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Abstract
Coisotropic algebras consist of triples of algebras for which a reduction can be defined and
unify in a very algebraic fashion coisotropic reduction in several settings. In this paper, we
study the theory of (formal) deformation of coisotropic algebras showing that deformations
are governed by suitable coisotropic DGLAs.We define a deformation functor and prove that
it commutes with reduction. Finally, we study the obstructions to existence and uniqueness
of coisotropic algebras and present some geometric examples.
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1 Introduction

Symmetry reduction plays an important role in theoretical classical mechanics and quantum
physics, and its various mathematical formulations have been studied extensively during
the last half century. Probably the most well-known reduction procedure of this kind is
the so-called Marsden–Weinstein reduction [27] of a symplectic manifold, which can also
be understood as a special case of coisotropic reduction of a Poisson manifold. This stan-
dard construction of Poisson geometry allows to construct a new Poisson manifold out of a
given coisotropic submanifold of a Poisson manifold. The main motivation of such reduc-
tion schemes comes from Dirac’s idea [16] of quantizing the first-class constraints, which
are described by coisotropic submanifolds, and obtaining a quantized version of coisotropic
reduction.

Having this motivation in mind, one can choose deformation quantization [1] to formu-
late quantization of Poisson geometry, where Kontsevich’s seminal paper [24] guarantees
the existence of star products in general, see, e.g. [18,30] for introductory texts on the
relevant formality theory and deformation quantization in general. Here the idea is that a
classical mechanical system which is implemented by a Poisson manifold can equivalently
be described by its Poisson algebra of real-valued functions on it. The quantized system
corresponds to a (formal) deformation of the commutative algebra of functions such that
the Poisson bracket gets deformed into the commutator of the possibly non-commutative
deformed algebra. This procedure relies on a classical principle stating that deformations of
mathematical objects are governed by associated differential graded Lie algebras (DGLAs).
More precisely, formal deformations of an associative algebra A in the sense of Gersten-
haber [22] are given by formal Maurer–Cartan elements of the associated Hochschild DGLA
C•(A ), where two such deformations are considered to be equivalent if they lie in the same
orbit of the action of the canonically associated gauge group. This leads to the moduli space
Def of formal deformations. An important tool to understand formal deformations of asso-
ciative algebras is Hochschild cohomology: the second and third Hochschild cohomology
groups contain obstructions to the existence and equivalence of formal deformations.

In the setting of deformation quantization many versions of phase space reduction are
available, starting with a BRST approach in [6] and more general coisotropic reduction
schemes found in, e.g. [2,3,5,9–12,23]. Here reduction is treated in a very algebraic fashion:
the vanishing functions on the coisotropic submanifold are deformed into a left ideal of the
total algebra of all functions and the reduced algebra is the quotient of the normalizer of this
left ideal modulo the ideal itself.

Recently, we introduced a more algebraic approach to reduction in both the quantum
and classical setting, see [14]. In particular, we defined the notion of coisotropic algebra A
consisting of a unital associative algebra Atot together with a unital subalgebra AN and a
two-sided idealA0 ⊆ AN. Such coisotropic algebras allow for a simple reduction procedure,
with the reduced algebra given by Ared = AN/A0. The eponymous example is given by a
Poisson manifold M together with a coisotropic submanifold C . Then (C∞(M),BC , JC ),
with JC the ideal of functions vanishing onC andBC the Poisson normalizer of JC , defines a
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Deformation and Hochschild cohomology of coisotropic algebras 1297

coisotropic algebra, and its reduced algebraBC/JC is isomorphic to the algebra of functions
C∞(Mred) on the reduced manifold Mred if the reduced space is actually smooth. It turns
out that one has a meaningful tensor product leading to a bicategory of bimodules over
coisotropic algebras such that reduction becomes a morphism of bicategories. Moreover,
reduction turns out to be compatible with classical limits in a nice and general functorial
way. It is important to notice that this notion recovers other examples coming from Poisson
geometry, e.g. [17] and non commutative geometry, as [28] and [13].

Motivated by the significance of coisotropic algebras and their classical limit, in this
paper we develop the corresponding theory of (formal) deformations. Following the above-
mentioned classical principle, we introduce the notion of coisotropic DGLA and we study
formal deformations of the corresponding Maurer–Cartan elements. This allows us to define
a deformation functor and to prove that the deformation functor commutes with reduction, in
the sense that at least an injective natural transformation exists, see Theorem 3.14. Applying
these techniques to the case of the coisotropic Hochschild complex of a coisotropic algebra
we prove that the existence and uniqueness of formal deformations of coisotropic algebras
are obstructed by its associated coisotropic Hochschild cohomology, see Theorem 4.19,
Theorem 4.20. Moreover, it is shown that the construction of the coisotropic moduli space of
deformations as well as that of the associated Hochschild cohomology are compatible with
reduction.

The paper is organized as follows: in Sect. 2 some basic coisotropic versions of clas-
sical algebraic structures, such as coisotropic modules, coistropic algebras and coisotropic
complexes, are introduced. These notions lead to a definition of a coisotropic DGLA. In
Sect. 3 coisotropic DGLAs together with their coisotropic sets of Maurer–Cartan elements,
their associated coisotropic gauge groups and the formal deformation of coisotropicMaurer–
Cartan elements are considered and the compatibility of these constructions with reduction is
examined. In the last Sect. 4we introduce coisotropicHochschild cohomology for coisotropic
algebras and apply the results of Sect. 3 to the case of the coisotropic Hochschild complex.
Finally, some examples of formal deformations of coisotropic algebras from geometry are
given.

2 Coisotropic structures

2.1 Preliminaries on coisotropic modules

In the following k denotes a fixed commutative unital ring, where we adopt the convention
that rings will always be associative. Let us introduce the fundamental notion of a coisotropic
k-module, which is crucial to all further considerations.

Definition 2.1 (Coisotropic k-modules) Let k be a commutative unital ring.

i.) A triple E = (Etot, EN, E0) of k-bimodules together with a module homomorphism
ιE : EN −→ Etot is called a coisotropic k-module if E0 ⊆ EN is a sub-module.

ii.) A morphism � : E −→ F of coisotropic k-modules is a pair (�tot,�N) of module
homomorphisms �tot : Etot −→ Ftot and �N : EN −→ FN such that �tot ◦ ιE =
ιF ◦ �N and �N(E0) ⊆ F0.

iii.) The category of coisotropic k-modules is denoted by C3Modk and the set of morphisms
between coisotropic k-modules E and F is denoted by Homk(E ,F ).

If the underlying ring is clear we will often just use the term coisotropic module. We will
now collect some useful categorical constructions for coisotropic modules. The following
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statements can be proved by straightforward checks of the categorical properties, see, e.g.
[25]. Let E , F be coisotropic modules and let �,� : E → F be morphisms of coisotropic
modules.

a) The morphism � is a monomorphism if and only if �tot and �N are injective module
homomorphisms.

b) The morphism � is an epimorphism if and only if �tot and �N are surjective module
homomorphisms.

c) The morphism � is a regular monomorphism if and only if it is a monomorphism with
�−1

N (F0) = E0.
d) The morphism � is a regular epimorphism if and only if it is an epimorphism with

�N(E0) = F0. Observe that the monomorphisms (epimorphisms) in C3Modk do in
general not agree with regular monomorphisms (epimorphisms), showing that C3Modk

is not an abelian category, unlike the usual categories of modules. This will cause some
complications later on.

e) The kernel of � is given by the coisotropic module

ker(�) = (
ker(�tot), ker(�N), ker(�N) ∩ E0

)
(2.1)

with ιker : ker(�N) → ker(�tot) being the morphism induced by ιE .
f) The cokernel of � is given by the coisotropic module

coker(�) = (
Ftot/im(�tot), FN/im(�N), F0/im(�N)

)
(2.2)

with ιcoker : FN/im(�N) → Ftot/im(�tot) being the morphism induced by ιF .
g) The coisotropic module im(�) := coker(ker�) is given by

im(�) = (
im(�tot), im(�N), im

(
�N

∣∣
E0

))
. (2.3)

It will be called the image of �.
h) The coisotropic module regim(�) := ker(coker�) is given by

regim(�) = (
im(�tot), im(�N), im(�N) ∩ F0

)
. (2.4)

It will be called the regular image of �.
In the case of abelian categories, there is a canonical image factorization as coker(ker�) �
ker(coker�) for every morphism. This is not the case in the non-abelian category C3Modk,
leading to two different factorization systems.Using the image everymorphismof coisotropic
modules can be factorized into a regular epimorphism and a monomorphism while using the
regular image allows for a factorization into an epimorphism and a regular monomorphism.

i) The coequalizer of � and � is given by the coisotropic module

coeq(�,�) = (
coeq(�tot, �tot), coeq(�N, �N), qN(F0)

)
(2.5)

with qN : FN → coeq(�N, �N) being the coequalizer morphism of �N, �N and
ιcoeq : coeq(�N, �N) → coeq(�tot, �tot) being the morphism induced by the mor-
phisms �N ◦ ιF and �N ◦ ιF .

j) Let E ′ ⊆ E be a coisotropic submodule, i.e. E ′
tot ⊆ Etot, E ′

N ⊆ EN and E ′
0 ⊆ E0, and

denote by i : E ′ → E the inclusion morphism. The quotient of E by E ′ is then the
coequalizer of i and the zero map. More explicitly, we get

E /E ′ = (
Etot/E

′
tot, EN/E ′

N, E0/E
′
N

)
. (2.6)
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k) The coproduct of E and F is given by

E ⊕ F = (
Etot ⊕ Ftot, EN ⊕ FN, E0 ⊕ F0

)
(2.7)

with ι⊕ = ιE + ιF . It is called the direct sum of E and F . It should be clear that also
infinite direct sums can be defined this way. Finite direct sums of coisotropic modules
can be shown to be biproducts for the category C3Modk. In particular, it is clear that also
products exist.

A fundamental notion in this setting is the tensor product of coisotropic modules. This is
an additional piece of information and is not fixed solely from the definition of the category
C3Modk.

Definition 2.2 (Tensor product) Let E ,F ∈ C3Modk be coisotropic modules. The
coisotropic module

E ⊗ F = (
Etot ⊗ Ftot, EN ⊗ FN, EN ⊗ F0 + E0 ⊗ FN

)
(2.8)

with ι⊗ = ιE ⊗ ιF is called the tensor product of E and F .

Remark 2.3 Let E ,F ∈ C3Modk be coisotropic modules.

i.) The triple E ⊗ F is indeed a coisotropic k-module. In particular, (E ⊗ F )0 = EN ⊗
F0 + E0 ⊗ FN is the submodule of EN ⊗ FN generated by elements of the form x ⊗ y
with x ∈ EN, y ∈ F0 or y ∈ E0, y ∈ FN.

ii.) The reason we did not insist on ι being injective in Definition 2.1 is that the injectivity
of ι⊗ may be spoiled by torsion effects. Nevertheless, in many examples this will be the
case.

This definitionof tensor product allowsus to construct a functor⊗ : C3Modk×C3Modk →
C3Modk, which together with the coisotropic module k = (k,k, 0) as unit object turns
C3Modk into a (weak) monoidal category, see, e.g. [19].

l) Themonoidal categoryC3Modk is a symmetricmonoidal categorywith symmetry τ : E⊗
F → F ⊗ E given by τtot/N(x ⊗ y) = y ⊗ x .

m) The internal Hom of E and F is given by the coisotropic module

C3Homk(E ,F )tot := Homk(Etot,Ftot),

C3Homk(E ,F )N := Homk(E ,F ),

C3Homk(E ,F )0 := {
(�tot,�N) ∈ Homk(E ,F ) | �N(EN) ⊆ F0

}
,

(2.9)

where ι : Homk(E ,F ) → Homk(Etot,Ftot) is the projection onto the first compo-
nent. We will denote the coisotropic module of endomorphisms by C3Endk(E ) :=
C3Homk(E , E ). Similarly, the coisotropic automorphisms are denoted by C3Autk. This
internal Hom is in fact right adjoint to the tensor product.More precisely, we have · ⊗E is
left adjoint to C3Hom(E , · ), showing that C3Modk is in fact closed monoidal. From this
it follows in particular that for every x ∈ EN and � : E ⊗ F → G we get a coisotropic
coevaluation morphism of modules �(x, · ) : F → G .

Let us stress that Homk(E ,F ) only denotes the set of coisotropic morphisms and
C3Homk(E ,F ) denotes the full coisotropic module of morphisms. The definition of
coisotropic modules allows us to reinterpret several (geometric) reduction procedures in
a completely algebraic fashion, as stated in the following straightforward proposition.

123
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Proposition 2.4 (Reduction) Mapping a coisotropic module E to the quotient Ered = EN/E0
and morphisms of coisotropic modules to the induced morphisms yields a monoidal functor

red : C3Modk → Modk, (2.10)

where the category Modk of k-bimodules is equipped with the usual tensor product.

Remark 2.5 Since the internal Hom C3Homk(E ,F ) is a coisotropic module itself we can
apply the reduction functor red to it. There is a canonical k-module morphism from
C3Homk(E ,F )red to Homk(Ered,Fred) given by mapping [(�tot,�N)] to the map [�N]
induced by �N on the quotient Ered = EN/E0. Note that this morphism is injective. There-
fore, we can view C3Homk(E ,F )red as the submodule of Homk(Ered,Fred) consisting of
morphisms that allow for an extension to the tot-components of E and F .

2.2 Coisotropic algebras and derivations

Consider again the prototypical example of a coisotropic submanifold C ↪→ M of a given
Poisson manifold (M, π). Then the coisotropic module (C∞(M),BC , JC ), with J being the
vanishing ideal of C and BC being the Poisson normalizer of JC , obviously carries more
structure than a mere coisotropic module. In particular, C∞(M) is an associative algebra
with BC ⊆ C∞(M) a subalgebra and JC ⊆ BC a two-sided ideal. This is now captured by
the following definition of a coisotropic algebra.

Definition 2.6 (Coisotropic algebra) Let k be a commutative unital ring.

i.) A coisotropic algebra over k is a triple A = (Atot,AN,A0) consisting of unital
associative algebras Atot, AN and a two-sided ideal A0 ⊆ AN together with a unital
algebra homomorphism ι : AN → Atot.

ii.) A morphism � : A → B of coisotropic algebras is given by a pair of unital algebra
homomorphisms�tot : Atot → Btot and�N : AN → BN such that ιB ◦�N = �tot◦ιA
and �N(A0) ⊆ B0.

iii.) The category of coisotropic k-algebras is denoted by C3Algk.

Coisotropic algebras can also be understood as internal algebras in the monoidal category
C3Modk. Here the particular definition of the tensor product of coisotropic modules, see
Definition 2.2, is crucial in order to realize A0 as a two-sided ideal in AN. Note that the
definition of a coisotropic algebra as provided above generalizes the one given in [14] slightly
in that we do not assume ι : AN → Atot to be injective and A0 needs not to be a left-ideal
in Atot. Nevertheless, in most of our applications these additional features (requirements in
[14]) will be satisfied.

Remark 2.7 Since A0 ⊆ AN is a two-sided ideal by definition, we can construct a reduced
algebra Ared = AN/A0 similar to Proposition 2.4. This yields a functor red : C3Algk →
Algk.

Example 2.8 i.) Let C ⊆ M be a submanifold and let F be a foliation on C . Then A =
(C∞(M),C∞(M)F, JC ), with C∞(M)F the set of functions on M constant along the
leaves on C and JC the vanishing ideal of C , is a coisotropic algebra. As soon as the leaf
space C/F carries a canonical manifold structure we have Ared � C∞(C/F).

ii.) Let (M, π) be a Poisson manifold together with a coisotropic submanifold C ↪→ M .
Then A = (C∞(M),BC , JC ) is a coisotropic algebra and Ared

∼= BC/JC turns out to
be even a Poisson algebra.
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On one hand, from an algebraic point of view, representations are important in the study of
algebraic structures. On the other hand, by the famous Serre-Swan theorem, vector bundles
over manifolds can equivalently be understood as finitely generated projective modules over
the algebra of functions on the manifold. This justifies to take a closer look at modules in our
context as well. The following gives a useful notion of (bi-)module over coisotropic algebras:

Definition 2.9 (Bimodules over coisotropic algebras) Let A ,B ∈ C3Algk be coisotropic
algebras.

i.) A triple E = (Etot, EN, E0) consisting of a (Btot,Atot)-bimodule Etot and (BN,AN)-
bimodules EN and E0 together with a bimodule morphism ιE : EN −→ Etot along the
morphisms ιB : BN → Btot and ιA : AN → Atot is called a coisotropic (B,A )-
bimodule if E0 ⊆ EN is a sub-bimodule such that

B0 · EN ⊆ E0 and EN · A0 ⊆ E0. (2.11)

ii.) A morphism � : E −→ Ẽ between coisotropic (B,A )-bimodules is a pair (�tot,�N)

of a (Btot,Atot)-bimodule morphism �tot : Etot −→ Ẽtot and a (BN,AN)-bimodule
morphism � : EN −→ ẼN such that �tot ◦ ιE = ιẼ ◦ �N and �N(E0) ⊆ Ẽ0.

iii.) The category of coisotropic (B,A )-bimodules is denoted by C3Bimod(B,A ).

Note that a coisotropic (B,A )-bimodule E can also be defined as a coisotropic k-module
together with morphisms λ : B ⊗ E → E and ρ : E ⊗ A → E of coisotropic modules
implementing the module structure. The tensor product of coisotropic k-modules as defined
in Definition 2.2 can be extended to bimodules over coisotropic algebras in the following
way.

Lemma 2.10 LetA ,B and C be coisotropic algebras and letF ∈ C3Bimod(C ,B) as well
as E ∈ C3Bimod(B,A ) be corresponding bimodules. Then C FB ⊗B BEA given by the
components

(C FB ⊗B BEA )tot = Ftot ⊗B tot Etot, (2.12)

(C FB ⊗B BEA )N = FN ⊗BN EN, (2.13)

(C FB ⊗B BEA )0 = FN ⊗BN E0 + F0 ⊗BN EN (2.14)

with ι⊗ = ιF ⊗ ιE is a (C ,A )-bimodule.

Coisotropic k-modules can be understood as bimodules for the coisotropic algebra k =
(k,k, 0), explaining our notation for the category C3Modk of coisotropic k-modules.

Example 2.11 Let ι : C ↪→ M be a submanifold and D ⊆ TC an integrable distribution
on C . Let moreover Etot → M be a vector bundle over M , EN → M a subbundle of Etot

and E0 → C a subbundle of the pullback bundle ι#EN. Moreover, let ∇ be a flat partial
D-connection on ι#EN. Then setting

Etot = 
∞(Etot), (2.15)

EN =
{
s ∈ 
∞(EN)

∣∣∣ ∇X ι#s = 0 for all X ∈ 
∞(D)
}

, (2.16)

and E0 =
{
s ∈ 
∞(EN)

∣∣∣ ∇X ι#s = 0 for all X ∈ 
∞(D) and ι#s ∈ 
∞(E0)
}

(2.17)

defines a coisotropic A -module E for A = (C∞(M),C∞(M)F, JC ) as in Example 2.8,
i) with F the foliation induced by D. Here ι#s denotes the restriction of a smooth section
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s ∈ 
∞(EN) to C . Note that the construction of EN strongly depends on the choice of the
covariant derivative. Coisotropic modules of this form are important in a coisotropic version
of the Serre-Swan theorem, see [15].

Coisotropic algebras togetherwith coisotropic bimodules, theirmorphisms and their tensor
product as above can be arranged in a bicategory structure. Mapping a coisotropic algebra
A to its reduced algebra Ared = Atot/AN and a coisotropic (A ,B)-bimodule E to the
(Ared,Bred)-bimodule Ered = EN/E0 defines a functor of bicategories, see [14].

From a geometric perspective the tangent bundle of a given manifold corresponds to the
derivations of the algebra of functions on that manifold by taking sections. In order to give
a definition of a derivation of a coisotropic algebra we rephrase the classical definition in an
element-independent way.

Definition 2.12 (Derivation) Let M ∈ C3Bimod(A ,A ) be an A -bimodule. A derivation
with values in M is a morphism D : A −→ M of coisotropic k-modules such that

D ◦ μA = � ◦ (id ⊗ D) + r ◦ (D ⊗ id) (2.18)

holds, where r and � denote the right and left A -multiplications ofM , respectively. The set
of derivations will be denoted by Der(A ,M ). If M = A we write Der(A ).

We can arrange the coisotropic derivations as a coisotropic submodule of the internal
homomorphism C3Homk(A ,M ) as follows.

Proposition 2.13 Let M ∈ C3Bimod(A ,A ) be a coisotropic A -bimodule. Then

C3Der(A ,M )tot := Der(Atot,Mtot), (2.19)

C3Der(A ,M )N := {
(Dtot, DN) ∈ Homk (A ,M )

∣
∣ Dtot ∈ Der(Atot,Mtot), DN ∈ Der(AN,MN)

}
,

(2.20)

C3Der(A ,M )0 := {
(Dtot, DN) ∈ Der(A ,M )N

∣∣ DN(AN) ⊆ M0
}

(2.21)

defines a coisotropic k-module C3Der(A ,M ).

One needs to be careful with the notation here since Der(A ) has different meanings depend-
ing whether A is a coisotropic or a classical algebra. Note also that C3Der(A ,M )N =
Der(A ,M ) is just the set of derivations of a coisotropic algebra A with values in the
coisotropic moduleM as given in Definition 2.12. The coisotropic k-module of derivations
on A with values in A is denoted by C3Der(A ).

As for usual algebras the derivations turn out to be abimodule if the algebra is commutative:

Proposition 2.14 (A -module of derivations) LetA ∈ C3Algk be a commutative coisotropic
algebra. Then C3Der(A ) is a coisotropic A -bimodule.

Every (Dtot, DN) ∈ Der(A )N defines a derivation onAred = AN/A0 since the condition
DN(A0) ⊆ A0 is automatically satisfied. Hence we have a k-linear map Der(A )N →
Der(Ared). The kernel of this linear map is exactly given by C3Der(A )0, thus there exists
an injective module homomorphism

C3Der(A )red ↪→ Der(Ared). (2.22)

This is simply the restriction of the canonical injective morphism C3Homk(A ,A )red →
Homk(Ared,Ared) from Remark 2.5 to the submodule C3Der(A ).
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Example 2.15 Our notion of a coisotropic algebra generalizes and unifies previous notions
used in noncommutative geometry referring to features of the derivations:

i) A submanifold algebra in the sense of [28] and [13] can equivalently be described as a
coisotropic algebra A with Atot = AN such that the canonical module morphism (2.22)
is an isomorphism.

ii) A quotient manifold algebra in the sense of [28] can equivalently be described as
a coisotropic algebra A with AN ⊆ Atot a subalgebra and A0 = 0 such that
Z (Ared) � Z (A )red, Der(Ared) � C3Der(A )red via (2.22) and AN = {a ∈ Atot |
for all (Dtot, DN) ∈ C3Der(A )0 one has Dtot(a) = 0} holds. Here Z (A ) denotes the
coisotropic center of the coisotropic algebraA , see Proposition 4.12, i.) for the definition.

We can also define inner derivations by requiring the existence of appropriate elements in
each component.

Proposition 2.16 Let A ∈ C3Algk be a coisotropic algebra. Then

C3InnDer(A )tot := InnDer(Atot), (2.23)
C3InnDer(A )N := {

(Dtot, DN) ∈ C3Der(A )N
∣
∣ ∃a ∈ AN : DN = [ · , a]N and Dtot = [ · , ιA (a)]tot

}
,

(2.24)

C3InnDer(A )0 := {
(Dtot, DN) ∈ C3Der(A )0

∣
∣ ∃a ∈ AN : DN = [ · , a]N and Dtot = [ · , ιA (a)]tot

}

(2.25)

defines a coisotropic k-module C3InnDer(A ).

2.3 Coisotropic homological algebra

We collect some definitions and statements about (cochain) complexes of coisotropic mod-
ules. Most of this can be done as in every abelian category. But since C3Modk is not abelian
we have to be careful when defining coisotropic cohomology, since we have two different
notions of images, see Sect. 2.1g, h.

Definition 2.17 (Graded coisotropic module) Let k be a commutative unital ring.

i.) A (Z-)graded coisotropic module is a Z-indexed family {M i }i∈Z of coisotropic modules
M i ∈ C3Modk.

ii.) A morphism {M i }i∈Z −→ {N i }i∈Z of graded coisotropic modules is given by a Z-
indexed family {�i }i∈Z of morphisms �i : M i −→ N i .

iii.) We denote the category of graded coisotropic modules by C3Mod•
k.

We combine the indexed family of a graded coisotropic module into a single coisotropic
module M • = ⊕

i∈Z M i . Conversely, if a given coisotropic module M decomposes into a
direct sum indexed by Z we write M • if we want to emphasize the graded structure. This
way, every coisotropic module can be viewed as a graded coisotropic module by placing it
at i = 0 with all other components being trivial.

A more flexible notion of morphism between graded coisotropic modules is given by a
morphism of degree k, i.e. a family �i : M i −→ N i+k .

We will use the usual tensor product

M ⊗ N =
⊕

n∈Z

( ⊕

k+�=n

M k ⊗ N �
)
, (2.26)

and the symmetry with the usual Koszul signs.
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Definition 2.18 (Coisotropic complex) Let k be a commutative unital ring.

i.) A coisotropic (cochain) complex is a graded coisotropic module M • together with a
degree +1 map δ• : M • −→ M •+1 such that δ ◦ δ = 0.

ii.) A morphism of coisotropic complexes is a morphism � : M • −→ N • such that � ◦
δM = δN ◦ �.

iii.) The category of coisotropic complexes is denoted by Ch(C3Modk).

Since morphisms of cochain complexes commute with the differential δ, it is easy to see
that we obtain a new functor by constructing the cohomology of the coisotropic complex.

Proposition 2.19 (Coisotropic cohomology) Let M • ∈ Ch(C3Modk) be a coisotropic
cochain complex with differential δ. The maps

M i �−→ Hi (M , δ) = ker δi/imδi−1 (2.27)

for i ∈ Z define a functor H : Ch(C3Modk) −→ C3Mod •
k.

Remark 2.20 ((Regular) image) Note that the coisotropic cohomology is defined by using the
image ofmorphisms of coisotropicmodules and not the regular image. However, choosing the
regular image instead would not make a difference since the 0-component of the denominator
is not used in the quotient of coisotropic modules, see (2.6). Moreover, note that in general
we cannot decide whether ker δ = imδ by computing cohomology, but we can decide if
ker δ = regim δ holds.

Since graded coisotropic modules and coisotropic complexes are given by Z-indexed
families of coisotropic modules it should be clear that applying the reduction functor in every
degree yields functors red : C3Mod•

k → Mod•
k and red : Ch(C3Modk) → Ch(Modk). It

is now natural to investigate the relation between the cohomology functor and the reduction
functor. The following proposition shows that reduction and cohomology functors commute.

Proposition 2.21 (Cohomology commutes with reduction) There exists a natural isomor-
phism η : red ◦ H �⇒ H ◦ red, i.e.

Ch(C3Modk) C3Modk

Ch(Modk) Modk

H

red red
η

H

(2.28)

commutes.

Proof Define η for every M ∈ Ch(C3Modk) by

η(M ) : H(M )red � [[x]H
]
red �→ [[x]red

]
H ∈ H(Mred).

For δi−1
N y ∈ imδi−1

N we have [δi−1
N y]red = δi−1

red[y]red and hence [[δi−1
N y]red]H = 0.

Moreover, for [x0]H ∈ H(M )0 we have x0 ∈ M i
0 and hence [[x0]red]H = 0. Thus η is

well-defined. Similarly, it can be shown that the inverse η−1(M ) : H(Mred) −→ H(M )red
given by [[x]red]H �→ [[x]H]red is well-defined. Finally, for � : M • −→ N • we have

(
η(N ) ◦ [[�i ]H

]
red

)([[x]H
]
red

) =
(
η(N )

)([[�i (x)]H
]
red

)

= [[�i (x)]red
]
H

=
([[�i ]red

]
H ◦ η(M )

)([[x]H
]
red

)
,

showing that η is indeed a natural isomorphism. ��
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Remark 2.22 A morphism � : M • → N • of coisotropic cochain complexes is called
a quasi-isomorphism if the induced map H(�) is an isomorphism of coisotropic mod-
ules. We remark that the reduction functor red : Ch(C3Modk) → Ch(Modk) maps
quasi-isomorphisms of coisotropic cochain complexes to quasi-isomorphisms of cochain
complexes.

3 Deformations via coisotropic DGLAs

3.1 Coisotropic DGLAs

By a well-known principle of classical deformation theory, a deformation problem is con-
trolled by a certain differential graded Lie algebra, see, e.g. [26]. Thus, the first step to discuss
the deformation theory of coisotropic algebras consists in introducing a suitable notion of
coisotropic differential graded Lie algebra (DGLA) and a deformation functor in this realm.

Definition 3.1 (Coisotropic differential graded Lie algebra) Let k be a commutative unital
ring.

i.) A coisotropicDGLAgoverk is a pair ofDGLAs (g•
tot, [ · , · ]tot, dtot) and (g•

N, [ · , · ]N, dN)

over k together with a degree 0 morphism ιg : g•
N −→ g•

tot of DGLAs and a graded Lie
ideal g•

0 ⊂ g•
N such that dN(g•

0) ⊆ g•+1
0 .

ii.) For two coisotropic DGLAs g and h, a morphism � : g• −→ h• of coisotropic DGLAs
is a pair of DGLAmorphisms �tot : g•

tot → h•
tot and �N : g•

N → h•
N such that �tot ◦ ιg =

ιh ◦ �N and �N(g•
0) ⊆ h•

0.
iii.) The category of coisotropic DGLAs will be denoted by C3DGLA.

Note that amorphismof coisotropicDGLAs can equivalently be understood as amorphism
of coisotropic modules such that its components are DGLA morphisms. A coisotropic Lie
algebra is a coisotropic DGLA with trivial differential concentrated in degree 0. Similarly a
coisotropic graded Lie algebra is a coisotropic DGLAwith trivial differential. Two important
examples of coisotropic Lie algebras are obtained as follows:

Example 3.2 (Endomorphisms and derivations) Let k be a commutative unital ring.

i) Let E be a coisotropic k-module. The internal endomorphisms C3Endk(E ) are a
coisotropic Lie algebra given by the usual commutator [ · , · ]E tot on C3Endk(E )tot and
the pair ([ · , · ]E tot , [ · , · ]EN ) on C3Endk(E )N.

ii) Let A be a coisotropic algebra over k. It is straightforward to see that C3Der(A )

is a coisotropic k-submodule of the coisotropic k-module C3Endk(A ). Moreover,
C3Der(A ) is even a coisotropic Lie subalgebra of the coisotropic Lie algebra
C3Endk(A ). All canonical maps like (2.22) are in fact Lie morphisms.

Since every coisotropic DGLA g is, in particular, a coisotropic cochain complex we can
always construct its corresponding cohomologyH(g). Moreover, everymorphism� : g• −→
h• of coisotropic DGLAs is a morphism of coisotropic cochain complexes and therefore it
induces a morphism H(�) : H•(g) −→ H•(h) on cohomology. Clearly, H(g) is a coisotropic
graded Lie algebra and every induced morphism H(�) is a morphism of coisotropic graded
Lie algebras. If H(�) is an isomorphism we call � a coisotropic quasi-isomorphism. From
Remark 2.22 it es clear that reduction of coisotropic DGLAs preserves quasi-isomorphisms.

Following the standard way to define a deformation functor for a given DGLA, we aim
to define a Maurer–Cartan functor and to introduce a notion of gauge equivalence. In order
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to define the Maurer–Cartan elements in the coisotropic DGLA we first need an appropriate
notion of a coisotropic set:

Definition 3.3 (Coisotropic set)

i.) A pair of sets (Mtot, MN) together with a map ιM : MN → Mtot and an equivalence
relation ∼ on MN is called a coisotropic set, denoted by M = (Mtot, MN,∼).

ii.) A morphism f : M → N of coisotropic sets M and N is given by a pair of maps
ftot : Mtot → Ntot and fN : MN → NN such that ιN ◦ fN = ftot ◦ ιM and such that fN is
compatible with the equivalence relations, i.e. f (m) ∼N f (m′) for all m,m′ ∈ M with
m ∼M m′.

iii.) The category of coisotropic sets is denoted by C3Set.

Remark 3.4 Every coisotropic k-module E , and hence every coisotropic algebra, coisotropic
DGLA, etc., has an underlying coisotropic set in the sense that EN can be equipped with the
equivalence relation induced by the submodule E0. In this sense coisotropic sets form the
underlying structure for all the different notions of coisotropic algebraic structures.

Given a coisotropic set we can clearly define a reduced one, as for coisotropic modules, by
taking the quotientMred = M/∼. This also yields a reduction functorred : C3Set → Set.

We can now define the coisotropic set of Maurer–Cartan elements of a coisotropic DGLA.
Recall that a Maurer–Cartan element in a DGLA g• is an element ξ ∈ g1 satisfying the
Maurer–Cartan equation

dξ + 1

2
[ξ, ξ ] = 0. (3.1)

While up to here we did not have to make any further assumption about the ring k of scalars,
from now on we assume Q ⊆ k in order to have a well-defined Maurer–Cartan equation
and gauge action later on. We denote by MC(g) the set of all Maurer–Cartan elements of a
DGLA.

Definition 3.5 (Coisotropic set of Maurer–Cartan elements) Let g be a coisotropic DGLA
over a commutative unital ring k. The coisotropic set MC(g) of Maurer–Cartan elements of
g is given by

MC(g) = (
MC(gtot), MC(gN), ∼MC

)
, (3.2)

together with ιMC : MC(gN) −→ MC(gtot) given by the map ιg : g•
N −→ g•

tot of g and where
the relation ∼MC is defined by

ξ1 ∼MC ξ2 ⇐⇒ ξ1 − ξ2 ∈ g10 (3.3)

for ξ1, ξ2 ∈ MC(gN).

Lemma 3.6 (Maurer–Cartan functor) Mapping coisotropic DGLAs to their coisotropic sets
of Maurer–Cartan elements defines a functor

MC : C3DGLA −→ C3Set. (3.4)

Proof Every morphism � : g → h of coisotropic DGLAs induces maps �tot : MC(gtot) →
MC(htot) and �N : MC(gN) → MC(hN). Moreover, since �N : gN → hN preserves the 0-
component its induced map on MC(gN) maps equivalent elements to equivalent elements.

��
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As in the setting of DGLAs, for a given coisotropic DGLA (g, [ · , · ], d) and a given
Maurer–Cartan element ξ0 ∈ MC(g)N we can always obtain a twisted coisotropic DGLA by
gξ0

= (g, [ · , · ], dξ0) with

dξ0 := d + [ξ0, · ]. (3.5)

Here we are using the coevaluation morphism as mentioned in Sect. 2.1m).
Note that for any coisotropic DGLA g and coisotropic algebraA the tensor product g⊗A

is again a coisotropicDGLAby the usual construction. For this observe thatg0⊗AN+gN⊗A0

is indeed a Lie ideal in gN ⊗ AN.
Reformulating the equivalence of deformations of a given Maurer–Cartan element in

terms of its twisted coisotropic DGLA requires a notion of a coisotropic gauge group. For
this reason we first introduce the notion of a coisotropic group:

Definition 3.7 (Coisotropic group)

i.) A triple of groupsG = (G tot,GN,G0) together with a group homomorphism ιG : GN →
G tot is called a coisotropic group if G0 ⊆ GN is a normal subgroup.

ii.) A morphism � : G → H of coisotropic groups G and H is given by a pair of group
homomorphisms �tot : G tot → Htot and �N : GN → HN such that ιH ◦ �N = �tot ◦ ιG
and �N(G0) ⊆ H0.

iii.) The category of coisotropic groups is denoted by C3Group.

Again, we obviously have a reduction functor red : C3Group → Group given by
Gred = GN/G0. Moreover, there is a forgetful functor C3Group → C3Set by only
keeping the underlying sets and the equivalence relation induced by the normal subgroup
G0. It can be shown that the automorphisms of a coisotropic set can be equipped with the
structure of a coisotropic group. This leads to the definition of an action of a coisotropic
group on a coisotropic set.

Definition 3.8 (Action of coisotropic group) LetG be a coisotropic group andM a coisotropic
set. An action of G on M is given by an action �tot : G tot × Mtot → Mtot of G tot on Mtot

and an action �N : GN × MN → MN of GN on MN such that ιM ◦ �N = �tot ◦ (ιG × ιM )

and �g(m) ∼M m for all g ∈ G0 and m ∈ MN.

Example 3.9 (Coisotropic groups and actions)

i) Every short exact sequence of groups 1 → H → G → K → 1 defines a coisotropic
group (K ,G, H).

ii) Let X = (X tot, XN,∼) a coisotropic set. Let furthermore G be a group acting on X tot

via � : G × X tot → X tot. Then (G,GXN ,G∼), with GXN the stabilizer subgroup of
the subset XN and G∼ the normal subgroup of GXN consisting of all g ∈ XXN such
that �g(p) ∼ p for all p ∈ XN, is a coisotropic group. Clearly, (�,�

∣∣GXN ) gives a
coisotropic action on (X tot, XN,∼).

To define the coisotropic gauge group we either need to assume that the DGLA we are
starting with has additional properties, e.g. being nilpotent, or we can use formal power series
instead. Since later on we are interested in formal deformation theory, we will choose the
latter option. For this let k�λ� = (k�λ�,k�λ�, 0) denote the coisotropic ring of formal power
series in k.

Then the formal power series E �λ� of any coisotropic k-module E form a coisotropic
k�λ�-module as follows: we set

E �λ� = (
Etot�λ�, EN�λ�, E0�λ�

)
, (3.6)
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and use the canonical λ-linear extension ιE �λ� of the previous map ιE : EN −→ Etot. Accord-
ing to the usual convention, we denote this extension simply by ιE . Note that in general E �λ�

is strictly larger than the tensor product E ⊗ k�λ�: we still need to take a λ-adic completion.
This is the reason that we define E �λ� directly by (3.6).

It is now easy to see that g�λ� is a coisotropic DGLA for any coisotropic DGLA g by
λ-linear extension of all structure maps. Similarly, we can extend coisotropic algebras and
their modules.

Note that the gauge action will require to haveQ ⊆ k since we need (formal) exponential
series and the (formal) Baker-Campbell-Hausdorff (BCH) series.

Proposition 3.10 Letgbea coisotropicLie algebra. ThenG(g) = (λgtot�λ�, λgN�λ�, λg0�λ�)

withmultiplication • given by theBaker–Campbell–Hausdorff formula is a coisotropic group.

Proof The additional prefactor λ makes all the BCH series λ-adically convergent. The well-
known group structures on gtot�λ� and gN�λ� are given by the BCH formula and we clearly
have a group morphism gN�λ� → gtot�λ�. Finally, we need to show that λg0�λ� is a normal
subgroup of λgN�λ�. For this let λg ∈ λgN�λ� and λh ∈ λg0�λ� be given. Since by the BCH
formula λg • λh • (λg)−1 = λg0 + λh0 − λg0 + λ2(· · · ), where all higher order terms are
given by Lie brackets and g0 is a Lie ideal in gN, we see that λg • λh • (λg)−1 ∈ λg0�λ�. ��

By abuse of notation we will write G(g) = G(g0) for every coisotropic DGLA g. With
the composition • on G(g) defined by the Baker–Campbell–Hausdorff formula it is imme-
diately clear that every morphism � : g → h of coisotropic DGLAs induces a morphism
G(�) : G(g) → G(h) of the corresponding gauge groups, given by the λ-linear extension of
�. In other words, we obtain a functor G : C3DGLA → C3Group.

The usual gauge action of the formal group on the (formal) Maurer–Cartan elements can
now be extended to a coisotropic DGLA as follows:

Proposition 3.11 (Gauge action) Let (g, [ · , · ], d) be a coisotropic DGLA. Then the
coisotropic group G(g) acts on the coisotropic set MC(λg�λ�) by

λg �tot ξ := eλadtot(g)(ξ) − λ

∞∑

k=0

(λadtot(g))k

(1 + k)! (dtotg) (3.7)

for λg ∈ G(g)tot and ξ ∈ MC(λg�λ�)tot as well as

λg �N ξ := eλadN(g)(ξ) − λ

∞∑

k=0

(λadN(g))k

(1 + k)! (dNg) (3.8)

for λg ∈ G(g)N and ξ ∈ MC(λg�λ�)N.

Proof Clearly, �tot and �N define actions of G(g)tot and G(g)N on MC(λg�λ�)tot and
MC(λg�λ�)N, respectively, by classical results, see [18]. Moreover, writing out the expo-
nential series and using the fact that ad(g) = [g, · ] and d commute with ιg directly yields

ιg (λg �N ξ) = eλadtot(ιg(g))(ιg(ξ)) − λ

∞∑

k=0

(λadtot(ιg(g)))k

(1 + k)! (dtotιg(g))

= λιg(g) �tot ιg(ξ).
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Finally, we have for any λg ∈ G(g)0 and ξ ∈ MC(λg�λ�)N

eλadN(g)(ξ) − ξ =
∞∑

k=0

λk

k! (adN(g))k(ξ) − λ

∞∑

k=0

(λadN(g))k

(1 + k)! (dNg) − ξ

=
∞∑

k=1

λk

k! (adN(g))k(ξ) − λ

∞∑

k=0

(λadN(g))k

(1 + k)! (dNg) ∈ λg0�λ�,

since dNg ∈ g0�λ� and adN(g)(ξ) ∈ g0�λ�. ��

3.2 Deformation functor and reduction

Maurer–Cartan elements are said to be equivalent if they lie in the same orbit of the gauge
action. Hence the object of interest for deformation theory is not the set of Maurer–Cartan
elements itself but its set of equivalence classes. More precisely let us denote by Def(g) the
pair given by

Def(g)tot := MC(λg�λ�)tot/G(g)tot and (3.9)

Def(g)N := MC(λg�λ�)N/G(g)N (3.10)

with an equivalence relation on Def(g)N defined by

[ξ1] ∼ [ξ2] :⇐⇒ ξ1 ∼MC ξ2. (3.11)

Proposition 3.12 Let g be a coisotropic DGLA. Then Def(g) is a coisotropic set.

Proof By Proposition 3.11 we know that the action of G(g) is compatible with
ιMC : MC(λg�λ�)N → MC(λg�λ�)tot , hence ιMC descends to a morphism ιMC : Def(g)N →
Def(g)tot. To see that (3.11) yields a well-defined equivalence relation suppose that λg � ξ1
is another representative of [ξ1]. Then again by Proposition 3.11 we know that λg � ξ1 − ξ1 ∈
λg�λ�0 and thus λg � ξ1 ∼MC ξ1, showing that (3.11) is well-defined. ��

We have seen in Lemma 3.6 that morphisms of coisotropic DGLAs induce morphisms
between the corresponding coisotropic sets ofMaurer–Cartan elements. This is still true after
taking the quotient by the coisotropic gauge group.

Proposition 3.13 Mapping coisotropic DGLAs g to the quotient set Def(g) defines a functor

Def : C3DGLA → C3Set. (3.12)

Proof Given a morphism � : g → h of coisotropic DGLAs we get morphisms
MC(�) : MC(λg�λ�) → MC(λh�λ�) and G(�) : G(g) → G(h) as shown in Lemma 3.6 and
after Proposition 3.10. Then we have

MC(�)(λg �N ξ) = �N

(

eλadN(g)(ξ) − λ

∞∑

k=0

(λadN(g))k

(1 + k)! (dNg)

)

= eλ(adN(�N(g)))(�N(ξ)) − λ

∞∑

k=0

(λadN(�N(g)))k

(1 + k)! (dN�N(g))

= G(�)(λg) � MC(�)(ξ),
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and similar for the tot-component, showing that MC(�) is equivariant along G(�) and hence
inducing a morphism Def(�) as needed. ��

The question arises if the above constructions of the coisotropic set of Maurer–Cartan
elements, the coisotropic gauge group and the deformation functor commute with reduction.
The next theorem shows that this is partially true, in the sense that at least an injective natural
transformation exists.

Theorem 3.14 (Gauge group and reduction) Let k be a commutative ring containing Q.

i.) There exists an injective natural transformation η : red ◦ MC �⇒ MC ◦ red, i.e.

C3DGLA C3Set

DGLA Set

MC

red red
η

MC

(3.13)

commutes with η injective.
ii.) There exists a natural isomorphism η : red ◦ G �⇒ G ◦ red, i.e.

C3DGLA C3Group

DGLA Group

G

red red
η

G

(3.14)

commutes with η injective.
iii.) There exists an injective natural transformation η : red ◦ Def �⇒ Def ◦ red, i.e.

C3DGLA C3Set

DGLA Set

Def

red red
η

Def

(3.15)

commutes with η injective.

Proof i.) In the followingwe denote by [ · ]MC the equivalence classes of elements inMC(gN)

and by [ · ]g the equivalence classes of elements in gN. For any coisotropic DGLA g

define ηg : MC(g)red → MC(gred) by ηg([ξ ]MC) = [ξ ]g. This map is well-defined since
[ξ ]MC ⊆ [ξ ]g and

dred[ξ ]g + [[ξ ]g, [ξ ]g
]
red = [

dNξ + [ξ, ξ ]N
]
g

= [0]g
for every ξ ∈ MC(gN). To show that ηg is injective let [ξ1]MC, [ξ2]MC ∈ MC(g)red be
given such that [ξ1]g = [ξ2]g. Then ξ2 ∈ [ξ1]g and hence ξ1−ξ2 ∈ g10. Thus by definition
ξ1 ∼MC ξ2 and therefore [ξ1]MC = [ξ2]MC. To show naturality of η let a morphism
� : g → h of coisotropic DGLAs be given. This induces morphisms � : MC(g)red →
MC(h)red and � : MC(gred) → MC(hred) by applying �N to representatives. Then we
have

(ηh ◦ �)([ξ ]MC) = ηh([�N(ξ)]MC) = [�N(ξ)]h = �([ξ ]g) = �(ηg([ξ ]MC)),

showing that η is natural.
ii.) Then ηg : G(g)red → G(gred) given by [λg]G �→ λ[g]g, where [g]g denotes the

equivalence class of g in gred, is well-defined. Indeed, ηg is just the λ-linear exten-
sion of the obvious identity gN/g0 = gred. Moreover, ηg is a group morphism, since
[ · ]g : gN → gred is a morphism of DGLAs and • is given by sums of iterated brackets.
Naturality follows directly.
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iii.) Let g ∈ C3DGLA be a coisotropic DGLA. Define ηg : Def(g)red → Def(gred) by
[[λg]G]Def �→ [[λg]MC]G where [ · ]G denotes the equivalence class induced by the action
of the gauge group, [ · ]Def denotes the equivalence class given by the equivalence relation
onDef(g)N and [ · ]MC denotes the equivalence class given by the equivalence relation on
MC(λgred�λ�). Now suppose that [λg′]G is another representative of [[λg]G]Def, hence
λg ∼MC λg′ by (3.11) and thus ηg is well-defined. For the injectivity let [[λg]MC]G =
[[λg′]MC]G be given. Then [λg]MC = λ[h] � [λg′]MC = [λh �N λg′]MC for some [h] ∈
gred�λ� and therefore [[λg]G]Def = [[λg′]G]Def. Naturality follows as above.

��

4 Deformation theory of coisotropic algebras

4.1 Deformations of coisotropic algebras

In formal deformation quantization one is interested in algebras of formal power series over
a ring k�λ�, e.g. (C∞(M)�λ�, �) as algebra over C�λ� for a Poisson manifold M with star
product �. For this reason, we consider deformations of a coisotropic algebraA with respect
to the augmented (coisotropic) ring k�λ� = (k�λ�,k�λ�, 0). Given a coisotropic k-algebra
A ∈ C3Algk, we can define a formal deformation to be a coisotropic k�λ�-algebra B
together with an isomorphism α : cl(B) −→ A . Here cl(B) denotes the classical limit as
introduced in [14]: The classical limit of a coisotropic k�λ�-algebra B is the coisotropic
k-algebra defined as cl(B) = B/λB = (Btot/λBtot,BN/λBN,B0/λBN). It is easy to
see that this definition agrees with the one from deformation via Artin rings, see, e.g. [26].
Usually, one is interested in more specific deformations, namely those that are, e.g. free
k-modules. This leads us to the following definition:

Definition 4.1 (Deformation of coisotropic algebra) Let A ∈ C3Algk be a coisotropic
algebra. A (formal associative) deformation of A is given by an associative multiplication
μ : A �λ� ⊗ A �λ� −→ A �λ� on A �λ� turning it into a coisotropic k�λ�-algebra such that
cl(A �λ�, μ) � A .

Let us comment on this definition. First recall that we have

A �λ� = (
Atot�λ�,AN�λ�,A0�λ�

)
(4.1)

with the structure map ιA �λ� = ιA being just the λ-linear extension of the previous map
according to (3.6). Thenwe have two formal associative deformationsμtot andμN forAtot�λ�

and AN�λ� of the form μtot = (μtot)0 + λ(μtot)1 + λ2(. . . ) and μN = (μN)0 + λ(μN)1 +
λ2(. . . ), respectively, such that the undeformed map ιA is an algebra homomorphism and
such that A0�λ� is a two-sided ideal in AN�λ� with respect to μN. Note that we insist on
the AN and A0 being the same up to taking formal series. Also the algebra morphism ιA is
not deformed. There are various approaches to study the deformations of various kinds of
algebras and their morphisms, e.g. via derived bracket as in [21] or with operadic approach
as in [20]. Nevertheless, our goal is to deform the multiplicative structure of a coisotropic
algebra, but not the morphism it contains.

One particular scenario we will be interested in the context of deformation quantization
of phase space reduction is the following:

Example 4.2 For convenience, we will assume that k is actually a field and not just a ring.
Let A = (Atot ⊇ AN ⊇ A0) be a coisotropic triple such that A0 ⊆ Atot is a left ideal and
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AN ⊆ N(A0) is a unital subalgebra of the normalizer of this left ideal. In particular, ιA is just
the inclusion. Consider now a formal associative deformation μtot ofAtot with the additional
property that the formal series A0�λ� are still a left ideal inside Atot�λ� with respect to μtot.
Moreover, assume that the normalizer AAA N = Nμtot (J �λ�) ⊆ Atot�λ� with respect to μtot

satisfies

cl(AAA N) ⊆ AN. (4.2)

This would be automatically true ifAN coincides with the undeformed normalizer but poses
an additional condition otherwise.

It is now easy to check thatAAA N ⊆ Atot�λ� is a closed subspace with respect to the λ-adic
topology. Moreover, if λa ∈ AAA N for some a ∈ Atot�λ� we can conclude a ∈ AAA �λ�. Hence
AAA N ⊆ A �λ� is a deformation of a subspace in the sense of [6, Def. 30], i.e. we have a
subspace D ⊆ Atot and linear maps qr : D −→ Atot for r ∈ N such that

AAA N = q(D�λ�) (4.3)

where q = ιD + ∑∞
r=1 λr qr with ιD being the canonical inclusion of the subspace. By our

assumption, D ⊆ AN but the inclusion could be proper. Moreover, since by our assumption
A0�λ� ⊆ N(A0�λ�) = AAA N, we have A0 ⊆ D .

Since we work over a field, we can find a complement C ⊆ D such that A0 ⊕ C = D .
This allows to redefine the maps qr to

q ′
r

∣∣
C

= qr
∣∣
C

and q ′
r

∣∣
A0

= 0. (4.4)

The resulting map q ′ then satisfies q ′(D�λ�) = AAA N and q ′∣∣
A0

= idA0 . We can then use q ′ to
pass to a newdeformationμ′

tot ofAtot with the property thatA0�λ� is still a left ideal inAtot�λ�

with respect to μ′
tot and the normalizer of this left ideal is now given by D�λ� ⊆ Atot�λ�. It

follows that μ′
tot provides a deformation of the coisotropic triple (Atot,D,A0) in the sense

of Definition 4.1.
Of course, it might happen that D �= AN and hence this construction will not provide a

deformation of the original coisotropic triple, in general. It turns out that this can be controlled
as follows: we assume in addition that the deformed normalizer AAA N is large enough in the
sense that the classical limit

cl : AAA red = AAA N
/
(A0�λ�) −→ Ared = AN

/
A0 (4.5)

between the reduced algebras is surjective. As k is a field, this gives us a split Q : Ared −→
AAA red which we can extend λ-linearly to

Q : Ared�λ� −→ AAA red. (4.6)

It is then easy to see that this is in fact a k�λ�-linear isomorphism. It follows, that in this case
we necessarily have

D = AN. (4.7)

Thus the previous construction gives indeed a deformation μ′
tot of the original coisotropic

triple. This seemingly very special situation will turn out to be responsible for one of the
main examples from deformation quantization.
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4.2 Coisotropic Hochschild cohomology

From now on we assume that Q ⊆ k. Let M ,N ∈ C3Modk be coisotropic modules. We
define for any n ∈ N

Cn(M ,N ) = C3Homk(M⊗n,N ) (4.8)

with C3Homk denoting the internal Hom as usual. Recall that

Cn(M ,N )tot = Homk(M⊗n
tot ,Ntot),

Cn(M ,N )N = Homk(M⊗n,N ),

Cn(M ,N )0 = {
( ftot, fN) ∈ Cn(M⊗n,N )

∣
∣ fN(M⊗n

N ) ⊆ N0
}

with ιn : Cn(M ,N )N � ( ftot, fN) �→ ftot ∈ Cn(M ,N )tot. Note that a morphism f =
( ftot, fN) ∈ Cn(M ,N )N fulfils fN((M⊗n)0) ⊆ N0 where, by definition of the tensor
product, we have

(M⊗n)0 =
n∑

i=1

M⊗i−1
N ⊗ M0 ⊗ M⊗n−i

N . (4.9)

In other words, fN maps to N0 if at least one tensor factor comes from M0. This clearly
defines a graded coisotropic k-module C•(M ,N ).

Let us now consider the case N = M . Then we write C•(M ) = C•(M ,M ). We
now want to transfer the Gerstenhaber algebra structure of the classical Hochschild complex
to C•(M ). For this denote by [ · , · ]M tot and [ · , · ]MN the Gerstenhaber brackets for the
modules Mtot and MN, respectively. Then we need to show that [ · , · ]MN preserves the
0-components. This follows directly from the usual formula for the Gerstenhaber bracket,
see [22].

Definition 4.3 (Gerstenhaber bracket) LetM ∈ C3Modk. Then themorphism [ · , · ] : C•(M )⊗
C•(M ) → C•(M ) of coisotropic k-modules defined by

[ · , · ]tot = [ · , · ]M tot and [ · , · ]N = ([ · , · ]M tot , [ · , · ]MN
)

(4.10)

is called the coisotropic Gerstenhaber bracket.

Since [ · , · ]M tot and [ · , · ]MN induce graded Lie algebra structures on the classical
Hochschild complexes of Mtot and MN it is easy to see that C•(M ) together with the
coisotropic Gerstenhaber bracket [ · , · ] forms a graded coisotropic Lie algebra.

Remark 4.4 The coisotropic Gerstenhaber bracket can also be derived from a coisotropic
pre-Lie algebra structure on C•(M ), which in turn results from a sort of partial composition.
These partial compositions can be interpreted as the usual endomorphism operad structure
of M in C3Modk. The theory of operads in the (non-abelian) category C3Modk will be the
subject of a future project.

As in the standard theory of deformation of associative algebras, we can characterize
associative multiplications by using the Gerstenhaber bracket.

Lemma 4.5 LetM ∈ C3Modk be a coisotropic module. Then a morphism μ : M ⊗M −→
M of coisotropic k-modules is an associative coisotropic algebra structure onM if and only
if

[μ,μ]N = 0. (4.11)
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Proof First, note that a coisotropic morphism μ : M ⊗ M → M is an element in C2(M )N
and hence consists of a pair (μtot, μN) and [ · , · ]N = ([ · , · ]M tot , [ · , · ]MN ). From the clas-
sical theory for associative algebras we know thatμtot andμN are associative multiplications
if and only if [μtot, μtot]M tot = 0 and [μN, μN]MN = 0 holds. ��

Note that (4.11) only involves the N-component of the coisotropic Gerstenhaber bracket
[ · , · ]. Using the coisotropic structure of C2(M ) we get ι2(μ) = μtot ∈ C2(M )tot , from
which directly [μtot, μtot]tot = 0 follows.

Let us now move from a module M to an algebra (A , μ). Then we can use the multipli-
cation to construct a differential on C•(A ).

Proposition 4.6 (Coisotropic Hochschild differential) Let (A , μ) ∈ C3Algk be a
coisotropic algebra. Then the morphism δ : C•(A ) → C•+1(A ) of coisotropic k-modules,
defined by its components

δtot = −[ · , μtot]tot and δN = −[ · , μ]N, (4.12)

is a coisotropic chain map of degree 1 and δ2 = 0.

Proof Since μtot is an associative multiplication on Atot we know that δtot : C•(Atot) −→
C•+1(Atot) is a differential. Moreover, it is clear that δN : C•(A )N −→ C•(A )N is also a
differential and it preserves the 0-component by the definition of [ · , · ]N. Finally, we have
for (�tot,�N) ∈ Cn(A )N that (δtot ◦ ιn)(�tot,�N) = δtot(�tot) = ιn+1(δN((�tot,�N)))

holds, and hence (δtot, δN) is a coisotropic morphism. ��
Note that δN can be seen as a coevaluation morphism according to Sect. 2.1m). The

coisotropic Hochschild differential can be interpreted as twisting the coisotropic DGLA
(C•(A ), [ · , · ], 0) with the Maurer–Cartan element μ ∈ C2(A )N, but with signs chosen in
such a way that it corresponds to the usual Hochschild differential. More explicitly we have
the following result.

Corollary 4.7 Let (A , μ) ∈ C3Algk be a coisotropic algebra. Then the coisotropic
Hochschild differential δ : C•(A ) −→ C•+1(A ) is given by δ = (δA tot , (δA tot , δAN )), where
δA tot and δAN denote the Hochschild differentials of the algebras (Atot, μtot) and (AN, μN),
respectively.

From this explicit characterization of the coisotropic Hochschild differential in terms of
the classical Hochschild differentials it becomes clear that (C•(A ), [ · , · ], δ) is a coisotropic
DGLA.

Definition 4.8 (Coisotropic Hochschild complex) Let (A , μ) ∈ C3Algk be a coisotropic
algebra. The coisotropic DGLA (C•(A ), [ · , · ], δ) is called the coisotropic Hochschild com-
plex of A .

Assigning the (coisotropic) Hochschild complex to a given (coisotropic) algebra is not
functorial on all of C3Algk. But if we restrict ourselves to the subcategory C3Alg

×
k of

coisotropic algebras with invertible morphisms we get a functor C• : C3Alg
×
k → C3DGLA

bymapping each coisotropic algebra to its coisotropic Hochschild complex and every algebra
isomorphismφ : A → B toC•(φ) : C•(A ) → C•(B) given byC•(φ)( f ) = φ◦ f ◦(φ−1)⊗n

for f ∈ Cn(A )tot/N. A similar construction clearly also works for usual algebras. We can
now show that this functor commuteswith reduction up to an injective natural transformation.
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Proposition 4.9 (Hochschild complex versus reduction) There exists an injective natural
transformation η : red ◦ C• �⇒ C• ◦ red, i.e.

C3Alg
×
k C3DGLA

Alg×
k DGLA

C•

red red
η

C•
(4.13)

commutes.

Proof For every coisotropic algebra A define ηA : C•(A )red → C•(Ared) by

ηA ([ f ])([a1], . . . , [an]) = [ fN(a1, . . . , an)] .

for [ f ] = [( ftot, fN)] ∈ Cn(A )red. First note that ηA ([ f ]) : A ⊗n
red → Ared is well

defined since if ai ∈ A0 for any i = 1, . . . , n we have fN(a1, . . . , an) ∈ A0 and hence
[ fN(a1, . . . , an)] = 0. Moreover, ηA is well-defined since for f ∈ Cn(A )0 we have
fN(a1, . . . , an) ∈ A0 and thus η([ f ]) = 0. To see that η is indeed a natural transformationwe
need to show that for every isomorphismφ : A → BwehaveηB ◦C•(φ)red = C•([φ])◦ηA .
But it is clear after inserting the definitions. Finally, supposeηA ([ f ]) = ηA ([g]). Thismeans
that ( fN − gN)(a1, . . . , an) ∈ A0 and therefore [ f ] = [g]. Thus ηA is injective. ��

Now let us turn to the cohomology of the coisotropic Hochschild complex.

Definition 4.10 (Coisotropic Hochschild cohomology) Let (A , μ) ∈ C3Algk be a
coisotropic algebra. The cohomology HH•(A ) = ker δ/imδ of the Hochschild complex
C•(A) is called the coisotropic Hochschild cohomology of A .

Using the definition of kernel, image and quotient in C3Modk as given in Sect. 2.1e, g, j we
can express the coisotropic Hochschild cohomology more explicitly as follows.

Lemma 4.11 The coisotropic Hochschild cohomology of A ∈ C3Algk is given by

HH•(A )tot = HH•(Atot), (4.14)

HH•(A )N = ker δN/imδN, and (4.15)

HH•(A )0 = ker(δN
∣∣
0)/imδN (4.16)

with

ker δn+1
N = {

( ftot, fN) ∈ Cn+1(A )N
∣∣ δA tot ftot = 0 and δA N fN = 0

} ⊆ ker δn+1
A tot

× ker δn+1
A N

, (4.17)

imδnN = {
( ftot, fN) ∈ Cn+1(A )N

∣∣ ∃(gtot, gN) ∈ Cn(A )N : δA tot gtot = ftot and δA N gN = fN
}
, and

(4.18)

ker(δnN
∣
∣
0) = {

( ftot, fN) ∈ Cn+1(A )0
∣
∣ δA tot ftot = 0 and δA N fN = 0

} ⊆ ker δnA tot
× ker δnA N

. (4.19)

With this we can compute the zeroth and first coisotropic Hochschild cohomology of a given
coisotropic algebra. The following also shows that in low degrees the interpretation of the
coisotropic Hochschild cohomology is analogous to that for usual algebras.

Proposition 4.12 Let A ∈ C3Algk be a coisotropic algebra.

i.) We have

HH0(A )tot = Z (Atot), (4.20)

HH0(A )N = {
a ∈ AN

∣∣ a ∈ Z (AN) and ιA (a) ∈ Z (Atot)
}
, and (4.21)

HH0(A )0 = {
a0 ∈ A0

∣∣ a0 ∈ Z (AN) and ιA (a0) ∈ Z (Atot)
}
. (4.22)
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ii.) We have

HH1(A )tot = Der(Atot)/InnDer(Atot), (4.23)

HH1(A )N = Der(A )N/
{
(Dtot, DN) ∈ Der(A )N

∣
∣ ∃a ∈ AN : Dtot = [ · , ιA (a)], DN = [ · , a]}, and

(4.24)

HH1(A )0 = Der(A )0/
{
(Dtot, DN) ∈ Der(A )N

∣∣ ∃a ∈ AN : Dtot = [ · , ιA (a)], DN = [ · , a]}.
(4.25)

Hence HH1(A ) = C3Der(A )/C3InnDer(A ).

Proof The first claim is clear by Lemma 4.11 and δ−1 = 0. The tot-component of the second
part is clear by the classical result for the first Hochschild cohomology of the classical
algebra Atot. For the N-component consider D = (Dtot, DN) ∈ ker δ1N. Then δA tot Dtot = 0
and δANDN = 0, hence Dtot and DN are derivations and it follows D ∈ Der(A )N. Similarly,
we get D ∈ Der(A )0 for D ∈ ker(δ1N

∣
∣
0). Now let D ∈ imδ0N, then there exists a : k → A

with Dtot = δA totatot = [ · , atot] and DN = δANaN = [ · , aN]. Since atot = ι(aN) the second
part holds. ��
Remark 4.13 The center of a coisotropic algebra could nowbe defined asZ (A ) := HH0(A ).
Similarly, one can define the outer derivations of a coisotropic algebra by OutDer(A ) :=
HH1(A ).

Remark 4.14 Using methods from enriched category theory one can define the center of a
monoid A internal to a given monoidal category C by [C,C](idA, idA). Here [C,C] denotes
the C-enriched functor category of endofunctors of C. Applying this to the monoidal category
C3Modk yields exactly the notion of center of a coisotropic algebra as introduced in Remark
4.13.

Remark 4.15 Combining Proposition 2.21 with Proposition 4.9 immediately shows that there
exists an injective natural transformation η : red ◦ HH• �⇒ HH• ◦ red. In particular, for
any coisotropic algebra A we have

HH•(A )red ⊆ HH•(Ared). (4.26)

Remark 4.16 In this sectionwedefined the coisotropicHochschild cohomologyof coisotropic
algebras only with the algebra itself as coefficients. It should be clear that all the above
constructions also work for a coisotropic A -bimodule M by using C•(A ,M ).

4.3 Formal deformations

Throughout this section we will assume that the scalars satisfy Q ⊆ k in order to make use
of the description of deformations by Maurer–Cartan elements.

Let (A , μ0) ∈ C3Algk be a coisotropic associative k-algebra. By Definition 4.1 a formal
associative deformation (A �λ�, μ) is given by an associative multiplication μ : A �λ� ⊗
A �λ� −→ A �λ� making A �λ� a coisotropic k�λ�-algebra such that cl(A , μ) is given by
(A , μ0), or in other words

μ = μ0 +
∞∑

k=1

λkμk (4.27)

with μk : A ⊗ A → A . Such deformations can now be understood as Maurer–Cartan
elements in the coisotropic DGLA λC•(A )�λ� corresponding to (A �λ�, μ0).
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Lemma 4.17 Let (A , μ) ∈ C3Algk be a coisotropic associative k-algebra. A multiplication
μ = μ0 + M, with M = ∑∞

k=1 λkμk is a formal associative deformation of μ0 if and only
if

δM + 1

2
[M, M] = 0. (4.28)

Proof By Lemma 4.5 we know that we have to check that [μtot, μtot]A tot = 0 and
[μN, μN]AN = 0. Thus, consider the total component of μ as μtot = (μ0)tot + Mtot. We
have

[μtot, μtot] = [(μ0)tot + Mtot, (μ0)tot + Mtot] = 2δMtot + [Mtot, Mtot],
where we used the associativity of (μ0)tot and the graded skew-symmetry of Gerstenhaber
bracket. The very same holds for the N-component. ��

Let us now consider two formal associative deformations μ and μ′ of (A , μ0). We say
that they are equivalent if there exists T = id + λ(. . .) ∈ C3Autk�λ�(A �λ�) such that
T ◦ μ = μ′ ◦ (T ⊗ T ), i.e. we have

Ttot(μtot(a, b)) = μ′
tot(Ttot(a), Ttot(b)) and TN(μN(a, b)) = μ′

N(TN(a), TN(b))

(4.29)

for a, b ∈ Atot/N. Thus, as in the case of associative algebras, there exists a unique D =∑∞
k=0 λk Dk ∈ C3Homk(A �λ�,A �λ�) such that T = exp(λD). This allows us to conclude

the following claim.

Lemma 4.18 Two formal associative deformations μ and μ′ of a coisotropic k-algebra
(A , μ0) are equivalent if and only if there exists D ∈ C3Homk(A �λ�,A �λ�) such that

eλad(D)(μ) = μ′, (4.30)

where ad(D) = [D, · ] using the coisotropic Gerstenhaber bracket.

Note that (4.30) is equivalent to

eλadtot(Dtot)(μtot) = μ′
tot (4.31)

eλadN(DN)(μN) = μ′
N. (4.32)

Summing up the above lemmas we can state the relation between formal deformations and
the deformation functor.

Theorem 4.19 (Equivalence classes of deformations) Let k be a commutative ring with
Q ⊆ k. Let (A , μ0) be a coisotropic k-algebra. Then the set of equivalence classes of
formal associative deformations of A coincides with Def(C•(A )), where C•(A ) is the
coisotropic Hochschild DGLA of A .

Proof By Lemma 4.17 we know that formal associative deformations of μ0 correspond to
Maurer–Cartan elements of λC•(A )�λ�, while by Lemma 4.18 two such deformations are
equivalent if and only if they lie in the same G(C•(A ))-orbit. Hence Def(C•(A )) is exactly
the set of equivalence classes of formal deformations. ��

Finally, we can reformulate the classical theorem about the extension of a deformation up
to a given order for coisotropic algebras.
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Theorem 4.20 (Obstructions) Let k be a commutative ring with Q ⊆ k. Let (A , μ0) ∈
C3Algk be a coisotropic k-algebra.

i.) Furthermore, let μ(k) = μ0 + · · · + λkμk ∈ C2(A )N be an associative deformation of
μ0 up to order k. Then

Rk+1 =
(
1

2

k∑

�=1

[
(μ�)tot, (μk+1−�)tot

]A tot ,
1

2

k∑

�=1

[
(μ�)N, (μk+1−�)N

]AN

)

∈ C3(A )N

(4.33)

is a coisotropic Hochschild cocycle, i.e. δNRk+1 = 0. The deformation μ(k) can be
extended to order k + 1 if and only if Rk+1 = δNμk+1. In this case every such μk+1

yields an extension μ(k+1) = μ(k) + λk+1μk+1.
ii.) Let μ1 ∈ C2(A )N. Then μ = μ0 + λμ1 is an associative deformation of μ0 up to order

1 if and only if δNμ1 = 0. Moreover, if μ′
1 is another deformation up to order 1 of μ0

then these two deformations are equivalent up to order 1 if and only if μ1 − μ′
1 is exact.

Proof By the classical deformation theory of associative algebras it is clear that (4.33) is
closed since δN = (δA tot , δAN ). If Rk+1 is exact, we know thatμ(k)

tot andμ
(k)
N can be extended

via (μk+1)tot and (μk+1)N, respectively. Thus μk+1 yields an extension of μ(k). On the other
hand, if μ(k) can be extended, we know that (Rk+1)tot = δA tot (μk+1)tot and (Rk+1)N =
δAN (μk+1)N. Hence, Rk+1 = δNμk+1. For the second part, consider the first part for k = 0,
then δNμ1 = R1 = 0 follows directly. By Lemma 4.18 two deformations μ = μ0 + μ1 and
μ′ = μ0 +μ′

1 are equivalent if and only if there exists D ∈ C3Homk(A �λ�,A�λ�) such that
ead(D)(μ) = μ′. If we only want to consider deformations up to order 1 we can restrict to
the case D = D0 ∈ C3Homk(A ,A ). Then we get equivalently μ + λ[D0, μ] = μ′. The
first-order term then directly yields μ′

1 − μ1 = −δND0. ��
Thus HH2(A ) classifies infinitesimal deformations while HH3(A ) gives the obstructions

for extending deformations. The coisotropic module HH3(A ) carries more information than
just the obstructions to deformations of the coisotropic algebra A . Since HH3(A )tot =
HH3(Atot) it also encodes the obstructions of deformations of the classical algebra Atot.
Moreover, HH3(A )0 is important for the reduction of HH3(A ) and hence controls which
obstructions on A descend to obstructions on Ared. In particular, we have seen at the end
of Sect. 4.2 that HH3(A )red ⊆ HH3(Ared). The components of HH2(A ) ca be interpreted
in a similar fashion.

4.4 Example I: BRST reduction

The above definition of a deformation of a coisotropic algebra recovers the following two
interesting examples from deformation quantization. Note, however, that both examples
should illustrate the concept of a deformation of a coisotropic algebra without actually com-
puting the corresponding Hochschild cohomology. Even in these examples it seems to be
a rather difficult task to compute the coisotropic Hochschild cohomology of a manifold M
with submanifold C endowed with an integrable distribution on it. We leave this to a future
project.

The first example comes from BRST reduction of star products. We recall the situation of
[6,23]. Consider a PoissonmanifoldM with a strongly Hamiltonian action of a connected Lie
group G and momentum map J : M −→ g∗, where g is the Lie algebra of G. One assumes
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that the classical level surface C = J−1({0}) ⊆ M is a non-empty (necessarily coisotropic)
submanifold by requiring 0 to be a regular value of J . Moreover, we assume that the action
of C is proper. Then we have the classical coisotropic triple

A := (C∞(M),BC ,JC ), (4.34)

where JC = ker ι∗ ⊆ C∞(M) is the vanishing ideal of the constraint surface C ⊆ M
and BC its Poisson normalizer. Next, we assume to have a star product � invariant under
the action of G which admits a deformation J of J into a quantum momentum map. In the
symplectic case such star products always exist since we assume the action ofG to be proper,
see [29] for a complete classification and further references. In the general Poisson case the
situation is less clear.

Out of this a coisotropicC�λ�-algebraAAA := (C∞(M)�λ�,BBBC ,JJJ C ) is then constructed,
where JJJ C = ker ι∗ ⊆ C∞(M)�λ� is the quantum vanishing ideal given by the kernel of
the deformed restriction ι∗ = ι∗ ◦ S. Here S = id + ∑∞

k=1 λk Sk is a formal power series of
differential operators guaranteeing thatJJJ C is indeed a left ideal with respect to �. In fact, S
can be chosen to be G-invariant.

We now want to construct a coisotropic algebra (C∞(M)�λ�,BC �λ�,JC �λ�) which is
isomorphic to (C∞(M)�λ�,BBBC ,JJJ C ). For this, note that S : C∞(M)�λ� −→ C∞(M)�λ�

is invertible, hence we get a star product

f �Sg = S(S−1 f �S−1g) (4.35)

on C∞(M)�λ�. From ι∗ = ι∗ ◦ S directly follows, that S mapsJJJ C to JC �λ�. It is slightly
less evident, but follows from the characterization of the normalizerBBBC as those functions
whose restriction to C are G-invariant, that S maps the normalizerBBBC to the normalizerBBBS

C
of JC �λ� with respect to �S . Finally, we know that f ∈ BBBC if and only if for all ξ ∈ g it
holds that 0 = LξC ι∗ f = LξC ι∗S f , where LξC denotes the Lie derivative in the direction
of the fundamental vector field ξC . Hence f ∈ BBBC if and only if S f ∈ BC �λ�. Thus S is an
isomorphism of coisotropic triples

((C∞(M)�λ�, �),BBBC ,JJJ C )
S−→ ((C∞(M)�λ�, �S),BC �λ�,JC �λ�). (4.36)

In particular, we have a deformationAAA S = ((C∞(M)�λ�, �S),BC �λ�,JC �λ�) of the clas-
sical coisotropic triple in this case, and the coisotropic tripleAAA is isomorphic to it.

4.5 Example II: coisotropic reduction in the symplectic case

While the previous example makes use of a Lie group symmetry, the following relies on a
coisotropic submanifold only. However, at the present state, we have to restrict ourselves to a
symplectic manifold (M, ω). Thus let ι : C −→ M be a coisotropic submanifold.We assume
that the classical reduced phase space Mred = C

/∼ is smooth with the projection map
π : C −→ Mred being a surjective submersion. It follows that there is a unique symplectic
form ωred on Mred with π∗ωred = ι∗ω. We follow closely the construction of Bordemann
in [2,3] to construct a deformation of the classical coisotropic triple A = (Atot,AN,A0)

given by Atot = C∞(M) with the vanishing ideal A0 = JC ⊆ C∞(M) of C and the
Poisson normalizer AN = BC ⊆ C∞(M) of JC as before.

To this end, one considers the product M × M−
red with the symplectic structure pr∗Mω −

pr∗Mred
ωred. Then

I : C � p �→ (ι(p), π(p)) ∈ M × Mred (4.37)
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is an embedding of C as a Lagrangian submanifold. By Weinstein’s Lagrangian neighbour-
hood theorem one has a tubular neighbourhoodU ⊆ M ×Mred and an open neighbourhood
V ⊆ T ∗C of the zero section ιC : C −→ T ∗C in the cotangent bundle πC : T ∗C −→ C with
a symplectomorphism � : U −→ V , where T ∗C is equipped with its canonical symplectic
structure, such that � ◦ I = ιC .

In the symplectic case, star products � are classified by their characteristic or Fedosov
class c(�) in H2

dR(M,C)�λ�. The assumption of having a smooth reduced phase space allows
us now to choose star products � on M and �red on Mred in such a way that ι∗c(�

∣
∣
U ) =

π∗c(�red). Note that this is a non-trivial condition on the relation between � and �red which,
nevertheless, always has solutions. Given such amatching pair we have a star product �⊗�

opp
red

onM×M−
red by taking the tensor product of the individual ones. Note that we need to take the

opposite star product on the second factor as we also took the negative ofωred needed to have
a Lagrangian embedding in (4.37). It follows that the characteristic class c

(
(�⊗�

opp
red)

∣
∣
U

) = 0
is trivial.

On the cotangent bundle T ∗C the choice of a covariant derivative induces a standard-
ordered star product �std together with a left module structure on C∞(C)�λ� via the
corresponding symbol calculus, see [8]. The characteristic class of �std is known to be trivial,
c(�std) = 0, see [7].Hence the pull-back star product�∗(�std

∣
∣
V ) is equivalent to (�⊗�

opp
red)

∣
∣
U .

Hence we find an equivalence transformation between �∗(�std) and � ⊗ �red on the tubular
neighbourhoodU . Using this, we can also pull-back the left module structure to obtain a left
module structure on C∞(C)�λ� for the algebra C∞(M × Mred)�λ�. Note that here we even
get an extension to all functions since the left module structure with respect to �std coming
from the symbol calculus is by differential operators and � ◦ I = ιC . Hence the module
structure with respect to �⊗�

opp
red is by differential operators as well. This ultimately induces

a left module structure � on C∞(C)�λ� with respect to � and a right module structure � with
respect to �red such that the two module structures commute: we have a bimodule structure.
Moreover, it is easy to see that the module endomorphisms of the left �-module are given by
the right multiplications with functions from C∞(Mred)�λ�, i.e.

End(C ∞(M)�λ�,�)(C
∞(C)�λ�)opp ∼= C∞(Mred)�λ�. (4.38)

Moreover, one can construct from the above equivalences a formal series S = id+∑∞
r=1 λr Sr

of differential operators Sr on M such that the left module structure is given by

f � ψ = ι∗(S( f )�prol(ψ)), (4.39)

for f ∈ C∞(M)�λ� and ψ ∈ C∞(C)�λ�, where prol : C∞(C)�λ� −→ C∞(M)�λ� is the
prolongation coming from the tubular neighbourhood U .

The left module structure is cyclic with cyclic vector 1 ∈ C∞(C)�λ�. This means that

JJJ C = {
f ∈ C∞(M)�λ�

∣∣ f � 1 = 0
}

(4.40)

is a left �-ideal and C∞(C)�λ� ∼= C∞(M)�λ�
/
JJJ C as left �-modules. Moreover, the nor-

malizer

BBBC = N�(JJJ C ) (4.41)

with respect to � gives firstBBBC
/
JJJ C

∼= End(C ∞(M)�λ�,�)(C
∞(C)�λ�)opp for general reasons.

Then this yields the algebra isomorphismBBBC
/
JJJ C

∼= C∞(Mred)�λ�.
Thanks to the explicit formula for �we can use the series S to pass to a new equivalent star

product �′ such thatJJJ ′
C = JC �λ�. We see that this brings us precisely in the situation of

Example 4.2: The coisotropic algebra AAA = (AAA tot,AAA N,AAA 0) with AAA tot = (C∞(M)�λ�, �)
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and AAA N = BBBC as well as AAA 0 = JJJ C is isomorphic to a deformation of the classical
coisotropic algebraA we started with. Note that it might not be directly a deformation ofA
as we still might have to untwist firstJJJ C using S and thenBBBC as in Example 4.2. This way
we can give a re-interpretation of Bordemann’s construction in the language of deformations
of coisotropic algebras.

4.6 Outlook

When working with coisotropic algebras and related structures it is a recurring theme to
investigate the compatibility of a given construction with the reduction functor. We have
seen in Theorem 3.14 and Proposition 4.9 that the compatibility with reduction might only
be given up to an injective natural transformation, and in general it seems that one cannot
expect much more. Nevertheless, it would be rewarding to find special situations in which
the deformation functor Def or the construction of the Hochschild complex commute with
reduction up to a natural isomorphism.

Given a bimodule over a coisotropic algebra it should be clear that one can define the
coisotropic Hochschild complex and its cohomology also with coefficients in the bimodule.
This can then be used to formulate also the deformation problem for (bi-)modules.

Having established coisotropicHochschild cohomology and its importance in deformation
theory of coisotropic algebras onewould like to be able to actually compute it in certain cases.
A first important example known from classical differential geometry is the Hochschild–
Kostant–Rosenberg theorem, implementing a bijection between the Hochschild cohomology
of the algebra of functions on a manifold and its multivector fields. A coisotropic version of
this result for coisotropic algebras of the form (C∞(M),C∞(M)F, JC ), with M a smooth
manifold, JC the vanishing ideal of a submanifold and C∞(M)F the functions on M which
are constant along a foliationF onC , would be desirable. To achieve this itwill be necessary to
carry over other notions of differential geometry, likemultivector fields etc., to the coisotropic
setting. It will be important to consider also geometrically motivated bimodules for the
coefficients in such scenarios. The cohomologies computed in [4] should be related to the
coisotropic Hochschild cohomology, at least for particular and simple cases of submanifolds
and foliations.
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