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Drug-induced phospholipidosis
is not correlated with the
inhibition of SARS-CoV-2 -
inhibition of SARS-CoV-2
is cell line-specific
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Helena Obernolte2, Katherina Sewald2 and Jochen Bodem1*

1Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany, 2Fraunhofer
Institute for Toxicology and Experimental Medicine ITEM, Member of Fraunhofer International
Consortium for Anti-Infective Research (iCAIR), Member of the German Center for Lung Research
(DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany
Recently, Tummino et al. reported that 34 compounds, including Chloroquine

and Fluoxetine, inhibit SARS-CoV-2 replication by inducing phospholipidosis,

although Chloroquine failed to suppress viral replication in Calu-3 cells and

patients. In contrast, Fluoxetine represses viral replication in human precision-

cut lung slices (PCLS) and Calu-3 cells. Thus, it is unlikely that these compounds

have similar mechanisms of action. Here, we analysed a subset of these

compounds in the viral replication and phospholipidosis assays using the Calu-

3 cells and PCLS as the patient-near system. Trimipramine and Chloroquine

induced phospholipidosis but failed to inhibit SARS-CoV-2 replication in Calu-3

cells, which contradicts the reported findings and the proposed mechanism.

Fluoxetine, only slightly induced phospholipidosis in Calu-3 cells but reduced

viral replication by 2.7 orders of magnitude. Tilorone suppressed viral replication

by 1.9 orders of magnitude in Calu-3 cells without causing phospholipidosis.

Thus, induction of phospholipidosis is not correlated with the inhibition of SARS-

CoV-2, and the compounds act via other mechanisms. However, we show that

compounds, such as Amiodarone, Tamoxifen and Tilorone, with antiviral activity

on Calu-3 cells, also inhibited viral replication in human PCLS. Our results

indicate that antiviral assays against SARS-CoV-2 are cell-line specific. Data

from Vero E6 can lead to non-transferable results, underlining the importance

of an appropriate cell system for analysing antiviral compounds against SARS-

CoV-2. We observed a correlation between the active compounds in Calu-3 cells

and PCLS.

KEYWORDS

SARS-CoV-2, phospholipidosis, Vero E6, PCLS, Calu-3, antivirals, Tamoxifen, cell
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1 Introduction

During the last 2.5 years, SARS-CoV-2 became a pandemic

causing more than 6.6 million deaths worldwide. Although new and

effective RNA-based vaccines were developed in 2020 and

distributed worldwide, even first-world European countries

suffered from rising infections during the summer of 2022 (Dong

et al., 2020). Besides the direct effects of the disease, approximately

7% of patients will suffer from long-COVID symptoms in the

future, and it became evident that the vaccines will not prevent

the viral spread (Cao et al., 2020). Thus, the development of effective

viral therapies is essential.

The approaches to developing antiviral therapies can be divided

into drug repurposing and developing new antivirals. The first

strategy has the obvious advantage that the compounds used are

well tested, adverse side effects have been characterised, and the

optimal drug concentrations are known. The resulting drugs can

either target the virus directly or inhibit specific cellular pathways

required for viral replication. However, the mechanism of action

needs to be verified in a patient near in vitro systems; otherwise, the

antiviral effects might not influence patient disease outcomes. The

most prominent example of misfired drug-repurposing is

Chloroquine, which has been described as a highly active

component against SARS-CoV-2 in Vero E6 cells (Wang et al.,

2015; Aherfi et al., 2021). Later it was shown that Chloroquine did

neither inhibit SARS-CoV-2 in Calu-3 cells nor lead to benefits for

infected patients (Hoffmann et al., 2020), indicating that analyses in

Vero E6 ce l l s m igh t l e ad to the iden t ifi ca t i on o f

suboptimal compounds.

Nevertheless, Tummino et al. published a report in Science

suggesting that 34 compounds, including Chloroquine and

Fluoxetine, inhibit SARS-CoV-2 replication in A549-ACE2+ and

Vero cells by inducing phospholipidosis (Tummino et al., 2021).

This assumption relays on the correlation between phospholipidosis

activity and SARS-CoV-2 suppression. However, the data were

surprising since contradicting results on Chloroquine had been

published before (Hoffmann et al., 2020). Fluoxetine was shown to

repress viral replication in human precision-cut lung slices, Vero,

Huh-7 and Calu-1 and -3, A459-ACE2+ cells and in mouse models

(Schloer et al., 2020; Brunotte et al., 2021; Fred et al., 2021; Zimniak

et al., 2021; Geiger et al., 2022a; Pericat et al., 2022). Fluoxetine has

been shown to repress viral replication by inhibiting the acid

sphingomyelinase and acid ceramidase (Geiger et al., 2022a) and

influencing the mortality of patients (Hoertel et al., 2022). In this

regard, it has been shown that serum C16:0-ceramides are

upregulated in infected patients by SARS-CoV-2, promoting a

progressive loss of the microvascular barrier function and leading

to apoptosis (Petrache et al., 2023), underlining the importance of

changes in the sphingomyelinase/ceramidase balance by Fluoxetine

for the virus (Kornhuber et al., 2022). However, no one, except

Tummino et al., reported a correlation of phospholipidosis with the

inhibition of SARS-CoV-2 replication. Thus, it is doubtful that all

the compounds described by Tummino et al. use a similar

mechanism inhibiting the same target.
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2 Results and discussion

Since it has been shown for Chloroquine that the outcome of

antiviral SARS-CoV-2 assays might depend on the cell line used, we

decided to re-analyse a subset of the compounds on the lung

adenocarcinoma Calu-3 cell line. First, we determined that our

reference concentration of 10 µM did not influence cell metabolism

by MTS test as previously described (Zimniak et al., 2021; Friedrich

et al., 2022; Geiger et al., 2022a; Geiger et al., 2022b). All compounds

did not influence the metabolism at the given concentration.

We sought to determine the induction of phospholipidosis by

the compounds. The phospholipidosis assays were performed on

Calu-3 cells, similar to the experiments previously published by

Tummino et al., but measured after 72 h simultaneously with

genome quantification (Tummino et al., 2021). The Calu-3 cells

were incubated with the compounds, and NBD-PE substrate was

added 24 h before harvest. The conversion of the substrate was

determined in a fluorescence reader. Amiodarone is known to

induce phospholipidosis and was used as a positive control (Riva

et al., 1987). Amiodarone and Trimipramine increased

phospholipidosis by 3.3fold (significance p=1.8x10-8) and 2.5fold

(significance p=8.6x10-8), while Chloroquine (1.7fold) (significance

p=0.0002) and Tamoxifen (1.6fold) (significance p=5.4x10-6)

showed a weaker induction (Figure 1A). Fluoxetine (1.3fold)

(significance p=0.002), Haloperidol (1fold), Clomiphene (0.4fold)

(significance p=9.9x10-5), and Tilorone (0.2fold) (significance

p=5.4x10-7) did not lead to a significant induction (Figure 1A;

Table 1). In contrast, Clomiphene and Tilorone repressed

phospholipidosis compared to the solvent control. Next, we

analysed the phospholipidosis by Amiodarone and Trimipramine

in Vero cells since these compounds showed the highest induction

in Calu-3 cells and to ensure that our assays led to comparable

results with the previous study. The phospholipidosis was induced

1.7fold by Amiodarone and 2.2fold by Trimipramine in Vero cells.

In conclusion, if the induction of phospholipidosis is correlated to

the antiviral activity of the compounds, Amiodarone and

Trimipramine should suppress viral replication more potent in

Calu-3 than in Vero cells and stronger than the other compounds in

Calu-3 cells, followed by Chloroquine and Tamoxifen.

Furthermore, all other compounds should not suppress viral

replication significantly.

Next, we analysed the influence of the compounds on viral

replication. The viral replication was determined by incubating

Calu-3 cells with the compounds and infecting the cells with SARS-

CoV-2 (MOI 1). After 24 h, the medium was replaced by a

compound-containing medium to remove unbound viruses. All

infections were repeated twice. Cellular supernatants were collected

three days after infection. Viral RNAs were extracted, and the

SARS-CoV-2 RNA genome copy numbers were quantified by

RTqPCR. Amiodarone (significance p=2.4x10-8), Fluoxetine

(significance p=2.1x10-8), Tamoxifen (significance p=2.4x10-8)

and Tilorone (significance p=2.4x10-8) reduced viral replication

significantly (Table 1; Figure 1B). In contrast, Chloroquine

(significance p=0.005), Clomiphene (significance p=0.07),
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Haloperidol (significance p=0.35) and Trimipramine (significance

p=0.0001) failed to inhibit viral growth in Calu-3 cells (Figure 1B).

These results confirm the data published for Tilorone on SARS-

CoV-2, MERS-CoV (Ekins and Madrid, 2020; Puhl et al., 2021) and

Fluoxetine on SARS-CoV-2 (Carpinteiro et al., 2020; Schloer et al.,

2020; Zimniak et al., 2021).

Only the treatment with Amiodarone and Tamoxifen showed a

correlation between the induction of phospholipidosis and reduced

viral replication. However, both compounds reduced viral load

similarly, but Tamoxifen induced phospholipidosis by 1.6fold

compared to 3.3fold of Amiodarone, which rules out a strict

correlation of both (Table 1). Furthermore, Trimipramine and

Chloroquine induced phospholipidosis but failed to inhibit SARS-

CoV-2 replication in Calu-3 cells significantly. Fluoxetine, however,

only slightly induced phospholipidosis in Calu-3 cells but reduced

viral replication by 2.7 orders of magnitude. Thus, the results for

Trimipramine, Chloroquine and Fluoxetine contradict the

proposed corre la t ion between ant iv i ra l ac t iv i ty and

phospholipidosis. Moreover, Tilorone suppressed viral replication

by 1.9 orders of magnitude while repressing phospholipidosis in

Calu-3 cells. The proposed linear correlation of phospholipidosis

and the reduction of viral loads was analysed by calculating the

Pearson correlation coefficient with 0.14 and Spearman’s rank

correlation p= -0.016878 using the values from Table 1. Thus,

phospholipidosis is not correlated to the inhibition of SARS-CoV-2

by any of these compounds, making it very likely that the active

compound act by other mechanisms.

Finally, we decided to evaluate the SARS-CoV-2 inhibiting

compounds Amiodarone, Tamoxifen and Tilorone on Calu-3

cells in patient-near-human precision-cut lung slices. We

hypothesised that PCLS represent a preferable model for antiviral

substances. Thus, compounds suppressing viral replication in vivo

should also inhibit viral replication in PCLS. The PCLS were

incubated with the compounds and subsequently infected with
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SARS-CoV-2 at an MOI 10. The medium was exchanged after

24 h, and cellular supernatants were collected after 72 h of infection.

The viral load was determined by infecting Vero cells with the

supernatants and analyses of viral replication by RTqPCR

(Figure 1C). All compounds active on Calu-3 cells reduced viral

replication in PCLS (significances: Amiodarone p=7.3x10-6,

Tamoxifen p=4.5x10-6, Tilorone p=4.4x10-6), showing that Calu-3

cells have a higher predictive level than Vero E6 cells. Furthermore,

the previous studies on Chloroquine and our report on Fluoxetine

support this hypothesis that Vero E6 cells might not represent a

preferential assay system for the analyses of compounds against

SARS-CoV-2.

In summary, we provide evidence that the selection of an

inappropriate cell system for antiviral assays, such as Vero E6 or

A549-ACE2 cells, might lead to the choice of compounds inactive in

patients with Chloroquine as a prominent example. Furthermore,

we identify Amiodarone, Tamoxifen and Tilorone as potential

antivirals active in human PCLS.
3 Methods

3.1 Cellular toxicity assays

Cell toxicity was determined by analysing the cellular

metabolism with the CellTiter 96® AQueous One Solution Cell

Proliferation Assay (Promega, Waldorf, Germany). The cells were

seeded into a 96-well plate. The compounds were added, and the

cells were incubated for 72 h. Then 10 µl of the MTS solution

(Promega, Waldorf, Germany) was added to the medium, and the

cells were further incubated for 1 h. Finally, the absorption was

determined and compared to the untreated control. The assays were

performed in six replicates, and the standard deviation

was calculated.
A B C

FIGURE 1

Inhibition of viral replication correlates in Calu-3 cells and human PCLS but is unrelated to phospholipidosis. (A) Phospholipidosis activity. Calu-3
cells were incubated with 10 µM of the compounds, and phospholipidosis was analysed after 72 h. (B) Inhibition of viral replication. Calu-3 cells were
incubated with 10 µM of the compounds and infected with SARS-CoV-2. The viral load was determined after 72 h with RTqPCR. (C) Inhibition of
SARS-CoV-2 replication on PCLS. PCLS were incubated with 10 µM of the compounds and infected with SARS-CoV-2. Viral infectivity was
determined on Vero cells. Bars represent the mean, and error bars the standard deviation of the assays.
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3.2 Determination of viral genome copies

The virus isolate has been described before (Schmidt et al., 2021;

Zimniak et al., 2021). The genome copy number was determined by

RTqPCR 72 h after infection. Calu-3 cells were incubated with the

compounds and subsequently infected with SARS-CoV-2, as

described before (Zimniak et al., 2021; Friedrich et al., 2022; Geiger

et al., 2022a; Geiger et al., 2022b). The medium was exchanged to

remove defective viruses after 24 hours with the medium containing

the compounds. After 72 h, 200 µl of the medium was collected, and

viral genomes were purified with the High Pure Viral Nucleic Acid kit

(Roche, Mannheim, Germany). SARS-CoV-2 RNA genomes were

quantified with the dual-target SARS-CoV-2 RdRP RTqPCR assay

kit, which contains universal SARS-CoV-2 primers, and with viral

RNA multiplex master kit (Roche) with a LightCycler 480 II (Roche).

The provided standard was used for genome copy-number

quantification using the LightCycler 480 II Software (Roche).
3.3 Phospholipidosis assays

Calu-3 cells were seeded in an optical black 96-well plate with a

clear bottom (Greiner, Frickenhausen,

Germany) at a density of 20000 cells per well. On the next day, 10

mM of compounds were added. After 24 h, the medium was replaced,

and after 48 h, 7.5 mM NBD-PE substrate (Merck, Darmstadt,

Germany) was added. The fluorescence was measured after 72 h with

an excitation wavelength of 463 nm and emission at 536 nm with an

Ensight plate reader (PerkinElmer, Rodgau, Germany). The significance

was calculated by the student’s t-tests. The Pearson correlation

coefficient was calculated with the Jupyter-Notebook software.
3.4 Human precision-cut lung slices

The human lung lobes were acquired from patients undergoing

lobe resection for cancer at Hannover Medical School. The use of

the tissue for research was approved by the ethics committee of the
Frontiers in Cellular and Infection Microbiology 04
Hannover Medical School and complies with the Code of Ethics

of the World Medical Association (number 2701–2015). Infection

of human precision-cut lung slices and determining viral infections

were performed as described before (Zimniak et al., 2021; Geiger

et al., 2022a). The human PCLS were incubated for 1 h at 37°C in

DMEM/F12 medium (Life Technologies, Darmstadt, Germany)

supplemented with 1% Penicillin/Streptomycin (Lonza, Verviers,

Belgium) and separated on a 48-well dish. The compounds were

added, and the PCLS were infected with SARS-CoV-2 with a high

MOI of approximately 10. Viral infectivity was determined by

infecting Vero cells with 100 µl of the viral supernatants for 3 days.
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TABLE 1 Induction of phospholipidosis is not correlated to the antiviral
activity.

Compounds Phospholipidosis1 Log reduction of viral
load2

Amiodarone 3.3 ± 0.3 1.8

Chloroquine 1.7 ± 0.3 -0.1

Clomiphene 0.4 ± 0.1 0.1

Fluoxetine 1.3 ± 0.0 2.7

Haloperidol 1.0 ± 0.1 0.0

Tamoxifen 1.6 ± 0.1 1.9

Tilorone 0.2 ± 0.0 1.9

Trimipramine 2.5 ± 0.2 0.4

- 1.0 ± 0.1 0.0
1normalised to the medium control.
2calculated as log10(viral loadcontrol)-log10(viral loadsample).
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