Fig. 2. We can however use
the marching cubes algorithm with a high number of
cubes as a starting point and subsequently reduce the
set to the needed points. A method for such a procedure
will be discussed in the next section.

3.2.2 CGAL

Since the patching of an isoplane in three dimen-
sions is a problem not restricted to physics we were
certain to find preexisting solutions to many obsta-
cles. The Computer Graphics Algorithms Library
(CGAL) [42] is a most promising toolkit of algorithms
offering much of the required functionality. It would
have been possible to instantiate the entire patching
scheme using the thereby provided three dimensional
surface mesh generation [43], but due to the random
placement of initial sample points for the Delaunay tri-
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Fig. 3 NN Hubbard model on a square lattice. a wcRG findings for t′ = 0 The particle–hole symmetry of the system at
t′ = 0 allows for calculations constrained to the n < 1 region. At fillings n < 0.2 the leading instabilities are very small and
not distinguishable in the numerical error bars. Contrarily close to half filling the nesting of the FS is known to heavily favor
the B1 representation [9]. Consequently we focus on the interesting regions in phase space, where we employed NkF = 80
and Nl = (800 × 800). b RPA results for t′ = 0 Based on the bare susceptibility responsible for the data in a the RPA
resummation with an onsite interaction of U = 2t reveals a change in the ordering of instabilities. Whereas the triplet
state is suppressed via the enhanced antiferromagnetic spin fluctuations, the extended s-wave solution A1 represents the
leading superconducting order around n = 0.5. Our findings coincide with the results of Ref. [54] (t′ = 0 line in Fig. 3).
The shaded region around half filling signals the onset of a spin-density wave due to a diverging RPA spin susceptibility as
expected from the perfect (π, π) nesting of the FS at these fillings. c wcRG calculation for t′ = −0.3t The van-Hove filling is
indicated. Unlike the other systems studied in this section, the long range hoppings up the second nearest neighbour break
particle– hole symmetry. The scan in electronic filling was performed with NkF = 160 and Nl = (800 × 800)

angulation, the algorithm tends to miss pockets not cen-
tered around the Gamma point in systems with com-
plicated FS topologies. To provide a more reliable algo-
rithm we build upon the existing implementation of
marching cubes to obtain a consistent set of triangular
faces. The current workflow for the creation of a mesh
combines the effectiveness of marching cubes at high
precision with the capabilities of CGAL to reduce the
complexity [44] and obtain a sufficient set of smoothly
placed triangles using the isotropic remesh algorithm
[45].

To ensure an accurate mapping of the FS for the
obtained surface mesh, we start with an overly dense
mesh of marching cubes. The subsequent reduction by
CGAL simplification routines to a target number of tri-
angles retains a truthful representation of the initial FS
throughout the simplification via two cost driven error
estimates. While this leads to a varying number of FS
patches for the discretization of Eq. (32) when perform-
ing phase scans as presented in Sect. 4, the relevant
results (symmetry characters of the leading instability,
eigenvalue separation, absolute pairing scale) are con-
verged using the density of the initial marching cubes
grid.

Having obtained a set of triangles from CGAL we
employ the center and orthogonal relocation scheme
described at the end of the previous section to obtain
the final set of FS points. This workflow is illustrated in
Algorithm 1. While it may appear overly complicated
we manage to suppress the randomness inherent in the
initialization of pure CGAL meshes while returning an
optimally spaced grid of points all close to the FS. The
remaining challenge lies in the reduction of these FS

points to the set of points not equivalent under symme-
try operations, and will be discussed in the next section.

3.3 Symmetries

The large number of points required for a detailed map-
ping of the FS along with the extra dimension of the
integration grid renders three dimensional calculations
numerically challenging even for simple models. While
the latter impediment cannot be diminished without
a reduction in integration accuracy, we present a way
to address the former by exploiting the symmetries of
the effective vertex. We subsequently investigate inter-
dependent entries for an effective vertex as defined in
Eq. (10) and their relations of type

U eff
{αi}(kF ,qF ) =

∑

βi

M
kF ,qF ,k′

F ,q′
F

{αi},{βi} U eff
{βi}(k

′
F ,q′

F ) ,

(45)

with some transformation matrix M in order to iden-
tify a minimal set of vertex entries, that have to be
calculated. All remaining elements are then determined
through the relation above.

3.3.1 Reduction of the numerical effort

As outlined in Sect. 2.2, the quantity ℵ encapsulates the
momentum space integration of the particle–hole bub-
ble and the effective two particle vertex is calculated
from it via contraction with the bare interaction ten-
sors (see Eqs. (29, 30). While the interactions effect the
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Algorithm 1 Generate a minimal, symmetry reduced
set of NFS momentum points kF with associated sur-
face element dAF spanning the three dimensional Fermi
surface of a given non-interacting Hamiltonian H0 fea-
turing a point group G.
1: FMC = MC::lewiner(ε(k)) � Marching Cubes triangles
2: Ftemp = FMC � Truncate to irred. wedge
3: for b boundary plane of BZirr do
4: Firr = ∅
5: for � ∈ Ftemp do
6: if � ⊂ BZirr then
7: Firr = Firr ∪ �
8: else if � ∩ b 	= ∅ then
9: �cut = � ∩ BZirr

10: Firr = Firr ∪ �cut

11: end if
12: end for
13: Ftemp = Firr

14: end for
15: Nirr = NFS

|G| � CGAL

16: while N�∈Firr > Nirr do
17: Firr = CGAL::collapse_edges(Firr)
18: end while
19: Firr = CGAL::isotropic_remeshing(Firr)
20: Kirr ,dAirr = ∅ � Patch points from triangles
21: for � ∈ Firr do
22: c = center(�)
23: l(x) = c + ⊥� · x
24: kF = minl|ε(l)|
25: dA(kF) = area(�)
26: Kirr = Kirr ∪ kF

27: dAirr = dAirr ∪ dA(kF)
28: end for
29: KFS ,dAFS = ∅ � Expand patching to whole BZ
30: for g ∈ G do
31: for kF ∈ Kirr do
32: KFS = KFS ∪ P(g)kF

33: dAF = dAF ∪ dA(kF)
34: end for
35: end for

spin, orbital, sublattice and momentum indices, kF and
qF are directly propagated to U eff. Since the symme-
tries of ℵ are much more obfuscated and not directly
accessible, we stick to the symmetries of the effective
vertex and transfer the reduction in momentum space
to ℵ, i.e., we only calculate ℵ at pairs (kF , qF ) that
have been identified as the minimum set of independent
momenta, but to its full extent in spin, orbital and sub-
lattice space. With this preparation at hand Eqs. (29)
and (30) give the full effective vertex at these momenta.
Yet we need the precise transformation behaviour given
by Eq. (45) to construct the remaining U eff(kF ,qF ). As
Eq. (11) involves both UPH and U cPH, i.e., simultane-
ously ℵ(kF ,qF ) and ℵ(kF ,−qF ), we have to ensure
that the calculation of either none or both momentum
pairs is omitted during symmetrization.

Spin rotational invariant systems however are an
exceptional case. Since this symmetry applies to the
generalized susceptibility, ℵ can be evaluated in only
one non vanishing spin channel. The full spin struc-

ture can then be restored before contraction with the
form factors. The remaining issue is determining rela-
tions like Eq. (45) in order to reveal the interdependent
momentum sets.

3.3.2 Symmetries of the effective vertex

Taking aside spin rotation invariance, the set of promis-
ing vertex symmetries for reducing the computational
effort can be classified into two parts: Firstly, the effec-
tive vertex features fermionic antisymmetry under par-
ticle exchange

U eff
α0,α1,α2,α3

(kF ,qF ) = −U eff
α1,α0,α2,α3

(−kF ,qF )

= −U eff
α0,α1,α3,α2

(kF ,−qF )

= +U eff
α1,α0,α3,α2

(qF ,kF )

(46)

and hermiticity

U eff
α0,α1,α2,α3

(kF ,qF ) = U∗ eff
α2,α3,α0,α1

(qF ,kF ) , (47)

where we used U eff(kF ,qF ) = U eff(kF ,−kF ,qF ,−qF ).
Both relations already provide the desired shape of Eq.
(45). Secondly, the two particle vertex has well-defined
transformation properties under symmetry operations
which leave the underlying crystal structure invariant.
These operations are contained in the point group G of
the crystal.

In a first step we expound the transformation
behaviour of the general two particle interaction in
orbital space Eq. (6) and return to a band space rep-
resentation of U eff in a second step. This way we hope
to explain the effort undertaken by us as well as the
difference in required information for different sym-
metrization approaches. We subsequently denote a sym-
metry operation by g ∈ G with unitary representa-
tions in momentum (P(g)) and combined spin, orbital
and sublattice space (Dk(g)). The gauge freedom of
the employed Bloch basis renders the representations
k dependent in general.

The creation and annihilation operators transform
under g as

ca,k
g∈G−−−→ ca,P(g)k =

∑

b

Dk(g)a,b cb,P(g)k ,

c†
a,k

g∈G−−−→ c†
a,P(g)k =

∑

b

D†
k(g)b,a c†

b,P(g)k .
(48)

We can now obtain the transformation behavior of the
interaction of Eq. (6) as
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∑

{ai},{ki}
U{ai}({P(g)ki})

c†
a3,P(g)k3

c†
a2,P(g)k2

ca0,P(g)k0
ca1,P(g)k1

=
∑

{ai},{ki}
U{ai}({P(g)ki})

∑

{bi}
Dk0(g)a0,b0Dk1(g)a1,b1D†

k2
(g)b2,a2D†

k3
(g)b3,a3

c†
b3,k3

c†
b2,k2

cb0,k0 cb1,k1 .

(49)

Comparing the coefficients of the fermionic operators
reveals

U{ai}({P(g)ki}) =
∑

{bi}
U{bi}({ki})

D†
k0

(g)b0,a0D†
k1

(g)b1,a1

Dk2(g)a2,b2Dk3(g)a3,b3 ,

(50)

which maps the interaction tensor at a given momen-
tum set to its symmetry related partner. Knowledge of
the representation matrices therefore facilitates a reduc-
tion in the number of momentum sets requiring integra-
tion. It shrinks by a factor of |G|, the order of the point
group.

The P(g) are given by elements of the SO(3), that
can be inspected for example on the Bilbao Crystal-
lographic Server [46]. From these the corresponding
elements of the SU(2) can be deduced as spin space
representations of G. As we consider charge conserv-
ing systems only, the extended group elements can be
neglected and there is a one to one correspondence
between elements of SO(3) and SU(2). In orbital and
sublattice space the transformation matrices are con-
structed to reflect the physical behavior under elements
of the point group. The required information is either
ascribed to the analytical Hamiltonian of the inspected
toy model or obtained from the Wannier data for ab-
initio calculations and therefore highly dependent on
the system at hand.

The manifestly gauge independent formulation of the
effective interaction presented in Sect. 2.2 allows for a
less cumbersome incorporation of symmetries in band
space. Let us demand a proper definition of pseudo-spin
as discussed ibid, i.e. different bands do not hybridize.
A consistent labeling of the bands along the FS renders
the representations of G in band space one dimensional,
i.e.

∑

a,b

vbβ(k)D†
k(g)b,a v∗

aα(P(g)k) = δαβ

∑
b ei[φα(P(g)k)−φα(k)]

⇒ vaα(P(g)k) = ei[φα(P(g)k)−φα(k)] ∑
b D†

k(g)b,avbα(k) ,

(51)

where we used, that the point group elements are uni-
tary [47]. One dimensional representations are there-
fore simply expressed by complex band and momentum

dependent phases φα(k). In conjunction with the trans-
formation behaviour of the operators in orbital space
Eq. (48) the fermionic operators in band space trans-
form like

cα,k
g∈G−−−→

∑

a

vaα(P(g)k)Dk(g)a,b cb,P(g)k

= cα,P(g)kei[φα(P(g)k)−φα(k)]

(52)

under point group operations. For the time reversal
partners in Eq. (28) this results in the trivial trans-
formation law

c†
kαT̂ c†

kαT̂−1 g∈G−−−→ c†
P(g)kαT̂ c†

P(g)kαT̂−1 (53)

as the complex phases cancel for pairing in the same
band. We want to stress that there is no need of com-
muting the point group operator with T̂ to act on the
fermionic operators. This is due to our construction
enforcing the time reversed partner for each k sepa-
rately, such that both creation operators in the above
must equal at any k.

With these operators the Hamilton operator of the
effective interaction Eq. (10) is conveniently expressed
as

U eff
{αi}(kF ,qF )c†

qF α2
T̂ c†

qF α3
T̂−1

T̂ ckF α1 T̂
−1ckF α0

g∈G−−−→ U eff
{αi}(kF ,qF )c†

P(g)qF α2
T̂ c†

P(g)qF α3
T̂−1

T̂ cP(g)kF α1 T̂
−1cP(g)kF α0 .

(54)

Apparently the cooper pair scattering vertex in band
space is invariant under all point group transformations
U eff

{αi}(kF ,qF ) = U eff
{αi}(P(g)kF ,P(g)qF ) , which ren-

ders the relation Eq. (45) trivial. This offers a striking
advantage:

Utilizing an arbitrary gauge does not require knowl-
edge of the point group representations Dk(g), which
are employed in the transformation law in orbital space
and the construction of a suitable gauge in previous
band space approaches [16]. The reduction of numeri-
cal effort via symmetry considerations is therefore facil-
itated remarkably. Finally we want to remark, that Eq.
(54) may not be valid for bands with accidental degen-
eracies at distinct points in the BZ. At such points the
representations of G turn out to be multi-dimensional
and a mixing of degenerate bands is possible. Ref. [47]
denotes these as awkward bands and covers the issue
by introducing a natural basis set for the Bloch states.
However, the construction of this specific gauge again
involves the representations in orbital space, which we
intended to avoid. This is achieved by approaching the
problem from a different angle: since kF and qF are
restricted to the set of discretized FS points we avoid
awkward points by our the symmetrization scheme for
the FS patching presented in the following section.
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3.3.3 Symmetrization of the FS patching

In order to benefit from Eq. (54), the momenta con-
nected by P(g) must both be part of the employed
FS discretization. The patching procedure reviewed in
Sect. 3.2 does not yield this property and we therefore
have to enforce it via the following procedure.

As the BZ carries the symmetry of the underlying real
space Bravais lattice, there exists an irreducible subset
of crystal momenta. The whole BZ is then obtained
as the star of this subset, which we call the irreducible
wedge of the BZ in the following. To identify this wedge
we place an initial point k0 at an arbitrary position
in the BZ, that is not on a high symmetry line, and
obtain all symmetry equivalent points ki = P(gi)k0 by
applying the SO(3) representations of the point group
elements P(gi). In analogy to the determination of a
Wigner-Seitz cell we calculate the perpendicular bisec-
tors on the connecting lines between k0 and all ki (lines
in 2D, planes in 3D). The irreducible wedge is then
given by the set of all momenta, which lie on the same
side of all bisectors as k0.

When truncating a patching as obtained by the algo-
rithm described in Sect. 3.2 to the irreducible wedge,
special care must be taken to correctly transfer the asso-
ciated areas of the triangles. We therefore operate not
on the patch points but on the triangulated FS mesh
and employ an iterative scheme: If all corners of a trian-
gle are located on the right (wrong) side of a bisector,
we keep (drop) the triangle. If the bisector intersects
the triangle, we cut the triangle along the intersection
and keep the part located on the right side. After iter-
ating over all bisectors, we remain with a surface mesh
of the FS inside the wedge.

Since the edges of the cut triangles lie on the bound-
aries of the wedge, there are no associated FS points (as
defined by the centers of the triangles) on these bound-
aries that coincide with the high symmetry lines/planes
in the BZ. As these are the main contributor of occa-
sional degeneracies this method protects the validity of
Eq. (54) for the entire FS patching.

The repetitive cutting leads to an increased density
of small triangles at the boundary of the wedge. To
obtain a high quality mesh, our experience suggests
truncation of the FS mesh to the irreducible wedge prior
to the application of CGAL’s utilities as described in
Sect. 3.2.2. The symmetric patching of the entire BZ is
then constructed from the patching in the irreducible
wedge via the point group operations P(gi).

3.4 Performance

The calculation of the ℵ as defined in Eq. (25), the most
expensive part of wcRG or RPA, is trivially parallel in
the FS momenta kF ,qF . We can exploit this to paral-
lelize their calculation using Pythons MPI implementa-
tion MPI4py [48–51], distributing the load locally as well
as across multiple compute nodes. The speedup of local
parallelization can be seen in Fig. 1 with calculations
performed on a local cluster using Intel Xeon E5-2630.

As the trivial parallelization requires no communication
between computation nodes we expect the scaling for
multi-node calculations to be similar to the single-node
case. Note that the overhead of the kinetic Hamilto-
nian caching is substantial and prevents ideal speedups
as this part of the calculation is currently running single
threaded. We can furthermore see that Intel’s Hyper-
Threading has a negative effect on runtime. Once we
exceed the number of 16 physical cores we observe a
decrease in speedup. We attribute this effect to the inhi-
bition of sequential calculations when using multiple
threads per core and note that this measurement was
performed while constraining the TensorFlow back-
end to run single-threaded, despite the hope that its
threading capabilities might make better use of Hyper-
Threading. To reach optimal runtimes we combine the
parallelization offered by TensorFlow with our custom
parallelization. For the reader to be able to gauge the
runtime of the calculation we offer the following mea-
surement: Each phase diagram shown in Fig. 9 needed a
run time of ≈ 11.8 h on a single node of the SuperMUC-
NG cluster featuring a 48 core Intel Skylake Xeon Plat-
inum 8174 processor and 96Gb of memory.

While using parallelization can reduce the time
required for the calculation we want to address the sec-
ond constraint imposed on the calculations: Memory.
The caching as explained in Sect. 3.1 yields objects of
size ∝ Nb(Nb + 1)Nk. This however is dwarfed by the
size of the full generalized susceptibility ℵgh

{bi}(kF ,qF )
which would be an object of size N4

o ×N2
kF

×N2
ff where

NkF
is the number of FS patches, No is the combined

number of orbitals and sublattices and Nff the num-
ber of form factors considered in the expansion given by
Eq. (23). The size of these objects inhibits their allo-
cation in memory as a singular object and we there-
fore implement a method to calculate and save sub-
sets of data iteratively. We once again use the intrinsic
parallelism of the calculation to obtain ℵ for a fixed
number of FS momenta at once and save this batch
to disc before starting the next calculation. This cir-
cumvents the memory constraints otherwise imposed
and allows the calculation of all required system sizes.
As the calculation of the g-matrices are parallel in the
same momenta kF and qF , trivially seen in Eq. (32),
we never require the entire ℵ for their evaluation. Note
that although ℵ may exceed memory limitations the gij

matrix is significantly smaller due to the constraining of
all band indices to the states at zero energy at each kF .
Further simplification is achieved by the contraction of
the form factor indices with the interaction tensors.

4 Applications

Having established a general framework for the wcRG
method, we will now validate it by providing a compar-
ison between our results and the literature for a wide
variety of model systems. Particular focus is placed on
to the single orbital Hubbard model as the paradig-
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matic benchmark case. We extend the basic model
of nearest neighbour hopping t and onsite repulsion
U with a variety of tuning parameters, namely next
nearest neighbour hopping terms t′ and density-density
interaction terms U ′, as well as a non centrosymmet-
ric Rashba spin orbit coupling αR and an out of plane
hybridization tz. In order to illustrate the capabilities
of our framework and symmetrization for more intri-
cate lattice geometries, we calculate filling dependent
ground state phase diagrams for the honeycomb lattice
in two and the body centered cubic (bcc) lattice in three
dimensions. Clearly any combination of these complica-
tions is in principle possible without the need for fur-
ther refinement of the methodology [32,52,53] and the
authors are planning separate publications exploring
the application of this framework to ab-initio electronic
structure models.

For the purpose of this article however, the various
extensions of the Hubbard model provide the perfect
testbed for the optimization of the numerical methods
in terms of efficiency and comparison to previous pub-
lications. To provide the reader with all information
necessary to benchmark their own implementations we
provide the number of points used for the discretiza-
tion of the Fermi surface NkF

as well as the number of
points on the employed integration grid Nl = (x×y×z)
for all results. If not indicated otherwise all results were
obtained at zero temperature.

The Hamiltonian for all subsequently analyzed mod-
els is a version of Eq. (1) with explicit dependencies on
the variety of tuning parameters including long-range
coupling and Rashba spin orbit coupling and is given
by

H0 =
∑

ij,σ

−tij c†
i,σcj,σ + iαR

∑

〈ij〉,σσ′

(
σ̂ × bij

)σσ′

z
c†

i,σcj,σ′ .

(55)

The interacting Hamiltonian used is of the form

HI = U
∑

i,σ

ni,σni,σ̄ + U ′ ∑

〈i,j〉,σσ′
ni,σnj,σ′ . (56)

We allow nearest t〈i,j〉 = t and next nearest neigh-
bor hybridization t〈〈i,j〉〉 = t′, where unless explicitly
negated we constrain the hoppings to reside within the
xy-plane. The strength of the Rashba-coupling is deter-
mined by αR while U is the onsite Hubbard interaction.
Note that U is approximately zero in all wcRG studies,
which was modelled by setting U = 10−2t and present-
ing eigenvalues relative to U2 throughout the following.
Using this base model we are able to tune into different
regimes:

– α > 0: Rashba Hubbard model
– t′ > 0: Extended Hubbard model
– U ′ > 0: Hubbard model with long range interactions
– tz > 0: Hubbard model with out of plane hopping

4.1 The Hubbard model: a benchmark case

For the simplest benchmark system we restrict the cal-
culations to a square lattice and set all parameters but
t and U equal zero. We calculate the filling dependent
phase diagram of this particle–hole symmetric model
for the electron doped side only and present our results
in Fig. 3a. Not only do we reproduce the initial results
by Raghu et al., [9] but also find the small region of
spin triplet pairing in the E irreducible representation
at n ≈ 0.5 uncovered in [39]. Our quantitative devia-
tion from the results in [9] by a overall factor has been
resolved in private communication with the authors.

Using the generalized susceptibilities obtained from
these calculations we perform RPA calculations for the
same system at U = 2t without any additional numeri-
cal cost and present our findings in Fig. 3b. As expected
this does not affect the symmetry of the order parame-
ter in regions of large separation between the eigenval-
ues of g but introduces qualitative changes at n ≈ 0.5.
In agreement with the results from [54] an extended
s-wave A1 state is favoured in this transition region
between the common nearest neighbour B1 / dx2−y2-
wave state around half filling and the next nearest
neighbour B2 / dxy-wave state for 0.25 < n < 0.45.

4.2 The t − t′ Hubbard model

The next step of sophistication is the inclusion of finite
next nearest neighbour hybridizations t′ = −0.3t into
the kinetic theory. This breaks the particle–hole sym-
metry of the model and we present data for the com-
plete range 0.2 < n < 1.8. Since the van-Hove singular-
ity is shifted from half filling we indicate it by a line at
nvH ≈ 0.75 and notice the suppression of the effective
interaction also seen in the [9,39] which we also match
in other areas of the phase diagram. The suppression
of Veff as well as the enhancement of spin triplet super-
conductivity close to nvH is analytically expected [9].
Again we do not show the data for extremely small or
large fillings as it is neither conclusive nor significant
due to extremely small effective interaction scales.

4.3 The long range Hubbard model

The long range Hubbard model was first analysed via
the wcRG in [10] and later explored for a wider range
of parameters in [39]. Unfortunately these publications
do not agree on the presence of an A1 extended s-
wave regime in the phase diagram making it impossible
to reach exact qualitative agreement with both works.
However we reproduce the common trends of both a
suppression of the B1 order as well as the enhancement
of the A2 irrep commonly called g-wave due to its eight
line nodes as shown in Fig. 4. Since the B1 instability
can be understood by nearest-neighbour Cooper pairing
in real space it is clear that it will be heavily disfavoured
by sizable nearest neighbour repulsive interactions.
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Fig. 4 wcRG phase diagram of the Hubbard model with
long-range interactions. For the Hubbard model on a square
lattice with NN hoppings as defined in Eq. (56) the lead-
ing superconducting instability was calculated while varying
both electronic filling n and nearest neighbour repulsion U ′.
The letter is given as a dimensionless quantity containing
the bandwidth W and the onsite repulsion U . The phase dia-
gram was calculated with NkF = 160 and Nl = (800×800).
The U ′ = 0 line coincides with Fig. 3a
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Fig. 5 wcRG calculation for NN Hubbard model on the
Honeycomb lattice. Only the most prominent symmetry
characters are shown. The vertical line signals the position
of the van-Hove singularity. Above n = 0.9 the E2 repre-
sentation remains leading and reaches a maximum coupling
strength of ≈ 0.09 around half filling. The calculations were
performed with NkF = 120 and Nl = (1200 × 1200)

4.4 The hexagonal Hubbard model

The Hubbard model on the honeycomb lattice with C6v

symmetry has been intensively studied using a vari-
ety of numerical and analytical techniques, making it
a perfect benchmark system for the wcRG method for
a system with non-trivial sublattice structure. Particu-
lar excitement was created by the prediction of the sys-
tems tendency towards chiral d-wave superconductivity
when tuned to its van Hove singularity [55–57]. Figure
5 clearly shows that we confirm these results within the
weak coupling approximation, thereby confirming the
calculations of [39] on the same system as a refinement
of first results presented in [9]. While this result is inter-
esting for the case of infinitesimal coupling and in the
vicinity of nvH, we want to stress that any competition
between superconductivity and magnetism is neglected
in the wcRG approach, making it inapplicable at nvH

0.4 0.6 0.8 1.0 1.2 1.4 1.6
n

0.6
0.4
0.2
0.0

α
R
/t A2

B1
B2

E
A1

Fig. 6 wcRG calculations for the Rashba Hubbard model
on the square lattice. We show the leading representations
for the Rashba Hubbard model on a square lattice with
t′ = − 0.3t. Clearly the impact of the spin orbit term does
not manage to break the systems tendency towards d-wave
pairing close to half filling. The spin split Fermi surface
enforces an even momentum space structure of the gap func-
tion due to fermionic anticommutation. This is reflected by
the transition from the E representation at αR = 0 to
an extended s-wave state in the A1 irrep at n ≈= 0.5.
The phase diagram was calculated with NkF = 120 and
Nl = (640 × 640)

due to the perfect nesting of the Fermi surface at this
filling.

4.5 The Rashba Hubbard model

Introducing a second band into the one orbital Hubbard
model can not only be achieved by the introduction of
a sublattice degree of freedom but also by lifting the
spin degeneracy of the model via a Rashba type spin
orbit coupling term [58]. Previous studies of this sys-
tem have relied on an analytical solution of the corre-
sponding tight-binding Hamiltonian given in Eq. (55)
in order to circumvent the gauge problem posed by
numerical matrix diagonalization [19,31]. We success-
fully reproduce the wcRG results presented in [19] with-
out relying on analytical eigenstates, but by employing
the gauge-fixing introduced in Sect. 2.2. Our resulting
phase diagram for t′/t = −0.3 is shown representatively
in Fig. 6, while the complete data is summarized in Fig.
9 of the appendix. Since the Rashba term is not cen-
trosymmetric, it lifts the spin degeneracy between the
bands at all points in the Brillouin zone with the excep-
tion of time reversal invariant momenta and thereby
making our gauge choice unique. In addition to repro-
ducing results at t′ = 0.0 and t′ = −0.3t we pro-
vide extensive phase diagram scans in αR and filling
n for t′/t ∈ [0.0,−0.1,−0.2,−0.3] in Appendix B. We
demonstrate the splitting of the superconducting dome
at αR = t′ = 0.0 and n = 1 into two separate domes
following the new van Hove singularities established by
the two spin orbit separated Fermi surface sheets (com-
pare Fig. 7a–c). We observe an overall suppression of
the superconducting pairing strength Veff with larger
values of t′ as expected due to the reduction of the
systems nesting. While enhancing the spin orbit cou-
pling results in a similar effect for t′ = 0.0 it does not
reduce Veff further for larger values of t′. The perceived
enhancement of Veff at e.g. t′/t = −0.3, αR = 0.5 and
n = 0.65 is attributed to the almost perfect coincidence
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Fig. 7 RPA study of the Rashba Hubbard model on the
square lattice. We calculated the static (i.e. zero frequency)
RPA susceptibilities for the Rashba Hubbard model on a
square lattice with t′ = − 0.3t and αR = 0.5t at T = 0.01t
and U = 0.4t and fillings n = 0.5, 0.83, 0.95 from left to right
column. While a–c visualises the Fermi Surface topology d–
f depicts the longitudinal χlong = χ↑↑↑↑ − χ↑↓↓↑ and g–h
the transversal RPA susceptibilities χtrans = χ↑↓↑↓ in the
BZ. As the finite temperature smoothes the integrand in
Eq. (25) a sparse grid in comparison to the previous wcRG
calculations satisfies a convergent integration. Nl = 100 ×
100 was sufficient to reproduce the findings of Ref. [31]

with the van Hove filling at this parameter. This fea-
ture is not captured with the same accuracy for generic
parameter combinations due to the chosen sampling.

Based on the calculations for these phase diagrams
we were also able to reproduce results from a RPA
study of the Rashba Hubbard model [31]. Instead of
presenting the leading superconducting instabilities we
show identical results for the RPA susceptibility in two
separate sectors for three distinct parameter values in
Fig. 7. We highlight that reproducing these results was
significantly less expensive numerically, since the finite
temperature of T = 0.01t and interaction strength of
U = 0.4t allowed a reduction of the integration grid
for the generalized susceptibility to Nl = (100 × 100)
compared to Nl = (640 × 640) for the presented wcRG
calculations.

4.6 The three dimensional Hubbard model

A common thread in the numerical evaluation of all pre-
viously considered models is the comparatively small
number of discrete Fermi surface momenta NkF

com-

pared to previous studies disclosing this information
[9,39]. We attribute this to the careful placement of the
points according to the criteria established in Sect. 3.2
combined with the “correct” treatment of the scattering
between Cooper pairs with equal or opposite defining
momenta kF = ±qF . Since the numerical cost of the
method scales quadratically in NkF

, this enables signif-
icantly more cost effective analysis of three dimensional
systems in particular.

4.6.1 Body centered cubic lattice

The symmetry reduction proposed in Sect. 3.3.1 reaches
its full potential in three dimensional highly symmet-
ric systems when the order of the point group becomes
large. The body centered cubic lattice (bcc) is an ideal
representative of this. As with the other cubic Bravais
lattices the underlying point group is the Oh with 48
reducible representations in real space. The obtained
leading instabilities in Fig. 8a match previous results
in Ref. [9]. Specifically we note that the transitions
between order parameters occur at equal fillings, while
the effective pairing strength does not show unphysi-
cal increases at small fillings, where the FS shrinks to
a sphere and poor nesting occurs. On the contrary the
coupling near half filling is heavily enhanced by nesting
effects similar to the two dimensional systems inspected
in Fig. 3a.

We classify the superconducting order in terms of
its irreducible representations, which contain an infinite
number of higher harmonics. Yet each angular momen-
tum channel increases the number of line nodes of the
superconducting gap, which lowers possible energy gain
available due to Cooper pair formation. The system
therefore tends to favour low order harmonics mean-
ing pairing of sites as near as permitted by the bare
repulsive interaction. We exemplify the structure of
the obtained gap functions in Fig. 8b for a filling
of n = 0.5, which clearly corresponds to the d-wave
3z2 − r2 harmonic, without significant contributions
from higher angular momentum channels. This may sig-
nify a proper convergence of the superconducting order
in three dimensions even though the integration grids
used are much coarser than in two dimensional calcu-
lations. In this case we utilized Nl = (200 × 200 × 200)
and NkF

≈ 1500 Fermi surface points.

4.6.2 Out of plane hybridization of the square lattice
model

The lenience in resolutions allowed in our calculation
scheme is highlighted by the data presented in Fig. 8c.
The anisotropc hopping restricts the symmetry of the
system to the D4h subgroup which is of lower order than
Oh. This raises the computational cost. We therefore
reduced the integration grid to Nl = (200 × 200 × 100)
and obtain comparable calculation times. Nonetheless
our calculations for out-of-plane hybridization in the
three dimensional Hubbard model reproduce the results
presented in Ref. [14] with as few as NkF

≈ 1000 (com-
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Fig. 8 wcRG analysis of three dimensional systems. a Body centered cubic lattice. The bcc model is most conveniently
obtained from Eq. (55) in the limit t = tz and αR = 0. The isotropic hoppings introduces many symmetry constraints
on the effective vertex due to the underlying Oh point group. The crossovers of the leading instabilities found in [9] are
precisely reproduced. Yet the T1g is much less prominent at low fillings. As for the square lattice Hubbard model the
coupling strength increases significantly when approaching van Hove filling at n = 1 as the nesting of the FS is restored.
The calculation was performed with NkF ≈ 1500 and Nl = (200 × 200 × 200). b Superconducting gap function at n = 0.5
We depict one of the two degenerate eigenvectors contained in the leading Eg instability at n = 0.5, which is related to
the superconducting gap via Eq. (37). For visualization we choose a larger set of FS points NkF ≈ 2000 than usual or
necessary. Light regions on the FS corresponds to nodes in the gap function. c Anisotropic 3D Hubbard model at μ = −3t
Unlike the previous phase scans, the coupling strengths still carry a dimension for better comparison with Fig. 4 in Ref.
[14]. When increases the out-of-plane hopping tz in the Hamiltonian Eq. (55) the filling increases accordingly, as the system
exploits the additional dimension to further delocalise the electrons and lowers its energy level. For t⊥ = 0, the electrons
can not exploit this additional degree of freedom and the model returns to the square lattice case of Fig. 3a, where μ = −3t
corresponds to a filling of n = 0.17. This causes all irreducible representations not present in C4v to vanish. The van-Hove
singularities occur on the vertical lines. We choose NkF ≈ 1000 and Nl = (200 × 200 × 100)

pared to 3000 < nk < 4000 in the reference). Clearly
this is not a general solution to the problem of the
required three dimensional integration for the evalua-
tion of ℵ all three dimensional models. We have however
shown our patching scheme and symmetry reductions
to significantly reduce the number of required calcu-
lations. Our findings suggest that the number of FS
points can be heavily reduced in comparison to former
literature and one can entirely concentrate on improv-
ing the convergence of each integration.

5 Conclusion and outlook

In the pursuit of an efficient and reliable framework for
the analysis of unconventional superconducting insta-
bilities of correlated metals we have identified the
particle–hole bubble as the critical numerically accessi-
ble quantity. We provide formulations of both the wcRG
and the RPA in terms of this object, formally intro-
duced as the generalized susceptibility χ for local and
its generalization ℵ for non-local interactions. By virtue
of appropriate optimizations and an elaborate scheme
for the discretization of Fermi surfaces in two and three
spacial dimensions, we achieve a significant reduction in
numerical cost.

This has been further aided by the introduction of
a controlled approximation scheme for the required
BZ integrations, which will prove to be especially

advantageous for the analysis of electronic structures
obtained from ab-initio calculations. In addition we
have presented a derivation of the implications of point
group symmetries for the two particle vertex in the
Cooper channel. Combined, using these advances in
the methodology of weak coupling approximations we
have shown excellent benchmark agreement with previ-
ous results in literature at in general higher numerical
precision or lower computational cost.

Our work paves the way towards an efficient and reli-
able numerical toolbox, equipped for the ab-inito anal-
ysis of unconventional superconducting instabilities in
real materials. Such a framework may start by tra-
ditional density functional theory calculations, down-
folding of the model to a tight-binding Hamiltonian
via Wannierization and analyzing the resulting model
within the wcRG or RPA for its propensity towards
Fermi surface instabilities.1
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Fig. 9 wcRG calculations for the Rashba Hubbard model on the square lattice. The leading representations (left column)
and Veff(right column) are determined for the Rashba Hubbard model on a square lattice with t′ = 0 in a and b, t′ = − 0.1t
in c and d, t′ = − 0.2t in e and f, t′ = − 0.3t in g and h. The color coding of the irreducible representations is indicated
in figure g, while the color map for the right column, where yellow (black) denotes a large (small) pairing strength, is
normalized differently for each plot
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Appendix A: Decomposition of long range
interactions

We show that a generic translationally invariant two particle
interaction

U{ai}({ki}) = δ(k0 + k1 − k2 + k3)
∑

r̂1,r̂2,r̂3

U{ai}(r̂1, r̂2, r̂3)e
+i(k1r̂1−k2r̂2−k3r̂3) ,

(A.1)

involving a finite number of bonds can be rewritten in the
direct particle–hole diagram representation

U{ai}({ki}) = δ(k0 + k1 − k2 + k3)
∑

i,j

U ij
{ai}(k0 − k2)f

∗
i (k0)fj(k3) , (A.2)

with a finite set of form factor functions fi(k).
This is accomplished by first rewriting the exponent in

Eq. (A.1) by using momentum conservation for k1

k1r̂1 − k2r̂2 − k3r̂3

= (k3 + k2 − k0)r̂1 + (k0 − k2)r̂2 − k0r̂2 − k3r̂3

= (k0 − k2)(r̂2 − r̂1) − k0r̂2 − k3(r̂3 − r̂1) ,

(A.3)

and introducing form factors

fi(k) = eikr̂i . (A.4)

By shifting the summations via the use of translational
invariance and defining

r̂i = r̂2 − r̂1 ,

r̂g = r̂2 ,

r̂h = r̂1 − r̂3 and

(A.5)

we can then simply rewrite Eq. (A.1)

U{ai}({ki}) = δ(k0 + k1 − k2 + k3)
∑

r̂i,r̂g,r̂h

U{ai}(r̂g − r̂i, r̂g, r̂g − r̂i − r̂h)

e+i(k0−k2)r̂ie−ik0r̂ge+ik3r̂h

= δ(k0 + k1 − k2 + k3)
∑

r̂g,r̂h

f∗
g (k0)fh(k3)

∑

r̂i

U{ai}(r̂g − r̂i, r̂g, r̂g − r̂i − r̂h)

e+i(k0−k2)r̂i

= δ(k0 + k1 − k2 + k3)
∑

r̂g,r̂h

f∗
g (k0)fh(k3)U

gh
{ai}(k0 − k2) .

(A.6)

The remaining interaction tensor can be identified as

Ugh
{ai}(k0 − k2)

=
∑

r̂i

U{ai}(r̂g − r̂i, r̂g, r̂g − r̂i − r̂h) e+i(k0−k2)r̂i

=
∑

r̂j

U{ai}(r̂j , r̂g, r̂j − r̂h) e−i(k0−k2)(r̂j−r̂g) .

(A.7)

Note that the summations over rg and rh involve a very lim-
ited number of terms for short range interactions and that
the complete derivation does not necessitate any approxi-
mations.

Appendix B: Extensive dataset for the Rashba
Hubbard model

We present four phase diagram scans for the Rashba Hub-
bard model at different values t′/t. The αR = 0 line in
Fig. 9a/g coincides with Fig. 3a/Fig. 3c. We note, that
in Fig. 9a particle–hole symmetry is present. Yet due to
the small effective pairing strength depicted in b, which
decreases for all hoppings as the spin orbit interaction is
increased, the gap between leading and subleading instabil-
ities drops beneath the numerical resolution of the applied
scheme, which is a problem also present in other works (e.g.
Ref. [19,39]). The superconducting order is therefore only
strictly reliable in phase space regions of sizable pairing
strength. This is especially the case near van-Hove fillings,
which manifests themselves as bright lines ranging out into
regions with large spin orbit interaction. The fragmental col-
oring of these lines originates from the varying proximity of
the discretized n to nvH. However, a match with previous
studies by Wolf and Rachel [19] is also achieved in subtle
regions of the phase diagram. A decrease of pairing strength
with both αR and t′ can be stated, which was respected
by adjusting the colormap accordingly from figure b to h.
The phase diagram was calculated with NkF = 120 and
Nl = (640 × 640).
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