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Mutations in the mitochondrial-DNA or mitochondria related nuclear-encoded-
DNA lead to various multisystemic disorders collectively termed mitochondrial
diseases. One in three cases of mitochondrial disease affects the heart muscle,
which is called mitochondrial cardiomyopathy (MCM) and is associated with
hypertrophic, dilated, and noncompact cardiomyopathy. The heart is an organ
with high energy demand, and mitochondria occupy 30%–40% of its
cardiomyocyte-cell volume. Mitochondrial dysfunction leads to energy
depletion and has detrimental effects on cardiac performance. However,
disease development and progression in the context of mitochondrial and
nuclear DNA mutations, remains incompletely understood. The system of
induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) is an
excellent platform to study MCM since the unique genetic identity to their
donors enables a robust recapitulation of the predicted phenotypes in a dish
on a patient-specific level. Here, we focus on recent insights into MCM studied by
patient-specific iPSC-CM and further discuss research gaps and advances in
metabolic maturation of iPSC-CM, which is crucial for the study of
mitochondrial dysfunction and to develop novel therapeutic strategies.
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1 Introduction

Mitochondria are double-membraned organelles with various crucial functions in the
eukaryotic cell. Most notably, they generate and supply cellular energy via oxidative
phosphorylation. Mitochondrial dysfunction can arise as a primary cause due to a genetic
mutation or as a secondary consequence ofan existing disease or other influences (environmental,
toxins, etc.) (Pavez-Giani and Cyganek, 2021). The mitochondrial genome (mtDNA) codes for
37 genes important for oxidative phosphorylation. The outstanding proteins and enzymes needed
for mitochondrial respiration and homeostasis are encoded by the nuclear DNA. In contrast to
the linear nuclear DNA, which has a defined copy in every nucleus of a cell, the circular mtDNA
can be present as various copy numbers within mitochondria (Wallace and Chalkia, 2013). Since
the heart is an organ with high energy demand and hence high mitochondria content,
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mitochondrial aberrations affect the heart severely in its function. One
in every three multisystemic mitochondrial syndromes shows an effect
on the heart (Mazzaccara et al., 2021). Mitochondrial cardiomyopathy
(MCM), a collective term that describes a disease of the heart muscle
that is primarily driven by a defect in mitochondrial function,
increasingly becoming the focus of research studies. Prominent
examples of genetically caused MCM include the Barth syndrome,
caused by a mutation in the TAFAZZIN (TAZ) gene (Dudek and
Maack, 2017), Friedreich’s ataxia, caused by a mutation in the
FRATAXIN(FXN) gene (Punga and Buhler, 2010) and propionic
acidemia, caused by a mutation in the enzyme propionyl-CoA
carboxylase (Wongkittichote et al., 2017).

Human induced pluripotent stem cells (iPSC) provide a unique
platform for investigating various cardiac diseases in vitro (Itzhaki
et al., 2011; Streckfuss-Bomeke et al., 2017). Somatic donor or
patient cells can be reprogrammed into iPSC (Takahashi et al.,
2007). Due to their pluripotent nature, iPSCs can be differentiated
into various cardiovascular cell types, including ventricular or atrial
iPSC-cardiomyocytes (iPSC-CM), which are one of the important
cell types for the analysis of MCM (Burridge et al., 2014; Cyganek
et al., 2018). In addition, other cardiac-relevant non-CM can be
produced such as endothelial cells, cardiac fibroblasts or
macrophages (Lyadova et al., 2021; Thomas et al., 2021). This
stem cell platform allows for broad applications in clinical drug
toxicity testing, regenerative medicine (Tiburcy et al., 2017), and the
recapitulation of the predicted phenotypes in a dish on a patient-
specific level (Prondzynski et al., 2022).

In the present review, we explore and discuss the advantages and
limitations of iPSC-CM to model and study MCM and summarize
the current knowledge derived from iPSC studies.

2 Producing cardiomyoctes from
induced pluripotent stem cells (iPSC)

The general approach to produce ventricular-iPSC-CM is to
sequentially manipulate the canonical Wnt pathway. Like the
physiological cardiogenesis, an initial activation of Wnt drives the
iPSC into a mesodermal commitment and the subsequent inhibition
of Wnt guides the cells into the cardiac progenitor fate (Klaus et al.,
2007). While all differentiation protocols follow this approach, different
strategies for substances (growth factors versus small molecules),
incubation times and concentrations, and 2D versus 3D exist. In
general, the differentiation approaches can be divided into two: 1)
The growth factor approach, using physiological growth factors like
Activin-A, BMP4 and bFGF (Kattman et al., 2011). 2) The small
molecule approach using artificial small molecules to induce
(CHIR99021) and inhibit the canonical Wnt pathway (IWP) (Lian
et al., 2013). Typically, Wnt is activated for 1–3 days, followed by a
1–3 days Wnt inhibition phase. In general, both strategies yield
functional beating iPSC-CM of comparable quality, which is
extensively reviewed elsewhere (Lyra-Leite et al., 2022). Recent
advances in this field comprise approaches to mix growth factors
with small molecules or refine the substance cocktail to get more
specific cardiac progenitor cells (Zawada et al., 2023). Here, retinoic
acid plays a key role to produce specific cardiac progenitor cells that give
rise to different cardiac cells like left ventricular cells, right ventricular
cells, atrial cells or cells of the outflow tract (Cyganek et al., 2018; Zawada

et al., 2023). Although differentiation protocols are becoming more
optimized, iPSC-CM still need to be purified. This is achieved either by a
metabolic selection step, as CM can survive with lactate as a carbon
source while other cell types are starved (Tohyama et al., 2013), or the
cells are fluorescently or magnetically sorted using a cardiac specific
marker (Dubois et al., 2011). The strengths and limitations of these in
vitro-derived iPSC-CMare discussed in the next two chapters Section 2.1
and Section 2.2.

2.1 Strengths of iPSC-CM technology

The iPSC-platformholdsmany advantages to studymitochondrial
structure and function in a disease context and circumvents some
existing limitations of current traditionalmodels. First advantage of the
iPSC technology is the unlimited source of human cardiac cell types,
which can be maintained in cell culture over months for broad
applications in clinical drug efficacy and toxicity testing, or
regenerative medicine (Tiburcy et al., 2017). Second, patient-specific
iPSC can be obtained from any patient and allow the investigation of a
mitochondrial phenotype even if the underlying genetic cause is still
unclear. Therefore, the genetic identity to their donors is maintained
encompassing both nuclear and mtDNA background and enables a
robust recapitulation of the predicted phenotypes in a dish on a
patient-specific level (Prondzynski et al., 2022). Advances in gene
editing methods such as CRISPR/Cas9 and TALENs allow to
purposefully manipulate iPSC to generate isogenic rescue iPSC
from a patient line or introduce a mutation into a control line
(Gahwiler et al., 2021). This is a crucial advantage if, e.g., a
mutation is known but no willing donor is available. Directed
differentiation protocols allow to generate a multitude of different
cell types. In cardiac research, ventricular, atrial, and nodal
cardiomyocytes (CM) as well as other cardiac relevant non-
myocytes (endothelial cells, cardiac fibroblasts, smooth muscle cells)
can be produced and provide a valid human cell system (Cyganek et al.,
2018; Giacomelli et al., 2020; Lyra-Leite et al., 2022). Because this is a
human cell platform, interspecies differences derived from animal
models can be circumvented. Animal models do not fully recapitulate
the human cardiac physiology and especially in the context of
mtDNA-mutation-based mitochondrial cardiomyopathy (MCM)
available mouse models are sparse (Kauppila et al., 2016). A
particular advantage of the iPSC model is seen in the study of
mitochondrial diseases arising from mutations in mtDNA. In the
case of a heterozygous mtDNA mutation one cell possess copy
numbers of both wildtype and mutated mtDNA in various ratios
(heteroplasmy). This heteroplasmy is one of the main reasons for
different disease outcomes and manifestations. It has been shown that
reprogramming of somatic cells into iPSC randomly produces iPSC
lines with different copy ratios of healthy to mutated mtDNA content
(Klein Gunnewiek et al., 2020). This allows the direct influence of
heteroplasmy on disease manifestation to be studied and correlated.

2.2 Limitations of iPSC-CM technology in
the analysis of metabolic dysfunction

Although considerable progress in CM derivation has been
made, in vitro derived iPSC-CM resemble an immature, neonatal
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status of cardiac cells and show differences in cellular and functional
parameters compared to isolated adult primary CM. This problem is
well-known and maturation strategies for iPSC-CM have been
addressed on multiple levels, with the most common approach
being long-term culture, the addition of molecular modulators or
substrates, electrical or mechanical stimulation, more dimensional
heart organoids or a combination of different approaches (Liaw and
Zimmermann, 2016; Tiburcy et al., 2017; Ronaldson-Bouchard et al.,
2018; Ahmed et al., 2020; Emanuelli et al., 2022). The maturation
parameters used were adopted from the knowledge of human
cardiogenesis. This includes cell size and shape, expression of
cardiac specific markers such as α-actinin or cardiac troponin,
electrophysiological properties and resting membrane potential,
sarcomeric organization and length and force generation
(Thomas et al., 2022). Many studies have focused on these
parameters to verify whether a particular maturation protocol is
effective. However, metabolic maturation was often neglected in
previous studies and is now increasingly becoming the focus of
investigation, especially in the context of mitochondrial diseases.
The parameters of mitochondrial maturation are much more
difficult to define clearly because of the lack of detailed
knowledge of human adult CM. For example, it is widely
accepted that a mature cardiomyocyte has a rod-like shape, a
very regular sarcomeric pattern, a cell type specific action
potential, and a resting membrane potential of −90 mV (Yang
et al., 2014; Denning et al., 2016). In contrast, the mitochondrial
membrane potential ΔΨm is difficult to determine in absolute terms,

is often derived from animal models, and differs when cells or
isolated mitochondria are measured (Ramzan et al., 2010). The value
of ΔΨm is considered to be ~150 mV, although comprehensive data
on ΔΨm during human heart development are lacking (Davidson
et al., 2007). In most cases, the ΔΨm is measured in relative values
compared to a control condition, and an increase in ΔΨm is usually
interpreted as good/healthy/mature.

It is defined that the adult heart relies mainly on fatty acid
oxidation (FAO) to produce ATP. However, it is difficult to define
what ratio of glycolysis to FAO is an appropriate value for a fully
mature and adult CM. Moreover, human data showing the complete
transition from a postnatal to a fully adult metabolic profile are
lacking. Nevertheless, it is now generally accepted that a decrease in
glycolysis and an increase in FAO with a concomitant increase in
ATP production is a reliable indication of metabolic and thus
mitochondrial maturation. Other parameters used to study
mitochondrial development include mitochondrial size, shape,
content, cristae formation, and network architecture. In an adult
CM, the mitochondrial network is aligned with the sarcomere for
efficient ATP supply and represents a rather rigid and undynamic
structure in the adult heart (Li et al., 2020). A CM dedicates ~30% of
its cell volume to mitochondria, with ~7000mitochondria present in
a ventricular CM (Dedkova and Blatter, 2012). In addition to the
main function of ATP generation, mitochondria are also important
players in ROS production and have a physiological calcium
homeostasis. In a previous study, increased ROS levels along with
an increase in ΔΨm were interpreted as indicative of increased

FIGURE 1
Modeling of metabolic/mitochondrial cardiomyopathies (MCM) using human iPSC- cardiomyocytes (iPSC-CM) discussed in this review. MCM can
be modeled in vitro by reprogramming somatic cells of MCM patients to iPSC and subsequent differentiation into iPSC-CM. IPSC harbour the genetic
information of the patients and the disease. Cardiac dysfunctions studied via iPSC-CM include: I) Syndromes with cardiomyopathies caused bymutations
in nuclear-encodedmitochondria-relevant genes: The Barth syndrome [mutation in TAFFAZIN (TAZ)] causes failed maturation of the mitochondrial
cardiolipin. Friedreich’s ataxia [mutation in the FRATAXIN (FXN)] iPSC-CMdemonstrate an impaired production of functional Fe-S clusters essential for the
mitochondrial respiratory chain complexes I, II, III. Propionic acidemia [mutation in PROPIONYL-CoA CARBOXYLASE SUBUNIT alpha/beta (PCCA/PCCB)]
results in decreased production of succinyl-CoA, an important intermediate of the mitochondrial tricarboxylic acid cycle (TCA). II) Cardiomyopathies
caused by mutations of the circular mitochondrial DNA. Mutations in the Mt-RNR2 gene coding for mitochondrial ribosomal 16s-RNA result in
hypertrophic cardiomyopathy (HCM). III) Syndromes with cardiomyopathies that originate from lysosomal storage defects. The Fabry syndrome
[mutation in alpha-GALACTOSIDASE A (GLA)] manifests in increased glycolipid accumulation, whereas the Pompe syndrome [mutation in alpha-
GLUCOSIDASE (GAA)] concludes in over-accumulation of glycogene.
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mitochondrial content and function (Kim et al., 2022). Although
CM have numerous mitochondria, they have relatively low ROS
levels in a healthy physiological state (Garbern and Lee, 2021). This
underscores the difficulty of interpreting these parameters in a
developmental context.

2.3 Strategies for mitochondrial maturation
of iPSC-CM

In recent years, attention to metabolic and mitochondrial
maturation for iPSC-CM approaches has increased. This is due
to the fact that MCM have become a major focus in cardiovascular
medicine. In addition, it has been proposed that mitochondrial
maturation also drives overall cardiac maturation, as incubation
with a fatty acid (FA)-containing “maturation” media could also
improve sarcomere structure and force development (Horikoshi
et al., 2019; Yang et al., 2019). Some studies have emphasized the
importance of the maturation status of iPSC-CM, because cardiac
functional deficits are associated to a certain maturation status of
these cells. Feyen and colleagues elegantly showed that the well-
known contractility defect of RBM20 mutation-based DCM was
only clearly observed when RBM20-iPSC-CMwere treated with FA-
based maturation medium (Feyen et al., 2020). In contrast, Cui and
colleagues described the effects of Doxorubicin (Dox) on 30 days vs.
60 days old iPSC-CM and demonstrated that immature CM of
30 days are more sensitive to DOX as a result of a higher
concentration of topoisomerase IIα, which leads to more DNA
damage compared to 60 days old iPSC-CM (Cui et al., 2019).

Reports focusing on the enhancement and study of
mitochondrial maturation are summarized in Supplementary
Table S1A. In 2013, a detailed study showed that prolonged
culture time significantly promoted the structural and sarcomeric
maturation of CM (Kamakura et al., 2013). Further studies have
recently reported that prolonged culture time also matures the
metabolic profile in iPSC-CM. A culture time up to 100 days
increased the ΔΨm and the mitochondrial content (Dai et al.,
2017). Emanuelli and colleagues compared in detail the metabolic
profile between 6- and 12-week-old iPSC-CM and described that
although glycolysis is still the main source of energy, glycolysis is
coupled to OXPHOS and not to lactate production. In addition, they
also observed an increase in ΔΨm and in mitochondrial network
branching and length (Emanuelli et al., 2022). Another promising
approach for iPSC-CM maturation was the addition of FA to the
culture medium to mimic the physiological environment for the
iPSC-CM. It quickly became apparent that FA alone did not trigger
maturation processes and that additional stimuli were necessary
(Funakoshi et al., 2021). Addition of a FA combination of palmitic
acid, oleic acid and linoleic acid together with carnitine
supplementation results in an overall iPSC-CM maturation with
rod shaped CMwith a regular sarcomere pattern and increased force
development. However, the only metabolic measurement in this
study describes that maximal respiratory capacity is increased (Yang
et al., 2019). A much more detailed metabolic study by Funakoshi
and colleagues identified the mixture of PA, PPARα agonist,
dexamethasone and T3 hormone into an effective PPDT-cocktail
to induce FAO. Interestingly, they demonstrated that only a
transient induction with PPDT over 9 days activated mature

FAO of exogenous FA, whereas continuous 2-week PPDT
treatment induced FAO of endogenous FA and accumulation of
lipid droplets, which is more consistent with a neonatal phenotype.
This transient treatment with PPDT also resulted in larger
mitochondria with more cristae structures. Moreover, this
protocol can also be applied to atrial iPSC-CM (Funakoshi et al.,
2021). Another study from the Dubois group reported a similar
approach but concluded that a longer incubation of 4 weeks with a
mixture of PA, OA and LA together with a PPARδ agonist is an
applicable strategy to increase FAO, maximal and spare respiration
capacity, filamentous network, mitochondrial content,
mitochondrial surface area and cristae structures
(Wickramasinghe et al., 2022). Other studies reported that
molecular modulators of HIF1α or AMPK activity or even the
plant-based tomatidine can induce metabolic maturation (Hu
et al., 2018; Ye et al., 2021; Kim et al., 2022).

It remains a challenge to apply the correct maturation strategy
for disease modelling with iPSC-CM and so far, no maturation
protocol was able to fully mature a sarcomere-like mitochondrial
network structure (Li et al., 2020). The study of mitochondrial
disease necessitates a certain degree of metabolic maturation to
functionally study a mitochondrial disease phenotype. To date we
still lack studies that combine and directly compare multiple
(metabolic) maturation protocols, e.g., electrical stimulation with
fatty acid supplemented medium and long-term culture.

3 Insights into mitochondrial
cardiomyopathies using iPSC-CM

Over the past years, several studies on MCM using iPSC-CM
have been conducted. As mentioned previously MCM is not an
isolated cardiomyopathy, but often a cardiomyopathy that
accompanies a syndromic mitochondrial disease. Prominent
examples include the Barth syndrome (BTHS) and Friedreich’s
ataxia syndrome (FRDA). An overall list of mtDNA and
nucDNA genes contributing to mitochondrial function and
corresponding mutations in a disease context have been
extensively reported elsewhere (El-Hattab and Scaglia, 2016;
Barca et al., 2020; Pavez-Giani and Cyganek, 2021; Caudal et al.,
2022). Since these syndromes are based on nuclear or mitochondrial
gene mutations with a prominent cardiac phenotype, the iPSC-CM
platform provides an excellent tool to study the underlying disease
drivers. Here, we focus on primary MCM that have been modelled
and studied using iPSC-CM. A comprehensive summary on the
studies discussed in this review is provided in Figure 1 and
Supplementary Table S1B.

The BTHS is an inherited disease that weakens muscle tissue
resulting in skeletal myopathy and cardiomyopathy. In detail, the
transacylase TAZ is important in maturation of the distinctive
phospholipid cardiolipin that is enriched in the mitochondrial
inner membrane (IMM). Cardiolipin is an essential component
within the IMM, where it binds and interacts with numerous
proteins, e.g., from the respiratory chain (Dudek and Maack,
2017). In a first patient specific BTHS study, iPSC from three
patients with different mutations in TAZ were generated. The
authors demonstrated an impaired remodeling of cardiolipin, a
dramatic decrease in basal oxygen consumption rate as well as
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the maximal respiratory capacity in BTHS-iPSC. Decreased
respiration coincided with respiratory chain supercomplex
remodeling leading to generation of reactive oxygen species
(Dudek et al., 2013). In follow up studies, the same group
confirmed the remodeling of the respiratory chain and the
deficiency in succinate dehydrogenase in cardiomyocytes derived
from BTHS patient’ iPSCs (Dudek et al., 2016). Furthermore, they
used the same TAZ-deficient iPSC-CM to confirm the reduced
protein expression of the pore-forming mitochondrial Ca2+

uniporter (MCU) subunit (Bertero et al., 2021). Wang et al.
reported in 2014 that BTHS-iPSC-CM harboring two distinct
mutations in TAZ (c.517delG and c.328T>C) replicated the
immature cardiolipin processing followed by cellular energy
depletion due to a dysfunctional ATP-synthase. Consequently,
the BTHS-iPSC-CM exhibit characteristics of cardiomyopathy
phenotype with disarrayed sarcomeric structure and weakened
force generation (Wang et al., 2014). Importantly they showed
that these pathologies are reversed when wt-TAZ-mRNA is
introduced, and the pathologies are provoked if a TAZ mutation
is introduced into a wt-iPSC line. This proved conclusively that the
TAZ mutation is the sole and genetic background-independent
driver for BTHS (Wang et al., 2014). In a following study by the
same group, they linked the increased diastolic calcium and
decreased calcium transient peaks to a ROS-induced
hyperactivation of CAMKIIδ resulting in RYR2-Ca2+ leakage (Liu
et al., 2021). Another study used TAZ-iPSC-CM harboring the same
mutation (c.517delG) to uncover the influence on cardiac
metabolism. In contrast to the control group, the BTHS-iPSC-
CM shifted their carbon source preference to glycolysis and
lactate production and reduced their uptake of FA (Fatica et al.,
2019). As aberrant energy metabolism is a prominent feature in
heart diseases this underscores how mitochondrial dysfunction can
be an underlying driver for the development of a cardiomyopathy
exemplified bythe Barth syndrome.

The Friedreich’s Ataxia (FRDA) syndrome is a
neurodegenerative disorder and in the majority of cases is
accompanied by hypertrophic cardiomyopathy (HCM), which is
the predominant cause of death in these patients (Jensen and
Bundgaard, 2012). The underlying genetic driver is a gene
mutation in the FXN which aberrantly includes various GAA
repeats within the first intron. FXN is a nuclear encoded gene
that is crucial for mitochondrial synthesis of its Fe-S clusters in the
OXPHOS. The aberrant GAA repeats do not produce a
dysfunctional FXN, but rather reduce FXN drastically by
inducing heterochromatin at the FXN locus and thus decreasing
FXN mRNA levels (Punga and Buhler, 2010). The first FRDA-
iPSC-CM disease model was published in 2013 showing
ultrastructural mitochondrial defects, but no iron accumulation
or sarcomeric disarray as demonstrated previously in patient’s
autopsies (Hick et al., 2013). In 2014, Lee et al. presented their
insights into FRDA by using iPSC-CM generated from a 35-year-
old female with FRDA. They investigated physiological parameters
of FRDA-iPSC-CM versus wt-iPSC-CM (healthy donor) and
observed that FRDA-iPSC-CM show the characteristic decrease
in FXN accompanied by an irregular sarcomeric pattern and
mitochondria distribution. Interestingly, other molecular
pathologies were only observed when the iPSC-CM were
triggered with iron stress (Lee et al., 2014). Iron stress in

FRDA-iPSC-CM led to iron overload, ROS increase, decrease of
the iron-buffer protein ferritin, decrease in ATP production and
calcium handling aberrations such as slowed kinetics, elevated
diastolic calcium and diminished SR-calcium load (Lee et al.,
2014). A later study using FRDA-iPSC-CM as a platform for
disease modelling and drug screening reported that FRDA-
iPSC-CM similarly show elevated ROS levels, intracellular iron
accumulation, disorganized mitochondrial network structures,
and aberrant calcium kinetics. As FRDA is suggested to be an
iron overload cardiomyopathy, they used their CM system to
demonstrate that the iron chelator derferiprone (DFP) is a
feasible treatment option for FRDA patients as it alleviates the
ROS burden and improves calcium handling kinetics (Lee et al.,
2016). In regard to the genetic predisposition in FRDA a later study
elegantly showed that if the GAA repeats are genetically removed
from an FRDA-iPSC line, the FXN levels are elevated and the
HCM-specific transcriptomic signature is abolished (Li et al., 2015;
Li et al., 2019).

Besides oxidative phosphorylation, the most important
metabolic processes in mitochondria are β-oxidation of fatty
acids and catabolism of amino acids. Defects in the catabolism
of amino acids causes propionic acidemia (PA) due to mutations in
the enzyme for mitochondrial propionyl-CoA carboxylase (PCC).
Defects in this key enzyme impede the production of the Krebs
cycle intermediate Succinyl-CoA (Wongkittichote et al., 2017).
The PCC consists of alpha and beta subunits, which are encoded by
the PCCA and PCCB gene, respectively. Over 60 mutations for each
PCCA or PCCB have been reported to date that are predominantly
missense mutations or nucleotide deletions (Kraus et al., 2012).
Consequently, a cardiomyopathy develops with acquired long-QT
syndrome - the major cause of mortality in these patients (Grunert
et al., 2013). Patient-specific PA-iPSC-CM recapitulated the
biochemical hallmark of increased propionyl-carnitine levels
and showed reduced basal and maximal respiratory capacity,
accumulated lipid droplets, and increased ribosomal biogenesis.
Interestingly, another striking observation was the change in
multiple cardiac-enriched miRNAs (Alonso-Barroso et al., 2021).

Similar to these nuclear-encoded gene mutations causing MCM,
one study also employed iPSC-CM to investigate HCM, which is
caused by a mitochondrial gene mutation. MT-RNR2 encodes the
mitochondrial 16s-rRNA and the homoplasmic point mutation
m.2336T>C is associated with a hereditary form of HCM. IPSC-
CM derived from these patients could elucidate that the stability of
16s-rRNA is decreased concomitant with a reduction of
mitochondrial proteins as the 16s-rRNA is crucial in formation
of a functional ribosome in the mitochondria Consequently, the
iPSC-CM exhibited decreased ΔΨm and ATP production and
further manifested with disturbed calcium homeostasis and
electrophysiological properties (Li et al., 2018).

It should be noted that iPSC-CM can also be employed to study
mitochondrial dysfunctions as a secondary consequence to a
primary cause. For example, in the context of diabetic
cardiomyopathy (Graneli et al., 2019) or mitochondrial
dysfunction due to cardiotoxic substances (Haupt et al., 2022).

Furthermore, in addition to mitochondria-related metabolic
diseases, other metabolic diseases can also be investigated. These
include metabolic cardiomyopathies caused by lysosomal (storage)
defects, such as Fabry disease. A GALACTOSIDASE-A (GLA)
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mutation leads to accumulation of a ceramide (GL-3) due to
defective degradation of shingolipids in the lysosome. This
lysosomal storage disorder affects multiple organs with the
heart affected in 60% of cases, leading to left ventricular
hypertrophy. A Fabry disease-specific iPSC-CM model showed
physiological GL-3 accumulation. Such Fabry-iPSC-CM have been
used to gain mechanistic insights by analyzing the proteome and
secretome or for drug screening (Kuramoto et al., 2018; Birket
et al., 2019). Pompe disease is another lysosomal storage defect in
which mutations in the α-GLUCOSIDASE (GAA) gene cause
increased accumulation of glycogen. Pompe iPSC-CM have
been reported to recapitulate the disease phenotypes of GAA
inactivity and glycogen overaccumulation in lysosomes (Raval
et al., 2015).

These examples highlight iPSC-CM as a powerful platform to
study MCM and a wide array of other metabolic pathologies in a
human functional cell model.

4 Conclusion

This article reviews the current knowledge on MCM gained
by iPSC-CM studies and further discuss research gaps and
advances in metabolic maturation of iPSC-CM for the
development of novel therapeutic strategies Mitochondrial
diseases often cause multi-organ affected syndromes with a
prevalent involvement of the heart. The iPSC technology
provides the unique opportunity to model and study MCM in
a human patient-specific system that can be adapted to a wide-
array of research questions. Previous publications have focused
specifically on iPSC-CM autonomous processes, but as our
knowledge on mitochondrial diseases and on heart physiology
advances, the stem cell model can be adapted accordingly, e.g., by
investigating the crosstalk of other relevant cardiovascular cell
types and integration into 3D-engineered tissue systems. We
envision that the incorporation of multicellular models will
reveal previously unexplored aspects of genetic MCM.
However, producing somatic cells like iPSC-CM needs
validation of functionality and physiology of CM. Considering
that no fully adult iPSC-CM have been generated to date,
research must also advance the cardiac maturation process.
Current approaches show promising results, especially
regarding metabolic maturation with different strategies to
foster FAO and mature the mitochondria and sarcomeres
structurally. Nevertheless, iPSC-CM already represent a
promising human system for modeling MCM as demonstrated
here by recapitulating the disease phenotype in Barth syndrome,
Friedreich’s ataxia and propionic acidemia. These studies
demonstrate the potential of patient-derived iPSC-based MCM
drug screening platforms for personalized medicine. We believe
that the iPSC-technology will be a major step towards precision
medicine based on population screening for drug responsiveness

in high throughput functional pipelines and small molecule
libraries targeting key cardiac pathways.

In summary, the quest for the perfect maturation strategy to
achieve full adult iPSC-CM is ongoing and it would be of great value
if a uniform and easy to use maturation protocol could be
established and widely adopted in modelling of metabolic
diseases. That would allow directly comparing studies from
different labs around the world. As MCM gather an increased
interest in the cardiac field, the iPSC-technology along with
improved maturation approaches, as well as robust protocols to
generate specialized cells and complex tissues will undoubtedly
boost our understanding of MCM disease mechanisms and
therapeutic options in the future.
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