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Abstract: Simple closed formulas for endpoint geodesics on Graßmann manifolds are presented. In
addition to realizing the shortest distance between two points, geodesics are also essential tools to
generate more sophisticated curves that solve higher order interpolation problems on manifolds.
This will be illustrated with the geometric de Casteljau construction offering an excellent alternative
to the variational approach which gives rise to Riemannian polynomials and splines.
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1. Introduction

The results in this paper were motivated by the difficulty in obtaining explicit solutions
of the Euler-Lagrange equations associated to certain variational problems on Riemannian
manifolds. Geometric cubic polynomials (also called Riemannian polynomials) appeared
in this context as natural generalizations of Euclidean cubic polynomials to the smooth
manifold setting. They are smooth curves required to minimize the intrinsic acceleration
among all curves on the manifold that join two given points with prescribed velocities at
those points. This problem, first formulated and studied in [1], later caught a considerable
amount of interest. Without being exhaustive, we mention [2–4], and references therein.
The Euler-Lagrange equations for the variational problem that gives rise to those curves
are highly nonlinear and only in some trivial examples can be solved explicitly. In spite of
great efforts mainly made by Noakes and collaborators, to overcome such difficulties, they
are still the main drawback of the variational approach.

The classical de Casteljau algorithm [5] is a geometric construction to produce cubic
Euclidean polynomials and splines based on successive linear interpolation. As an alter-
native method to the variational approach to obtain splines on manifolds, construction
has been generalized to Riemannian manifolds in a very natural manner, simply replacing
straight line segments in Euclidean space by their corresponding length-minimizing curve
segments, namely segments of geodesics; we refer for instance to [6–9]. Whereas in the
Euclidean case the curves generated by this approach coincide with those obtained by the
variational approach, the same does not happen for non-flat spaces. In the more recent
work [9], however, the authors were able to make some adjustments in the de Casteljau
construction to obtain curves closer to the Riemannian polynomials. The main relevance
of our alternative approach is that it generates curves that can be expressed in closed
form as long as one has available simple explicit formulas for the geodesic that joins two
given points.

In this paper, we concentrate on interpolation on Graßmann manifolds (or Graßman-
nians). These manifolds model the space of subspaces of a fixed dimension within a larger
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vector space, and for that reason can be used to represent and analyze, e.g., subspaces
defined by certain image features in image processing. More generally, Graßmannians
find applications, for instance, in computer vision tasks such as image and video analysis,
object recognition, and motion estimation. In medical imaging, Graßmannians are used as
well to capture and analyze deformations in anatomical structures. See, for instance [10,11],
and references therein.

Our first objective is to find simple formulas for the geodesic in a Graßmannian that
joins two given points. They will then be used to implement the de Casteljau algorithm
on these manifolds. An explicit formula that was derived in [12] involves computing
matrix exponentials and logarithms and is, for that reason computationally expensive.
Here, we will present much simpler formulas, where essentially only constant, linear and
quadratic functions of the given points are involved, together with some scalar trigonomet-
ric functions.

The organization of the paper is as follows. After setting notations and recalling the
necessary background respectively in Sections 2 and 3, Section 4 starts with two different
but diffeomorphic faithful matrix representations of Graßmannians. It also includes results
that are at least partially well-known, however, a detailed description in text books is
still missing. We therefore present them for the reader’s convenience to make this paper
sufficiently self contained, and nevertheless refer to the unpublished lecture notes [13,14].
In Section 5, simple closed formulas for endpoint geodesics in the Graßmannian Grn,k are
derived, first using rotations and then via reflections. The formulas for projective space
RPn−1 ∼= Grn,1 can be more easily obtained from endpoint geodesic formulas for the unit
sphere. So, such formulas are derived first for the sphere in Section 6 and then applied to
projective space in Section 7. Nevertheless, the presented formulas for Grn,k specialize to
those of projective spaces by just setting k = 1, as well. Finally, in Section 8 we recall the de
Casteljau algorithm for geodesically complete manifolds, and write explicit expressions
for cubic polynomials in the orthogonal group On and in the Graßmannian Grn,k in order
to compare them. Our last result gives evidence that the representation of Graßmannians
by reflections is a totally geodesic submanifold of the orthogonal group. In particular, this
means that the de Casteljau algorithm on On induces already the procedure on Grn,k by
restriction, if the input data was appropriately chosen.

2. Notations

Our notations are fairly standard. In this paper, Lie groups are denoted by capital
letters, G, H, K, etc., and are assumed to be subgroups of the general linear group of real
(n× n)-matrices GLn, i.e., linear Lie groups, exclusively identified here by their defining
matrix representations. When referring to particular cases, we use their classical notation,
as in the following list:

GLn := {X ∈ Rn×n | det X 6= 0},
On := {X ∈ GLn | XX> = In, det X ∈ {±1}},

SOn := {X ∈ On | det X = 1},
S(Ok ×On−k) := {X ∈ (Ok ×On−k) ⊂ On | det X = 1} ⊂ SOn.

(1)

Real vector spaces are denoted by capital letters, e.g., V. If they are subspaces of a
given Lie algebra, say g, we also use fractured letters, e.g., p. A specific subspace of Rn×n is
in particular

Symn := {X ∈ Rn×n | X = X>}. (2)
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Correspondingly, the Lie theoretic operators ad and Ad are defined as usual, i.e.,
for any element X in the Lie algebra g, and any g in the linear Lie group G having g as its
Lie algebra,

adX : g→ g, Y 7→ adX(Y) := [X, Y] = XY−YX,

Adg : g→ g, Y 7→ Adg(Y) := gYg−1.
(3)

For convenience, we may interchangeably use two different notations, eA and exp(A),
for the matrix exponential of A ∈ g.

The Euclidean (Frobenius) inner product is denoted by 〈X, Y〉 = tr(XY>), for any
X, Y ∈ gln

∼= Rn×n. Here, tr denotes the matrix trace and (·)> denotes the matrix transpose.

3. Background and Settings
Lie Groups, Their Actions, Associated Homogeneous Spaces, Naturally Reductive Spaces

We review some important facts about Lie groups and homogeneous manifolds,
with particular emphasis on naturally reductive spaces to guarantee the existence of
geodesics that join two given points. We refer to [15,16] for more details.

Let M be a smooth manifold on which a Lie group G acts transitively through the (left)
action φ : G×M→ M. That is, if e denotes the identity element in G, then

φ
(

g, φ(h, m)
)
= φ(gh, m), and φ(e, m) = m, (4)

for all g, h ∈ G, and all m ∈ M. With these properties, M becomes a homogeneous space.
We denote by φg the diffeomorphism m 7→ φg(m) := φ(g, m) on M. If m0 is a point in
M, then Km0 := {g ∈ G | φg(m0) = m0} is a closed subgroup of G called the isotropy
subgroup (or stabilizer) of m0, and any two isotropy subgroups are conjugate. To simplify
notations, if there is no possibility of confusion, we denote an isotropy subgroup simply
by K. M can be regarded as the quotient G/K since the mapping gK 7→ m = φg(m0) is
a diffeomorphism of G/K onto M. The canonical projection ρ : G → G/K is given by
g 7→ φg(m0).

We now specialize to some particular homogeneous spaces, starting with the notion of
reductive space.

Definition 1. M = G/K is said to be a reductive space if there exists an AdK-invariant subspace
p of the Lie algebra g of G that is complementary to the Lie algebra k of K in g.

According to this definition, the following holds for a reductive space:

g = k⊕ p, [k, k] ⊂ k, [k, p] ⊂ p. (5)

Moreover, the canonical projection ρ of G on M and its differential at e ∈ G,
(dρ)e : TeG = g→ Tm0 M, have the following properties:

1. ρ : G → G/K = M is a submersion, such that (dρ)e|p : p→ Tm0 M is a linear isomor-
phism and (dρ)e(k) = {0} ⊂ Tm0 M;

2. (dρ)e induces a one-to-one correspondence between AdK-invariant inner products on
p and G-invariant metrics on M.

A reductive space is not necessary geodesically complete. In order to deal with the endpoint
geodesic problem we consider another subclass, namely, the set of so-called naturally
reductive homogeneous space.

Definition 2. A naturally reductive homogeneous space is a reductive space M = G/K such that,
for all X, Y, Z ∈ p, 〈

[X, Y]p, Z
〉
=
〈
[Y, Z]p, X

〉
, (6)
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where 〈 , 〉 is the inner product on p associated to the G-invariant metric on M, and [ , ]p denotes
the p-component of the Lie bracket [ , ] in g.

Definition 3. A smooth curve t 7→ g(t) on G is said to be horizontal if g−1(t)ġ(t) ∈ p, where
ġ(t) denotes the velocity vector and p is the vector space in (5). A smooth curve t 7→ g(t) on
G is called a horizontal lift of a curve t 7→ m(t) in the naturally reductive homogeneous space
M = G/K if it is horizontal and projects onto m(t), i.e., ρ(g(t)) := φg(t)(m0) = m(t).

The following proposition gives an explicit formula for the geodesic in a naturally
reductive homogeneous space that starts at a point with a prescribed velocity.

Proposition 1. Let M = G/K be a naturally reductive homogeneous space. The geodesic
γ : R → M, starting at m = φ(g, m0) ∈ M with initial velocity vm ∈ Tm M, is defined for
all t ∈ R by

γ(t) = φ
(

g exp(tX), m0
)

with X :=
(
dρ
)−1

e

(
dφg

)−1
m0

vm ∈ p. (7)

Proof. See for instance, [15] (p. 313), or [16] (p. 708.)

Remark 1. For m0 being the isotropy point, φ
(

g exp(tX), m0
)
= ρ

(
g exp(tX)

)
. Thus, the

geodesic (7) is indeed the projection on M of the horizontal geodesic γ in G defined by
γ(t) = g exp(tX). As m = φ(g, m0) and φ is an action, γ, given by (7), can be rewritten
in terms of the initial point as

γ(t) = φ
(

g exp(tX)g−1, m
)
= φ

(
exp(tY), m

)
, with Y = gXg−1. (8)

In the following two sections, in particular in Section 5.2, we exploit properties of
an even more structured subclass of naturally reductive homogeneous spaces, namely
so-called symmetric spaces. We refer to [17,18] for a thorough introduction. Those prop-
erties of symmetric spaces that we actually use will be explained in more detail below.
Examples of symmetric paces, and therefore of naturally reductive spaces as well, are,
for instance, On, SOn, Graßmannians, projective spaces and spheres, the only cases that
will be considered in this paper.

4. Graßmannians

The On-based, or alternatively SOn-based, coset descriptions (group models) of the
real Graßmannian Grn,k are well-known, see [19], to be

Grn,k
∼=On On/(Ok ×On−k) ∼=SOn SOn/S(Ok ×On−k). (9)

The smooth manifold Grn,k is defined as the set of all proper k-dimensional subspaces
of an n-dimensional Euclidean space, the latter as usual identified with Rn. The orthog-
onal groups On and SOn act transitively on Grn,k. The “denominators” Ok ×On−k (or
S(Ok × On−k)) then denote the stabilizer subgroups, respectively, of an arbitrary
k-dimensional subspace. To derive simple formulas for endpoint geodesics in Grn,k, we aim
to have an explicit description of Grn,k in terms of matrices, preferably realized as elements
of an isometrically embedded submanifold of some Euclidean vector space or even as an
isometrically embedded submanifold of On. Eventually, the first submanifold is the set of
rank-k orthogonal projection operators, the second is the set of matrices in On ∩ Symn with
trace equal to n− 2k.

Ultimately, we end up with two isometric matrix models of the (abstract) Graßmannian
Grn,k. The first one we call projection model, the second one we call reflection model,
see [13].
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Two Faithful Representations for the Graßmannian Grn,k

We start with the projection model of the Graßmannian Grn,k, considered as Riemannian
submanifold

Grproj
n,k := {P ∈ Symn | P2 = P, rank P = k} (10)

That is, points on Grn,k are identified by rank-k orthogonal projection operators and
Symn is endowed with Euclidean inner product, namely the Frobenius inner product.
Standard results from differential geometry and Lie theory ensure that Grproj

n,k and Grn,k are

diffeomorphic. In particular, the “matrix manifold” Grproj
n,k is a smooth and compact sub-

manifold of Symn, being an orbit of the orthogonal groups On and SOn, by a smooth group
action, i.e., conjugation. In this setting, everything is formulated somehow in standard
matrix language.

We recall formulas for tangent and normal spaces and some of their geometric inter-
pretations, many of them well-known, sometimes scattered over the literature, but we refer
to [12,20] and references therein for more details.

TPGrproj
n,k = {S ∈ Symn | S ∈ [son, P]} = {ad2

P(S) | S ∈ Symn}
= {S ∈ Symn | S = PS + SP} = {adP(Ω) | Ω ∈ son, Ω = PΩ + ΩP},

(11)

NPGrproj
n,k = {S− ad2

P(S) | S ∈ Symn}. (12)

The content of the following lemma will be particularly useful in the last section.

Lemma 1. If P ∈ Grproj
n,k and Ω ∈ gln satisfies ΩP + PΩ = Ω, then for all j ∈ N,

Ω2j−1(In − 2P) = −(In − 2P)Ω2j−1,

Ω2j(In − 2P) = (In − 2P)Ω2j,
(13)

and, consequently,
e2Ω(In − 2P) = eΩ(In − 2P)e−Ω. (14)

Proof. Expanding the series and comparing powers proves the result.

We also define the orthogonal projection of a symmetric matrix S ∈ Symn into the
tangent space of the Graßmannian at P by

πtan
P : Symn → TPGrproj

n,k ,

S 7→ ad2
P(S) = [P, [P, S]] = PS + SP− 2PSP.

(15)

In similar fashion, the normal space NPGrproj
n,k is defined by

πnor
P : Symn → NPGrproj

n,k ,

S 7→ (id−πtan
P )S = (id−ad2

P)S.
(16)

The reflection operator at the normal space we define as

RP : Symn → Symn,

S 7→
(

id−2πtan
P
)
S = S− 2ad2

P(S).
(17)
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Remark 2. Note that, since P ∈ Grproj
n,k ,

RP(S) = S− 2[P, [P, S]]

= S− 2(P2S + SP2 − 2PSP)

= (I − 2P)S(I − 2P),

(18)

That is,
RP = AdI−2P . (19)

Additionally,
RP(Grproj

n,k ) = Grproj
n,k and RP(P) = P, (20)

RP|TPGrproj
n,k

= − id,

RP|NPGrproj
n,k

= + id,
(21)

so, in particular,RP is a symmetry of Grproj
n,k .

The second model of Grn,k, the reflection model, now comes by identifying uniquely a
projection operator P ∈ Grproj

n,k with a (generalized) reflection

P←→ I − 2P, (22)

That is,
Grrefl

n,k :=
{

R ∈ On | R = I − 2P, P ∈ Grproj
n,k
}
⊂ On ∩ Symn. (23)

The following properties are easily verified,

I − 2P ∈ Grrefl
n,k =⇒ (I − 2P)2 = I, (24)

in particular, I − 2P = (I − 2P)> = (I − 2P)−1 is an involution. It depends only on k,
i.e., on det(I− 2P) = (−1)k, whether I− 2P lies in the connected component of the identity,
i.e., in the subgroup SOn or instead in the second connected component On \ SOn. In this
model, Grn,k is considered as a Riemannian submanifold of one of the two components of
On ⊂ Rn×n, equipped with Killing form (i.e., scaled Frobenius inner product as Riemannian
metric). Now, by construction, the abstract Graßmannian Grn,k (with n > 2, to ignore trivial
cases), considered as the homogeneous space On/(Ok ×On−k) ∼= SOn/S(Ok ×On−k)
endowed with metric induced by the scaled Killing form is isometric to both of our two
models Grproj

n,k and Grrefl
n,k . Formally, one might feel tempted to write

Grrefl
n,k = I − 2Grproj

n,k . (25)

The formulas for tangent and normal spaces for Grrefl
n,k , as well as for projections and

reflections, are then straightforward. For the sake of completeness, we next list those
formulas omitting a detailed derivation. Consider arbitrary Z ∈ Grrefl

n,k .

TZGrrefl
n,k = {S ∈ Symn | ZS + SZ = 0}

=
{ 1

4 ad2
Z(S) | S ∈ Symn

}
= {adZ(Ω) | Ω ∈ son, ZΩ + ΩZ = 0},

(26)

NZGrrefl
n,k =

{
S− 1

4 ad2
Z(S) | S ∈ Symn

}
, (27)
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πtan
Z : Symn → TZGrrefl

n,k ,

S 7→ 1
4 ad2

Z(S) =
1
2 (S− ZSZ),

(28)

πnor
Z : Symn → NZGrrefl

n,k ,

S 7→ (id−πtan
Z )S = 1

2 (S + ZSZ),
(29)

RZ : Symn → Symn,

S 7→
(

id−2πtan
Z
)
S = ZSZ.

(30)

Clearly, for Z = I − 2P one hasRZ = RP, whereRP was defined by (17).

Remark 3. In numerics, Grrefl
n,k could be preferable to Grproj

n,k , because the embedding space is

slightly smaller, as dim On = (n
2) < (n+1

2 ) = dim Symn, but this fact we ignore.

Remark 4. Because Graßmannians are also symmetric spaces, according to [18] there is a multipli-
cation available.

For any P, Q ∈ Grproj
n,k the multiplication map for the reflection model is

µGrrefl
n,k : Grrefl

n,k ×Grrefl
n,k → Grrefl

n,k ,

(I − 2P, I − 2Q) 7→ µGrrefl
n,k (I − 2P, I − 2Q) = (I − 2P)(I − 2Q)(I − 2P)

=
(

id− 1
2 ad2

I−2P
)
(I − 2Q).

(31)

The corresponding multiplication formula for Grproj
n,k in terms of the projections P, Q, is as

µGrproj
n,k : Grproj

n,k ×Grproj
n,k → Grproj

n,k ,

(P, Q) 7→ µGrproj
n,k (P, Q)=RP(Q) = Q− 2ad2

P(Q)

= Q− 2[P, [P, Q]] = Q−2(PQ+QP−2PQP).

(32)

5. Endpoint Geodesics for Graßmannians

We are interested in closed formulas specifying a minimal geodesic, that connect an
arbitrary point P ∈ Grn,k with another point Q ∈ Grn,k, given purely in terms of these
points. For this objective it is important to recall the concept of cut locus [21]. In case of
Grn,k the recent treatment [22] gives a nice overview and also points to some incomplete
results from the past, see also the references therein. The cut locus of a given P ∈ Grn,k
is easily seen to be the subset CutP ⊂ Grn,k consisting exactly of those points Q ∈ Grn,k
which fulfill dist(P, Q) = π/2. A nice interpretation is in terms of the k principal angles
between the associated subspaces of P and Q.

Remark 5. From now on we will always assume k ≤ n− k. Such an assumption does not cause
any restriction, as it is well-known that Grn,k and Grn,n−k are diffeomorphic, most easily seen
by recognizing the one-to-one correspondence between any k-dimensional subspace of Rn and its
associated (n− k)-dimensional complementary counterpart.

5.1. Closed Formulas for Endpoint Geodesics in Graßmannians, via Rotations

Geodesics on Grproj
n,k starting at P with initial velocity V ∈ TPGrproj

n,k are of the form

γ(t) = etBPe−tB, with B = [V, P]. (33)
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We also know, from [12], that the geodesic satisfying γ(0) = P, γ(1) = Q is given by

γ(t) = etBPe−tB, where e2B = (In − 2Q)(In − 2P). (34)

The formula was generalized in [23] for symmetric spaces and named endpoint geodesic
formula.

To find the geodesic that joins P with Q using the previous formula, requires to
compute the matrix logarithm to get B and the matrix exponential to get γ(t). However,
these operations are very computationally expensive.

Our objective is to overcome the complexity of computing those matrix functions.
For that, we find simple closed formulas for B, V, eB, etB, and finally for the corresponding
geodesic that reaches a point Q at t = 1, where only constant, linear and quadratic functions
in the data points P and Q, and scalar trigonometric functions are involved. However, first
we need some preparation.

Points in the Stiefel manifold,

Stn,k := {p ∈ Rn×k | p>p = Ik}, (35)

can be projected to Grproj
n,k , via p 7→ P = pp>, and this fact will be used here.

Consider P, Q ∈ Grproj
n,k , k ≤ n− k with Q = qq> and P = pp> with appropriately

chosen p, q ∈ Stn,k. We moreover assume that P /∈ CutQ. By the transitive action of On on
Grn,k there exists a θ ∈ On such that

P = θ
[

Ik 0
0 0

]
θ> = θ

[
Ik
0

]
[ Ik 0 ]θ>. (36)

Up to a basis change U ∈ Ok, a “Stiefel representative” p for the projection P = pp>

can be fixed by setting

p = θ
[

Ik
0

]
U = θ

[U 0
0 V
][ Ik

0

]
∈ Stn,k, V ∈ R(n−k)×(n−k) arbitrary. (37)

By the assumptions there is a unique minimal geodesic

γ : R→ Grproj
n,k , t 7→ etBPe−tB with γ(0) = P and γ(1) = eBPe−B = Q, B ∈ son. (38)

We will fix q as well by setting q = eB p. We compute

q = eB p = θθ>eBθ
[

Ik
0

]
U = θeθ>Bθ

[
Ik
0

]
U. (39)

The orthogonal θ can be further specified by requiring

θ>Bθ =
[

0 Ψ
−Ψ> 0

]
=
[

0 UΣV>
−VΣ>U 0

]
=
[U 0

0 V
][ 0 Σ
−Σ> 0

][
U> 0

0 V>

]
.

(40)

Here, we have restricted the above U, V from (37) by considering a singular value
decomposition of Rk×(n−k) 3 Ψ = UΣV>, with U ∈ Ok, V ∈ On−k. By the assumption
k ≤ n− k we have Σ = [ Φ 0 ] with Φ = diag(ϕ1, . . . , ϕk) � 0. We now compute

eθ>Bθ =
[U 0

0 V
][ cos Φ sin Φ 0
− sin Φ cos Φ 0

0 0 In−2k

][
U> 0

0 V>

]
. (41)
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Inserting (41) into (39) gives

q = θ
[U 0

0 V
][ cos Φ sin Φ 0
− sin Φ cos Φ 0

0 0 In−2k

][
Ik
0
0

]
= θ

[U 0
0 V
][ cos Φ
− sin Φ

0

]
= θ

[
Ik
0
0

]
U cos Φ− θ

[U 0
0 V
][ 0

Ik
0

]
sin Φ

⇐⇒

θ
[U 0

0 V
][ 0

Ik
0

]
sin Φ = p cos Φ− q.

(42)

From (42) we also see immediately that

p>q = q>p = cos Φ. (43)

Theorem 1. For the geodesic that joins P = pp> with Q = qq>, we have

eB = In − p Ik
Ik+p>q p> − q Ik

Ik+p>q q> + q Ik+2p>q
Ik+p>q p> − p Ik

Ik+p>q q>. (44)

Proof. This formula is a consequence of identities (41) and (42). Indeed,

eB = θ
[U 0

0 V
][ cos Φ sin Φ 0
− sin Φ cos Φ 0

0 0 In−2k

][
U> 0

0 V>

]
θ>

= θ
[U 0

0 V
]([ Ik

0
0

]
cos Φ[ Ik 0 0 ]−

[
0
Ik
0

]
sin Φ[ Ik 0 0 ] +

[
Ik
0
0

]
sin Φ[ 0 Ik 0 ]

+ In −
[

Ik
0
0

]
[ Ik 0 0 ]−

[
0
Ik
0

]
(Ik − cos Φ)[ 0 Ik 0 ]

)[
U> 0

0 V>

]
θ>

= θ
[U 0

0 V
]([ Ik

0
0

]
cos Φ[ Ik 0 0 ]−

[
0
Ik
0

]
sin Φ[ Ik 0 0 ] +

[
Ik
0
0

]
sin Φ[ 0 Ik 0 ]

+ In −
[

Ik
0
0

]
[ Ik 0 0 ]−

[
0
Ik
0

]
sin2 Φ(Ik + cos Φ)−1[ 0 Ik 0 ]

)[
U> 0

0 V>

]
θ>

= p cos Φp> − (p cos Φ− q)p> + p(cos Φp> − q>)

+ In − pp> − (p cos Φ− q)(Ik + cos Φ)−1(cos Φp> − q>)

= In − p(Ik + cos Φ)−1 p> − q(Ik + cos Φ)−1q>

− p(Ik + cos Φ)−1q> + q(Ik + cos Φ)−1(Ik + 2 cos Φ)p>.

(45)

Exploiting (43) proves the statement.

Remark 6. Note that p>q = q>p � 0 by the assumption that all principal angles ϕi, i = 1, . . . , k
lie in the half open intervall [0, π/2). The “formal” matrix quotient of diagonal matrices

Ik
Ik+p>q := (Ik + cos Φ)−1 := diag

( 1
1+cos ϕ1

, . . . , 1
1+cos ϕk

)
(46)

is well defined and therefore makes sense.
In addition, note that in our context the diagonal (k× k)-matrix sin Φ might be not invert-

ible, as for its k diagonal entries, i.e., the sines of the principal angles, we have ϕi ∈ [0, π/2).
However, the formal matrix quotient Φ

sin Φ still makes sense as for x ∈ R one has lim
x→0

x
sin x = 1.

Corollary 1.
B = q Φ

sin Φ p> − p Φ
sin Φ q>. (47)
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Proof. We compute, using the definitions of p and q, i.e., (37) and (42),

q Φ
sin Φ p>− p Φ

sin Φ q>=
(
θ

[
Ik
0
0

]
U cos Φ− θ

[U 0
0 V
][ 0

Ik
0

]
sin Φ

)
Φ

sin Φ [ 0 Ik 0 ]
[

U> 0
0 V>

]
θ>

−
((

θ

[
Ik
0
0

]
U cos Φ− θ

[U 0
0 V
][ 0

Ik
0

]
sin Φ

)
Φ

sin Φ [ 0 Ik 0 ]
[

U> 0
0 V>

]
θ>
)>

= θ
[U 0

0 V
][ 0 Φ 0
−Φ 0 0

0 0 0

][
U> 0

0 V>

]
θ>.

(48)

Note that the map (0, π/2) → S1 defined by ϕi 7→
[

cos ϕi sin ϕi
− sin ϕi cos ϕi

]
for all principal

angles ϕi is a diffeomorphism onto its image. This is correct for all i = 1, . . . , k, being
inferred from the assumption Q /∈ CutP. Now, taking the matrix exponential in (48) and
comparing with the first equality in (45) proves the statement.

Corollary 2.
V = p Φ

sin Φ q> + q Φ
sin Φ p> − p 2Φ cos Φ

sin Φ p>. (49)

Proof. This follows immediately from V = [B, P] inserting formula (47).

Corollary 3.

etB = In−p Ik−cos(tΦ)

sin2 Φ
p>− q Ik−cos(tΦ)

sin2 Φ
q>+ p

cos Φ−cos
(
(1−t)Φ

)
sin2 Φ

q>+ q
cos Φ−cos

(
(1+t)Φ

)
sin2 Φ

p>. (50)

Proof. We compute

etB = θ
[U 0

0 V
][ cos(tΦ) sin(tΦ) 0
− sin(tΦ) cos(tΦ) 0

0 0 In−k

][
U> 0

0 V>

]
θ>

= θ
[U 0

0 V
]([ Ik

0
0

]
cos(tΦ)[ Ik 0 0 ]−

[
0
Ik
0

]
sin(tΦ)[ Ik 0 0 ] +

[
Ik
0
0

]
sin(tΦ)[ 0 Ik 0 ]

+ In −
[

Ik
0
0

]
[ Ik 0 0 ]−

[
0
Ik
0

](
Ik − cos(tΦ)

)
[ 0 Ik 0 ]

)[
U> 0

0 V>

]
θ>

= p cos(tΦ)p> − (p cos Φ− q) sin(tΦ)
sin Φ p> + p sin(tΦ)

sin Φ (cos Φp> − q>)

+ In − pp> − (p cos Φ− q) sin2(tΦ)

(Ik+cos(tΦ)) sin2 Φ
(cos Φp> − q>)

= In + p
(

cos(tΦ)− Ik −
cos2 Φ sin2(tΦ)

(Ik+cos(tΦ)) sin2 Φ

)
p> − q

(
sin2(tΦ)

(Ik+cos(tΦ)) sin2 Φ

)
q>

+ p
(
− sin(tΦ)

sin Φ + (Ik−cos(tΦ)) cos Φ

sin2 Φ

)
q> + q

(
sin(tΦ)

sin Φ + (Ik−cos(tΦ)) cos Φ

sin2 Φ

)
p>

= In− p Ik−cos(tΦ)

sin2 Φ
p>− q Ik−cos(tΦ)

sin2 Φ
q>+ p

cos Φ−cos
(
(1−t)Φ

)
sin2 Φ

q>+ q
cos Φ−cos

(
(1+t)Φ

)
sin2 Φ

p>,

(51)

thus verifying the claim.
Here, we used at several instances trigonometric identities (e.g., addition theorems)

and the fact that for any real t we have the scalar limit lim
ϕ→0

sin(tϕ)
sin ϕ = t. The latter is in

particular important to notice, as the diagonal matrix sin Φ is not necessarily invertible.

Corollary 4.

γ(t) = p
sin2
(
(1−t)Φ

)
sin2(Φ)

p>+ q sin2(tΦ)

sin2(Φ)
q> + p

sin
(
(1−t)Φ

)
sin(tΦ)

sin2 Φ
q>+ q

sin
(
(1−t)Φ

)
sin(tΦ)

sin2 Φ
p>. (52)

Proof. This is a straightforward but clumsy computation. First postmultiply etB by P
exploiting p>P = p>pp> = p> and q>P = cos Φp>, secondly, postmultiply etBP with its
own transpose, because γ(t) = etBPe−tB must hold; the result will follow.
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Remark 7. One possible strategy to obtain cos Φ from P and Q is to compute the nonzero singular
values of (I − P)Q or (I − Q)P, as they are equal to the sines of the nonzero principal angles
between the subspaces associated to P and Q, see, e.g., Thm. 4.37 in [24].

Remark 8. Sometimes, in applications, Stiefel representatives p and q with pp> = P and qq> = Q
are already given. If this is not the case a possible strategy to compute p out of P ∈ Grproj

n,k by a finite

number of steps is as follows. Partition P =
[

A B>
B C

]
into appropriate subblocks, where obviously

A2 + B>B = A must hold. We look only to the case where A−1 exists. Consider the (unique)
Cholesky decomposition A−1 = LL>. Then p =

[
A
B
]
L =

[
L−>
BL

]
serves the purpose.

5.2. Closed Formulas for Endpoint Geodesics in Graßmannians, via Reflections

We now sketch an alternative way to express geodesics on Graßmannians explicitly,
and consequently also the corresponding eB. For that, reflection operators, defined in (17)
and (18), play an important role. We already showed in Lemma 1 that these operators are
reflections on Graßmannians, but they are actually geodesic reflections, that is, if γ is a
geodesic in Grproj

n,k , starting at the point P = γ(0), then

RP
(
γ(t)

)
= γ(−t). (53)

This is easily seen using the definition of a reflection, the explicit formula for the
geodesic, and identity (14). Indeed,

RP
(
γ(t)

)
= (I − 2P)etBPe−tB(I − 2P)

= e−tB (I − 2P)P(I − 2P)︸ ︷︷ ︸
P

etB

= γ(−t).

(54)

In a similar way, one checks that the geodesic γ, in Grproj
n,k , starting at the point P, can

be expressed in terms of reflections at the normal space at γ(t/2). More precisely,

γ(t) = Rγ(t/2)(P). (55)

The previous formula for Graßmannians is a particular case of a more general result for
symmetric spaces. In addition to the many further properties, they enjoy a more restrictive
geodesic symmetry, as they are characterized by having geodesics which are induced by
one-parameter subgroups of the group which acts transitively, as stated in Proposition 1.

The general idea, that can be found in [25], Chapter XI, is the following. If γ : R→ M
is a geodesic on a symmetric space M, starting at P ∈ M, and sP denotes the geodesic
symmetry of M at P, then {(sγ(t/2) ◦ sγ(0)), t ∈ R} is a one-parameter group of isometries
of M whose orbit through P = γ(0) is the geodesic γ itself. The group operations are

(sγ(t1)
◦ sP)� (sγ(t2)

◦ sP) := (sγ(t1+t2)
◦ sP), (56)

with identity element e := sP ◦ sP, and inverse (sγ(t) ◦ sP)
−1 := (sγ(t) ◦ sP).

Consequently, for the Graßmannian one has

γ(t) = Rγ(t/2)(P) = (Rγ(t/2) ◦ RP)(P). (57)

Geodesics in Grproj
n,k can now expressed explicitly in terms of reflections.
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Corollary 5. The geodesic in Grproj
n,k , joining the point P (at t = 0) with the point Q (at t = 1), is

given by γ(t) = Rγ(t/2)(P), with

Rγ(t/2) = AdIn−2γ(t/2), (58)

where

In − 2γ(t/2) = In − 2
(

p
sin2
(
(1−t/2)Φ

)
sin2 Φ

p> + q sin2(tΦ/2)
sin2 Φ

q>

+ p
sin
(
(1−t/2)Φ

)
sin(tΦ/2)

sin2 Φ
q> + q

sin
(
(1−t/2)Φ

)
sin(tΦ/2)

sin2 Φ
p>
)

.
(59)

Proof. The last formula is obtained by setting t = 1/2 in (52), followed by using simple
trigonometric identities.

In (34) we have an implicit formula for the matrix B, which is e2B = (In− 2Q)(In− 2P).
However, we now also have a formula for taking the square root of the previous, purely in
terms of p and q.

Corollary 6. Consider the minimal geodesic γ(t) = etBPe−tB connecting P = γ(0) with
Q = γ(1) and define the midpoint Z := γ( 1

2 ) = eB/2Pe−B/2.
For e2B = (In − 2Q)(In − 2P), we have

eB =
(
(In − 2Q)(In − 2P)

) 1
2
= (In − 2Z)(In − 2P) = (In − 2Q)(In − 2Z). (60)

Proof. We compute using p>q = q>p = cos Φ

(In−2Z)(In−2P)=
(

In−p Ik
Ik+cos Φ p>−q Ik

Ik+cos Φ q>−p Ik
Ik+cos Φ q>−q Ik

Ik+cos Φ p>
)
(In−2pp>)

= In + p
( −Ik

Ik+cos Φ − 2Ik +
2Ik

Ik+cos Φ + 2 cos Φ
Ik+cos Φ

)
p>

−q Ik
Ik+cos Φ q>− p Ik

Ik+cos Φ q> + q−Ik+2 cos Φ+2Ik
Ik+cos Φ p>

= In − p Ik
Ik+p>q p> − q Ik

Ik+p>q q> + q Ik+2p>q
Ik+p>q p> − p Ik

Ik+p>q q> = eB

as claimed, see (44). The last equality in (60) follows in an analogous way.

Remark 9. The results in this section can be applied to the particular situation when k = 1,
in which case Grn,1 = RPn−1. However, they can be more easily obtained from similar computations
on the unit sphere. So, we derive next closed formulas for the minimal geodesic connecting points in
the sphere Sn−1, from where corresponding formulas for the projective space will follow.

6. A Faithful Representation of the Unit Sphere Sn−1

Some fifty years ago in [26] an explicit construction for an isometric embedding of
the Graßmannian was presented, see, however, [23] for additional details. If we would
try to mimic this construction for the sphere Sn−1 ∼= SOn/SOn−1

∼= On/On−1, we would
run into trouble, simply because we would necessarily end up with projective space
RPn−1 ∼= Grn,1

∼= Sn−1/± In rather than with a faithful representation of Sn−1. The reason
is that the corresponding quadratic map

On/On−1 → Symn, [Q] 7→ Q
[

1 0
0 0n−1

]
Q> (61)

is not injective, e.g., for any x ∈ Rn with x>x = ‖x‖2 = 1 we have xx> = −x(−x>).
There is, however, a neat way out by means of Clifford algebras, the reader might consult
Chapter I.6.6 in [27] for details.
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We therefore proceed by considering Sn−1 ⊂ Rn as a Riemannian submanifold with
induced Euclidean metric in the usual way. The following formulas and definitions for
tangent and normal subspaces, associated projection operators, reflections at normal spaces,
group action and multiplication map are well-known.

TpSn−1 = {A ∈ TpRn ∼= Rn | A>p = 0}, NpSn−1 = span(p), (62)

πtan
p : Rn → TpSn−1, x 7→ (I − pp>)x,

πnor
p : Rn → NpSn−1, x 7→ pp>x,

Rp : Rn → Rn, x 7→ (id−2πtan
p )x = (−I + 2pp>)x,

(63)

φ : On ×Rn → Rn, (θ, x) 7→ θx,

φθ : Rn → Rn, x 7→ φ(θ, x),
(64)

µ : Sn−1 × Sn−1 → Sn−1, (p, q) 7→ µ(p, q) := Rp(q) = (2pp> − I)q. (65)

6.1. Closed Formula for Endpoint Geodesics in the Unit Sphere Sn−1, via Rotations

We are interested in closed formulas related to the unique minimal geodesic on the
sphere, that joins two non antipodal points, given purely in terms of these points. The next
theorem summarizes our results.

Theorem 2. Let p, q ∈ Sn−1 with p 6= ±q. Denote by γ(t) = etB p the unique minimal geodesic
with γ(0) = p, γ(1) = q and B ∈ son. The latter can be made unique by using B = vp> − pv>

with v ∈ TpSn−1 suitably chosen. Closed formulas for unique B ∈ son, v = Bp, eB, etB and
γ(t) = etB p, given purely in terms of starting point p and endpoint q are as follows.

v = arccos(q>p)√
1−(q>p)2

πtan
p (q)

= arccos(q>p)√
1−(q>p)2

(I − pp>)q with ‖v‖ = arccos(q>p) ⇔ cos ‖v‖ = q>p,
(66)

B = arccos(q>p)√
1−(q>p)2

(qp> − pq>) = vp> − pv> = ‖v‖√
1−cos2 ‖v‖

(qp> − pq>), (67)

eB = I −
(

pp> + qq>
) 1

1+q>p + qp> 1+2q>p
1+q>p − pq> 1

1+q>p

= I −
(

pp> + qq>
) 1

1+cos ‖v‖ + qp> 1+2 cos ‖v‖
1+cos ‖v‖ − pq> 1

1+cos ‖v‖

(68)

etB = I + (pp> + qq>) cos(t‖v‖)−1
sin2 ‖v‖

+ pq>
cos ‖v‖−cos

(
(1−t)‖v‖

)
sin2 ‖v‖ + qp>

cos ‖v‖−cos
(
(1+t)‖v‖

)
sin2 ‖v‖ ,

(69)

γ(t) = etB p = p sin((1−t)‖v‖)
sin ‖v‖ + q sin(t‖v‖)

sin ‖v‖ . (70)

Proof. The idea is to bring p, q simultaneously to some suitable normal form. By transitivity
of the SOn-action on Sn−1 there exists a θ ∈ SOn and a suitable angle 0 < ϕ < π such that

p = θe1,

q = θ(e1 cos ϕ− e2 sin ϕ) = p cos ϕ− θe2 sin ϕ.
(71)
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In other words, the Sn−1-problem somehow reduces to an S1-problem, S1 consid-
ered as lying in the 2-plane spanned by p, q and the origin of the embedding space Rn.
Elementary geometry then tells us that

cos ϕ = q>p =⇒ ϕ = arccos(q>p). (72)

Moreover, p 6= ±q by assumption, implying

−1 < cos ϕ = q>p < 1 and 0 < sin ϕ =
√

1− (q>p)2 < 1. (73)

We proceed by identifying the orthogonal eB from q = eB p. From (71) we have

q = θ(e1 cos ϕ− e2 sin ϕ) = θ

[ cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 In−2

]
e1

= θ

[ cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 In−2

]
θ>θe1 = θ

[ cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 In−2

]
θ>p.

(74)

Consequently, using

p = θe1, θe2 = p cos ϕ−q
sin ϕ with ϕ = arccos(q>p), (75)

we have

eB = θ

[ cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 In−2

]
θ>

= θ
(
(e1e>1 + e2e>2 ) cos ϕ + (e1e>2 − e2e>1 ) sin ϕ + In − e1e>1 − e2e>2

)
θ>

= In −
(

pp> + qq>
) 1

1+cos ϕ + qp> 1+2 cos ϕ
1+cos ϕ − pq> 1

1+cos ϕ ,

(76)

showing (68). Furthermore, from the first equality in (76) we can identify B ∈ son as well.
Indeed,

B = θ

[ 0 ϕ 0
−ϕ 0 0
0 0 0n−2

]
θ> = ϕ θ(e1e>2 − e2e>1 )θ> = ϕ

(
p p> cos ϕ−q>

sin ϕ − p cos ϕ−q
sin ϕ p>

)
= ϕ

sin ϕ (qp> − pq>) = arccos(q>p)√
1−(q>p)2

(qp> − pq>),
(77)

verifying (67). It remains to prove the formula for etB. We have the representation

etB = In +
sin(tϕ)

ϕ B + 1−cos(tϕ)
ϕ2 B2, (78)

easily verified by expanding the power series and comparing terms. Inserting (77) into (78)
gives

etB = In +
sin(tϕ)

sin ϕ (qp> − pq>) + 1−cos(tϕ)

sin2 ϕ
(qp> − pq>)2

= In +
sin(tϕ)

sin ϕ (qp> − pq>) + 1−cos(tϕ)

sin2 ϕ

(
cos ϕ(qp> + pq>)− pp> − qq>

)
= In + (pp> + qq>) cos(tϕ)−1

sin2 ϕ
+ pq> cos ϕ−cos ϕ cos(tϕ)−sin ϕ sin(tϕ)

sin2 ϕ

+ qp> cos ϕ−cos ϕ cos(tϕ)+sin ϕ sin(tϕ)

sin2 ϕ

= In + (pp> + qq>) cos(tϕ)−1
sin2 ϕ

+ pq> cos ϕ−cos((1−t)ϕ)

sin2 ϕ
+ qp> cos ϕ−cos((1+t)ϕ)

sin2 ϕ
,

(79)

showing (69) as ϕ = ‖v‖.
Finally, to verify formula (70) is straightforward by using appropriate trigonometric

addition formulas, we omit the details.
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Remark 10. Formula (70) appeared already in [7], however, without proof.

6.2. Closed formula for endpoint geodesics in the unit sphere Sn−1, via reflections

Lemma 2. Let p, q ∈ Sn−1 with p 6= ±q. Denote by γ the unique minimizing geodesic connecting
p with q and γ(0) = p and γ(1) = q. Define the “midpoint” z := γ(1/2). Then we have

q = γ(1) = Rz(p) = (2zz> − In)p, (80)

with reflection operatorRz at the normal space NzSn−1 given explicitly in terms of p and q only by

Rz = ReB/2 p = 2eB/2 pp>e−B/2 − In

=
(

pp> + qq> + pq> + qp>
) 1

1+cos ‖v‖ − In.
(81)

Here, again, q>p = cos ‖v‖ and v and B are the same as in (66) and (67).

Proof. It is sufficient to prove the statement for Sn−1 with p = e1 and q = cos ‖v‖e1 −
sin ‖v‖e2 and v = γ′(0). The details are straightforward to verify by using Theorem 2 and
are therefore omitted.

For applications it is sometimes useful to have a parameter dependent representation
of the reflectionRγ(t/2) withRγ(t/2)p = etB p = γ(t) as well.

Corollary 7. We have the representation

Rγ(t/2) =
2

sin2 ‖v‖

(
pp> sin2((1− t

2 )‖v‖) + qq> sin2( t
2‖v‖)

+ (pq>+ qp>)sin((1− t
2 )‖v‖) sin( t

2‖v‖)︸ ︷︷ ︸
= 1

2
(
cos
(
(1−t)‖v‖

)
−cos‖v‖

)
)
− In. (82)

Proof. The result follows from (70).

Remark 11. Certainly, Lemma 2 follows from Corollary 7 for t = 1 as well.

7. Formulas for Geodesics in the Projective Space RPn−1 = Grn,1

Theorem 3. Let P, Q ∈ Grproj
n,1 with P neither lying in the cut locus of Q with P = pp>,

Q = qq>, p, q ∈ Sn−1 and p 6= ±q, nor P being conjugate to Q. Let q>p =
√

tr(PQ) = cos ϕ.
Consider the minimal geodesic γ : t 7→ etBPe−tB connecting P, Q and Q = eBPe−B = γ(1).
Then

eB = In − (P + Q) 1
1+cos ϕ + QP 1+2 cos ϕ

cos ϕ(1+cos ϕ)
− PQ 1

cos ϕ(1+cos ϕ)
, (83)

B = ϕ
cos ϕ sin ϕ [Q, P], (84)

etB = In + (P + Q) cos(tϕ)−1
sin2 ϕ

+ PQ cos ϕ−cos((1−t)ϕ)

cos ϕ sin2 ϕ
+ QP cos ϕ−cos((1+t)ϕ)

cos ϕ sin2 ϕ
, (85)

γ(t) = etBPe−tB = P sin2((1−t)ϕ)

sin2 ϕ
+ Q sin2(tϕ)

sin2 ϕ
+ (PQ + QP) sin((1−t)ϕ) sin(tϕ)

cos ϕ sin2 ϕ
. (86)

Proof. Formula (68) implies (83), (67) implies (84) and (68) implies (85) by noting that

qp> = qq>pp>
cos ϕ = QP

cos ϕ and pq> = pp>qq>
cos ϕ = PQ

cos ϕ hold. Formula (86) is implied by

multiplying etB p from (70) with its transpose from the right and applying a suitable
trigonometric addition formula.
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Corollary 8. Sometimes it is useful to have a formula for the tangent vector V := [B, P] at P
specifying together with P the unique minimal geodesic connecting P and Q,

V = d
dt etBPe−tB|t=0 = [B, P] = ϕ

cos ϕ sin ϕ [[Q, P], P] = ϕ
cos ϕ sin ϕ πtan

P (Q) ∈ TPGrproj
n,1 . (87)

Proof. This is a straightforward computation using (85) and is therefore omitted.

Lemma 3. Consider two points P, Q ∈ Grproj
n,1 with Q /∈ CutP. Let

√
tr(PQ) = cos ϕ.

Consider the minimal geodesic

γ : t 7→ etBPe−tB, γ(0) = P, γ(1) = Q = eBPe−B. (88)

Consider the midpoint Z := γ( 1
2 ) = eB/2Pe−B/2. Then we have

Q = γ(1) = RZ(P) = P− 2ad2
Z(P), (89)

and the reflection operatorRZ at the normal space NZRPn−1 is given explicitly in terms of P and
Q only by

RZ = (id−2ad2
Z) = AdIn−2Z, (90)

where
In − 2Z = In −

(
P + Q + PQ+QP

cos φ

)
1

1+cos ϕ . (91)

Proof. By the transitive action we know that there exists a θ ∈ SOn with p = θe1, P = pp>

and q = θ(e1 cos ϕ− e2 sin ϕ), Q = qq>, moreover, see also (75), we have θe2 = p cos φ−q
sin ϕ .

We compute

In−2Z = In − 2θ

 cos
ϕ
2 sin

ϕ
2 0

− sin
ϕ
2 cos

ϕ
2 0

0 0 In−2

e1e>1

 cos
ϕ
2 − sin

ϕ
2 0

sin
ϕ
2 cos

ϕ
2 0

0 0 In−2

θ>

= In − 2θ

[
cos

ϕ
2

− sin
ϕ
2

0

][
cos

ϕ
2 − sin

ϕ
2 0
]
θ> = θ

[ − cos ϕ sin ϕ 0
sin ϕ cos ϕ 0

0 0 In−2

]
θ>

= θ
(
−(e1e>1 )cos ϕ +(e1e>2 + e2e>1 )sin ϕ + (e2e>2 )cos ϕ+ In−(e1e>1 )−(e2e>2 )

)
θ>

= In −
(

pp> + qq> + pq> + qp>
) 1

1+cos ϕ

= In −
(

P + Q + PQ+QP
cos ϕ

) 1
1+cos ϕ .

(92)

Corollary 9. With notations as in Lemma 3 we have the representation

Rγ(t/2) = (id−2ad2
γ(t/2)) = AdIn−2γ(t/2), (93)

with

In−2γ(t/2)= In − 2etB/2Pe−tB/2

= In−2
(
P

sin2
(
(1−t/2)ϕ

)
sin2 ϕ

+Q sin2(tϕ/2)
sin2 ϕ

+(PQ + QP)
sin
(
(1−t/2)ϕ

)
sin(tϕ/2)

cos ϕ sin2 ϕ

)
.

(94)

Proof. The result follows from the last expression in (86) using t/2 instead of t.

8. The de Casteljau Algorithm on Riemannian Manifolds

A well-known recursive procedure to generate polynomial curves in Euclidean spaces
is the classical de Casteljau algorithm which was introduced, independently, by de Castel-
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jau [5] and Bézier [28]. The algorithm is a simple and powerful tool widely used in the
field of Computer Aided Geometric Design (CAGD), and is based on successive linear
interpolations, see [29] for a treatise.

A generalization of that algorithm to Riemannian manifolds appeared first in [6],
and the basic idea was replacing linear interpolation by geodesic interpolation. The result-
ing curves are also called polynomial curves as they are natural extensions to Riemannian
manifolds of Euclidean polynomials. In Euclidean spaces, the most important are the cubic
polynomials, due to their optimal properties, as they minimize acceleration.

Generating polynomial curves and polynomial splines on manifolds was motivated
by problems related to path planning of certain mechanical systems, such as spacecraft and
underwater vehicles, whose configuration spaces are non-Euclidean manifolds. The rota-
tion group, which plays an important role in this context, inspired further developments
such as the work in [7] that will be used here. However, first we briefly describe the de
Casteljau algorithm to generate cubic polynomials on Riemannian manifolds, assuming
that they are geodesically complete.

8.1. Generating Cubic Polynomials

A cubic polynomial is a smooth curve that satisfies a two-point boundary value
problem (initial and final points and velocities are prescribed), but may be generated from
four distinct points {x0, x1, x2, x3} in M, the first and last being respectively the initial and
final point of the curve and the other two are auxiliary points for the geometric algorithm,
but are related to the prescribed velocities. Without loss of generality, we are going to
parameterize the curves over the interval [0, 1].

The next algorithm describes all steps of this construction, illustrated in Figure 1.
The curve [0, 1] 3 t 7→ β3(t) := β3(t, x0, x1, x2, x3) obtained in Algorithm 1 is called

cubic polynomial in M, and in Figure 1 it is represented by the blue curve. It is important
to observe that this curve joins the points x0 (at t = 0) and x3 (at t = 1), but does not
pass through the other two points x1 and x2. The latter are called control points, since they
influence the shape of the curve.

Figure 1. Illustration of the de Casteljau algorithm. Cubic polynomial in blue.
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Algorithm 1 Generalized de Casteljau algorithm

Given four distinct points x0, x1, x2 and x3 in M:
Step 1 Construct three geodesic arcs, β1(t, xi, xi+1), i = 0, 1, 2, joining xi to xi+1. In
the illustration, these geodesic arcs are represented by the black dotted lines.
Step 2 For every t ∈ [0, 1], construct two geodesic arcs

β2(s, xi, xi+1, xi+2) = β1(s, β1(t, xi, xi+1), β1(t, xi+1, xi+2))

for i = 0, 1, joining β1(t, xi, xi+1) to β1(t, xi+1, xi+2). In the illustration, these geodesic
arcs are represented by the red dotted lines.
Step 3 For every t ∈ [0, 1], construct the geodesic arc

β3(s, x0, x1, x2, x3) = β1(s, β2(t, x0, x1, x2), β2(t, x1, x2, x3)),

joining β2(t, x0, x1, x2) to β2(t, x1, x2, x3). In the illustration, this geodesic arc is
represented by the green dotted line. The dark blue dot represents the point in
β3(s, x0, x1, x2, x3) corresponding to s = t.

Since the basic ingredients used in the de Casteljau algorithm are geodesic arcs,
Riemannian geometry provides enough tools to formulate this construction theoretically.
However, often those simple curves are implicitly defined by a set of nonlinear differential
equations, so Algorithm 1 can be practically implemented only when the calculation of the
geodesic arcs can be reduced to a manageable form.

This algorithm can be generalized to generate polynomials of any degree and also
to generate C2-smooth cubic polynomial splines by piecing together, in a sufficiently smooth
manner, several cubic polynomials. These curves are particularly useful in many engineer-
ing applications.

8.1.1. Cubic Polynomials in Graßmannians

Cubic polynomial curves on Grproj
n,k were derived in [30], using the generalized de

Casteljau algorithm above. The next result contains the explicit formula for such curves.
We call attention to the meaning of the superscripts in the operators Ωj

i that appear in the
next proposition. Those superscripts have been chosen to agree with the step number of
the algorithm where they are defined, and that will become clear in Remark 12.

Proposition 2. Given four distinct points Pi, for i = 0, 1, 2, 3, in Grproj
n,k , the curve

t ∈ [0, 1] 7→ β3(t) = etΩ3
0(t)etΩ2

0(t)etΩ1
0 P0e−tΩ1

0e−tΩ2
0(t)e−tΩ3

0(t)

= e
t adΩ3

0(t)e
t adΩ2

0(t)e
t adΩ1

0 P0,
(95)

where, for i = 0, 1, 2 and j = 2, 3,

e2Ω1
i = (I − 2Pi+1)(I − 2Pi), e2Ωj

i(t) = e2tΩj−1
i+1(t)e2(1−t)Ωj−1

i (t), (96)

is the cubic polynomial in Grproj
n,k , obtained by the generalized de Casteljau algorithm associated to

the points Pi, with i = 0, 1, 2, 3. Moreover, for every t ∈ [0, 1],

Ω1
i Pi + PiΩ1

i = Ω1
i , i = 0, 1, 2, (97)

Ω2
i (t)

(
et Ω1

i P0e−t Ω1
i

)
+
(

et Ω1
i P0e−t Ω1

i

)
Ω2

i (t) = Ω2
i (t), i = 0, 1, (98)
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Ω3
0(t)

(
et Ω2

0(t)et Ω1
0 P0e−t Ω1

0e−t Ω2
0(t)
)
+
(

et Ω2
0(t)et Ω1

0 P0e−t Ω1
0e−t Ω2

0(t)
)

Ω3
0(t) = Ω3

0(t). (99)

Proof. See [30].

Remark 12. We briefly explain how Algorithm 1 generates the curve (95), subject to (96) and (97).
For that, we use formula (34) for the geodesic arc that joins two given points, and identity (14).

In Step 1, the geodesic arc joining Pi to Pi+1 is given by β1(t, Pi, Pi+1) = etΩ1
i Pie−tΩ1

i , where
e2Ω1

i = (I − 2Pi+1)(I − 2Pi). Taking into account identity (14), it is clear that the first condition
in (97) holds.

In Step 2, we obtain β2(s, P0, P1, P2) = esΩ2
0(t)β1(t, P0, P1)e−sΩ2

0(t), with

e2Ω2
0(t) = (I − 2β1(t, P1, P2))(I − 2β1(t, P0, P1)). (100)

Replace in (100), P1 by eΩ1
0 P0e−Ω1

0 , β1(t, Pi, Pi+1) by its expression above, using (14), we get

e2Ω2
0(t) = (I − 2etΩ1

1eΩ1
0 P0e−Ω1

0e−tΩ1
1)(I − 2etΩ1

0 P0e−tΩ1
0)

= etΩ1
1eΩ1

0(I − 2P0)e−Ω1
0e−tΩ1

1 etΩ1
0(I − 2P0)e−tΩ1

0

= e2tΩ1
1e2Ω1

0(I − 2P0)(I − 2P0)e−2tΩ1
0

= e2tΩ1
1e2(1−t)Ω1

0 ,

(101)

which is the second expression in (96) for (i, j) = (0, 2).
Moreover, the equality in the first line of (101) and (14) enables to conclude that the second

condition in (97) holds for i = 0.
Similar arguments can be used to obtain the other geodesic arc in Step 2 and the one in Step 3,

together with the corresponding constraints in (97).

For the sake of completeness, we also include here the relationship between the control
points P1 and P2 and the initial and final velocities of the curve (95), see [30].

The cubic polynomial β3 that satisfies the boundary conditions

β3(0) = P0, β3(1) = P3, β̇3(0) = [W0, P0], β̇3(1) = [W3, P3], (102)

with Wi = −W>i , for i = 1, 3, satisfying WiPi + PiWi = Wi, is generated by the de Casteljau
algorithm associated to the points Pi, i = 0, 1, 2, 3, where the controls points are given in
terms of the boundary data (102) as:

P1 = 1
2

(
I − e

2
3 W0(I − 2P0)

)
,

P2 = 1
2

(
I − e−

2
3 W3(I − 2P3)

)
.

(103)

Remark 13. Although the formulas in Proposition 2 appear to be relatively manageable, they are
not appropriate for the implementation of the algorithm due to their computational cost. It is exactly
to overcome this burden that the formulas derived in Section 5.1 can be extremely useful.

8.1.2. Orthogonal Cubic Polynomials

Here, we present the cubic polynomials generated by the de Casteljau algorithm
when M = On. This follows immediately from the work in [7], which was dedicated to
connected and compact Lie groups and to spheres. The only difference here is that we have
to assume that the initial data (the given four points) lives in one of the two connected com-
ponents of the orthogonal group, in which case the resulting cubic stays in that component.
Here, we use capital greek letters for points in On, capital Roman letters for elements in
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its Lie algebra and, for convenience, denote the curves in the de Casteljau algorithm by pi

instead of βi. As in the Graßmannian case, the superscripts in the operators V j
i that appear

in the next proposition have been chosen to agree with the step number of the algorithm
where they are defined. This will become clear in Remark 14.

Proposition 3. Given four distinct points θi, i = 0, 1, 2, 3, in one of the two connected components
of On, the curve defined by

p3(t) = etV3
0 (t)etV2

0 (t)etV1
0 θ0, (104)

where V1
i , for i = 0, 1, 2, is the infinitesimal generator of the geodesic arc joining the point θi (at

t = 0) to θi+1 (at t = 1), that is, θi+1 = eV1
i θi, and for every t ∈ [0, 1] the Lie algebra elements V j

i
are defined by:

eV j
i (t) = etV j−1

i+1 (t)e(1−t)V j−1
i (t), for j = 2, 3, (105)

is the cubic polynomial in On generated by the de Casteljau algorithm, associated to θ0, θ1, θ2 and
θ3.

Proof. See [7].

Remark 14. To check that Algorithm 1 generates the curve (104), subject to (105), it is enough to
look at the expressions for the curves obtained in each of the three steps, taking into consideration
the formula for geodesic arcs that join two given points in the orthogonal group.

In Step 1, the geodesic arc joining θi to θi+1 is given by p1(t, θi, θi+1) = etV1
i θi, where

eV1
i = θi+1θ−1

i .
In Step 2, we obtain p2(s, θ0, θ1, θ2) = esV2

0 (t)et V1
0 θ0, with eV2

0 (t)etV1
0 θ0 = etV1

1 θ1. However,
the last identity is equivalent to eV2

0 (t)etV1
0 θ0 = etV1

1 eV1
0 θ0, or to eV2

0 (t) = etV1
1 e(1−t)V1

0 .
Similarly, the second geodesic arc is p2(s, θ1, θ2, θ3) = esV2

1 (t)et V1
1 θ1, with

eV2
1 (t) = etV1

2 e(1−t)V1
1 .

In Step 3, p3(s, θ0, θ1, θ2, θ3) = esV3
0 (t)etV2

0 (t)etV1
0 θ0, with eV3

0 (t)etV2
0 (t)etV1

0 θ0

=etV2
1 (t)etV1

1 θ1.
Taking into consideration that θ1 = eV1

0 θ0 and eV2
0 (t) = etV1

1 e(1−t)V1
0 , it simplifies to eV3

0 (t) =

etV2
1 (t)e(1−t)V2

0 (t).

The relationship between the control points θ1 and θ2 and the initial and final velocities
of the curve (104) follows immediately from Theorem 2.5 in [7], which states that

ṗ3(0) = 3V1
0 θ0, ṗ3(1) = 3V1

2 θ3. (106)

Indeed, the cubic polynomial p3 that satisfies the boundary conditions

p3(0) = θ0, p3(1) = θ3, ṗ3(0) = W0θ0, ṗ3(1) = W3θ3, (107)

can be generated by the de Casteljau algorithm with controls points

θ1 = eW0/3θ0, θ2 = e−W3/3θ3. (108)

8.1.3. Comparing Cubic Polynomials in On with Cubic Polynomials in Graßmannians

We take advantage of the fact that Grrefl
n,k = I − 2Grproj

n,k lives in On to compare the
cubic polynomial in Proposition 2 with the orthogonal cubic polynomial in Proposition 3.

Theorem 4. Let β3(t) be the cubic polynomial in Grproj
n,k associated to the points Pi, i = 0, 1, 2, 3,

given in Proposition 2, and p3(t) the cubic polynomial in On associated to the points θi = I − 2Pi,
given in Proposition 3. Then,

p3(t) = I − 2β3(t). (109)
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Proof. First we show that when θi = I − 2Pi, we have V j
i = 2Ωj

i , where the V j
i are as

defined in Proposition 3 and the Ωj
i as defined in Proposition 2. Indeed,

θi+1 = eV1
i θi ⇐⇒ (I − 2Pi+1) (I − 2Pi) = eV1

i , (110)

and comparing with the first identity in (96) we conclude that V1
i = 2Ω1

i , i = 0, 1, 2.
Using these relationships and the second identity in (96), we can write

eV2
i (t) = etV1

i+1 e(1−t)V1
i = e2tΩ1

i+1 e2(1−t)Ω1
i = e2Ω2

i (t). (111)

So, V2
i = 2Ω2

i , for i = 0, 1. Similarly, using these relations and the second identity
in (96), with (i, j) = (0, 3), we conclude that V3

0 = 2Ω3
0. So, since

β3(t) = etΩ3
0(t)etΩ2

0(t)etΩ1
0 P0 e−tΩ1

0e−tΩ2
0(t)e−tΩ3

0(t) (112)

satisfies all the constraints in Proposition 2, also

p3(t) = e2tΩ3
0(t)e2tΩ2

0(t)e2tΩ1
0 θ0, (113)

satisfies all the constraints in Proposition 3.
Finally, we prove the relationship between β3(t) and p3(t), systematically using the

result in Lemma 1 and the constraints (97). Indeed,

I − 2β3(t) = etΩ3
0(t)
(

I − 2etΩ2
0(t)etΩ1

0 P0e−tΩ1
0e−tΩ2

0(t)
)

e−tΩ3
0(t)

= e2tΩ3
0(t) etΩ2

0(t)
(

I − 2etΩ1
0 P0e−tΩ1

0

)
e−tΩ2

0(t)

= e2tΩ3
0(t) e2tΩ2

0(t)
(

I − 2etΩ1
0 P0e−tΩ1

0

)
= e2tΩ3

0(t) e2tΩ2
0(t)e2tΩ1

0
(

I − 2P0
)
= e2tΩ3

0(t) e2tΩ2
0(t)e2tΩ1

0 θ0

= p3(t).

(114)

Remark 15. Since Grrefl
n,k is a submanifold of On, the last result tells us that if θi ∈ On ∩Grrefl

n,k
holds for all data points, the whole de Casteljau construction in On actually takes place inside Grrefl

n,k .
This observation is due to two important facts. First of all, the de Casteljau algorithm is solely
based on recursive geodesic interpolation. Secondly, Grrefl

n,k is a totally geodesic submanifold of On,
since any geodesic in Grrefl

n,k is a geodesic in On. Indeed, every geodesic in Grrefl
n,k that starts at a

point In − 2P, P ∈ Grproj
n,k , is of the form γ(t) = etΩ(I − 2P)e−tΩ, with Ω ∈ son satisfying

ΩP + PΩ = Ω. However, due to the second identity in Lemma 1, γ(t) = e2tΩ(I − 2P), which is
a geodesic in On.

9. Conclusions

In this work we have considered the so-called endpoint geodesic problem on Graß-
mannians. We presented explicit and closed fromulas for connecting two nonconjugate
points on the real Graßmannian by a unique minimizing geodesic. The approach goes
beyond earlier work as matrix exponentials and logarithms can be avoided. The special
cases of projective spaces and unit spheres were handled as well. These results were applied
to the important interpolation problem of implementing the de Casteljau algorithm on
Graßmannians via iterated geodesic interpolation.
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