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Zusammenfassung
(German Summary)

Die vorliegende Arbeit befasst sich mit Lernkurveneffekten in Kliniken als hochspezialisier-
te Expertenorganisationen und umfasst vier Aufsätze, die sich jeweils mit einem anderen
Aspekt des Themas beschäftigen. Der Fokus liegt dabei in den ersten drei Artikeln auf
Lernkurveneffekten von Ärzten bei chirurgischen Eingriffen, im vierten Beitrag steht das
Team der Notaufnahme als Ganzes im Fokus.

Das Vorwort beleuchtet in kompakter Form die stetig steigenden Gesundheitsausgaben,
den damit steigenden Kostendruck, die Krankenhauslandschaft in Deutschland sowie ihre
Entwicklung. Ferner wird das Vergütungssystem mittels Fallpauschalen wie auch die Be-
sonderheiten des Gesundheitssektors, der stark staatlich reguliert ist und in dem ethische
Aspekte omnipräsent sein müssen, umrissen. Nicht zuletzt wird der Nutzen des Wissens
um Lernkurveneffekte skizziert, um Kosten zu senken und zudem die Qualität konstant
zu halten oder sogar zu verbessern.

Der erste Aufsatz des Sammelbandes untersucht die Lerneffekte in einer Klinik, die sich
auf endoprothetische Eingriffe (Hüft- und Kniegelenksersatz) spezialisiert hat. Es werden
dabei zwei große Bereiche untersucht, der spezialisierte sowie der nicht-spezialisierte Be-
reich. Es werden keine Kosten direkt untersucht, sondern Kostenindikatoren verwendet.
Der Indikator für die Kosten in der kurzen Frist sind die OP-Zeiten. Der Indikator für die
mittlere bis lange Frist ist die Qualität. Sie wird über im Aufwachraum möglicherweise
auftretende Komplikationen operationalisiert. Die Untersuchung selbst erfolgt mit Regres-
sionsmodellen (KQ und Logit). Die Ergebnisse zeigen, dass die Spezialisierung Vorteile
durch Lerneffekte in Form von kürzeren OP-Zeiten und geringeren Komplikationsraten
bei den endoprothetischen Eingriffen mit sich bringt. Für die nicht-spezialisierten OPs er-
geben sich dieselben Resultate. Auch hier sinken die OP-Zeiten sowie die Komplikationen.
Es kommt demnach nicht zu möglicherweise negativen Auswirkungen der Spezialisierung
auf den nicht-spezialisierten Bereich, sondern es liegen vorteilhafte Spillover-Effekte vor.
Insgesamt ist die Spezialisierung damit als sinnvoll zu betrachten, da sie die kurz-, mittel-
und langfristigen Kosten für alle Operationen senkt. Die Autoren sind Carsten Bauer,
Nele Möbs, Oliver Unger, Andrea Szczesny und Christian Ernst.



Zusammenfassung (German Summary) VIII

Im zweiten Artikel stehen die Unterschiede zwischen den Lernkurveneffekten von Ärzten,
die teilweise im Team operieren und denen, die stets alleine operieren, im Vordergrund.
Die Untersuchung verbindet somit Lernkurveneffekte mit Teamüberlegungen, welche in
den letzten Jahren zunehmend diskutiert werden. Bei den betrachteten Eingriffen handelt
es sich um Tonsillektomien (Entfernung der Gaumenmandeln), einen Standardeingriff. Die
Indikatoren für die Kosten in der kurzen bzw. mittleren bis langen Frist sind auch hier
die OP-Zeiten der Operationen bzw. Komplikationen als Maß für die Qualität. Die Kom-
plikationen sind in diesem Fall Nachblutungen, die meist wenige Tage nach der Operation
auftreten. Die Untersuchung selbst erfolgt mit Regressionsmodellen (KQ und Logit). Die
Ergebnisse der Untersuchung zeigen, dass die OP-Zeiten mit zunehmender Erfahrung der
Ärzte sinken. Ärzte, die auch im Team arbeiten, lernen dabei schneller als Ärzte, die stets
alleine operieren. So sind die OP-Zeiten der Ärzte, die auch im Team arbeiten, geringer
als die der anderen. Als Besonderheit stehen im verwendeten Datensatz die Fallkosten zur
Verfügung, womit die Kostenindikatoren validiert werden können. Aus den Ergebnissen
ergibt sich die Empfehlung, dass Assistenzärzte an Team-Operationen teilnehmen sollten.
Die Autoren sind Carsten Bauer, Oliver Unger und Martin Holderried.

Der dritte Aufsatz widmet sich der Stapesplastik, mithilfe derer Schallleitungsschwerhö-
rigkeit aufgrund von Otosklerose (überschießende Knochenbildung) behandelt werden soll.
Die Eingriffe werden als ideale Untersuchungsmöglichkeit von Lernkurveneffekten in der
Chirurgie angesehen, da sie konzeptionell einfach, jedoch technisch schwierig sind. Es wird
eine möglichst umfassende Betrachtung angestrebt, indem die OP-Zeiten als kurzfristiger
und die Qualität als mittel- bis langfristiger Kostenindikator herangezogen werden. Um
Qualität zu operationalisieren, wird die postoperative Differenz zwischen Luft- und Kno-
chenleitungsschwelle sowie die Kombination aus dieser Differenz mit der Abwesenheit von
Komplikationen verwendet. Auch hier werden verschiedene Regressionsmodelle (KQ und
Logit) geschätzt. In diesem Artikel wird neben der Klinikebene auch die Individualebene
betrachtet, d.h. OP-Zeiten und Qualität für einzelne Ärzte untersucht, was den Vergleich
individueller Lernkurven verbessert, da die Ärzte alle unter weitgehend identischen Bedin-
gungen gearbeitet haben. Es zeigt sich, dass die OP-Zeiten mit zunehmender Erfahrung
zunächst sinken. Der marginale Effekt von weiterer Erfahrung wird dabei mit zunehmen-
der Erfahrung geringer bis sich die Richtung des Effektes ändert und die OP-Zeiten mit
weiter zunehmender Erfahrung – vermutlich aufgrund der Allokation der schwierigeren
Fälle auf die erfahrensten Ärzte – wieder steigen. Bezüglich Qualität sind keine Lernkur-
veneffekte feststellbar. Die Autoren sind Carsten Bauer, Johannes Taeger und Kristen
Rak.



Zusammenfassung (German Summary) IX

Der vierte Beitrag ist ein systematischer Literaturüberblick zu Lerneffekten bei der Be-
handlung von ischämischen Schlaganfällen. Bei einem Schlaganfall zählt jede Minute,
weswegen die inhärente Notwendigkeit besteht, die Dauer vom Auftreten der Symptome
bis zur Behandlung zu verkürzen. Der Artikel befasst sich mit der Verkürzung der Dauer
vom Eintreffen der Patienten im Krankenhaus bis zur Behandlung mittels Thrombolyse,
der sogenannten „Door-to-Needle Time“. In der Literatur gibt es hierzu Untersuchungen
von Lernen im weiteren Sinne durch ein Qualitätsverbesserungsprogramm und Lernen
im engeren Sinne, bei dem Lernkurveneffekte evaluiert werden. Daneben werden Studien
ausgewertet, die sich mit den unterschiedlichen Zeiten zwischen Krankenhäusern mit nied-
rigen und hohen Fallzahlen befassen, da diese Unterschiede wahrscheinlich das Ergebnis
von Lernen und Skaleneffekten sind. Nahezu alle der 165 ausgewerteten Artikel berichten
von Verbesserungen bezüglich der Dauer bis zur Behandlung. Zudem unterstreichen die
klinischen Ergebnisse die gängige Auffassung, dass eine kürzere Zeit vom Eintreffen im
Krankenhaus bis zur Behandlung mit einem besseren Ergebnis einhergeht. Der Literatur-
überblick diskutiert zudem die ökonomischen Implikationen der Ergebnisse. Der Autor ist
Carsten Bauer.

Im Nachwort kommt u.a. zur Sprache, dass für die Nutzung der Lernkurveneffekte zur
Effizienzsteigerung nach der Messung der Lerneffekte weitere Anstrengungen unternom-
men werden müssen, da die Thematik keine einfachen, standardisierten Lösungen zulässt.
Zudem wird die Bedeutung der Mehrperspektivität in der Forschung für das Behand-
lungsergebnis des Patienten, das Gesundheitssystem und die Gesellschaft hervorgehoben.
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Preface

Health care costs have been increasing for decades. For example, German health expen-
ditures as well as hospital costs increased by about 80 % just from 2000 to 2018. Health
expenditures accounted for 11.7 % of the gross domestic product (GDP) in 2019. In 1970,
it had been just 5.7 % (OECD, 2020). Hospitals are a considerable factor in health care;
23.5 % of total German health expenditures were ascribed to them in 2018 (Gesundheits-
berichterstattung des Bundes, 2020a,b). Figure P.1 illustrates the development of health
expenditures and hospital costs in Germany. With 1,175,000 people, 20.7 % of people
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Figure P.1: Development of Health Expenditures and Hospital Costs
(Data: Gesundheitsberichterstattung des Bundes, 2020a,b)

in German health care worked in hospitals in 2018 (Gesundheitsberichterstattung des
Bundes, 2020d).1 Highly qualified staff plays a major role in hospitals. It is the crucial
1 Overall, 12.7 % of people in gainful employment work in health care (Gesundheitsberichterstattung

des Bundes, 2020d; Statistisches Bundesamt, 2020a).
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resource for the quality of the services provided by the hospital and it represents the pri-
mary cost factor. Staff costs accounted for 61.1 % of total German hospital costs in 2018
(Statistisches Bundesamt, 2020b).

To get an overview about hospitals in Germany: In 2018, there were 1,925 hospitals,
552 were community-owned, 650 were owned by nonprofit organizations, and 723 were
privately owned. Altogether, they provided 498,192 beds and had 19,392,000 patient cases.
Community-owned hospitals had 238,907 beds and nonprofit organizations 164,081 beds.
95,204 beds were provided by privately owned hospitals. The number of hospitals as well
as the total number of beds they provide has been steadily decreasing in recent times.
In 2000, there had still been 2,242 hospitals with 559,651 beds.2 Though, bed occupancy
rate slightly decreased in the same period (0.819 to 0.771), as length of stay did (9.7 to
7.2 days). Furthermore, not all hospitals are equally affected by the structural change.
The number of smaller hospitals and the total number of beds they provide decreased,
whereas the number of hospitals with more than 500 beds and their total number of
beds increased. While the numbers were declining with community-owned and nonprofit
hospitals, the number of privately owned hospitals as well as their total number of beds
rallied (Gesundheitsberichterstattung des Bundes, 2020c). Besides their number of beds,
hospitals can typically be categorized based on the level of care they provide, too. The first
level ensures local primary health care. The second level represents specialized medical
methods in regional care. The third level stands for maximum care with a comprehensive
range of differentiated services, which are provided interregionally.

Along with health care costs, the economic pressure on hospitals has been steadily
increasing. Plain reimbursement of costs incurred by the hospital has been gradually re-
placed by more incentive-based systems. In the early 2000s, the Diagnosis-Related Group
(DRG) system was introduced in Germany. This prospective payment system strongly
incentivizes hospitals to cut costs, since reimbursement depends on the DRG a case is
assigned to and is independent of actual costs incurred by the hospital. Since 2020, reim-
bursement consists of a combination of a DRG lump-sum compensation and a compen-
sation for nursing staff, i.e. nursing has been separated from the lump-sum compensation
and actual costs are reimbursed. Furthermore, payments for DRGs are calculated annually
based on past average cost values. This results in a steadily intensifying reimbursement
2 Beds in intensive care units are an exception to the overall trend. The number markedly increased

from 23,113 in 2002 (no data available for 2000) by 18.8 % to 27,463 in 2018.
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system. In 2019, 44 % of hospitals had an annual shortfall.3 Smaller hospitals with less
than 300 beds had the second highest percentage with 43.8 %, larger hospitals with 600
beds and more the highest one with 54.2 % (Blum et al., 2020).4 The data thus correspond
to the closing of smaller hospitals in recent times. In 46 %, the hospital’s annual yield was
lower than the year before (Blum et al., 2020).5 To sum up, cost containment is more
important than ever before to ensure the hospital’s economic survival.

There are numerous ways to react to an intensified cost pressure: A manifest reaction
would be a simple cost containment strategy, this means a smaller staff has to deal with
an unchanged number of patients. This strategy almost inevitably comes along with a
lower quality of hospital services. Some hospitals might try to get a more “advantageous”
patient portfolio by referring “disadvantageous” patients, i.e. patients who will need dis-
proportionately many resources compared to the reimbursement payment to the hospital,
to hospitals of higher level of care. Apparently, this “profitability gain” would happen at
the expense of the hospitals the patients are referred to. Other hospitals might specialize
on certain surgeries or treatments in order to benefit from economies of scale. This strat-
egy will be the starting point for the study in chapter 1. Smaller hospitals might not be
able to make use of economies of scale like larger ones are, which might explain the closing
of smaller hospitals in recent times. But there are further ways to counter the economic
pressure: Hospitals might utilize learning curve effects in order to cut costs while keeping
their quality stable or even improving it.6 When hospitals have detailed information, they
can try to adjust processes in order to optimally utilize learning curve effects and be more
efficient. For example, the paper in chapter 2 offers some suggestions on how to do this
with surgeons working in teams. A decision between costs and quality of services, as it
would be the case with a simple cost containment strategy, is not necessary. Though,
small hospitals might not be able to make use of learning curve effects like larger ones
are, since they probably have considerably less similar cases: For simplicity, it is assumed
a small and a larger hospital incur the same costs for a specific surgery and both can
reduce their costs to the same extent for each doubling of surgeries. Both hospitals have
3 Numbers based on a representative sample of 438 German hospitals with 100 beds and more. For

comparison: In 2018, „only“ 40.2 % had an annual shortfall (Blum et al., 2019).
4 For comparison: In 2018, smaller hospitals had the highest percentage with 43.5 %, larger hospitals

the smallest one with 33.3 % (Blum et al., 2019).
5 For comparison: In 2018, the hospital’s annual yield was lower than the year before even in 51.8 %

(Blum et al., 2019).
6 Specialization also benefits from learning curve effects, since specialized hospitals can reach e.g. the

next doubling of specialized cases faster, since they just treat more such cases. However, specialization
first and foremost relies on economies of scale which make use of a higher number of similar cases
within a given period of time.
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had one surgery of such kind yet. The cost situation will be getting more disadvantageous
for the small hospital over time, since the larger hospital will reach the the next doubling
faster than the small one.

While taking into account possible cost containment strategies, one must bear in mind
that the health care industry is not a common industry. Medical activities must be ori-
ented toward the patients’ health and ethical considerations must be omnipresent. In the
past, in a system of plain reimbursement of costs incurred by hospitals, there was little
potential of ethical conflicts with regard to economic aspects. However, progressive com-
modification of health care increasingly poses ethical conflicts. Reimbursement based on
DRGs provides different compensations for different diagnoses. This aspects might inter-
fere when making the patient’s diagnosis. There might emerge an incentive to “make the
patient ill”, i.e. the patient is diagnosed with a more serious disease in order to conduct
further treatments which are not necessary from a medical perspective based on the “true
diagnosis”, but profitable. This procedure is called “upcoding”. Although economic ways
of thinking are not a threat to ethical action per se, they are to be understood rather as
a means of an ethically necessary efficient use of available resources in order to maximize
the medical services for patients and contributors of health care given finite resources.
(Wehkamp, 2002; Staudt, 2020). Another aspect for ethical conflicts in DRG context is
the rule of minimum volumes for several DRGs. It is supposed to ensure quality of medical
treatments. Hospitals which fall below the required quantity for a specific DRG are not
allowed to treat patients with the respective diagnosis anymore.7 Though, there can orig-
inate undesirable incentives for facilities that do not reach the required numbers. They
might appear in form of non-indicated treatments and surgeries which lead to higher,
unnecessary costs as well as avoidable risks for the patients. To make matters even more
complicated, medical decisions often have to be made rapidly. In the papers, these consid-
erations concerning ethics will be addressed only indirectly by checking outcome quality.
Doing so, the studies can control for possibly disadvantageous effects of cost containment
on patients. If outcome quality is not negatively affected by cost containment measures us-
ing learning curve effects, there should not be major ethical problems with these measures.

The health sector is also a special one because it is strongly regulated. The follow-
ing paragraph is supposed to provide a general idea by giving some examples of major
7 There are some exceptions, e.g. for emergencies or if the transfer to another hospital, which reaches

the minimum volume, is not justifiable.
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regulations. For example, as already mentioned, German hospitals cannot set prices for
their services, but receive DRG compensations that have been determined by a third
party. Hospitals are also not able to determine the services they provide completely on
their own as their services have to be part of the respective federal state’s hospital plan.8

Another restriction to the services hospitals provide are minimum volumes for several
DRGs.9 Further, there are limitations regarding investments due to the dual hospital fi-
nancing. With DRG compensations, health insurers are supposed to only bear current
costs. Investment costs are incurred by the respective federal state. Thus, hospitals are
restricted in their investment opportunities. Hospital staff is also gripped by regulations,
e.g. physicians’ professional regulations or the ones regarding the qualification of nursing
staff.

The collection at hand is concerned with learning curve effects in hospitals as highly
specialized expert organizations and comprises four papers, three of them concerned with
surgery, but focusing on a different aspect of the topic and one concerned with conservative
treatment. The title of the collection emphasizes the relevance of highly qualified and
specialized experts in hospitals. The learning curve effects with this expert knowledge is
in the center of interest. As staff is the overall crucial hospital resource, learning curve
effects might be detected in various groups of staff in various environments within the
hospital. Three papers comprised in this collection are concerned with learning curve
effects among surgeons in the operating room (in the following “OR” for short). The OR
is one of the most resource-utilizing facilities in the hospital, which makes it especially
interesting to investigate learning curve effects there. These three papers study German
hospitals; however, their insights are not limited to them. The basic idea of these articles
is the following: Having gained insights into learning curve effects, hospitals can utilize
these to decrease their costs. The first one deals with learning curve and spillover effects in
a hospital which has specialized on endoprosthetic surgery. The second paper investigates
learning curve effects in a teamwork vs. an individual work setting in the OR. The focus
of the third paper in this collection is on learning curve effects in stapes surgery. This
kind of surgery is regarded as the optimum to study learning curves in surgery because it
is conceptually simple, but technically difficult. The forth paper is a systematic review of
research in learning in ischemic stroke treatment which becomes manifest in the reduction
of time between arrival at the hospital and treatment.
8 This plan contains the level of care, number of beds, medical disciplines, etc. of each hospital.
9 See previous paragraph for details.
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1 Spillover Effects of Specialization
Strategies in Hospitals

Carsten Bauer, Nele Möbs, Oliver Unger, Andrea Szczesny and
Christian Ernst10

1.1 Introduction

In most developed countries, the economic pressure on hospitals to improve their efficiency
has increased considerably over the past 30 years. The once prevalent system of simple
cost reimbursement for hospital care has almost universally been superseded by much
more high-powered economic incentive-based systems such as capped budget systems or
prospective payment systems. These systems offer powerful incentives to reduce expenses,
particularly in high-cost areas such as the operating room (OR). Specialization is one
prominent response strategy to such pressure. To set valuable decisions for operative and
strategic questions, it is as important for hospitals as it is for every company to obtain
detailed information about learning effects and the costs they influence. In the health care
industry, Clark and Huckman (2012) examine the impact of the degree of specialization of
a hospital on its clinical performance in specialized and related areas of surgery and find
that greater operational focus has a positive effect on the quality of medical procedures.
Ernst and Szczesny (2006) show that the learning effects in specialized cases lead to
an improved resource allocation in the OR and, as a result, to lower costs. Although
these studies clearly show lower expenditures in high-cost areas such as the OR, there
is little evidence regarding how such isolated cost-reduction strategies affect subsequent
cost developments.

In particular, the question of whether cost-reduction efforts by specialization in the
OR deploy spillover effects is in the focus of interest. In order to offer a comprehensive
investigation, the effects of specialization on specialized cases are evaluated, too. This
10 We thank participants of 2017 VHB conference as well as participants of Hohenheim-Tübingen Work-

shop on OR management for helpful comments and suggestions. We thank Dr. Tamara Schamberger,
Dr. Manuel Rademaker, Dr. med. univ. Tobias Spingler and especially PD Dr. Dr. Stefan Schenk for
their support.
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means the learning effects connected to specialization are also analyzed. It has not been
investigated yet whether this cost-saving strategy affects later events in the patient’s case
or the overall costs of a case. Thus, these spillover effects are examined on a larger scale
that considers the entire patient’s case, since the cost-reduction efforts may actually be
counterproductive because of lower quality of surgeries as well as increased costs in the
medium to long term of the patient’s case for both specialized and non-specialized cases.
Cost-reduction strategies in an isolated area such as the OR might have negative conse-
quences during later treatment, procedures or recovery processes. For example, consider
two methods of anesthetizing a patient, where one method is much more expensive than
the other one, but leads to considerably fewer problems regarding patient sickness and
complications in the post-anesthesia care unit (PACU, formerly known as the recovery
room). Clearly, choosing the supposedly less expensive option could lead the hospital to
incur much higher costs later on and therefore to overcompensate initial savings. For
instance, Beldi et al. (2009) find that hastiness in the OR leads to an increase in postop-
erative infections, suggesting that such a narrow focus may pose a problem in reality, as
the increased follow-up costs due to post-operative infections eliminate any gains from the
decreased OR costs attributable to shorter surgery time and increase overall costs per case
in the end. It is thus far from obvious whether isolated cost containment measures remain
beneficial in a larger perspective that considers the entire patient’s case. In summary, the
rarely debated issue is whether a more sophisticated specialization-based cost-reduction
strategy at one point in the patient’s treatment process (here in the OR) with its possible
spillover effects can result in higher costs at later points in the patient’s case. The entire
patient’s case in this context denotes a patient’s treatment from the surgical intervention
to the treatment of possible complications in the PACU.11

In this analysis, unique data from the health care industry are used, covering one point
in time, 1996, in which economic pressure on hospitals dramatically increased12, and the
focal hospital reacted by becoming specialized in endoprosthetic surgery (total knee and
hip replacement). The data stem from a period prior to the introduction of Diagnosis-
Related Groups (DRGs) in Germany and therefore allow studying the unique situation
of a hospital specialization unaffected by yearly adjustments common under the DRG
system. It is also unique in the sense that micro-level hospital data of similar detail to the
one at hand are virtually non-existent in Germany for the period prior to 2003/2004.
11 Due to the data set, a broader definition of the patient’s case is not possible. See section 1.4.3 for a

more detailed discussion of this aspect.
12 In 1996, there was a switch to a rigidly capped budgets system in Germany.
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The time from incision to suture (in the following “OR time” for short) of specialized
and non-specialized interventions is used as an indicator of learning (specialized cases)
and spillover effects (non-specialized cases) which influence the short-term costs related
to the OR. The proxy for the follow-up costs of a patient’s case is the probability of a
patient experiencing a complication in the PACU. Because detailed micro-cost data on
medium- and long-term quality are generally unavailable, “quality” is used in a short-term
design to act as an indicator for costs incurred at later points in the treatment process,
i.e. the short-term quality measure serves as a proxy for medium- to long-term follow-
up costs. Decreasing surgery quality typically results in higher follow-up costs because
of more (intensive) complications or other adverse events, a higher amount of required
medication and/or the need for additional procedures and perhaps a readmission.

The remainder of this paper is organized as follows: In section 1.2, the impact of the
reimbursement reforms on hospitals is discussed, possible reactions are described, and the
hypotheses are developed based on the literature. The data set as well as the research
models are described in section 1.3. A discussion of the results and their limitations is
presented in section 1.4, followed by some considerations about the robustness of estima-
tions in section 1.5. The paper closes with a short summary and outlines some suggestions
for further research in section 1.6.

1.2 Background and Hypotheses

1.2.1 OR Times as a Proxy for Costs

The OR times are used as an indicator of short-term costs. Given shorter OR times,
more interventions are feasible within a fixed period of time, which leads to a fixed costs
degression. Besides shorter OR times, Ernst and Szczesny (2006) find that there are also
labor cost savings related to learning effects as well as an enhanced resource allocation.
Cost savings might negatively affect the quality performance. If it were so, cost reductions
due to shorter OR times would be attended by lower quality which in turn probably
would increase follow-up costs.13 Due to possible adverse effects of shorter OR times in
the medium and long term, the complications as an indicator for medium- to long-term
follow-up costs are also investigated. Only taking into consideration both indicators the
OR times and the complications, the economic implications of the specialization in the
OR on the entire patient’s case can be properly evaluated.
13 For a more detailed discussion of the relation between cost savings and quality, see section 1.2.2.



1 Spillover Effects of Specialization Strategies in Hospitals 9

1.2.2 Complications as a Proxy for Costs

Whereas the OR times are used as an indicator for costs in the short term only, the
complications serve as a medium- to long-term cost indicator. The possible effects of a
specialization strategy in the OR on follow-up costs can be measured in a variety of
ways. Ideally, actual cost data are analyzed, but these data are rarely made available to
researchers, particularly in one-site studies such as the one at hand. An alternative is to use
veridical proxies for costs, following Clark and Huckman’s (2012) use of patient mortality
in their article on hospital specialization. In this case, the probability of a patient suffering
from a complication in the PACU is employed to measure the quality consequences of a
specialization strategy in the OR. This quality proxy thus accomplishes two objectives.
First, it can answer the question how the specialization and its effects influence short-term
outcomes with regard to quality. Second, it can link these results to the follow-up costs
of the patient’s case.

Quality is linked to treatment costs because negative outcomes (such as complications
or adverse events) are typically associated with higher resource use. There is distinct evi-
dence in the literature that complications are a proxy for higher costs. Kalish et al. (1995)
depict an impressive increase in costs of $ 16,023 if patients experienced complications.
They also show that complications extend the length of stay (LOS), which is consistent
with the result of higher costs. In line with this, Collins et al. (1999) as well as Zhan and
Miller (2003) find significant cost increases when the LOS increases. Khan et al. (2006)
find a cost increase of 78 % when the patient suffers from a postoperative complication
after non-cardiac surgery. Dimick et al. (2004) find a cost increase of $ 9,607 when a minor
complication occurs and $ 23,869 in case of a major one.14 All in all, research describes
complications as well as longer LOS as strong markers of resource consumption and there-
fore as cost drivers. It also indicates a clear negative correlation between quality of health
care and costs per case, this means quality and costs can be understood as complements.
For example, Dimick et al. (2006) offer support for a highly positive correlation between
complications (poor quality) and costs. They find that reimbursement for patient care
without complications exceeds hospital average costs, resulting in a profit margin of 23 %
for the hospital, which collapses to a mere 3.4 % if complications occur. Jha et al. (2009)
use the inverse approach by hypothesizing that hospitals with lower costs may be more
efficient and thus may provide higher quality than hospitals with higher costs. Even if it
14 Major complications are defined as those that are considered significant enough to result in prolonged

LOS or the need for additional interventions. This shows that even minor complications that do not
result in a prolonged LOS lead to additional costs.
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is assumed that the immediate cost effects of these complications are unlikely to be large,
it has been shown that even minor complications may have a large impact on medium-
to long-term and therefore overall costs. Other effects such as the patient’s need for addi-
tional interventions and/or possibly a readmission support the argument that short-term
quality measured by complications in the PACU can indeed be linked to medium- and
long-term quality and therefore affects costs in the patient’s case in a meaningful way.

1.2.3 Specialization and the Effect on Specialized Cases

Studies focusing on both manufacturing (e.g. Fisher and Ittner, 1999) and services (e.g.
Huckman and Zinner, 2008) offer empirical support for the benefits of greater special-
ization. Applied to the health care industry, Hyer et al. (2009) analyze the improved
performance of what they refer to “as a focused hospital unit [...]” (Hyer et al., 2009, p.
204). Clark and Huckman (2012) examine the impact of the degree of specialization of
a hospital on its clinical performance in specialized and related areas of cardiovascular
surgery and find that greater operational focus has a positive effect on the quality of
medical procedures. The literature supports the notion that hospitals can reduce their
costs by limiting the array of services they provide (e.g. Tiwari and Heese, 2009). Con-
sistently, Ernst and Szczesny (2006) report intensified specialization efforts of a German
hospital after the tightened capped budget systems had been introduced in 1996. These
authors found a learning effect occurring in the OR with respect to specialized cases,
resulting in a reduction of OR times and labor costs. These results appear to support
the notion that specialization strategies of hospitals have achieved their main objectives.
However, it is necessary to analyze whether isolated cost containment measures targeted
at the OR impact follow-up costs. For instance, there is some concern that shorter OR
times turned the OR into a more fast-paced and therefore potentially more mistake-prone
working environment. Savings made in the OR and the outcome quality of the hospital
may act as conflicting objectives (i.e. substitutes). If so, this might lead to more mistakes
and complications that have adverse cost consequences which may overcompensate the
cost savings gained in the OR. However, the literature provides strong evidence that a
higher rate of specialized surgeries together with an improved allocation of resources leads
to decreased complication rates and fewer mistakes in the OR (e.g. Clark and Huckman,
2012). Here, it must also be considered that more experienced surgical teams generate im-
proved outcomes due to learning effects (Contreras et al., 2011). Thus, the quality proxy
for follow-up costs is likely to provide some preliminary answers to cost effects, although
no actual cost data are available.
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Based on the reasoning, and supported by the literature, the hypothesis regarding OR
times reads:

H 1: Ceteris paribus, specialization in the OR leads to a decrease in the OR time for
specialized interventions.

With regard to complications, as already stated, the following hypothesis results:

H 2: Ceteris paribus, specialization in the OR leads to a decrease in the probability of
complications in the PACU for specialized interventions.

1.2.4 Specialization and the Effect on Non-Specialized Cases

A specialization strategy with its learning effects in the OR leads to the question whether
these effects in the specialized field may not only appear with specialized cases, but might
also affect the non-specialized cases by means of spillover effects. Huesch and Sakakibara
(2009) show that knowledge spillovers are a common finding in models of innovation and
have been applied in health economics research in the last decade. They emphasize that
based on surgeons directly interacting with team members and the daily exchange of ex-
perience, spillovers may occur subsequently to a specialization strategy. Other than that,
experience gained through learning can improve processes of care, refine the standardiza-
tion of procedures as well as policies and lead to improved quality control. To put it in
other words: By implementing a specialization strategy and undertaking the attendant
adjustments to processes and allocation plans, a form of organizational learning might
begin. Consider adjustments to the workflow made to increase surgical and process effi-
ciency to allow for the increased numbers of specialized cases.15 A decreasing probability
of complications for all surgeries might be a possible result of these efforts originally
geared toward the endoprosthetic procedures. To measure the effects of specialization and
co-specialization16 on quality performance, Clark and Huckman (2012) use patients’ mor-
tality rate. However, they fail to provide evidence for positive spillover effects between a
focal activity and what they call related activities.17 Regarding the specialization efforts
and the higher volume of specialized cases, Com-Ruelle et al. (2008) show that outcomes
can be improved by increasing activity volumes. Dudley et al. (2000) review this effect in
15 See table 1.4.
16 Medical fields near to the field of specialization.
17 The authors define positive spillovers as the extent to which a co-specialization in areas related to the

cardiovascular procedures directly influences quality performance on cardiovascular patients. Areas
related to cardiovascular procedures are identified by focusing on secondary diagnoses of primary
cardiovascular patients being named in a sufficient number of cases (20 %).
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more detail and show that mortality as the quality proxy was lower in hospitals with a
greater number of elective surgeries. The translation into the specialization/quality lan-
guage allows concluding that a specialization strategy in the OR and the gained learning
experience in the specialized field, lead to efficiency gains appearing in other parts of
daily work––called organizational learning or spillovers. Because the OR is a knowledge-
intensive setting in which repetition and experience breed competence (Skinner, 1974),
it is reasonable to assume that experience gained is likely to lead to economies of scale
in shared resources (Clark and Huckman, 2012), and spillover effects on non-specialized
cases can result.

Since the presence of such spillover effects is assumed, the hypotheses read:

H 3: Ceteris paribus, specialization in the OR leads to a decrease in the OR time for non-
specialized interventions.

H 4: Ceteris paribus, specialization in the OR leads to a decrease in the probability of
complications in the PACU for non-specialized interventions.

1.3 Data and Estimation Models

1.3.1 Information on the Data

In this analysis, the same anonymous data set is used as it has been by Ernst and Szczesny
(2008). The data stem from the anesthesiology department of a small German hospital
that provides basic care and keeps its patients in approximately 100 beds. For the entire
study period, the hospital was community-owned by the county and operated as a not-
for-profit entity.

This type of detailed German micro-level hospital data from a period prior to the in-
troduction of DRGs in Germany (2003/2004) is virtually non-existent and allows studying
a specialization strategy unaffected by the yearly adjustments that are common under the
DRG system. Previous research has documented that the focal hospital had pursued a
specialization strategy in endoprosthetic surgeries in response to the 1996 reimbursement
reform, i.e. the introduction of tightened capped budgets (Ernst and Szczesny, 2008).
The data set contains information on a short-term measure of outcome quality: the oc-
currence of complications in the PACU. Complications are documented beginning in 1994,
which allows examining the period from 1994 to 1998, which contains the period with the
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biggest increase in the specialization (1996-1998). 6,491 observations are used to examine
the effects of the specialization strategy.18

The total number of cases per year fluctuates around 1,300 with the number of spe-
cialized interventions greatly increasing from 241 (around 18 %) in 1994 to 433 (around
36 %) in 1998. A major shift from non-endoprosthetic to endoprosthetic surgeries is ob-
served from 1996 to 1997. While the number of endoprosthetic interventions is sharply
rising from 277 in 1996 to 364 in 1997, there is a strong decline in the number of non-
endoprosthetic ones from 1,116 to 851 over the same period. This shift is regarded as the
result of the specialization strategy. In the years following the study period, the number of
non-endoprosthetic surgeries stabilizes at around 1,200 (around 70 %) per year. It is worth
mentioning that the absolute number of surgeries considerably rises, reaching a maximum
of 569 endoprosthetic procedures in 2001 and 2002. This second increase is thus not re-
alized at the expense of non-specialized surgeries, but by cashing in on the investment
in the specialization strategy, leading to a higher number of specialized interventions, a
higher degree of capacity utilization and an enhanced fixed costs degression.

1.3.2 Estimation Models – OR Times

In order to address the first hypothesis of the present study, the following regression
model, trying to explain the OR times of the endoprosthetic procedures (ORT_ENDO),
was set up:19

ORT_ENDO = β0 + β1 · Σ ORT_ENDO

+ β2 · ASA2 + β3 · ASA3 + β4 · ASA4/5

+ β5 · BLOSS + β6 · OOR + β7 · ORW + β8 · AGE + β9 · AGE2

+ β10 · SUR2 + · · · + β19 · SUR11

+ β20 · 1995 + · · · + β23 · 1998 + ε

(1.1)

In model 1.1, the experience in the specialized cases is measured via cumulated OR times
and used as the regressor Σ ORT_ENDO. Because hospitals tend to have more precise
information regarding expected severity than insurers, they tend to replace difficult cases
with lighter cases while holding total patient numbers (capacity) stable (Ellis, 1998).
Since the occurrence of complications is highly correlated with the American Society of
18 Table 1.4 shows the descriptive statistics for all relevant variables.
19 See table 1.1 for a short description of all the variables. Models are estimated by Ordinary Least

Squares (OLS) regression unless otherwise specified.
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Anesthesiologists (ASA) classification of patients (e.g. Hautmann et al., 2010), a different
patient portfolio has an impact on overall quality. On average, fewer patients with high
severity lead to fewer complications and thus causes quality measures such as complica-
tions or mortality rates to improve (i.e. to be positively biased). To obtain meaningful
results, it is therefore essential to control for the risk classification respectively the medical
condition of the patients. To do so, the ASA score is employed. The literature confirms
this score as a high-quality and appropriate predictor for complications and postopera-
tive outcomes (e.g. Arvidsson et al., 1996; Hall and Hall, 1996; Wolters et al., 1996). The
observation’s ordinal ASA score is translated into dummy variables ASAi (i = 1, 2, ..., 5),
which respectively represent the classification of the ASA scores (1 for a normal healthy
patient and 5 for a moribund one). ASA4/5 is the dummy for the patient classified as ASA
4 or 5.20 The complication rate is expected to increase with an increasing ASA score.
It is reasonable to have a closer look at the mean ASA scores in (non-)endoprosthetic
cases.21 Mean ASA scores are higher for endoprosthetic cases than for non-endoprosthetic
ones in each considered year. The mean ASA score for endoprosthetic cases slightly de-
creases with fluctuations over time. For non-endoprosthetic cases, the mean ASA score
even increases slightly with fluctuations, which explains the increase in the overall mean
ASA score. To conclude, there cannot be found a tendency neither for endoprosthetic, nor
for non-endoprosthetic cases. It does not seem that the hospital implemented a certain
selection strategy as a reaction to increased cost pressure.

In addition to the ASA classification, the blood loss (BLOSS) and the patient’s age
(AGE) are assumed to be signifiers of the complexity of a case, possibly extending OR
times. Although AGE does not signify complexity itself, it can be used as a proxy for
various unobservable signifiers of complexity. As there might be a disproportionately high
increase in complexity with increasing age, the squared age is used as an additional re-
gressor (AGE2) in order to represent a possibly nonlinear relation between the patient’s
age and the OR time. Furthermore, the waiting time resulting from operating activities
(ORW) is used as a further indicator of complexity by identifying the time required for
additional unplanned actions during procedures.22 OOR is a count variable of other oper-
ations which are conducted simultaneously besides the main operation. SURi is a dummy
20 For a description of the ASA scores, see table 1.3. ASA 1 is the reference category, and therefore,

ASA1 is not included in the regression model. Due to the small number of observations with ASA 5,
there is a single dummy for ASA 4 and 5.

21 For the mean ASA scores, see table 1.4.
22 For example, it includes consultations with another physician or the preparation of surgical instru-

ments for an unexpected higher scope of a procedure.
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variable for the i-th surgeon in the data set.23 Using these dummies, it can be controlled
for unobservable differences between surgeons. It may be the case that a certain surgeon
is generally faster or slower than others. 1995 to 1998 are dummy variables for the indi-
vidual years to control for potential unobserved changes over time. The term ε represents
the error term.

Since the dummies for the individual years do not have an influence significantly
different from zero (in the following “significant” for short),24 and the variance inflation
factors (VIFs) are in parts considerably above 10 for the dummies,25 these are replaced
in model 1.2 by the dummy POST95, which signals whether an observation is from 1996
onwards (specialization period) to control for potential differences between the period
before and the period of specialization.

ORT_ENDO = β0 + β1 · Σ ORT_ENDO

+ β2 · ASA2 + β3 · ASA3 + β4 · ASA4/5

+ β5 · BLOSS + β6 · OOR + β7 · ORW + β8 · AGE + β9 · AGE2

+ β10 · SUR2 + · · · + β19 · SUR11

+ β20 · POST95 + ε

(1.2)

For the reason of the present study, the following regression model, trying to explain
the OR times of the non-endoprosthetic procedures (ORT_ENDO), was set up:

ORT_ENDO = β0 + β1 · Σ ORT_ENDO + β2 · Σ ORT_ENDO︸ ︷︷ ︸
omitted+ β3 · ASA2 + · · · + β5 · ASA4/5

+ β6 · BLOSS + β7 · OOR + β8 · ORW + β9 · AGE + β10 · AGE2

+ β11 · SUR2 + · · · + β20 · SUR11

+ β21 · 1995 + · · · + β24 · 1998 + ε

(1.3)

In model 1.3, the experience in the specialized as well as non-specialized cases is measured
via cumulated OR times and used as the regressors Σ ORT_ENDO (specialized/endopros-
thetic experience) and Σ ORT_ENDO (non-specialized experience).

In order to obtain more specific results, the regressor Σ ORT_ENDO in model 1.3
23 The first surgeon serves as the reference category and is not included in the regression model.
24 See table 1.6. The dummies for individual years have also been tested for joint significance using an

F-test. P-value = 0.0974.
25 VIFs indicate possible problems arising from a problematically high level of multicollinearity. A re-

gression without the dummies yields a significant coefficient of Σ ORT_ENDO.
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is replaced by Σ ORT_AREA in model 1.4, i.e. the experience in the respective OR
area (abdomen, extremities, neck, head, proctology, thorax, urology)26 is used. Likewise,
the OR times in the OR areas, i.e. ORT_AREA, serves as the regressand instead of
ORT_ENDO. This means the estimation has been brought from the hospital to the OR
area level.

ORT_AREA = β0 + β1 · Σ ORT_ENDO + β2 · Σ ORT_AREA︸ ︷︷ ︸
omitted+ β3 · ASA2 + · · · + β5 · ASA4/5

+ β6 · BLOSS + β7 · OOR + β8 · ORW + β9 · AGE + β10 · AGE2

+ β11 · SUR2 + · · · + β20 · SUR11

+ β21 · 1995 + · · · + β24 · 1998 + ε

(1.4)

Since almost no dummy for an individual year has a significant influence in model 1.4,27

these are replaced by the dummy POST95 in model 1.5.

ORT_AREA = β0 + β1 · Σ ORT_ENDO + β2 · Σ ORT_AREA︸ ︷︷ ︸
omitted+ β3 · ASA2 + · · · + β5 · ASA4/5

+ β6 · BLOSS + β7 · OOR + β8 · ORW + β9 · AGE + β10 · AGE2

+ β11 · SUR2 + · · · + β20 · SUR11

+ β21 · POST95 + ε

(1.5)

However, there are problems with the regression models due to strong multicollinearity
with regard to Σ ORT_ENDO and Σ ORT_ENDO (model 1.3) as well as Σ ORT_AREA
(model 1.4/1.5). VIFs are often above 200, indicating that there are problematically high
levels of multicollinearity. Regressions with only one of these regressors mostly yield signifi-
cant coefficients. When regressing Σ ORT_ENDO and Σ ORT_AREA on Σ ORT_ENDO,
it is possible to explain more than 95 % of the variance of the auxiliary regressand. Due
to multlicollinearity, the non-endoprosthetic experience therefore has to be omitted from
the models.
26 The OR area codes used in this paper can be found in table 1.2.
27 See table 1.8 and 1.9. The dummies for individual years have also been tested for joint significance

using an F-test with heteroskedasticity-robust standard errors if necessary (ABD, EXT, NECK, URO).
P-value < 0.05 / rejection of “no joint significance” only for one OR area (PRO).
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1.3.3 Estimation Models – Complications

To test the hypotheses regarding the probability of a patient experiencing a complication
in the PACU, different maximum likelihood models for dichotomous dependent variables
(binary logit models) are estimated. The models examine the influence of a set of inde-
pendent variables on the probability of a complication P (COMPL).

The dummy variable COMPL, which reveals if there is a complication in the PACU,
is used. The regression results enable to make statements regarding how the probability
of experiencing a complication changes, if the independent variables in the regression
model alter. Based on the assumptions and the clinical information about the various
independent variables, the following logit model is established:28

E(COMPL | x) = P (COMPL = 1 | x) =
∫ z

−∞
f(t)dt =

∫ z

−∞

e−z

(1 + e−z)2 = 1
1 + e−z

z = x′β = β0 + β1 · ENDO + β2 · ENDOSHARE

+ β3 · ASA2 + β4 · ASA3 + β5 · ASA4/5

+ β6 · BLOSS + β7 · OOR + β8 · ORT + β9 · ORW

+ β10 · URG + β11 · AGE + β12 · AGE2

+ β13 · SUR2 + · · · + β22 · SUR11

+ β23 · 1995 + · · · + β26 · 1998

(1.6)

To depict the influence of the specialization strategy in endoprosthetic surgeries and
to test the hypotheses, the dummy variable ENDO and the continuous variable EN-
DOSHARE are deployed. By indicating if the procedure is an endoprosthetic one, ENDO
controls for potential quality differences between endoprosthetic and other interventions.
ENDOSHARE reflects the three-month moving average of the percentage of endopros-
thetic cases.29 To represent complexity, the OR time (ORT) is also used, since more
complex interventions supposedly take longer. OOR is employed since it could be that
the probability of a complication is higher if there were other operations conducted simul-
taneously. Another regressor is URG, the urgency of the intervention, since it is assumed
that the probability of a complication is larger for an emergency surgery than for an
elective surgery planned a certain time in advance.

To be able to distinguish between potentially differing effects of the specialization strat-
28 For a short description of all the variables, see table 1.1.
29 For example, it takes the value of 16.29 for an observation in March 1994 because 16.29 % of all

surgeries from January to March 1994 were endoprosthetic interventions.
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egy on specialized and non-specialized interventions, which is not possible with model 1.6,
the interaction term ENDO_ENDOSHARE is additionally included in model 1.7. It re-
flects the interaction between ENDO and ENDOSHARE.30 By the help of the interaction
term, the overall effects observed in model 1.6 can be split into separate effects for spe-
cialized and non-specialized procedures. It is written:

E (COMPL | x) = P (COMPL = 1 | x) = 1
1 + e−z

z = x′β = β0 + β1 · ENDO + β2 · ENDOSHARE + β3 · ENDO_ENDOSHARE

+ β4 · ASA2 + β5 · ASA3 + β6 · ASA4/5

+ β7 · BLOSS + β8 · OOR + β9 · ORT + β10 · ORW

+ β11 · URG + β12 · AGE + β13 · AGE2

+ β14 · SUR2 + · · · + β23 · SUR11

+ β24 · 1995 + · · · + β27 · 1998

(1.7)

Since the dummies for 1996, 1997, and 1998 are significant, but the dummy for 1995
(before specialization) is not,31 the dummies for the individual years are replaced by the
dummy POST95. Therefore, the regression models are:

E(COMPL | x) = P (COMPL = 1 | x) = 1
1 + e−z

z = x′β = β0 + β1 · ENDO + β2 · ENDOSHARE

+ β3 · ASA2 + β4 · ASA3 + β5 · ASA4/5

+ β6 · BLOSS + β7 · OOR + β8 · ORT + β9 · ORW

+ β10 · URG + β11 · AGE + β12 · AGE2

+ β13 · SUR2 + · · · + β22 · SUR11

+ β23 · POST95

(1.8)

30 The interaction term therefore equals zero if it is a non-specialized procedure and ENDOSHARE if
it is a specialized one.

31 See table 1.12. The dummies for the individual years 1996-1998 have also been tested for joint signif-
icance using an F-test with heteroskedasticity-robust standard errors. P-value = 0.0000.
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E(COMPL | x) = P (COMPL = 1 | x) = ez

1 + ez

z = x′β = β0 + β1 · ENDO + β2 · ENDOSHARE + β3 · ENDO_ENDOSHARE

+ β4 · ASA2 + β5 · ASA3 + β6 · ASA4/5

+ β7 · BLOSS + β8 · OOR + β9 · ORT + β10 · ORW

+ β11 · URG + β12 · AGE + β13 · AGE2

+ β14 · SUR2 + · · · + β23 · SUR11

+ β24 · POST95

(1.9)

1.4 Results

1.4.1 OR Times

Before dealing with the estimation results, it is reasonable to have a look at figure 1.1 which
illustrates the development of OR times over time. There can be detected declining OR

Year
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OR times of non-endoprosthetic surgeries
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Figure 1.1: Average OR Times of Surgeries
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times of endoprosthetic interventions over time. With regard to non-endoprosthetic ones,
there is no clear trend. Interestingly, the OR times of endoprosthetic surgeries already
decline when the share of endoprosthetics has not risen considerably yet. Obviously, the
mere preparation of a specialization on endoprosthetic surgeries reduces endoprosthetic
OR times. A possible explanation for this phenomenon might be a thorough inspection,
reorganization, and optimization of OR processes in the early stages of the specialization
process. Generally, processes and structures are clearly more in the focus of interest in
this transition period. The Hawthorne effect might also be an approach: As the surgeons
anticipate that the OR as a whole is under observation in this specialization process and
so they are, too, their productivity improves.

Table 1.6 depicts the estimation results of model 1.1. The experience in endopros-
thetic procedures does not have an influence on the OR times of endoprosthetic surgeries.
However, it has to be remembered that there have been problems with the model due
to multicollinearity.32 In order to solve these problems, model 1.2 has been set up. The
estimation results can also be found in table 1.6. Implied by the negative33 coefficient of
Σ ORT_ENDO, the experience in endoprosthetic procedures reduces OR times of endo-
prosthetic interventions. This supports H 1, and therefore H 1 cannot be rejected.

Regarding the patient’s risk classification, the results do not confirm the expectations.
For model 1.2, ASAi do not have an influence on the OR times of endoprosthetic surgeries.
A rising blood loss increases OR time, as it is with other operations executed besides the
main intervention. The other control variables ORW and AGE do not have an influence on
the endoprosthetic OR times.34 There cannot be detected differences between surgeons.35

Table 1.7 depicts the estimation results of model 1.3. Implied by the negative coefficient
of Σ ORT_ENDO, the experience in endoprosthetic procedures reduces OR times of non-
endoprosthetic surgeries. This means there is a spillover effect from specialized to non-
specialized interventions, manifesting in shorter OR times. In the following, the estimation
32 See section 1.3.2.
33 All coefficients which are interpreted are significantly different from zero.
34 The two regressors representing age have also been tested for joint significance using an F-test. P-

value = 0.3. The variance in AGE is comparatively low in model 1.2. The standard deviation (SD)
is 9.87; in model 1.3, the SD of AGE is 24.19. This complicates the detection of a possibly existing
effect.

35 VIFs for model 1.2 are considerably below 10, indicating that there are no severe problems arising
from a problematically high level of multicollinearity. For AGE and AGE2, VIFs are larger, obviously
resulting from a high correlation between these two regressors. Though, AGE2 has not been dropped
from the regression equations due to the theoretical foundation. Further exceptions are some surgeon
dummies. The correlation matrix of the variables is also provided in table 1.5.
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results of model 1.4 and 1.5 are explained which allow more specific statements about the
spillover effect.

Table 1.8 and 1.9 contain the estimated coefficients of model 1.4. The overall spillover
effect on non-endoprosthetic interventions in model 1.3 is specified here: There is not a
spillover effect on interventions in all OR areas, but extremities (EXT), proctology, and
urology. The result with regard to EXT is the most obvious one, since endoprosthetics is
a field within EXT. But there is also a spillover effect on interventions in OR areas which
are “further away” from the endoprosthetic field.

Table 1.10 and 1.11 depict the estimation results of model 1.5. Similar to model 1.4, the
experience in endoprosthetic interventions has a negative, OR time-reducing, influence on
procedures in the same OR areas as for model 1.4 and additionally thorax.36 In summary,
H 3 is partly supported, and therefore H 3 cannot be rejected.

Regarding the patient’s risk classification, the results confirm the expectations. For
model 1.3 to 1.5, most coefficients of ASAi are positive.37 The absolute value of the co-
efficients increases with an increase in the ASA score. Thus, the results confirm that the
OR time increases with an increasing patient risk classification. A rising blood loss also
increases the OR time, as it is with other operations executed besides the main interven-
tion. The patient’s age has a nonlinear relation with the OR time.38 Not surprisingly, the
waiting time from operating activities also extends the OR time. There are differences
between surgeons in OR times of non-endoprosthetic interventions.39

1.4.2 Complications

Figure 1.2 illustrates the development of complication rates over time. They considerably
decline for endoprosthetic and non-endoprosthetic surgeries. Although the drop is larger
36 VIFs for model 1.3 to 1.5 are considerably below 10, indicating that there are no severe problems

arising from a problematically high level of multicollinearity. VIFs are larger for AGE and AGE2 and
some surgeon dummies. The correlation matrix of the variables is also provided in table 1.5.

37 Exceptions: ASA3 and ASA4/5 in ORT_HEAD (model 1.4 and 1.5).
38 The two regressors representing age have also been tested for joint significance using an F-test with

heteroskedasticity-robust standard errors. P-value < 0.05 in all cases except ORT_THO (model 1.4
and 1.5, p-value > 0.1).

39 Although there are time differences, they should not be overrated, but interpreted cautiously. For
example, a surgeon with higher OR times than surgeon 1 must not be regarded as “slow”. There are
most likely differences between individual surgery portfolios with regard to complexity and difficulty
which cannot be controlled for with the regressors. Thus, a direct comparison of OR times is virtually
impossible.
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Year
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Figure 1.2: Complication Rates of Surgeries

for endoprosthetic interventions, there is also a drop in non-specialized ones, which are
seemingly disregarded by specializing in endoprosthetics. However, this does not seem to
happen. As with the OR times, the complication rates already decline when the share of
endoprosthetics has not risen considerably yet.40

Table 1.12 depicts the estimation results of the logit models regarding the probabil-
ity of experiencing complications in the PACU. Model 1.6 and 1.8 explore whether an
increase in the share of specialized procedures has an effect on the complications of all
interventions. The negative coefficient of ENDOSHARE (model 1.8) indicates that an
increase in the share of specialized procedures leads to an overall decrease in the prob-
ability of experiencing complications, i.e. increased specialization leads to a decrease in
complications for specialized as well as non-specialized cases. The negative coefficient of
ENDOSHARE (model 1.9) has the same indications as in model 1.8. The negative coeffi-
cient of ENDO_ENDOSHARE (model 1.9) indicates that the effects of the specialization
strategy are stronger for specialized procedures compared to non-specialized ones, i.e.
40 Possible explanations have been outlined in section 1.4.1.
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the complication risk is reduced more for specialized cases.41 The results regarding non-
specialized cases indicate the presence of spillover effects. In summary, H 2 and H 4 are
supported, and therefore H 2 and H 4 cannot be rejected. This is considered an important
result because in contrast to Clark and Huckman (2012), who fail to find spillover effects,
there are such effects in these data.

In model 1.6 and 1.7, the coefficients of the dummy for 1996, 1997 and 1998 are
negative, as it is for the coefficient of POST95 in model 1.8 and 1.9. This finding suggests
that in spite of public distrust, the increasing cost pressure caused by the introduction
of rigidly capped budgets in 1996 did not lead to an increase in complications and thus
to compromises on quality, at least if a specialization strategy had been implemented
as a reaction. Consequently, sophisticated specialization-based cost-reduction strategies
and the previously linked learning and spillover effects with regard to short-term quality
appear to be strategic complements rather than substitutes.

For model 1.6 to 1.9, all coefficients of ASAi are positive. The absolute value of the
coefficients increases markedly with an increase in the ASA score. Thus, the results confirm
the expectations concerning the patient’s risk classification. Regarding the other control
variables, there is a changing probability of experiencing complications with a change
in the patient’s age.42 Positive coefficients of BLOSS, ORW and ORT indicate that an
increase in the amount of lost blood, the waiting time from operating activities as well as
the OR time itself lead to a higher probability of complications in the PACU. There are
no differences in the probability of complications between surgeons.

Summa summarum: It can be stated that the specialization has a positive effect not
only for specialized cases, but also for the others due to spillover effects. Besides the OR
times, the complication rates in the PACU decrease for all interventions, indicating lower
costs in the short, medium, and the long term.
41 VIFs for model 1.6 to 1.9 are considerably below 10, indicating that there are no severe problems

arising from a problematically high level of multicollinearity. The only exceptions are ENDO and
ENDO_ENDOSHARE in model 1.7 and 1.9 with values slightly higher than 10, but they are still
significant, so multicollinearity is not a major problem, as well as AGE and AGE2 and some surgeon
dummies in model 1.6 to 1.9. The correlation matrix of the variables is also provided in table 1.5.

42 The two regressors representing age have also been tested for joint significance using an F-test with
heteroskedasticity-robust standard errors. P-value < 0.001 in all cases.
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1.4.3 Limitations

There are some limitations to the results. One must bear in mind that the complexity of
the study further increases by the fact that, in reality, hospitals are likely to respond to
an increase in economic incentives with a mixture of strategies and have, in fact, been
shown to do so in empirical research (e.g. Ernst and Szczesny, 2005). The problem is that
effects of the respective strategies may cancel out one another, which obviously makes it
even harder to predict the resulting effect on quality and costs over the entire patient’s
case.

Speaking of effects interfering with one another, one must also bear in mind the omis-
sion of the non-endoprosthetic experience in model 1.3 to 1.5 due to multicollinearity
with regard to Σ ORT_ENDO and Σ ORT_ENDO/Σ ORT_AREA. As the endopros-
thetic experience is correlated with the non-endoprosthetic one, the remaining regressor
Σ ORT_ENDO might also carry parts of the explanatory power of the omitted regressor
Σ ORT_ENDO/Σ ORT_AREA. However, no alternative measurement of experience has
been possible in the present case.

Concerning the definition of the patient’s case in this study: It would be reasonable
that a patient’s case comprises the intervention, the PACU, the intensive care unit, the
ward up to the patient’s discharge. If there were a readmission (e.g. due to possible
complications) associated with the primary intervention, it would need to be part of the
patient’s case, too. However, it is not possible with the given data set to have a patient’s
case comprise any treatment after the PACU and it is not possible to connect cases such
that a case might be a readmission of a patient from a former case. Therefore, it is not clear
whether a reduction of OR times (resulting from learning and spillover effects associated
with the specialization strategy) leads to higher complication rates at a later point beyond
the patient’s case as defined in this context. Complications might, for example, show up
in the ward, potentially leading to a longer LOS and therefore higher costs (e.g. Kalish
et al., 1995; Collins et al., 1999; Zhan and Miller, 2003). Unfortunately, these data have
not been available.

1.5 Robustness of Estimation Models

Several robustness tests have been conducted on the results. Model 1.3 to 1.5 have been
estimated with a different measurement of experience: via the sum of interventions instead
of cumulated OR times. The results do not relevantly differ.
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The same results are obtained when using the one-month, six-month, or nine-month
moving average of the percentage of endoprosthetic cases for ENDOSHARE instead of the
three-month moving average in model 1.8 and 1.9.43 Furthermore, the estimation results
of model 1.6 to 1.9 virtually do not change even when the observation period is enlarged
to 2002, i.e. the year prior to the introduction of the DRG system.

To control for potential differences between statutorily and privately insured patients, a
dummy variable if the patient was privately insured has been included in model 1.6 to 1.9.
Regarding the complications, the short-term quality measure, no significantly divergent
results for privately and statutorily insured patients are found.

All regression models have been controlled for heteroskedasticity by using the Breusch-
Pagan test (level of significance α = 0.05). Robust standard errors (White) have been used
in case of heteroskedasticity in order to receive valid statistical inferences.

VIFs have been computed for all models in order to detect problematically high levels
of multicollinearity. Apart from the exceptions explicitly mentioned (dummies for the
individual years, AGE and AGE2 as well as some surgeon dummies), VIFs are below 10
and do not indicate problematically high levels of multicollinearity.

1.6 Conclusions

Since there has been the need to draw a more comprehensive view of isolated cost savings
on the entire patient’s case, this paper contributes to the literature by providing an
important link between the cost savings related to learning and spillover effects in the OR
triggered by a specialization strategy and the potentially higher follow-up costs which
might overcompensate the savings in the OR.

It has been hypothesized that isolated cost-reducing activities in the OR (through a
specialization strategy and resulting learning and spillover effects) shorten OR times and
simultaneously increase quality by lowering the probability of experiencing complications
and therefore reduce the costs over the entire patient’s case for both specialized (learning
effects) and non-specialized cases (spillover effects). To make statements regarding how
follow-up costs are affected by the specialization strategy, a quality proxy has been used.
43 In contrast to the other ENDOSHARE variables, ENDOSHARE_1 (one-month moving average) does

not use the month of the observation, but the previous month. Further, it is a single value and only
titled “average” for consistency reasons.
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The available data have enabled the measurement of short-term quality by estimating
the effects of different factors on the probability of experiencing complications in the
PACU. It has been found that with an increased degree of specialization, the hospital can
reduce OR times and simultaneously improve short-term quality. This result applies for
specialized cases (endoprosthetic surgeries) as well as for non-specialized cases. Therefore,
it has been concluded that increased specialization efforts and associated considerations
regarding the (re-)organization of processes and procedures within the specialized area
imply positive spillovers on other surgeries. The effects of the endoprosthetic process
optimization have been named a form of learning. These effects also show that efficiency
efforts in the OR do not necessarily lead to higher follow-up costs after the surgical
intervention. On the contrary, the hypothesis of a reduction in complications and therefore
a cost reduction over the entire patient’s case can be confirmed.

The findings reveal a hint of association between learning effects in the OR triggered
by the specialization strategy, resulting in efficiency gains, and higher patient volumes
using economies of scale. Improved patient outcomes (i.e. lower complication rates) link
these developments with overall costs of a patient’s case. A strong reduction in the com-
plication appearance for endoprosthetic as well as non-endoprosthetic cases increases the
specialization effects described above. Thus, this paper contributes to the literature by
showing that isolated cost-saving activities have a cost-saving effect not only in the iso-
lated area, but also in the rest of the patient’s case in the form of lower follow-up costs
due to a lower complication risk.

Future research might obtain deeper insights in individual vs. organizational learning
and spillover effects as well as the consequences on costs. With a larger data set, it
would be possible to conduct estimations on surgeon level, which have not been done here
due to mostly a low number of cases by a single surgeon within a specific OR area and
partially also a low number of interventions in general. With an enhanced database, future
research might investigate the specialization, learning, and spillover effects in a larger
perspective, defining the patient’s case the way it has been proposed in the introduction,
i.e. a patient’s case comprises the intervention, the PACU, the intensive care unit, the
ward up to the patient’s discharge. If there were a readmission (e.g. due to possible
complications) associated with the primary intervention, it would be supposed to be
part of the initial patient’s case, too. With an even further enhanced database, possibly
from the health insurers, future research might investigate the effects even in a larger
perspective, not restricting the patient’s case to the hospital, but regarding the case
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from the hospital up to the after-hospital care, i.e. to the point, in which the case is
ultimately over from the patient’s perspective, e.g. after the hospital stay and a subsequent
physiotherapy. Then, research would be able to evaluate the specialization strategy from
the overall perspective. Linked studies should also think about a different, more concise
measurement of experience in order to ease the problem with multicollinearity, to be able
to better separate between experience in specialization and OR area, and to not have
to omit the experience in the respective OR area from the model. However, this would
obviously require much medical expertise and very detailed data.
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Appendix 1.A

Table 1.1: Description of Variables

Variable Description

AGE Patient’s age

ASAi Dummy for ASA class i ∀ i = {1, 2, ..., 5}. Classification of
patients with regard to their physical condition. The smaller,
the better the condition is. For a description of the ASA classes,
see table 1.3

BLOSS Blood loss (measured in ml)

COMPL Dummy for complication in the PACU

ENDO Dummy for endoprosthetic procedure

ENDOSHARE Three-month moving average of the share of endoprosthetic
procedures as a proportion of all cases

ENDO_ENDOSHARE Interaction term of ENDO and ENDOSHARE. 0 if ENDO is
0 and equal to ENDOSHARE if ENDO is 1

OOR Number of other operations which are done simultaneously
with the main intervention

ORT Operation time (time from incision to suture; in minutes)

ORW Waiting time resulting from operating activities

POST95 Dummy for observation between 1996 and 1998

SURi Dummy for the i-th surgeon ∀ i = {1, 2, ..., 11}

URG Urgency of an operation (1 = elective surgery, 2 = urgent
surgery, 3 = emergency surgery)

Σ ORT_ENDO Experience in endoprosthetic area (measured as cumulated op-
eration time)

Σ ORT_ENDO Experience apart from endoprostethic area (measured as cu-
mulated operation time)

Σ ORT_AREA Experience in OR area (measured as cumulated operation
time). For the OR areas, see table 1.2

Continued on the next page
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Variable Description

ε Error term

1995/1996/1997/1998 Dummy for the year 1995/1996/1997/1998

Table 1.2: OR Areas

Abbr. OR Area
ABD Abdomen
EXT Extremities (endoprosthetic interventions excluded)
NECK Neck
HEAD Head
PRO Proctology
THO Thorax
URO Urology

Table 1.3: ASA Classes (American Society of Anesthesiologists, 2019)

Class Description
ASA 1 A normal healthy patient
ASA 2 A patient with mild systemic disease
ASA 3 A patient with severe systemic disease
ASA 4 A patient with severe systemic disease that is a constant threat to life
ASA 5 A moribund patient who is not expected to survive without the operation
ASA 61) A declared brain-dead patient whose organs are being removed for donor

purposes

1) Data set does not contain patients classified as this ASA class.
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Table 1.4: Summary Statistics of Relevant Variables

1994 1995 1996 1997 1998 Σ

AGE
x̄ 46.75 51.21 50.99 55.08 57.68 52.15

σ 25.6888 23.3509 23.4360 22.6586 21.4096 23.7038

ASA1
n 300 195 296 186 152 1,129

p 22.11 % 14.71 % 21.25 % 15.31 % 12.67 % 17.39 %

ASA2
n 560 617 681 614 591 3,063

p 41.27 % 46.53 % 48.89 % 50.53 % 49.25 % 47.19 %

ASA3
n 397 452 374 383 391 1,997

p 29.26 % 34.09 % 26.85 % 31.52 % 32.58 % 30.77 %

ASA4
n 98 61 41 32 65 297

p 7.22 % 4.60 % 2.94 % 2.63 % 5.42 % 4.58 %

ASA5
n 2 1 1 0 1 5

p 0.15 % 0.08 % 0.07 % 0.00 % 0.08 % 0.08 %
5∑

i=1
ASAi

n 1,357 1,326 1,393 1,215 1,200 6,491

x̄ 2.2203 2.2881 2.1170 2.2148 2.3100 2.2275
5∑

i=1
ASAi (ENDO)1) x̄ 2.7469 2.6734 2.4657 2.4533 2.5219 2.5547

5∑
i=1

ASAi (ENDO)2) x̄ 2.1066 2.1994 2.0305 2.1128 2.1904 2.1238

COMPL
n 204 225 151 87 79 746

p 15.03 % 16.97 % 10.84 % 7.16 % 6.58 % 11.49 %

COMPL (ENDO)1)
n 74 66 42 33 35 250

p 30.71 % 26.61 % 15.16 % 9.07 % 8.08 % 15.99 %

COMPL (ENDO)2)
n 130 159 109 54 44 496

p 11.65 % 14.75 % 9.77 % 6.35 % 5.74 % 10.06 %

ENDO
n 241 248 277 364 433 1,563

p 17.76 % 18.70 % 19.89 % 29.96 % 36.08 % 24.08 %

Continued on the next page
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1994 1995 1996 1997 1998 Σ

ENDO
n 1,116 1,078 1,116 851 767 4,928

p 82.24 % 81.30 % 80.11 % 70.04 % 63.92 % 75.92 %

ORT
x̄ 47.4134 46.8741 43.9734 45.8848 46.5042 46.1108

σ 42.3310 38.7100 37.6850 48.5631 38.4952 41.2601

ORT (ENDO)1)
x̄ 61.6805 55.9677 52.0036 56.4973 50.9238 54.8720

σ 28.1110 23.9849 27.0621 51.4731 20.3367 32.9885

ORT (ENDO)2)
x̄ 44.3324 44.7820 41.9803 41.3455 44.0091 43.3320

σ 44.2128 41.0786 39.6346 46.5304 45.4723 43.1870

1) Only endoprosthetic surgeries considered.
2) Only non-endoprosthetic surgeries considered.
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Table 1.5: Correlation Coefficients
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Appendix 1.B

Table 1.6: Estimation Results Model 1.1 and 1.2

Model 1.1 (ORT_ENDO, years, Model 1.2 (ORT_ENDO, POST95,
β̂i OLS regression) OLS regression)
(Intercept) 62.50508 ** (23.82396) 63.07661 ** (23.83174)
Σ ORT_ENDO −0.00012 (0.00015) −0.00012 * (0.00006)
ASA2 4.31085 (7.15033) 4.39384 (7.15164)
ASA3 10.49217 (7.19876) 10.54168 (7.19910)
ASA4/5 8.69071 (7.96947) 8.71348 (7.95751)
BLOSS 0.02366 *** (0.00256) 0.02371 *** (0.00256)
OOR 4.27956 . (2.38421) 4.25616 . (2.38160)
ORW 0.07564 (0.09804) 0.10556 (0.09622)
AGE −0.39718 (0.63563) −0.42271 (0.63598)
AGE2 0.00377 (0.00474) 0.00399 (0.00475)
SUR2 6.47802 (12.46254) 5.52145 (12.41763)
SUR3 6.28951 (11.43868) 5.73926 (11.36265)
SUR4 −5.96298 (10.92831) −7.25021 (10.83764)
SUR5 — — — —
SUR6 — — — —
SUR7 18.31565 (11.20279) 16.82042 (11.12097)
SUR8 11.46042 (12.38259) 11.18241 (12.30038)
SUR9 17.74206 (11.44548) 16.57724 (11.34916)
SUR10 7.00818 (14.14672) 6.15889 (14.11276)
SUR11 8.36716 (12.10661) 6.28302 (11.99921)
1995 −2.41056 (3.50819) — —
1996 −7.85422 (4.96002) — —
1997 −2.70985 (7.23471) — —
1998 −5.71742 (10.10500) — —
POST95 — — −4.62474 (2.84637)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses.
n = 1,563
R2 (model 1.1) = 0.17054, R2 (model 1.2) = 0.16773
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Table 1.7: Estimation Results Model 1.3

β̂i Model 1.3 (ORT_ENDO, OLS regression)
(Intercept) 26.89226 *** (4.05161)
Σ ORT_ENDO −0.00024 * (0.00010)
ASA_2 3.69651 *** (1.01032)
ASA_3 5.95151 *** (1.58051)
ASA_45 8.28044 ** (3.08991)
BLOSS 0.06539 *** (0.00663)
OOR 20.52799 *** (1.26370)
ORW 0.62537 *** (0.09299)
AGE 0.50176 *** (0.09230)
AGE2 −0.00383 *** (0.00102)
SUR2 −13.05248 ** (5.05485)
SUR3 14.16087 ** (4.65559)
SUR4 −10.69805 ** (3.70955)
SUR5 −22.02584 *** (3.92281)
SUR6 −17.19298 *** (3.88379)
SUR7 16.60418 *** (3.82666)
SUR8 −7.48901 (4.67298)
SUR9 8.57913 * (4.32699)
SUR10 −17.49577 *** (3.83551)
SUR11 7.04908 . (4.27590)
1995 −2.86974 (1.90323)
1996 −1.27006 (3.24131)
1997 1.82202 (4.55936)
1998 5.06048 (6.96916)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses. Robust standard errors (White) due to heteroskedasticity.
n = 4,928
R2 = 0.43270
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Table 1.8: Estimation Results Model 1.4 for ABD, EXT, HEAD, NECK
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Table 1.9: Estimation Results Model 1.4 for PRO, THO, URO
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Table 1.10: Estimation Results Model 1.5 for ABD, EXT, HEAD, NECK
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Table 1.11: Estimation Results Model 1.5 for PRO, THO, URO
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Table 1.12: Estimation Results Model 1.6 to 1.9
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2 Team vs. Individual Learning in
Hospitals

Carsten Bauer, Oliver Unger and Martin Holderried44

2.1 Introduction

In most developed countries, the economic pressure on hospitals to improve their efficiency
has increased considerably over the past decades. Thus, it is as important for hospitals as
it is for every company to obtain detailed information about the economic implications
of learning curve effects.45 Another issue increasingly discussed in recent literature is
teamwork in health care.46 In the focus of interest are surgeons’ learning curves effects in
a teamwork vs. an individual work setting in tonsillectomies (as a very common surgical
procedure in the field of otorhinolaryngology),47 this means a combination of both aspects
discussed in the literature. In order to do so, the effects of their learning and experience
in both settings are analyzed and evaluated on a broad scale that considers the short,
medium, and long term. This means this paper contributes in combining learning curve
effects with team considerations by comparing team and individual learning curves.

The time from incision to suture (in the following “OR time”, i.e. operating room time,
for short) of tonsillectomies is used as an indicator of learning curve effects which influence
the short-term costs related to the OR. The proxy for the medium- to long-term follow-up
costs of a tonsillectomy is the probability of a patient experiencing a complication after
the intervention. Quality is used to act as an indicator for costs incurred at later points in
the treatment process, i.e. the short- to medium-term quality measure serves as a proxy
for medium- to long-term follow-up costs. Actual cost data are virtually unavailable for
research; however, the data set from a German tertiary care hospital contains costs per
44 We thank Jun.-Prof. Dr. Daniel Schaupp for his support.
45 For an overview of how learning curve effects have been studied, see the review by Ramsay et al.

(2000).
46 For an overview of how teamwork processes in health care have been studied, see the review by Dinh

et al. (2006).
47 Surgical excision of the palatine tonsils. With about 80,000 cases per year, tonsillectomies are “stan-

dard interventions” and one of the most conducted elective surgeries in Germany (Papaspyrou et al.,
2012).
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case. This enables assuring that the assumed cost indicators are valid and substantiates
the results with regard to the effects of learning and medical experience on cost indicators.
Since there is no data listing specific cost details,48 the paper does not try to evaluate the
effects of experience on the costs per case directly.

The remainder of this paper is organized as follows: In section 2.2, the hypotheses
are developed based on the literature. The data set as well as the research models are
described in section 2.3. A discussion of the results and their limitations is presented
in section 2.4, followed by some considerations about the robustness of estimations in
section 2.5. The paper closes with a short summary and outlines some suggestions for
further research in section 2.6.

2.2 Background and Hypotheses

2.2.1 OR Times as a Proxy for Costs

OR times are of special importance, since ORs require the highest labor utilization within
the hospital (Pernerstorfer and Huemer, 2008), and therefore, OR times have a large
impact on hospitals’ costs. OR times being reduced, more interventions are feasible within
a given period of time, leading to a fixed costs degression, which contains labor cost savings
related to learning effects (Ernst and Szczesny, 2006).

Based on the reasoning, and supported by the literature, the hypothesis regarding OR
times reads:

H 1: Ceteris paribus, surgeons’ experience leads to a decrease in the OR time for tonsillec-
tomies.

Besides, surgeons’ experience might also affect follow-up costs. Therefore, complica-
tions as an indicator for medium- to long-term follow-up costs are also investigated. Taking
into consideration short- as well as medium- to long-term cost indicators, the economic
implications of learning in tonsillectomies can be evaluated comprehensively.

2.2.2 Complications as a Proxy for Costs

Whereas OR times are used as an indicator for costs in the short term, complications,
being a short- to medium-term quality measure, serve as a medium- to long-term cost
48 E.g. details with regard to costs incurred by OR time or complications.
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indicator.49 In this analysis, the probability of a patient suffering from a complication after
the tonsillectomy is employed to measure the quality consequences of surgeons’ experience
in the OR. This quality proxy thus accomplishes two objectives. First, it can answer
the question how experience influences short- to medium-term outcomes with regard to
quality. Second, it can link these results to the follow-up costs of the intervention.

Quality is linked to treatment costs because negative outcomes (such as complications
or adverse events) are typically associated with higher resource use. There is distinct
proof in the literature that complications are a proxy for higher costs. Kalish et al. (1995)
depict an impressive increase in costs of $ 16,023 if patients experienced complications.
They also show that complications extend the length of stay (LOS), which is consistent
with the result of higher costs.50 Khan et al. (2006) find a cost increase of 78 % when the
patient suffers from a postoperative complication after non-cardiac surgery. Dimick et al.
(2004) find a cost increase of $ 9,607 when a minor complication occurred and $ 23,869 in
case of a major one.51 Complications and longer LOSs are described as strong markers
of resource consumption and therefore as cost drivers (Hoonhout et al., 2009). These
results also have important implications for hospital costs because there is a clear positive
correlation between poor quality and costs per case (e.g. Baldwin et al., 2003; Chung
et al., 2006). Dimick et al. (2006) also offer support for the highly positive correlation
between complications and costs: They find that reimbursement for patient care without
complications exceeds average hospital costs, resulting in a profit margin of 23 % for the
hospital, which collapses to a mere 3.4 % if complications occur. In addition, the literature
also claims the inverse view, i.e. that lower health care system costs and the quality of
health care provided to patients are positively correlated (Veit et al., 2012; Fleming, 1991;
Flood et al., 1994). For example, Jha et al. (2009) hypothesize that hospitals with lower
costs may be more efficient and thus may provide higher quality than hospitals with
higher costs. Deily and McKay (2006) provide evidence that more cost-efficient hospitals
in Florida have lower mortality rates than less efficient ones. The aforementioned literature
shows that outcome quality and treatment costs can be understood as complements. Even
if it is assumed that the immediate cost effects of these complications are unlikely to be
large, it has already been shown above that even minor complications may have a large
49 They are designated short- to medium-term quality measure due to the fact that by far most compli-

cations occur several days (on average 4.5 days, day of surgery excluded) after the tonsillectomy.
50 Kalish et al. (1995) investigate cases of “major surgery patients”.
51 Major complications are defined as those that are considered significant enough to result in prolonged

LOS or the need for additional interventions. This shows that even minor complications that do not
result in a prolonged LOS lead to remarkable additional costs.
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impact on medium- and long-term costs. Further impact of complications such as the
patient’s readmission and the need for additional interventions (Kim and Soeken, 2005),
support the argument that short-term quality measured by complications can indeed
be linked to medium- and long-term quality and therefore affects costs per case in a
meaningful way.

Regarding complications, the following hypothesis results:

H 2: Ceteris paribus, surgeons’ experience leads to a decrease in the probability of compli-
cations for tonsillectomies.

2.3 Data and Estimation Models

2.3.1 Information on the Data

In this analysis, an anonymous data set from the otorhinolaryngology department of a
German tertiary care hospital is deployed. The data set covers interventions from June
2014 until December 2016. Nine hundred observations are used to examine and compare
the learning curve effects in tonsillectomies with regard to OR time and complications in a
teamwork and an individual work setting.52 Most of the tonsillectomies are conducted by
one of the 28 surgeons individually. In 51 cases, an OR team of two surgeons operates. In
one case, there are three surgeons involved. In 44 out of 52 team interventions, a resident
physician is involved. The most frequent team consists of a senior physician documented
as the first surgeon and a resident physician as the second one (n = 26). This indicates
that team interventions are employed for supervised learning.53 Twenty surgeons take part
in team interventions during the observation period, conducting 788 tonsillectomies (in
teams or individually). In addition, the data set contains the costs per case.54 With these,
the cost indicators influenced by surgeons’ experience can be checked for validity.

2.3.2 Estimation Models – OR Times

The following regression model tries to explain the OR times of tonsillectomies:55

52 Table 2.3 to 2.6 show the descriptive statistics for all relevant variables.
53 See table 2.4 for the team compositions.
54 The costs per case are based on hospital-internal cost calculations.
55 See table 2.1 for a short description of all the variables. Models are estimated by Ordinary Least

Squares (OLS) regression unless otherwise specified.
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ORT = β0 + β1 · FA + β2 · OA + β3 · PROF + β4 · TEAM

+ β5 · ASA2 + β6 · ASA3/4

+ β7 · NUM_DIAG + β8 · AGE + β9 · AGE2 + β10 · WEEKEND

+ β11 · 2015 + β12 · 2016 + ε

(2.1)

In model 2.1, the surgeons’ experience is measured via the level of qualification which in
turn is done by the dummy variables FA, OA, and PROF. The first level “resident physi-
cian” serves as the reference category.56 The usage of qualification levels as indicators of
surgeons’ experience is legitimated by the requirements for achieving a certain qualifica-
tion level.57 As the data set contains interventions by a single surgeon as well as team
interventions, the dummy variable TEAM is used to denote team interventions. It seems
plausible that these interventions take longer, as the surgeons interact with each other (es-
pecially because team interventions are probably meant for supervised learning). Since the
patient’s physical status might also influence the OR time, it is controlled for the risk clas-
sification respectively the medical condition of the patient. To do so, the American Society
of Anesthesiologists (ASA) classification of patients is employed. The literature confirms
this score as a high-quality and appropriate predictor for complications and postopera-
tive outcomes (e.g. Arvidsson et al., 1996; Hall and Hall, 1996; Wolters et al., 1996). The
observation’s ordinal ASA score is translated into dummy variables ASAi (i = 1, 2, 3, 4),
which respectively represent the classification of the ASA scores (1 for a normal healthy
patient and 4 for one with severe systemic disease). ASA3/4 is the dummy for the patient
classified as ASA 3 or 4.58 NUM_DIAG reprensents the number of diagnoses. It seems
likely that the more diagnoses the patient gets the longer will be the OR time due to more
processes and/or a higher complexity. A differentiation of variably severe diagnoses is not
necessary, since all cases in the data set are classified as Diagnosis-Related Group (DRG)
D30B, which reads the case is without complex diagnosis (Institut für das Entgeltsystem
im Krankenhaus, 2014a,b, 2015). In addition, the patient’s age (AGE) is assumed to be
a signifier of the complexity of a case. Higher age might correlate with a longer OR time.
Although AGE does not signify complexity itself, it can be used as a proxy for various
unobservable signifiers of complexity. As there might be a disproportionately high in-
56 Therefore, the first level “resident physician” is not included in the regression model.
57 E.g. to become an otorhinolaryngologist (FA), resident physicians need to pass a 24-month basic

training and subsequently a 36-month otorhinolaryngologist training.
58 For a description of the ASA scores, see table 2.2. ASA 1 is the reference category, and therefore,

ASA1 is not included in the regression model. Due to the small number of observations with ASA 3
or 4, there is a single dummy for ASA 3 and 4.
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crease in complexity with increasing age, i.e. the relation between age and OR time might
be nonlinear, the squared age (AGE2) is also contained. The regressor WEEKEND is a
dummy for weekend surgeries (on Sat. / Sun.). Such surgeries might hint at their urgency,
which can possibly also be used as an indicator of complexity of the case. 2015 and 2016
are dummy variables for the individual years to control for potential unobserved changes
over time. The term ε represents the error term.

In order to obtain more specific results with regard to the surgeons, the regres-
sand ORT is replaced by ORT_TEAM_SUR in model 2.2 and ORT_TEAM_SUR in
model 2.3. In model 2.2, only tonsillectomies conducted by a surgeon who is part of a
surgery team during the observation period are considered. In model 2.3, the OR times of
the cases by surgeons who are not part of a surgery team during the observation period
are explained.

ORT_TEAM_SUR = β0 + β1 · FA + β2 · OA + β3 · PROF + β4 · TEAM

+ β5 · ASA2 + β6 · ASA3/4

+ β7 · NUM_DIAG + β8 · AGE + β9 · AGE2 + β10 · WEEKEND

+ β11 · 2015 + β12 · 2016 + ε

(2.2)

ORT_TEAM_SUR = β0 + β1 · FA + β2 · OA + β3 · PROF

+ β4 · ASA2 + β5 · ASA3/4

+ β6 · NUM_DIAG + β7 · AGE + β8 · AGE2 + β9 · WEEKEND

+ β10 · 2015 + β11 · 2016 + ε

(2.3)

2.3.3 Estimation Models – Complications

To test the hypothesis regarding the probability of a patient experiencing a complication
connected to a tonsillectomy, a maximum likelihood model for dichotomous dependent
variables (binary logit model) is estimated. The model examines the influence of a set of
independent variables on the probability of a complication P (COMPL).

Based on the assumptions and the clinical information about further independent
variables, the following logit model is established:59

59 See table 2.1 for a short description of all the variables.
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E(COMPL | x) = P (COMPL = 1 | x) =
∫ z

−∞
f(t)dt =

∫ z

−∞

e−z

(1 + e−z)2 = 1
1 + e−z

z = x′β = β0 + β1 · FA + β2 · OA + β3 · PROF

+ β4 · ASA2 + β5 · ASA3/4

+ β6 · NUM_DIAG + β7 · AGE + β8 · AGE2 + β9 · WEEKEND

+ β10 · ORT + β11 · ABSCESS

+ β12 · 2015 + β13 · 2016

(2.4)

WEEKEND is again used as a possible indicator of case complexity. The probability of
a complication is assumed to be larger for an emergency operation than for an elective
surgery planned in advance. To represent complexity, the OR time is also used, since more
complex interventions supposedly take longer and might have a higher probability of a
complication. The dummy ABSCESS which represents tonsillectomies conducted due to
a peritonsillar abscess, an acute infection, is also deployed.60 Thus, the dummy is used as
an indicator of complication risk. Maybe, there is a higher risk for abscess tonsillectomies.
It seems likely that the complication risk also rises with a higher number of diagnoses.61

2.3.4 Estimation Models – Costs per Case

Based on the argumentation in section 2.2.1 to 2.2.2, the regression models in section 2.3.2
to 2.3.3 which use OR time and complications as cost indicators have been set up. A
regression of the costs per case is conducted on these two cost indicators as well as
the LOS62 as another one (with control variables) to assure that they are valid and to
substantiate the results:63

60 An acute infection of the tissue between the palatine tonsils and the musculus constrictor pharyngis
next to the palatine tonsils.

61 Due to the small number of complications in the given data set (n = 35), it does not make sense to
conduct regressions of complications in tonsillectomies by surgeons who attend team interventions
(n = 32) and by surgeons who do not (n = 3).

62 Table 2.7 and 2.8 show descriptive statistics of LOS.
63 899 observations (one missing value of costs per case). Initially, all control variables from model 2.1

to 2.4 have been inserted. The omitted control variables have been tested for joint significance using
an F-test with heteroskedasticity-robust standard errors. P-value = 0.2165. The paper does not try
to evaluate the effect of experience (FA, OA, PROF) on the costs per case directly, since there is no
detailed cost data precisely stating which amount is incurred by a certain cost driver (e.g. OR time,
LOS or complications) available. See table 2.1 for a short description of all the variables.
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COSTS = β0 + β1 · ÔRT + β2 · COMPL + β3 · LOS

+ β4 · TEAM + β5 · NUM_DIAG + β6 · AGE + β7 · AGE

+ β8 · 2015 + β9 · 2016 + ε

(2.5)

Model 2.5 might suffer from endogeneity (OLS model assumption of the error term being
uncorrelated with the regressors does not hold), as its error term might not be uncor-
related with the error term of model 2.1. In order to resolve the endogeneity problem,
the estimated values of ORT (ÔRT) from regression (2.1) are used instead of the actual
values of ORT in model 2.5 (2SLS regression64).

The regressand is replaced according to the concept seen in section 2.3.2 here, too:

COSTS_TEAM_SUR = β0 + β1 · ÔRT + β2 · COMPL + β3 · LOS

+ β4 · TEAM + β5 · NUM_DIAG + β6 · AGE + β7 · AGE2

+ β8 · 2015 + β9 · 2016 + ε

(2.6)

COSTS_TEAM_SUR = β0 + β1 · ÔRT + β2 · COMPL + β3 · LOS

+ β4 · NUM_DIAG + β5 · AGE + β6 · AGE2

+ β7 · 2015 + β8 · 2016 + ε

(2.7)

Model 2.6 and 2.7 will help to quantify the cost effects of surgeons sometimes operating
in teams and the ones always operating on their own respectively.

2.4 Results

2.4.1 OR Times

Table 2.9 depicts the estimation results of model 2.1 to 2.3. Implied by the negative65

coefficients of FA, OA, and PROF, the surgeon’s experience, represented by qualification
levels, reduces OR times in tonsillectomies. With rising experience, this time reduction
in comparison to resident physicians grows.66 Before juxtaposing the qualification level
64 Two-Stage Least Squares regression. In the first stage, the values of ORT are estimated via OLS in

regression (2.1). In the second stage, the estimated values are used as a regressor in OLS regression
(2.5).

65 All interpreted coefficients are significantly different from zero (in the following “significant” for short).
66 Exception: The absolute value of the coefficient of OA is slightly smaller than the one of FA in

model 2.6.
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coefficients in model 2.2 and 2.3, it is reasonable to inspect average OR times. For resident
physicians, the OR time is shorter for surgeons who take part in team surgeries during
the observation period (28.22 min.) than for their peers who do not (33.76 min.).67 This
holds when comparing the OR times of tonsillectomies conducted by a single surgeon:
Surgeons who take part in team interventions have a shorter average OR time (28.05 min.
for residents, 22.57 min. for all) than the remaining ones (33.76 min. for residents, 25.93
min. for all).68 Figure 2.1 and 2.2 illustrate differences in average OR times. Turning to

Year

ORT (in min.)

2014 2015 2016

20

25

30

35

all surgeons/surgeries
surgeons taking part in team surgeries
surgeons not taking part in team surgeries
surgeries by surgery team
surgeries by single surgeon

Figure 2.1: Average OR Times of Surgeries

Qualification Level

ORT (in min.)

Resident FA OA

15

20

25

30

35

surgeons taking part in team surgeries
surgeons not taking part in team surgeries

Figure 2.2: Average OR Times of Surgeries by Single Surgeon
67 See table 2.3.
68 See table 2.5.
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the coefficients in model 2.2 and 2.3, the reduction of OR times in comparison to resi-
dent physicians is about the same for otorhinolaryngologists taking part in team surgeries
(model 2.2) and the ones not taking part in team surgeries (model 2.3). For senior physi-
cians who take part the reduction of OR times compared to resident physicians is smaller
than for the ones who do not, as the former ones virtually have the same reduction as
otorhinolaryngologists.69 The combination of average OR times and qualification level co-
efficients suggests resident physicians learning faster when sometimes operating in teams,
and reaching the next qualification level with a higher level of knowledge and expertise.
As a consequence, the learning effect in the following qualification level is smaller. In
summary, H 1 is supported, and therefore H 1 cannot be rejected.

The coefficients of TEAM (model 2.1, 2.2) meet the expectations. Team interventions
take longer than interventions by a single surgeon. Regarding the patient’s risk classifica-
tion, the results do not confirm the expectations, since there are no significant coefficients
for ASAi. This might be traced back to the fact that tonsillectomies are rather “small”
interventions. In “larger” interventions including higher blood loss, the situation can be
completely different, e.g. in endoprosthetic interventions70 (Bauer et al., 2020). With re-
gard to NUM_DIAG, the coefficient is positive (model 2.1, 2.2) as it has been assumed.
The number of diagnoses within the tonsillectomy enlarges the OR time. The remaining
regressors do not have an influence on the OR time.71

To end this section, it is worthwhile having a look at the coefficients of determination
of model 2.2 and 2.3. The latter model has a considerably higher one and thus explains a
higher share of the variation in the regressand.

2.4.2 Complications

The estimation results of the logit model regarding the probability of experiencing com-
plications are given in table 2.10. The insignificant coefficients of FA, OA, and PROF
indicate that the complication risk is unchanged with rising experience. This does not
support H 2, and therefore H 2 is rejected.
69 Considering the OR time reductions compared to resident physicians, one has to keep in mind that

the OR times also differ between the resident physicians who take part in team interventions and the
ones who do not. See figure 2.2 and table 2.5.

70 Total hip or knee replacements.
71 The two regressors representing age have also been tested for joint significance using an F-test. P-

value > 0.1 / no rejection of “no joint significance” in all three cases.
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Patients classified as ASA 3 or 4 face a higher probability of experiencing complica-
tions compared to patients classified as ASA 1. In contrast, ASA 2 patients have a lower
probability of experiencing a complication. Hence, the assumption only holds partially. It
might be the case that in tonsillectomies, rather “small” interventions, the complication
risk is not that much represented by the ASA score as it is in “larger” interventions. The
positive coefficient of NUM_DIAG supports the argumentation of rising complication risk
with rising number of diagnoses. Age has a nonlinear relation with the complication risk.72

Interventions on weekends have a lower complication risk; hence, the expectations are not
met. The negative coefficient of ORT implies: Patients with a shorter OR time have a
lower complication risk. This is an indication that OR time can represent complexity,
since more complex interventions seem to take longer and have a higher probability of a
complication. Surprisingly, the coefficient of ABSCESS is negative which implies a lower
complication risk for tonsillectomies due to a peritonsillar abscess. The probability of a
complication sinks over time. The negative coefficient of 2016 can be regarded as a sign
of learning which is not covered by the individual experience, i.e. the qualification levels.
It might be traced back to improved processes or innovations in operation methods or
after-surgery care.

2.4.3 Costs per Case

Table 2.11 depicts the estimation results of model 2.5 to 2.7. OR time and complications
positively influence the costs per case, and therefore they can be regarded as valid cost
indicators.73

Summa summarum: It can be stated that surgeons’ experience has a favorable, neg-
ative effect on the OR time and the probability of complications. Since OR time and
complications positively affect the costs per case, experience indicates lower costs in the
short, medium, and long term. This finding implies hospitals should be obliged to create
an environment which accelerates learning. As already discussed in section 2.4.1, team
interventions are a favorable learning environment to acquire knowledge fast, especially
72 The two regressors representing age have also been tested for joint significance using an F-test. P-

value = 0.0760.
73 The direction of influence is of course irrelevant for being a cost indicator. The estimated OR times

have been used instead of the actual ones in model 2.5 to 2.7, see section 2.3.4. If the costs per case are
regressed on estimated OR time and complications only, the coefficient of determination R2 = 0.1077,
which means that about 11 % of the variation in the costs per case can be explained by these two
cost indicators. If the costs per case are regressed on estimated OR time, LOS, and complications,
R2 = 0.4929. For model 2.5, R2 = 0.5528.
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for inexperienced surgeons.

To illustrate the effects numerically: A reduction of the OR time by one minute on
average reduces the costs per case by 8.50e.74 Surgeons who engage in team interventions
take about 3.36 minutes shorter in individual surgeries,75 which results in a cost reduction
by 28.56e. A complication increases costs by 975.72e.

2.4.4 Limitations

There are some limitations to the results. First of all, the paper is not able to precisely
measure surgeons’ experience with the given data set, but has to resort to qualification lev-
els which are not that accurate. For example, a resident physician doing first interventions
is attributed the same experience as a resident having conducted many tonsillectomies
and reaching the next qualification level (otorhinolaryngologist) in the near future.

Next, with 900 observations, the data set is a relatively small sample. This gets obvious
in model 2.4, which explores the effect of experience on the probability of complications:
There are only 35 tonsillectomies with complications.76

One must also bear in mind that the complexity of the individual cases has more
dimensions than the ones the present study has been able to use. However, it is virtually
impossible to exactly represent them in a regression model.

The findings recommend team surgeries especially for resident physicians due to faster
learning and a connected lower resource consumption. But one has to keep in mind that
team interventions themselves are very costly, since more than one surgeon is bound.77 So
there is a need for finding the optimal frequency which trades off the extra costs of team
interventions against the resulting cost savings. However, it is not possible to achieve this
with the relatively small data set at hand.78

74 See table 2.11.
75 See table 2.5.
76 This is the reason no separate regressions for surgeons operating and not operating in teams have

been conducted. See also footnote 61. Nevertheless, the low complication rate (3.89 %) might be an
indicator of the overall high quality of this tertiary care hospital in this “standard intervention”.

77 However, there is no significant difference in costs per case between interventions by a single surgeon
and team interventions which does not rely on different OR times (as the OR times influence the costs
per case and differ between interventions by a single surgeon and team interventions). See table 2.11.

78 It can be noticed that the surgeons who take part in team interventions altogether conduct 788
interventions whereof only 52 are done in team, which equals about 6.6 %. Anyhow, the study finds
differences between the two groups of surgeons. This means the optimal frequency most likely is not
large.
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2.5 Robustness of Estimation Models

The separate estimations in model 2.2 and 2.3 have been merged into a single model like
model 2.1 which additionally contains a dummy variable to distinguish surgeons who take
part in team interventions from the ones not taking part. The results do not relevantly
differ: With rising experience, the time reduction in comparison to resident physicians
grows. Team interventions take longer. If a surgeon who takes part in team interventions
operates, the surgery by a single surgeon is shorter. For model 2.6 and 2.7, it is the
same: The results of the combined model are in line with the previous ones. There is no
significant difference in costs per case between team interventions and interventions by a
single surgeon represented by TEAM.79 However, there is a difference in costs per case
between the two groups of surgeons represented by the dummy variable (about –103e if
a surgeon who takes part in team interventions operates).

Model 2.1 to 2.4 have been estimated with a different measurement of experience: via
the cumulated number of tonsillectomies by a surgeon at the ENT department of the
focal university hospital. This method disregards the experience the surgeons might have
gathered before. Therefore, the regression has only been conducted for tonsillectomies by
surgeons being resident physicians when entering the department in order to not disregard
“too much” experience. The results do not relevantly differ.

All regression models have been controlled for heteroskedasticity by using the Breusch-
Pagan test (level of significance α = 0.05). Robust standard errors (White) have been used
in case of heteroskedasticity in order to receive valid statistical inferences.

The variance inflation factors (VIFs) have been computed for all models. VIFs are
close to 1, indicating that there are no severe problems arising from a problematically
high level of multicollinearity.

2.6 Conclusions

This paper contributes to the literature by not only providing insights into learning curve
effects in the OR, but simultaneously also into differences of these learning effects between
surgeons who engage in team interventions and surgeons who do not. Furthermore, it
79 However, there are differences in costs relying on different OR times (as the OR times influence the

costs per case and differ between the two groups of surgeries).
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can validate hospital’s cost indicators by being able to resort to the costs per case in
tonsillectomies.

It has been hypothesized that surgeons’ experience in tonsillectomies shortens OR
times as well as lowers the probability of complications and therefore reduces the costs in
the short, medium, and long term. To make statements regarding how short-term costs
are affected, OR times have been used. In order to investigate how medium- to long-term
follow-up costs are affected by surgeons’ experience, complications, a quality measure,
have been used.

Increased surgeons’ experience has a cost-saving effect not only in the OR itself via
reduced OR times, but also with regard to medium- to long-term follow-up costs due to
a lower complication risk. This implies a cost reduction and an enhancement in quality
are not mutually exclusive. It has also been found that team interventions accelerate
surgeons’ learning, especially for inexperienced surgeons. Summa summarum, the findings
suggest especially resident physicians engaging in team surgeries to acquire a higher level
of knowledge already in the first qualification level.

Future research might obtain deeper insights into the effect of team interventions.
With a larger data set, it may be possible to investigate the team learning effects for
surgeons graded by the frequency they operate (and learn) in teams. With this knowledge,
one might concretize the recommendation for team surgeries with regard to an optimal
frequency. One might also study the differences between team and individual learning
curve effects regarding complications, which has not been possible with the data set at
hand. Linked studies should also think about a more concise measurement of experience, to
be able to conduct regressions with enhanced data quality. However, this would obviously
require much medical expertise. Future research might also obtain more precise economic
implications of surgeons’ learning and experience with detailed cost data precisely stating
costs incurred by different cost drivers.
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Appendix 2.A

Table 2.1: Description of Variables

Variable Description
ABSCESS Dummy for tonsillectomy conducted due to peritonsillar abscess (acute

infection)
AGE Patient’s age
ASAi Dummy for ASA class i ∀ i = {1, 2, 3, 4}. Classification of patients with

regard to their physical condition. The smaller, the better the condition
is. ASA3/4 as dummy for ASA class 3 or 4. For a description of the ASA
classes, see table 2.2.

COMPL Dummy for complication (secondary bleeding)
FA Dummy for surgeon is otorhinolaryngologist (“Facharzt”)
LOS Length of stay (in days)
NUM_DIAG Number of diagnoses
OA Dummy for surgeon is senior physician (“Oberarzt”)
ORT Operation time (time from incision to suture; in minutes)
PROF Dummy for surgeon is university professor
TEAM Dummy for team intervention
WEEKEND Dummy for weekend surgery (Saturday/Sunday)
ε Error term
2015/2016 Dummy for the year 2015/2016

Table 2.2: ASA Classes (American Society of Anesthesiologists, 2019)

Class Description
ASA 1 A normal healthy patient
ASA 2 A patient with mild systemic disease
ASA 3 A patient with severe systemic disease
ASA 4 A patient with severe systemic disease that is a constant threat to life
ASA 51) A moribund patient who is not expected to survive without the operation
ASA 61) A declared brain-dead patient whose organs are being removed for donor

purposes
1) Data set does not contain patients classified as this ASA class.
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Table 2.3: Surgeons – Team Interventions

doing not doing
Surgeons team interventions team interventions Σ

Resident n 13 4 17
ORT1) 28.2165 33.7609 28.7328

FA n 2 3 5
ORT 16.7971 21.9000 18.6697

OA n 5 2 7
ORT 17.0171 18.2692 17.1423

PROF n 1 0 1
ORT 13.0000 — 13.0000

All n 202) 82) 282)

ORT 23.1764 25.9286 23.5189
1) Average OR time for interventions with a resident physician documented as the first surgeon. Other

qualification levels analog.
2) Sum of surgeons sorted by qualification level does not match due to one resident physician and one

otorhinolaryngologist (FA) reaching the next level within the observation period.

Table 2.4: Surgeons – Team Composition

with with with with
Surgeries of alone Resident FA OA PROF Σ
Resident1) n 475 14 0 0 5 494
FA n 102 4 0 0 3 109
OA n 234 26 0 0 0 260
PROF n 37 0 0 0 0 37
All n 848 44 0 0 8 900
1) Resident physician documented as the first surgeon. Other qualification levels analog.
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Table 2.5: Summary Statistics of Surgeries

20141) 2015 2016 Σ
Surgeries n 191 372 337 900
ORT x̄ 21.5654 25.4597 22.4837 23.5189

COMPL n 9 19 7 35
p 4.71 % 5.11 % 2.08 % 3.89 %

Surgeries (TEAM_SUR)2) n 155 340 293 788
ORT_TEAM_SUR x̄ 21.0000 25.6618 21.4437 23.1764
Surgeries (TEAM_SUR)3) n 36 32 44 112
ORT_TEAM_SUR x̄ 24.0000 23.3125 29.4091 25.9286
Surgeries (TEAM)4) n 5 31 16 52
ORT_TEAM x̄ 25.6000 34.5806 28.2500 31.7692
ORT_TEAM (TEAM_Res.)5) x̄ 31.8947

(TEAM_FA) x̄ 26.1429
(TEAM_OA) x̄ 33.1923

Surgeries (TEAM) n 186 341 321 848
ORT_TEAM x̄ 21.4570 24.6305 22.1963 23.0130
ORT_TEAM (TEAM_SUR)6) x̄ 22.5693

(TEAM_SUR)7) x̄ 25.9286
(TEAM_Res.) x̄ 28.0536
(TEAM_Res.) x̄ 33.7609
(TEAM_FA) x̄ 15.7419
(TEAM_FA) x̄ 21.9000
(TEAM_OA) x̄ 14.9952
(TEAM_OA) x̄ 18.2692
(TEAM_PROF) x̄ 13.0000

1) June to December.
2) Surgeries conducted by a surgeon who is part of a surgery team during the observation period.
3) Surgeries conducted by a surgeon who is not part of a surgery team during the observation period.
4) Surgeries conducted by a surgery team.
5) Surgeries conducted by a surgery team with a resident physician documented as the first surgeon.

Other qualification levels analog.
6) Surgeries conducted by a single surgeon. Surgeon is part of a surgery team during the observation

period. Individual qualification levels analog.
7) Surgeries conducted by a single surgeon. Surgeon is not part of a surgery team during the observation

period. Individual qualification levels analog.



2 Team vs. Individual Learning in Hospitals 57

Table 2.6: Summary Statistics of Further Variables

20141) 2015 2016 Σ

AGE x̄ 26.0524 26.7392 26.0059 26.3189
σ 13.3447 14.8857 13.6903 14.1378

ASA1
n 114 246 223 583
p 59.69 % 66.13 % 66.17 % 64.78 %

ASA2
n 74 120 107 301
p 38.74 % 32.26 % 31.75 % 33.44 %

ASA3/4
n 3 6 7 16
p 1.57 % 1.61 % 2.08 % 1.78 %

4∑
i=1

ASAi

n 191 372 337 900
x̄ 1.4188 1.3548 1.3620 1.3711

NUM_DIAG x̄ 8.7853 8.1935 9.1840 8.6900
σ 2.3671 2.4659 2.4316 2.4722

WEEKEND x̄ 0.0628 0.0645 0.0475 0.0578

1) June to December.

Table 2.7: Length of Stay – Year of Surgery

20141) 2015 2016 Σ
Surgeries n 191 372 337 900
LOS2) x̄ 5.8429 5.2473 4.6736 5.1589
DRG-planned LOS3) x̄ 4.8000 4.6000 4.5000

1) June to December.
2) The day of discharge is not considered.
3) Planned LOS by the DRG system. The day of discharge is not considered.

Table 2.8: Length of Stay – Patient’s Age

AGE ≤ 10 11-17 ≥ 18 Σ
Surgeries n 91 120 689 900
LOS x̄ 5.7912 5.2750 5.0552 5.1589
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Appendix 2.B

Table 2.9: Estimation Results Model 2.1 to 2.3

Model 2.2 Model 2.3
Model 2.1 (ORT_TEAM_SUR, (ORT_TEAM_SUR,

β̂i (ORT, OLS regression) OLS regression) OLS regression)
(Intercept) 22.80878 *** (4.13855) 22.28831 *** (4.67899) 28.35809 *** (6.51712)
FA −10.48071 *** (2.45816) −11.93426 *** (3.18527) −11.52996 *** (2.98575)
OA −12.18048 *** (1.68347) −11.74696 *** (1.85232) −15.10348 *** (3.30308)
PROF −15.40540 *** (3.69463) −14.72200 *** (3.87589) — —
TEAM 10.22789 ** (3.13714) 10.79791 ** (3.30679) — —
ASA2 −0.47837 (1.60324) 0.07082 (1.77360) −3.55175 (2.94118)
ASA3/4 0.38005 (5.69067) 0.45825 (7.07185) −0.95469 (6.65238)
NUM_DIAG 0.76927 * (0.30626) 0.79537 * (0.34037) 0.60558 (0.54260)
AGE −0.06902 (0.16330) −0.10018 (0.18193) 0.05452 (0.27918)
AGE2 0.00076 (0.00229) 0.00108 (0.00255) −0.00038 (0.00399)
WEEKEND 3.35888 (3.11594) 2.79724 (3.48840) 8.43624 (5.30374)
2015 1.34271 (2.05307) 1.75491 (2.37571) −2.31533 (3.16836)
2016 −1.60650 (2.09816) −2.15369 (2.42147) 0.13093 (3.03383)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses.
n (model 2.1) = 900, n (model 2.2) = 788, n (model 2.3) = 112
R2 (model 2.1) = 0.09070, R2 (model 2.2) = 0.08877, R2 (model 2.3) = 0.28305



2 Team vs. Individual Learning in Hospitals 59

Table 2.10: Estimation Results Model 2.4

β̂i Model 2.4 (COMPL, logit)
(Intercept) −7.18607 *** (1.27501)
FA −0.30232 (0.59269)
OA −0.77845 (0.57339)
PROF 1.01849 (0.68319)
ASA2 −1.13403 . (0.57938)
ASA3/4 2.14550 ** (0.74040)
NUM_DIAG 0.44623 *** (0.07409)
AGE 0.10870 * (0.04708)
AGE2 −0.00184 ** (0.00063)
WEEKEND −16.21837 *** (0.42042)
ORT −0.05428 * (0.02707)
ABSCESS −16.44712 *** (0.94332)
2015 0.43335 (0.47270)
2016 −1.01297 . (0.56486)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses. Robust standard errors (White) due to heteroskedasticity.
n = 900
McFadden’s R2 = 0.24288

Table 2.11: Estimation Results Model 2.5 to 2.7

Model 2.6 Model 2.7
Model 2.5 (COSTS_TEAM_SUR, (COSTS_TEAM_SUR,

β̂i (COSTS, OLS regression) OLS regression) OLS regression)
(Intercept) −353.34838 (265.21039) −352.44016 (307.23635) −421.99508 (285.63183)
ÔRT 8.50117 * (3.60184) 7.78751 . (4.09213) 16.58385 ** (6.18008)
LOS 407.33114 *** (43.31282) 410.78529 *** (49.20092) 389.21243 *** (35.99960)
COMPL 975.72232 *** (182.82468) 1,014.51442 *** (199.37726) 557.68068 (354.49339)
TEAM −40.32713 (62.92768) −30.23657 (64.58310) — —
NUM_DIAG 60.78477 *** (15.85173) 61.13511 *** (18.27534) 53.55093 ** (17.27782)
AGE −16.30832 ** (5.94887) −16.88860 ** (6.12623) −15.65028 (16.97341)
AGE2 0.18469 * (0.07762) 0.17700 * (0.07168) 0.29374 (0.29570)
2015 185.18694 * (78.16076) 205.77573 * (93.23107) 39.29453 (100.80506)
2016 335.10928 *** (66.24225) 331.33407 *** (74.52828) 333.44606 ** (110.70945)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses. Robust standard errors (White) due to heteroskedasticity.
n (model 2.5) = 899, n (model 2.6) = 787, n (model 2.7) = 112
R2 (model 2.5) = 0.55283, R2 (model 2.6) = 0.55421, R2 (model 2.7) = 0.62015
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3 Learning Curve Effects in Stapes
Surgery

Carsten Bauer, Johannes Taeger and Kristen Rak80

3.1 Introduction

Stapes surgery as a therapy for conductive hearing loss caused by otosclerosis81 is concept-
ually simple, but technically difficult (Hughes, 1991; Sergi and Paludetti, 2016). Besides,
its outcome can easily be measured.82 Therefore, it is regarded as the optimum to study
learning curve effects in surgery (Sergi and Paludetti, 2016).

This study contributes in providing insights into learning curve effects in stapes
surgery. In order to properly evaluate how surgeons’ learning affects the outcome quality,
it takes other possibly relevant variables for the success of stapes surgery into account.
Thus, it provides a comprehensive study of learning curve effects and possibly predictive
factors. Previous research has often investigated either the learning curve in stapes surgery
or possibly relevant factors for predicting surgical success. Evaluations of learning curves
are often investigations of the authors’ own ones. They virtually do not control for other
possibly relevant variables for success. Other studies engage in variables for the prediction
of success; however, they do not control for surgeons’ experience. The regression model
approach to learning curve effects is virtually nonexistent in stapes surgery literature.83

The time from incision to suture (in the following “OR time”, i.e. operating room time,
for short) of stapes surgeries is used as an indicator of learning curve effects affecting the
short-term costs. Besides, the postoperative air-bone gap (ABG),84 a parameter widely
used for measuring success in stapes surgery, is deployed to measure learning curve effects
80 We thank Prof. Dr. Rüdiger Pryss and especially Ralph Keim for their support.
81 Otosclerosis causes overflow bone growth (overflow osteogenesis). It often results in a fixation of the

stapes footplate (stapesankylosis) which causes a conductive hearing loss. Stapes surgery reconstructs
the stapes function by means of a prosthesis, which takes over the sound conduction to the inner ear.

82 Sergi and Paludetti (2016) palpably refer to the postoperative air-bone gap measured by audiometry.
83 A common approach are descriptive statistics, e.g. the comparison of mean values with rising experi-

ence.
84 The difference between air conduction and bone conduction threshold is referred to as air-bone gap.
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with regard to quality, which influences average medium- to long-term follow-up costs
(incurred after surgery). “Quality” is used to act as an indicator for costs incurred at later
points in the treatment process, i.e. the quality measure serves as a proxy for follow-up
costs. The surgeons’ experience as the result of their learning process is measured by their
respective sum of stapes surgeries. With 1,066 observations, the data set is of considerable
size. This enables the verification of the results of previous research which has often used
distinctly smaller samples. Moreover, there are 24 surgeons in the data set. This improves
the comparison of individual learning curves, since all surgeons worked under widely
identical conditions. So far, studies of learning curves in stapes surgery mostly investigated
only one surgeon from one hospital. Comparisons of different learning curves therefore were
only possible across organizations. With data from an 18-year period, the study is also
able to investigate learning on organizational (otorhinolaryngology department) level.

The remainder of this paper is organized as follows: In section 3.2, the hypotheses
are developed based on the literature. The data set as well as the research models are
described in section 3.3. A discussion of the results and their limitations is presented
in section 3.4, followed by some considerations about the robustness of estimations in
section 3.5. The paper closes with a short summary and outlines some suggestions for
further research in section 3.6.

3.2 Background and Hypotheses

3.2.1 OR Times as a Proxy for Costs

In the literature concerned with stapes surgery, OR times are rarely considered.85 While
considering quality, this study also takes the OR times into account; they serve as an
additional short-term cost indicator. Taking short- as well as medium- to long-term cost
indicators into consideration, this study can comprehensively evaluate the economic im-
plications of learning in stapes surgery.

OR times are relevant cost indicators, since ORs are among the highest resource-
utilizing facilities within the hospital, accounting for 25 % of total costs for inpatient cases
(Berry et al., 2008). Bellini et al. (2020) even report a proportion of 35 to 40 % of hospital
85 OR times are considered sporadically in the recent literature, which is concerned with endoscopic

stapes surgery (first studied by Poe in 2000). Most of the time, only mean OR times of the studied
endoscopic and microscopic interventions are reported and there is no investigation of the development
over time.
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costs and thus designate the OR as the financial center. Childers and Maggard-Gibbons
(2018) report direct OR costs of 20 to $ 21 per minute.86 These examples illustrate that
OR times have a considerable impact on costs per case. Decreased OR times therefore
can ultimately result in a fixed costs degression due to a more efficient OR use and lower
costs per case.87

It seems likely that with rising experience in a certain type of surgery, routine emerges
which improves surgeons’ movements and consequently, surgeries get shorter. Among the
studies considering OR times in stapes surgery, there can be found a tendency of shorter
OR times over time. Lucidi et al. (2020) declare a mean OR time of 49 min. for the first
ten surgeries and 42.2 min. as the average of surgery no. 91 to 100.88 Iannella and Magliulo
(2016) calculate a mean OR time of 52.5 min. in the first four months of endoscopic stapes
surgery and 35.9 min. in the third four-month period.89

Derived from research, the hypothesis regarding OR times reads:

H 1: Ceteris paribus, surgeons’ experience leads to a decrease in the OR time in stapes
surgery.

3.2.2 Quality as a Proxy for Costs

There is some evidence from previous research that surgeons’ learning and experience
positively influences outcomes in stapes surgery. Hughes (1991) describes that approxi-
matively 50 surgeries are needed to reach a postoperative ABG ≤ 10 dB in 90 % of the
cases. Sargent (2002) comes to the the same conclusion. Watson et al. (2015) quote 43
surgeries to reach a postoperative ABG ≤ 15 dB in 90 % of the cases. Yung and Oates
(2007) define the completion of the learning process by the curve reaching its plateau.
They state 70 and 80 interventions respectively.90

86 They investigate Californian acute care hospitals in fiscal year 2014. Labor costs are 13 to $ 14 per
minute.

87 Roberts et al. (1999) find 84 % of hospital costs to be fixed costs. 20.9 % of hospital costs are fixed
costs incurred for physicians, which is about a quarter of all fixed costs. This emphasizes the relevance
of labor costs.

88 They study the first 100 endoscopic stapes surgeries of a single surgeon. The differences are however
not significantly different from zero. A possible explanation might be the surgeon having gained
experience in stapes surgery as well as endoscopic ear surgery before.

89 They examine stapes surgeries conducted by the second author. Endoscopic stapes surgery has been
introduced in their department 18 months before the start of the observation period.

90 The authors study their own first 100 primary stapes surgeries.
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In this analysis, the success of stapes surgery is employed by measuring the post-
operative ABG in order to measure the quality consequences of surgeons’ learning and
experience.91 For the calculation of the postoperative ABG, the first audiogram after
surgery is used in this paper. This will yield conservatively measured, comparatively poor
results as hearing tends to improve (i.e. the ABG is reduced) in the time following surgery.
For example, Nash et al. (2021) report significant improvements between six weeks and six
months after surgery. This tendency can also be detected in the first postoperative weeks
in the data set at hand: The mean ABG of audiograms made on day 7 after surgery is 17.51
vs. 12.45 dB on day 28. On average, the ABGs on day 28 are significantly smaller than
the ones on day 7.92 The mean ABG of audiograms up to day 28 is in turn significantly
larger than the one of audiograms from day 29 on (15.72 vs. 10.56 dB).93 On average,
postoperative audiograms are made 61 days after surgery. Other studies use postopera-
tive audiograms with a longer time lag to surgery, for example Yung and Oates (2007)
use audiograms from minimum six months after surgery, Sergi and Paludetti (2016) mea-
sure the ABG after 24 months or later. Therefore, the results in this paper seem to be
worse at first sight. Besides solely relying on the postoperative ABG, this paper employs
a success criterion which combines the postoperative ABG with the absence of revisions.
Quality in turn serves as a medium- to long-term cost indicator, thus it accomplishes
two objectives. First, it can answer the question how learning and experience influences
outcomes with regard to quality. Second, it can link these results to the follow-up costs
of the intervention.

Quality in stapes surgery is linked to treatment costs because negative outcomes (no
considerable improvement or deterioration of conductive hearing loss) as well as compli-
cations (e.g. sensorineural hearing loss) are typically associated with higher resource use
due to higher follow-up costs. Cases with negative outcomes and complications in primary
surgery likely require a revision surgery, which considerably increases costs per case. To
make matters worse, the success rate in revision has been reported lower than in primary
surgery for decades with success rates between 24 % and 80 % (Glasscock et al., 1995;
91 There are mainly two methods of measuring success in stapes surgery, postoperative hearing gain and

postoperative ABG. However, defining success via the postoperative ABG predominates. Therefore,
this method is used to evaluate success and quality. On the basis of Hughes (1991) who defines
competence, i.e. the accomplishment of the learning curve, as a 10 dB postoperative ABG in 90 %
of the patients, a successful intervention is defined by a postoperative ABG ≤ 10 dB, corresponding
to the most widely accepted criterion of success (Lovato et al., 2019). Besides, there must not be a
revision.

92 P-value = 0.0004.
93 P-value = 0.0000.
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Blijleven et al., 2019) compared to a range from 72 % to 94 % in primary surgery (Weg-
ner, 2018). This means if primary surgery is unsuccessful and revision costs incur, there
is a higher probability of further follow-up costs compared to the primary intervention. A
higher risk of hearing loss, inner ear damage and vertigo in revision even intensifies the
problem (Durko et al., 2007).

There is distinct proof that complications are a proxy for higher costs. Klask and
Schmelzer (2003) calculate the costs of a stapes surgery at a German university hospital,
which amount to 964e for a case without complications. For a case with inner ear hearing
loss and vertigo (no revision surgery), they calculate 1,754e and thus a cost increase by
82 %.94 For a case with perilymphatic fistula, which was revised by surgery, the costs
account for 3,504e, meaning a cost increase by 262 %.

Most complications occur with cases simultaneously failing to reach a postoperative
ABG ≤ 10 dB. However, there are cases regarded successful based on the ABG in which
complications occur. Vincent et al. (2006) report postoperative ABG ≤ 10 dB in 94.2 %,
suggesting a failure rate of 5.8 %. However, they report a rate of 6.6 % for failures.95 This
means 0.8 % of all cases have a postoperative ABG ≤ 10 dB, though they suffer from
complications. To put it differently, 12 % of complications occur in seemingly successful
cases (postoperative ABG ≤ 10 dB). By using the success criterion, cases are regarded as
unsuccessful if they have to be revised, irrespective of the ABG.

Even if it is assumed that there are no immediate cost effects of negative outcomes
and complications in stapes surgery, i.e. primary surgery costs are not affected, it has
been argued that unsuccessful surgeries and complications, even the ones which do not
require a revision surgery, may have a large impact on follow-up and thus overall costs.
To conclude, surgeons’ learning and experience are supposed to positively affect quality in
stapes surgery, which in turn negatively affects costs. Thus, surgeons’ learning is supposed
to negatively influence costs.

As a result, the hypothesis regarding quality follows:

H 2: Ceteris paribus, surgeons’ experience leads to an increase in quality in stapes surgery.

94 Though, one patient still suffered from inner ear hearing loss on the day of discharge. This means this
case probably had further follow-up costs not taken into account in the calculation.

95 They subsume postoperative ABGs > 10 dB and complications under the term “failure”.
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3.3 Data and Estimation Models

3.3.1 Information on the Data

In this analysis, an anonymous data set from the otorhinolaryngology department of a
German tertiary care hospital is used. The data set contains 1,066 interventions by 24
surgeons from 2003 until 2020, which are employed to examine and compare the learning
curve effects in stapes surgery. Nine out of these 24 surgeons are contained in an individual
investigation as each of them has at least 25 surgeries in the data set.96 Five out of
these nine are experienced surgeons having conducted many stapes surgeries before the
observation period, so they are called experts in the following. The other four surgeons are
rather inexperienced in stapes surgery, they are subsequently called beginners. However, as
beginners gather experience in stapes surgery, there comes the time when they cannot be
called beginners anymore. Thus, beginners can have at most an experience of 99 surgeries;
with an experience of 100 or more, they are regarded as experts in this study.97 One
surgeon who is initially a beginner therefore becomes an expert within the observation
period.98 The number of stapes surgeries in the department decreased over the observation
period from 113 in 2003 to 36 in 2020. The indication for surgery was usually given by an
ABG ≥ 25 dB.99

The data set was collected with the help of Würzburg Ear Forms, a system to precisely
document ear surgery and follow-up evaluation within the otorhinolaryngology depart-
ment of the university hospital Würzburg. The system is implemented in ENTstatistics
from INNOFORCE Est.100

3.3.2 Estimation Models – OR Times

The following regression model is supposed to explain the OR times for surgeon i:101

96 Altogether, they account for 916 surgeries. Table 3.2 to 3.8 show the descriptive statistics for all
relevant variables.

97 Yung and Oates (2007) report having completed the learning curve (with regard to the postoperative
ABG) after 70 and 80 surgeries respectively. This appears to be an appropriate reference as they
consider the completion to be the learning curve reaching its plateau and not by reaching a predefined
success rate. As a heterogeneous case mix possibly influences the learning curve (Lovato et al., 2019),
the cutoff value is set higher to 99 surgeries.

98 For an overview of the surgeons regarded as beginners and experts respectively in this study, see
table 3.2.

99 ABGs in this study are four-frequency (0.5, 1, 2 and 4 kHz) pure-tone average values.
100 See Schön and Müller (2002) as well as Keim et al. (2014) for more details on Würzburg Ear Forms.
101 See table 3.1 for a short description of all the variables. Models are estimated by Ordinary Least

Squares (OLS) regression unless otherwise specified.
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ORTi = β0 + β1 · EXPi + β2 · EXP2
i

+ β3 · ECTOMY + β4 · REV + β5 · OOR + ε
(3.1)

In model 3.1, the surgeon’s experience is measured via the sum of stapes surgeries surgeon
i has conducted. The squared experience is used in order to represent a possibly nonlin-
ear relation between OR times and experience. Learning curves are usually nonlinear,
with the initial effect of learning being largest and decreasing with the level of experi-
ence. To control for possible differences in the OR time between the methods of stapes
surgery, stapedotomy and stapedectomy, ECTOMY is employed as a dummy variable for
a stapedectomy instead of a stapedotomy.102 As already broached in section 3.2, there are
considerable differences between primary and revision stapes surgery with regard to suc-
cess. More challenging interventions may also be reflected in larger OR times. Therefore,
it is controlled for revisions using the dummy variable REV. OOR is a count variable of
other operations conducted simultaneously in addition to the stapes surgery.103 The term
ε represents the error term.

To distinguish between beginners and experts, separate estimation models are set
up:104

ORTb = β0 + β1 · EXPi + β2 · EXP2
i

+ β3 · ECTOMY + β4 · REV + β5 · OOR

+ β6 · SUR4 + β7 · SUR5 + β8 · SUR9

+ β9 · 2007-10 + β10 · 2011-15 + β11 · 2016-20 + ε

(3.2)

ORTe = β0 + β1 · EXPi + β2 · EXP2
i

+ β3 · ECTOMY + β4 · REV + β5 · OOR

+ β6 · SUR2 + β7 · SUR6 + β8 · SUR7 + β9 · SUR8 + β10 · SUR9

+ β11 · 2007-10 + β12 · 2011-15 + β13 · 2016-20 + ε

(3.3)

Model 3.2 and 3.3 try to explain the OR times of interventions by beginners and by
102 Stapedotomy has become the standard method.
103 For example, ablation of hyperostosis (overflow bone) in the external auditory canal.
104 See section 3.3.1 for the definition of beginners and experts in this study. Note that only the interven-

tions by the nine surgeons investigated individually are considered. As the initial beginner surgeon
9 becomes an expert, SUR9 is contained in both models. However, in model 3.2 and 3.3, only the
interventions of surgeon 9 as beginner and expert respectively are used. In model 3.2, surgeon 3 serves
as the reference category; in model 3.3, it is surgeon 1.
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experts respectively. They use the experience of the respective surgeon i.105 SURi is a
dummy variable for the i-th surgeon in the data set.106 Using these dummies, it can be
controlled for differences between surgeons. It might be the case that a certain surgeon is
generally faster or slower than others. Besides, the time period dummy variables 2007-10,
2011-15, 2016-20 are engaged to control for unobserved changes over time, e.g. due to
improvements in equipment or technique.107

For learning curve effects on organizational (otorhinolaryngology department) level,
the following model is estimated:108

ORT = β0 + β1 · EXP + β2 · EXP2

+ β3 · ECTOMY + β4 · REV + β5 · OOR

+ β6 · SUR2 + · · · + β28 · SUR24

+ β29 · 2007-10 + β30 · 2011-15 + β31 · 2016-20 + ε

(3.4)

The experience is measured via the sum of stapes surgeries conducted in the department,
irrespective of the surgeon involved. Since it is not possible to trace the very first stapes
surgery in the hospital, counting starts in the year 2003.109 On organizational level, learn-
ing might take place by exchanging experiences among colleagues as the product of their
individual learning processes.

3.3.3 Estimation Models – Quality

The following model tries to explain the ABG after stapes surgery110 by surgeon i:111

105 In contrast to model 3.1, which is estimated for each surgeon i and in each case, i is held constant, i
varies as different surgeons are contained in model 3.2 and 3.3, which are each only estimated once. For
example, if an intervention is conducted by surgeon j, EXPj is used as EXPi. If surgeon k conducted
a surgery, then EXPk is used.

106 In model 3.2, surgeon 3 serves as the reference category; in model 3.3, it is surgeon 1. The reference
category is not included in the regression model.

107 The period 2003-2006 serves as the reference category.
108 Surgeon 1 serves as the reference category.
109 From 2003 on, cases could be accessed digitally.
110 ABGs in this study are four-frequency (0.5, 1, 2 and 4 kHz) pure-tone average values. First postoper-

ative audiograms are used for calculation. On average, postoperative audiograms used in this paper
are made 61 days after surgery.

111 See table 3.1 for a short description of all the variables.
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ABGi = β0 + β1 · EXPi + β2 · EXP2
i

+ β3 · L_ABG + β4 · ECTOMY + β5 · L_DIA + β6 · REV

+ β7 · AGE + β8 · AGE2 + β9 · FEMALE + β10 · BI + ε

(3.5)

In regression model 3.5, it is controlled for the size of the preoperative ABG by employing
the dummy L_ABG, which represents a large ABG ≥ 30 dB. This threshold is chosen,
since various studies report mean preoperative ABGs of about 30 dB.112 Research results
rather indicate that large preoperative ABGs provide improved results (e.g. Marchese
et al., 2009; Khorsandi A. et al., 2018).113 There is some controversy about the influence of
the method of stapes surgery: Khorsandi A. et al. (2018) find that the success rate does not
differ between stapedotomies and stapedectomies,114 whereas the results of Sargent (2002)
imply different learning curves for these two alternatives: He finds that in comparison to
stapedotomies, four times the number of cases is needed in stapedectomies to reach the
same success rate.115 With regard to the diameter of the piston of the prosthesis, research
result also do not depict a uniform picture. There can be found a tendency toward better
outcomes with larger-diameter pistons (e.g. Rosowski and Merchant, 1995; Sim et al.,
2012). However, Wegner et al. (2016) fail to find such tendency in their reviewed studies.
It is controlled for possible differences in ABGs by the technique used via ECTOMY as
a dummy variable for a stapedectomy instead of a stapedotomy, and L_DIA, which is a
dummy variable for the usage of a large-diameter piston (0.6mm). As already mentioned in
section 3.2, the success rate has been found to be smaller in revision compared to primary
stapes surgery. Therefore, this paper controls for revisions using the dummy variable REV.
Marchese et al. (2009) as well as Khorsandi A. et al. (2018) find that the postoperative
ABG is smaller in female patients. Marchese et al. (2009) also report a higher success rate
in patients younger than 50 years. Iurato et al. (2007) support this result with 70 years as
their threshold. To control for potential differences in the success of stapes surgery caused
by the patient’s characteristics, the dummy variables AGE and FEMALE are deployed. To
represent a possibly disproportionately high decline in the success of stapes surgery with
increasing age, i.e. a possibly nonlinear relation between age and success, the squared age
(AGE2) is also employed. BI is employed as a dummy variable for bilateral otosclerosis,
i.e. both ears are affected by otosclerosis, since Khorsandi A. et al. (2018) find higher
112 E.g. Vincent et al. (2006): 26 dB, Iurato et al. (2007): 32 dB, Marchese et al. (2009): 28 dB, Sergi and

Paludetti (2016): 32 dB, Khorsandi A. et al. (2018): 36 dB.
113 Marchese et al. (2009) identify success by a postoperative hearing gain ≥ 10 dB.
114 Stapedectomy is riskier than stapedotomy, which has become the standard method (Wegner, 2018).
115 The success rate for Sargent’s (2002) comparison is ABG ≤ 15 dB in 90 % of cases.
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success rates in such cases.

Analog to the OR times, separate estimation models for beginners and experts are set
up for the postoperative ABG:116

ABGb = β0 + β1 · EXPi + β2 · EXP2
i

+ β3 · L_ABG + β4 · ECTOMY + β5 · L_DIA + β6 · REV

+ β7 · AGE + β8 · AGE2 + β9 · FEMALE + β10 · BI

+ β11 · SUR4 + β12 · SUR5 + β13 · SUR9

+ β14 · 2007-10 + β15 · 2011-15 + β16 · 2016-20 + ε

(3.6)

ABGe = β0 + β1 · EXPi + β2 · EXP2
i

+ β3 · L_ABG + β4 · ECTOMY + β5 · L_DIA + β6 · REV

+ β7 · AGE + β8 · AGE2 + β9 · FEMALE + β10 · BI

+ β11 · SUR2 + β12 · SUR6 + β13 · SUR7 + β14 · SUR8 + β15 · SUR9

+ β16 · 2007-10 + β17 · 2011-15 + β18 · 2016-20 + ε

(3.7)

In model 3.8, the study tries to explain the expected success of a stapes surgery by
means of a maximum likelihood model for dichotomous dependent variables (binary logit
model):117

E(SUCCi | x) = P (SUCCi = 1 | x) =
∫ z

−∞
f(t)dt =

∫ z

−∞

e−z

(1 + e−z)2 = 1
1 + e−z

z = x′β = β0 + β1 · EXPi + β2 · EXP2
i

+ β3 · L_ABG + β4 · ECTOMY + β5 · L_DIA + β6 · REV

+ β7 · AGE + β8 · AGE2 + β9 · FEMALE + β10 · BI

(3.8)

As discussed in section 3.2, there are seemingly successful interventions providing a post-
operative ABG ≤ 10 dB, but they are attended by complications. These cases must be
regarded unsuccessful. Therefore, the dummy variable SUCC only takes the value 1 if the
patient has a postoperative ABG ≤ 10 dB and does not undergo a revision.

Analog to the OR times and the postoperative ABG, separate estimation models for
116 See section 3.3.1 for the definition of beginners and experts in this study. Note that only the interven-

tions by the nine surgeons investigated individually are considered. As the initial beginner surgeon
9 becomes an expert, SUR9 is contained in both models. However, in model 3.6 and 3.7, only the
interventions of surgeon 9 as beginner and expert respectively are used. In model 3.6, surgeon 3 serves
as the reference category; in model 3.7, it is surgeon 1.

117 See table 3.1 for a short description of all the variables.
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beginners and experts are set up for the expected success:118

E(SUCCb | x) = P (SUCCb = 1 | x) = 1
1 + e−z

z = x′β = β0 + β1 · EXPi + β2 · EXP2
i

+ β3 · L_ABG + β4 · ECTOMY + β5 · L_DIA + β6 · REV

+ β7 · AGE + β8 · AGE2 + β9 · FEMALE + β10 · BI

+ β11 · SUR4 + β12 · SUR5 + β13 · SUR9

+ β14 · 2007-10 + β15 · 2011-15 + β16 · 2016-20

(3.9)

E(SUCCe | x) = P (SUCCe = 1 | x) = 1
1 + e−z

z = x′β = β0 + β1 · EXPi + β2 · EXP2
i

+ β3 · L_ABG + β4 · ECTOMY + β5 · L_DIA + β6 · REV

+ β7 · AGE + β8 · AGE2 + β9 · FEMALE + β10 · BI

+ β11 · SUR2 + β12 · SUR6 + β13 · SUR7 + β14 · SUR8 + β15 · SUR9

+ β16 · 2007-10 + β17 · 2011-15 + β18 · 2016-20

(3.10)

In order to evaluate the learning curve effects regarding quality on organizational level,
the following models are employed:

ABG = β0 + β1 · EXP + β2 · EXP2

+ β3 · L_ABG + β4 · ECTOMY + β5 · L_DIA + β6 · REV

+ β7 · AGE + β8 · AGE2 + β9 · FEMALE + β10 · BI

+ β11 · SUR2 + · · · + β33 · SUR24

+ β34 · 2007-10 + β35 · 2011-15 + β36 · 2016-20 + ε

(3.11)

118 See section 3.3.1 for the definition of beginners and experts in this study. Note that only the interven-
tions by the nine surgeons investigated individually are considered. As the initial beginner surgeon
9 becomes an expert, SUR9 is contained in both models. However, in model 3.9 and 3.10, only the
interventions of surgeon 9 as beginner and expert respectively are used. In model 3.9, surgeon 3 serves
as the reference category; in model 3.10, it is surgeon 1.
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E(SUCC | x) = P (SUCC = 1 | x) = 1
1 + e−z

z = x′β = β0 + β1 · EXP + β2 · EXP2

+ β3 · L_ABG + β4 · ECTOMY + β5 · L_DIA + β6 · REV

+ β7 · AGE + β8 · AGE2 + β9 · FEMALE + β10 · BI

+ β11 · SUR2 + · · · + β33 · SUR24

+ β34 · 2007-10 + β35 · 2011-15 + β36 · 2016-20

(3.12)

3.4 Results

3.4.1 OR Times

Before the estimation results regarding the OR times are examined, the OR times of
consecutive stapes surgeries by individual surgeons are beheld. The plotted OR times in
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Figure 3.1: OR Time and Experience of Respective Surgeon

figure 3.1 depict a tendency of shorter OR times with a rising number of cases operated
before, i.e. there seems to exist a learning curve. The effect of learning on OR times seems
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to feature the already mentioned declining development at decreasing rates. Figure 3.1
contains the regression line from a regression with ORT being regressed on EXP as well
as EXP2.119 It illustrates the seemingly nonlinear relation. The estimated regression line
has a negative slope, the marginal effect of an additional stapes surgery decreases with
increasing experience until the marginal effect is zero. After this turning point, the OR
times increase with increasing experience at increasing marginal effects. Longer OR times
with increasing experience—at an already high level of experience—might be a result
of cases known to be more difficult in advance being allocated to the most experienced
surgeons. For the revisions displayed in figure 3.1, the OR times scatter without a trend.120

The share of revisions is higher with higher levels of experience, which indicates that the
more difficult revisions (compared to primary surgeries) are allocated to very experienced
surgeons.121

As a next step, it is differentiated between beginners and experts.122 Figure 3.2 and
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Figure 3.2: OR Time and Experience of Respective Surgeon – Beginners

3.3 contain a scatterplot for beginners and experts respectively. The learning curve is
119 See figure 3.9 and 3.10 for a separate scatterplot for primary surgeries and revisions respectively.
120 See figure 3.10 for a separate scatterplot for revisions.
121 Lovato et al. (2019) discuss the same phenomenon.
122 See section 3.3.1 for the definition of beginners and experts in this study. Note that only the inter-

ventions by the nine surgeons investigated individually are considered.
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Figure 3.3: OR Time and Experience of Respective Surgeon – Experts

strikingly more distinct for the beginners than for the experts. The estimated regression
line for the beginners has a highly negative slope compared to the estimated regression
line in the overall scatterplot in figure 3.1. The marginal effect of an additional stapes
surgery is initially relatively high. For the experts, there is virtually no learning curve
anymore.

Table 3.9 depicts the estimation results of model 3.1. The surgeon’s experience has
a negative effect on the OR time with six out of nine surgeons.123 In three of these six
regressions, the squared experience has a positive influence on the OR time, which means
the algebraic sign as well as the height of the marginal effect of experience depend on
the level of experience here.124 Initially, the absolute value of the negative marginal effect
gets smaller with experience and after having become zero, the marginal effect is positive
and gets larger with experience. For example, the turning point for surgeon 1 is at an
experience of about 66 surgeries. In summary, H 1 is supported, and therefore H 1 cannot
be rejected on individual level.
123 All coefficients which are interpreted are significantly different from zero (in the following “significant”

for short).
124 The two regressors representing experience have also been tested for joint significance using an F-test

with heteroskedasticity-robust standard errors if necessary (i = {1, 4, 6}). P-value < 0.01 / rejection
of “no joint significance” in all cases except i = {7, 8} (p-value > 0.1).
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The insignificant coefficients of ECTOMY imply that, regarding the method of stapes
surgery, there are no differences in OR times between stapedotomy and stapedectomy.
Somewhat surprisingly, OR times do not significantly differ between primary surgeries
and revisions in all but three regressions, as the coefficients of REV are insignificant
in these cases.125 In case of surgeon 2, who has the highest percentage of revisions, a
stapes revision on average and ceteris paribus takes about 9.4 minutes longer than a
primary stapes surgery.126 Astonishingly, revisions by surgeon 4 and 9 are on average
about 7.5 and 8.1 minutes respectively shorter than primary surgeries. In four out of nine
regressions, the coefficient of OOR is positive, which means the OR time gets longer when
another operation is conducted simultaneously besides the stapes surgery. The increase
for an additional intervention varies from about 3.9 to about 18.1 minutes. The large
range might also be a product of the allocation of surgeries, which is also reflected in
quantitative differences in OOR between surgeons.127

Table 3.10 depicts the estimation results of model 3.2 and 3.3. Both beginners’ and
experts’ experience has a negative effect on the OR time. In both regressions, the squared
experience has a positive influence on the OR time, which means the algebraic sign as well
as the height of the marginal effect of experience depend on the level of experience.128 The
absolute values of the marginal effect as well as the changes of marginal effects with rising
experience are considerably larger with beginners.129 This matches previous explanations
as well as learning curve theory: With rising experience, the absolute reduction caused
by a further unit gets smaller.130 The turning point (from negative to positive marginal
effect) for beginners is at an experience of about 52 surgeries, the one for experts at about
125 It has to be considered that the percentage of revisions is very low for some surgeons. See table 3.2.
126 OLS regression coefficients have to be interpreted as the average marginal effect of the respective

regressor with all other regressors being equal (“ceteris paribus”). In order to avoid repetition and to
keep explanations short, this is not always repeated in the following.

127 See table 3.3 for the quantitative differences in OOR.
128 The two regressors representing experience have also been tested for joint significance using an F-test

with heteroskedasticity-robust standard errors if necessary (model 3.2). P-value < 0.001 in both cases.
129 Note that an experience of zero denotes different points on the overall learning curve of an individual

surgeon. In case of a beginner, it implies that the surgeon has not gathered experience in stapes
surgery. In case of an expert, the surgeon has just gathered “sufficient” experience to not be classified
as beginner anymore. The marginal effect with an experience of one surgery is –1.40 for a beginner
and –0.18 for an expert (i.e. the absolute value is about eight times larger with beginners). With an
experience of 20 surgeries, it is –0.87 and –0.16 respectively. Note that the change in the marginal
effect with a change in experience from 10 to 20 surgeries reduces the absolute value of the marginal
effect by 0.53 and 0.02 respectively.

130 In business management, learning curve theory is often used in production context, hence the unit is
frequently the piece of a commodity. In this context, a unit corresponds to a stapes surgery.
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221.131

Table 3.11 depicts the estimation results of model 3.4. Experience within the otorhino-
laryngology department has a negative effect on the OR time. The squared experience
has a positive influence on the OR time.132 For the number of observations in the data
set, the negative marginal effect gets smaller with experience.133 This means there can
be detected nonlinear effects even after decades of stapes surgery. H 1 is supported and
therefore can be rejected on organizational level neither.

There cannot be found differences between stapedotomy and stapedectomy as well
as primary surgeries and revisions. With regard to the surgeon dummies, 12 coefficients
are observed to be positive and 8 to be negative (ranging from –30.8 to 53.0) which
implies differences in OR times between the surgeons. For example, the coefficient of
the dummy variable for surgeon 2 is –12.9 which means if ceteris paribus surgeon 2
conducts the intervention instead of surgeon 1, the OR time reduces by 12.9 min.134

Although there are time differences between surgeons, they should not be overrated, but
interpreted cautiously. For example, a surgeon with higher OR times than surgeon 1 must
not be regarded as “slow”. As already discussed, interventions are palpably not allocated at
random. This indicates unobserved differences between individual surgery portfolios with
regard to complexity and difficulty which cannot be controlled for with the regressors.
Thus, a direct comparison of OR times is virtually impossible.

To conclude this section, the approximate economic implications of the learning curve
effects are considered.135 Using the DRG system for 2021, a stapes surgery without highly
131 These estimated turning points represent the different parts of the learning curve beginners and experts

respectively are in. Beginners are in the “early part” where marginal effects are relatively large and
the learning curve is considerably bent, whereas experts are in the “late part” where marginal effects
are relatively small and the curve is only slighty bent. With relatively large marginal effects, the
turning point is reached faster than with relatively small ones. Note that these estimated turning
points are different from the ones illustrated in the figures, since those are derived from a regression
on experience (EXP and EXP2) only.

132 The two regressors representing experience have also been tested for joint significance using an F-test
with heteroskedasticity-robust standard errors. P-value < 0.001.

133 The algebraic sign as well as the height of the effect depend on the level of experience in the depart-
ment. With the number of observations, the turning point (negative to positive marginal effect) is not
reached.

134 See table 3.4 for the average OR times of the individually investigated surgeons.
135 The following calculations are based on values of the Diagnosis-Related Groups (DRG) system for

2021 (Institut für das Entgeltsystem im Krankenhaus, 2020, 2021; GKV-Spitzenverband, 2021; § 15
KHEntG in version from July 11, 2021), not on data from the focal hospital. These values are average
values of the respective DRG from all hospitals that provided data for the calculation of the DRG
system 2021.
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severe complications is probably classified as DRG D30A.136 The resulting DRG lump-
sum compensation is 2,964.65e.137 Besides, there is a compensation for nursing staff. It
amounts to 408.39e for a three-day stay.138 The overall compensation then would amount
to 3,373.04e. Since the DRG system is based on the remuneration of actual costs, this
amount can also be considered the average costs of D30A.139 If 31 % of the costs can
be traced back to the OR and are sensitive to OR time,140 these would equal 919.04e.
Given that the DRG compensation is suited to average surgeries, it is assumed that the
mean OR time in the data set approximately equals the mean OR time of D30A surgeries
considered for the DRG system 2021. Average OR time for the data set is 48.05 min., which
means revenues/costs of 19.13e/min. To illustrate what ignoring the learning curve effects
might cause, surgeon 7 is considered.141 The surgeries by surgeon 7 have a mean OR time
of 35.21 min.142 Calculating the 196 surgeries by surgeon 7 with 48.05 min. (mean OR
time of data set) instead of 35.21 min. means additional 2,516.64 min. Using the OR for
other interventions during the time it is unused would yield 48,143.32e when calculating
evenly with 19.13e/min. Another approach is to consider a single stapes surgery with
the average OR time by surgeon 7. As computed above, the DRG compensation for D30A
regarding costs affected by OR time with mean OR time adds up to 919.04e. The mean
OR time of surgeries by surgeon 7 is 35.21 min. Using the OR for other interventions
during the time it is unused would mean that only 673.57e143 are incurred by the stapes
surgery. This would result in a profit of 245.47e.144 Given the overall compensation (in
136 It has to be considered that several surgeries can result in the same DRG. However, DRGs are supposed

to comprise cases with comparable effort. Stapes surgeries account for 10.51 % of DRG D30A cases.
137 The evaluation relation of DRG D30A is 0.791 in 2021. To determine the actual compensation, the

federal base rate, which is 3,747.98e in 2021, is multiplied by the evaluation relation. There is a
specific base rate for each federal state; however, in order to keep the computations as universal as
possible, the federal amount is used.

138 The evaluation relation for nursing staff of DRG D30A is 0.8347 in 2021. To determine the actual
nursing staff compensation per day, the nursing staff base rate is multiplied by the evaluation relation.
The nursing staff base rate is determined individually for each hospital. Here, the pre-determination
default, which is 163.09e per day, is used. The nursing staff compensation per day is multiplied by
the days of stay (the day of discharge is not considered). Here, the rounded average length of stay for
D30A according to the DRG system 2021, three days, is used.

139 The hospitals which provided data for the calculation of the DRG system 2021 on average have these
costs.

140 These costs comprise labor and infrastructure costs. They account for about 31 % of D30A according
to the DRG system 2021. Material costs, e.g. the costs of the stapes prosthesis, are not changed by
shorter or longer OR times.

141 Surgeon 7 seems appropriate because the share of revisions is about the same as for the whole data
set. See table 3.2 and 3.7.

142 See table 3.4.
143 The per-minute rate 19.13e/min. is multiplied by 35.21 min.
144 The assumption is that apart from the OR time profit, DRG reimbursement matches actual costs.
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Figure 3.4: Economic Implications of Improved OR Usage

case of three days of stay), the profit margin is 7.28 %. Figure 3.4 illustrates this per-
surgery consideration. The unoccupied time, e.g. for emergencies, would not change, since
the overall planned OR usage would do so neither. The economic implications might seem
moderate. But taking into account that the DRG system is basically designed for hospitals
to reach the break-even point and comes along with a high cost pressure,145 the possible
profits by considering learning curve effects and improving OR usage are respectable. They
can determine surplus or shortfall of the hospital. It is blatantly obvious that (mean) OR
times cannot be estimated that exactly in reality and scarce scheduling might result in an
overload of the OR (no time left for emergencies or even no time left to conduct all planned
interventions). However, even if a risk-averse planning is made, utilization of the OR can
be improved and idle time costs can be reduced by considering learning curve effects. A
first, rough implementation might just differ between surgeons with low-, medium-, or
high-level experience and scheduling the stapes surgery accordingly with large, medium,
or short OR time, adjusted by the complexity of the case.146 Decision support systems
can help refine OR scheduling.147 In order to be able to improve planning, it is necessary
to quantify learning curve effects. The paper at hand contributes to this.
145 In 2019, 44 % of hospitals had an annual shortfall and only 46 % had a surplus (Blum et al., 2020).
146 Surgeries are palpably not allocated at random. This has been discussed in this section before. Thus,

complexity is supposed to be considered.
147 For a decision support system in OR scheduling, see for example Naderi et al. (2021). For a literature

review of OR scheduling, see for example Rahimi and Gandomi (2021).
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3.4.2 Quality

Before starting the discussion about the estimation results concerning quality, it is reason-
able to have a look at the postoperative ABG of consecutive stapes surgeries by individual
surgeons. In contrast to the OR times, the ABGs in figure 3.5 do not depict a tendency
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Figure 3.5: Postoperative ABG and Experience of Respective Surgeon

with increasing experience, i.e. there does not seem to exist a learning curve with regard to
postoperative ABGs.148 The estimated regression line from a regression with ABG being
regressed on EXP as well as EXP2 in figure 3.5 illustrates this.149 The dashed line rep-
resents the common criterion of success, i.e. a postoperative ABG ≤ 10 dB.150 Successful
interventions do not lie above the dashed line.151 As already stated in section 3.2.2, the
first audiograms after surgery are used for calculation of postoperative ABGs. As hear-
ing tends to improve (i.e. the ABG is reduced) in the time following surgery, this yields
conservatively measured, comparatively poor results.152

Figure 3.6 and 3.7 depict scatterplots for the beginners and the experts respectively.153

148 There was one deaf ear. This observation has been excluded from the figures as well as the estimations
due to a missing valid postoperative ABG.

149 See figure 3.11 and 3.12 for a separate scatterplot for primary surgeries and revisions respectively.
150 This aspect is elaborated on in section 3.2.2.
151 Complications are not considered a factor determining success or failure here.
152 See figure 3.15 and 3.16 for a separate scatterplot for primary surgeries and revisions respectively with

color-coded day after surgery the audiograms are made.
153 See section 3.3.1 for the definition of beginners and experts in this study. Note that only the surgeries

by the nine surgeons investigated individually are considered.
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For both figures, there is no tendency as it is neither in the overall scatterplot in figure 3.5.
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Figure 3.6: Postoperative ABG and Experience of Respective Surgeon – Beginners
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Figure 3.7: Postoperative ABG and Experience of Respective Surgeon – Experts

The estimation results of the model regarding quality on individual level measured
by postoperative ABGs (model 3.5) are given in table 3.12. Experience does not have
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an influence on the ABG with all but one surgeon.154 From the patient’s perspective,
this result is desirable, since it implies that surgery outcome measured by the postop-
erative ABG does not depend on the surgeon’s experience.155 This in turn supports the
assumption that the surgeons in the investigated otorhinolaryngology department have a
reasonable level of knowledge when doing stapes surgeries on their own, for example by
having assisted an experienced surgeon before.156 In summary, H 2 is not supported, and
therefore H 2 is rejected on individual level.

The preoperative ABG has an effect on the postoperative ABG only in two cases.
There, a preoperative ABG of at least 30 dB is accompanied by a 7.86 and 2.55 dB re-
spectively larger postoperative ABG. The tendency of research results indicating a neg-
ative correlation between pre- and postoperative ABGs, i.e. larger ABGs yield smaller
postoperative ABGs, cannot be supported by the data. As with OR times, there cannot
be found differences regarding the method of stapes surgery between stapedotomy and
stapedectomy as well as regarding the diameter of the stapes piston. The tendency of
better outcomes with larger-diameter pistons in research is not substantiated. Somewhat
surprisingly, there are differences between primary surgeries and revisions only in two
cases. There, revisions yield poorer results as the postoperative ABG is larger by 6.63
and 14.36 dB respectively.157 Age has a significant influence on the postoperative ABG
only in two cases.158 The coefficents of AGE and AGE2 imply an increasing postoperative
ABG with increasing age up to a certain age. Beyond this age, the postoperative ABG
decreases with increasing age. The turning points are at an age of about 39 and 45 years
for surgeon 5 and 6 respectively. Thus, the finding only partly matches the ones by Iurato
et al. (2007) and Marchese et al. (2009) who report increasing ABGs with increasing age.
The results with regard to FEMALE and BI are ambiguous. In two cases, the negative
coefficients of FEMALE imply a 5.23 and 3.26 dB respectively smaller ABG for female
patients. This finding matches the ones by Marchese et al. (2009) and Khorsandi A. et al.
154 The two regressors representing experience have also been tested for joint significance using an F-test

with heteroskedasticity-robust standard errors if necessary (i = {6, 7}). P-value > 0.1 in all cases
except i = 1 (p-value < 0.05).

155 The single case in which the experience has an effect on the postoperative ABG seems to be an
exception, especially as surgeon 1 is even an expert. It depends perhaps on the individual surgery
portfolio and its differences which cannot be controlled for with the regressors.

156 “Knowledge” is used here to clearly distinguish between experience in own surgeries (“experience”)
and experience apart from own surgeries. It is not restricted to theoretical knowledge.

157 It has to be considered that the percentage of revisions is very low for some surgeons. See table 3.2.
158 The two regressors representing age have also been tested for joint significance using an F-test with

heteroskedasticity-robust standard errors if necessary (i = {6, 7}). P-value > 0.1 in all cases except
i = {5, 6}.
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(2018). In another case, the ABG is 6.42 dB higher for women. In three cases, a bilateral
otosclerosis improves the outcome by 7.81, 2.38, and 2.58 dB respectively; in another case,
it comes along with a 5.81 dB larger postoperative ABG.

The estimation results of model 3.6 and 3.7 are depicted in table 3.13. Experience does
not have an influence on the ABG for both beginners and experts.159

Table 3.16 depicts the estimation results of model 3.11. Experience within the otorhino-
laryngology department does not have an effect on the postoperative ABG either.160 H 2

is thus not supported, and therefore H 2 is rejected on organizational level, too.

A large preoperative ABG, the method of stapes surgery (stapedotomy and staped-
ectomy) as well as the diameter of the stapes piston do not have an effect on the postop-
erative ABG. Revisions however do have such effect on departmental level: The ABG is
2.75 dB larger. Age also has an effect on the postoperative ABG. The ABG decreases with
increasing age up to about 45 years. Beyond this age, the ABG increases with increasing
age.161 For women, there cannot be found any effects. On individual level, the finding con-
cerning the effect of bilateral otosclerosis has been ambiguous. On organizational level, it
yields slightly better results (1.20 dB). Regarding surgeons, eight significant coefficients
(ranging from –9.01 to 7.86) imply differences between surgeons. As already discussed,
these differences should be interpreted cautiously. Surgeries are palpably not allocated
at random, suggesting unobserved differences between individual surgery portfolios with
regard to complexity and difficulty which cannot be controlled for with the regressors.
Thus, a direct comparison of postoperative ABGs is virtually impossible. There are no
significant changes over time, which would possibly have been caused by improvements
in equipment or technique.

The second way of measuring quality uses success, i.e. the combination of a post-
operative ABG less or equal to 10 dB and the absence of revisions. Figure 3.8 illustrates
the success of surgeries. There are some primary surgeries as well as revisions which lie
under the 10 dB line, but which are unsuccessful.162 The figure does not reveal a tendency
159 The two regressors representing experience have also been tested for joint significance using an F-test

with heteroskedasticity-robust standard errors if necessary (model 3.6). P-value > 0.1 in both cases.
160 The two regressors representing experience have also been tested for joint significance using an F-test

with heteroskedasticity-robust standard errors. P-value > 0.1.
161 The two regressors representing age have also been tested for joint significance using an F-test with

heteroskedasticity-robust standard errors. P-value < 0.05.
162 This aspect is discussed in section 3.2.2.



3 Learning Curve Effects in Stapes Surgery 82

10

20

30

40

50

0 50 100 150 200 EXPi

ABGi

successful primary surgeries
successful revisions
unsuccessful primary surgeries
unsuccessful revisions

Figure 3.8: Success and Experience of Respective Surgeon

with increasing experience. Though, it depicts that the probability of success in revision
is obviously smaller than in primary surgery, which is in line with research.163

Table 3.14 contains the estimation results of model 3.8, table 3.15 the ones of model 3.9
and 3.10. Experience also does not have an effect on the quality when being measured
by the probability of a successful surgery except with one surgeon in model 3.8.164 For
model 3.12 displayed in table 3.17, it is the same: Experience in the otorhinolaryngology
department does not affect the success probability.165 H 2 is not supported, and therefore
H 2 is also rejected on individual as well as organizational level when using SUCC instead
of ABG.

3.4.3 Limitations

There are some limitations to the results of this study. To secure anonymity, it has not been
controlled for unobserved changes over time on individual level (model 3.1, 3.5 and 3.8).166

163 This aspect is elaborated on in section 3.2.2.
164 The two regressors representing experience have also been tested for joint significance using an F-

test with heteroskedasticity-robust standard errors if necessary (model 3.8 | i = {2, 6, 7, 8}, 3.10).
P-value > 0.1 in all cases except model 3.8 | i = 1 (p-value < 0.05). The exception has already been
discussed for the postoperative ABGs.

165 The two regressors representing experience have also been tested for joint significance using an F-test
with heteroskedasticity-robust standard errors. P-value > 0.1.

166 With the five-year dummy variables, the number of stapes surgeries, and only several surgeons in each
five-year period, conclusions to individual surgeons might have been possible.



3 Learning Curve Effects in Stapes Surgery 83

However, it has been controlled for this with beginners and experts as well as on organi-
zational level where only in some cases differences over time have been found.167

When comparing the absolute values of postoperative ABGs with other studies, it is
important to be aware of the fact that early postoperative audiograms yield conservatively
measured, comparatively poor results as hearing tends to improve (i.e. the ABG is re-
duced) in the time following surgery. This aspect has been elaborated on in section 3.2.2.
Therefore, absolute values are difficult to compare; it is more reasonable to compare their
development.

Although it has been possible to classify the nine surgeons investigated individually
into beginners and experts, it has not been possible to precisely measure surgeons’ initial
experience. It has not been possible to control for patients undergoing a revision in another
hospital. Therefore, it might be the case that few surgeries classified as successful should
have been classified as unsuccessful. As already discussed, there are differences between
individual surgery portfolios with regard to complexity and difficulty which cannot be
controlled for with the regressors (all models except the ones for individual level, model 3.1,
3.5 and 3.8). However, it is virtually impossible to exactly represent them in a regression
model.

3.5 Robustness of Estimation Models

With regard to the threshold of the postoperative ABG in the success criterion, different
values have been used: It has been applied 15 dB as well as 20 dB as the threshold in
model 3.8 to 3.10 and 3.12. For both values, the estimation results are almost the same
as in the models with a 10 dB threshold, and the probability of success is not affected by
the surgeon’s experience.168

As an additional component of success, it has been controlled for the bone conduc-
tion in order to control for the inner ear function. For this purpose, the definition of a
successful stapes surgery has been augmented with no deterioration of the bone conduc-
tion (postoperative BC ≤ preoperative BC) in model 3.8 to 3.10 and 3.12. The results
do not relevantly differ with regard to experience; no learning effects are observed when
controlling for bone conduction deterioration.169

167 Significant coefficients for following variables: 2011-15 and 2016-20 in model 3.2; 2007-10, 2011-15 and
2016-20 in model 3.10.

168 Exception: For surgeon 6, the experience has an influence in model 3.8.
169 Exception: For surgeon 1, the experience has an influence in model 3.8.
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As stated in section 3.2.2, another way of measuring quality is the postoperative
hearing gain. Therefore, the change in the ABG after surgery (∆ ABG) has been used
instead of the absolute level of the ABG after surgery in model 3.5 to 3.7 and 3.11. The
results do not relevantly differ with regard to experience.

Additionally, the observation period has been divided in variously long partial periods:
3-, 4.5- and 9-year period dummies have been used (except for the models for individual
level, model 3.1, 3.5 and 3.8, which do not feature time period dummies). Only several
period dummies have an influence.170 The surgeon’s experience has an effect on the OR
time, but not on the postoperative ABG or the probability of success. All in all, the results
do not relevantly differ, so it has been sticked with the original time periods.

As an alternative to the separate models for beginners and experts (model 3.2 and 3.3
for the OR time, model 3.6 and 3.7 for the postoperative ABG, model 3.9 and 3.10 for
the probability of success), comprehensive models containing a dummy variable to distin-
guish between beginners and experts have been estimated. The results do not relevantly
differ. The experience affects the OR time, but does not affect the postoperative ABG
as well as the probability of success, and there is no difference between beginners and
experts indicated by the dummy variable either in OR times or in quality measured by
the postoperative ABG and the probability of success.

All regression models have been controlled for heteroskedasticity by using the Breusch-
Pagan test (level of significance α = 0.05). Robust standard errors (White) have been used
in case of heteroskedasticity in order to receive valid statistical inferences.

The variance inflation factors (VIFs) have been computed for all models. Most VIFs are
close to 1, indicating that there are no severe problems arising from a problematically high
level of multicollinearity. For EXPi and EXP2

i / EXP and EXP2, VIFs are larger, obviously
resulting from a high correlation between these two regressors. Though, EXP2

i /EXP2 has
not been dropped from the regression equations due to the theoretical foundation. Besides,
both regressors still have significant coefficients (and are jointly significant) in model 3.1
to 3.4. Further exceptions are the time period dummy variables (in parts still significant
coefficients). However, performing regressions without these dummies does not relevantly
change the estimation results. Thus, these dummy variables have not been removed from
170 Using 3-year periods: 2015-17 in model 3.10, 2015-17 in model 3.12. Using 4.5-year periods: 2012-16

(Jan. 2012 to Jun. 2016) and 2016-20 (July 2016 to Dec. 2020) in model 3.10, 2007-11 (July 2007 to
Dec. 2011) and 2016-20 in model 3.12. Using 9-year periods: 2012-20 in model 3.10.
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the regression in any case. Additionally, VIFs are larger than 10 for SUR6 in model 3.3
(still significant coefficient), 3.7 and 3.10 as well as SUR9 in model 3.2 (still significant
coefficient), 3.6 and 3.9.

3.6 Conclusions

This paper contributes to the literature by providing insights into learning curve effects
in stapes surgery for nine surgeons from the same otorhinolaryngology department of a
German tertiary care hospital. This has improved the comparison of individual learning
curves, since all surgeons worked under widely identical conditions. It has also been inves-
tigated possible learning effects in the organization comprising 24 surgeons. Moreover, it
has been a comprehensive study. While engaging in learning curve effects, it has controlled
for various possibly relevant factors. The basis for the systematic investigation of learning
curve effects has been a considerably large data set.

It has been hypothesized that surgeons’ experience in stapes surgery decreases OR
times and improves quality and therefore reduces the overall costs per case. To make
statements regarding how quality is affected, the postoperative ABG as well as a success
criterion combining the ABG with the absence of revisions have been used. As an addi-
tional component of success, it has also been controlled for the bone conduction in order
to control for the inner ear function in the robustness tests. OR times have served as the
short-term cost indicator, quality as the medium- to long-term one.

Surgeons’ experience has been observed to have a cost-saving effect in the short term
via reduced OR times. Learning curve effects with regard to quality have not been de-
tected. Summa summarum, experience has been found to have a cost-saving effect via a
reduction of short-term costs, i.e. surgery costs. Medium- to long-term costs (costs after
surgery) are not affected by experience.

Thus, the findings suggest increased training for otologists in order to flatten the learn-
ing curve in vivo and to decrease costs per case. As part of the current training concept,
inexperienced otologists watch and assist during operations by experienced colleagues. It
would be desirable for this to be done in as many stapes surgeries as possible. However,
with a steadily decreasing number of stapes surgeries, this might pose a problem. Besides,
having watched and assisted an experienced colleague, surgeons are supposed to do as
much as possible on their own to fully train procedures. Simulation-based training may
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be a viable option. Research has found training results in favor of this option (e.g. Amin
and Friedmann, 2013). Recent progress in technology even offers the opportunity to use
augmented reality simulation settings. This can be an effective and simultaneously inex-
pensive way of training, since surgeons do not need an experienced surgeon as instructor
while exercising (Nagayo et al., 2021).

Future research might obtain more precise economic implications of surgeons’ learning
and experience with detailed cost data precisely stating costs incurred by different cost
drivers, e.g. costs per minute in the OR. There are also subsequent questions regarding
OR-time management not dealt with in this study. For example, there is the aspect of
underutilization of ORs. Getting aware of learning effects reducing OR times is only the
first step to improved efficiency as further ones are necessary in order to make use of
these insights. If the simplified assumption is made that any decrease in OR times was
not considered and OR planning used constant OR times instead, the OR would be unused
between surgeries and the potential would not be used at all if it is assumed that the OR
team cannot sensibly use this time.
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Appendix 3.A

Table 3.1: Description of Variables

Variable Description

ABG Postoperative air-bone gap (ABGs in this study are four-frequency
(0.5, 1, 2 and 4 kHz) pure-tone average values)

ABGi Postoperative air-bone gap for interventions by surgeon i

ABGb Postoperative air-bone gap for interventions by beginners

ABGe Postoperative air-bone gap for interventions by experts

AGE Patient’s age

BI Dummy for bilateral otosclerosis (both ears are affected)

ECTOMY Dummy for stapedectomy as method of stapes surgery (instead of
stapedotomy)

FEMALE Dummy for female patient

L_ABG Dummy for large preoperative ABG (ABG ≥ 30 dB)

L_DIA Dummy for large diameter piston used (0.6 mm)

OOR Number of other operations which are done simultaneously with the
stapes surgery

ORT Operation time (time from incision to suture; in minutes)

ORTi Operation time for interventions by surgeon i

ORTb Operation time for interventions by beginners

ORTe Operation time for interventions by experts

REV Dummy for revision stapes surgery

SUCC Dummy for successful operation (postoperative ABG ≤ 10 dB, no
revisions)

SUCCi Dummy for successful operation for interventions by surgeon i

SUCCb Dummy for successful operation for interventions by beginners

SUCCe Dummy for successful operation for interventions by experts

SURi Dummy for i-th surgeon ∀ i = {1, 2, ..., 24}

Continued on the next page
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Variable Description

EXP Experience of otorhinolaryngology department in stapes surgery
(measured by sum of surgeries)

EXPi Experience of surgeon i in stapes surgery (measured by sum of surg-
eries)

ε Error term

2007-10/2011-15/
2016-20

Dummy for the period 2007-2010/2011-2015/2016-2020

Table 3.2: Surgeons – Surgery Volume and Experience

Surgeon 1 2 3 4 5 6 7 8 9
Surgeries n 100 94 25 52 30 216 196 49 154

REV
n 4 20 1 1 1 31 21 7 10
p 0.0400 0.2128 0.0400 0.0192 0.0333 0.1435 0.1071 0.1429 0.0649

Status1) E E B B B E E E B/E

1) B = beginner, E = expert, B/E = initial beginner becomes expert.

Table 3.3: Surgeons – Surgery Scope

Surgeon 1 2 3 4 5 6 7 8 9
Surgeries n 100 94 25 52 30 216 196 49 154
OOR x̄ 0.1000 0.0851 0.0800 0.4423 0.1667 0.0880 0.5663 0.0816 0.0584
OOR > 0 p 0.0800 0.0851 0.0800 0.2308 0.1000 0.0556 0.4439 0.0612 0.0390
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Table 3.4: Surgeons – Surgery Duration

Surgeon 1 2 3 4 5 6 7 8 9
n (Surgeries) 100 94 25 52 30 216 196 49 154
ORT (1-10)1) 64.80 70.86 97.60 68.40 93.00 51.50 33.50 39.11 69.20
ORT (11-20) 47.70 63.40 70.30 58.30 68.10 57.70 38.50 53.40 36.30
ORT (21-30) 45.40 64.00 69.80 60.20 52.80 62.60 38.20 44.80 39.00
ORT (31-40) 46.30 63.60 — 48.20 — 62.20 42.20 45.00 30.60
ORT (41-50) 45.60 60.80 — 52.30 — 55.40 38.30 45.56 46.22
ORT (1-n) 46.18 54.45 81.12 56.88 71.30 50.44 35.21 45.71 35.21

1) Mean ORT for stapes surgery no. 1 to 10. Other values analog.

Table 3.5: Surgeons – Surgery Outcome: Postoperative ABG

Surgeon 1 2 3 4 5 6 7 8 9
n (Surgeries) 100 94 25 52 30 216 196 49 154
ABG (1-10)1) 13.33 11.72 11.75 19.22 15.00 15.83 12.71 12.58 19.53
ABG (11-20) 13.89 21.61 11.81 15.56 8.70 15.94 16.12 11.88 19.58
ABG (21-30) 18.19 10.62 13.50 15.50 12.75 13.28 13.00 10.62 13.88
ABG (31-40) 14.17 15.94 — 12.12 — 11.72 16.39 12.08 18.61
ABG (41-50) 12.36 18.75 — 21.67 — 14.12 10.62 15.97 12.55
ABG (1-n) 12.10 15.33 12.14 16.56 11.96 15.26 13.08 12.60 16.89

1) Mean postoperative ABG for stapes surgery no. 1 to 10. Other values analog.

Table 3.6: Surgeons – Surgery Outcome: Success

Surgeon 1 2 3 4 5 6 7 8 9
n (Surgeries) 100 94 25 52 30 216 196 49 154
P (SUCC | 1-10)1) 0.3333 0.6250 0.3000 0.2500 0.4286 0.4444 0.1667 0.5000 0.3750
P (SUCC | 11-20) 0.4444 0.4286 0.5556 0.1111 0.5556 0.3000 0.2000 0.5000 0.0000
P (SUCC | 21-30) 0.3333 0.6250 0.2000 0.2000 0.5000 0.5000 0.4000 0.6000 0.4000
P (SUCC | 31-40) 0.4444 0.5000 — 0.5000 — 0.5000 0.1111 0.6667 0.2222
P (SUCC | 41-50) 0.4444 0.2222 — 0.1111 — 0.3000 0.6000 0.4444 0.3750
P (SUCC | 1-n) 0.5054 0.4267 0.3750 0.2292 0.5000 0.3057 0.3902 0.5455 0.3071

1) Probability of success for stapes surgery no. 1 to 10. Other values analog.
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Table 3.7: Summary Statistics of Surgeries

2003-2006 2007-2010 2011-2015 2016-2020 Σ
Surgeries n 392 292 221 161 1,066
ECTOMY x̄ 0.8418 0.8116 0.8643 0.9130 0.8490

REV n 57 31 16 6 110
p 0.1454 0.1062 0.0724 0.0373 0.1032

L_ABG x̄ 0.5969 0.4760 0.5928 0.5342 0.5535
PREOP. ABG x̄ 32.81 29.35 31.56 30.40 31.24
L_DIA x̄ 0.9515 0.9623 0.8778 0.9627 0.9409
ORT x̄ 52.38 43.64 42.68 53.39 48.05
ABG x̄ 14.54 14.31 14.73 13.08 14.29
ABG (REV) x̄ 18.50 14.51 15.50 13.54 16.60
SUCC x̄ 0.3879 0.3834 0.3430 0.4362 0.3845
SUCC (REV) x̄ 0.1569 0.3667 0.2000 0.5000 0.2451
OOR x̄ 0.0561 0.1370 0.3258 0.4534 0.1942

Table 3.8: Summary Statistics of Patients

2003-2006 2007-2010 2011-2015 2016-2020 Σ

AGE x̄ 46.47 48.15 47.10 48.81 47.42
σ 13.97 11.53 13.07 13.57 13.10

BI x̄ 0.3087 0.2363 0.3801 0.3168 0.3049
FEMALE x̄ 0.6111 0.6130 0.5759 0.5460 0.5944
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Figure 3.9: OR Time and Experience of Respective Surgeon – Primary Surgeries
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Figure 3.10: OR Time and Experience of Respective Surgeon – Revisions
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Figure 3.11: Postoperative ABG and Experience of Respective Surgeon – Primary
Surgeries
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Figure 3.12: Postoperative ABG and Experience of Respective Surgeon – Revisions
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Figure 3.13: Postoperative ABG and Experience of Respective Surgeon – Beginners with
Color-Coded Day of Audiogram
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Figure 3.14: Postoperative ABG and Experience of Respective Surgeon – Experts with
Color-Coded Day of Audiogram
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Figure 3.15: Postoperative ABG and Experience of Respective Surgeon – Primary
Surgeries with Color-Coded Day of Audiogram
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Figure 3.16: Postoperative ABG and Experience of Respective Surgeon – Revisions with
Color-Coded Day of Audiogram
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Appendix 3.B

Table 3.9: Estimation Results Model 3.1

Model 3.1 (ORTi, OLS regression)
β̂j i = 1 i = 2 i = 3
(Intercept) 70.71704 *** (10.09155) 71.29919 *** (6.96510) 135.92829 *** (14.06718)
EXPi −0.63108 ** (0.22411) −0.64614 * (0.25705) −7.19968 ** (2.09254)
EXP2

i 0.00476 * (0.00196) 0.00294 (0.00260) 0.21350 * (0.08358)
ECTOMY −9.98176 (8.76809) 2.99415 (4.86540) −12.90297 (9.84256)
REV 1.41155 (13.58501) 9.44610 * (3.88685) 0.91093 (19.94320)
OOR 7.81460 * (3.00496) 7.49565 (5.54316) 0.34658 (15.14548)
β̂j i = 4 i = 5 i = 6
(Intercept) 70.52394 *** (8.04369) 117.40928 *** (13.80187) 59.01622 *** (3.79169)
EXPi −1.06044 * (0.52182) −3.72774 * (1.54762) −0.08151 (0.06954)
EXP2

i 0.01292 (0.00882) 0.06120 (0.05166) −0.00010 (0.00030)
ECTOMY 0.64792 (4.08482) −9.06035 (12.17433) 0.13123 (2.06972)
REV −7.46970 *** (2.11594) −16.98545 (19.03582) 0.40816 (3.15523)
OOR 3.85957 . (1.93724) −4.73170 (6.96545) 18.10493 *** (4.61704)
β̂j i = 7 i = 8 i = 9
(Intercept) 43.33646 *** (4.95150) 18.52922 (16.27660) 60.53858 *** (4.73893)
EXPi −0.13092 (0.09181) 0.82206 (0.76637) −0.71508 *** (0.09881)
EXP2

i 0.00050 (0.00044) −0.01435 (0.01518) 0.00396 *** (0.00063)
ECTOMY −2.45466 (3.44503) 19.68836 (13.91558) −2.17234 (3.69969)
REV −6.48168 (4.08582) −5.36344 (9.17211) −8.08628 . (4.58976)
OOR 1.88948 (2.19093) 3.85947 (9.57545) 14.29491 *** (3.59327)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses. For i = {1, 4, 6}, robust standard errors (White) due to
heteroskedasticity.
n
(
model 3.1 | i = {1, 2, ..., 9}

)
= 100, 91, 25, 52, 30, 216, 196, 48, 153

R2 (model 3.1 | i = {1, 2, ..., 9}
)

= 0.22247, 0.36032, 0.56957, 0.30548, 0.55136, 0.28123, 0.02696,
0.08211, 0.33898
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Table 3.10: Estimation Results Model 3.2 and 3.3

β̂j Model 3.2 (ORTb, OLS regression) Model 3.3 (ORTe, OLS regression)
(Intercept) 121.46087 *** (8.98600) 54.45055 *** (3.86443)
EXPi −1.42479 *** (0.24318) −0.18145 *** (0.04701)
EXP2

i 0.01378 *** (0.00234) 0.00041 . (0.00022)
ECTOMY −1.95110 (3.41556) −0.02963 (1.72108)
REV −9.49692 * (4.66879) 1.22336 (1.87328)
OOR 4.12213 * (1.86387) 8.39912 *** (1.36508)
SUR2 — — 6.49978 (4.20339)
SUR3 — — — —
SUR4 −18.87505 *** (4.53453) — —
SUR5 −12.81890 * (5.78411) — —
SUR6 — — 8.66319 * (4.27706)
SUR7 — — −10.71723 *** (2.65784)
SUR8 — — −5.47176 (4.22302)
SUR9 −46.75053 *** (7.04652) −4.32654 (3.34233)
2007-10 −7.27992 (6.28949) −1.07542 (2.88301)
2011-15 −25.66591 *** (7.52149) −2.60374 (4.19965)
2016-20 −19.00529 . (9.84627) 0.53222 (5.20841)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses. In model 3.2, robust standard errors (White) due to heteroskedasticity.
n (model 3.2) = 206, n (model 3.3) = 705
R2 (model 3.2) = 0.65533, R2 (model 3.3) = 0.26328
Surgeon reference category (model 3.2) = surg. 3, surgeon reference category (model 3.3) = surg. 1
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Table 3.11: Estimation Results Model 3.4

β̂j Model 3.4 (ORT, OLS regression)
(Intercept) 77.35807 *** (4.28446)
EXP −0.06745 *** (0.01504)
EXP2 0.00003 * (0.00001)
ECTOMY −0.03682 (1.53103)
REV 0.37809 (1.72894)
OOR 8.60961 *** (1.42202)
SUR2 −12.85576 *** (3.02989)
SUR3 39.22938 *** (5.06598)
SUR4 11.51020 *** (2.46285)
SUR5 29.92084 *** (4.93679)
SUR6 −8.55571 *** (2.18172)
SUR7 −17.28111 *** (1.97327)
SUR8 −24.65333 *** (3.92494)
SUR9 −12.50851 *** (1.73082)
SUR10 52.95169 *** (8.89797)
SUR11 −29.12239 *** (3.74140)
SUR12 27.53494 ** (8.38238)
SUR13 40.65067 *** (2.35361)
SUR14 −30.77390 *** (5.94541)
SUR15 10.20117 ** (3.90063)
SUR16 26.24453 *** (4.94854)
SUR17 15.31839 . (7.92467)
SUR18 −13.13624 (11.54109)
SUR19 9.57174 *** (2.79510)
SUR20 −0.05661 (5.42079)
SUR21 16.39351 *** (2.46937)
SUR22 −13.18984 *** (3.01087)
SUR23 20.16760 *** (3.38894)
SUR24 2.00894 (2.29237)
2007-10 −0.10755 (2.45419)
2011-15 −0.42089 (3.73646)
2016-20 −0.83554 (5.26932)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses. Robust standard errors (White) due to heteroskedasticity.
n = 1,042
R2 = 0.42640
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Table 3.12: Estimation Results Model 3.5

Model 3.5 (ABGi, OLS regression)
β̂j i = 1 i = 2 i = 3
(Intercept) −7.76335 (18.93502) 24.32025 ** (8.88253) 25.86835 . (12.64705)
EXPi 0.02345 (0.13111) 0.08930 (0.20691) 0.28662 (0.95055)
EXP2

i −0.00107 (0.00128) −0.00104 (0.00218) −0.00820 (0.03757)
L_ABG 0.55974 (1.93545) 1.95948 (2.88098) 7.85824 . (4.14956)
ECTOMY 0.26263 (6.48481) −0.43645 (3.94519) 6.25867 (5.31339)
L_DIA −4.48505 (6.65686) 1.82680 (4.02498) −11.40125 (9.16555)
REV 1.02807 (4.73380) 6.63185 * (3.22586) 1.37280 (10.77465)
AGE 0.96296 (0.67352) −0.44022 (0.34704) −0.40255 (0.53331)
AGE2 −0.00874 (0.00702) 0.00407 (0.00382) 0.00242 (0.00628)
FEMALE 0.69551 (2.03858) −5.22958 . (2.80007) −2.75012 (3.86420)
BI 1.34258 (2.02699) −1.54352 (3.12353) −1.43034 (4.46561)
β̂j i = 4 i = 5 i = 6
(Intercept) 20.04993 (13.00229) 33.27415 * (14.53006) 37.03904 *** (6.00738)
EXPi −0.51075 (0.32954) −1.41883 . (0.67326) 0.05771 (0.04401)
EXP2

i 0.00969 (0.00627) 0.04593 . (0.02220) −0.00028 (0.00018)
L_ABG −0.14255 (2.93729) −2.56142 (3.06526) −1.35717 (1.24775)
ECTOMY −1.12828 (3.17228) 3.11210 (4.20614) 0.06611 (1.33361)
L_DIA −5.23686 (6.17015) — — −6.43248 (4.10863)
REV 14.35895 . (8.46416) −9.83731 (6.85527) 1.32250 (1.74906)
AGE 0.18096 (0.47179) −1.11899 * (0.46555) −0.68814 ** (0.22088)
AGE2 −0.00174 (0.00465) 0.01436 * (0.00559) 0.00773 ** (0.00235)
FEMALE 1.76663 (2.40349) 6.41635 . (3.63246) −3.26014 * (1.32262)
BI 5.81276 . (3.33541) −7.81267 * (3.62310) −2.38058 . (1.25838)
β̂j i = 7 i = 8 i = 9
(Intercept) 12.37317 . (7.42529) 17.96184 (21.43783) 22.43992 ** (8.53476)
EXPi −0.01702 (0.04809) −0.30529 (0.48923) −0.09090 (0.08607)
EXP2

i 0.00008 (0.00025) 0.00857 (0.00955) 0.00068 (0.00056)
L_ABG 2.55187 . (1.34593) 0.62190 (3.62063) 1.27138 (1.86717)
ECTOMY −0.91411 (1.59844) −1.49656 (11.30212) −4.46184 (3.40710)
L_DIA 3.18823 (2.37293) 5.19746 (12.13876) 0.48277 (3.05230)
REV 2.38764 (1.78609) 4.84553 (4.89014) 4.06262 (3.80851)
AGE −0.17065 (0.28891) −0.45398 (0.51202) −0.08610 (0.30420)
AGE2 0.00233 (0.00343) 0.00498 (0.00565) 0.00092 (0.00330)
FEMALE 1.65751 (1.26906) −0.18027 (4.31427) 2.02902 (1.88610)
BI −2.58381 . (1.37469) 0.35775 (4.80617) −1.67355 (2.08585)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses. For i = {6, 7}, robust standard errors (White) due to heterosked.
n
(
model 3.5 | i = {1, 2, ..., 9}

)
= 93, 75, 24, 48, 26, 193, 163, 44, 140

R2 (model 3.5 | i = {1, 2, ..., 9}
)

= 0.12575, 0.19507, 0.40756, 0.29769, 0.58416, 0.15379, 0.06872,
0.10681, 0.06983
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Table 3.13: Estimation Results Model 3.6 and 3.7

β̂j Model 3.6 (ABGb, OLS regression) Model 3.7 (ABGe, OLS regression)
(Intercept) 27.34925 ** (9.43896) 24.16441 *** (4.24098)
EXPi −0.23017 (0.14905) 0.00673 (0.02911)
EXP2

i 0.00318 . (0.00163) −0.00001 (0.00012)
L_ABG 0.46417 (1.40623) 0.67675 (0.76208)
ECTOMY 1.76013 (2.12896) −0.94105 (0.94537)
L_DIA −3.11631 (3.41357) −0.39171 (1.67295)
REV 7.65071 * (3.77018) 2.99525 ** (1.05583)
AGE −0.21965 (0.24896) −0.39381 ** (0.14188)
AGE2 0.00213 (0.00254) 0.00441 (0.00161)
FEMALE 2.02615 (1.47626) −0.76867 (0.77157)
BI −0.45205 (1.57950) −1.89390 * (0.78025)
SUR2 — — −0.46807 (2.61536)
SUR3 — — — —
SUR4 5.17484 * (2.51080) — —
SUR5 −0.37926 (3.30664) — —
SUR6 — — 0.19088 (2.67188)
SUR7 — — 0.02996 (1.53571)
SUR8 — — −2.38965 (2.52164)
SUR9 −2.75021 (5.65602) 5.30063 * (2.07097)
2007-10 −0.91599 (4.19149) −0.99095 (1.65990)
2011-15 −8.11635 (6.12050) −2.39887 (2.44025)
2016-20 −7.53405 (7.27171) −4.32450 (2.87454)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses. In model 3.7, robust standard errors (White) due to heteroskedasticity.
n (model 3.6) = 186, n (model 3.7) = 620
R2 (model 3.6) = 0.10595, R2 (model 3.7) = 0.08103
Surgeon reference category (model 3.6) = surg. 3, surgeon reference category (model 3.7) = surg. 1
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Table 3.14: Estimation Results Model 3.8

Model 3.8 (SUCCi, logit)
β̂j i = 1 i = 2 i = 3
(Intercept) 3.40631 (4.51553) −1.80887 (2.32439) −12.63454 (3,956.18263)
EXPi −0.01686 (0.03132) −0.04808 (0.04158) 0.20688 (0.32499)
EXP2

i 0.00039 (0.00031) 0.00043 (0.00047) −0.00688 (0.01220)
L_ABG −0.23698 (0.46059) −0.42682 (0.63761) −1.19895 (1.30514)
ECTOMY −0.15089 (1.47526) 1.64113 (1.06293) −3.50220 (2.23170)
L_DIA 0.37647 (1.68711) −0.02002 (0.84645) 14.80494 (3,956.18082)
REV 0.39080 (1.07351) −3.01385 ** (1.03391) −20.58993 (3,956.18250)
AGE −0.13607 (0.16035) 0.04301 (0.10410) −0.10472 (0.21902)
AGE2 0.00111 (0.00166) −0.00020 (0.00112) 0.00223 (0.00312)
FEMALE 0.01837 (0.48346) 0.63885 (0.65640) 0.40439 (1.22849)
BI −0.19342 (0.48012) −0.22890 (0.66669) −1.81066 (1.50569)

β̂j i = 4 i = 5 i = 6
(Intercept) −16.48905 (2,695.54623) −1,095.45394 (38,768,278.6) −25.14093 *** (3.33418)
EXPi 0.08846 (0.11959) 38.56051 (13,219.3057) −0.02157 . (0.01188)
EXP2

i −0.00163 (0.00237) −1.06216 (368.64292) 0.00009 (0.00005)
L_ABG −0.29277 (1.12038) −11.06634 (14,190.0263) −0.08462 (0.36785)
ECTOMY 0.08679 (0.97462) −17.69214 (38,746,639.8) 0.34327 (0.40792)
L_DIA 16.58143 (2,695.54431) — — 15.35732 *** (0.54335)
REV −16.10686 (3,956.18055) 432.04462 (381,081.446) −0.66830 (0.49205)
AGE −0.02784 (0.15048) 81.77053 (27,992.1313) 0.39744 ** (0.13340)
AGE2 0.00008 (0.00151) −1.19727 (404.03457) −0.00430 ** (0.00141)
FEMALE −0.99230 (0.75639) −388.34051 (954,276.924) 1.21900 ** (0.43498)
BI −1.65036 (1.42796) 1,077.64201 (1,009,000.32) 0.97881 * (0.38258)

β̂j i = 7 i = 8 i = 9
(Intercept) −1.43991 (1.95873) −5.10192 (4.45266) −2.15633 (2.10262)
EXPi 0.01865 (0.01238) 0.06121 (0.09758) 0.02060 (0.01884)
EXP2

i −0.00008 (0.00006) −0.00129 (0.00188) −0.00015 (0.00012)
L_ABG −0.42345 (0.33449) 0.21424 (0.71394) −0.31573 (0.40136)
ECTOMY 0.60288 (0.50616) 16.82183 *** (1.26641) −0.05269 (0.77606)
L_DIA −0.08485 (0.68488) −15.64864 *** (1.70383) 0.26446 (0.72851)
REV −0.52651 (0.56582) −1.20090 (1.10043) −1.52212 (1.13363)
AGE −0.00367 (0.07032) 0.13078 (0.13565) 0.05518 (0.07777)
AGE2 0.00011 (0.00076) −0.00132 (0.00166) −0.00062 (0.00082)
FEMALE −0.32280 (0.33577) 0.82157 (0.88625) −0.47885 (0.40075)
BI 0.29666 (0.36415) 0.71402 (1.07004) 0.30185 (0.42758)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses. For i = {2, 6, 7, 8}, robust standard errors (White) due to heteroskedasticity.
n
(
model 3.8 | i = {1, 2, ..., 9}

)
= 93, 75, 24, 48, 26, 193, 164, 44, 140

BIC
(
model 3.8 | i = {1, 2, ..., 9}

)
= 167.71452, 124.68979, 57.90069, 87.38310, 32.58097, 251.40298, 267.35835,

94.55602, 217.33306
McFadden’s R2 (model 3.8 | i = {1, 2, ..., 9}

)
= 0.08578, 0.24577, 0.27753, 0.13302, 1.00000, 0.18565, 0.03704,

0.12704, 0.05633
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Table 3.15: Estimation Results Model 3.9 and 3.10

β̂j Model 3.9 (SUCCb, logit) Model 3.10 (SUCCe, logit)
(Intercept) −1.60563 (2.40727) −3.64195 ** (1.20090)
EXPi 0.02775 (0.03629) −0.00324 (0.00680)
EXP2

i −0.00027 (0.00039) −0.00002 (0.00003)
L_ABG −0.23862 (0.34022) −0.25348 (0.17729)
ECTOMY −0.84951 . (0.49751) 0.56574 * (0.26576)
L_DIA 1.08555 (1.11713) 0.18108 (0.37522)
REV −1.53558 (1.14709) −0.96855 ** (0.29458)
AGE 0.03842 (0.06147) 0.07793 * (0.03857)
AGE2 −0.00038 (0.00063) −0.00081 . (0.00042)
FEMALE −0.63047 . (0.35639) 0.21980 (0.18415)
BI 0.27968 (0.37741) 0.50074 ** (0.18686)
SUR2 — — 1.32237 * (0.62155)
SUR3 — — — —
SUR4 −0.82981 (0.62285) — —
SUR5 0.78489 (0.78250) — —
SUR6 — — 0.70581 (0.62524)
SUR7 — — 0.08404 (0.36164)
SUR8 — — 1.48158 * (0.62078)
SUR9 −0.20188 (1.35224) −0.50239 (0.49471)
2007-10 −0.13059 (1.03875) 0.89829 * (0.43164)
2011-15 0.02719 (1.47627) 1.23886 * (0.61380)
2016-20 −0.19407 (1.75788) 2.16137 ** (0.76675)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses. In model 3.10, robust standard errors (White) due to
heteroskedasticity.
n (model 3.9) = 186, n (model 3.10) = 621
BIC (model 3.9) = 309.29119, BIC (model 3.10) = 888.74336
McFadden’s R2 (model 3.9) = 0.82380, McFadden’s R2 (model 3.10) = 0.38731
Surgeon reference category (model 3.9) = surg. 3, surgeon reference category (model 3.10) = surg. 1
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Table 3.16: Estimation Results Model 3.11

β̂j Model 3.11 (ABG, OLS regression)
(Intercept) 21.96431 *** (3.72179)
EXP −0.00270 (0.00965)
EXP2 0.00000 (0.00001)
L_ABG 0.36382 (0.61514)
ECTOMY −0.44025 (0.81972)
L_DIA −0.59758 (1.34442)
REV 2.74747 ** (0.94902)
AGE −0.30990 ** (0.10597)
AGE2 0.00341 ** (0.00116)
FEMALE −0.40941 (0.63247)
BI −1.20004 . (0.66144)
SUR2 0.52326 (2.14290)
SUR3 −0.52123 (1.81128)
SUR4 4.66992 ** (1.56773)
SUR5 1.05761 (1.88433)
SUR6 1.55219 (1.41360)
SUR7 0.53008 (1.17193)
SUR8 −1.74338 (2.42979)
SUR9 3.99703 ** (1.30651)
SUR10 1.50211 (1.93167)
SUR11 −4.47964 . (2.64598)
SUR12 1.33747 (4.67787)
SUR13 7.58788 *** (1.51922)
SUR14 −1.78821 (3.39090)
SUR15 −0.90160 (2.28004)
SUR16 7.85933 . (4.40465)
SUR17 7.29399 * (3.25207)
SUR18 2.06957 (4.15998)
SUR19 1.67308 (2.04530)
SUR20 −0.28491 (2.91138)
SUR21 1.16471 (3.34618)
SUR22 −9.00647 *** (2.10698)
SUR23 4.80363 * (2.39172)
SUR24 −2.96067 (1.84711)
2007-10 −0.59448 (1.45170)
2011-15 −0.55660 (2.45566)
2016-20 −2.55729 (3.37307)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses. Robust standard errors (White) due to heteroskedasticity.
n = 938
R2 = 0.07748
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Table 3.17: Estimation Results Model 3.12

β̂j Model 3.12 (SUCC, logit)
(Intercept) −1.40841 (0.89808)
EXP −0.00266 (0.00189)
EXP2 0.00000 (0.00000)
L_ABG −0.12914 (0.14232)
ECTOMY 0.21509 (0.21796)
L_DIA 0.14483 (0.30113)
REV −0.80560 ** (0.25170)
AGE 0.05945 * (0.02784)
AGE2 −0.00065 * (0.00030)
FEMALE 0.08289 (0.14832)
BI 0.33147 * (0.15344)
SUR2 0.10996 (0.43734)
SUR3 −0.42969 (0.52863)
SUR4 −1.34174 ** (0.43920)
SUR5 −0.40464 (0.49570)
SUR6 −0.51484 (0.32802)
SUR7 −0.37931 (0.27660)
SUR8 0.36310 (0.50082)
SUR9 −0.65138 * (0.28742)
SUR10 −1.15216 (0.79171)
SUR11 0.48974 (0.65842)
SUR12 −0.11387 (0.82307)
SUR13 −14.08002 *** (1.06510)
SUR14 −0.35417 (0.72120)
SUR15 −0.04671 (0.56234)
SUR16 −1.45152 (0.94236)
SUR17 −1.87937 * (0.75379)
SUR18 −0.54580 (1.18947)
SUR19 −14.09689 *** (1.09231)
SUR20 −0.21233 (1.12420)
SUR21 0.47394 (0.70083)
SUR22 14.61955 *** (1.08435)
SUR23 −14.65144 *** (1.10965)
SUR24 0.64199 (0.60419)
2007-10 0.54919 (0.34293)
2011-15 0.46748 (0.55168)
2016-20 0.93559 (0.77143)
Significance levels: *** 0.001 ** 0.01 * 0.05 . 0.1
Standard errors in parentheses. Robust standard errors (White) due to heteroskedasticity.
n = 939
McFadden’s R2 = 0.06193



104

4 Learning Effects in Ischemic
Stroke Treatment

Carsten Bauer171

4.1 Introduction

Stroke is a major issue in health care. From 2018 to 2020, about 253,000 strokes were
treated on average annually in German hospitals (Gesundheitsberichterstattung des Bun-
des, 2022). Moreover, it is forecasted that the number of strokes will rise by 37 % until
2030 and a staggering 62 % until 2050 in comparison to 2007 (Statista, 2010).172 In 2019,
stroke was the second most frequent cause of death worldwide (World Health Organiza-
tion, 2020). In 2017, about 7 million disability-adjusted life years were lost due to stroke
in the EU (Wafa et al., 2020).173

There are two major types of strokes, ischemic (80-85 %) and hemorrhagic ones (15-
20 %). This review focuses on research with regard to ischemic strokes. Timely treatment
of ischemic strokes is essential as it is associated with a high chance of good outcome.174

This means there is an inherent need to reduce times from onset to treatment. This span
of time can be divided into the time from onset to arrival at the hospital as well as from
arrival to treatment. The latter one is referred to as the door-to-needle (DTN) time in
case of a thrombolysis treatment.175 There is much research concerned with the reduction
of DTN times in ischemic stroke patients, especially in the recent past.176

171 I thank PD Dr. Dr. Stefan Schenk for his valuable impulses, Mareike Seeger for providing medical
advice and Hanna Jenzen for her support during the literature search.

172 In 2007, about 209,000 strokes were treated in German hospitals (Gesundheitsberichterstattung des
Bundes, 2022).

173 Disability-adjusted life-years lost are caused by premature death and years of healthy life lost due to
disability. Disability is considered by multiplying the years of healthy life lost with a disability weight
(DW). In case of acute ischemic stroke, the DW ranges from 0.019 for mild long-term consequences
to 0.588 for severe long-term consequences and cognition problems (Global Burden of Disease Col-
laborative Network, 2020), i.e. a stroke survivor living with mild long-term consequences loses 0.019
years of healthy life each year.

174 See section 4.2 for the measurement of stroke outcome.
175 “Needle” refers to the intravenous access necessary for a thrombolysis.
176 The articles included in this review represent this, see figure 4.2.
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In general, the evaluation of possible learning curve effects is meaningful from a medical
as well as a managerial perspective. From the medical point of view, existing learning
curves might primarily influence outcomes. It is conceivable that with rising experience
in a specific type of treatment (surgical or conservative), outcomes improve along with
staff’s (surgeons’ or physicians’) skills. From the managerial perspective, possible learning
curves can reduce the treatment time. Besides, high outcome quality is typically linked
to lower overall costs of a case as complications are associated with a higher resource
use, a prolonged length of stay and higher follow-up costs. It seems likely that with rising
experience in a specific type of treatment, routine emerges which improves surgeons’ or
physicians’ movements and consequently, treatment times get shorter.

In case of stroke treatment, learning curve effects might optimize in-hospital processes,
accelerate the clarification of symptoms and eventually decrease DTN times as well as
improve outcome quality.177

The paper at hand reviews research engaged in thrombolysis treatment of ischemic
strokes. The focus of this review is on research methods and results with regard to staff’s
learning effects in stroke treatment which become manifest in a reduction of DTN times.
Research on the pre-hospital phase is not subject of this review.178 The aim is to synthe-
size relevant literature and concisely represent it. Furthermore, the review discusses the
economic implications.

The remainder of this review is organized as follows: Section 4.2 contains background
information about stroke, stroke treatment and stroke outcome. The search strategy and
the inclusion criteria are described in section 4.3, followed by the results in section 4.4.
A discussion of the results and their economic implications is presented in section 4.5.
The review closes with a short summary and outlines the need for further research in
section 4.6.

4.2 Background

In order to clarify assumed stroke symptoms, patients can be subjected to computed
tomography or magnetic resonance tomography (also called magnetic resonance imag-
177 Outcome in stroke cases is highly dependent on timely treatment, see section 4.2.
178 Articles are for example engaged in the reduction of onset-to-treatment times through improved

communication between the emergency medical service and the hospital or raising public awareness
of stroke symptoms and their urgency.
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ing). For these procedures, patients need to be admitted to hospital, since it is virtually
impossible to clarify the symptoms elsewhere.179

Ischemic strokes account for 80-85 % and hemorrhagic ones for 15-20 %. Ischemic
strokes are treated by a recanalization therapy which can be either a systemic thrombol-
ysis (also called thrombolytic therapy) with a (recombinant) tissue plasminogen activator
((r)tPA) or a catheter-directed thrombolysis (pharmaceutical is applied directly to the
affected vessel via a catheter) as well as a mechanical recanalization (thrombectomy) by
means of recanalization devices. Neurological guidelines unrestrictedly recommend throm-
bolysis only up to 4.5 hours after symptom onset. Thrombectomy is recommended up to
6 hours after symptom onset or even beyond in particular cases (Ringleb et al., 2021).180

Hemorrhagic strokes are attended to by surgery.

Time is the essential factor in treatment of ischemic strokes as it is generally accepted
that the earlier the thrombolysis is applied the higher the chance of good outcome as well
as full recovery. Saver (2006) finds that the average patient loses 1.9 million neurons and
13.8 billion synapses every minute in which a large vessel ischemic stroke is untreated.
The brain loses as many neurons as it does in almost 3.6 years of normal aging in each
hour which elapses without treatment. The investigation of Meretoja et al. (2014) reveals
the long-term effects of a reduction of the per-minute brain damage quantified by Saver
(2006): Reducing the onset-to-treatment time by a single minute grants on average 1.8
days of extra healthy life. Consequently, neurological guidelines recommend thrombolysis
to be applied as soon as possible (Ringleb et al., 2021). Due to the 4.5-hour window
in which thrombolysis is recommended, cutting delays within the hospital might lead
to a higher proportion of patients receiving beneficial thrombolysis: Messé et al. (2016)
compare cases thrombolysis was administered to with cases where it was not. They find
that the median door-to-CT time181 of 40 minutes for patients not receiving thrombolysis
was twice as long as the median for patients receiving it.

Outcome in stroke cases is usually evaluated by the Modified Rankin Scale (mRS), a
179 With the usual equipment of ambulances, diagnostics is not possible. In recent times, there are trials

with mobile stroke units (MSUs, ambulances with diagnostics equipment) in order to be able to
diagnose strokes and begin treatment on the road. In Germany, a first trial started in Berlin in 2011.
However, MSUs are far from being in use comprehensively, neither in Germany nor worldwide. For
more information on the trial in Berlin as well as further references on MSUs, see Alexandrov and
Nilanont (2021).

180 Though, a previous thrombolysis (which guidelines advise only up to 4.5 hours after symptom onset)
is recommended.

181 Time from arrival at the hospital to computed tomography (imaging for diagnostics).
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measure of disability in everyday life.182 Another measure of impairment is the National
Institutes of Health Stroke Scale (NIHSS).183 Besides specific scales, (in-hospital) mortal-
ity and occurrence of complications (especially bleedings, i.e. intercranial hemorrhage)184

are frequently used to measure outcome quality. There are various studies of the relation
between a reduction of the DTN time and the improvement of outcomes (e.g. Goyal et al.,
2019; Yafasova et al., 2021; Xian et al., 2022).185

The everyday life focus of the mRS illustrates that outcome is directly linked to pa-
tients’ future quality of life. This in turn is closely connected to costs incurred by the
health care system. The lower the quality of life, the more treatment is necessary which
increases costs. For society, further costs, for example care insurance costs, costs of home
care by relatives or costs of productivity losses can be saved by improved outcome quality.

4.3 Methods

4.3.1 Search Strategy

As the evaluation of possible learning curve effects is meaningful from a medical as
well as a managerial perspective, the search strategy comprised medical and manage-
rial databases. To be exact, the databases were Business Source Premier (managerial),
LIVIVO (managerial and medical), MEDLINE (medical), PubMed (medical), Science
Direct (managerial and medical) and Web of Science (managerial and medical). The key-
words “door-to-needle”, “door to needle” and “DTN” were applied in combination with
“stroke”, “apoplexy” and “optimiz*”.186 German equivalents of the English keywords were
also used. Search results were restricted to articles as well as English and German language
where filters allowed language selection. There was no restriction with regard to the year
of publication. The search was conducted in late April and early May 2022. Bibliographies
of eligible articles from the database search were scanned for further eligible articles.
182 See table 4.1 for the description of the mRS values.
183 See table 4.2 for the description of the NIHSS values. The NIHSS is also frequently used for pre-

treatment stroke severity classification.
184 Bleeding in the brain; a possible complication of thrombolysis.
185 Goyal et al. (2019) as well as Xian et al. (2022) investigate the effect of a reduction on the short-term

outcome, Yafasova et al. (2021) depict the effect on the long-term outcome. All three articles include
a considerable number of patients (n = 601/6,252/185,501).

186 In Science Direct, truncation (“optimiz*”) was not possible. “Optimization” and “optimizing” were
used instead.
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4.3.2 Inclusion Criteria

Publications in English and German were considered. The articles were supposed to be
primary research, i.e. reviews and meta-analyses were excluded. Title and abstracts of
remaining, potentially eligible records were scanned in order to filter inappropriate articles
in terms of content. For inclusion, an article had to address learning effects; however, it
did not have to address them explicitly. There are numerous articles comparing DTN
times for example between two methods of diagnostics, between hub and spoke centers in
a telemedicine network, presence of a pharmacist in the stroke team, etc. These articles
were excluded from analysis, since they are concerned with the (reduction of) DTN times,
but do not address any kind of learning.

In the context of this review, learning in a broader sense means boosting performance
of the same persons or the same team by a quality improvement program, for example
a revised treatment protocol or a reorganization of logistic processes within the hospital.
This means there are no learning curve effects, but there is a change in the setting which
triggers learning. Studying learning in a narrower sense means studying learning curve
effects. The development of DTN times over time (at least by two points in time) is eval-
uated. Occasion might be given by a new treatment protocol having been introduced or
beginners having entered the emergency department. In case of learning curves effects,
learning happens by gaining experience in stroke treatment. The setting does not change.
Some studies combine the investigation of learning in a broader sense and learning in a
narrower sense. For example, they study the change in DTN times caused by an improve-
ment initiative, this means they compare DTN times before and after the initiative, and
additionally, they consider DTN times in the period following the initiative over several
points in time.

Studies which are neither concerned with learning in a narrower sense nor in a broader
sense, but indirectly engage in learning curve effects by comparing DTN times from low-
volume hospitals187 with high-volume hospitals were also included, as the differences in
DTN times are probably the result of learning and economies of scale.

The articles have to deal with the in-hospital phase, learning in the pre-hospital phase
was excluded. This means articles on learning for example by improved communication
between emergency medical services and hospitals via (revised) notifications were not
considered.
187 Volume refers to the ischemic stroke volume.
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4.4 Results

4.4.1 Literature Search

The literature search in databases detected 2,578 articles and resulted in 154 eligible ones.
Scanning the bibliographies of these articles yielded 11 further, eligible articles, resulting
in 165 articles being included in total. Figure 4.1 illustrates the selection process according
to the inclusion criteria.

4.4.2 Included Studies

Stroke cases have been increasing and stroke treatment has been gaining more relevance.
This is represented in research concerned with (the reduction of) DTN times. Figure 4.2
depicts the number of articles included in this review by year of publication. The articles
are from the period 1998-2022. From around 2012 on, there was a strong increase in the
number of correspondent articles per year.188

Subjects. The majority of articles addresses learning understood in a broader sense
by reporting the result of a quality improvement program (n = 126); only a minority is
concerned with learning in a narrower sense (n = 62). Of the latter articles, one inves-
tigates physicians’ individual learning curve effects. A few studies are indirectly engaged
in learning curve effects as they compare DTN times from low-volume hospitals with
high-volume hospitals (n = 7).189

Hospitals. The study setting is often a university or tertiary care hospital (n = 71);
only in a small number of articles, secondary care hospitals are considered (n = 4). Primary
and comprehensive stroke centers are seldom explicitly mentioned (n = 3, n = 4).190

The hospitals studied in the included articles are located in 38 countries.191 Figure 4.3
highlights these countries in a world map.
188 As the search was conducted in late April and early May 2022, only a fraction of 2022 (about one

third) is covered. If the number of articles (10, simplified from four months) is extrapolated to the
entire year, the number (30) marks the preliminary peak.

189 Multiple keywords per article are possible. For a compact illustration of these and further numbers
regarding subject keywords, see table 4.3.

190 Numbers refer to articles, not to hospitals (some articles study more than one hospital). Multiple
types of hospitals per article are possible. In some articles (especially in large multicenter studies or
studies using large databases as for example the Get With The Guidelines-Stroke registry), there is
no detailed information about the hospitals. For a compact illustration of these numbers regarding
hospitals, see table 4.3.

191 Some multinational studies do not give detailed information about the location of hospitals, so the
number of countries may be higher.
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Figure 4.1: Literature Inclusion

Patients. One study has a focus on the elderly, the other studies do not have specific
limitations with respect to patients’ characteristics. The number of investigated cases
strongly varies. There are single-sample studies as well as studies relying on large stroke
databases with thousands of cases.

DTN Times. It is striking that virtually all articles report improvements in DTN
times. Quality improvement programs change the percentage of patients receiving treat-
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Figure 4.2: Year of Publication of Included Articles

Figure 4.3: Countries of Hospitals from Included Articles

ment within one hour192 from median 32 to 70 % (mean 38 to 67 %).193 The median of
reported median DTN times falls from 73 to 44 min. (mean of reported median DTN
times 69 to 44 min.).194 The median of reported mean DTN times falls from 76 to 48 min.
(mean of reported mean DTN times 76 to 52 min.).195

Learning in a narrower sense increases the percentage of patients receiving treatment
within one hour.196 The median percentage reported in the beginning is 31 % (mean 26 %)
192 Calculations use DTN ≤ 60 min. as well as < 60 min. depending on the articles.
193 These and the following numbers are regardless of the variations of time spans between studies and

other differences such as the extent of the quality improvement measures.
194 In two cases, median DTN times increase. However, the rise by 2 and 7 min. respectively is reported

to be not significantly different from zero (in the following “significant” for short). In one case, there
is no change in median DTN time.

195 For a compact illustration of these and further DTN times, see table 4.4.
196 Calculations use DTN ≤ 60 min. as well as < 60 min. depending on the articles. There is one exception

in which the percentage decreases over the study period. The study investigates the trend of residents’
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and 48 % (mean 47 %) in the end. The median of reported median DTN times falls from
75 to 61 min. (mean of reported median DTN times 75 to 61 min.).197 The median of
reported mean DTN times falls from 102 to 71 min. (mean of reported mean DTN times
94 to 67 min.).198

Studies indirectly engaging in learning curve effects by comparing low-volume with
high-volume hospitals report a negative correlation between volume and DTN times, i.e.
the higher the hospital volume, the lower the DTN times. In low-volume hospitals, the
median percentage of patients receiving treatment within one hour199 is 30 % (mean 45 %),
in high-volume hospitals, it is 63 % (mean 62 %). The median of reported median DTN
times for low- and high-volume hospitals are 73 and 52 min. respectively (mean of reported
median DTN times 62 and 51 min. respectively).

Clinical Outcome. As their focus is on DTN times, not all studies investigate clin-
ical outcomes. Almost all articles doing so find improvements or no differences in clinical
outcomes, at least no statistically significant ones. There are merely two studies report-
ing worse outcomes.200 Improvements are for example quantified by a higher probability
of favorable/good outcome in the mRS, lower post-treatment NIHSS, lower (in-hospital)
mortality, fewer complications (especially intercranial hemorrhage), and higher rates of
discharge to home.

Statistical Methods. Most studies do statistical testing, for example in order to
identify significant changes in DTN times. A minority of articles also contains regression
models (mostly linear or logistic regression models). Some articles are limited to descrip-
tive statistics.

Journals. The included studies are from a wide range of journals (n = 77). Most
articles are from the Journal of Stroke and Cerebrovascular Diseases (n = 19), Stroke (n =

DTN times in their first year starting each July, the so-called “July effect”. However, the change is
only –0.10 percentage points. A statement with regard to significance is not possible with the given
information.

197 In two cases, median DTN times increase. In both cases, the “July effect” is studied. One article
compares the first quarter of the year with the last one (change by 6 min.) and finds no significant
difference. In one case, there is no change in median DTN time.

198 In one case, mean DTN times increase by a mere 0.5 min., but this rise is not significant.
199 Calculations use DTN ≤ 60 min. as well as < 60 min. depending on the articles.
200 One study reports a higher rate of symptomatic intercranial hemorrhage, however simultaneously

detects neurological improvement (measured by NIHSS). The second study investigates a possible
“July effect”, but does not really find such one as DTN times remain almost unchanged throughout
the year.
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16) as well as Frontiers in Neurology (n = 8). The median Journal Impact Factor is 2.989
(mean 7.007).201 Even though some journals also engage in health care management, all
are medical journals in the first instance; none of the included articles is from a managerial
journal.

Consideration of Costs. The great majority of the articles (from medical journals)
does not pay attention to the economic implications of learning effects; only three studies
consider costs at all: One article reports the cost savings due to less wasted tPA resulting
from an optimized treatment process. Another study uses the estimated lifetime cost
savings of beneficial rtPA administration to evaluate the cost effects of an increased share
of patients treated with rtPA. The third article calculates the costs of reducing the DTN
time by 1 min. per patient in a quality improvement project.

4.5 Discussion

4.5.1 Synthesis

It is important to notice that the reported DTN times must not be overrated; they are
rather used to get a rough idea of the time spans and their changes. Due to a large variety
in study settings as well as time periods, it is virtually impossible to directly compare the
results of the studies. Because of the usually nonlinear learning curve (strongest effects of
further “experience” in the beginning, effect of further “experience” decreases over time),
it would not be possible to make the results comparable by adjusting to a single time
period, even if the setting was comparable. For example, if the percentage of DTN times
up to one hour increases by 10 percentage points within one year in study A and by
20 percentage points within two years in study B, it is not an appropriate approach to
assume the annual change in the percentage in study B to be 10 percentage points. Most
likely, the change is more than 10 percentage points in the first year and less in the second
year. Besides, there is no uniform definition of “door” and even “needle” in DTN times
(Kruyt et al., 2013). This means one and the same case can have diverging DTN times
assigned to in different studies.

Nevertheless, the results show that, apart from a few exceptions, there is learning in
stroke treatment, in a broader as well as in a narrower sense, which results in reduced DTN
201 Based on 75 journals. For a compact illustration of these numbers regarding journals, see table 4.5.
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times. Furthermore, the results of the articles which also investigate clinical outcomes
substantiate the association of shorter DTN times with improved clinical outcomes.

The DTN time-reducing effect of hospital’s volume may suggest centralized stroke
treatment in order to have higher volumes at the remaining hospitals which treat strokes.
However, there is a challenge: Centralized treatment means on average longer ways to
hospital, which adversely affects the time from onset to arrival at the hospital and coun-
teracts the reduction of DTN times within the hospital. Thus, a more centralized stroke
treatment has to be carefully traded off. Otherwise, the attempt might effect the opposite
of the intended purpose and increase onset-to-treatment times.

As already depicted, none of the included articles was detected in a managerial journal;
all articles are contained in medical journals. Only three articles consider costs at all.
However, these considerations seem to be isolated first approaches to taking costs into
account. There are no studies which comprehensively analyze the impact of learning in
stroke treatment on costs. For example, the study which calculates the costs of reducing
the DTN time in a quality improvement project does not contain a calculation of cost
savings associated with the DTN time reduction. However, this would be necessary in
order to thoroughly evaluate the DTN time reduction in this setting. Managerial research
is obviously not engaged in learning curve effects in ischemic stroke treatment, although
stroke is a major issue in health care and an important cost factor with an upward trend.

4.5.2 Economic Implications

The economic relevance of stroke becomes apparent when having a look at stroke-related
costs: Total costs roughly accounted for 45 billion e in the EU in 2015.202 20 billion e were
incurred as direct health care costs, 16 billion e as costs of informal care of people with
stroke and 9 billion e as costs due to productivity losses (Wilkins et al., 2017). Lifetime
direct costs of ischemic stroke in Germany accounted for 43,129e in 2004 (Kolominsky-
Rabas et al., 2006).203

Efforts to cut costs might start with reducing DTN times via an improvement ini-
tiative, i.e. learning in a broader sense. However, such projects cause costs themselves.
202 To make amounts more comparable, they are also given adjusted for inflation to 2022 and in Euro for

amounts in other currencies. Using EU inflation rates from 2016 to 2021, costs would account for 49
billion e in 2022.

203 Direct costs comprise inpatient care, outpatient care, rehabilitation, and nursing. Costs are discounted
to the year 2004. Using German inflation rates from 2005 to 2021, costs would account for 55,360e
in 2022.
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Ajmi et al. (2021) calculate the costs of reducing the DTN time by 1 min. per patient in a
quality improvement project in a Norwegian university hospital setting. The costs amount
to $ 29 when all costs are included and $ 13 when unpaid time is excluded.204 These per-
minute costs are accompanied by additional 1.8 days of extra healthy life (Meretoja et al.,
2014). This in turn saves costs which means there has to be a comparison of costs in order
to properly evaluate the initial economic effect of a DTN time reduction project. Though,
it has to be considered that improvement initiatives usually have a limited time span
and thus cause costs only in this period whereas reduced DTN times probably persist.
Learning curve effects, i.e. learning in a narrower sense, can reduce DTN times without
causing costs.

Fattore et al. (2012) investigate the costs of Italian stroke patients within the first
year.205 They find that the mRS is strongly associated with costs throughout this period,
i.e. the better the mRS, the lower the costs. For example, if the mRS is 4 or 5, costs follow-
ing discharge are almost seven times as high as if the mRS is 0 to 2 (13,382 vs. 1,965e).206

Barral et al. (2021) specifically evaluate the costs of informal care and productivity losses
within the first year in France. They find costs of informal care to be more than five times
higher in case of mRS 3 to 5 compared to mRS 0 to 2 (25,200 vs. 4,607e) and the costs
of productivity losses to be about 10 % higher (8,015 vs. 7,403e). Both types of costs
combined, costs are almost three times higher in case of mRS 3 to 5 compared to mRS 0
to 2 (33,215 vs. 12,010e),207 i.e. their findings are in line with the ones by Fattore et al.
(2012).208 Kim et al. (2020) engage in 5-year costs of stroke in South Korea and attest
the positive correlation between the mRS and costs. If the mRS is 5, costs are almost
five times as high as if the mRS is 0 (257,486 vs. $ 53,578).209 Combining research results
about the relation between a reduction of DTN times and the improvement of outcomes
204 They use prices and an exchange rate NOK-USD of 2019. Unpaid time is considered to be opportunity

costs. It is defined as personnel time spent for the DTN time reduction without causing any direct
or extra personnel costs, either during working hours or outside of working hours. Using the mean
exchange rate USD-EUR of 2019 and Norwegian inflation rates from 2020 and 2021, costs would
account for 27 and 12e respectively in 2022.

205 They study ischemic as well as hemorrhagic stroke patients and consider health care costs, non-health
care costs and productivity losses.

206 See table 4.1 for the description of the mRS values. Using Italian inflation rates from 2008 to 2021
(data from 2005 to 2007), costs would account for 16,094 and 2,363e respectively in 2022.

207 Using French inflation rates from 2017 to 2021 (data from 2015 to 2016), costs would account for
35,660 and 12,894e respectively in 2022.

208 Although Barral et al. (2021) state considerably higher costs (it should be noted that the study scope
is even smaller compared to Fattore et al. (2012)), both studies report a multiplication of costs with
deteriorating mRS.

209 Using the mean exchange rate USD-EUR of 2016 and South Korean inflation rates from 2017 to 2021
(data from 2011 to 2016), costs would account for 248,230 and 51,652e respectively in 2022.
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(e.g. Goyal et al., 2019; Yafasova et al., 2021; Xian et al., 2022) with the results that
more favorable outcomes are accompanied by lower costs, a reduction of DTN times is
supposed to reduce total costs.

The already mentioned centralization of stroke treatment would also have economic
effects. Shorter DTN times mean less usage of in-hospital resources, which reduces costs.
As shorter DTN times are associated with improved clinical outcomes, costs following
discharge are cut. Besides shorter DTN times, economies of scale can reduce costs, for
example through a higher utilization of equipment and fixed costs degression. However,
onset-to-treatment times may be increased by a centralization strategy, which worsens
clinical outcome.210 As outcome and costs are closely related,211 such strategy has to be
carefully traded off not only from a medical perspective, but also from a managerial one,
because a failed centralization strategy also has negative cost consequences resulting from
deteriorating clinical outcomes due to longer onset-to-treatment times.

4.6 Conclusions

There are many articles concerned with learning in a broader as well as in a narrower
sense regarding DTN times in ischemic stroke treatment. Virtually all studies report a
reduction of DTN times, either through a quality improvement program or due to learning
curve effects. Several studies depict the DTN time-reducing effect of hospital’s volume.
The results of this review have made apparent that the reduction of DTN times, i.e.
speeding up processes, does not contradict the quality of treatment. In contrast, faster
processes are the key to improved clinical outcomes in stroke treatment. Improvements
in clinical outcomes in turn come along with cost reductions. Thus, DTN time reductions
are beneficial from a medical as well as a managerial perspective.

The economic evaluation of DTN time reductions is challenging. There are studies
engaging in the relation between the reduction of DTN times and the improvement of
clinical outcomes as well as studies concerned with outcome measures and associated costs;
however, there are no articles which comprehensively evaluate the economic implications
and importance of learning in stroke treatment. Nevertheless, this review has indicated
the enormous costs of stroke and by combining study results, it has been able to argue that
DTN reductions are supposed to reduce total costs. The review has also made apparent
210 This aspect is elaborated on in section 4.5.1.
211 This relation is outlined in section 4.2.
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that there are no studies which attend to learning in ischemic stroke treatment from a
primarily managerial perspective. The great majority of the solely medical articles does
not pay attention to the economic implications of learning effects. This means there is
need for further managerial research.

Improvements in stroke treatment have the chance to counteract the expected rise
in stroke burden as well as to make a contribution to the avoidance of an overstraining
of health care systems, especially against the background of the demographic change.
Therefore, there is need for further managerial research in order to meet the importance
of an issue in health care that affects society as a whole.
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Appendix 4

Table 4.1: Modified Rankin Scale

Value Description
0* No symptoms
1* No significant disability. Able to carry out all usual activities, despite some symp-

toms
2* Slight disability. Able to look after own affairs without assistance, but unable to

carry out all previous activities
3 Moderate disability. Requires some help, but able to walk unassisted
4 Moderately severe disability. Unable to attend to own bodily needs without

assistance, and unable to walk unassisted
5 Severe disability. Requires constant nursing care and attention, bedridden, in-

continent
6 Dead
* Referred to as favorable, good or independent functional outcome.

Table 4.2: National Institutes of Health Stroke Scale

Value Description
0 No stroke symptoms
1-4 Minor stroke
5-15 Moderate stroke
16-20 Moderate to severe stroke
21-42 Severe stroke
Scale consists of 13 items, answer options correspond to values 0-2, 0-3 or 0-4.
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Table 4.3: Overview of Articles

Articles n
165

Subject keyword n1)

Learning broader sense 126
Learning narrower sense 62
Low vs. high volume 7
Training 13
Telemedicine 10
Cost consideration 3

Hospital n2)

University or tertiary care 71
Secondary care 4
Primary Stroke Center 3
Comprehensive Stroke Center 4
1) Multiple keywords per article are possible.
2) Numbers refer to articles, not to hospitals (some articles study more than one hospital). Multiple

types of hospitals per article are possible.
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Table 4.4: DTN Times

Quality Improvement Programs (Learning in a Broader Sense)
DTN Time within one hour1) (%) Beginning End
Median 32 70
Mean 38 67
Reported Median DTN Time (min.) Beginning End
Median 73 44
Mean 69 44
Reported Mean DTN Time (min.) Beginning End
Median 76 48
Mean 76 52

Learning Curve Effects (Learning in a Narrower Sense)
DTN Time within one hour1) (%) Beginning End
Median 31 48
Mean 26 47
Reported Median DTN Time (min.) Beginning End
Median 74 61
Mean 75 61
Reported Mean DTN Time (min.) Beginning End
Median 102 71
Mean 94 67

Volume Effects
DTN Time within one hour1) (%) Low Volume High Volume
Median 30 63
Mean 45 62
Reported Median DTN Time (min.) Low Volume High Volume
Median 73 52
Mean 66 51
1) Calculations use DTN ≤ 60 min. as well as < 60 min. depending on the articles.
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Table 4.5: Journal Metrics

Number of journals 77
Median Journal Impact Factor1) 2.989
Mean Journal Impact Factor1) 7.007
Weighted mean Journal Impact Factor2) 6.551
1) Based on 75 journals.
2) Based on 75 journals. Weighted by the number of articles.
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Postface

The articles in this collection have made the first step toward utilization of learning curves
as a viable option for cost reductions without deteriorating quality by measuring the
learning effects. Such sophisticated cost containment strategies can be a blessing in times
of steadily increasing health care costs and economic pressure as outlined in the preface.
Nevertheless, the implementation up to the actual increase in efficiency requires further
efforts in every case as the subject does not admit of easy, standardized solutions. Though,
these efforts finally pay off: Such sophisticated strategies can reduce costs and keep quality
stable or even improve it. This means, medical and cost containment objectives do not
diverge, i.e. there is no ethical conflict.

The collection at hand has identified learning as a complex issue and evaluating learn-
ing as a complex set of problems. However, this complexity only rudimentarily lights up
in the literature. There, a one-dimensional perspective predominates instead of an inte-
gral one. In case of learning in stroke treatment regarding a reduction of the time from
the patient’s arrival at the hospital until thrombolysis treatment, the review has vividly
shown the focus to be solely a medical one.

Though, multiperspectivity is the precondition to cope with the complexity of the
subject. Moreover, multiple perspectives can eventually benefit the patient’s outcome.
The managerial objectives do not need to be in opposition to the medical ones, but
can be regarded as complementary. A classic managerial optimization does not serve its
own purpose, i.e. optimizing for the sake of optimizing. In a medical context, it serves
the medical progress and ultimately the patient, for example suffering from a stroke.
Management makes its contribution and deploys synergy effects. The patient benefiting
from multiperspectivity, health care systems and society also profit, as improved outcomes
are associated with lower efforts and lower costs. This fact underlines the importance of
the subject also in economic considerations.

Furthermore, in other, comparable treatments, for example in case of the other major
infarction, myocardial infarction, or even in medical conditions which are not comparable,
multiperspective approaches can be reasonable, too. And this does apparently not hold
only for studies on learning; other research subjects can also profit by a multidisciplinary
approach.
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The collection has also hinted at how substantial an interdisciplinary cooperation
in medical research is. To be on the cutting edge of medical research and to stay there
respectively, it is indispensable to meet the demands for interdisciplinarity. It is worthwhile
analyzing as well as reflecting with a medical as well as a managerial eye. One must not
be underexposed or even blind on one eye—here preferably the managerial one—in order
to fully comprehend medical issues in their complexity as for example learning in stroke
treatment in case of the review.

The articles in this collection are not able to present final answers in their respective
research topics; in every case, there is need for further, differentiated research. Admit-
tedly, it would be somewhat presumptuous to declare the results of the articles to be
ultimate. The German philosopher and sociologist Simmel (2011) appropriately describes
the dilemma research has to face: “Somewhere knowledge may have an absolute basis, but
we can never state irrevocably where this basis is; consequently, in order to avoid dogmatic
thought, we have to treat each position at which we arrive as if it were the penultimate
one” (p. 110). This statement must not be perceived as a gloomy view; rather, it “is a
positive challenge, which the history of thought has illustrated many times” (p. 110).212

The remarks regarding the nature of science by the sociologist and economist Weber
are consistent with the positive perception of science as an infinite process by his contem-
porary Simmel. Weber (2011) states in his innovative lecture “Science as a Vocation”213

(p. 15) that everybody in science knows that his work will be outdated in 10, 20, 50 years.
It is the fate of science, it is positively the meaning of scientific activity. Every scien-
tific “fulfillment” means new “questions” and is to be outperformed and should become
obsolete. Everybody who wants to serve science has to accept this. To be scientifically
outperformed is not just scientists’ fate, it is their purpose. Scientists cannot work without
hoping others to progress beyond.

Accepting Weber’s (2011) message, this collection has floated current insights in order
to provide new impulses, promote scientific discourse and eventually become obsolete
itself.
212 This statement does not only apply to research, i.e. theory, it also does to the activities of hospitals,

i.e. practice. Hospitals have to be regarded—like classical enterprises—as learning organizations. From
a managerial, analytic perspective, the activities of hospitals can be classified into processes. For ex-
ample, there is a treatment protocol for patients with assumed stroke symptoms which all respective
patients go through. This protocol can be divided into several subprocesses itself, for example admis-
sion, diagnostics, etc. These processes in general are subject to suboptimality. To put it short: There
is a constant need for process optimization.

213 Original German publication “Wissenschaft als Beruf”.
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