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CHAPTER I  
INTRODUCTION 

 
 
I.1. Background of research 
 

The development of life style, drugs and cosmetics initiated by the 

increasing desire to live healthy and to appear more attractive, influences the 

cosmetics industry. In about 20 years, cosmetic industries have been developing 

rapidly. Innumerable chemical substances both synthetic materials and biological 

materials were found and every year new products appear. Most materials used 

for cosmetics are derived from scientific researches. However, several cosmetic 

materials are based on the experience of ancestors, or in other words, they are 

known as traditional cosmetics. In Indonesia, the bengkoang roots are one of 

these traditional cosmetics.  

The Bengkoang is a species of a Pachyrizus and grows naturally in many 

tropical and subtropical countries in America. It is usually eaten raw, sometimes 

with salt, lemon juice and powdered chili. In Indonesia, bengkoang roots have 

also been traditionally used as a cosmetics material for centuries based on 

ancestor’s experience. They are used as sun screening and skin whitening 

materials. However, the active compounds in bengkoang roots which have skin 

whitening and sun screening activity have not been discovered yet.  

The sun screen preparation has been developed rapidly since it was found 

that the ultraviolet ray causes several damages on skin; for examples, sunburn, 

cancer, abnormally pigmented skin, wrinkling and coarsening of the skin surface. 

To avoid effects of ultraviolet, it is important to use sun screen preparations. 

These preparations contain compounds which have the activity to prevent 

ultraviolet rays penetrating the skin. There are three kinds of sunscreen 

compounds grouped according to their mechanism, i.e.: ultraviolet absorbent, 

ultraviolet reflector and tanning compounds. Tanning compounds are compounds 

that, together with the keratin of corneal layer, forms brown complex. 

 Additionally, whitening preparations are needed to minimize abnormally 

pigmented skin. They prevent new melanin synthesis by inhibiting the oxidative 

polymerase enzyme. As it is known, melanin is a brown skin pigment. The 

bengkoang root extracts may contain a substance which has the activity to inhibit 

oxidative polymerization, so that it can reduce the melanin production. 
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According to the above explanation, bengkoang roots possibly contain 

many substances which have the activity to absorb and to reflect ultraviolet rays, 

to form a brown complex with keratin and to inhibit melanin synthesis. Thus, 

bengkoang roots can be used for raw materials in both sunscreen and skin 

whitening preparations. To prove the hypothesis, the study on “The exploration 

of whitening and sun screening compounds in bengkoang roots (Pachyrhizus sp)” 

was initiated. 

 
I.2.  Literature review 
 
I.2.1.  Bengkoang (Pachyrhizus sp) 
  

This is the botanical classification of the bengkoang. 

Kingdom : Plantae 
Division : Magnoliophyta 
Class : Magnoliopsida 
Order : Fabales 
Family : Fabaceae 
Subfamily : Faboideae 
Genus : Pachyrhizus 
Species : P. erosus 
Binomial name : Pachyrhizus erosus (L) Urb 
 

Bengkoang plant grows as a vine that can reach a height of 4-5 m when it is 

given suitable support. Its root can attain the length of 2 m and can weigh up to 

2 kg. It is a component in the Indonesian traditional salad called “rujak”. It is 

eaten raw, sometimes with lemon juice and powdered chilli. In contrast with the 

edible root, the remaining part of the bengkoang plant is very poisonous, for 

example the seed contains rotenone, which is very toxic and is used to poison 

insects and fishs. Bengkoang consists of 86-90 % water. It contains only trace 

amounts of protein and lipids. Its sweet flavour comes from the oligofructose 

inulin. It is suitable for diabetics and people on diet program. There are other 

compounds in bengkoang, such as adenine, choline, saponine and flavonoids 

(Anonim 2006). Flavonoids and saponins serve as natural “sunscreen” in 

preventing damage caused by free-radical excitement as the result of absorption 

of ultra-violet rays (UV) (Sandler 2005). Therefore, it is possible that the 

bengkoang roots can be used as a sun screening materials, especially as UV 

absorbance materials. Besides, there are also many phenolic compounds in 
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bengkoang. According to Wang et al. (2005), phenolic compounds may be used 

as depigmenting agents because they have a similar chemical structure to 

tyrosine, the substrate of the tyrosinase. Tyrosinase enzyme is an important 

enzyme that plays a major role in melanin synthesis. Melanin is well known as a 

dark pigment in human and animals. 

 

I.2.2. Secondary metabolites: fatty acid, flavonoid and phytosterol 
 

All organisms need to transform and interconvert a vast number of 

organic compounds to enable them to live, grow and reproduce through 

integrated chemical reactions or metabolism processes. There are two important 

metabolism processes, namely primary metabolism and secondary metabolism. 

The primary metabolism is a process to synthesize, degrade or modify all 

important molecules, such as carbohydrates, proteins, fats and nucleic acids. 

These compounds are found in all organisms with the same structure or with 

minor variations (Dewick 2002). 

 In contrast to the primary metabolism, the second metabolism is specific 

for organisms, or groups of organisms, and is an expression of the individuality 

of species. Some of secondary metabolites produced for easily appreciated 

reasons, e.g. as toxic materials providing defence against predators, as volatile 

attractants towards the same or other species, or as colouring agents to attract 

or warn other species (Dewick 2002). 

 The building blocks for secondary metabolites are derived from primary 

metabolism as indicated in Fig. I.2.2.1. By far the most important building blocks 

employed in the biosynthesis of secondary metabolites are derived from the 

intermediates acetyl coenzyme A, shikimic acid, mevalonic acid, and 1-

deoxyxylulose 5-phosphate. These are utilized respectively in the acetate, 

shikimate, mevalonate and deoxyxylulose phosphate pathways. Important 

secondary metabolites formed from the acetate pathway include phenols, 

prostaglandins, and macrolide antibiotics, together with various fatty acids and 

derivatives at the primary/secondary metabolism interface. The shikimate 

pathway leads to a variety of phenols, cinnamic acid derivatives, lignans and 

alkaloids. The mevalonate and deoxyxylulose phosphate pathways are together 

responsible for the biosynthesis of a vast array of terpenoid and steroid 

metabolites (Dewick 2002). 
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Fig. I.2.2.1. The secondary metabolite biosynthesis (Dewick 2002; Wing 1999) 
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Fatty Acids 

 The processes of fatty acid biosynthesis are well studied and displayed in 

Figure I.2.2.2. Naturally fatty acids may contain 4 to 30, or even more carbon 

atoms, the most abundant being those with 16 or 18 carbons. Fatty acids 

containing an odd number of carbon atoms are rare. From the Figure I.2.2.2 can 

be seen that the combination of one acetate starter unit with seven malonates 

gives the C16 fatty acid, palmitic acid, and with eight malonates the C18 fatty 

acid, stearic acid (Dewick 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.2.2.2. The saturated fatty acid biosynthesis pathway (Dewick 2002) 

 

 Fatty acids are mainly found as glycerol esters called triglycerides. These 

materials are called fats or oils, depending on whether they are solid or liquid at 

room temperature. Most natural fats and oils are composed of mixed 

triglycerides. Each triglyceride species may contain up to three distinct fatty acid 

substituents, which can vary in chain length, degree of unsaturation and position 

of double bonds. Triglycerides play a major role in energy storage in animals. 

(Hvattum 2001). 

 In human body, triglycerides are stored in the adipocyte cell and will be 

released again as free fatty acids when needed by the body. Mobilization of 

E2 elimination 
of H2O 

COOH

CH2CO -SCoA  

COOH

CH2CO -SCoA -ACP  

CH3CO-SCoA Acyl carrier 
protein (ACP) 

Malonyl-ACP 

Acetyl-CoA 

RCH2CO-S-ACP 

RCH2COCH2CO-S-ACP 

RCH2CH2CH2CO-S-ACP 

C

OHH

H2C
RH2C C S ACP

O

 Each turn of the cycle 
extends the chain 
length of the acyl 
group by two carbons 

Acyl-enzyme thioester 
Claisen reaction 

NADPH 

Stereospecific 
reduction of 

carbonyl 

Reduction of 
double bond 

NADPH 

RH2C S

O

ACP

E
Fatty acyl-ACP 

ß-hydroxy acyl-ACP 

α,ß-unsaturated acyl-ACP 

RCH2CH2CH2CO-SCoA RCH2CH2CH2CO2H 

Fatty acyl-CoA Fatty acid 

H2O HSCoA 

ß-keto acyl-ACP 

-H2O 



Chapter I. Introduction 

6 
 

stored lipid is controlled by the action of hormone sensitive lipase, which 

catalyzes the sequential hydrolysis of triglyceride to diglyceride and 

monoglyceride. Monoglyceride is hydrolyzed by a specific monoglyceride lipase 

(Soma et al. 1992). 

The triglyceride biosynthesis can be found in the Fig I.2.2.3 (Dewick 

2002). The glyceride compounds are metabolized much less than the fatty acids 

(fats or oils) due to the polyol chain between the glycerol backbone and the fatty 

acids, which prevents lipase cleavage (Thayer 1992). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.2.2.3. The triglyceride biosynthesis pathway (Dewick 2002) 
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fluidity of its storage fats and membranes (Dewick 2002). Oxidation occurs 

readily in unsaturated fatty acids, because hydrogen abstraction from a carbon 

atom adjacent to a double bond is favored due to the formation of a stable allylic 

radical (Frankel et al. 1984; Kanner et al. 1987; Kubow 1992; Mahungu et al. 

1999). The initial compounds produced by oxidation are hydroperoxides and 

cyclic hydroperoxides (Neff and Byrdwell 1998). The hydroperoxide 

decomposition products may have negative health implications regarding cancer, 

heart disease, and aging (Neff and Byrdwell 1998). 

 Fatty acids have many pharmacology effects, such as antioxidative 

activity, transcription inhibition of sterol regulatory element binding protein-1C 

(Qu et al. 2001), carry fat soluble vitamins, supply linoleic acid and essential fatty 

acids (Mahungu et al. 1999). Trilinolein has been reported by Liu et al. (2004) 

that it has various beneficial effects, including the ability to reduce 

thrombogenicity, erythrocyte deformability, arrhytmias, antioxidative and also 

myocardial protective effect. The myocardial protective effect is thought to be 

related to the antioxidative activity via potentiation of superoxide dismutase 

(SOD) (Liu et al. 2004; Chan et al. 2002). In addition, trilinolein has also the 

inhibitory effect on adrenaline induced platelet aggregation (Shen and Hong 

1995). 

 

Flavonoids 

 Flavonoids represent a highly diverse class of secondary plant metabolites 

with about 9000 structures which have been identified so far. These compounds 

are found in all vascular plants as well as in some mosses (Harborne and Baxter 

1999; Williams and Grayer 2004). They exhibit a wide range of properties in 

physiology, biochemistry and ecology, for example in UV-protection, flower 

coloration, interspecies interaction and plant defence (Martens 2005). 

 ‘Flavonoid’  is a collective noun used to describe several classes of 

compounds having a common C6-C3-C6 flavone skeleton in which the three 

carbon bridge between the phenyl groups is commonly cyclised with oxygen as in 

Fig I.6 (Cavaliere et al. 2007). Flavonoids are products from a cinnamoyl-CoA 

starter unit, with chain extension using three molecules of malonyl-CoA (Dewick 

2002). The biosynthesis pathway of flavonoid can be read in Fig. I.2.2.5. The 

crucial biosynthetic reaction is the condensation of three molecules malonyl-CoA 
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with one molecule p-coumaryl-CoA to chalcone intermediates (Martens 2005). 

The major classes of flavonoids are flavones, isoflavones, flavonols, flavanones, 

anthocyanins, catechins and chalcones (Cavaliere et al. 2007). 

 Chalcones and dihydrochalcones are classes of flavonoids that consist of 

two phenol groups which are connected by three carbons. Derived from the 

chalcone structure, a flavonoid-class containing three rings, the flavanones, can 

be formed. Based on these flavanones, all other flavonoid-classes are generated, 

including isoflavones, flavanols, anthocyanidines, flavonols and flavones (Martens 

2005). The latter flavonoid-class is characterized by the presence of a double 

bond between C2 and C3 in the heterocycle of the flavan skeleton. The B-ring is 

attached to C2 and usually no substituent is present at C3. This constitutes the 

difference between flavone and flavonols. In flavonols a hydroxyl group can be 

found at the C3 position. A basic flavonoid structure and general flavonoid 

pathway can be found in Figure I.2.2.4 and Figure I.2.2.5 (Martens 2005). 
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Flavones can be classified into several subgroups based on the presence 

of substituents and the solubility of the flavones in water. There are many 

substituents, for example hydroxylation, O-methylation, C-methylation, 

isoprenylation, or methylenedioxy substitution. According to the solubility, we 

find an aglycon structure and glycosides. Flavones mostly occur as 7-O-

glycosides (Harborne and Baxter 1999; Williams and Grayer 2004).  

 

 

 

 

 

Fig. I.2.2.4. Basic flavonoid structure (Martens 2005) 
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Isoflavones, coumestans and lignans are classified into phytoestrogenic 

compounds (Urasopon et al. 2008). They have estrogen-like properties (Nikander 

et al. 2004; Knight and Eden 1996; Santos et al. 2006), anti estrogen activity (Ito 

et al. 2006) and have been associated with lesser incidence of steroid-hormone 

dependent cancers (Falcao et al. 2005; Lang’at-Thoruwa et al. 2003), e.g. those 

of the breast, prostate (Wu et al. 2004) and colon (Wijeratne and Cuppet 2007). 

Isoflavonoids primarily daidzein, genistein, daidzin, genistin are found in the 

Fabacease family, and are distributed in edible plants and derived products 

(Coward et al. 1993; Kang et al. 2006; Cavaliere et al. 2007). 

 Foods rich of isoflavonoids, for example soybean (Coward et al. 1993), 

are valuable in countering some of side effects of the menopause women, such 

as hot flushes, tiredness and mood swings. In addition, there is mounting 

Fig. I.2.2.5. Scheme of general flavonoid biosynthesis pathway. Enzymes are 
abbreviated as follows : CHS, chalcone synthase; CHKR, chalcone polyketide reductase; 
CHI, chalcone isomerase; FHT, flavanone 3-ß-hydroxylase; DFR, dihydroflavonol 4-
reductase; ANS, anthocyanidin synthase; FGT, flavonoid glycosyltransferase; FNS, 
flavone synthase; FLS, flavonol synthase; LAR, leucoanthocyanidin reductase; ANR, 
anthocyanidin reductase; leucoanthocyanidin reductase; ANR, anthocyanidin reductase; 
IFS, isoflavone synthase; IFD, isoflavone dehydratase (Martens 2005) 
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evidence that phytoestrogens also provide a range of other beneficial effects, 

helping to prevent heart attacks and other cardiovascular diseases (Nikander et 

al. 2004), angiogenesis (Wu et al. 2004), protecting against osteoporosis 

(Clarkson et al. 1995 in Lamartiniete et al. 2002; Blair et al. 1996; Choi 2006), 

decreasing the risk of breast and uterine cancer (Wang et al. 2009), and 

leukemia (Raynal et al. 2008), and also displaying significant antioxidative activity 

which may reduce the risk of Alzheimer’s disease (Dewick 2002). The 

antioxidative activity is caused by the presence of multiple hydroxyl groups in 

their structure (Ruiz Larrea et al. 1997; Wijeratne and Cuppet 2007). Mao et al. 

(2007) have reported that daidzein in soybean has anti-apoptosis effects; 

therefore it was a potential drug candidate for neurodegeneration therapy. 

Mximo et al. (2002) have investigated antifungal activity of isoflavonoids isolated 

from Ulex airensis and Ulex europaeus ssa europaeus. The isoflavonoids have 

appeared good antifungal activity against Cladosporium cucumerinum. However, 

many other applications are known for flavonoids and related compound. 

 

Phytosterol 

 The term phytosterols refers to sterols synthesized in plants; the most 

prevalent ones are ß-sitosterol and campesterol as in Figure I.2.2.6 (Dewick 

2002; Lee et al. 2007). Phytosterols are generally present in plant cell membrans 

(De-Eknamkul and Potduang 2003) and affect the permeability of these 

membrans (Hac-Wydro 2007). In addition, they also play a role in cell 

proliferation (Dewick 2002).  

Phytosterols are a class of natural products which possesses the 

tetracyclic ring system (Nes and Venkatramesh 1999). The main phytosterols are 

similar to cholesterols, sterols produced by animals, with the addition one or two 

carbon substituent on the side chain, attached at C-24. Consequently, the 

phytosterols may undergo oxidation process similar to cholesterol oxidations and 

yield therefore similar products. Cholesterol oxidation products (COP’s) have well 

documented adverse effects, including a harmful role in the development of 

artherosclerosis (Brown and Jessup 1999). The consumption of dietary 

phytosterols in increased quantities has lead to the possibility of increased levels 

of phytosterol oxides in the blood (McCarthy et al. 2005) 
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Fig. I.2.2.6. The chemical structure of some of phytosterols (Dewick 2002) 

 

Biosynthetically, it has been proposed that the isoprene building blocks of 

the phytosterols are originated mainly from the mevalonate pathway rather than 

the deoxyxylulose pathway (the non-mevalonate pathway) which has been 

shown to be involved in the biosynthesis of various terpenoid natural products 

(reviewed in Eisenreich et al. 1998; Rohmer 1999). 

The phytosterols are not synthesized in humans endogenously but are 

intestinal absorpted solely. Previous studies have shown that phytosterols have 

anticarcinogenic activity, e.g. colon, prostate and breast (Moon et al. 2007), 

antiinflamatory activity, reducing cholesterol levels activity (Huang et al. 2007), 

cardiovascular risk prevention, antiangiogenic (Fassbender et al. 2006), immune-

modulating (Park et al. 2007), antineoplastic (Lee et al. 2007; Patrick and 

Lamprecht 1999), and anti-asthma properties (Yuk et al. 2007). 

Phytosterols have been used not only in pharmaceuticals, such as 

antiinflamatory drugs (Parra-Delgado et al. 2004; Dickson et al. 2007), 

hormones, vitamins (Dewick 2002), but also in nutrition (anti cholesterol 

additives) and cosmetics (for creams and lipstick) (Berezin et al. 2001). Gomes et 

al. (2007) have reported that ß-sitosterol and stigmasterol isolated from Pluchea 

indica Less have an inhibition snake-venom activity. 
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I.2.3.  Sun screening and skin whitening 

I.2.3.1. Tyrosinase and its structure 
 

 Tyrosinase (polyphenol oxidase, EC 1.14.18.1) also known as polyphenol 

oxidase (PPO) (Kubo and Kinst-Hori 1998a) is a copper containing enzyme widely 

distributed in nature (Khatib et al. 2005). Over the past 30 years the enzyme 

tyrosinase has received considerable attention as an indispensable tool in the 

performance of studies on a wide range a topics. Since the first biochemical 

investigations were carried out in 1895 on the mushroom Russula nigricans, the 

cut flesh of which turned red and then black on exposure to air, a number of 

studies have been performed to find the culprit mainly responsible for the colour 

change (Parvez et al. 2007). 

 Tyrosinase occurs in different microorganisms, plants and animals 

(Matsuura et al. 2006) and is mainly involved in the biosynthesis of melanin 

(Lerch 1983). Tyrosinase catalyzes both the hydroxylation of monophenols, such 

as tyrosine to o-diphenols by monooxygenase, and the oxidation of o-diphenols 

to o-quinones (catechol oxidase) (Lee 2002; Sasaki et al. 2002; Salzbrunn 2007; 

Kubo and Kinst-Hori 1998a). The o-quinones further polymerize and undergo a 

series of subsequent enzymatic and nonenzymatic reactions (Matsuura et al. 

2006) to produce brown and red pigment (Friedman 1996) and black melanin 

(Sasaki et al. 2002). 

 

 

 

 

 

 

 

 

 

Fig. I.2.3.1. Reaction of tyrosinase and catecholase. Tyrosinase catalyzes 
hydroxylation of monophenol to form o-diphenol and the oxidation of o-

diphenol to o-quinone. Both ractions, hydroxylation and oxidation, need the 

presence of oxygen (Salzbrunn 2007) 
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 In insects, several functions of this enzyme have been reported in the 

generation of o-diphenols and quinones for pigmentation, wound healing, 

parasite encapsulation and sclerotization. Because these functions are effectively 

utilized in various types of developmental and defensive processes in insects, the 

enzyme may be an alternative target site for the control of insect pests (Lee 

2002; Kubo and Kinst-Hori 1998a). In food, tyrosinase is responsible for 

undesired enzymatic browning of fruits and vegetables (Martinez and Whitaker 

1995; Parvez et al. 2007) during post–harvest handling and processing (Lee 

2002; Chang 2007). This reaction produces undesirable changes in colour, 

flavour and nutritive value of the product. Unfavourable browning of raw fruits, 

vegetables, and beverages is a major problem in the food industry and is 

believed to be one of main causes of quality loss (Friedmann 1996; Kubo and 

Kinst-Hori 1998a; Matsuura et al. 2006). The degree of browning among 

different fruit cultivars is variable because of differences in phenol content and 

tyrosinase activity (Lee 2002). The application of polyphenol oxidase inhibitors 

has been one of the most popular and desirable strategies adopted by the food 

industry to prevent food browning (Zheng et al. 2008) and also in agriculture as 

an insecticide (Likhitiwitayuwid 2008). Kojic acid was speculated by Kahn et al. 

(1997) as insecticide because of its activity to prevent sclerotization in several 

insects. Similarly, the unfavourable browning caused by tyrosinase on the surface 

of seafood product has also been of great concern (Ogawa et al. 1984).  

In humans, tyrosinase catalyzes the melanin biosynthesis (Briganti 2003; 

Kubo and Kinst-Hori 1999). Melanin pigments are also found in the mammalian 

brain. In the human brain, tyrosinase plays an important role in neuromelanin 

formation, which could be of central importance to dopamine neurotoxicity and 

may contribute to the neurodegeneration associated with Parkinson’s disease 

(Chen and Kubo 2002; Matsuura et al. 2006). The melanin is the major pigment 

for colour of skin, hair and eye. Melanin may be overproduced with chronic sun 

exposure, melasma or other hyperpigmentation disease (Briganti et al. 2003). 

Tyrosinase inhibitors have become increasingly important in cosmetics (Maeda 

1991; Kubo and Kinst-Hori 1998a; Parvez et al. 2007) and drugs for the 

treatment of some skin disorders associated with melanin hyperpigmentation 

(Parvez et al. 2007) and to prevent spots and freckles due to sunburn (Tanimoto 

et al. 2006). 
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Tyrosinases have been isolated and studied from a wide variety of plant, 

animal, fungi species and microorganisms (Kubo and Kinst-Hori 1999). More than 

20 species of Lichens from the sub-order Peltigerineae has been investigated and 

the result displayed significant tyrosinase activity (Laufer et al. 2006). 

Tyrosinases from different species are diverse in terms of their structural 

properties, tissue distribution and cellular location (Mayer 1987). The enzymes 

found in plant, animal and fungi tissue frequently differ with respect to their 

primary structure, size, glycosylation pattern and activation characteristics. 

However, all tyrosinases have in common a binuclear type 3 copper centre within 

their active site. Here two copper atoms are each coordinated with three histidine 

residue (Mirica et al. 2005; Matoba et al. 2006; Kim et al. 2006; Salzbrunn 2007). 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
 

 
Fig. I.2.3.2. Röntgencrystall structure of tyrosinase obtained from 

Streptomyces castaneoglobisporus (Salzbrunn 2007), reproduced with a 

permission from the Autor 
 

 Tyrosinase has three domains, of which the central domain contains two 

copper binding sites as displayed in Fig I.2.3.2. Copper binding sites are the 

active site in the tyrosinase catalytic reaction (Matsuura et al. 2006). The two 

copper atoms within the active site of tyrosinase enzymes interact with oxygen to 

form a highly reactive chemical intermediate which oxidizes the substrate. Six 

histidine residues bind a pair of copper ions in the active site of tyrosinase 

(Jackman et al. 1991; Hirota et al. 2005; Parvez et al. 2007). The location of 
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cysteine also plays an important role in the formation of disulfide linkages, which 

stabilize protein structure (Parvez et al. 2007). 

 Tyrosinase catalyses two oxidation reactions. Three tyrosinase isoforms 

exist, namely mettyrosinase, oxytyrosinase and deoxytyrosinase 

(Likhitwitayawuid 2008).  According to Land et al. (2003) and Palavicini et al. 

(2005), native tyrosinase occurs in the inactive met-form in which the binuclear 

copper site is in the wrong oxidation state [Cu(II)] to bind oxygen. Two-electron 

reduction by a catechol converts met-tyrosinase to deoxy-tyrosinase, which 

readily binds oxygen giving oxy-tyrosinase (Fig.I.2.3.3a). Both phenols and 

catechols are oxidized to ortho-quinones by the oxy-tyrosinase but the 

mechanisms of these oxidations are different. Oxidation of a catechol leads to 

met-tyrosinase, which cannot bind oxygen to regenerate oxy-tyrosinase. Only in 

the presence of a second catechol molecule, the met-tyrosinase is reduced to 

deoxy-tyrosinase which then regenerates the oxy form (Fig.I.2.3.3b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.I.2.3.3a. The scheme of redox reaction of the tyrosinase                        
(Land et al. 2003) 
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(a) Catecholic Substrate Oxidation cycle   
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

(b) Phenolic Substrate Oxidation Cycle 
 

 
 

 

 
 

 
 

 

Fig. I.2.3.3b. Scheme of mechanism reaction of tyrosinase with monophenol 
and diphenol substances. Three forms of tyrosinase deoxytyrosinase (TYred), 

mettyrosinase (Tymet) and oxytyrosinase (TYoxy) are involved in this reaction 
(Land et al. 2003) 

 

 

I.2.3.2. Melanin biosynthesis 

Normal skin colour is dependent on haemoglobin (in both the oxygenated 

and reduced state), carotenoids and melanin pigment. The major colour 

determinant is melanin and racial and ethnic differences in skin colour are related 

to the number, size, shape, distribution and degradation of melanin-containing 

organelles called melanosomes (Bleehen et al. 1995). The production of melanin 

by melanocyte within the skin or hair is called melanogenesis (Kim et al. 2004a). 

Production of melanin is dependent on UV light or sun exposure. It is a 

natural protective mechanism of the skin against too much UV light penetrating 

in the human skin, where too much UV cause sunburn, disrupts the synthesis of 

precursors necessary to make human DNA and also increase free radicals. 

Melanin will attach the free radicals and also participate in other oxidation-

reduction processes in the human body (Bleehen et al. 1995). 
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The process of pigmentation consists of three phases : activation, 

synthesis and expression phases. The first step is the activation of the 

melanocyte by several triggers such as UV light and free radical exposure. The 

second step is the synthesis of melanin phase. The melanocyte actually makes 

the melanin granules called melanosomes through several reactions as displayed 

in the Figure I.2.3.4. The last step is an expression phase. During this step, the 

melanosomes are transferred from the melanocytes to upper skin cell layers. 

Once the melanin has been synthesized and filled into the melanosomes, the 

melanosomes travel out into the arms of the melanocyte. When the 

melanosomes reach the end of these dendrite-like tentacles, they are actually 

pushed out of the melanocyte and taken up by keratinocytes, which are the skin 

cells located above the melanocytes in the epidermis. The keratinocytes take 

these melanosomes and carry them all the way up to surface of the skin, where 

they are, in essence, expressed. After this transfer has taken place, the melanin 

colour will eventually become visible on the surface of the skin (Williams et al. 

1995). 
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Note :  Reproduced from http://www.eucerin.co.uk/media/epidermis.jpg with 
modifications 

 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
Note : Reproduced with modifications from 

http://www.nuskin.com/corp/library/pdf/clinicals/tpw_pigmentation_clinical.pdf 
 
 

Fig.I.2.3.4. The skin anatomy. Melanocyte containing melanin granule is in 
basal layer of epidermis. If the skin exposured by UV light, the melanin 

production will be increased and the melanin migrates to the skin surface to 

protect skin from the radiation damage 
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Melanins are usually classified into two main groups : the black and 

brown eumelanins which are insoluble, and the yellow and reddish-brown 

phaeomelanins, which are alkali soluble. Both eumelanins and phaeomelanins are 

derived from tyrosine, by the same initial steps (Bleehen et al. 1995; Parvez et 

al. 2007; Kobayashi et al. 1994). 

Synthesis of melanin started from the conversion of the amino acid L-

tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA) and then oxidation of L-DOPA 

to produce an ortho-quinone (dopaquinone) by tyrosinase. Dopaquinone is 

further transformed through several reactions to yield brown to black melanin 

which is responsible for the colour of mammal’s skin (Okombi 2006; Lee 2002; 

Ohguchi et al. 2003, Wang and Hebert 2006). Two other melanogenic enzymes, 

tyrosine-related protein1 (TRP1) enzyme and tyrosine-related protein2 (TRP2) 

enzyme also named dopachrome tautomerase (DCT) enzyme (Solano et al. 

1994), are involved in the melanin biosynthesis (Kobayashi et al. 1994; Parvez et 

al. 2007) as in Figure I.2.3.5. 

The quinone-generating activity of tyrosinase explains its cytotoxicity and 

antiproliferative activity. Tyrosinase-generated quinones may cause substantial 

cytotoxicity because of the ability to bind covalently with free –SH groups and to 

alkylates DNA. Tyrosinase could be modified by mutation techniques to find  

tyrosinase mutants that can be used as prodrugs for tumoral therapy primarily 

for melanoma therapy (Simonova et al. 2000) 
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I.2.3.5. Melanin biosynthesis (Kobayashi et al. 1994; Parvez et al. 2007) 
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I. 2.3.3. Sun screening, antioxidative and tyrosinase inhibitor 

 

Sun screening 

Chronic sun exposure, melasma or other hyperpigmentation diseases may 

overproduce melanin (Wang et al. 2006). According to Seiberg et al. (2000), 

melanin biosynthesis can be prevented by: 

• Avoiding ultraviolet rays exposure 

• Inhibition the melanocyte metabolism and proliferation 

• Inhibition the tyrosinase activity 

• Removing melanin by corneal ablation 

The ultraviolet ray can be classified into 3 groups. They are UVA, UVB and 

UVC. The UVA has a wave length between 315 and 400 nm. It is less dangerous 

than UVB and UVC, but it can cause loss of collagen and has alteration effect. The 

UVB has the wave length between 290 and 315 nm. It causes sunburn and 

activates the melanocytes in the skin, so that they produce melanin and cause 

tanning effect. The UVC has the wave length between 100 and 290 nm. It is very 

dangerous, but it is absorbed by the atmosphere (ozone layer and other gases) 

(Walters 1997). 

The UVA band has been an important subject of research on the 

protection of skin from damage caused by sunlight because several cutaneous 

effects of UV irradiation including wrinkles, pigmentation and skin cancer are 

found to be attributed not only to UVB but also to UVA exposure. It has been well 

known that the best way to protect skin from sun damage is to apply sunscreens. 

Many UVB filters are now commercially available, but very few UVA filters have 

been developed. Since it is not practical to use a UVA filter only, the combination 

of UVB and UVA filters is always recommended for sunscreen formulation 

(Imokawa 1990). 

Sunscreens are classified into two groups, chemical or physical 

sunscreens. The classification is based on their mode of action whether they 

absorb, reflect or scatter specific wavelength bands of radiation. When chemical 

sunscreens are applied on the skin, they usually do not modify the appearance of 

the skin. When physical sunscreens are applied on the skin, they can be seen on 

the skin’s surface because they reflect and scatter light. Because physical 

sunscreens are not selective to absorb UV wave length, they are recognized as 
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broad spectral protection. Examples of physical sunscreens are titanium dioxide, 

talc, zinc oxide, and iron oxide. On the other hand examples of chemical 

sunscreens are p-aminobenzoic acid, coumarin, hydroquinone, dioxyacetone. The 

physical sunscreen is more safely than the chemical sunscreen because the 

physical sunscreen does not react with the skin material and some of them are 

not be absorbed by skin layers (Sayre 1994). In addition, the chemical 

sunscreens may produce allergy.  

Most important for maintaining skin whiteness is to avoid ultraviolet 

exposure. UV radiation can also induce formation of various radicals (Matsuura et 

al. 2006), primarily reactive oxygen species (ROS) in the skin such as singlet 

oxygen and superoxide anion, promoting biological damage in exposed tissues 

via iron-catalyzed oxidative reactions. These radicals included ROS playing 

important roles in the activation of tyrosinase in human skin (Matsuura et al. 

2006) and then enhance melanin biosynthesis via induction of the proliferation of 

the melanocytes. These radicals also cause the DNA damage. Furthermore the 

ROS scavengers or inhibitors such as antioxidatives may reduce 

hyperpigmentation and can be also used as whitening materials. Not only ROS, 

but also the hydroxyl radical can damage living cells. The hydroxyl radical is one 

of the most reactive radicals generated from biological molecules (Wang et al. 

2006). Therefore, it is necessary to combine sun screen compounds and 

antioxidative compounds in cosmetics products to achieve an optimal whitening 

effect. 

 

Antioxidative 

There is an increasing interest in antioxidatives, particularly in those 

intended to prevent the presumed deleterious effects of free radicals not only in 

the human body, but also foodstuff. In both cases, there is a preference for 

antioxidatives from natural rather than from synthetic sources (Abdalla and 

Roozen 1999; Molyneux 2004).  

Some plant extracts may have the ability to scavenge hydroxyl radicals 

and oxygen radicals and may protect cellular lipids against free radical reaction. 

Geraniol, terpinolene and gamma-terpinene were reported as radical scavengers 

in lemon oil (Matsuura et al. 2006). Marxen et al. (2007) have reported that 

some Microalga extracts from methanol (Anabaena sp, Isochrysis galbana, 
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Synechocystis sp, Phaedodactylum tricornutum, Porphyridium purpureum) have 

antioxidative activity. Antioxidative activity of Rosa damascene flower extract 

(fresh flower and spent flower) has been investigated by Özkan et al. (2004). 

The antioxidative activity was measured by the formation of 

phosphomolybdenum complex. The extent of the antioxidative effects of this 

extract could be attributed to their phenol composition and essential oil contents 

(Aridogan et al. 2002; Özkan et al. 2004). Miliauskas et al. (2003) have observed 

the antioxidative activity of some medicinal and aromatic plant extracts (Salvia 

sclarea, Salvia glutinosa, Salvia pratensis, Lavandula angustifolia, Calendula 

officinalis, Matricaria recutia, Echinacea purpurea, Rhaponticum carthamoides, 

Juglans regia, Melilotus officinalis, Geranium machorrhizum and Potentilla 

fruticosa) using DPPH and ABTS radicals. The results indicate that the amount of 

total phenol compounds in investigated plant extracts in most cases correlated 

with their antiradical activity. 

Active-oxygen scavenging activity of traditional nourishing-tonic herbal 

medicines and active constituents of Rhadiola sacra has been investigated by 

Ohsugi et al. (1999) using superoxide anion radical and hydroxyl radical. There 

are 19 compounds found in this species. Hydroquinone, caffeic acid, gallic acid, 

protocatechic acid, epigallocatechin-3-o-gallate, gallic acid-4-O-ß-D-

glucopyranoside showed inhibitory activity against superoxide radicals, while 

hydroycinnamic acid and 4-hydroxybenzoic acid inhibited hydroxyl radical. 

Antioxidative activity of two major acylated flavonoid quercetin-3-O-[2G-(E)-

coumaroyl-3G-O-ß-D-glucopyranosyl-3R-O-ß-glusylrutinoside] and kaempferol-3-

O-[2G-(E)-coumaryl-3G-O-ß-D-glucosyl-3R-O-ß-D-glucosylrutinoside] in methanol 

extract of oolong tea has been evaluated by Lee et al. (2007). Rangkadilok et al. 

(2006) have reported the antioxidative activity of longan fruit extract is similar to 

those of Japanese green tea extract. The activities were attributed to the 

polyphenol compounds in this plant. The antioxidative properties of violacein, a 

violet pigment produced by Chromobacterium violaceum, against DPPH, nitric 

oxide and superoxide radicals has been observed by Konzen et al. (2006). The 

efficiency of flavonoids in polar extracts of Lycium chinense Mill fruits as free 

radical scavenger has been investigated by Qian and Huang (2004). The major 

constituents of this extract are rutin, chlorogenic acid and protocatechuic. Other 

compounds having antioxidative activity, such as camphor, parthenolide, luteolin 
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and apigenin, have been reported by Wu et al. (2006). In an other paper, Silva 

et al. (2005) have investigated the antioxidative properties of Hypericum 

perforatum. Its antioxidative activity is due to their flavonoid contents. 

For estimating the antioxidative potential of chemical components, 

different experimental approaches were used (Prior et al. 2005). Most of them 

require a spectrophotometric measurement and a certain reaction time in order 

to obtain reproducible results (Kulisic et al. 2004; Marxen et al. 2007). For 

example, the ß-carotene bleaching test (BCB) is based on the decolorization of ß-

carotene by its reaction with radicals. This effect is measured at a wavelength of 

470 nm after a reaction time of about 120 min. Other methods like the 2,2-

diphenylpicrylhydrazyl (DPPH, C18H12N5O6) scavenging method or the 

thiobarbituric acids reactive species (TBARS) assay work similar to the BCB test 

(Marxen et al. 2007). The TBARS assay uses the production of a pink pigment 

produced by the reaction of thiobarbituric acid (TBA, C4H4N2O2S) with 

malondialdehyd (MDA, C3H4O2) and other secondary lipid peroxidation products. 

Absorbance measurements at 532 nm serve as an indicator of the extent of lipid 

degradation (Kulisic et al. 2004). Another method is TEAC method (the ferryl 

myoglobin/ABTS assay). The principle of this reaction is the pre-formed radical 

monocation of 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS.+, 

C18H24N6O6S4
.+) is generated by oxidation of ABTS with potassium persulfate and 

is reduced in the presence of such hydrogen-donating antioxidatives (Re et al. 

1999). 

One such method that is currently popular is the DPPH method, because 

this method is simple, rapid and convenient and independent of sample polarity 

(Koleva et al. 2001; Marxen et al. 2007). This method has been introduced by 

Marsden-Blois about 50 years ago. He used the DPPH to analyse antioxidative of 

the thiol of the amino acid cystein through titration. He has accounted the 

stoichiometry of the reaction between DPPH and cysteine, and the result is a 1:1 

stoichiometry. The reaction can be written : 

 

Z΄ + RSH  =  ZH + RS΄ 

Z΄ is DPPH radical; RSH is cysteine molecule 
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The free radical RS΄ then reacts with another molecule that was produced by a 

parallel reaction. 

 

 RS΄ + RS΄ = RS-SR 

 

Based on the reaction above, it can be shown that two molecules of DPPH are 

reduced by two molecules of cysteine with an 1:1 stoichiometry. However, if the 

molecule has two adjacent sites for hydrogen abstraction, such as in Vitamin C 

molecule, the stoichiometry of the reaction is 2:1. The same stoichiometry is true 

for the reaction of DPPH and hydroquinone (1,4-dihdroxybenzene) which leads to 

the production of quinone (1,4-benzoquinone) by a similar two step mechanism 

(Molyneux 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The original Blois method has been used by several workers. The UV 

spectrophotometer was used to measure the reaction between DPPH and the 

substances. The product formation is measured at 517 nm. A linear curve of the 

changes in absorbance versus the concentration of the substance is used to 

calculate the parameter EC50 or SC50. The parameters are used to express the 

antioxidative activity and defined as the concentration of the substance that 

cause 50% loss of DPPH activity. Thus, the lower the SC50 value, the higher the 

antioxidative activity (Molyneux 2004; Marxen et al. 2007). 
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Tyrosinase inhibition 

Tyrosinase inhibition is one of methods to reduce the melanin synthesis 

(Khatib et al. 2005). In recent years, with the nature orientation of consumers, 

functional cosmetics such as antiwrinkle solutions and whitening agents have 

been combined with compounds from natural medicines or herbal medicines 

(Tanimoto et al. 2006). However, only a few natural and synthetic compounds, 

which have activity as tyrosinase inhibitors, were used as skin whitening agents 

due to safety concerns (Okombi et al. 2006). 

A number of tyrosinase inhibitors from natural sources that inhibited 

monophenolase, diphenolase or both, have been identified. Plants are a rich 

source of bioactive chemicals, which are often free from harmful side effects (Lee 

and Lee 1977; Chang 2007). Some inhibitors from higher plants have been found 

and can be classified into two groups, polyphenols and aldehyde derivatives 

(Parvez 2007). Phenol compounds are important materials and can be used as 

depigmenting agents, because they have a chemical structure similar to tyrosine, 

the starting material of the melanin and the substrate of the tyrosinase (Wang et 

al. 2006; Sandler 2005; Sudjaroen et al. 2005).  

Flavonoids are one of important plant phenol groups that have strong 

tyrosinase inhibitory activity. All flavonoids inhibit the enzyme due to their ability 

to chelate copper in the active site of the tyrosinase. However, they are only 

applicable if the 3-hydroxyl group of the isoflavonoid is free. Flavonoids 

containing a keto group possess potent tyrosinase inhibitory activity. This may be 

explained by the similarity between the dihydroxyphenyl skeleton in L-DOPA and 

the keto group in flavonoid. Green tea catechins, belonging to the group of 

flavonoids, exhibit biological and pharmacological effects including anti-tyrosinase 

and antioxidative activity (Kim et al. 2004). Nithitanakool et al. (2009) found that 

pentagalloyl glucopyranose from seed kernels of Thai Mango (Mangifera indica, 

L. cv, ‘Fahlun’) has anti-tyrosinase activity which involve an ability to chelate the 

copper atoms of active site of the enzyme. Tannic acid and gallic acid from Rhus 

javanica leaves have also been investigated by Kubo et al. (2003) and the results 

indicated that the tyrosinase inhibitory activity of tannic acid is more potent than 

gallic acid. Tyrosinase inhibitory studies of cycloartane and cucurbitane 

glycosides from Astragallus (Leguminoseae) and Bryonia (Cucurbitaceae) plants 

have been investigated by Khan et al. (2006). Isoflavone derivatives (included 



Chapter I. Introduction 

27 
 

daidzein, glycitein, daidzin and genistin) isolated from soybean, have been 

studied by Chang (2007), and the result displayed that they have a high potential 

to inhibit the tyrosinase. Gilly et al. (2001) have reported that resveratrol found 

in Carignan Grape juice has tyrosinase inhibition activity. Galangin, kaempferol, 

and quercetin have been identified as potent tyrosinase inhibitory polyphenols 

(Matsuura et al. 2006).  

A large number of aldehydes and other derivatives were also 

characterized as tyrosinase inhibitors, because they can react with nucleophilic 

groups such as sulfhydryl, amino and hydroxyl groups. Its inhibitory effect is e.g. 

due to the formation of a Schiff base with the primary amino group of the 

enzyme. (Kubo and Kinst-Hori 1998b; Schauenstein et al. 1977; Parvez 2007). 

Cuminaldehyde extracted from the seed of Cuminum cyminum L, has reported to 

be a tyrosinase inhibitor which has activity being about 16 fold higher than that 

of benzaldehyde. 6-Hydroxy-2H-pyrane-3-carbaldehyde, haemanthamine and 

1,1’-bis(1,1’-carboxyethyl) were isolated from Crinum yemense  showed 

competitive tyrosinase inhibitory activity (Abdel-Hakim et al. 2008). A series (2E)-

alkenals were also isolated and characterized as tyrosinase inhibitors (Kubo and 

Kins-Hori 1999). Anisaldehyde characterized in the seed of Pimpinella anisum 

disrupts the tertiary structure of the enzyme not only through forming a Schiff 

base with a primary amino group in the enzyme, but also via hydrogen-bonding 

interactions (Joung-Ha et al. 2005). 

Chalcones containing a phenol moiety may exhibit antioxidative activity as 

a result of their ability to donate an electron (or receive hydrogen atom) and/or 

chelate transition metals, such as copper or ferrous ions, and thereby eliminating 

reactive oxygen and nitrogen species (ROS and RNS) and decay-free radical 

propagation reaction. When both reactions are strong, they are known to induce 

melanine synthesis (Nerya et al. 2004; Khatib et al. 2005). Hydroquinone has 

been known as tyrosinase inhibitor since 1896 (Gregg and Nelson 1940). Gnetol 

from genus gnetum is also tyrosinase inhibitor (Ohguchi 2003). Stilbene, related 

4-substituted resorcinols and several flavonoids, were tested for their inhibitory 

activity against tyrosinase to clarify the structural-activity relationship (Sasaki et 

al. 2002; Likhitwitayawuid 2008). Kojic acid and azelaic acid are tyrosinase 

inhibitor from fungi which are good chelators of transition metal ions and good 

scavenger of free radicals. Linoleic acid, hinokitiol, arbutin, cathecins, naturally 
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occurring hydroquinone and aloesin have been also reported to act as tyrosinase 

inhibitors (Parvez 2007, Okombi et al. 2006). Free fatty acids have been shown 

to have remarkable regulatory effects on melanogenesis in cultured B16F10 

murine melanoma cells. Unsaturated fatty acids, such as oleic acid (C18:1), 

linoleic acid (18:2) or gamma-linolenic acid (C18:3), decrease melanin synthesis 

and tyrosinase activity, while saturated fatty acids, such as palmitic acid (C16:0) 

or stearic acid (18:0), increase it (Ando et al. 1999). 

 

I.2.3.4. Tyrosinase inhibition Assay 

There are two main methods to evaluate tyrosinase inhibition, either in 

vitro assay or in vivo assay. The in vitro assay is easy to handle, accurate, but 

can’t be exploited from developing products for human use. It is done by using 

the commercially available mushroom tyrosinase as a model. Although mushroom 

tyrosinase differs somewhat from other sources (van Gelder et al. 1997), this 

fungal source was used for some experiments because it is readily available. On 

the other hand, the in vivo assay is relative good and can be exploited for human 

use, but rather complex in its procedure. This assay is performed by using a 

cellular test indicating the decrease of the tyrosinase activity. This assay can also 

be done by using human melanocytes obtained from healthy individuals. The 

inhibitory potency is evaluated by measuring the transformation rate of L-DOPA 

to L-Dopaquinone. Then L-dopaquinone can be trapped by 3-methyl-2-

benzothiazolinone hydrazone MBTH. The absorbance of this solution is measured 

by spectrophotometer at 490 nm. The absorbance will be lower than normal 

value when there is a tyrosinase inhibitor compound (Okombi et al. 2006). 
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I.3. STATEMENT OF THE OBJECTIVES 

The objectives of the research were : 

1. isolation of compounds from bengkoang roots which have UV absorption 

and whitening activities 

2. elucidation of the chemical structures of active compounds in bengkoang 

roots which have a sunscreen ability and skin whitening activity based on 

the spectroscopy data involving one and two dimensional NMR 

spectroscopy  data as well as mass spectrometry data 

3. determination of whitening activity in bengkoang roots extracts by 

measuring antioxidative activity and tyrosinase inhibitory activity 
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CHAPTER II 
MATERIALS AND METHODS 

 

II.1. Plant materials 

The bengkoang belongs to the taxonomic class of Magnoliopsida; order 

Fabales; family Fabaceae; subfamily Faboideae; genus Pachyrhizus; species 

Pachyrhizus erosus. The bengkoang Pachyrhizus erosus (L) Urb roots were 

collected from Purworejo, Central Java, Indonesia in dry season (November 

2006). 

 
II.2. Laboratory chemicals and instruments  

Chemicals and solvents 

The chemicals used in the detection and isolation methods were 

anisaldehyde (4-methoxybenzaldehyde), glacial acetic acid, aluminium chloride, 

hydrochloric acid and concentrated sulphuric acid (all purchased from Merck, 

Darmstadt, Germany), mushroom tyrosinase 4187 IU/mg, Folin-Ciocalteau’s 

phenol reagent, L-DOPA (dihydroxy phenyl alanine), kojic acid (Fluka, Seelze, 

Germany), sodium nitrite, sodium hydroxide (purchased from Grüssing, Filsum, 

Germany), dimethylsulfoxide extra pure (Acros® organic, Geel, Belgium), DPPH 

(2,2-diphenyl-1-picrylhydrazine), catechin, Dulbeco’s phosphate buffered saline, 

(purchased from Sigma Aldrich, Steinheim Germany), ascorbic acid (Sigma 

Aldrich, Steinheim, Germany), gallic acid, PABA (p-aminobenzoic acid) (Fluka, 

Seelze, Germany), sodium carbonate (Grüssing, Filsum, Germany), Sephadex 

LH20 (Aldrich, Steinheim, Germany), Silica gel 60 (particle sizes 0.063-0.200mm, 

Merck, Darmstadt, Germany), TLC Aluminium sheets, silica gel 60 F254 (layer 

thickness 0.2 mm, Merck, Darmstadt, Germany). 

 Solvents for separation techniques were petroleum ether, ethyl acetate 

(Fisher Scientific, Leichestershire, UK), methanol (Merck, Darmstadt, Germany), 

chloroform, dichloromethane, n-butanol and were purchased from the Fluka, 

Seelze, Germany. 

Instruments 

Melting point SMP3 Stuart® apparatus (Staffordshire, UK), Cary 50 Bio 

UV-Visible spectrophotometer (Varian, California, USA), JASCO FT/IR-6100 

Spectrophotometer (Gross-Umstadt, Germany), Thermo Mixer Comfort 5355 

V.2.12 Eppendorf (Hamburg, Germany), ALPHA II-12 Freeze dryer (Osterode, 
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Germany), Bruker Avance 400 NMR spectrometer (Rheinstetten, Germany), 

Shimadzu GC/MS-QP 20105 gas chromatography (Kyoto, Japan), Agilent 1100 

series HPLC apparatus (California, USA) equipped by column Zorbax SB-C18 (25 

cm, i.d. 0,46 cm, 5 µm, Agilent, California, USA), UV and MS detectors, Agilent 

1100 series preparative-HPLC (California, USA) equipped by column Zorbax SB-

C18 (7µm, 21,2X150 mm, Agilent, California, USA), Büchi rotavapor (Flawil, 

Switzerland). 

 
II.3. Framework of the research 

 The framework of the research consisted of several steps as in the figure 

II.3.1.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. II.3.1. The framework of the research 
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II.4. Chromatography 
 
II.4.1.  Thin layer chromatographic 

 Analytical Thin Layer Chromatography (TLC) was carried out by using 

the commercially available Merck TLC plastic sheet pre-coated Kieselgel 60 F254 

(layer thickness 0.2 mm, Merck, Darmstadt, Germany) for semi polar to non 

polar substances and with precoated TLC RP 18 F254 plates  (layer thickness 0.25 

mm, Merck, Darmstadt, Germany) for more polar substances. 

 Detection was performed by UV light at 254 and 366 nm, followed by 

spraying the TLC plates with anisaldehyde-H2SO4 reagent and subsequent 

heating at 110°C, or followed by spraying with DPPH solution in MeOH according 

to  Cacha et al. (2005) and Torres et al. (2006). After developing and drying, the 

TLC plates (sample ranging from 0.1-100 µg) were sprayed with 0.2% solution of 

DPPH dissolved in MeOH. The DPPH solution was stored in a dark bottle and kept 

refrigerated until used. The reagent is no longer usable when the colour has 

turned to yellow. Active compounds appeared as yellow spots against a purple 

background after 90 minutes of spraying. 

 The anisaldehyde-H2SO4 reagent: for 100 ml reagent, 10 ml glacial 

acetic acid was added to 85 ml MeOH followed by 5 ml concentrated H2SO4 

(added slowly) and 0.5 ml anisaldehyde. The reagent was stored in a coloured 

bottle and kept refrigerated until used. The reagent is no longer usable when the 

colour has turned to red-violet. 

 Thin layer chromatography was carried out in 5 elution system as 

described in Table II.4.1. 

Table. II.4.1. Elution systems of thin layer chromatography (silica gel) 

System Mobile Phase Detection 

TLC-1 CHCl3-EtOAc (6:4) UV 254; DPPH; Anisaldehyde-H2SO4 

TLC-2 CHCl2-EtOAc (6:4) UV 254; DPPH; Anisaldehyde-H2SO4 

TLC-3 EtOAc-MeOH-H2O (61:31:8) UV 254; DPPH; Anisaldehyde-H2SO4 

TLC-4 Upper phase of BuOH-

CH3COOH-H2O (4:1:5) 

UV 254; DPPH; Anisaldehyde-H2SO4 

TLC-5 CHCl3-EtOAc (2:8) UV 254; DPPH; Anisaldehyde-H2SO4 
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II.4.2. Column Chromatography 

  Column chromatography was conducted in several systems as 

described in Table II.4.2. 

Table II.4.2. Elution systems of column chromatography 

System Stationary phase Mobile phase 

SG-1 Silica gel Gradient mixture of PE-EtOAc (from 100% of PE to 

100% of EtOAc) and followed by gradient mixture of 

EtOAc-MeOH (from 100% of EtOAc to 100% of 

MeOH) 

SG-2 Silica gel CHCl3 100% 

SG-3 Silica gel CH2Cl2-EtOAc (60:40) 

SG-4 Silica gel CH2Cl2-EtOAc (50:50) 

SG-5 Silica gel PE-EtOAc (60:40; 25:75), EtOAc 100%, EtOAc-MeOH 

(50:50) 

SG-6 Silica gel PE-EtOAc (30:70), EtOAc 100%, EtOAc-MeOH 

(70:30) 

PC-1 Sephadex LH20 MeOH 100% 

 

 

II.4.3.   Analytical HPLC 

   The Agilent 110 series HPLC apparatus (California, USA) equipped 

with two solvent delivery systems, an auto sampler and an UV detector was used 

in this study. The column Zorbax SB-C18 (25 cm, i.d. 0.46 cm, 5 µm particle size) 

from Agilent was used. Chemicals used in this research for HPLC were millipore 

water, methanol for HPLC (VWR, Leuven, Belgium), formic acid 98-100% (Riedel-

de Häen®, Sigma Aldrich, Seelze, Germany). 

 

II.4.4.  Semi preparative HPLC 

   The Agilent 1100 series HPLC (California, USA) with column Zorbax 

SB-C18 (150 mm, i.d. 21.2 mm, 7 µm particle size) equipped with an auto 

sampler and UV detector was used. The sample dissolved in an appropriate 

solvent with maximal concentration 2 mg/ml was injected into the system. The 

solvent systems and the elution programs used in the semi preparative HPLC 

were based on the previously performed analytical HPLC data. The flow rate was 

10 ml/min. Table II.4.3 displays the elution program used in this research. 
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Table II.4.3. The elution programs of semi preparative HPLC (Flow rate 10 
ml/min) 
 

System Elution Program 

Prep-1 Gradient elution of acetonitrile and water 
 

Time (min) % Acetonitirile 

0 70 

10 70 

20 100 

40 100 
 

Prep-2 Gradient elution of methanol and water 

 

Time (min) % MeOH 

0 20 

5 20 

20 100 

25 100 
 

Prep-3 Gradient elution of acetonitrile and water 
 

Time (min) % Acetonitirile 

0 5 

10 50 

30 50 
 

Prep-4 MeOH - water (30:70) 

Prep-5 Gradient elution of methanol and water 

 

Time (min) % MeOH 

0 5 

20 50 

30 100 

35 100 
 

Prep-6 Gradient elution of methanol and water 

 

Time (min) % MeOH 

0 20 

20 100 

30 100 
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II.4.5.  Liquid chromatography / mass spectroscopy (LC/MS) 

   An Agilent 1100 series HPLC equipped with an ESI-ion trap mass 

detector was used. The detector parameter was : nebulizer pressure 50 psi, dry 

gas flow rate 10 ml/min, dry temperature 350°C and capture power 25nA. 

 

II.4.6.  Gas chromatography / mass spectroscopy (GC/MS) 

   The GC/MS analysis was carried out on a Shimadzu GC/MS-QP 2010S 

mass spectrometer (Kyoto, Japan) with Rtx-5 MS capillary column (30 m, i.d. 

0.25mm). The carrier gas was helium with flow rate 0.5 ml/min. The column 

temperature was programmed from 120 °C (5 min) and then continued to      

300 °C (37 min) with an increasing temperature velocity 10 °C/min. The ion 

source temperature was 250 °C with electron energy 70 eV. Spectra were 

acquired and processed by WILLEY.7 GC/MS Library, which produced standard 

bar graphs for direct comparison with published spectra.   

 

II.5.  Extraction and fractionation 

The roots (45 kg) were peeled and washed with water, subsequently 

dried at 60°C and milled into fine powder. The fine powder (4.75 kg) was 

extracted by soxhlet using petroleum ether. The residue was extracted using 

methanol to achieve the semi polar and polar compounds. The extracts were 

filtered and concentrated in vacuo. The concentrated methanol extract was 

divided into two parts. One part was hydrolized with 2N HCl at 100°C in 2 hours 

and then extracted with ethyl acetate. This extract was called as the ethyl 

acetate after hydrolysis extract. To the other part of the concentrated methanol 

extract, water was added and also extracted with ethyl acetate. The ethyl 

acetate phase was further concentrated and the water phase was extracted with 

n-butanol. The residue methanol/water phase was obtained by evaporating using 

freeze dryer. The fractionation scheme can be shown in Figure II.5.1. 

  Crude extracts and fractions were then chemically investigated and 

analyzed by using thin layer chromatography, analytical HPLC, semipreparative-

HPLC, GC/MS and LC/MS to determine further isolation work. 
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Fig. II.5.1. Extraction and fractionation scheme of bengkoang  
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II.6. Isolation of secondary metabolites from bengkoang root 
 
II.6.1.  Compound isolation of petroleum ether extract 

 The petroleum ether extract (26.3 gram) was further subjected to silica 

gel chromatography (SG-1) as described in Table II.4.2 (p. 33). 29 fractions of 

100 ml were collected according to the TLC results. TLC was conducted to each 

fraction respectively using silica gel as a stationary phase, chloroform-ethyl 

acetate (6:4) as a mobile phase (TLC-1). Detection was performed with UV light 

at 254 and 366 nm, followed by spraying the TLC plates with anisaldehyde-H2SO4 

reagent and subsequent heating at 110°C or by spraying with DPPH reagent to 

determine the antioxidative activity of compounds.  

 Fractions 1, 2, 3 with an Rf value of 0.71 (positive with DPPH) were 

collected and evaporated. The obtained brown powder was washed with ethyl 

acetate. The pure brown powder (3.9 gram) was found to be 9,12-

tricosandiene (101).  

 Fractions 4, 5, 7 with an Rf value of 0.88 (positive with DPPH) were 

collected and evaporated. To purify the fractions, the concentrated fraction was 

subjected to another silica gel column chromatography (SG-2) and eluted using 

chloroform. 29 fractions of 10 ml eluents were obtained. Fractions 50-56 which 

have 2 spots on TLC-2 with Rf values of 0.71 and 0.82 (both of them positive 

with DPPH) were collected and evaporated to achieve a yellowish solid. The 

obtained solid than was washed with MeOH. The solid phase was subsequently 

subjected to sephadex column chromatography (PC-1) and eluted by methanol 

producing 26 fractions. Fractions 1-4 were collected and evaporated. These 

fractions contained the mixture of ß-sitosterol and stigmasterol. Fractions 17-26 

were also collected and evaporated, then subjected to another sephadex column 

chromatography (PC-1). The elution was performed by methanol producing 27 

fractions. Fractions 28-36 which have an Rf value of 0.34 (positive with DPPH) 

were collected and purified through semipreparative-HPLC (Prep-1) giving 

compound G1 (Hexadecyl pentanoate). The methanol washing was 

evaporated and then subjected to another sephadex column chromatography 

using methanol as eluent (PC-1) to get 7 fractions. Fractions 3-5 which have Rf 

values of 0.87 and 0.70, respectively, (both of them positive with DPPH) were 

collected and purified using semipreparative-HPLC (Prep-1) and giving 

compound WuPe, being Palmitic acid. 
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 Fractions 8, 9, 10 have the same spot on TLC-1 with an Rf value of 

0.48 (positive with DPPH). Therefore, they were combined and then subjected to 

another silica gel column chromatography using dichloromethane-ethyl acetate 

(60:40) as a mobile phase (SG-3). Ten millilitre fractions were collected and 

evaluated by TLC-2. Fractions 9-16 have the same retention factor (Rf = 0.43) 

on TLC. They were combined and evaporated. The obtained solid was washed 

with methanol and recrystallized from petroleum ether and ethyl acetate to get a 

mixture (727 mg) which was identified as stigmasterol (109a) and ß-

sitosterol (109b). The MeOH washing was evaporated to dryness and then 

subjected to another silica column chromatography (SG-4). Elution was 

performed by a mixture of dichloromethane-ethyl acetate (50:50). 28 fractions of 

10 ml were collected and checked by TLC using silica gel as stationary phase, 

dichloromethane-ethyl acetate (6:4) as a mobile phase (TLC-2). Fractions 3-8 

with an Rf value of 0.60 (positive with DPPH) were collected and evaporated, 

giving yellowish oil (364 mg), which could be assigned to trilinolein (102). The 

isolation scheme of compounds in petroleum ether extract is displayed in 

Fig.II.6.1.1. 
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Note: detail elution systems of column chromatography, thin layer chromatography and 
preparative HPLC can be found on pages 32-34  

 
Fig. II.6.1.1. The isolation scheme of compounds in petroleum ether extract 
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II.6.2. Compound isolation of the ethyl acetate extract 

 The isolation of compounds from the ethyl acetate extract has been 

conducted according to the Fig.II.6.2.1. 

 The ethyl acetate extract (31.1 gram) obtained from the scheme in Fig. 

II.5.1 (p. 36) was subjected to silica gel column chromatography (SG-1) and 

eluted using the gradient mixture of petroleum ether-ethyl acetate and ethyl 

acetate-methanol producing 35 fractions of 100 ml eluents. There were 6 groups 

based on their profile TLC chromatograms.  

Fractions 6-11 which have an Rf value of 0.17 (positive with DPPH) were 

collected and evaporated. The fractions may contain antioxidative compounds 

because the spot was able to reduce DPPH. The concentrated fraction was then 

purified via another silica gel column chromatography (SG-5) using a mixture of 

petroleum ether-ethyl acetate (60:40, 25:75), ethyl acetate 100%, and then 

ethyl acetate-methanol (50:50) giving 44 fractions. Fractions 30-36 with an Rf 

value of 0.52 (positive with DPPH) on TLC-1 were evaporated and purified from 

impurities that have similar polarity to the target compound but different 

molecular size. The purification was carried out using column sephadex 

chromatography (PC-1). Fractions 9-15 from PC-1 were further subjected into 

preparative HPLC (Prep-2). 670 mg yellow crystal (A182) were obtained and 

identified as (8,9)-furanyl-pterocarpan-3-ol. Fractions 37-40 from column 

chromatography SG-5 with an Rf value of 0.35 on TLC-3 were collected and 

purified. The purification was conducted by other sephadex column 

chromatography giving 19 fractions. Fractions 7-11 of this chromatography had 

the Rf value of 0.85 (positive with DPPH). The fractions were evaporated and 

purified via preparative-HPLC (Prep-3) giving 33 mg of compound C1. Based on 

the GC/MS and NMR spectroscopic data, compound C1 was identified as 

daidzein. 

Fractions 13-16 from the first column chromatography SG-1 were 

collected and evaporated. The concentrated fraction contained white yellowish 

suspended materials and a brown solution. After filtration, the obtained solid 

phase was washed with chloroform, followed with methanol. The chloroform 

solution gave two spots on TLC-4 with Rf values of 0.70 and 0.49. Therefore, the 

solution was then purified by silica gel column chromatography (SG-6) and eluted 

using petroleum ether-ethyl acetate (3:7), ethyl acetate 100% and ethyl acetate-
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methanol (7:3) giving 14 fractions. Fractions 2-11 with an Rf value of 0.52 

(positive with Anisaldehyde-H2SO4) were collected and purified via preparative-

HPLC (Prep-4) producing 180 mg of compound W2Et. The structure of this 

compound was assigned to dihydrofurane-2,5-dione. 

Fractions 17-24 of the first column chromatography SG-1 with an Rf value 

of 0.52 (TLC-3) were collected and evaporated. The concentrated fraction was 

analyzed by analytical HPLC using a gradient mixture of methanol-water as a 

mobile phase. The chromatogram has two peaks at 11.4 min and 12.6 min, 

respectively. To isolate the compounds, the preparative HPLC (Prep-2) has been 

conducted using the same program as in analytical HPLC. The isolated 

compounds were then elucidated. Based on their spectroscopic data, the 

compound with a retention time of 11.4 min (Wu1a) was assigned to daidzein-

7-O-ß-glucopyranose, while the other compound having a retention time of 

12.6 was assigned to 5-hydroxy-daidzein-7-O-ß-glucopyranose. 
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Note: detail elution systems of column chromatography, thin layer chromatography and 
preparative HPLC can be found on pages 32-34  

 
Fig. II.6.2.1. The isolation scheme of compounds in the ethyl acetate extract 
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II.6.3. Compound isolation of the butanol extract 

The isolation of compounds in butanol extract obtained from the scheme 

in Fig II.5.1 (p. 36) has been conducted according to the scheme in Fig.II.6.3.2. 

A small quantity of the butanol extract was analyzed by analytical HPLC using a 

gradient mixture of methanol-water as a mobile phase. The chromatogram has a 

main peak at 18.9 min (fig. II.6.3.1). The butanol extract was then purified 

through the semipreparative-HPLC using the same elution program to get 70 mg 

compound WuBuOH that was assigned to (2-Butoxy-2,5-bis-(hydroxyl-

methyl)-tetrahydrofurane-3,4-diol). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  the elution program of preparative HPLC can be read on page 34 

 
 

Fig. II.6.3.2. The isolation scheme of compounds in the butanol extract 
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II.6.4. Compound isolation of the ethyl acetate extract after hydrolyis 

The isolation of compounds in the ethyl acetate extract after 

hydrolyzation has been conducted to get the active compounds in aglycon forms. 

The procedure was performed according to the scheme II.6.4.1.  

The ethyl acetate extract after hydrolyzation (10.08 gram) was subjected 

to silica gel column chromatography (SG-1) and eluted with a gradient mixture of 

petroleum ether-ethyl acetate and ethyl acetate-methanol producing 29 fractions 

of 100 ml eluents.  

Fractions 10-12 from the silica column chromatography (SG-1) were 

collected and evaporated. The small quantity of the concentrated fraction was 

analyzed by analytical-HPLC using column C18 and a gradient mixture of 

methanol-water as a mobile phase. There was a main peak on the chromatogram 

at 11.8 min. Therefore, the concentrated fraction was purified via preparative-

HPLC (Prep-6) using the same elution program obtained in analytical-HPLC. From 

this step, the compound HWu10 (30 mg) was obtained and was identified as 

4-(2-(furane-2-yl)ethyl)-2-methyl-2,5-dihydrofurane-3-carbaldehyde (C12H14O3). 
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Note: detail elution systems of column chromatography, thin layer chromatography and 

preparative HPLC can be found on pages 32-34 

 
Fig. II.6.4.1. The isolation scheme of compounds in the ethyl acetate after 

hydrolysis extract 

 

 

II.7. Structure elucidation  

The structure elucidation of the isolated compounds was based on 

spectroscopic data, including UV spectra, IR spectra, 1H NMR (400.13 MHz) 

spectra, 13C NMR (100.61 MHz) and mass spectra.  
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II.8. Determination of UV absorption activity 

The isolated compounds were analyzed by HPLC using C18 as a stationary 

phase and a mixture of methanol-water as a mobile phase and UV detector. As a 

standard, p-aminobenzoic acid was used. By comparing AUC (area under the 

curve) value of the chromatograms of isolated compounds and p-aminobenzoic 

acid, the UV absorption activity can be described. 

 

II.9. Determination of whitening activity 

The step of determining the whitening activity consists of 5 parts, namely 

determination of total phenol contents, determination of total flavonoid contents, 

antioxidative activity, determination of tyrosinase inhibition and determination of 

tyrosinase inhibition type. 

 

II.9.1. Determination of total phenol contents : 

The amount of phenol compounds in the extracts was determined by the 

Folin-Ciocalteau colorimetic method as described by Singleton and Rossi (1965) 

with a slight modification. An aliquot (200 µl) of the extracts or a standard 

solution of gallic acid (20, 40, 60, 80 and 100 ppm) was added to 5 ml volumetric 

flask, containing 2 ml of destilled deionised water. A reagent blank using 

deionised H2O was prepared. 200 µl of Folin-Cioacalteau phenol reagent was 

added to the mixture and shaken. After 5 min, 2 ml of 7% Na2CO3 solution was 

added to the mixture. The solution was diluted to 5 ml with deionised H2O and 

mixed. After incubation for 90 min at room temperature, the absorbance was 

measured against a blank solution at wavelength 755 nm with an UV-Vis 1240 

spectrophotometer. The total phenol content of the extracts was expressed as 

gallic acid equivalent (GAE) in mg/g extract. Determinations were carried out in 

triplicate. 

 

II.9.2. Determination of total flavonoid contents : 

Total flavonoid content was measured by the aluminium chloride 

colorimetric assay as described by Zhisen et al. (1999) with a slight modification. 

An aliquot (1 ml) of the extracts or standard solution of catechin (20, 40, 60, 80 

and 100 ppm) was added to a 10 ml volumetric flask containing 4 ml of deionised 

H2O and then 0.3 ml of 5% NaNO2 was added. After 5 min, 0.3 ml of 10% AlCl3 
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was added and followed by 2 ml of 1M NaOH at the sixth minutes. The total 

volume was made up to 10 ml with deionised H2O. The solution was mixed well 

and the absorbance was measured against a blank at 500 nm (obtained from 

Figure III.15.1). Determinations were carried out in triplicate and calculated from 

a calibration curve obtained with catechin. The total flavonoid contents were 

expressed as mg catechin equivalents (CE)/g extract.  

 

II.9.3. Antioxidative activity assay : 

The antioxidative activities of crude extracts and isolated compounds were 

evaluated by measure the scavenging activity assay against DPPH radical with 

ascorbic acid as a positive control (IC50 7.24 ppm) according to Wang et al. 

(2006) and Dickson et al. (2007). 4 ml of 100 µM 1,1-Diphenyl-2-picrylhydrazyl 

(DPPH) solution in methanol was thoroughly mixed with 1 ml of a sample 

solution at various concentration. The mixture was kept in the dark for 30 

minute. The absorbance of these solutions was measured at 517 nm. The 

concentration in ppm at which the absorbance decreases to 50% of its initial 

value was used as the SC50 value for each test solution. All tests were done in 

triplicate. 

 

II.9.4. Tyrosinase inhibition assay :  

Tyrosinase inhibitory activity of crude extracts and isolated compounds 

was measured according to Hearing (1987) and Rangkadilok et al. (2006) with a 

slight modification, using mushroom tyrosinase as the enzyme, L-DOPA as a 

substrate and kojic acid as a positive control. An aliquot (50 µl) of samples in 

DMSO was mixed with 100 µl of 200 IU/ml of mushroom tyrosinase and 100 µl of 

phosphate buffered saline (pH 6.8). The assay mixture was pre-incubated at    

37 °C for 10 min and then 100 µl of L-1,4-dihydroxyphenylalanine (L-DOPA) 

solution 7.6 mM was added. The reaction was then further incubated for 15 min 

at 37 ºC. The dopachrome was measured at 475 nm using a UV/Vis 

spectrophotometer (A). As a blank, DMSO was used, being B. As a colour control 

test, phosphate buffer was used instead of the enzyme tyrosinase, being C. The 

percentage of tyrosinase inhibitions were expressed as a percentage of inhibition 

of tyrosinase activity and calculated as follows: 

Tyrosinase inhibition (%) = {B-(A-C)}/B X 100% 
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Kojic acid was used as a standard inhibitor for tyrosinase. All tests were done in 

triplicate. 

 

II.9.5. Determination of the tyrosinase inhibition type : 

Determination of the tyrosinase inhibition type of isolated compounds was 

carried out according to Chen and Kubo (2002) with a little modification. Enzyme 

activity was determined at 25°C by following the increase in absorbance at     

475 nm accompanying the oxidation of the substrate (L-DOPA). One unit (U) of 

enzymatic activity was defined as the amount of enzyme that increasing 0.001 

absorbance at 475 nm in this condition. The progress of substrate reaction was 

applied to the current study of the inhibition kinetics of mushroom tyrosinase by 

isolated compounds. In this method, the mushroom tyrosinase (1.0 mg/mL in  

0.1 M phosphate buffer pH 6.8) was first diluted 50 times with water, and then 

50 µl of the solution was added to 200 µl of an assay substrate solution with    

25 µl DMSO containing different concentrations of the isolated compounds. The 

increasing UV/Vis absorbance of this mixture was immediately measured at 475 

nm for 20 min for detection of dopachromed formed. The concentrations of 

substrate solutions (DOPA solution in phosphate buffer pH 6.8) used in this 

experiment were 0.6; 0.8; 1.0; 1.5 and 2.0 mM.  The substrate reaction progress 

curve was analysed to obtain the reaction rate constants (V) expressed in 

(unit/min). The reaction rate constant (V) was the slope of the plots of the 

absorption value (as Y axis) and time (as X axis). The Lineweaver-Burk plot, the 

correlation between 1/[concentration of the DOPA solution] versus 1/V in the 

presence of different concentrations of the isolated compounds, was performed 

to evaluate the type of the tyrosinase inhibition of the isolated compounds. The 

compound could be included in a competitive inhibitor group, if the increase of 

the compound concentration produced a series of lines with a common intercept 

on the 1/V axis but with different slopes. If the increase of the compound 

concentration produced a series lines with the same intercept on the 1/S axis 

with also different slopes, the compounds were assigned to be a non-competitive 

inhibitor. 
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CHAPTER III 
 RESULTS AND DISCUSSIONS 

 

III.1. Profil Chromatogram of bengkoang extracts  

The TLC analysis of bengkoang extracts (petroleum extract, ethyl acetate, 

butanol and ethyl acetate after hydrolysis extract) has been carried out to find 

out how many compounds are in each extracts and their distribution. This step 

was necessary before doing isolation and determination. Figure III.1.1 displays 

the TLC chromatogram of bengkoang extract. The TLC was performed on silica 

gel with a mixture of petroleum ether-ethyl acetate (6:4) as an eluent and 

detected under UV light at 254 nm. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
 

Fig. III.1.1 The TLC chromatogram. Spots from left to right were ethyl 

acetate extract (1), ethyl acetate after hydrolysis extract (2), petroleum ether 
extract (3) and butanol extract (3) 

 

The chromatogram did not show any separation for the butanol extract 

and the ethyl acetate after hydrolysis extract. This result might be due to the fact 

that both extracts have only polar compounds. The ethyl acetate extract 

contained the same apolar compounds as found in the petroleum ether extract, 

but their concentrations were lower than in the petroleum ether. After 

purification and structure elucidation, the compounds could be assigned to 9,12-

1 2 3 4 
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tricosandiene (Rf 0.9), 

pentanoate (Rf 0.6) and a mixt

A HPLC chromatography using Zorbax C18 and a gradient mixture of 

methanol-H2O has been 

extract and the ethyl acetate after hydrolysis extract

was to investigate the 

extracts. The HPLC chromatogram of the 

with retention times of 11.3; 12.

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.1.2. HPLC chromatogram of the ethyl acetate extract. Column: 

Zorbax SB-C18 (25 cm, i.d. 0,46 cm, 5 µm particle size), eluent: a gradient 

 

After purification, isolation and structure elucidation, 

polar substance could be assigned to

(Tr = 11.3 min), daidzein

15.1 min) and (8,9)-fura

Wu1
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9), trilinolein (Rf 0.8), palmitic acid (Rf 0.7), 

6) and a mixture of ß-sitosterol and stigmasterol (Rf 0.

HPLC chromatography using Zorbax C18 and a gradient mixture of 

O has been carried out with the ethyl acetate extract, the butanol 

extract and the ethyl acetate after hydrolysis extract. The aim of the

the semi polar and polar compounds contents

The HPLC chromatogram of the ethyl acetate extract shows

times of 11.3; 12.6; 15.1 and 18.2 min as in Figure III.1.2

 

 
 

 
 

 

 
 

 
Fig. III.1.2. HPLC chromatogram of the ethyl acetate extract. Column: 

C18 (25 cm, i.d. 0,46 cm, 5 µm particle size), eluent: a gradient 

mixture of MeOH-water 

After purification, isolation and structure elucidation, the semi pola

ould be assigned to 5-hydroxy-daidzein-7-O-ß-glucopyranose

min), daidzein-7-O-ß-glucopyranose (Tr = 12.7 min), daidzein (Tr = 

furanyl-pterocarpan-3-ol (Tr = 18.2 min). The compound 

Wu1a 

A182 

C1 

Wu3a 

7), hexadecyl 

tosterol and stigmasterol (Rf 0.5). 

HPLC chromatography using Zorbax C18 and a gradient mixture of 

the ethyl acetate extract, the butanol 

The aim of the experiment 

semi polar and polar compounds contents of those 

shows four peaks 

igure III.1.2.  

Fig. III.1.2. HPLC chromatogram of the ethyl acetate extract. Column: 

C18 (25 cm, i.d. 0,46 cm, 5 µm particle size), eluent: a gradient 

semi polar and 

glucopyranose   

7 min), daidzein (Tr = 

2 min). The compound 
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having a retention time

antioxidative activity. 

The HPLC analysis

with the ethyl acetate after hydrolysi

III.1.3 and III.1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.III.1.4. Chromatogram of the ethyl acetate 

obtained with a column

size) using a gradient mixture of MeOH

 
Isolation and structure elucidation revealed

bis(hydroxymethyl)-tetrahydrofuran

Fig. III.1.3. Chro
 obtained with a column 

using a gradient mixture me

Hwu10
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retention time of 7.1 min wasn’t further analyzed, because it had no 

The HPLC analysis has been carried out with the butanol extract and also 

the ethyl acetate after hydrolysis extract. The results can be seen in 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
Fig.III.1.4. Chromatogram of the ethyl acetate after hydrolysis extract 

obtained with a column Zorbax SB-C18 (25 cm, i.d. 0,46 cm, 5 µm particle 

a gradient mixture of MeOH-water as mobile phase and UV 
detection at 254 nm 

tion and structure elucidation revealed 2

tetrahydrofurane-3,4-diol (WuBuOH) from the but

Fig. III.1.3. Chromatogram of the butanol extract
column Zorbax SB-C18 (25 cm, i.d. 0,46 cm, 5 µm particle size) 

mixture methanol-water as a mobile phase and UV 

254 nm 

WuBuOH 

Hwu10 

min wasn’t further analyzed, because it had no 

has been carried out with the butanol extract and also 

seen in Figures 

after hydrolysis extract 

d. 0,46 cm, 5 µm particle 

as mobile phase and UV 

2-butoxy-2,5-

from the butanol 

matogram of the butanol extract  
d. 0,46 cm, 5 µm particle size) 

and UV  detection at 
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extract and the 4-(2’-(furane-2yl)-2-methyl-2,5-dihydrofurane-3-carbaldehyde 

(HWu10) in the ethyl acetate after hydrolysis extract. Table III.1.1 summarizes 

the isolated compounds of the bengkoang extract.  

 
Table III.1.1 The chemical structure of isolated compounds 

Code of compound Chemical structure of compound 

Petroleum ether extract  
101 9,12-Tricosandiene 
102 Trilinolein 
109a and 109b ß-Sitosterol and Stigmasterol 
WuPe Palmitic acid 
G1 Hexadecyl pentanoate 

Ethyl acetate extract  
C1 Daidzein 
W2Et Dihydrofurane-2,5-dione 
Wu1a Daidzein-7-O-ß-glucopyranose 
Wu3a 5-hydroxy-daidzein-7-O-ß-glucopyranose 
A182 (8,9)-Furanyl-pterocarpan-3-ol 

n-butanol extract  

WuBuOH 2-Butoxy-2,5-bis(hydroxymethyl)-
tetrahydrofurane-3,4-diol 

Ethyl acetate after hydrolysis  

HWu10 
4-(2-(Furane-2-yl)ethyl)-2-methyl-2,5-
dihydrofurane-3-carbaldehyde 

 
 

III.2. Compound 101 (9,12-Tricosandiene) 

 

Fig. III.2.1. The chemical structure of compound 101 (9,12-Tricosandiene) 

 

Compound (101) was obtained from petroleum ether extract as brown 

powder. The EI-MS of the compound 101 (Fig.III.2.2) shows a molecular ion 

signal at m/z 320. The molecular formula was confirmed as C23H44. In the UV 

spectrum, a maximum absorption was observed at 275 nm suggesting the 

presence of at least a C-C double bond. The IR spectrum indicated the presence 

of C-C double bond (1737 cm-1), –CH aliphatic groups (2921 cm-1), and –CH2 

(1464 cm-1). 
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The chemical shift values of 1H NMR and 13C NMR spectra in Table III.2.1 

show typical signals of olefin hydrocarbon. The 1H NMR spectrum displays a 

signal for double bond group (δH 5.12; q). The δC 128 and 131 ppm in the 13C 

NMR spectrum are indicative of the double bonds. The presence of double bonds 

at C9 and C12 was also deduced from the characteristic fragment ion peaks in the 

mass spectrum as in Figure III.2.2. 

 
Table III.2.1. Chemical shift value (δ) in ppm of compound 101 measured in 
CDCl3 

 
C/H δ H (ppm) δ C (ppm) δ* C (ppm) 

1 0.66 (3H, t) 14.11 14.10 
2 1.18 (2H, m) 22.70 22.70 
3 1.18 (2H, m) 31.52 31.80 
4 1.18 (2H, m) 25.63 29.30 
5 1.18 (2H, m) 29.35 29.70 
6 1.18 (2H, m) 29.35 29.70 
7 1.18 (2H, m) 29.79 29.90 
8 1.92 (2H, q) 31.94 33.80 
9 5.12 (1H, q) 130.20 132.10 
10 5.12 (1H, q) 127.88 127.30 
11 2.55 (2H, t) 34.12 37.60 
12 5.12 (1H, q) 127.88 127.30 
13 5.12 (1H, q) 130.20 132.10 
14 1.92 (2H, q) 31.94 33.80 
15 1.18 (2H, m) 29.79 29.90 
16 1.18 (2H, m) 29.35 29.70 
17 1.18 (2H, m) 29.35 29.70 
18 1.18 (2H, m) 29.79 29.60 
19 1.18 (2H, m) 29.79 29.60 
20 1.18 (2H, m) 25.63 29.30 
21 1.18 (2H, m) 31.52 31.80 
22 1.18 (2H, m) 22.70 22.70 
23 0.66 (3H, t) 14.11 14.10 

 
Note : δ* C are estimated values using ChemDraw Ultra 9.0 Software 
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 These observations were further confirmed by the analysis of the HMQC, 

HMBC and COSY experiments. The COSY experiments (Fig.III.2.2) show the 

expected correlations between the protons H8 at δ 1.92 ppm with H9 at δ 5.12 

ppm, H13 at δ 5.12 ppm with H14 at δ 1.92 ppm, H13 at δ 5.12 ppm with H12 at δ 

5.12 ppm, H7 at δ 1.18 ppm with H8 at δ 1.92 ppm, H14 at δ 1.92 ppm with H15 at 

δ 1.18 ppm. Based on the COSY data, it could be concluded that the position of 

two double bonds is separated by one –CH2 moiety. 
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Fig. III.2.2. Mass fragmentation patterns of compound 101 
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Fig.III.2.3. COSY diagram of compound 101 

 

The HMBC diagram (Fig.III.2.4) reveals significant correlations between 

H10 and C8, H12 and C14, H11 and C9, H11 and C13, H3 and C1, H21 and C23, H8 and 

C9, H14 and C13, H1 and C3, H23 and C21. The selected HMBC correlation of 

compound 101 can be found in Figure III.2.5. All of the data above proved the 

structure of 101 as 9,12-tricosandiene. 
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Fig. III.2.4

 
 

III.3. Compound 102 (Trilinolein)

Fig. III.3.1. Chemical structure of compound 102 (Trilinolein)

 
Compound 102 was isolated as yellowis

maximum absorption at 247 nm. The EI

879 corresponding to the molecular formula C

O

H O
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H

O

O
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Fig. III.2.4. HMBC diagram of compound 101 

ompound 102 (Trilinolein) 

 
Chemical structure of compound 102 (Trilinolein)

Compound 102 was isolated as yellowish oil. The UV spectrum displays

sorption at 247 nm. The EI-MS gives a molecular ion peak at m/z 

879 corresponding to the molecular formula C57H98O6. The IR spectrum shows

CH37'
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Chemical structure of compound 102 (Trilinolein) 

h oil. The UV spectrum displays a 
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signal at 1742 cm-1 indicating the presence of –C=O group, 1162 cm-1 indicating 

an ester group and 1647 cm-1 indicating a C-C double bond. 

 

Table III.3.1. 1H NMR and 13C NMR spectroscopic data of compound 102 
measured in CDCl3 

 
C/H δH (ppm) δ*H (data base) δC (ppm) δ*C (data base) 

1a 
1b 

4.27 (dd) 
4.12  (dd) 

4.295 
4.147 

62.90 
62.09 

62.14 
62.14 

2 5.25 (m) 5.270 68.89 69.00 
3a 
3b 

4.27 (dd) 
4.12 (dd) 

4.295 
4.147 

62.90 
62.09 

62.14 
62.14 

1’ - - 173.33 173.13 
2’ 2.29 (t) 2.315 34.28 34.05 
3’ 1.58 (m) 1.610 25.07 24.87 
4’ 1.25 (m) 1.301 29.24 29.12 
5’ 1.25 (m) 1.301 29.24 29.12 
6’ 1.25 (m) 1.301 29.24 29.12 
7’ 1.29 (m) 1.360 29.86 29.63 
8’ 2.05 (q) 2.049 27.32 27.22 
9’ 5.32 (m) 5.351 130.11 129.99 
10’ 5.32 (m) 5.351 128.21 128.12 
11’ 2.78 (t) 2.769 25.73 25.68 
12’ 5.32 (m) 5.351 128.03 127.95 
13’ 5.32 (m) 5.351 130.34 130.21 
14’ 2.05 (q) 2.049 27.32 27.22 
15’ 1.29 (m) 1.361 29.86 29.63 
16’ 1.25 (m) 1.301 31.45 31.54 
17’ 1.25 (m) 1.301 22.62 22.58 
18´  0.87 (m) 0.889 14.27 14.04 

 

Note : δ* is obtained from data base SDBS AIST Japan 

 

The 13C NMR spectrum of compound 102 in Table III.3.1 showed six 

double bonds (δC 128.21 ppm and δC 130.11 ppm) and three quaternary carbon 

atoms (δC 173.33; 172.97; 173.33 ppm). The 1H NMR spectrum of compound 

102 showed a signal at δH 5,32 ppm indicating the presence of H double bonds. 

Signals at δH 4.27 and 4.12 ppm indicated protons that were close with the atom 

oxygen probably in the glycerol chain. 

The COSY, HMQC and HMBC experiments allowed the identification of all 

protons of the compound and the corresponding carbons. The COSY correlations 

(Fig. III.3.2) between H8 and H9; H13’ and H14’; H2 and H1; H2 and H3; H11 and 

H12’; H11’ and H10’; H14’ and H15’; H8’ and H7’; H3’ and H2’ and H17’ and H18’ 

supported the compound 102 as trilinolein.  
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Fig. III.3.2. COSY diagram of compound 102 measured in CDCl3 

 

Some of the 1H-13C-long range correlations observed in the HMBC 

diagram (Fig. III.3.3) confirmed that the structure of 102 was trilinolein or 1,2,3-

propanetriyl-tris(cis-9,12-octadecadienoate). All of these data proved the 

structure of the compound 102 as trilinolein. 
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Fig. III.3.3. HMBC diagram of compound 102 

 

III.4. Compound 109a and 109b (ß-sitosterol and stigmasterol) 

 

 

 

 

 

 

 

 

 

Fig. III.4.1. The chemical structure of compounds 109a and 109b 
 

The mixture of compounds 109a and 109b has been isolated from 

fractions 8, 9, 10 of the petroleum ether extract as white needle crystals having a 

melting point of 136-139 °C. UV maximum absorptions were found at 245 nm 
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and 291 nm indicating the presence of a chromophor, such as a C

bond. The band at 1699 cm

or C=O. Additionally the IR spectrum showed 3364

(-C-H aliphatic group), 1463 cm

cm-1 (-C-O-C group). 

 

Fig. III.4.2. GC/MS chromatogram of the mixture of compound 109a and 109b

 

The GC/MS chromatogram in F

retention times of 31.2 

at m/z 412 and 414, respectively. They a

C29H48O (e.g. stigmasterol) and C

The presence of the hydroxyl group was

18 mass units in both EI mass spectrums. The existence 

was represented in the 

(quarternary carbon), 121.9 ppm (CH), 129.4 ppm (CH) and 138.

The carbon chemical shift data of 109a was similar to 109b, except δ C

The carbon chemical shifts of C

ppm, respectively. Meanwhile the carbon chemical shifts of C

were 28.3 ppm and 129

of the 13C NMR spectrum 

stigmasterol and ß-sitosterol

also with the database in SDBS AIST Japan.
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and 291 nm indicating the presence of a chromophor, such as a C

bond. The band at 1699 cm-1 of the IR spectrum indicated the presence of C=C 

or C=O. Additionally the IR spectrum showed 3364 cm-1 (–OH group), 2925

H aliphatic group), 1463 cm-1 (-CH group), 1375 cm-1 (-CH group) and 1051 

MS chromatogram of the mixture of compound 109a and 109b

chromatogram in Figure III.4.2 shows two peaks with 

.2 and 32.4 min, corresponding to the molecular ion peaks 

2 and 414, respectively. They are consistent with the molecular formula 

O (e.g. stigmasterol) and C29H50O (e.g. ß-sitosterol). 

e of the hydroxyl group was supported by the strong loss of 

18 mass units in both EI mass spectrums. The existence of a double bond of C

represented in the 13C-NMR by four downfield signals at δ140.9 ppm 

(quarternary carbon), 121.9 ppm (CH), 129.4 ppm (CH) and 138.

The carbon chemical shift data of 109a was similar to 109b, except δ C

The carbon chemical shifts of C22 from 109a and 109b were 33.9 ppm and 138

ppm, respectively. Meanwhile the carbon chemical shifts of C23 of 109a and 109b 

129.4 ppm, respectively.  All the carbon chemical shift data 

C NMR spectrum (Table III.4.1) were in a close agreement with those of 

sitosterol in literature reported (Kovganko et al. 2000) and 

also with the database in SDBS AIST Japan. 

 
31.2 min 
 m/z 412 (109a) 

 32.4 min 
m/z 414 (109b)

and 291 nm indicating the presence of a chromophor, such as a C-C double 

R spectrum indicated the presence of C=C 

OH group), 2925 cm-1 

CH group) and 1051 

 

MS chromatogram of the mixture of compound 109a and 109b 

two peaks with 

the molecular ion peaks 

re consistent with the molecular formula 

supported by the strong loss of 

of a double bond of C-C 

downfield signals at δ140.9 ppm 

(quarternary carbon), 121.9 ppm (CH), 129.4 ppm (CH) and 138.5 ppm (CH). 

The carbon chemical shift data of 109a was similar to 109b, except δ C22 and C23. 

9 ppm and 138.5 

of 109a and 109b 

the carbon chemical shift data 

) were in a close agreement with those of 

et al. 2000) and 

m/z 414 (109b) 
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Fig. III.4.3. COSY diagram of the mixture of compound 109a and 109b 
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Tabel III.4.1. 1H NMR and 13C NMR spectroscopic data of the mixture of 
compound 109a and 109b measured in CDCl3 

 

C 
Compound 109a (Stigmasterol) Compound 109b (ß-sitosterol) 

δH δC δC* δH δC δC* 

1 
1.84 (1H, m); 
1.30 (1H, m) 

37.4 37.2 
1.84 (1H, m);  
1.30 (1H, m) 

37.4 37.3 

2 1.50 (2H, m) 28.4 31.3 1.50 (2H, m) 28.4 31.6 
3 3.50(3H, m) 71.9 70.3 3.50 (3H, m) 71.9 71.7 
4 2.27 (2H, m) 42.5 42.0 2.27 (2H, m) 42.5 42.3 
5 - 140.9 141.6 - 140.9 140.8 
6 5.34 (1H, dd) 121.9 120.2 5.34 (1H, dd) 121.9 121.6 
7 1.98 (2H, m) 32.0 31.6 1.98 (2H, m) 32.0 31.9 
8 1.70 (1H, m) 32.1 31.8 1.70 (1H, m) 32.1 31.9 
9 0.92 (1H, m) 50.3 50.1 0.92 (1H, m) 50.3 50.2 
10 - 36.7 36.3 - 36.7 36.5 
11 1.50 (2H, m) 20.0 20.8 1.50 (2H, m) 20.0 21.1 
12 2.01 (2H, m) 39.9 39.4 2.01 (2H, m) 39.9 39.8 
13 - 46.0 42.4 - 46.0 42.3 
14 1.10 (1H, m) 56.9 56.5 1.10 (1H, m) 56.9 56.8 

15 
1.09 (1H, m), 
1.70 (1H,m) 

23.2 23.9 
1.09 (1H, m),  
1.70 (1H,m) 

23.2 24.3 

16 1.70 (2H, m) 26.3 28.1 1.70 (2H, m) 26.3 28.3 
17 1.20 (1H, m) 56.2 55.9 1.20 (1H, m) 56.2 56.1 
18 0.68 (3H, s) 12.0 11.8 0.68 (3H, s) 12.0 11.9 
19 1.01 (3H, s) 19.2 19.1 1.01 (3H, s) 19.2 19.4 
20 1.28 (1H, m) 40.6 40.3 1.28 (1H, m) 40.6 36.2 
21 0.92 (3H, s) 19.6 20.6 0.92 (3H, s) 19.6 18.8 
22 5.01 (1H, dd) 138.5 137.7 1.20 (2H, m) 33.90 33.9 
23 5.16 (1H, dd) 129.4 129.3 1.7 (2H, m) 28.30 26.1 
24 1.50 (2H, m) 51.4 50.6 1.50 (2H, m) 51.4 45.9 
25 1.20 (2H, m) 24.5 24.7 1.2 (2H, m) 24.5 23.1 
26 0.83 (3H, d) 12.3 11.9 0.83 (3H, d) 12.3 12.3 
27 1.90 (1H, m) 29.3 31.50 1.90 (1H, m) 29.3 29.2 
28 0.83 (3H, d) 18.9 18.90 0.83 (3H, d) 18.9 19.1 
29 0.83 (3H, d) 21.2  21.04 0.83 (3H, d) 21.2 19.8 
 Note : δC* is data base of carbon chemical shift from SDBS AIST Japan 

 
The downfield signal in the 1H-NMR spectrum at δ 5.34 (1H, dd) was due 

to an olefinic proton at C6 and a methine proton at C3 was represented by 

multiplet signal at 3.50 (1H, m). The presence of a pair of doublets at δ 5.01 and 

δ 5.16 was due to the sp2 methine protons at C22 and C23 in molecule 109a. The 

existence of six methyl signals was also noted at δ 0.68 (H3-C18), 1.01 (H3-C19), 

0.92 (H3-C21), 0.83 (H3-C28), 0.83 (H3-C29).  

The COSY correlations between H6 and H7; H22 and H23; H3 and H4; H11 

and H12; H1 and H2; H2 and H3; H20 and H22 supported the stigmasterol and ß-

sitosterol (Fig. III.4.3). Some of the 1H-13C-long range correlations (Figure 



Chapter III. Results and discussions 

63 
 

III.4.4) observed in the HMBC diagram confirmed that the structures of 109a and 

109b were stigmasterol and ß-sitosterol. 

 

 

 
Fig. III.4.4. HMBC diagram of the mixture of compounds 109a and 109b 
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The mass fragmentation pattern of the 109a is displayed in Figure III.4.5. 

The molecular ion of 109a was observed at m/z 412. The loss of water from 109a 

was indicated by the presence of a fragment ion at m/z 394. The subsequent 

fragment at m/z 379 might be due to the loss of a methyl group. The signal at 

m/z 271 was the characteristic of the stigmasterol fragmentation due to the loss 

of side chain followed by the loss of two hydrogen atoms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.4.5. Mass fragmentation pattern of compound 109a 

The mass fragmentation pattern above was in accordance with previously 

paper. Chaves et al. (2004) found in GC/MS the fragments with m/z value of   

412 (M+.), 271 and 273. Based on the above fragmentation, this substance 109a 

was identified as stigmasterol. 

The Figure III.4.6 displays a mass fragmentation pattern of 109b having 

a molecular ion m/z 414. The fragment ions at m/z 396 and 381 were due to the 

loss of water and followed by a methyl group from the molecular ion. The 

characteristic observed in the mass spectrum of 109b was the presence of a 

fragment ion peak at m/z 273. This signal was in a close agreement with the loss 

of side chain caused by the fission of C17-C20 bond. This was further fragmented 

producing water. From this process, the signal at m/z 255 was observed.  

H3C

H3C

H3C

CH3

CH3

CH3

-H2O 

-CH3 

m/z 379 

C24-C27 
Cleavage 

-CH3-CH2=CH2 

m/z 351 

m/z 412 

m/z 273 

m/z 271 

m/z 255 

- H2O - H2 

CH3

CH3

HO

CH3

CH3

- H2 

C17 –C20 cleavage + 

C

H3C

H3C

CH3

CH3

CH3

HO

HH

H

H
H

H

H

H2C

CH3

CH3

CH3

CH3

CH3

HO

H
H

H

H

m/z 394 



Chapter III. Results and discussions 

65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.4.6. Mass fragmentation pattern of compound 109b 

 

The fragmentation pattern above is in accordance to Zhang (2005):       

ß-sitosterol in acid solution produces positive signals at m/z 382 and 397 with 

intensities 52 and 100, respectively. The signal at m/z 397 was assigned to 

(M+H+– H2O) and the signal at m/z 382 to (M+H+ – H2O - CH3). In addition, 

Berezin et al. (2004) and Huang et al. (2007) have investigated the 

fragmentation of ß-sitosterol and stigmasetrol using HPLC-MS equipped with 

APCI. The result showed that ß-sitosterol and stigmasterol were protonated by a 

reactive species in the plasma of ion source. ß-Sitosterol had an exact mass of 

414.39, which became 397.38 after protonation and loss of water. While 

stigmasetrol had an exact mass of 412.41 which became 395.4 after protonation 

and loss of water. 

All these spectroscopy data proved the structure of the substance 109b as 

ß-sitosterol. The concentration ratio of stigmasterol and ß-sitosterol from this 

fraction was 35 : 65 (Fig. III.4.2). 
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III.5. Compound G1 (Hexadecyl pentanoate) 

 

 
Fig. III.5.1. The chemical structure of compound G1 (hexadecyl pentanoate) 

 
Compound G1 was isolated from the petroleum extract as yellowish oil. In 

IR spectrum a signal at 2925 cm-1 was observed due to aliphatic C-H stretching. 

The peak at 1739 cm-1 (C=O) and 1175 cm-1 (C-O) indicates the presence of the 

ester group. In 1H NMR spectrum, the downfield δ at 4.07 ppm appears as a 

triplet due to –COOCH2CH2- group while the signal δ at 2.28 as a triplet appears 

due to -CH2-COO-. The complete data of 1H NMR and 13C NMR of the compound 

G1 can be found in Table III.5.1. The result of ESI-LCMS experiment which can 

be found in Figure III.5.2 shows the peak at m/z 327.7 due to ( M+1 ) which is 

confirmed as C21H42O2. The peak at 284 was due to the loss of C3H7 (39). 

Table III.5.1. NMR spectroscopic data of compound G1 measured in CDCl3 
 

C/H δ H (ppm) δ* H (ppm) δ C (ppm) 
1 0.81 0.85 14.06 
2 1.23 1.25 22.64 
3 1.56 1.62 24.85 
4 2.28 2.32 34.06 
5 - - 173.88 
1’ 4.07 4.07 65.01 
2’ 1.56 1.62 24.85 
3’ 1.23 1.37 29.08 
4’ 1.23 1.37 29.08 
5’ 1.18 1.27 29.65 
6’ 1.18 1.27 29.65 
7’ 1.18 1.27 29.65 
8’ 1.18 1.27 29.65 
9’ 1.18 1.27 29.65 
10’ 1.18 1.27 29.65 
11’ 1.18 1.27 29.65 
12’ 1.18 1.27 29.65 
13’ 1.18 1.27 29.65 
14’ 1.18 1.27 31.88 
15’ 1.18 1.27 22.64 
16’ 0.81 0.85 14.06 

   Note : δ* H was obtained from Sharma, 2008 
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The COSY experiments (Fig. III.5.2) show the expected correlations between the 

protons of H1-H2, H15’-H16’, H3-H2, H2’-H3’ and H3-H4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.5.2. The COSY diagram of compound G1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.5.3a. The HMBC diagram of the compound G1 
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Fig. III.5.3b. The 1H-13C-long range correlation of the compound G1 

 

The HMBC diagram (Fig. III.5.3a) above reveals significant correlations between 

H16’ and C15’, H16’ and C14’, H4 and C3 and H4 and C5. 

 Figure III.5.4 displays the ESI-MS data. Signal at 327.7 and 284.0 were 

due to (M+1) and (M+1)-39, respectively. The signal at 414.8 might be due to 

the contamination of ß-sitosterol, because the retention factor of ß-sitosterol 

(0.52) was very close to retention factor of compound G1 (0.6). Therefore both 

of the compounds cannot be separated perfectly by column chromatography. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. III.5.4. ESI-MS data and fragmentation pattern of the compound G1 

 

Based on all of the data above, the structure of the compound G1 was 

determined as hexadecyl pentanoate. 
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III.6. Compound WuPe (Palmitic acid) 

 

 

 

 

Fig. III.6.1. The chemical structure of compound WuPe 
 

Compound WuPe was isolated from the petroleum extract as white 

crystals. The IR spectrum shows peaks at 2914 cm-1 and 2847 cm-1 due to 

aliphatic C-H and signal at 1699 cm-1 indicating the presence of  –C=O group. 

The presence of carbonyl group can be deduced from the 13C NMR spectrum by 

the signal at δ 176.31 ppm. The signal corresponds to carboxylic acid. The EI-MS 

experiment (Fig.III.6.2a) exhibits a signal at m/z 60 in high intensity, 

corresponding to the -CH2=C(OH)2
+. The ion was a fragmentation result from 

acids containing gamma-hydrogens through the McLafferty rearrangement 

process. Beside that, the EI-MS experiment also displayed the molecule ion signal 

at m/z 256 was confirmed as C16H32O2.  

 

 

 

 

 

 

 

 

 

Fig. III.6.2a. ES-MS spectrum of compound WuPe 
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Figure. III.6.2b. Fragmentation pattern of compound WuPe 

 
Table III.6.1. NMR spectroscopic data of compound WuPe measured in MeOH-d4 
 

C/H δ H (ppm) δ C (ppm) δ* C (ppm) 

1 - 176.32 180.58 
2 2.17 33.57 34.23 
3 1.49 24.71 24.80 
4 1.19 29.31 29.80 
5 1.19 29.31 29.80 
6 1.19 29.31 29.80 
7 1.19 29.31 29.80 
8 1.19 29.31 29.80 
9 1.19 29.31 29.80 
10 1.19 29.31 29.80 
11 1.19 29.31 29.80 
12 1.19 29.31 29.80 
13 1.19 29.31 29.80 
14 1.19 31.68 32.05 
15 1.19 22.34 22.79 
16 0.80 13.03 14.14 

Note : δ*C was obtained from SDBS Aist database Japan 

The COSY diagram as in Figure III.6.2 shows the correlation of H2-H3, H3-H4 and 

H15-H16. Meanwhile, 1H-13C HMBC experiment as in Figure III.6.3 demonstrates 

correlations between H2-C1, H2-C3, H2-C4, H3-C4, H16-C15 and H16-C13. 
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Fig. III.6.3. COSY diagram of compound WuPe 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.6.3. HMBC diagram of compound WuPe 

According to all data above, the compound WuPe was confirmed as palmitic acid. 
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III.7. Compound W2Et (dihydrofuran

 

 

 
 
 
 
 
 

Fig. III.7.1. The chemical structure of compound W2Et (dihydro

 

Compound W2Et was isolated from the ethyl acetate extract after hydrolysis as 

white powder having a melting point of 188°C. The 

compound W2Et shows

ether), 1410  cm-1 (-CH group) und 1306 cm

experiment which can be fou

ion peaks at m/z 100 which 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. III.7.2. The GC

 

The 1H NMR spectrum displays that there is
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and 13C NMR can be found in Table III.7.1.
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III.7. Compound W2Et (dihydrofurane-2,5-dione) 

The chemical structure of compound W2Et (dihydrofurane
dione) 

W2Et was isolated from the ethyl acetate extract after hydrolysis as 

white powder having a melting point of 188°C. The 1H NMR spec

compound W2Et shows signals at 1680 cm-1 (C=O group), 1197 cm

CH group) und 1306 cm-1 (-CH group). The result of GC

experiment which can be found in Figure III.7.2 and III.7.4 shows the molecular 

ion peaks at m/z 100 which can be assigned to C4H4O3.  

Fig. III.7.2. The GC/MS spectrum of compound W2Et

H NMR spectrum displays that there is only one signal at δ 2

). The signal of 13C NMR spectrum shows signals at δ 176

re assigned to C2 and C5, respectively. The complete data of 

C NMR can be found in Table III.7.1. 

15,19 min 

m/z 100 

O

O

O

dihydrofuran-2,5-dione

1

2

3
4

5

Dihydrofurane-2,5-dione 

furane-2,5-

W2Et was isolated from the ethyl acetate extract after hydrolysis as a 

H NMR spectrum of the 

C=O group), 1197 cm-1 (-C-O-C- 

CH group). The result of GC/MS 

the molecular 

spectrum of compound W2Et 

only one signal at δ 2.58 ppm 

signals at δ 176.16 ppm and 

, respectively. The complete data of 1H NMR 



Chapter III. Results and discussion

 

ppm (t2)
6.07.0

Table III.7.1. NMR spect
MeOH-d4 
 

C/H δ C (ppm)

1 -
2 176.16
3 29.84
4 29.84
5 176.16
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23.04.05.0

NMR spectroscopic data of the compound W2Et 

δ C (ppm) δ H (ppm) 

- - 
16 - 
84 2.58 
84 2.58 
16 - 

m as in Figure III.7.3 shows the correlations of H4

Fig. III.7.3. The HMBC diagram of compound W2Et 

Fig. III.7.4. EI-MS spectrum of compound W2Et 
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Figure III.7.5 displays the mass fragmentation pattern of compound W2Et. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.7.5. The fragmentation pattern of compound W2Et 

 

Based on all the data, the compound W2Et can be identified as dihydrofurane-

2,5-dione. 
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18.1 min 
m/z 254  

III.5. Compound C1 (Daidzein) 

 

 

 
 
 
 
 
 

Fig.III.8.1. The chemical structure of compound C1 (daidzein) 

 

Compound C1 was isolated from the ethyl acetate extract as brown powder 

having a melting point of 295 °C – 297 °C.  Because compound C1 was able to 

reduce the DPPH, it was further investigated by GC/MS and NMR spectroscopy to 

elucidate the chemical structure. The results of GC/MS experiment displayed in 

Figures III.8.2 and III.8.6 show the molecular ion peaks at m/z 254 which is in 

agreement with C15H10O4. The 1H NMR spectrum of the compound C1 shows the 

five signals in aromatic region with the pattern typical for isoflavonoids. The IR 

spectrum indicates also the presence of the aromatic group at 1592 cm-1, 1514 

cm-1, 1381 cm-1 and 1456 cm-1. Additionally the IR spectrum shows peaks at 

3149 cm-1 (–OH group), 1621 cm-1 (C=O group) and 1234 cm-1 (-C-O-C group). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.8.2. The GC/MS chromatogram of compound C1 (daidzein) 
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The chemical shift values of the 1H NMR and 13C NMR spectra of 

compound C1 described in Table III.8.1 show typical signals of isoflavonoid. The 

1H NMR spectrum shows only signals for aromatic protons at δ 6.76 – 8.02 ppm. 

The signal at δ 8.02 ppm (s) was assigned to H2, and the signal at δ 6.76 ppm 

(s) to H8. The presence of –OH can not be deduced from the 1H NMR spectrum 

but from the IR spectrum and also the 13C NMR spectrum. The presence of a 

carbonyl and an ether was confirmed by the signals at δ 178.19 ppm and δ 

158.72 ppm, respectively. Meanwhile other signals of 13C NMR are in agreement 

with aromatic moiety. The complete information about the NMR spectroscopic 

data of compound C1 can be seen in Table III.8.1. 

 

Table III.8.1. NMR spectroscopic data of the compound C1 (in MeOH-d4) 

C/H δ C (ppm) δ* C (ppm) δ H (ppm) δ* H database (ppm) 

2 153.04 152.78 8.02 (s) 8.29 (s) 

3 124.32 123.44 - - 

4 176.57 174.65   

5 128.53 127.23 7.95 (d, J = 8) 7.96 (d, J = 8.6) 

6 116.47 115.09 6.85 (d, J = 6.7) 6.94 (d, J = 8.6) 

7 164.62 162.49 - - 

8 103.24 102.06 6.74 (s) 6.87 (s) 

9 158.72 157.38 - - 

10 118.23 116.59 - - 

1’ 125.98 122.49 - - 

2’ 131.42 130.02 7.26 (d, J = 7.3) 7.38 (d, J = 8.6) 

3’ 116.24 114.91 6.76 (d, J = 6.76) 6.81 (d, J = 8.6) 

4’ 159.82 157.14 - - 

5’ 116.24 114.91 6.76 (d, J= 6.7) 6.81 (d, J = 8.6) 

6’ 131.42 130.02 7.26 (d, J 0 7.3) 7.38 (d, J = 8.6) 

Note : δ* H is proton chemical shift value obtained in DMSO-d6 (Goto, et al., 2009) 

 

Three spin systems were detected in 1H-1H COSY (Fig. III.8.3). One spin system 

was located in ring A (i.e. δH 7.94 and δH 6.84) and two spin systems were 

identical and located in ring B (i.e. δH 7.26 and δH 6.76). The long-range 

correlation between δH 7.94 to δ 158.72 (C9) and δ 164.62 (C8) supported that δ 

7.94H (H
5) and δH 6.84 (H6) were located in ring A. Another 1H-13C correlation 

between δH 7.26 to δ 125.98 (C1’) and δ 159.82 (C4’) supported that δH 7.26 (H2’ 

and H6’) and δH 6.76 (H3’ and H5’) were located in ring B.  
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Fig. III.8.5. The COSY diagram of the compound C1 

 

 

 

Fig. III.8.4. The HMBC diagram of the compound C1 
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Fig. III.8.5. The 1H- 13C

 

The HMBC diagram (Fig.III.4) reveals
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H6’ and C1’ (2JC-H). Three correlations of them
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carbonyl group at 176.57 (C

in accordance with Falco
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C NMR long range correlation of compound C1 (daidzein

ig.III.4) reveals significant correlations between H
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Three correlations of them confirmed the presence of the 

, i.e. the bond coupling of the proton at δH 8.13 (H

57 (C4), 158.72 (C9) and also 125.98 (C1’). This findi

in accordance with Falco et al. (2005). 
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Fig. III.8.7. The fragmentation pattern of compound C1 

The fragmentation scheme is according to Setchell 1987, who already observed 

the fragment producing the main signal at m/z 118. 

After careful interpretation of the experimental data, compound C1 could 

be assigned to daidzein. 

 

I.9.1. Compound Wu1a (Daidzein-7-O-ß-glucopyranose) 
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Fig. III.9.1. The chemical structure of compound Wu1a (Daidzein-7-O-ß-

glucopyranose) 
 

Compound Wu1a was isolated from the ethyl acetate extract as yellow 

powder. This compound has high activities, absorbing UV light and reducing the 

DPPH. Therefore, it was further investigated by LC/MS and NMR spectrometer. 

The result of LC/MS experiment can be read in Figure III.9.4. The molecular 

formula of Wu1a was established as C21H20O9 based on its ESI-MS spectrum. The 

fragmentation spectrum suggested that Wu1a was composed of daidzein aglycon 

(signal at 255) and hexose. The 1H NMR spectrum of the compound Wu1a shows 

the group signals (at δ 3.38 – 5.03 ppm) with the pattern of glucopyranose and 

five signals in aromatic region (signals at δ 6.78 – 8.11 ppm) with the pattern of 

an isoflavonoid. This pattern was similar to compound C1 (daidzein). The IR 
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spectrum indicates also the presence of the aromatic group at 1515 cm-1,     

1445 cm-1 and 1374 cm-1. Additionally, the IR spectrum showed peaks at      

3324 cm-1 (–OH group), 1617 cm-1 (C=O group) and 1248 cm-1 (-C-O-C group). 

 The 1H NMR spectrum showed the pattern of isoflavonoid that was similar 

to compound C1 (daidzein) with the exception of the chemical shift values of the 

proton H6 and H8. They were shifted relatively upfield, from 6.85 ppm (H6) and 

6.74 ppm (H8) in compound C1 to 7.12 ppm (H6) and 7.16 ppm (H8) in 

compound Wu1a. This evidence supported that the substituent attached of C7 in 

compound Wu1a was not a hydroxyl group but a glucose. The presence of the 

glucose is supported by a ß-anomeric proton signal at δ 5.03 ppm (1H, d, J = 

7.4), while an anomeric carbon signal can be found in the 13C NMR spectrum at δ 

100.42 ppm. The glucose component of compound Wu1a was determined to be 

ß-glucopyranose. This finding was in accordance with Shimoda et al. (2008) that 

the proton signal and the carbon signal of ß-anomeric in 1H NMR spectrum were 

5.17 (d, J = 7.6) and 101.8 ppm, respectively.  

Table III.9.1. The spectroscopic data of compound Wu1a measured in MeOH-d4 

C/H δ C (ppm) δ* C (ppm) δ H (ppm) δ* H database (ppm) 

2 154.04 153.2 8.11 (1H, s) 8.39 (1H, s) 

3 124.87 123.5 - - 

4 177.09 175.3 - - 

5 127.14 131.2 8.06 (1H, d, J = 8.0) 8.04 (1H, d, J = 8.6) 

6 115.89 109.1 7.12 (1H, d, J = 7.1) 7.13 (1H, dd, J = 8.6 ; 2.0) 

7 162.13 163.9 - - 

8 103.79 103.9 7.16 (1H, s) 7.24 (1H, s) 

9 157.97 157.8 - - 

10 118.94 115.5 - - 

1’ 124.87 125.1 - - 

2’ 130.23 127.8 7.29 (1H, d, J = 7.3) 7.40 (1H, d, J = 6.4) 

3’ 115.15 115.8 6.78 (1H, d, J = 6.8) 6.82 (1H, d, J = 6.4) 

4’ 157.19 157.7 - - 

5’ 115.15 115.8 6.78 (1H, d, J= 6.8) 6.82 (1H, d, J = 6.4) 

6’ 130.23 127.8 7.29 (1H, d, J = 7.3) 7.40 (1H, d, J = 6.4) 

Gly-1” 100.42 101.8 5.03 (1H, d, J = 7.4) 5.17 (1H, d, J = 7.6) 

Gly-2” 73.41 73.4 3.38 – 3.86 (6H, m) 

 

3.18 – 3.71 (6H, m) 

Gly-3” 76.42 73.4 

Gly-4” 69.93 71.5 

Gly-5” 77.00 77.7 

Gly-6” 61.10 62.2 

δ* measured in DMSO-d6 (obtained from Shimoda et al, 2008) 

 

The COSY experiments (Fig. III.9.2) show the expected correlations between the 

protons of H5-6H, H2’-H3’ and H5’-H6’. 
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Fig. III.9.2. The COSY diagram of compound Wu1a 
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 The HMBC correlations were observed between the anomeric proton 

signal at δH 5.03 ppm  (H1”) and the carbon resonance at δ 162,13 (C7) as can be 

seen in Figure III.9.3. This finding confirmed that the glucopyranose residue was 

attached to the hydroxyl group at C7 of daidzein. The other correlations were also 

observed between H3’-C1’ (3JC-H), H
6-C9 (4JC-H), H

2-C1’ (3JC-H), H
2-C9 (3JC-H) and H2-

C4 (3JC-H). Three correlations H2-C1’, H2-C9 and H2-C4 were typical for isoflavon 

skeleton. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.9.3. The HMBC diagram of compound Wu1a 
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Figure III.9.5 describes the fragmentation pattern of compound Wu1a 

according to the ESI-MS spectrum. Compound Wu1a was protonated producing 

signal at 417.2 [M+H]+1 and fragmented producing the positively charged ion of 

[daidzein+H]+1 at m/z 255.0. 

 

Fig. III.9.4. ESI-MS (above) and ESI-MS-MS spectrum of compound Wu1a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig III.9.5. The fragmentation pattern of compound Wu1a 
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III.10. Compound Wu3a (

 

 

 

 

 

 

Fig. III.10.1. The chemical structure of compound Wu3a
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III.10. Compound Wu3a (5-hydroxy-daidzein-7-O-ß-glucopyranose

Fig. III.10.1. The chemical structure of compound Wu3a

Compound Wu3a was isolated as a yellow-brown powder from the ethyl acetate 

extract. This compound has high activities to absorb UV light and to reduce 

The molecular formula of C21H20O10 was deduced from ESI-

s. This compound was assigned to a glycosidic derivative of 

1H NMR (MeOH-d4) of the compound Wu3a showed

aromatic regions (δ 6.60 – 7.29 ppm) with the pattern of dai

38 – 4.95 ppm revealed the presence of glucopyranose

f aromatic group was also deduced from the IR spectrum 

ig III.10.3). The IR spectrum showed the signals of –C=C
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Fig. III.10.3. IR spectrum of compound Wu3a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.10.4. UV spectrum of compound Wu3a 

 

For the measurement of the 1H NMR spectrum only a low amount of the 

compound Wu3a was available. Thus, the quality of the spectra is low. 
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Fig III.10.5. 1H NMR spectrum of compound Wu3a (MeOH-d4, 500MHz) 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

Fig III.10.6. 13C NMR spectrum of compound Wu3a (MeOH-d4, 125 MHz) 
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The signal at δ 4.95 (d, J = 6.37) ppm in 1H NMR spectrum (Fig. III.10.5) 

and the signal at δ 100.41 ppm in 13C NMR demonstrated the presence a ß-

anomeric proton of the glucopyranose (H1”). The correlation between H1” with the 

carbon aromatic at δ 164.7 ppm (C7) in HMBC spectrum (Fig.III.10.8) revealed 

that the glucopyranose residue was attached to the phenolic hydroxyl group at C7 

of daidzein. The typical 1H-13C correlation for skeleton isoflavonoid also appeared 

in the HMBC diagram, i.e. H2-C1’ (3JC-H), H
2-C4 (3JC-H) and H2-C9 (3JC-H).  

The hydroxyl substituent in the daidzein moiety can be deduced from ESI-

MS data. The signal at 271 in the fragmentation spectrum exhibited that daidzein 

was bound to one hydroxyl substituent. The signals at δ 6.58 ppm and 6.39 ppm 

in the 1H NMR spectrum were correlated to protons in the aromatic ring (H6 and 

H8). These signals were different from the signal of daidzein without hydroxyl at 

position C5. The chemical shift value of H6 in molecule Wu3a was shifted 

relatively downfield because of the presence –OH at C5. The 1H-1H correlation in 

COSY diagram of compound Wu3a showed two identical correlations, i.e H2’-H3’ 

and H5’-H6’ in ring B. The fact also supported that C5 attached a –OH substituent. 

Thus, the compound Wu3a was elucidated as 5-hydroxy-daidzein-7-O-ß-

glucopyranose. 
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Table III.10.1. The spectroscopic data of compound Wu3a measured in MeOH-d4 

 

C/H δ C (ppm) δ* C (ppm) δ H (ppm) δ* H database (ppm) 

2 156.32 154.01 8.03 (d, J = 8.1) 8.02  

3 84.38 123.88 -  

4 174.21 181.37 -  

5 164.77 163.70 -  

6 101.64 99.73 6.58 (d, J = 6.4) 6.52 

7 163.07 164.73 -  

8 94.00 94.34 6.39 (d, J = 6.6) 6.48 

9 157.68 158.82 -  

10 115.08 106.05 -  

1’ 127.93 122.90 -  

2’ 130.16 130.97 7.29 (d, J = 7.3) 7.46 

3’ 115.08 115.82 6.76 (d, J = 6.8) 6.68 

4’ 157.69 158.20 -  

5’ 115.08 115.82 6.76 (d, J = 6.8) 6.68 

6’ 130.16 130.97 7.29 (d, J = 7.3) 7.46 

Gly-1” 100.41 101.8 4.95 (d, J = 6.37) 5.08 

Gly-2” 73.48 73.4 3.39 – 3.80 (6H, m) 3.40 – 3.91 (6H, m) 

Gly-3” 76.61 73.4 

Gly-4” 69.98 71.5 

Gly-5” 77.15 77.7 

Gly-6” 62.43 62.2 
δ* obtained from Murthy and Rao (1986) measured in acetone-d6 
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Fig III.10.6. The COSY diagram of compound Wu3a 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

Fig. III.10.7. ESI-MS data (A) and ESI-MS-MS spectrum (B) of compound 
Wu3a 
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Fig. III.10.8. The fragmentation pattern of compound Wu3a 

 
Compound Wu3a was protonated and fragmented producing signals at 433.2 

[M+H)+ and 271 [M+H-glucose]+. Santos et al. (2006) reported that the 

molecule 5-hydroxyl-daidzein had a main signal at m/z 269 in the negative mode 

of ESI-MS that was assigned to [M-H]-1. Thus, the molecular weight of              

5-hydroxy-daidzein, the aglycon of compound Wu3a, was 270 as the result of 

this experiment. 

 Based on the NMR data and LC/MS data, it could be concluded that the 

compound Wu3a was 5-hydroxy-daidzein-7-O-ß-glucopyranose. 
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III. 11. Compound A182 
 

 

 

 
 
 
 
 
 

Fig. III.11.1. The chemical structure of compound A1
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III. 11. Compound A182 (8,9)-Furanyl-pterocarpan-3-ol 

. The chemical structure of compound A182 ((8,9)-

pterocarpan-3-ol) 
 

Compound A182 was isolated from the ethyl acetate extract as

s. The UV spectrum (Fig III.11.3) showed that the compound A182 had 

high activity to absorb the UV light at a maximum wavelength 293 nm, therefore 

it was predicted that compound A182 had many conjugated C-C bounds. This 

compound had also the potential to reduce the DPPH reagent. Thus, it was 

necessary to further examine to get more information about its 

activity and tyrosinase inhibitory activity. The SC50 value (parameter for 

activity) and the IC50 value (parameter for tyrosinase inhibitory) 

19 mM, respectively. 
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Fig. III.11.3. UV spectrum of compound A182 (λmax 293 nm, measured 
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. UV spectrum of compound A182 (λmax 293 nm, measured 
in methanol) 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
Fig. III.11.4. IR spectrum of compound A182 
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The molecular formula of compound A182, C17H12O4 was determined by 

ESI-LC/MS m/z [M+H]+ 281.3. Its 1H NMR spectrum (Fig. III.11.5 ) exhibited five 

aromatic protons at δH 7.6 (s, H7), 6.9 (d, J = 8.06 Hz; H1), 6.9 (s, H10), 6.2 (dd, 

J = 8.06; 2.20; H2), 6.2 (d, J = 2.23, H4). There were a coupling of ortho-related 

protons (H1-H2) and a coupling of meta-related protons (H2-H4). The signals at δH 

7.5 (d, J = 2.25, H2’) and 6.7 (d, J = 2.23, H3’) were characteristic for ortho-

related protons in a furane system. The finding was also supported by the 

correlation of δ 7.5 (H2’) and δ 6.7 (H3’) in the COSY diagram. Four protons 

appeared at δH 4.1 (d, J = 9.68, H6), 3.5 (d, J = 10.30, H6), 3.4 (dd, J= 5.63; 

2.85, H6a), 5.5 (d, J = 6.71, H11a) are characteristic for –O-CH2-CH-CH-O. This 

fact was also supported by δC data. Detailed 1H NMR spectrum can be found in 

Fig III.11.6. The presence of hydroxyl group was indicated by signal at 3295 cm-1 

in IR spectrum (Fig III.11.4). In addition, the IR spectrum showed main signals 

at 1607, 1469, 1493 cm-1 (-C=C- aromatic) and 1084 cm-1 (-C-O-C-). 

 

 

 

 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

Fig. III.11.5. 1H NMR spectrum of compound A182 (MeoH-d4, 500 MHz) 
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 Figure III.11.6 and III.11.7 display the 13C NMR and DEPT spectrum. 

From the spectrum, we know that the compound A182 had 17 carbons that 

divided into 3 groups: 9 (-CH), 1 (-CH2) and 7 carbon quarternary (C). Detailed 

NMR spectroscopy data can be found in Table III.11.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.11.6. The 13C NMR spectrum of compound A182                        

(MeOH-d4, 125 MHz)  
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Figure. III.11.8. The DEPT spectrum of compound A182 

 

Table III.11.1.  NMR spectroscopy data of compound A182 (measured in    
MeOH-d4) 

 
C/H δ C (ppm) δ H (ppm) 

1 124.66 6.95 (d, J = 8.06 Hz) 

2 107.40 6.22 (dd, J = 8.06; 2.20 Hz) 

3 160.53 - 

4 97.35 6.17 (d, J = 2.15 Hz) 

4a 158.45 - 

6 66.84 4.14 (d, J = 9.68 Hz) 

3.48 (d, J = 10.30 Hz) 

6a 39.73 3.44 (dd, J = 5.63; 2.85 Hz) 

6b 116.90 - 

7 122.89 7.57 (s) 

8 122.19 - 

9 155.61 - 

10 98.87 6.89 (s) 

10a 153.61 - 

11a 79.02 5.49 (d, J = 6.71 Hz) 

11b 118.03 - 

2’ 145.07 7.53 (d, J = 2.25 Hz) 

3’ 105.89 6.66 (d, J = 2.23 Hz) 
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Fig. III.11.8. The COSY diagram of compound A182 

 

Figure III.11.9 below displayed the 1H-13C long-range correlations in 

compound A182 observed in HMBC spectra.  

 

 

 

 

 

 

 

 

 

 

 

Figure. III.11.9. 1H-13C long-range correlations observed from HMBC diagram 
of compound A182 
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(M+H)+ 

  

ESI-MS spectra show that the compound A182 was fragmented producing 

signal m/z at 123 (in positive detection) and m/z at 121 (in negative detection). 

Figure III.11.10 displays the fragmentation pattern of compound 182. 

 

 

 

 

 

 

 

 

 

 

Fig.III.10a. ESI-MS spectrum of compound A182 

 

 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
Fig.III.10b. ESI-MS spectrum of fragmentation of compound A182 
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Figure. III.11.11. Fragmentation pattern of compound A182 

 

 

Based on the NMR assignments, IR spectrum and the fragmentation pattern 

above, compound A182 was identified as (8,9)-Furanyl-pterocarpan-3-ol. 
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III.12. Compound HWu10  
 4-(2-(Furane-2-yl)ethyl)-2-methyl-2,5-dihydrofurane-3-

carbaldehyde 
 
 
 
 
 
 
 
 

 

 

Fig.III.12.1. The chemical structure of compound HWu10 4-(2-(furane-2-

yl)ethyl)-2-methyl-2,5-dihydrofurane-3-carbaldehyde 

 

Compound (HWu10) was obtained from the ethyl acetate extract as 

yellow powder. The GC/MS chromatogram of this compound (Fig.III.12.4) shows 

two peaks at 19.2 and 21.7 minutes which have molecular ion signals at m/z 126 

and 206, respectively, as described in Fig III.12.9. The molecular formula was 

confirmed as C7H10O2 for m/z 126 and C12H14O3 for m/z 206. The molecule which 

has a molecular mass of 126 might be 2,4-dimethyl-2,5-dihydrofurane-3-

carbaldehyde as a degradation product of the main molecule  (4-(2-(furane-2-

yl)ethyl)-2-methyl-2,5-dihydrofurane-3-carbaldehyde) during process  in the gas 

chromatography.  

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
Fig. III.12.2. UV spectrum of compound HWu10 
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The IR spectrum (Fig.III.12.3) indicates the presence of C-C double bond 

or C=O (1668 cm-1), a –CH aliphatic group (2930 cm-1), and a –CH2 (1446 cm-1).  

Additionally, the IR spectrum shows 1021 cm-1 (-C-O-C group). The presence of 

aldehyde group could be deduced from the signals at δH 9.45 ppm and from the 

chemical shift value of 13C NMR at δ 178.56 ppm. An intense cross peaks 

observed in 1H-13C HMBC diagram correlates δ 158.23 (C8) to δ 9.45 (H8)       

(2JC-H). The evidence suggested that the aldehyde group was attached to C-C 

double bond of a dihydrofurane ring (C3). 

The signals at δH 7.27 ppm and 6.56 ppm were characteristic for 

hydrogens that were bound to the C-C double bound in the furane ring. The 

presence of a pair of triplets at δ 2.49 and δ 2.70 was due to the protons at C6 

and C7 in molecule HWu10. The complete data of the chemical shift value can be 

found in Table III.12.1.  

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

Fig. III.12.3. IR spectrum of compound HWu10 

 
 

 
 

 

 
 

 
 

 
 

 

C=O 

1668 cm-1 

C=C 
1552 cm-

1

-CH 
2930 cm-1 

C-O-C 

1021 cm-1 



Chapter III. Results and discussions 

 

101 
 

21.6 min 
m/z 206 

19.2 min 
m/z 126 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

Fig.III.12.4. GC/MS chromatogram of compound HWu10 

 
Table III.12.1. 1H NMR and 13C NMR spectroscopic data of the compound HWu10 
measured in MeOH-d4 
 

C/H δ C (ppm) δ H (ppm) 

2 58.00 5.05 (1H, s) 

3 158.29 - 

4 173.28 - 

5 64.15 4.54 (2H, d) 

6 27.43 2.49 (2H, t) 

7 37.40 2.70 (2H, t) 

8 178.56 9.45 (1H, s) 

9 28.24 2.05 (3H, s) 

2’ 153.28 - 

3’ 112.06 7.27 (1H, d) 

4’ 123.36 6.56 (1H, dd) 

5’ 123.36 7.27 (1H, d) 
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Fig. III.12.5. 1H NMR spectrum of compound HWu10 (MeOH-d4, 500 MHz) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.III.12.6. 13C NMR spectrum of compound HWu10 (MeOH-d4, 125MHz) 
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ppm (t2)
0.05.010.0

ppm (t2)
6.507.007.50

The COSY diagram in Fig III.12.7 shows the correlation of H6-H7 and H4’-H5’. The 

correlation between δ 7.27 ppm (d, H3’ and H5’) and δ 6.56 ppm (dd, H4’) is 

characteristic for three protons in the furane ring, i.e. H3’, H5’ and H4’, 

respectively. Some of the 1H-13C-long range correlations (Figure III.12.8.) 

observed in the HMBC spectrum confirmed that the structures of HWu10 to be  

4-(2’-(furane-2-yl)ethyl)-2-methyl-2,5-dihydrofurane-3-carbaldehyde. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.III.12.7. COSY diagram of compound HWu10 
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Fig.III.12.7. COSY diagram of compound HWu10 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

Fig. III.12.8. The HMBC diagram of the compound Hwu10 
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Fig. III.12.8.

 

 Figure III.12.10 

HWu10 based on the EI

 

Fig.III.12.9. EI
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. The HMBC diagram of the compound HWu10

 displayed the mass fragmentation pattern of compound 

-MS spectrum. 

 

Fig.III.12.9. EI-MS spectrum of compound HWu10 
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Fig.III.12.10. The fragmentation pattern of compound HWu10 

 

 The signal at m/z 206 in the EI-MS spectrum of compound HWu10 

(Fig.III.12.9) was assigned to [M]+.. During the process in EI-MS, compound 

HWu10 was fragmented producing signal at m/z 138 because of cleavage at    

C2’-C7. This fragment was further fragmented by loss the –CHO and followed by 

rearrangement producing signal at m/z 109. Additionally, compound HWu10 

could be fragmented by cleavage at C6-C7 producing signal at m/z 81 and 125.  

Based on all data, the compound HWu10 was identified as 4-(2-(furane-2-

yl)ethyl)-2-methyl-2,5-dihydrofurane-3-carbaldehyde. 
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III.13.  Compound WuBuOH
 (2-Butoxy-2,5

 

  

 

 

 

 

Fig. III.13.1

Compound WuBuOH was isolated from the butanol extract

powder which was able to reduce the DPPH and absorb the UV light

III.13.2 shows the HPLC chromatogram of fraction containing the compound 

WuBuOH and some other

8.9 min. The EI-MS spectrum (

236 consistent with the molecular formula 

(Fig.III.13.3) shows a band at 3316 cm

group (-OH). The absorption band at 1033 cm

or in this case an acetal group at C

supported by a signal of the 

and two signals of the HMBC diagram (correlations between H

The signal at 1622 cm

daidzein. Since the glycosidic daidzein is a polar substance, it can be extracted 

with butanol.  

Fig.III.13.2. The HPLC chromatogram of compound WuBuOH
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Compound WuBuOH  
2,5-bis(hydroxymethyl)-tetrahydrofurane

 

Fig. III.13.1. Chemical structure of compound WuBuOH

 

Compound WuBuOH was isolated from the butanol extract

powder which was able to reduce the DPPH and absorb the UV light

the HPLC chromatogram of fraction containing the compound 

and some other impurity. This compound has a retention time of      

MS spectrum (Fig.III.13.9) shows  the molecular ion peak at m/z 

236 consistent with the molecular formula C10H20O6. The IR spectrum 

a band at 3316 cm-1 is due to the presence of a hydroxyl 

OH). The absorption band at 1033 cm-1 is due to ether group

or in this case an acetal group at C2’. The presence of the acetal g

supported by a signal of the 13C NMR spectrum at δC 107.7 ppm (C quarternary) 

and two signals of the HMBC diagram (correlations between H7-C2’

The signal at 1622 cm-1 might be due to the contamination of the glycosidic 

daidzein. Since the glycosidic daidzein is a polar substance, it can be extracted 
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powder which was able to reduce the DPPH and absorb the UV light. Figure 

the HPLC chromatogram of fraction containing the compound 

d has a retention time of      

the molecular ion peak at m/z 

. The IR spectrum 

s due to the presence of a hydroxyl 

s due to ether group (-C-O-C-) 

The presence of the acetal group is 

107.7 ppm (C quarternary) 

2’ and H3’-C2’). 

might be due to the contamination of the glycosidic 

daidzein. Since the glycosidic daidzein is a polar substance, it can be extracted 

. The HPLC chromatogram of compound WuBuOH 



Chapter III. Results and discussions 

 

108 
 

-OH 

-C=O 

-C-O- 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.13.3. IR spectrum of compound WuBuOH 

 

 

Fig. III.13.4. 1H NMR spectrum of compound WuBuOH (MeOH-d4, 500 MHz) 
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Fig. III.13.5. 13C NMR spectrum of compound WuBuOH (MeOH-d4, 125 MHz) 

 

In the 1H NMR spectrum (Fig.III.13.4), the signals could be divided into 

two groups. The first group was signals at δ 3.59 – 3.96 ppm, and the other 

group was the signals at δ 0.83 – 1.45 ppm. The presence of signals at δ 3.59 – 

3.96 ppm of the 1H NMR spectrum was typical of sugar moiety. Thus, the 

compound WuBuOH was assigned to a glycosidic derivative. Since a signal at δ 

5.02 ppm didn’t appear, the sugar group didn’t have an anomeric proton. The 

sugar was concluded as a fructose. While the signals at δ 0.83 – 1.45 ppm was 

characteristic for the alkane group. They were also in accordance with the signals 

in 13C NMR spectrum. Based on the NMR signals, both in 1H NMR and 13C NMR, 

the alkane group was assigned to butyl group. The presence of butyl was also 

supported by the signal at m/z 73 in EI-MS spectrum. The signal at m/z 73 in the 

EI-MS spectrum described that the butyl group was bound to an oxygen of the 

fructose (-O-C4H9). Table III.13.1 displays the spectroscopic data of the 

compound WuBuOH. The fragmentation pattern of this compound can be seen in 

scheme (Fig.III.13.10).  
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Table. III.13.1. The spectroscopic data of compound WuBuOH (measured in 
MeOH-d4) 

 
C/H δ C (ppm) δ* C (ppm) δ H (ppm) δ* H database (ppm) 

1 13.09 14.1 0.83 (3 H, t, J = 0.8) 0.96 

2 19.05 19.0 1.31 (2H, m, J = 1.3) 1.33 

3 32.81 32.8 145 (2H, m, J = 1.5) 1.46 

4 61.33 64.3 3.42 (2H, m, J = 3.5) 3.37 

1’ - - - - 

2’ 107.66 110.2 - - 

3’ 82.15 76.9 3.96 (1H, d, J = 4.0) 3.97 

4’ 7740 72.1 3.80 (1H, t, J = 3.8) 3.65 

5’ 82.79 80.7 3.76 (1H, m, J = 3.7) 3.91 

6’ 60.59 62.2 3.65 (1H, m, J = 3.6) 

3.68 (1H, m, J = 3.6) 

3.54 

3.79 

7’ 60.33 61.9 3.59 (1H, s) 
3.53 (1H, s) 

3.66 
3.91 

 

The COSY experiments (Fig.III.13.6) showed the expected correlations 

between the protons of H1-H2, H2-H3, H3-H4 and H3’-H4’. Some of the 1H-13C- long-

range correlations can be found in Fig.III.13.8. The correlation 3JC-H in HMBC 

diagram between δ 107.66 (C2’) with δ 3.44 (H4) showed that the butyl group 

was attached to oxygen of C2’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.III.13.6. The COSY diagram of compound WuBuOH 
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Fig.III.13.7. The HMBC diagram of compound WuBuOH 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.III.13.8. Some of the 1H-13C long-range correlations of the compound 
WuBuOH 
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Fig.III.13.9. EI-MS spectrum of compound WuBuOH 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.III.13.10. Fragmentation pattern of compound WuBuOH 

 
The signal at 236 in the EI-MS spectrum of compound WuBuOH was assigned to 

the positively charged radical of compound WuBuOH [M]+. which was fragmented 

by cleavage at O-C4 producing signal at m/z 73 and 162 that were assigned to 

butoxyl and 2,5-bis(hydroxymethyl)-2,3-dihydrofurane-3,4-diol. 

Based on the informations from NMR spectrum, IR spectrum and EI-MS 

spectrum, the compound WuBuOH was confirmed as 2-butoxy-2,5-

bis(hydroxymethyl)-tetrahydrofurane-3,4-diol. 
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 III.14. UV absorption activity assay 

 The activity to absorb UV light has been investigated by using the UV/Vis 

spectrophotometer for apolar substances and an analytical HPLC equipped with a 

UV detector for semipolar and polar substances, which was performed because 

of the limited amount of active compounds obtained and of their limited 

solubility. The UV absorption activity was expressed as Absorbance Unit 

(AU)/concentration of sample (in the case the data was recorded on 

spectrophotometer) or Absorbance Unit.Second/concentration of sample (in the 

case the data obtained by HPLC). p-Aminobenzoic acid (PABA) was used as a 

reference compound, because it has been used as a sun screening compound in 

several cosmetic products. The results are summarized in Table III.14.1. 

Table III.14.1. The results of the UV absorption activity assay 

Compound 

UV absorption activity 

Measured by HPLC 

(AU*S/mmol) 

Measured by UV 

spectrophotometer (AU/mM) 

PABA 21.091  

Daidzein 24.401  

4-(2-(Furane-2-yl)ethyl)-2-

methyl-2,5-dihydrofurane-3-
carbaldehyde 

2.883  

Dihydrofurane-2,5-dione 0.039  

2-Butoxy-2,5-
bis(hydroxymethyl)-

tetrahydrofurane-3,4-diol 

0.211  

ß-Sitosterol and Stigmasterol 0.094  

Daidzein-7-O-ß-glucopyranose 1.428  

5-Hydroxy-daidzein-7-O-ß-

glucopyranose 

1.016  

(8,9)-Furanyl-pterocarpan-3-ol 4.018  

Tricosandiene  0.003 

Hexadecyl pentanoate  0.048 

Palmitic acid  0.011 

Trilinolein  0.002 

 
The results show that compound daidzein has a highest activity among 

the other isolated compounds, with activity value of 24,401 AU*S/mmol. This fact 

might be due to the presence of phenol groups in daidzein. Therefore, daidzein 

can be further developed as a sun screening material in cosmetic products. 
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III.15. Total phenol contents assay 

 The amount of phenol compounds in the extracts was determined by the 

Folin-Ciocalteau colorimetic method using spectrophotometer at wavelength 755 

nm (obtained from Figure III.15.1) (Singleton and Rossi 1965). Determinations 

were carried out in triplicate and calculated from a calibration curve obtained 

with gallic acid. The total phenol contents were expressed as mg gallic acid 

equivalents (GAE)/g extract. Figure III.15.2 displays a calibration curve of the 

gallic acid and the total phenol contents of extracts can be seen in Table III.15.1. 

 The Folin-Ciocalteau reagent is a solution of complex polymeric ions 

formed from phosphomolybdic and phosphortungstic heteropoly acids. It oxidises 

phenolates, reducing heteropoly acids to a blue Mo-W complex with an 

absorbance maximum at 750-775 nm. The phenolates are only present in 

alkaline solution but the reagent and products are alkali unsuitable. Hence a 

moderate alkalinity and a high reagent concentration are used in the procedure. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. III.15.1. Wavelength scans of the reaction gallic acid with Folin-

Ciocalteau reagent 
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Fig. III.15.2. Calibration curve of the gallic acid 

 

Table III.15.1. The total phenol contents in some crude extracts (mg GAE/g 
extract) 

 

Extract 

Total phenol contents (mg GAE/g 
extract) 

Mean SD 

Methanol 4.38 0.67 

Ethyl acetate 140.76 14.87 

Ethyl acetate after hydrolysis 11.68 3.56 

n-Buthanol 13.24 1.76 

Petroleum ether Not detectable  

 

Phenol compounds have been found to be one of the most ubiquitous classes of 

constituents in the plant kingdom, and they have been reported to have multiple 

biological effects. Previous papers have also noted that many phenol compounds 

found in plants show tyrosinase inhibitory activity and can be used as a 

cosmetics material primarily as skin whitening material (Sugumuran 2002; Boissy 

and Manga 2004; Victor et al. 2004). Additionally, it was also reported that 

phenol compounds might be used as depigmenting agents because they have a 

chemical structure similar to tyrosine, the substrate of tyrosinase (Boissy and 

Manga 2004). The result in Table III.15.1 showed that the ethyl acetate extract 

had a significantly higher total phenol content than other extracts, while there 

was almost no phenol compounds in the petroleum extract, which is expected. 

 

III.16. Total Flavonoid Contents Assay 

 Total flavonoid content was measured by the aluminium chloride 

colorimetric assay (Zhisen et al. 1999) using spectrophotometer at 750 nm 
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(obtained from Figure III.16.1

calculated from a calibration curve obtained with catechin. The total flavonoid 

contents were expressed as mg catechin equivalents (

III.16.2 displays the principle of the reaction of catechin with alumin

while Figure III.16.3 displays
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igure III.16.1). Determinations were carried out in triplicate and 

calculated from a calibration curve obtained with catechin. The total flavonoid 

contents were expressed as mg catechin equivalents (CE)/g extract. Figure 

the principle of the reaction of catechin with alumin

displays a calibration curve of the catechin and the total 

flavonoid contents in extracts can be seen in Table III.16.1 
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Table III.16.1. The total flavonoid contents in crude extracts (mg CE/g extract) 
 

Extract 

Total flavonoid contents (mg CE/g 
extract) 

Mean SD 

Methanol 1.31 0.02 

Ethyl acetate 16.22 0.10 

Ethyl acetate after hydrolysis 3.14 0.12 

n-Buthanol 6.49 0.05 

Petroleum ether Not detectable 
 

Flavonoids as one of the most diverse and widespread group of natural 

compounds are probably the most important natural phenols (Miliauskus et al. 

2003). These compounds possess a broad spectrum of chemical and biological 

activities including radical scavenging properties (see Chapter I.2.2). Therefore, 

the content of both groups of phenols was determined. As shown in Table 

III.16.1, the ethyl acetate extract had the highest amount of flavonoids                         

(16.22 ± 0.10 mg CE/g extract) while the petroleum extract didn’t contain 

flavonoids as expected. The phenol and flavonoid content correlate. The ethyl 

acetate extract had also the highest amounts of phenol contents with its 

concentration 140.76 ± 14.87 mg GAE/ g extract.  

 

III.17. Antioxidative Activity Assay 

The antioxidative activities of crude extracts and some of isolated 

compounds were evaluated by means of scavenging activity assay using DPPH 

radical and ascorbic acid as a positive control (IC50 7.24 ppm or 0.041 mM). The 

reduced DPPH form was determined using the UV/Vis spectrophotometer at 

maximum wavelength of 515 nm (Figure III.17.2). The results were expressed as 

the concentration of the extracts or isolated compounds which scavenged free 

radicals by 50% (SC50). All tests were done in triplicate.  

The molecule DPPH was characterised as a stabile free radical by virtue of 

the delocalisation of the spare electron over the molecule as a whole, so that the 

molecules did not dimerise, as would be the case with most of the free radicals. 

The delocalisation also gave rise to the deep violet colour, characterised by an 

absorption band in ethanol solution centred about 520 nm (Molyneux 2004).  
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a. DPPH free radical (Z•); violet                    b. DPPH non radical (ZH); yellow 

 

Fig.III.17.1. The structure of DPPH free radical and DPPH non radical or in 
reduced form (Songklanakarin 2004) 

 

When a solution of DPPH was mixed with a solution of a substance being 

able to donate a hydrogen atom, this gave rise to the reduced form (Fig. 

III.17.1b) with the loss of the violet colour (although there would be expected to 

be a residual pale yellow colour from picryl group still present). Representing the 

DPPH radical by Z• and the donor molecule by AH, the primary reaction was  

Z•  +  AH  =  ZH  +  A• 

Where ZH was the reduced form of DPPH and A• was free radical produced in the 

first step. The latter radical would undergo further reactions which control the 

overall stoichiometry, that was, the number of molecules of DPPH reduced 

(decolourised) by one molecule of the reductant. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
Figure III.17.2. Wavelength scans of the product reaction of ascorbic acid and 

DPPH 
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One of parameter for interpretation of the results from the DPPH method, was 

the “scavenging free radical concentration” or SC50 value (otherwise called the 

IC50 value). This was defined as the concentration of substance that causes 50% 

loss of the DPPH activity (colour), i. e. the higher the antioxidative activity, the 

lower was the value of SC50. The correlation of the scavenging free radical of 

extracts and isolated compounds is displayed in Figures III.17.3a  and  III.17.3b 

below, while the corresponding SC50 value can be seen in Table III.17.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

Fig. III.17.3a. Concentration-scavenging activity (%) curve of crude extracts 
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Note : The mixture of compound 109a and 109b didn’t have correlation between 

antioxidative activity with their concentrations. 
 

Fig. III.17.3b. Concentration-Scavenging Activity (%) curve of isolated 

compounds 
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Table III.17.1. The SC50 of antioxidative activity of crude extracts and isolated 
compounds 
 

Name 
 

SC50 value (Mean ± SD) 

Standard  

Ascorbic acid (vit C) 0.041 ± 0.001 mM 

Extracts  

Ethyl acetate 175.06 ± 3.28 ppm 

Methanol 4120.3 ± 147 ppm  

Ethyl acetate (after hydrolysis) 983.23 ± 3.42 ppm  

n-Butanol 737.73 ± 4.931 ppm  

Petroleum ether 21794 ± 43 ppm 

Isolated compounds  

 

(9,12)-Tricosandiene 

 

 
 

 

 

31.38 ± 9.44 mM 

 

  

 
Trilinolein 

 
 

 

 

 

 

 
 

 
 

 

 

0.131 ± 0.004 mM 

 

 
 

Stigmasterol 

 
 

 
 

 

 

 
 

 

 
 

 
 

                      

 

Not detectable 

 
 

 

 ß-Sitosterol 
 

 
 

 

 
 

 

 
 

 
 

 
 

 
Not detectable 

 

 

 Palmitic acid 
 

 

 

 

 
 

 

 

60.51 ± 0.66 mM 

 
 

 Hexadecyl 
pentanoate 

 

 
 

 
 

 
10.76 ± 0.12 mM 
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7.857 ± 0.069 mM 
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 2-Butoxy-2,5-

bis(hydroxymethyl)-
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0.885 ± 0.003 mM 
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yl)ethyl)-2-methyl-
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0.314 ± 0.002 mM 
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These data clearly showed that the scavenging activity of the ethyl 

acetate extract was significantly higher than that of other extracts; the SC50 value 

amounts to 175.06 ppm. The mixture of stigmasterol and ß-sitosterol didn’t have 

any scavenging activity, while trilinolein had the highest activity of all isolated 

compounds with a SC50 value of 0.131 mM and followed by compound 4-(2-

(furane-2-yl)-2-methyl-2,5-dihydrofurane-3-carbaldehyde, daidzein-7-O-ß-

glucopyranose and 2-butoxy-2,5-bis(hydroxymethyl)-tetrahydrofurane-3,4-diol. 

The antioxidative activity of trilinolein was lower than ascorbic acid, because the 

SC50 of trilinolein (0.131 mM) still higher than SC50 of ascorbic acid (0.041 mM). 

The reducing properties were generally associated with the presence of 

compounds with strong proton-donating abilities (Sawai and Moon 2000) and 

their antioxidative activity was based on the breaking of the free radical chain 

reaction by donating a hydrogen atom (Gordon 1990).  Trilinolein had many 

carbonyl groups and double bounds C-C which play a major role as antioxidative 

agent. On the other hand, the isoflavonoid compounds, daidzein and daidzein-7-

O-ß-glucopyranose contain phenol groups which were responsible to their 

antioxidative activity. According to Jayaprakasha et al. (2003), the antioxidative 

activity of some natural products may depend on the presence of polyphenols 

which may act as reductors. 

Based on the results, it was clear that isolated compounds with exception 

of the phytosterol group (ß-sitosterol and stigmasterol) have antioxidative activity 

and could be developed as an antioxidative material in cosmetics products. 

 

III.18. Tyrosinase Inhibitory Activity Assay 

 Tyrosinase inhibitory activity of crude extracts and isolated compounds 

was measured using mushroom tyrosinase as the enzyme, L-DOPA as a substrate 

and kojic acid as a positive control. UV detection at a maximum wavelength of 

475 nm was applied (Figure III.18.2). All tests were done in triplicate. The 

tyrosinase inhibitory activity is expressed as IC50 value that defined as the 

concentration of the extracts or isolated compounds that causes 50% loss of the 

enzyme tyrosinase activity. 

The catalytic action of tyrosinase enzyme was the conversion of tyrosine 

with oxygen to give DOPA which was then converted to dopaquinone and water. 

Subsequently, dopaquinone was converted through autooxidation to 
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to the black or brown melanin pigments (found in virtually all human pi

(Parvez et al. 2007; Rangkadilok et al. 2006).  The catalytic reaction of tyrosinase 

Dopa as a substrate is shown in Figure III.18.1
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Note : The petroleum ether extract and the butanol extract didn’t have any tyrosinase 

inhibitory activity 

 
 

Fig. III.18.3a. Concentration-tyrosinase inhibition (%) curve of five crude 
extracts of bengkoang 
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Fig. III.18.3b. Concentration-tyrosinase inhibition (%) curve of isolated 

compounds and kojic acid 
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Note : The compound 101 and W2Et didn’t have any tyrosinase inhibitory activity 
 

Fig. III.18.3b. Concentration-Tyrosinase Inhibition (%) curve of isolated 

compounds and kojic acid standard 
 

The results provided in Figure III.18.3a demonstrate that only the ethyl acetate 

extract, the ethyl acetate extract after hydrolysis and the methanol extract show 

a significant correlation between the concentration and the tyrosinase inhibitory 

activity, but this correlation can not be seen in petroleum ether extract and n-

butanol extract. Figure III.18.3b shows that 9,12-tricosandiene and 

dihydrofurane-2,5-dione do not have any tyrosinase inhibitiory activity. The IC50 

value of active extracts and the isolated compounds are displayed in Table 

III.18.1. 

Table III.8.1. The IC50 of tyrosinase inhibitory activity of crude extracts and 
isolated compounds 

Name IC50 value 

Extracts  

Ethyl acetate 158.13 ± 1.36 ppm 

Methanol 277.50 ± 0.69 ppm 

Ethyl acetate (after hydrolysis) 8.540 ± 0.028 ppm 

n-Butanol Not detectable 

Petroleum ether Not detectable 

Isolated compounds  

Daidzein 5.35 ± 0.03 mM 

4-(2-(Furane-2-yl)ethyl)-2-methyl-2,5-
dihydrofurane-3-carbaldehyde 

1.21 ± 0.02mM 

2-Butoxy-2,5-bis(hydroxymethyl)-

tetrahydrofurane-3,4-diol 

0.198 ± 0.004 mM 

Dihydrofurane-2,5-dione Not detectable 

ß-Sitosterol and Stigmasterol Not detectable 

9,12-Tricosandiene Not detectable 

Trilinolein Not detectable 

Palmitic acid Not detectable 

Hexadecyl pentanoate Not detectable 

Daidzein-7-O-ß-glucopyranose 22.20 ± 0.27 mM 

5-Hydroxy-daidzein-7-O-ß-glucopyranose 4.38 ± 0.01 mM 

(8,9)-Furanyl-pterocarpan-3-ol 7.19 ± 0.11 mM 

Kojic acid standard 0.070 ± 0.001 mM 
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When we compared the tyrosinase inhibitory activity of the isolated compounds, 

2-butoxy-2,5-bis(hydroxymethyl)-tetrahydrofurane-3,4-diol  had greatest activity 

and followed by 4-(2-(furane-2-yl)ethyl)-2-methyl-2,5-dihydrofurane-3-

carbaldehyde, 5-Hydroxy-daidzein-7-O-ß-glucopyranose and daidzein. However, 

the activity of 2-butoxy-2,5-bis(hydroxymethyl)-tetrahydrofurane-3,4-diol was 

lower than kojic acid.  

 In cosmetic fields, the ethyl acetate extract can be developed as a natural 

skin-whitening agent, because it contained several active compounds of 

antioxidative property, namely the isoflavonoids daidzein, daidzein-7-O-ß-

glucopyranose, 5-Hydroxy-daidzein-7-O-ß-glucopyranose, the pterocarpan ((8,9)-

furanyl-pterocarpan-3-ol), the furanes (2-butoxy-2,5-bis(hydroxymethyl)-

tetrahydrofurane-3,4-diol) and 4-(2-(furane-2-yl)ethyl)-2-methyl-2,5-

dihydrofurane-3-carbaldehyde, which have activities to inhibit tyrosinase enzyme. 

The results also showed that the phenol content in the ethyl acetate was higher 

than in the other extracts, thus the presence of phenol in the extracts might play 

a pivotal role in tyrosinase inhibition. On the other hand, the petroleum ether 

extract was suitable only as an antioxidative material, because it possessed 

antioxidative activity without tyrosinase inhibitory activity. Antioxidative activity in 

the petroleum ether might be due to compounds with unsaturated carbon chains 

and/or carbonyl functional group, such as trilinolein, 9-12 tricosandiene, palmitic 

acid and hexadecyl pentanoat. According to some previously papers (Seo et al. 

2003, and Karg et al. 1993), antioxidatives might prevent or delay pigmentation 

by different mechanisms, such as by scavenging reactive oxygen species and 

reactive nitrogen species (Seo et al. 2003), or by reducing DOPAquinone or other 

intermediates in melanin biosynthesis, thus delaying oxidative polymerization 

(Karg et al. 1993). Therefore, it was important to combine compounds which 

have tyrosinase inhibitory activity and antioxidative compounds in skin whitening 

products. 
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Fig.18.4. Chemical structures of isoflavonoids and a pterocarpan isolated from 

the bengkoang root 

 

The compounds of daidzein, daidzein-7-O-ß-glucopyranose, 5-Hydroxy-

daidzein-7-O-ß-glucopyranose were isoflavonoids and (8,9)-furanyl-pterocarpan-

3-ol was a pterocarpan (Fig.III.18.4). Comparison of the tyrosinase inhibition 

potency of isoflavonoids, revealed that 5-Hydroxy-daidzein-7-O-ß-glucopyranose 

had the greatest inhibition activity, followed by daidzein, (8,9)-furanyl-

pterocarpan-3-ol and daidzein-7-O-ß-glucopyranose, respectively.  The decrease 

of the activities from daidzein to daidzein-7-O-ß-glucopyranose might be 

reasoned by the glucose substituent providing steric bulk. The result is in 

accordance with findings reported by Chang (2007).  The active site of enzyme 

tyrosinase (see Fig.I.2.3.2 in Chapter I) consisted of two copper atoms that were 

each coordinated with three histidine residue (Mirica et al. 2005). The 

compounds having phenol or diphenol group could form a chelat complex with 

copper in the enzyme and thus irreversibly inactivated the tyrosinase.  Daidzein-

7-O-ß-glucopyranose having one of phenol group because the other phenol 

groups bond to a glucose molecule forms only a weak complex resulting in a 

lower inhibitory activity.   

The compound of 5-Hydroxy-daidzein-7-O-ß-glucopyranose is also a 

glycoside having an extra hydroxyl group at position C4 beside the -OH group at 

position C4’.  However, the tyrosinase inhibition activity was still greater than that 

of daidzein compound.  The hydroxyl group (-OH) at position 4 adjacent to the 

carbonyl group (-C=O) enables this compound to form a strong chelation with 
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the copper of the active site enzyme, so that the inhibition power was greater 

than the aglycon molecule of daidzein.  The molecule of (8,9)-furanyl-

pterocarpan-3-ol has only one hydroxyl -OH at position C7 and no carbonyl group 

(-C=O), thus the activity was much lower than the aglycon daidzein.  

The compound of 4-(2-(furane-2-yl)ethyl)-2-methyl-2,5-dihydrofurane-3-

carbaldehyde is an aldehyde and does not have a phenol group.  However, this 

compound also shows the inhibitory activity towards tyrosinase.  Some authors 

(Parvez et al. 2007; Kubo and Kinst-Hori 1999) mentioned that the aldehyde 

compound can inhibit the enzym tyrosinase via the different mechanism, i. e. the 

formation of a Schiff base with histidine residue in the active side of the enzyme, 

explaining the observed activity. 

The compound of 2-butoxy-2,5-bis(hydroxymethyl)-tetrahydrofurane-3,4-

diol does neither have phenol or aldehyde groups, but its activity is much greater 

than the other isolated compounds.  The inhibition activity of 2-butoxy-2,5-

bis(hydroxymethyl)-tetrahydrofurane-3,4-diol may be due to the interaction of 

two hydroxyl groups (-OH) at the position 3 and 4 with the active site of the 

enzyme or ring-opened followed by forming an aldehyde. 

 

III.19.  Determination of Tyrosinase Inhibition Type of isolated 
compounds 

 
This study was conducted to determine the inhibition type of the isolated 

active compounds. An inhibitor molecule affects an enzyme either as a 

competitive inhibitor and non-competitive inhibitor. Competitive inhibition takes 

place when a molecule that is structurally similar to the substrate for a particular 

reaction competes for a position at the active site on the enzyme. Competitive 

inhibition can be reversed by raising the concentration of substrate to sufficiently 

high levels while the concentration of the inhibitor is held constant. The presence 

of the competitive inhibitor can reduce the maximum rate of a chemical reaction 

(Vmax) without changing the apparent binding affinity of the active site to 

substrate. A non-competitive inhibitor always binds to a site that is not the active 

site (an allosteric site). The presence of non-competitive inhibitor changes the 

nature and shape of the enzyme so that its catalytic properties are lost. This can 

happen in two ways. Either the non-competitive inhibitor itself physically blocks 

the access to the active site, or it causes a conformational change in the protein, 
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thus inactivating the active site. Because the substrate molecules cannot reverse 

the binding of a non-competitive inhibitor, increasing the concentration of 

substrate will not reverse the inhibition. 

To analyze the inhibition type of the present isolated compounds for 

tyrosinase, a steady-state analysis was performed.  Lineweaver-Burk plots for the 

inhibition of tyrosinase by isolated compounds were obtained with variable 

concentrations of them and substrate (l-DOPA). The Lineweaver-Burk plots of the 

isolated compounds displayed in Figure III.19.2. 

The intersections of the lines on the vertical axis in Lineweaver-Burk plots 

of daidzein, 4-(2-(furane-2-yl)ethyl)-2-methyl-2,5-dihydrofurane-3-carbaldehyde, 

daidzein-7-O-ß-glucopyranose, 2-butoxy-2,5-bis(hydroxymethyl)-

tetrahydrofurane-3,4-diol and 5-Hydroxy-daidzein-7-O-ß-glucopyranose indicates 

that these compounds could be included in the group of competitive inhibitors. 

Meanwhile the Lineweaver-Burk plot of (8,9)-furanyl-pterocarpan-3-ol produced 

the lines which have the same intersection on the horizontal axis indicating that 

this compound had to be included in the group of non-competitive type.  
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Fig.19.1. Chemical structure of compound (8,9)-furanyl-pterocarpan-3-ol 

The presence of hydroxyl (-OH) at position C4’ in the isoflavonoid 

compounds and aldehyde in the furane carbaldehyde compounds might be 

responsible for the competitive inhibition activity. The compound (8,9)-furanyl-

pterocarpan-3-ol (Fig.III.19.1) didn’t have hydroxyl (-OH) at position C4’, 

therefore it wasn’t be able to bind with the active site of tyrosinase enzyme. The 

inhibition activity of (8,9)-furanyl-pterocarpan-3-ol might be due to its ability to 

bind with tyrosinase at a site other than the enzyme’s active site (at allosteric 

site). This fact was in agreement with Khatib et al. (2005) showing that the 

position of hydroxyl in the molecule played an important role in the type 

inhibition activity rather than the number of hydroxyl group. Chang (2007) has 

reported that the isoflavone skeleton in the compounds was absolutely necessary 

for the compounds to suicide substrates of mushroom tyrosinase (as a 

competitive tyrosinase inhibitor). 
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Fig. III.19.2. The Lineweaver-Burk plots of isolated compounds 
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Table III.19.1.  Result of the determination of the tyrosinase inhibition type of 
isolated compounds  

 
Compound L-DOPA 

(IC50,mM) 
Type of inhibition 

 

Daidzein 
 

 

5.35 ± 0.03 mM 

 

Competitive 
Vm = 55.16 ± 0.33 U/min 

 

Daidzein-7-O-ß-glucopyranose  
 

 

22.20 ± 0.27 mM 

 

Competitive 
Vm = 56.64 ± 0.53 U/min 

 

5-Hydroxy-daidzein-7-O-ß-
glucopyranose 

 

 

4.38 ± 0.01 mM 

 

Competitive 
Vm = 53.91 ± 0.29 U/min 

 
(8,9)-Furanyl-pterocarpan-3-ol  

 

 
7.19 ± 0.11 mM 

 
Non-competitive 

Km = 4.48 ± 0.11 mM 

 

2-Butoxy-2,5-bis(hydroxymethyl)-

tetrahydrofurane-3,4-diol  
 

 

1.21 ± 0.02 mM 

 

Competitive 

Vm = 54.72 ± 0.66 U/min 

 

4-(2-(Furane-2-yl)ethyl)-2-methyl-
2,5-dihydrofurane-3-carbaldehyde  

 

 

0.198 ± 0.004mM 

 

Competitive  
Vm = 56.94 ± 0.43 U/min 
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CHAPTER IV 
SUMMARY 

 

 The exploration of the bengkoang root (Pachyrhizus erosus) collected 

from Purworejo, Indonesian has been conducted for their chemical constituents 

and their activities in cosmetics field (UV absorption activity, antioxidative 

activity, tyrosinase inhibitory activity and the type of tyrosinase inhibition 

activity). 

 Thirthteen compounds have been obtained from the bengkoang root. The 

structures of the compounds were estimated on the basis of NMR spectroscopic 

(1H, 13C, COSY, 1H-detected direct and long range 13C-1H correlations) and mass 

spectroscopic data. The identified of the compounds were also established by 

comparison with the published data.  

 By using bioassay-guided isolated components, six compounds obtained 

in petroleum ether extract (9,12-tricosandiene; trilinolein; ß-sitosterol; 

stigmasterol; hexadecyl pentanoate; palmitic acid), five compounds obtained in 

ethyl acetate extract (daidzein; daidzein-7-O-ß-glucopyranose, 5-hydroxyl- 

daidzein-7-O-ß-glucopyranose; dihydrofurane-2,5-dione; (8,9)-furanyl-

pterocarpan-3-ol, one compound in the ethyl acetate extract after hydrolysis (4-

(2-(furane-2-yl)-2-methyl-2,5-dihydrofurane-3-carbaldehyde) and one compound 

in the butanol extract (2-butoxy-2,5-bis(hydroxymethyl)-tetrahydrofurane-3,4-

diol) have been found. 

 Three isolated isoflavonoids (daidzein, daidzein-7-O-ß-glucopyranose; 5-

hydroxyl-daidzein-7-O-ß-glucopyranose), (8,9)-furanyl-pterocarpan-3-ol, 2-

butoxy-2,5-bis(hydroxymethyl)-tetrahydrofurane-3,4-diol  and 4-(2-(furane-2-yl)-

2-methyl-2,5-dihydrofurane-3-carbaldehyde showed interesting antioxidative and 

tyrosinase inhibitory acivities. These compounds were significantly inhibiting 

tyrosinase enzyme. The IC50 values (in mM) to inhibit tyrosinase of compounds 

were 5.35 ± 0.03; 22.20 ± 0.27; 4.39 ± 0.01; 7.18 ± 0.11; 0.198 ± 0.004; 1.21 

± 0.02, respectively. 

 Four isolated compounds obtained in petroleum ether extract (9,12-

tricosandiene, trilinolein, hexadecyl pentanoate and palmitic acid) and 

dihydrofurane-2,5-dione showed antioxidative activity against the DPPH reagent. 

However, they didn’t have the tyrosinase inhibitory activity. The SC50 values (in 
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mM) of these compounds were 31.38 ± 9.44; 0.131 ± 0.004; 1076 ± 0.12 and 

60.51 ± 0.66, respectively. The compounds having antioxidative activity could 

also prevent or delay pigmentation by different mechanisms than tyrosinase 

inhibition, such as by scavenging reactive oxygen species and reactive nitrogen 

species (Seo et al. 2003), or by reducing DOPAquinone or other intermediates in 

melanin biosynthesis, thus delaying oxidative polymerization (Karg et al. 1993). 

Therefore, these compounds were important to combine with the tyrosinase 

inhibitor in whitening cosmetics product to get a synergic effect. 

Based on all the results, isolated compounds could be classified into three 

groups, i. e. (1) the UV absorption group (all compounds), (2) antioxidative 

group (Trilinolein; 9,12-tricosandiene; daidzein; daidzein-7-O-ß-glucopyranose; 

5-hydroxyl-daidzein-7-O-ß-glucopyranose; (8,9)-furanyl-pterocarpan-3-ol; 

dihydrofurane-2,5-dione; 2-butoxy-2,5-bis(hydroxymethyl)-tetrahydrofurane-3,4-

diol;  4-(2-(furane-2-yl)ethyl)-2-methyl-2,5-dihydrofurane-3-carbaldehyde), and 

(3) antityrosinase group (the compounds of daidzein, daidzein-7-O-ß-

glucopyranose, 5-hydroxyl-daidzein-7-O-ß-glucopyranose, (8,9)-furanyl-

pterocarpan-3-ol, 2-butoxy-2,5-bis(hydroxymethyl)-tetrahydrofurane-3,4-diol and 

4-(2-(furane-2-yl)ethyl)-2-methyl-2,5-dihydrofurane-3-carbaldehyde). 
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Table. IV.1. Summary of isolated compounds and their activities from the 
bengkoang root extract 

 

Name 
Chemical Structure 

MW (g/mol) 

UV 
absorption 

activity 

Antioxidative 
activity 

(SC50,mM) 

Type of 
Tyrosinase 

inhibition 

 
101  

(9,12-

Tricosandiene) 

 
 

 

MW = 320 

 
0.003 

AU/mM 

 
31.38 ± 9.44 

 
Not 

detectable 

 

102 

(Trilinolein) 
 

 
 

 

 

 

 
 

 
 

MW = 879 

 

0.002 

AU/mM 

 

0.131 ± 0.004 

 

Not 

detectable 

 
109 a 

(Stigmasterol) 
 

 

 
 

 

 
 

 
 

 

 
                     MW = 412 

 
0.094 

mAU*S/mmol 

 
Not detectable 

 
Not 

detectable 

 

109 b 

(ß-Sitosterol) 
 

 
 

 

 

 

 

 
 

 
 

                 MW = 414 

 

0.094 

mAU*S/mmol 

 

Not detectable 

 

Not 

detectable 

 

WuPe 

(Palmitic acid) 
 

 

 

 

 
 

MW = 256 

 

0.011 

AU/mM 

 

60.51 ± 0.66 

 

Not 

detectable 

 
G1 

(Hexadecyl 
pentanoate) 

 
 

 
 

 
 

MW = 326.7 
 

 
0.048 

AU/mM 

 
10.76 ± 0.12 

 
Not 

detectable 

 

C1 
(Daidzein) 

 

 
 

 
 

 

 

 
 

 

 
 

 
MW = 254 

 

21.091 
mAU*S/mmol 

 

11.86 ± 0.23 

 

Competitive 
IC50 = 5.35 

± 0.03 mM 

Vm = 55.16 
± 0.33 

U/min 
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Wu1a  
(Daidzein-7-O-ß-

glucopyranose) 
 

 
 

 

 

 
 

 
 

 
 

 

MW = 416 

 

1.428 
mAU*S/mmol 

 

0.697 ± 0.002 

 

Competitive 
IC50 = 22.20 

± 0.27 mM 
Vm = 56.64 

± 0.53 
U/min 

 
Wu3a  

(5-Hydroxyl- 
daidzein-7-O-ß-

glucopyranose) 

 
 

 
 

 

 
 

 
 

MW = 432 
 

 
1.016 

mAU*S/mmol 

 
7.857 ± 0.069 

 
Competitive 

IC50 = 4.38 
± 0.01 mM 

Vm = 53.91 

± 0.29 
U/min 

 

A182  
(8,9)-Furanyl-

pterocarpan-3-ol 

 

O

O
O

HO

5

6

6a

11a1

2

3

4

4a

11b

1'

2'

3'
7

6b

10a

10

9

8

11

 
MW = 280 

 

 

4.018 
mAU*S/mmol 

 

2.113 ± 0.001 

 

Non 
Competitive 

IC50 = 7.19 

± 0.11 mM 
Km = 4.48 ± 

0.11 mM 

 
WuBuOH  

(2-Butoxy-2,5-

bis(hydroxymethyl)-
tetrahydrofurane-

3,4-diol) 
 

 
 

 

 
 

                    MW = 236 

 
0.211 

mAU*S/mmol 

 
0.885 ± 0.003 

 
Competitive 

IC50 = 1.21 

± 0.02 mM 
Vm = 54.72 

± 0.66 
U/min 

 

HWu10  
(4-(2-(Furane-2-

yl)ethyl)-2-methyl-
2,5-dihydrofurane-

3-carbaldehyde) 

 
 

 

 
 

 
 

 

MW = 206 

 

2.883 
mAU*S/mmol 

 

0.314 ± 0.002 

 

Competitive  
IC50 = 0.198 

± 0.004mM 
Vm = 56.94 

± 0.43 

U/min 
 

 

W2Et 
(Dihydrofurane-2,5-

dione) 

 

 
 

 
 

MW = 100 

 

39 
mAU*S/mmol 

 

79.07 ± 2.19 

 

Not 
detectable 
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Zusammenfassung 

 

Die Wurzeln der Bengkoang (Phacyrhizus erosus) werden im Bereich der 

Kosmetik, speziell zum Schutz vor UV-Strahlung und zum Bleichen der  Haut, 

verwendet. Indonesien ist ein tropisches Land, in dem täglich die Sonne scheint. 

Die Sonnenstrahlung, insbesondere die UV-Strahlung hat negative Auswirkungen, 

wie z. B. Sonnenbrand, Krebserzeugung und Hyperpigmentation. Deshalb 

brauchen die Menschen in Indonesien „sunscreen and whitening“-Kosmetik zum 

Schutz der Haut vor der Sonneneinstrahlung.  

 Bis heute gibt es keine wissenschaftlichen Beweise, ob Bengkoang 

Wirkstoffe enthält, die die UV-Strahlung absorbieren und die Haut bleichen 

können. Ziel der Arbeit war die Suche nach Substanzen mit diesem 

Eigenschaften. Deshalb stand die Isolierung und Strukturaufklärung von 

Inhaltstoffen aus Bengkoang-Wurzeln sowie die Analyse der UV-

Absorptionsfähigkeit und Analyse der Hautbleichungs-Fähigkeit der gefundenen 

Verbindungen im Mittelpunkt der Arbeit. Die Hautbleichungs-Fähigkeit wurde 

durch die Analyse der antioxidativen Aktivität und Tyrosinase-Inhibitor-Aktivität 

getestet. 

 Aus Extrakten unterschiedlicher Polarität wurden Sekundärstoffe durch 

unterschiedliche chromatographische Trenn-Methoden (Säulenchromatographie 

mit verschiedenen stationären Phasen) isoliert, deren Struktur mittels Massen-

spektrometrie und ein- und zweidimensionalen Kernresonanz-Spektroskopie-

Experimente aufgeklärt würde. Insgesamt wurden 13 Naturstoffe isoliert, von 

denen 11 die antioxidative Aktivität haben. Nur ß-Sitosterol und Stigmasterol 

zeigten keine die antioxidative Aktivität. 

 Drei Verbindungen der Isoflavonoid-Gruppe, nämlich Daidzein, Daidzein-

7-O-ß-glucopyranose, 5-hydroxy-daidzein-7-O-ß-glucopyranose und eine 

Verbindung der Pterocarpan-Gruppe, nämlich (8,9)-Furanyl-pterocarpan-3-ol,  

wurde aus dem Essigsäureethylacetat-Extrakt isoliert. Alle haben starke 

Tyrosinase-Inhibitions-Aktivität mit IC50-Werten von 4.38 mM bis 22.20 mM. Die 

andere Verbindungen, nämlich 2-Butoxy-2,5-bis(hydroxymethyl)-tetrahydrofuran 

aus dem Butanol-Extrakt und 4-(2-(Furan-2-nyl)ethyl)-2-methyl-2,5-

dihydrofuran-3-carbaldehyd aus dem Essigsäureethylacetat-Extrakt-nach- 
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Hydrolyse, haben eine Tyrosinase-Inhibitions-Aktivität mit IC50-Werten von 1.21 

mM und 0.20 mM. 

 Zusammenfassend kann festgestellt werden, dass Bengkoang viele aktive 

Verbindungen im Bereich der UV Absorption, antioxidative Aktivität und 

Tyrosinase-Inhibitions-Aktivität haben. Deshalb kann Bengkoang für Kosmetik, 

speziell als Material, das vor UV-Strahlung schützt und die Haut bleicht,  

verwendet werden.  
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Abstract 

 

 Bengkoang roots (Phacyrhizus erosus) have been used as cosmetics 

materials, primarily as sun screening and skin whitening materials. Indonesia is a 

tropical country, which has high sunlight intensities every day. Sunlight, primarily 

the ultraviolet ray, causes several damages on skin; for examples, sunburn, 

cancer, and hyperpigmentation. Therefore, the Indonesian people need sun 

screening and skin whitening preparations to avoid the negative effects of 

ultraviolet. 

 Up to now, active compounds in bengkoang roots which have skin 

whitening and sun screening activity have not been discovered yet. Therefore, 

the study on isolation, structure elucidation, antioxidative and anti-tyrosinase 

assay of active compounds in bengkoang roots has been conducted. The 

isolation of active compounds has been carried out by Soxhlet extraction using 

solvents (petroleum ether, ethyl acetate and butanol) followed by fractionated 

using column chromatography. The structures of the compounds were elucidated 

using 1D and 2D NMR spectroscopy and mass spectrometry. 13 compounds were 

isolated. All compounds have an antioxidative activity with the exceptions of     

ß-sitosterol and stigmasterol. 

 Three isoflavonoids (i.e. daidzein; daidzein-7-O-ß-glucopyranose; 5-

Hydroxy-daidzein-7-O-ß-glucopyranose), and a pterocarpan (i. e. (8,9)-Furanyl-

pterocarpan-3-ol) were isolated from the ethyl acetate extract. All compounds 

showed tyrosinase inhibitory activity with IC50 values from 4.38 to 22.20 mM. The 

other compounds, i. e. 2-Butoxy-2,5-bis(hydroxymethyl)-tetrahydrofurane from 

the butanol extract and 4-2-(Furane-2-nyl)ethyl)-2-methyl-2,5-dihydrofurane-3-

carbaldehyde from the ethyl acetate after hydrolysis extract have the tyrosinase 

inhibitory activity with IC50 values of 1.21 mM and 0.20 mM, respectively. 

 Based on the results, it can be concluded that bengkoang root can be 

used as sun screening and skin whitening materials for cosmetics preparations, 

because the bengkoang root posseses many compounds which have UV 

absorption, antioxidative and tyrosinase inhibitory activities. 
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H NMR spectrum of compound 101 (9,12-Tricosandiene)
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App.2.3. 1H NMR of compound 102 (Trilinolein)

App.2.4. 13C NMR of compound 102 (Trilinolein)
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H NMR of compound 102 (Trilinolein) measured in CDCl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C NMR of compound 102 (Trilinolein) measured in CDCl
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IR spectrum, 1H NMR and 

App.3.1. IR spectrum of 

App.3.2. 1H NMR of the mixture of compound 109a and 109b
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APPENDIX 3 

H NMR and 13C NMR of the mixture of compound 109a 

and 109b 

App.3.1. IR spectrum of the mixture of compound 109a and 109b 

(stigmasterol and ß-sitosterol) 
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(stigmasterol and

C5 

C22 C23 

C6 

160 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C NMR spectrum the mixture of compound 109a and 109b 

and ß-sitosterol) measured in CDCl3 (125 MHz)
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APPENDIX 4 

spectrum, 1H NMR and 13C NMR of compound 

 

 

 

 

 

 

 

 

 

 

 

App.4.1. IR spectrum of compound WuPe (Palmitic acid)

 

 

 

 

 

 

 

 

 

 

 

 

App.4.2. UV spectrum of compound WuPe (Palmitic acid)
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App.4.3. 1H NMR of compound WuPe (Palmitic acid)

App.4.4. 13C NMR spectrum of compound WuPe (Palmitic acid)
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H NMR of compound WuPe (Palmitic acid) measured in MeOH

(125 MHz) 

 

 

 

 

 

 

 

 

 

 

 

 

 

C NMR spectrum of compound WuPe (Palmitic acid) measured in 
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APPENDIX 5 

spectrum, 1H NMR and 13C NMR of compound 

 

 

 

 

 

 

 

 

 

 

1. IR spectrum of compound G1 (Hexadecyl pentanoate)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. UV spectrum of compound G1 (Hexadecyl pentanoate)
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App.5.3. 1H NMR of compound G1 (Hexadecyl pentanoate) measured in CDCl3 

(500 MHz) 

 

 

 

 

 

 

 

 

 

 

 

 

 

App.5.3. 13C NMR of compound G1 (Hexadecyl pentanoate) measured in CDCl3 

(125 MHz) 
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APPENDIX 6 

IR spectrum, 1H NMR and 13C NMR of compound W2Et 

 

 

 

 

 

 

 

 

 

 

 

 

App.6.1. IR spectrum of compound W2Et (Dihydrofurane-2,5-dione) 

 

 

 

 

 

 

 

 

 

 

 

 

 

App.6.2. 1H NMR spectrum of compound W2Et (Dihydrofurane-2,5-dione) 

measured in MeOH-d4 (500 MHz)) 
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App.6.3. 13C NMR spectrum of compound W2Et (Dihydrofurane-2,5-dione) 

measured in MeOH-d4, 125 MHz) 
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APPENDIX 7 

spectrum, 1H NMR and 13C NMR of compound 

 

 

 

 

 

 

 

 

 

 

 

 

7.1. IR spectrum of compound C1 (Daidzein) 

 

 

 

 

 

 

 

 

 

 

 

 

2. UV spectrum of compound C1 (Daidzein) 
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App.7.3. 1H NMR of compound C1 (D

App.7.4. 13C NMR spectrum of compound C1 (D

H2 

H5 

H2‘ 

H6‘ 

H6

C4 C7 

C9 

C4‘ 

C2

168 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H NMR of compound C1 (Daidzein) measured in MeOH-d

 

 

 

 

 

 

 

 

 

 

 

 

 

C NMR spectrum of compound C1 (Daidzein) measured in MeOH
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App.7.5. HPLC chromatogram of compound C1 (D

column Zorbax SB-C18 (25 cm, i.d. 0,46 cm, 5 µm particle size) using a 

gradient mixture of MeOH
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C chromatogram of compound C1 (Daidzein) obtained with a 

C18 (25 cm, i.d. 0,46 cm, 5 µm particle size) using a 

gradient mixture of MeOH-water as a mobile phase and UV detection at       
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APPENDIX 8 

spectrum, 1H NMR and 13C NMR of compound 

 

 

 

 

 

 

 

 

 

 

 

App.8.1. IR spectrum of compound Wu1a (Daidzein-7-O-ß-glucopyranose

 

 

 

 

 

 

 

 

 

 

 

 

 

UV spectrum of Wu1a (Daidzein-7-O-ß-glucopyranose
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NMR of compound Wu1a (Daidzein-7-O-ß-glucopyranose

measured in MeOH-d4 (125 MHz) 

 

 

 

 

 

 

 

 

 

 

 

 

 

NMR of compound Wu1a (Daidzein-7-O-ß-glucopyranose

measured in MeOH-d4 (500 MHz) 
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