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Zusammenfassung

Die aktuellen Fortschritte und Entwicklungen in der Molekularbiologie stellen eine Fülle neuer, bisher

kaum analysierter Daten bereit. Dieser Fundus umfasst unter Anderem biologische Daten zu geno-

mischer DNA, zu Proteinsequenzen, zu dreidimensionalen Proteinstrukturen sowie zu Genexpressi-

onsprofilen. In der vorliegenden Arbeit werden diese Informationen genutzt, um neue Methoden der

Charakterisierung und Klassifizierung von Organismen bzw. Organismengruppen zu entwickeln und

einen automatisierten Informationsgewinn sowie eine Informationsübertragung zu ermöglichen.

Die ersten beiden vorgestellten Ansätze (Kapitel 4 und 5) konzentrieren sich auf die medizinisch

und wissenschaftlich bedeutsame Gruppe der Enterobakterien. Deren Bedeutung für Medizin und

Mikrobiologie geht auf ihre Funktion als kommensale Bewohner des Darmtraktes, ihre Nutzung als

leicht kultivierbare Modellorganismen und auf die vielseitigen Infektionsmechanismen zurück. Ob-

wohl bereits viele Studien über einzelne Pathogruppen mit klinisch unterscheidbaren Symptomen

existieren, sind die genotypischen Faktoren, die für diese Unterschiedlichkeit verantwortlich zeich-

nen, teilweise noch nicht bekannt. Der in Kapitel 4 beschriebene umfassende Genomvergleich wurde

anhand einer Vielzahl von Enterobakterien durchgeführt, die nahezu die gesamte Bandbreite klinisch

relevanter Diversität darstellen. Dieser Genomvergleich bildet die Basis für eine Charakterisierung

des enterobakteriellen Genpools, für eine Rekonstruktion evolutionärer Prozesse und Einflüsse und

für eine umfassende Untersuchung spezifischer Proteinfamilien in enterobakteriellen Untergruppen.

Die in diesem Kontext vorher noch nicht angewandte Korrespondenzanalyse liefert qualitative Aus-

sagen zu bakteriellen Untergruppen und den ausschließlich in ihnen vorkommenden Proteinfamilien.

In drei Hauptuntergruppen der Enterobakterien, die den Gattungen Yersinia und Salmonella sowie

der Gruppe aus Shigella und E. coli entsprechen, wurden die jeweils spezifischen Proteinfamilien mit

Hilfe statistischer Tests identifiziert. Zusammenfassend bilden die auf Genomvergleichen aufbauen-

den Methoden neue Ansatzpunkte, um aus der Übertragung der bekannten Funktionalität einzelner

Proteine auf spezifische, genotypische Besonderheiten bakterieller Gruppen zu schließen.

Aufgrund ihrer hohen medizinischen Relevanz war die Typisierung enterobakterieller Isolate ent-

sprechend ihrer Pathogenität Ziel zahlreicher Studien. Die Microarray-Technologie bietet ein schnel-

les, reproduzierbares und standardisierbares Hilfsmittel für bakterielle Typisierung und hat sich in

der Bakteriendiagnostik, Risikobewertung und Überwachung bewährt. Das in Kapitel 5 beschriebene

Design eines diagnostischen Microarray beruht auf einer großen Anzahl verfügbarer Genomsequen-

zen von Enterobakterien. Ein hocheffizienter String-Matching-Algorithmus ist die Grundlage einer

neuartigen Strategie der Sondenauswahl, die sowohl kodierende als auch nicht-kodierende Berei-
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che genomischer DNA berücksichtigt. Im Vergleich zu Diagnostika, die ausschließlich auf Virulenz-

assoziierten Sonden beruhen, verringert dieses Prinzip das Risiko einer inkorrekten Typisierung. Zu-

sätzliche Sonden erweitern das Anwendungsspektrum auf eine simultane Diagnostik der Antibiotika-

resistenz bzw. eine Überwachung der Resistenzausbreitung.

Umfangreiche Testhybridisierungen belegen eine überwiegende Zuverlässigkeit der Sonden und

vor allem eine robuste Klassifizierung enterobakterieller Stämme entsprechend der Pathogruppen.

Die Tests bilden zudem die Grundlage für das Training eines Regressionsmodells zur Klassifizierung

der Pathogruppe und zur Vorhersage der Menge hybridisierter DNA. Das Regressionsmodell zeichnet

sich durch kontinuierliche Lernfähigkeit und damit durch eine Verbesserung der Vorhersagequalität

im Prozess der Anwendung aus. Ein Teil der Sonden repräsentiert intergenische DNA und bestätigt

infolgedessen die Relevanz der zugrunde liegenden Strategie. Die Tatsache, dass ein großer Teil der

von den Sonden repräsentierten Gene noch nicht annotiert ist, legt die Existenz bisher unentdeckter

Faktoren mit Bedeutung für die Ausbildung entsprechender Virulenz-Phänotypen nahe.

Ein weiteres Haupteinsatzgebiet von Microarrays ist die Genexpressionsanalyse. Die Größe von

Genexpressionsdatenbanken ist in den vergangenen Jahren stark gewachsen. Obwohl sie eine Fül-

le von Expressionsdaten bieten, sind Ergebnisse aus unterschiedlichen Studien weiterhin schwer in

einen übergreifenden Zusammenhang zu bringen. In Kapitel 6 wird die Methodik einer ausschließ-

lich datenbasierten Meta-Analyse für genomweite A. thaliana Genexpressionsdatensätze dargestellt,

die neue Erkenntnisse über Funktion und Regulation von Genen verspricht. Die Anwendung von

Kernel-basierter Hauptkomponentenanalyse in Kombination mit hierarchischem Clustering identifi-

zierte drei Hauptgruppen von Kontrastexperimenten mit jeweils überlappenden Expressionsmustern.

In zwei Gruppen konnten deregulierte Gene wichtigen Funktionen bei Indol-3-Essigsäure (IAA) ver-

mitteltem Pflanzenwachstum und -entwicklung sowie pflanzlicher Pathogenabwehr zugeordnet wer-

den. Bisher funktionell nicht näher charakterisierte Serin-Threonin-Kinasen wurden über die Meta-

Analyse mit der Pathogenabwehr assoziiert. Grundsätzlich kann dieser Ansatz versteckte Wechselbe-

ziehungen zwischen Genen aufdecken, die unter verschiedenen Bedingungen reguliert werden.

Bei der funktionellen Charakterisierung von Proteinen oder der Vorhersage von Genen in Genom-

sequenzen werden Hidden-Markov-Modelle (HMMs) eingesetzt. HMMs sind technisch ausgereift

und in der computergestützten Biologie vielfach eingesetzt worden. Trotzdem birgt die Methodik

das Potential zur Optimierung bezüglich der Modellierung biologischer Daten, die hinsichtlich der

Längenverteilung ihrer Sequenzen variieren.

Untereinheiten dieser Modelle, die Zustände, repräsentieren über ihre individuelle Verweildauer

zugrunde liegende Verteilungen von Sequenzlängen. Kapitel 7 stellt eine Methode zur Anpassung
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einfacher HMM-Topologien an biologische Daten, die glockenkurvenartige Längenverteilungen zei-

gen, vor. Die Modellierung solcher Verteilungen wird dabei durch eine serielle Verkettung verviel-

fältigter Zustände gewährleistet, ohne dass die Klasse herkömmlicher HMMs verlassen wird. Aus-

wertungen der Modellierungsleistung bei unterschiedlich stark optimierten HMM-Topologien unter-

streichen die Bedeutung der entwickelten Topologieoptimierung. Zusammenfassend wird hier eine

generelle Methodik beschrieben, die die Modelleigenschaften von HMMs über Topologieoptimie-

rungen verbessert. Die Parameter dieser Optimierung werden mit Hilfe von Maximum-Likelihood

und einem leicht einzubindenden Momentschätzer bestimmt.

In Kapitel 8 wird die Anwendung von HMMs zur Vorhersage von Interaktionsstellen in Prote-

indomänen beschrieben. Wie bereits gezeigt wurde, sind solche Stellen aufgrund einer variablen

Konserviertheit ihrer Position und ihres Typs schwer zu bestimmen. Eine Vorhersage von Interak-

tionstellen in Proteindomänen wird über die Definition einer neuen HMM-Topologie erreicht, die

sowohl Sequenz- als auch Strukturdaten einbindet. Interaktionsstellen werden mit einem Posterior-

Decoding-Algorithmus vorhergesagt, der zusätzliche Informationen über die Wahrscheinlichkeit ei-

ner Interaktion für alle Sequenzpositionen bereitstellt. Die Implementierung der Interaktionsprofil-

HMMs (ipHMMs) basiert auf den etablierten Profil-HMMs und erbt deren Effizienz und Sensitivität.

Eine groß angelegte Vorhersage von Interaktionsstellen mit ipHMMs konnte mutationsbedingte Fehl-

funktionen in Proteinen erklären, die mit vererbbaren Krankheiten wie unterschiedlichen Tumortypen

oder Muskeldystrophie assoziiert sind. Wie Profile-HMMs sind auch ipHMMs für groß angelegte

Anwendungen geeignet. Insgesamt verbessert die HMM-gestützte Methode sowohl die Vorhersage-

qualität für Interaktionsstellen als auch das Verständnis molekularer Hintergründe bei vererbbaren

Krankheiten.

Im Hinblick auf aktuelle und zukünftige Anforderungen stelle ich in dieser Arbeit Lösungsansät-

ze für eine umfassende Charakterisierung großer Mengen biologischer Daten vor. Alle beschriebe-

nen Methoden zeichnen sich durch gute Übertragbarkeit auf verwandte Probleme aus. Besonderes

Augenmerk wurde dabei auf den Wissenstransfer gelegt, der durch einen stetig wachsenden Fundus

biologischer Information ermöglicht wird. Die angewandten und entwickelten statistischen Methoden

sind lernfähig und profitieren von diesem Wissenszuwachs, Vorhersagequalität und Zuverlässigkeit

der Ergebnisse verbessern sich.
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Abstract

Recent progresses and developments in molecular biology provide a wealth of new but insufficiently

characterised data. This fund comprises amongst others biological data of genomic DNA, protein

sequences, 3-dimensional protein structures as well as profiles of gene expression. In the present

work, this information is used to develop new methods for the characterisation and classification of

organisms and whole groups of organisms as well as to enhance the automated gain and transfer of

information.

The first two presented approaches (chapters 4 und 5) focus on the medically and scientifically

important enterobacteria. Its impact in medicine and molecular biology is founded in versatile mech-

anisms of infection, their fundamental function as a commensal inhabitant of the intestinal tract

and their use as model organisms as they are easy to cultivate. Despite many studies on single

pathogroups with clinical distinguishable pathologies, the genotypic factors that contribute to their

diversity are still partially unknown. The comprehensive genome comparison described in Chap-

ter 4 was conducted with numerous enterobacterial strains, which cover nearly the whole range of

clinically relevant diversity. The genome comparison constitutes the basis of a characterisation of

the enterobacterial gene pool, of a reconstruction of evolutionary processes and of comprehensive

analysis of specific protein families in enterobacterial subgroups. Correspondence analysis, which

is applied for the first time in this context, yields qualitative statements to bacterial subgroups and

the respective, exclusively present protein families. Specific protein families were identified for the

three major subgroups of enterobacteria namely the genera Yersinia and Salmonella as well as to the

group of Shigella and E. coli by applying statistical tests. In conclusion, the genome comparison-

based methods provide new starting points to infer specific genotypic traits of bacterial groups from

the transfer of functional annotation.

Due to the high medical importance of enterobacterial isolates their classification according to

pathogenicity has been in focus of many studies. The microarray technology offers a fast, repro-

ducible and standardisable means of bacterial typing and has been proved in bacterial diagnostics,

risk assessment and surveillance. The design of the diagnostic microarray of enterobacteria described

in chapter 5 is based on the availability of numerous enterobacterial genome sequences. A novel

probe selection strategy based on the highly efficient algorithm of string search, which considers both

coding and non-coding regions of genomic DNA, enhances pathogroup detection. This principle re-

duces the risk of incorrect typing due to restrictions to virulence-associated capture probes. Additional

capture probes extend the spectrum of applications of the microarray to simultaneous diagnostic or
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surveillance of antimicrobial resistance.

Comprehensive test hybridisations largely confirm the reliability of the selected capture probes and

its ability to robustly classify enterobacterial strains according to pathogenicity. Moreover, the tests

constitute the basis of the training of a regression model for the classification of pathogroups and

hybridised amounts of DNA. The regression model features a continuous learning capacity leading to

an enhancement of the prediction accuracy in the process of its application. A fraction of the capture

probes represents intergenic DNA and hence confirms the relevance of the underlying strategy. Inter-

estingly, a large part of the capture probes represents poorly annotated genes suggesting the existence

of yet unconsidered factors with importance to the formation of respective virulence phenotypes.

Another major field of microarray applications is gene expression analysis. The size of gene ex-

pression databases rapidly increased in recent years. Although they provide a wealth of expression

data, it remains challenging to integrate results from different studies. In chapter 6 the methodology

of an unsupervised meta-analysis of genome-wide A. thaliana gene expression data sets is presented,

which yields novel insights in function and regulation of genes. The application of kernel-based prin-

cipal component analysis in combination with hierarchical clustering identified three major groups of

contrasts each sharing overlapping expression profiles. Genes associated with two groups are known

to play important roles in Indol-3 acetic acid (IAA) mediated plant growth and development as well

as in pathogen defence. Yet uncharacterised serine-threonine kinases could be assigned to novel func-

tions in pathogen defence by meta-analysis. In general, hidden interrelation between genes regulated

under different conditions could be unravelled by the described approach.

HMMs are applied to the functional characterisation of proteins or the detection of genes in genome

sequences. Although HMMs are technically mature and widely applied in computational biology, I

demonstrate the methodical optimisation with respect to the modelling accuracy on biological data

with various distributions of sequence lengths.

The subunits of these models, the states, are associated with a certain holding time being the link

to length distributions of represented sequences. An adaptation of simple HMM topologies to bell-

shaped length distributions described in chapter 7 was achieved by serial chain-linking of single

states, while residing in the class of conventional HMMs. The impact of an optimisation of HMM

topologies was underlined by performance evaluations with differently adjusted HMM topologies.

In summary, a general methodology was introduced to improve the modelling behaviour of HMMs

by topological optimisation with maximum likelihood and a fast and easily implementable moment

estimator.

Chapter 8 describes the application of HMMs to the prediction of interaction sites in protein
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domains. As previously demonstrated, these sites are not trivial to predict because of varying degree

in conservation of their location and type within the domain family. The prediction of interaction

sites in protein domains is achieved by a newly defined HMM topology, which incorporates both

sequence and structure information. Posterior decoding is applied to the prediction of interaction

sites providing additional information of the probability of an interaction for all sequence positions.

The implementation of interaction profile HMMs (ipHMMs) is based on the well established profile

HMMs and inherits its known efficiency and sensitivity. The large-scale prediction of interaction sites

by ipHMMs explained protein dysfunctions caused by mutations that are associated to inheritable

diseases like different types of cancer or muscular dystrophy. As already demonstrated by profile

HMMs, the ipHMMs are suitable for large-scale applications. Overall, the HMM-based method

enhances the prediction quality of interaction sites and improves the understanding of the molecular

background of inheritable diseases.

With respect to current and future requirements I provide large-scale solutions for the characterisa-

tion of biological data in this work. All described methods feature a highly portable character, which

allows for the transfer to related topics or organisms, respectively. Special emphasis was put on the

knowledge transfer facilitated by a steadily increasing wealth of biological information. The applied

and developed statistical methods largely provide learning capacities and hence benefit from the gain

of knowledge resulting in increased prediction accuracies and reliability.
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Bioinformatical concepts of genomics,

global evaluation of gene expression and

sequence analysis

Modern biomedical research aims at a comprehensive understanding of entire systems. These systems

correspond e. g. to metabolic networks, whole organisms, ecological communities or host pathogen

interactions. Rapidly evolving high-throughput technologies like mass-spectrometry, DNA-sequenc-

ing or microarrays facilitate the realisation of such ambitious goals. These studies demand for time-

efficient bioinformatical solution in planning, preparation and evaluation stages of experiments that

mass-produced biological data. Initial milestones reached by the application of novel technologies

comprise the generation of large collections of complete genome sequences, genes, proteins, protein

domain representations, microarray experiments and structure information of proteins and protein

complexes. The tremendous fund of information holds sources to raise new questions for the purpose

of a deeper understanding of biological systems and their interdependencies.

In the following, different approaches will be described that aim at supporting the gain of knowl-

edge from the variety of available sequence data. The application and combination of methods of

statistics and sequence analysis yielded fundamental insights into characteristics of the important en-

terobacterial family harbouring many human and animal pathogens as well as model organisms in

genetics. Meta-analysis of comparative genome hybridisation (CGH) of Arabidopsis thaliana un-

ravelled genes involved in plant pathogen defence and plant growth. In basic studies, HMMs were

methodically extended for the purpose of enhanced generality and the prediction of structural fea-

tures in proteins. All these approaches imply a portable character, which enables its application to a

wide range of organisms. The heterogeneity of these topics suggests a subdivision of the results part

according to the following single projects:

Chapter 4 Enterobacterial strains were compared based on their genomic content by applying mul-

tivariate and statistical methods. They mediate the detection of characteristic genotypes that
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contributed to phenotypic divergence.

Chapter 5 In reference to the importance of enterobacteria as family of major human pathogens,

genomic information was evaluated to develop a diagnostic microarray.

Chapter 6 A general meta-analysis concept was applied to the well studied plant model organism

A. thaliana. The method profits from the existence of many publicly available CGH experi-

ments. The experimental data was coherently compared to detect recurring patterns of differ-

ential expression that get lost in the analysis of single contrasts.

Chapter 7 Hidden Markov models are applied to model biological sequences. HMMs natively rep-

resent sequences of geometrically shaped length distributions. In order to overcome modelling

deficiencies with respect to otherwise distributed sequences, the HMM architecture was opti-

mised based on a moment estimator.

Chapter 8 Increasing availability of HMMs representing functional subunits of proteins as well as

structural information of protein ligand complexes was fused and served as training data in the

development of an HMM-based prediction method of protein interaction sites.

The first part covers the investigation of bacteria from the family of Enterobacteriaceae, a versatile

bacterial taxon comprising many pathogens as well as commensals of eukaryotic hosts. Below, the

bacterial family is introduced by focusing on biomedical aspects relevant in clinical therapeutics and

diagnostics.

Enterobacteria and E. coli pathotypes

In reference to many outbreaks and large number of annual cases, enterobacteria constitute major

problems of health care in developing countries. This branch of the gram-negative γ-proteobacteria

have been in focus of numerous scientific research projects throughout many years. The widespread

scientific interest in enterobacteria is attracted by a large variety of routes to colonise niches in a

broad range of vertebrate hosts. Prominent scientific model organisms in genetics and molecular bi-

ology like the E. coli strain K-12 MG1655 allow simple in vitro cultivation and genetic manipulation.

Among the Enterobacteriaceae Several pathogens of the genera Salmonella, Yersinia, Klebsiella and

Escherichia, which differ in pathogenicity, origin and natural reservoir, are known and will be shortly

characterised in the following.
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Salmonellae The genus Salmonella consists of bacterial pathogens which are capable to infect a

wide range of animal hosts. Common reservoirs of infectious agents like the isolate S. bongori 12419

are reptiles and amphibians. Many described serovars have generated a quite complex salmonellae

nomenclature (Brenner et al., 2000). Most serovars belong to the species S. enterica, which is subdi-

vided into 6 subspecies with further subdivisions referring to antigenic formulae. Subspecies enterica

is usually characterised by a habitat in warm-blooded hosts, while the other five subspecies are found

in cold-blooded animals. In medical context, typhoid S. enterica serovars Typhi and Paratyphi are

correlated to human-restricted symptoms like enteric fever. Non-typhoid serovars Typhimurium and

Enteriditis are found in a broad range of hosts causing gastroenteritis (Haraga et al., 2008). Typhoid

fever predominantly occurs in Asian and African developing countries as a cause of contaminated

water supply. The last outbreak in the republic of Congo (2004/2005) resulted in 42,564 cases of

typhoid fever and 214 deaths (WHO, 2009).

Yersinia The genus Yersinia is known from three pandemic outbreaks of plaque caused by Y. pestis.

It comprises two further species, Y. pseudotuberculosis and Y. enterocolitica. DNA-DNA hybrid-

isation revealed a close relationship between Y. pestis and Y. pseudotuberculosis, though the for-

mer is transmitted by fleas and causes bubonic plaque, while the latter and Y. enterocolitica are

enteropathogenic yersiniae transmitted by fecal or oral routes and normally do not lead to death.

(Achtman et al., 1999; Wren, 2003)

Klebsiella The genus Klebsiella mainly consists of commensal or soil bacteria. Merely the species

K. pneumoniae and rarely K. oxytoca have been described as facultative pathogens. Both may cause

infections of the urinary or respiratory tract in humans. Recently, cases of liver abscess were re-

ported. Furthermore, hospitality acquired nosocomial infections frequently trace back to Klebsiella

pathogens. (Brisse et al., 2006)

Escherichia coli E. coli strains normally are commensal inhabitants of the human gastrointestinal

tract. The colonisation of the gut, which begins a few hours after birth, plays an important role in hu-

man digestion. Other lineages act as pathogens in humans and warm-blooded animals. Three general

clinical syndromes result from E. coli infections: diarrhoeal infections caused by intestinal pathogens

(IPEC), urinary tract infections and sepsis or meningitis originating from colonisation with extrain-

testinal pathogens (ExPEC). Many research projects have focused on the versatile virulence mech-

anisms enabling the pathogens to establish an infection in their hosts. The differences in virulence

mechanisms lead to the definition of numerous pathotypes. In the following the main characteristics
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associated with these pathotypes are shortly reviewed. They are described in more detail elsewhere

(Nataro and Kaper, 1998; Kaper et al., 2004).

The first described intestinal pathotype has been the enteropathogenic group of E. coli (EPEC).

Common symptoms of EPEC infections are potentially fatal infant diarrhoea predominantly in devel-

oping countries. The mode of infection was termed ’attaching and effacing’ (A/E) and is characterised

by the formation of microcolonies, attachment to epithelial cells and induction of the reformation of

microvilli to pedestal-like structures around attached bacteria. Host cell manipulation is probably me-

diated by secretion of effectors via the type-III-secretion system. Diarrhoea is caused by the injection

of enterotoxins.

Enterohaemorrhagic E. coli (EHEC) represent another intestinal pathogroup originally inhabiting

the bovine intestinal tract. The most common path of infection is contaminated food. Clinical symp-

toms upon human infection are diarrhoea and haemolytic uremic syndrome (HUS). Frequently occur-

ring bloody diarrhoea is caused by the injection of a shiga-like toxin. Some EHEC additionally con-

tain the locus of enterocyte effacement (LEE), which encodes for virulence genes inducing pedestal

formation in host cells.

Enterotoxigenic E. coli (ETEC) cause mild as well as severe forms of watery diarrhoea with high

rates of infant infections. ETEC infections are highly prevalent in developing countries and - like other

types of enterobacterial infections - rarely occur in industrialised parts of the world. ETEC attach to

cells of the small bowel mucosa and release heat-stable and/or heat-labile enterotoxins. Toxin β-

subunits bind to receptors on the host cell surface, α-subunits induce an increased ion secretion.

A frequent cause of persistent diarrhoea in children and adults worldwide are enteroaggregative

E. coli (EAEC). The pathotype is characterised by adherence to the intestinal mucosa in an autoag-

gregative stacked-brick fashioned biofilm. This aggregation seems to lead to mild mucosal damage.

No constant equipment of virulence factors could be determined throughout EAEC isolates.

In contrast to previously described intestinal pathotypes, enteroinvasive E. coli (EIEC) are capa-

ble to enter host cells, lyse the endocytic vacuole, grow intracellularly and spread to neighbouring

cells. The most frequent symptom of EIEC infections is watery diarrhoea. EIEC rarely cause dysen-

tery, which is characterised by fever, abdominal cramps and diarrhoea. By injection of IpaABC and

IpgD proteins via a type-III-secretion system EIEC induce epithelial signalling events, cytosceletal

rearrangements, cellular uptake and lysis of the endocytic vacuole.

The most frequent cause of urinary tract infections are uropathogenic E. coli (UPEC). An infection

is thought to begin with the colonisation of the bowel and the periurethral area of even immunocompe-

tent hosts. The bacteria then ascend the urethra to the bladder and attach via F1-fimbriae to epithelial
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cells. Invasion of cells and formation of biofilms as source of recurrent infection are reported. UPEC

strains are commonly equipped with virulence factors like haemolysin, cytotoxic necrotising factor

or special adhesins that generally are not found in intestinal pathotypes.

Another extraintestinal pathotype comprises isolates of patients with new-born meningitis

(MNEC). These E. coli spread haematogenously, translocate the blood-brain barrier without observ-

able damage and adhere to the microvascular endothelium of the brain by S-fimbriae. An increasing

incidence and mortality rates between 15% and 40% are reported for neonatal infection. Further

pathotypes like sepsis-associated E. coli (SEPEC) and avian pathogenic E. coli (APEC) are part of the

ExPEC group.

Shigella Shigella isolates are highly similar to EIEC regarding their patogenicity. The genus

Shigella is now seen as a clonal lineage of E. coli (Lan and Reeves, 2002). Due to historical reason

they maintained the position as a separate genus subdivided into the species S. dysenteriae, S. flexneri,

S. sonnei and S. boydii. These species cause varying degrees of dysentery. Infections are acquired by

the oral-fecal route and manifest in the colon or rectum where bacterial cells cross the epithelial bar-

rier, enter macrophages, disrupt the membranes of phagosomes and reside in the cytosol. There the

Shigella pathogens multiplicate and induce rapid cell death. (Ogawa et al., 2008)

Comparative enterobacterial genomics

Through the years many different methods have been proposed to establish systems for bacterial

phylogenies, strain typing and classification. But, difficulties in achieving general typing concepts

arise due to a larger genetic variability in bacteria as compared to eukaryotes (Hacker and Carniel,

2001). Therefore, bacteriologists have established bacteria-by-bacteria solutions for subtyping based

on various mechanisms, which changed with the rapid development of lab technologies. The Enter-

obacteriaceae are a good example for separately developed nomenclatures. The genus/species/strain

concept can be found for the E. coli and Klebsiella clades, while Salmonella and Yersinia nomencla-

tures are extended by subspecies levels. An extra Shigella genus was introduced for a clonal E. coli

lineage that was separately discovered and never fused with E. coli to one entire clade.

Former practice of microbial strain typing relied on the determination of phenotypic traits like the

O-, H- and K-antigens. The development of nucleotide based technologies changed the common

practice to more accurate genotypic reconstructions of bacterial strain typing and phylogeny. Ini-

tially, genotypic methods consist solely in the determinations of nucleotide polymorphisms within
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single commonly occurring genes. Among these the gene encoding the small ribosomal 16S rRNA

subunit became the major determinant of macroscopic bacterial evolution. Even purposes like the

reconstruction of the tree of life favour the use of 16S rRNA as it can be compared with eukaryotic

18S rRNA genes (Clarridge, 2004). Nevertheless, 16S rRNA phylogeny exhibited a lower resolution

and robustness in species sublevels, because of the existence of multiple gene copies with different

evolutionary background in bacterial genomes. Thus, Case et al. (2007) suggested the rpoB gene as

phylogenetic determinant to compensate for these shortcomings in enterobacteria. Concurrently, a

method based on multiple genes termed multi-locus sequence typing (MLST) was developed. The

method was initially applied to Neisseria strain typing and comprised fragments of 11 housekeeping

genes sized between 417 to 579 bp. The gene loci of the fragments were distributed across the whole

genome to ensure that no co-inheritance contributed to single transformation events. So called se-

quence types (ST) were determined by the patterns of single nucleotide polymorphisms in the gene

fragments. Later on the method was adapted to other bacteria. MLST transfer to E. coli comprised

sequence fragments of the genes arcA, aroE, dnaE, mdh, gnd, gapA, pgm, espA and ompA (Maiden

et al., 1998). Recently, Wirth et al. (2006) redesigned the MLST determinants, and a large screening

of sequence types was performed to set up a MLST database for E. coli. The rapidly changing tech-

niques in bacterial strain typing again reflect the difficulties linked with the definition of an overall

methodology.

Most recently, the availability of complete genomic sequences and of derived proteomes dramati-

cally increased and enabled more detailed insights into bacterial evolution. The first comparisons of

whole genomes or its proteomes were restricted to a basic set of already sequenced organisms like

H. sapiens, M. musculus, E. coli or B. subtilis. Several approaches were developed to achieve compa-

rability between these distantly related taxa as a basis for comparative analysis. Tatusov et al. (1997)

established a method to cluster orthologuous groups of proteins (COG) across the three domains of

life. They defined a COG as a cluster with at least three members of different phylogenetic domains.

The members of a COG have to exhibit reciprocally highest similarity among all proteins of respec-

tive organisms in all-against-all sequence alignments. Another study considered the different genome

sizes to determine organism specific similarity thresholds. The obtained orthology assignment was

then subjected to factorial analysis in order to correlate the organisms according to ancestry (Tekaia

et al., 1999). Protein clustering has been in focus of several studies in recent years. The OrthoMCL

programme refined previously introduced criteria in order to perform a clustering of orthologous pro-

teins on multiple organisms. The programme employs the Markov cluster algorithm (Enright et al.,

2002) to determine orthology or recent paralogy, respectively (Li et al., 2003).
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In the methods described in chapter 4 the concept of multiple genome comparison was taken up.

It was extended by multivariate analysis and statistical testing to unravel traits of specificity for sub-

groups of the taxonomic family of Enterobacteriaceae. The applied methods comprise unsupervised

correlation of strain- and protein-wise differences based on an assignment of protein family presence

across a variety of enterobacterial strains with diverse phenotypes. In a second step specific proteins

were investigated in enterobacterial subgroups, which were inferred by whole proteome comparisons.

Based on this prior knowledge, conserved protein families of evolutionary related groups were deter-

mined by applying statistical testing. Furthermore, the suitability of functional subunits of proteins as

entities of evolutionary change and phenotypic determinants was appreciated by explorative compar-

isons. In summary, the described methods provide versatile, portable solutions to compare a steadily

growing number of bacterial strains with available genome sequence information.

Diagnostics of Enterobacteria

Microarray technologies

Microarrays can roughly be described as platforms containing immobilised biomolecules that are ca-

pable to bind to stained target molecules. Preliminary developments of this technology were based on

nylon membranes loaded with complementary DNA (cDNA). Analogous to applications of state-of-

the-art microarrays, rRNA samples were hybridised to these known cDNAs. In modern microarrays

the platform material changed to glass or translucent plastic with amino, aldehyde or epoxy deriva-

tised surfaces (Venkatasubbarao, 2004). Simultaneously the capacity to immobilise reporter DNA

tremendously increased. The cDNA determinants were replace with more sensitive oligonucleotides,

which can reach densities up to several millions of probes. (Stoughton, 2005)

Current microarray technologies enable the design of whole genome or even multi-genome arrays

(Willenbrock et al., 2006, 2007) to perform CGH experiments. Beyond gene expression analysis and

CGH, the range of microarray application comprises the detection of single nucleotide polymorphism

and diagnostics (Cassone et al., 2007). Diagnostic microarrays are characterised by a small num-

ber of specifically designed probes that map to genes specifically linked to certain target organisms.

Microarray experiments are complex processes that involve many individual operations. Beginning

with the determination of capture probes, over sample preparation to hybridisation, such studies as

well demand for time-efficient but sensitive evaluation of hybridisation profiles. Hybridisation signal

analysis is generally based on methods of hierarchical clustering, statistical testing and multivariate

analysis. Hybridisation signal evaluation is an essential step to ensure the detection of important sig-
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nals within a mass of data as well as background noise from unspecific hybridisation and the carrier

material, respectively.

Existing diagnostic strategies

Enterobacteria formerly were classified by serological determination of O-, H- and K-antigens. The

O-antigen refers to the polysaccharide side chain of lipopolysaccharide (LPS), the H-antigen to the

flagellum and the K-antigen to an antigen resulting from capsular proteins. The serotype was defined

by specific combinations of O- and H-antigens found on the surface of enterobacterial strains that

cause similar pathological symptoms (Nataro and Kaper, 1998). Serotyping is an indirect determina-

tion of pathogenicity as LPS and flagella are not directly involved in pathogenicity and as the motility

depends on the cellular and environmental state.

The introduction of PCR technology enabled the detection of genotypic virulence determinants.

Classical PCR assays are only suitable for small-scale diagnostics using few markers and a narrow

spectrum of target species. Real-time PCR, nested PCR, ligase chain reaction or PCR-ELISA en-

hanced the technology towards higher sensitivity and/or efficiency. The development of multiplex

PCR enabled multiple target diagnostics with up to 100 markers within single reactions. Alterna-

tively, non-amplification methods like fluorescence in situ hybridisation were applied to the detection

of Y. pestis (Mothershed and Whitney, 2006). Microarrays are two-dimensional matrices allowing the

incorporations of higher numbers of capture probes. The technology is principally not restricted in

the number of capture probes and provides high reproducibility even across different platforms (Con-

sortium et al., 2006). Numerous Microarray-based diagnostics for a multitude of bacterial pathogens

including single species, whole genera and even a broad spectrum of enterobacteria have been devel-

oped (Barl et al., 2008; Kostić et al., 2007; Pelludat et al., 2005; Bekal et al., 2003). In the majority

of approaches either virulence genes or phylogenetic markers like 16S or 23S rRNA were selected as

capture probes (Yoo et al., 2009; Bruant et al., 2006; Ikeda et al., 2005; Lehner et al., 2005). Several

approach include or specifically focus on the detection of antimicrobial resistance (AMR) (Frye et al.,

2008; Bruant et al., 2006).

Antimicrobial resistance

Since the last 60 to 70 years, antibiotics have become a common way to treat bacterial infections.

The frequent use of antimicrobial agents in medical therapeutics generates an increased evolution-

ary selection pressure to develop AMR strategies in human-associated microbiotas (Cohen, 1992).
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Studies on the progressing spread of antimicrobial resistance underline the need of its screening in

clinical diagnostics (von Baum and Marre, 2005; Welch et al., 2007). Naturally produced antibiotics

are secondary metabolites of bacteria or other microbes to combat rival species.

Antibiotics interfere in three essential microbial processes: the cell-wall biosynthesis (β-lactams),

the protein synthesis (aminoglycosides, macrolides, tetracyclines) or DNA replication and repair

(fluoroquinolones). With the extensive use of antibiotics in medical care and agriculture, bacterial

pathogens as well as commensal bacteria in animals and environment developed strategies of AMR.

Rapid development and spread of antimicrobial resistance is related to a high mutation rate with short

generation times, a high selective pressure in antimicrobial therapy and the collection of resistance

mediating genes on mobile genetic elements.

One of different strategies to develop resistance is the expression of multi-drug efflux pumps. The

protein complexes pump antimicrobial agents at high rates out of bacterial cells so that they could not

act on intracellular target sites like the peptidyl transferases. The pumps are variants of transmem-

brane proteins occurring in all bacteria to transport lipophilic and amphipathic molecules. Secondly,

hydrolytic enzymes were developed by bacteria that inactivate β-lactam antibiotics by destroying the

β-lactam rings at high rates. Resistance is furthermore conferred by alteration of the target structure of

the antimicrobial agents, as e. g. the methylation of residues in ribosome subunits or reprogramming

of peptidoglycan composition. (Walsh, 2000)

Microarray-based enterobacterial diagnostics

Though the pool of acquired genomic, proteomic or interactomic data raises new questions and re-

quires sophisticated techniques of automated analysis, it also provides a starting-point of yet uncon-

sidered strategies in research and diagnostics.

The development of an enterobacterial diagnostic microarray, which is described in chapter 5, tar-

gets the identification of clinically relevant pathogroups from genus to even subspecies level. In con-

trast to previous work, we unravelled pathogroup-specific capture probes by probe selection across

multiple genomes leading to yet unconsidered determinants of enterobacterial pathogenicity. Diag-

nostic classification as well as the quantification of pathogens in a sample is provided by the applica-

tion of a regression model. The classifier features training in contrast to previous experiments which

providing a constant learning ability in the process of application. An integrated approach is described

to design a high level diagnostic microarray for a multitude of clinically relevant phenotypes among

enterobacteria by unravelling and learning distinct genotypic traits.
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Meta-analysis on gene expression experiments

In the last years, enormous amounts of data have been generated by microarray experiments from

different organisms, tissues and platforms under various experimental conditions. Databases like the

NCBI Gene Expression Omnibus (GEO) (Barrett et al., 2007), ArrayExpress (Parkinson et al., 2007)

and NASCArrays (Craigon et al., 2004) have been set up to archive these datasets and to make them

available to the scientific community. The size of microarray databases is likely to increase expo-

nentially in the future, as is typical for all molecular databases, increasing the need for sophisticated

methods to analyse these large amounts of data appropriately.

Several factors impede a straight-forward analysis of microarray database content: standards for

data submission vary between different databases, some microarray datasets do not provide raw data

and on the experimental side, protocols and experimental conditions can differ between diverse lab-

oratories conducting microarray hybridisations. However, microarray meta-analysis on a potentially

large number of datasets can substantially advance the gain of additional insights into gene regula-

tion. In single experiments, such new unravelled details could have been overseen or not detected.

Unrecognised gene regulation could result from weak signals of a particular gene or group of genes in

single experiments. Furthermore, the sensitivity to detect gene regulation can be increased by putting

genes into a functional context and considering its regulation under other conditions or treatments.

Several methods for microarray meta-analysis have been proposed in recent years, most of them

using models which compute an “effect size” and take care of inter-study variation (Choi et al., 2003;

Conlon et al., 2006; Hu et al., 2005; Moreau et al., 2003). Thus, they often resemble procedures

applied for the detection of differential expression but add the study as an extra explanatory variable.

Several datasets from different microarray experiments are integrated in the meta-analysis to increase

the number of replicates and thereby the power to detect differentially expressed genes. Because this

design implies that datasets addressing the same topic such as the same cell type or treatment are

used, microarray meta-analyses of this kind usually consist of only a small number of studies.

A second approach to supervised microarray meta-analysis is to integrate knowledge of biologi-

cal functions into the analysis to predict global co-expression relationships and to infer functional

relationships between co-regulated genes (Huttenhower et al., 2006).

Nevertheless, all the above methods are based on parametric models, which have several biological

and statistical assumptions. In classical microarray analysis, a first explorative analysis reveals pos-

sible signals in the data, which can then be verified or disproved by parametrical hypothesis testing.

Similarly, the described approach of unsupervised meta-analysis yields insights into the biological
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structure of the data and may thus lead to precise biological hypotheses. These could then be tested

by the parametric models described above. The aim of this study is to compare the results of a large

number of microarray experiments on Arabidopsis thaliana using the well established Affymetrix

ATH-1 Genome Array (http://www.affymetrix.com/products/arrays/specific/

arab.affx) as a starting point. The analysis is restricted to this highly-standardised platform to

reduce uninformative variability introduced by different technologies.

In this unsupervised meta-analysis, I show how to overcome the challenges posed by the hetero-

geneity of microarray data. This was achieved by applying exploratory data analysis methods. First,

microarray datasets from public web sources were collected and pre-processed in order to remove

noise from the data and build a common data basis for further analyses. Later, exploratory data anal-

ysis was applied to the processed datasets, namely kernel Principal Component Analysis (kPCA) and

spectral and hierarchical clustering, to group contrasts from different microarray experiments and to

find genes regulated in a specific cluster. These genes were identified in a specific cluster by un-

supervised feature subset selection using the kernel principal component loadings. Although gene

selection or feature subset selection is a challenging task for classification, many different approaches

have been proposed for the same. According to my knowledge, gene selection or feature subset se-

lection has not yet been performed using loadings of features on kernel PCA scores in the context of

meta-analysis.

Genes selected to play a role in either plant growth and development (related to indole-3-acetic

acid, a plant growth hormone) or pathogen defence were mapped onto physiological processes and

functions and could be validated by previous studies. For genes which have not completely been

characterised yet, the developed approach was able to propose a function and a possible regulatory

mechanism as shown here for DUF26 (Domain of Unknown Function) kinase genes.

Optimisation of sequence length representation in hidden

Markov models

HMMs are a widely applied class of probabilistic models. The fields of applications of this method-

ology range from speech recognition and spam deobfuscation to image processing. The theory of

HMMs goes back to the 1960s and is established in several applications of computational biology

since the early 1990s. HMMs were transferred to model biological motifs like DNA sequences

(Churchill, 1989), protein families (Haussler et al., 1993) and gene expression time course data

(Schliep et al., 2003). Prominent examples are programmes like GENSCAN (Burge and Karlin,
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1997) for the detection of coding regions in DNA sequences (Krogh et al., 1994b), TMHMM pre-

dicting transmembrane areas in protein sequences (Sonnhammer et al., 1998), HMMer (Eddy, 1998)

and the Sequence Alignment and Modelling System (SAM) (Hughey and Krogh, 1996) for the as-

signment of homology for a protein sequence to protein or domain families. The underlying profile

hidden Markov model of the latter two solutions enables a probabilistic representation of a protein or

domain family, respectively. The databases SMART (Letunic et al., 2004; Schultz et al., 1998), Pfam

(Bateman et al., 2004) and TIGRFAM (Haft et al., 2003) are sources of these HMMs accessible via

the Internet. SMART is a database of profile hidden Markov models (pHMM) of signalling, extracel-

lular and chromatin-associated domains, while Pfam and TIGRFAM contain pHMMs of all types of

domain families. The numerous applications implicate a large variety of source data, which is likely

to exhibit large differences in the underlying length distribution of data types, especially in biological

sequences.

HMMs consist of a network of states connected with certain transition probabilities. If states are

self-transitive the duration of stay follows a geometric law (Durbin et al., 1998). The distribution of

retention time in self-transitive states often does not match the length distributions of biological sig-

nals. Several HMM-based approaches circumvent the restriction to geometrically distributed source

data:

• The detection of protein domains with HMMer and SAM as well as the prediction of interaction

sites in proteins (Friedrich et al., 2006) is based on a profile-like topology. Each conserved

amino acid therefore is represented by a single state. An exception is the insert state, which can

model several amino acids. The applied model topology associates insertions with geometric

length distributions. Detailed investigations rather found a power law to fit insertion lengths in

protein sequence alignments (Qian and Goldstein, 2001).

• An extended model class, termed semi-HMM, connects the length distribution of sequence seg-

ments to the frequency of its observations. The trade-off for an explicit integration of the length

of stay is the need to adapt training and decoding algorithms. Semi-HMMs were employed by

several approaches to predict genes, especially in GENSCAN, Genemark.hmm (Lukashin and

Borodovsky, 1998) and Genie (Kulp et al., 1996).

• Two approaches altered conventional HMMs to model substructures of genetic information

(Melodelima et al., 2007; Munch and Krogh, 2006). They use differently adapted topologies,

while in both cases the determination of adaptation parameters is based on computationally

demanding, numerical optimisation methods.
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The adaptation of geometrically distributed data modelling in HMMs to DNA and protein sequences

with bell-shaped length distributions can be achieved by a sequential replication of states (Durbin

et al., 1998). The appropriate representation of the underlying source of data promises an enhance-

ment of HMM-based predictive methods.

In chapter 7 I describe a general methodology to adjust HMM topologies with respect to length dis-

tributions of the modelled biological sequences. This methodology is based on an estimation of repli-

cation and transition parameters for the adjustment of state-associated retention time by maximum

likelihood and the method of moments. Though important modelling characteristics are adjusted, the

well established model class of HMMs is maintained.

Interaction site prediction using hidden Markov models

To date, sequence databases grow with a steadily increasing pace. Most of these sequences are gen-

erated within large scale sequencing projects. As the experimental characterisation of a protein is a

time consuming process, the gap between uncharacterised and characterised protein sequences opens

further and further. This for example is reflected in the size difference of TrEMBL (Wu et al., 2006),

a database of translated DNA-sequences, and Swiss-prot (Boeckmann et al., 2003) containing man-

ually curated entries. Whereas the first contains more than 8.5 M entries (release 40.4), the second

holds only about 470 K sequences (release 57.4). This discrepancy underlines the importance of tools

for the automated functional annotation of proteins.

Driven not only by different large scale projects, it became clear in the last years, that a major

aspect of the function of a protein is its interaction with other proteins. Unravelling these partners

allows placing a protein into its cellular context, giving insights into higher level function. Still,

these data do not provide any details about the type of interaction or regions of the protein with

substantial importance for the interaction. To address this problem, Aloy et al. (2004) performed three

dimensional reconstructions of protein complexes. Indeed, this approach does reveal many details

of the structural basis of an interaction, but it might be too time-consuming and too sophisticated

for large scale applications. A trade-off will be the prediction of regions of a protein involved in

interactions. Accordingly, different methods have been developed to analyse and predict residue

patches involved in protein binding. For all of these tools, the Protein Data Bank (PDB) (Deshpande

et al., 2005) is the standard source of verified structural information on proteins and protein-ligand

complexes.

Three main strategies were followed to approach the detailed analysis of binding interfaces and
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their interaction sites. For a large amount of proteins no data on binding interfaces is available.

Features of binding sites like the accessible surface area, the hydrophobicity or the interface residue

propensity were inferred from resolved protein-ligand complexes (Jones and Thornton, 1997) and

transferred to predictions for new structures via SVM (Bradford and Westhead, 2005; Koike and

Takagi, 2004; Chung et al., 2006), neural networks (Zhou and Shan, 2001; Fariselli et al., 2002) and

via homology using FastA and further tools (Hendlich et al., 2003; Milburn et al., 1998). Although

these approaches are useful in transferring knowledge of binding interfaces to protein structures, their

application is restricted to only a small amount of proteins with known structure.

A combination of sequence and structure information provides an indication of evolutionary dis-

tance of functional sites. The evolutionary trace (ET) method searches for a structural cluster of

conserved residues in a protein within a set of homologous sequences (Lichtarge et al., 1996). All

tools described above are restricted to work with protein structures as input.

As the amount of unidentified and uncharacterised protein sequences is growing very fast, the need

of tools to automatically annotate them on the basis of existing knowledge is obvious. Ofran and Rost

(2003) trained a neural network for the assignment of interaction sites in protein sequences where no

structure information is available. This approach only performed quiet good in detecting interactions

of strong evidence. Recently a profile based heuristic method for the localisation of binding patches

for small molecules was published (Snyder et al., 2006). It transfers annotated binding interfaces of

small molecules from PDB entries to a query sequence and ranks them by calculating a ligand score

for the binding patch. In a first step domains of the query were detected with RPS-Blast. Though this

approach might give reasonable results for small ligands, difficulties in determining more variable

interfaces like those targeting peptide or nucleotide ligands will probably occur.

A challenge for the prediction of interaction sites arises from the fact, that even within one protein

or domain family, the position and the type of these sites can vary as highlighted for example by the

sterile α motif (sam) domain. This domain is known to form homotypic and heterotypic oligomers

(Thanos et al., 1999; Schultz et al., 1997). Other studies reported sam-mediated protein-protein

interactions like the interaction between the ELK and the Grb10/2 proteins (Schultz et al., 1997). In

recent publications sam was described to bind RNA (Edwards et al., 2005), and the domain is even

thought to be involved in binding of p73 to lipid membranes (Barrera et al., 2003). As described

by Kim and Bowie (2003) for oligomerisation and RNA-binding, these interaction partners bind to

different interfaces on the surface of the sam domains. It was shown in a recent large scale analysis of

structurally characterised protein domains, that the variability exhibited by the sam domain is rather

the rule than the exception. Within most of the analysed domain families, neither the position nor
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the type of amino acids involved in an interaction was conserved (Pils et al., 2005). Obviously, this

variability will hinder any straightforward prediction approaches simply transferring interaction sites

of one family member to all other sequences members.

To address this challenge, I have adapted the statistical approach of HMMs to learn the patterns

of functional sites in homologous sequences. In chapter 8 I describe a novel type of profile HMMs

integrating information on sequence and function. One of its main features is the fully probabilistic

detection of domains and interaction sites in proteins.

All together the approaches I propose here partially share methodical or topical intersections. The

methods part ( part I) refers to these overlaps by a pooling of methods related to studies concerning

enterobacteria (see chapter 1) and those concerning HMMs (chapter 3).
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Part I.

Applied methods
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1. Enterobacterial genomics and

diagnostics

1.1. Methods of genome comparison

1.1.1. Bacterial genomes

The publicly or elsewhere available enterobacterial genome sequences listed in Table 1.1 were sub-

jected to genome comparison and probe selection. The genome sequences cover a broad range of

pathotypes from E. coli as well as several subtypes or species in genera Salmonella, Klebsiella and

Yersinia. Available plasmid sequences of the strains were incorporated in the studies.

1.1.2. Clustering of homologous proteins

The comparison of proteomes was based on all-against-all sequence alignments of enterobacterial

proteins. Several billion pairwise protein sequence alignments were executed on a high-throughput

Linux cluster. The sequences were aligned with an MPI-(Message Passing Interface) compiled ver-

sion of the programme PARALIGN (Saebø et al., 2005) in Smith-Waterman mode. The Smith-

Waterman algorithm evaluates the full local alignment space and therefore produces more accurate

alignments than the BLAST-heuristic, which is optimized for time-efficiency. The proteins were

subsequently clustered according to sequence similarity with the programme OrthoMCL. The imple-

mented Markov cluster algorithm interprets protein similarities as a graph. The graph is composed

of nodes being proteins and edges representing protein similarities. Stochastic random walks through

the graph are simulated by two operations on the similarity matrix, termed expansion and inflation,

to separate clusters with respect to the local amount of flow between the nodes. The clusters match

the definition of homologous proteins. The OrthoMCL algorithm was applied with lowest alignment

coverage of 50% and an E-value-threshold of 10−6 for sequence similarity. Alternative thresholds for

coverage and E-values did not substantially change the clustering result.

1.1.3. Core genome and dispensable genome

Common and variable parts of the gene-pool can be approximated by an assignment of presence and

absence of coding sequences, here translated to amino acid sequences, in a set of related strains. The

intersection of present proteins defines the core part across organisms, termed the core genome. The

dispensable genome refers to the variable part of the gene-pool, which encodes for individual differ-
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Table 1.1.: Table of bacterial genomes

Genus Species Isolate Patho-/Serotype Genbank-ID Submission Authors

K-12 MG1655 non-pathogens U00096.2 1997/09/26 Blattner et al.
(1997)

K-12 W3110 non-pathogens AP009048.1 2005/08/22 Mori et al. (2005)
Nissle 1917 commensal – – –
O9 HS commensal CP000802.1 2007/08/13 Rasko et al. (2007)
DH10B non-pathogens CP000948.1 2003/08/14 Durfee et al. (2008)
ATCC8739 commensal CP000946.1 2008/02/14 Copeland et al.

(2008)
536 UPEC CP000247.1 2006/01/20 Brzuszkiewicz et al.

(2006)
UTI89 UPEC CP000243.1 2006/01/05 Chen et al. (2006)

Escherichia coli CFTO73 UPEC AE014075.1 2002/06/20 Welch et al. (2002)
APEC O1 APEC CP000468.1 2006/09/14 Johnson et al.

(2007)
ACI 789 APEC – – Eliora Ron, Univer-

sity of Tel Aviv
O157:H7 EDL933 EHEC AE005174.2 2000/10/22 Perna et al. (2001)
O157:H7 Sakai EHEC BA000007.2 2000/06/26 Hayashi et al.

(2001)
O42 EAEC – – Sanger Institute
E2348-69 EPEC FM180568 2008/07/16 Iguchi et al. (2009)
E24377A ETEC CP000800.1 2009/07/11 Rasko et al. (2007)
SMS-3-5 SECEC CP000970.1 2003/08/20 Fricke et al. (2008)
2a 301 2a AE005674.1 2004/12/06 Jin et al. (2004)

flexneri 5b 8401 5b CP000266.1 2006/02/22 Nie et al. (2006)
2a 2457T 2a AE014073.1 2002/06/13 Wei et al. (2003)

Shigella dysenteriae Sd197 1 CP000034.1 2004/10/29 Yang et al. (2005)
sonnei Ss046 1 CP000038.1 2004/10/29 Yang et al. (2005)

Sb227 4 CP000036.1 2004/10/29 Yang et al. (2005)
Shigella boydii CDC 3083-94 18 CP001063.1 2005/08/05 Rasko et al. (2008)
Klebsiella pneumoniae MGH78578 CP000647.1 2006/09/06 McClelland et al.

(2006)
Paratyphi A ATCC9150 A CP000026.1 2004/10/01 McClelland et al.

(2004)
Choleraesuis SC-B57 C1 AE017220.1 2004/09/02 Chiu et al. (2005)

enterica Typhi Ty2 D1 AE014613.1 2002/09/02 Deng et al. (2003)
Salmonella Typhi CT18 D1 AL513382.1 2001/10/25 Parkhill et al.

(2001a)
Arizonae IIIa CP000880.1 2007/11/21 McClelland et al.

(2007)
typhimurium LT2 B AE006468.1 2001/03/29 McClelland et al.

(2001)
bongori 12419 – – – Sanger Institute

CO92 Orientalis AL590842.1 2001/10/04 Parkhill et al.
(2001b)

KIM Medievalis AE009952.1 2002/02/21 Deng et al. (2002)
91001 Microtus AE017042.1 2003/04/24 Song et al. (2004)

pestis Antigua Antiqua CP000308.1 2006/04/06 Chain et al. (2006)
Angola Antiqua CP000901.1 2007/12/12 Worsham et al.

(2007)
Yersinia Nepal516 – CP000305.1 2006/04/06 Chain et al. (2006)

Pestoides F – CP000668.1 2007/04/13 Copeland et al.
(2007)

IP32953 – BX936398.1 2004/02/08 Chain et al. (2004)
pseudo-
tuberculosis

IP31758 – CP000720.1 2007/07/23 Eppinger et al.
(2007)

YPIII – CP000950.1 2008/11/03 Challacombe et al.
(2008)

entero-
colitica

8081 – AM286415.1 2006/06/30 Thomson et al.
(2006)

ences and is not present throughout all organisms. The core genome was approximated by repetitive

determination of the intersection between an iteratively increasing number of proteomes from dif-

ferent strains in permuted order. The imbalance in the number of reference strains per genus was

compensated by appropriate sampling with equal sample sizes. The Extrapolation of dispensable and

core genome size was performed according to the formalisation given in Algorithm 1, which followed

40

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=U00096.2
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AP009048.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000802.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000948.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000946.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000247.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000243.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AE014075.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000468.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AE005174.2
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=BA000007.2
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=FM180568
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000800.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000970.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AE005674.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000266.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AE014073.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000034.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000038.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000036.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP001063.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000647.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000026.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AE017220.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AE014613.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AL513382.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000880.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AE006468.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AL590842.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AE009952.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AE017042.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000308.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000901.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000305.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000668.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=BX936398.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000720.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=CP000950.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AM286415.1


1.1. Methods of genome comparison

Algorithm 1 Calculation of dispensable and core genome
for 1 to max.iterate do . max.iterate=10,000

n.sample← min group size . number of groupwise sampling
genome sample +← sample from G1,...,Gn n.sample times . vector of test genomes
genome order← permute ‘genome sample’ order
for k = 2 to n genomes * min group size do

core genome +← count present proteins in genomes[genome order]
disp genome +← count absent in genomes [genome order[1:(k-1)]] & present in genome[k]

end for
end for

the principle previously described by Tettelin et al. (2005) and Willenbrock et al. (2007). Values of

dispensable and core genome sizes were fitted by non-linear regression. For the core genome approxi-

mation the best fit according to the error sum of squares was achieved by applying a triple exponential

decay function

fc(x) = Ωc +KC1 e
(−TC1 x) +KC2 e

(−TC2 x) +KC3 e
(−TC3 x) (1.1)

while the dispensable genome was best fitted by a double exponential decay function

fd(x) = Ωd +KD1 e
(−TD1 x) +KD2 e

(−TD2 x) (1.2)

The variable x contains the amount of compared proteomes to determine the corresponding number of

core protein clusters fc(x) or the number of specific protein clusters in the x-th proteome fd(x). Ωd/c

signify the approximated value of the dispensable or core genome for the whole group of strains. The

T as well as K parameters represent the amplitude and exponential decay factors of the regression

curve. Sampling outcomes for the dispensable and core genome were graphically displayed as bean

plots. Bean plots follow the principle structure of box plots, but the boxes are replaced by so-called

beans, which represent the density distribution of dispensable or core genome sizes for respective

numbers of considered genomes. The density distributions are overlaid by horizontal lines providing

values of dispensable and core genomes of respective single runs. The non-linear regression and

corresponding confidence intervals were conducted with the statistical computing environment R (R

Development Core Team, 2004) and the add-on packages nlme (Pineiro et al., 2008) and quantreg

(Koenker, 2008). Plotting was performed by applying the beanplot package (Kampstra, 2008).

1.1.4. Hierarchical clustering of proteome data

The hierarchical clustering was performed on the presence and absence, abundance or similarity val-

ues of protein clusters in related strains. As the results of strain comparisons based on E-value profiles

did not substantially differ from those obtained by analysing profiles of abundance or binary assign-

ments of protein clusters, the handy integer values were processed in subsequent explorations. The

distances between binary and abundance profiles were calculated with the Jaccard index. The met-

ric determines the fraction of entries (the protein clusters) that are simultaneously positive in two

compared entities (the proteomes). Completely missing and therefore uninformative entries are not

considered by Jaccard’s method. The Jaccard index implementation of the R package vegan (Oksa-
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nen et al., 2008) was applied to retrieve the distance matrix for the strains in focus.

The strains were hierarchically clustered with the method of Ward (1963) as it is implemented by

the R function hclust. Ward’s clustering intends to minimise the loss of information, which is

determined by an approach derived from the error sum of squares principle. In every clustering step

from single entities to one overall cluster the error sum of squares between clustering targets and

the cluster means is minimised. Bootstrap resampling was conducted employing the pvclust R

package (Suzuki and Shimodaira, 2006). Besides conventional bootstrapping, the algorithm provides

the assessment of approximately unbiased bootstrap values. The latter bootstrapping corrects the

influence of large data sets on bootstrap values by multi-scale bootstrap resampling.

1.1.5. Multivariate analysis

The multidimensional data resulting from proteome or virulence domain mappings were explored

with respect to strain varieties by correspondence analysis (CA). Details about the methodology are

reviewed elsewhere (Benzécri, 1992). Briefly, CA can be regarded as a way to simultaneously display

and qualitatively correlate differences along multiple row and column entities of a multidimensional

matrix by dimensional reduction. The method is based on the normalisation of matrix entries by divi-

sion with respective row and column sums and on the calculation of χ2-distances of row and column

instances. The χ2-distance indicates the cell-wise dependencies of row and column instances and

serves as a measure of the divergence from expectation. Dimensional reduction is achieved by the

determination of data planes in the projected data space, in which the first principal axis accounts

for the largest fraction of the variance. Principal axis of higher CA-dimensions beginning with the

second dimension are chosen according to orthogonality to the previous one, and account for the

largest fraction of variance that is not covered by lower-dimensional principal axes. The orthogonal

basis vectors can than be displayed in two- or three-dimensional coordinate systems. The origin of

the coordinate system is termed centroid and characterises data independence of row and column

instances. The distance to the centroid specifies the distinctness of dependence between row and col-

umn instances in the corresponding area of the plot. The superposition of row and column instances

spatially discriminates positive from negative correlations by an opposite location of respective items

in the plot.

The implementation of CA of the R packages MASS (Venables and Ripley, 2002) and vegan

were applied to explore proteomic differences. Row and column instances of different main axis

determined by CA were graphical displayed by using the geneplotter (Gentleman and Biocore,

2008) R package.

1.1.6. Phylogenetics and phylogenomics

Conventional enterobacterial phylogeny was inferred from 16S rRNA or rpoB marker genes, respec-

tively. Multiple sequence alignments obtained from the alignment programme mafft using G-INSi

parameter settings (Katoh et al., 2005) were subjected to the programme PAUP, a commercial pack-

age of phylogenetic tools. The choice of an appropriate model of evolutionary processes was achieved

by applying the programme modeltest (Posada and Crandall, 1998). Modeltest hierarchically deter-

mined the general time-reversible substitution model with invariant sites to be appropriate in 16S
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rRNA and rpoB phylogenies according to the Akaike information criterion. Phylogenetic trees were

plotted using the visualisation tool splits tree (Huson, 1998). The programme provides, besides basic

tree drawing, the alternative splits tree representation of phylogenetic distances. Splits trees reflect

uncertainties in evolutionary divergence time of taxa by the insertion of parallelograms. The edge

sizes of these parallelograms increase with the degree of uncertainty, which is calculated by the split

decomposition algorithm (Bandelt and Dress, 1992).

Evolutionary analysis on genome rearrangements were based on multiple whole genome align-

ments applying the programme MAUVE (Darling et al., 2004). This programme constructs align-

ments by a heuristic search of anchor sequences in locally homologous regions called local collinear

blocks. The algorithm assigns local collinearity if such a block occurs in at least two genomes and

fulfills a minimum weight criterion. The criterion refers to the number and length of anchor sequences

in a block. The subsequent progressive alignment is guided by a phylogenetic tree constructed on the

basis of the anchor sequences. The full alignment provides information about homologous blocks

among genomic sequences, the order of these blocks and rearrangements with the corresponding po-

sition in the genomic landmark sequence. The sequence of homologous blocks and rearrangements

was further subjected to the Spring server, which computes the breakpoint distances on reversals

(also termed inversions) and block interchange (including transpositions) between chromosomes (Lin

et al., 2006). The distance is based on the operations needed to transform the sequence of rever-

sals and block interchanges from one genome into the sequence of a second genome. Reversals

are weighted down in distance measurements compared to block interchanges because of a higher

observed occurrence of these evolutionary events.

1.1.7. Statistical tests

Significant presence and absence of protein clusters in subgroups of bacterial genomes were probed

by different tests depending on the type of data. The significance of the presence ratio of protein

clusters based on binary presence/absence in a subgroup of related enterobacteria compared to other

subgroups was determined with Pearson’s χ2-statistical test.

χ2 =
n∑
i=1

(Oi − Ē)2

Ē
(1.3)

The χ2-test statistic measures the deviance of the frequenciesOi in group i to the expected frequencies

Ē =
∑
iOi
n determined from all n groups. The test is based on the null hypothesis (H0 : O1 = O2 =

. . . = On = Ē) that all n assigned subgroups exhibit group-specific frequenciesOi of the presence of

a protein cluster that are equal to an overall mean frequency Ē. Protein clusters exclusively present in

one group were selected by setting the alternative hypothesis to H1 : Oi > Ē. The test statistics for

all protein clusters were calculated by the application of the R-specific implementation of Pearson’s

χ2-test in the function prop.test.

Group-specific significant differences in the abundance of protein clusters were determined by

applying the Kruskal-Wallis rank sum test. The non-parametric test statistic proposed by Kruskal and
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Wallis (Kruskal and Wallis, 1952) is calculated as

H =
12

N(N + 1)

n∑
i=1

sir̄
2
i· − 3(N + 1) (1.4)

with the overall number of observations N , the size of the i-th group si and the average sum of

ranks from observations r̄i· in group i. The Kruskal-Wallis test is based on a collective ranking of all

abundances from all groups. Identical abundance values were assigned to averaged ranks. The test

then evaluates the hypothesis by comparing group-wise sums over ranks assigned to the abundance

values.

Finally, the p-values for test statistic T (either χ2 or H) was approximated

Pr(χ2
n−1 ≥ T ) (1.5)

by selecting the χ2-distribution with n− 1 degrees of freedom. Obtained p-values of the significance

of group-wise protein cluster presence were corrected for multiple testing errors with the method of

Benjamini and Hochberg (1995), which is provided by the R function p.adjust.

1.1.8. Assignment of protein domains

HMMs of protein domains were obtained from the Pfam A database. Chapters 7 and 8 deal in more

detail with the theory of HMMs including a general optimisation of its modelling behaviour in chapter

7 and the development of a prediction method for protein interaction sites based on profile HMMs

in chapter 8. Protein domains were detected by the programme HMMer applied in hmmpfam mode

with an E-value threshold of 10−2. The use of pfam_ls versions of the selected HMMs assured the

detection of complete domains.

Annotation of specific protein clusters and HMM database

Annotations to bacterial protein sequences were requested from NCBI’s Entrez protein database

(03/2008). Multiple sequence alignments were constructed of sequences from each protein cluster

using the programme mafft. The G-INSi parameter setting of the alignment programme was applied

to obtain global alignments based on the Needleman-Wunsch algorithm. The alignments are provided

for download at the database interface. They additionally served as training data for a library of pro-

file HMMs, which were trained with hmmbuild and hmmcalibrate from the HMMer2-package.

Text file versions of the HMMs in HMMer format are provided in conjunction with the database.

1.2. Microarray-related methods

1.2.1. Longest common factor statistics

Rahmann (2003) proposed an algorithm based on enhanced suffix arrays to identify all common,

contiguous subsequences, termed factors, in a subset of reference genomes. The method is based on

the definition of appropriate matching and cross-hybridisation thresholds to ensure a save matching

to all target sequences and to prevent for undesired matches. Briefly summarised, the algorithm
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Table 1.2.: Table of recently published bacterial genomes
Genus Species Isolate Pathogroup Genbank-ID Submission Authors

DH10B non-pathogens CP000948.1 03/14/08 Durfee et al. (2008)
Ed1a non-pathogens CU928162.2 12/18/08 Genoscope -,C.E.A.
SE11 non-pathogens AP009240.1 10/22/08 Oshima et al. (2008)
ATCC8739 non-pathogens CP000946.1 14-FEB-2008 Copeland et al. 2008
IAI1 non-pathogens CU928160.2 12/18/08 Genoscope -,C.E.A.
IAI39 UPEC CU928164.2 12/18/08 Genoscope -,C.E.A.
UMN026 UPEC CU928163.2 12/18/08 Genoscope -,C.E.A.
SMS-3-5 SECEC1 CP000970.1 03/20/08 Fricke et al. (2008)
O157:H7 EC4115 EHEC CP001164.1 10/08/08 Eppinger et al. 2008
55989 EAEC CU928145.2 12/18/08 Genoscope -,C.E.A.
E24377A ETEC CP000800.1 09/11/07 Rasko et al. 2007

Escherichia coli

S88 MNEC CU928161.2 12/18/08 Genoscope -,C.E.A.
Shigella boydii CDC 3083-94 18 CP001063.1 05/05/08 Rasko et al. 2008
Salmonella enterica Enteritidis P125109 PT4 AM933172.1 09/25/08 Thomson et al. (2008)
Klebsiella pneumoniae 342 CP000964.1 09/24/08 Fouts et al. (2008)

1The SECEC pathotype is assigned to an environmental isolate from an industrial area. The strain causes diarrhoea and exhibits multiple
antimicrobial resistances.

decomposes the target genomes into all possible factors and stores them in a lexicographical order

together with information about sequence positions and longest common prefixes as enhanced suffix

arrays. If a collection of several sequences is investigated, a generalized suffix array of all sequences

is constructed. Matching statistics and longest common factors can further on be obtained according

to the algorithm described by Rahmann (2002).

1.2.2. Sequence alignments and annotation

The occurrence of oligonucleotide probes in genomes of recently published enterobacteria was de-

termined by Smith-Waterman sequence alignments over the whole 70 bp of probe length. The align-

ments were performed using an mpi-compiled version of the PARALIGN programme (Saebø et al.,

2005) for Linux clusters. In accordance to match/mismatch criteria applied to initial probe selec-

tion, the longest consecutive matching between probe and target genome sequences was determined.

PARALIGN was also applied to align candidate probes with the human genome to prevent cross-

hybridisation in clinical samples. Similarly, the performance of the probe set was assessed on recently

published enterobacterial genomes. Table 1.2 lists detail of the genomes subjected to this screening.

All oligonucleotides related to pathogroup typing were functionally annotated by performing NCBI-

BLAST searching against the enterobacterial sequence database. Annotations were obtained manu-

ally from the most abundant function assigned to respective genomic regions.

New AMR-specific capture probes were designed by the programme OligoPicker (Wang and Seed,

2003). Probe uniqueness was validated against the genomic DNA of reference strains with BLAST.

Table S1 of supplementary material provides the whole set of markers for AMR.

1.2.3. Genomic DNA preparation

Cultures were grown overnight at 37◦C with aeration by constant shaking in 4ml LB (Luria Bertani)

medium. Two different DNA-extraction methods were applied to prepare genomic DNA (gDNA)

from the collection of enterobacterial strains. The TNE DNA extraction was used as standard prepa-
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ration method. In cases where the standard method failed, Phenol extraction was applied.

TNE DNA extraction Cells were washed once in 1ml TNE-buffer (10mM Tris [pH 7.5], 10

mM NaCl, 10mM EDTA) and resuspended in 600 µl TNEX (TNE, 1 Vol. Triton X 100) with 3

µl lysozyme (50 mg/ml) for 10 min at 37◦C. After the addition of 30 µl proteinase K (20 mg/ml),

the lysate was incubated for 1-2h at 65◦C until clearance. DNA was precipitated by adding 30 µl 5

M NaCl and 1.3ml 100% ethanol, followed by two washing steps with 100% and 70% ethanol. The

DNA was dried for 10 minutes and resuspended in 200 µl H2O.

Phenol extraction After centrifugation cell pellets were resuspended in 500 µl lysis buffer (50

mM Tris-HCl [pH 8.0], 50 mM EDTA [pH 8.0]) for 1h at -20◦C. Lysozyme (10mg/ml in 0.25M Tris-

HCl [pH 8.0]) was added to the frozen cells. The cell lysates were thawed by reversing and incubated

for 45 min on ice. Cellular proteins were enzymatically degraded by proteinase K solution (0.5%

SDS, 50mM Tris-HCl [pH 7.5], 0.4M EDTA [pH 7.5], 1mg/ml Proteinase K) at 50◦C. The DNA

was extracted by addition of 500 µl Phenol (Tris-HCl) and precipitation from the aqueous phase with

0.1 vol. 3M Sodium-Acetate [pH 5.2]. The DNA was purified by the addition of 2.5 vol. of 100%

ethanol, followed by washing, drying and resuspension as described before.

1.2.4. Microarray technology and hybridisation

The HTA™Slide12 from Greiner Bio-One provide 12 separate wells for independent parallel hybrid-

isation. They are composted of polymer and coated with a 3D-Epoxy surface. Each well provides a

printable area of 12 x 36 mm2 bordered by a rim of 0.5 mm in height. The 70-mer oligonucleotides

were synthesised by Metabion and spotting of microarrays was conducted by Scienion AG with a

sciFLEXARRAYER S100 spotting machine.

Genomic DNA of enterobacterial isolates in Table 1.3 were hybridised to the microarray in order

to test its hybridisation reliability on reference and new strains. Test hybridisations with different

combinations and ratios of mixed culture samples were set up in addition to pure culture test in order

to evaluate the performance of the microarray on community samples. Table 1.4 summarizes the ratios

and isolates involved in mixed culture tests. The experiments comprise a dilution series of a mixture

of the commensal E. coli strain K-12 MG1655 and the EHEC isolate E. coli O157:H7 EDL933 (M01-

M05). Table 1.4 specifies the composition these and further equally balanced mixed culture samples

ranging over the whole diversity if the pathogroup tree (M06-M12). The spike-in experiments were

intended to evaluate the accuracy to predict simultaneously the DNA content and therefore the amount

of two or more bacterial groups in a test sample. For the spike-in mixtures of EHEC and commensals,

the pathogroup-specific rates varied in a range between 0.8 and 0.2 of overall hybridised DNA in a

counterrotated mode starting with an amount of 1.6 µg commensal DNA in plot M01. The applied

linear regression model was trained with all hybridisation patterns of isolates belonging to one of

the groups indicated as annotation of the x-axis in the plots. To calibrate the coefficient matrix for

the prediction of mixed cultures, the training was extended by the mixed-culture patterns. No cross-

validation was performed because of the lack of biological repeats. All experiments were merely

conducted with a technical replicate, an identical composition of the mixed sample.
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Table 1.3.: Table of isolates used in microarray tests.

Species Patho-/Serotype Isolate

IHE3034
MNEC

A21
4405/1

SEPEC
B10363
536
AD110UPEC
EcoR55
ED142
EDL933
SF493/89
5720/96

EHEC

2907/97
5777/94
O42
17-2

EAEC

DPT065
76-5
EDL-1284
HN280

EIEC

O164
EcoR28
K-12 MG1655
Nissle 1917
M3/6
EcoR7

non-pathogens

EcoR23
BEN79
Ben2908APEC
AC/I
179/2
E2348/69
37-4
Z412-94

EPEC

TB156A
F18
IMI590
H10407
E1392-75
E34420A

E. coli

ETEC

B34212c

S. dysenteriae
4 2095
9 2088

LT06 2084
2083S. sonnei

LT50 2098

Species Patho-/Serotype Isolate

1a 2092
2a 2089
2b 2090
3a 2093

2082
3b 2091
4a 2081

S. flexneri

5 2097
4 2087

2085
11 2086

S. boydii

14 2094
B DT104

DT17
DT12
DT170
PTU302
LT2

S. typhimurium

ATCC14028
S. Bareilly C1
S. infantis C1
S. Virchow
S. Livingstone
S. Bovismorbificans C2
S. Manhatten
S. Hadar
S. Give E1
S. Derby B

MGH78578
U983
375
E492
625
Bk098/2
3091
Kp52145
U047
SB3464

K. pneumoniae

110
K. ozeanae SB3431
K. edwardsii S15

WA314
Y. enterocolitica

1208-79
25201A

Y. pseudotuberculosis
H260/91

The table lists all isolates applied for test hybridisations of the developed diagnostic chip. An
abbreviated nomenclature was used in Salmonella listings providing genus and serovars.

Sample preparation and labelling The concentration of genomic DNA samples was deter-

mined both before labelling and after purification. Therefore, the absorption of 30 µl sample DNA

(Absi) was measured at 260 nm wavelength with an Axon photometer. The DNA concentration

of sample i results from [gDNA]260
i = Abs260

i [gDNA]260
0 Di with Di as factor of dillution and

[gDNA]260
0 = 50µgml−1 as gDNA concentration, when absorbance at 260nm is Abs0 = 1.

Genomic DNA was labelled with the DecaLabel DNA Labeling Kit from Fermentas (30 rxns., No.
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Table 1.4.: Table of mixed culture tests of microarray hybridisations.

gDNA 1 ratio gDNA 2 ratio

E. coli K-12 MG1655 0.8 E. coli O157:H7 EDL933 0.2
E. coli K-12 MG1655 0.6 E. coli O157:H7 EDL933 0.4
E. coli K-12 MG1655 0.5 E. coli O157:H7 EDL933 0.5
E. coli K-12 MG1655 0.4 E. coli O157:H7 EDL933 0.6
E. coli K-12 MG1655 0.2 E. coli O157:H7 EDL933 0.8
E. coli M3/6 0.5 S. flexneri 1a 0.5
E. coli ED142 0.5 S. boydii 2094 0.5
E. coli M3/6 0.5 S. typhimurium LT2 0.5
E. coli ED142 0.5 S. infantis 0.5
E. coli M3/6 0.5 Y. pestis KUMA 0.5
E. coli ED142 0.5 Y. pseudotuberculosis H260/91 0.5
E. coli M3/6 0.5 E. coli 536 0.5

The table lists the compositions of test samples prepared for hybridisation experiments with mixed
cultures. The first 5 spike-in experiments refer to the evaluation of detection accuracy in samples of
varying gDNA amounts of a commensal against an EHEC strain.

K0622). Initially, 4 µg of genomic DNA were resuspended in 35 µl nuclease-free H2O and after

addition of 10 µl decanucleotide denatured for 5 min at 95◦C. After 2 min on ice 5 µl labelling mix

(3 µl mix T (0.33 mM dATP, 0.33 mM dCTP, 0.33 mM dGTP), 1 µl Cy5-dUTP (Enzo Life Science),

1 µl Klenow fragment) was mixed with each denatured sample. The labelling process is completed

by incubation for 20 min at 37◦C, the addition of 4 µl 0.25 mM dNTP, another incubation period of

15 min and finally the arrest of reaction.

Purification of labelled gDNA The MinElute PCR purification kit from Quiagen was used for

purification. The kit is designed to recover DNA fragments of sizes in the range of 70 bp to 4 kb

while small oligonucleotides shorter than 40 bp are removed. The labelled samples were mixed with

300 µl PB buffer and transferred to purification columns. After centrifugating at 12,000 g for 1 min

and dropping of the filtrate 400 µl of 35% Guanidinium-HCl were added. Another centrifugation

was followed by 2 washing steps with 700 µl PE mix and two times centrifugation to get rid of the

resting PE in the filter. The sample was then eluted with two times 20 µl EB buffer for 2 min each

and subsequent centrifugation.

Processing of slides All solution applied in processing and washing procedures of the slides

were demineralised and filtrated with 0.22 µm pore filters. Spotted slides can exhibit clumping effects

of oligonucleotides. To reduce these effects of the spotting procedure the slides were treated with

water vapour and subsequent drying to “straighten” the probes. At first, the slides were treated for 5

min under agitation with 0.1% Triton X-100. Afterwards, they were transferred twice to a processing

chamber filled with 6 mM HCl and agitated for 2 min. The following step comprised a bath in 100

mM KCl solution for 10 min and in water for 2 min, both at agitation. Then slides were transferred

to a chamber filled with pre-warmed (50◦C) 50 mM Ethanolamine, 0.1% SDS in 0.1 M Tris [pH 9.0]

for 15 min. The processing was completed by two washing steps with H2O for 2 min again under

agitation, bathing in cold Ethanol and drying for 3 min under centrifugation at 1,000 g.
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Hybridisation and washing In preparation for hybridisation, 2 µg of labelled and purified sam-

ples were dried in a SpeedVac and resuspended in 15 µl hybridisation buffer (Scienion SciHyb, pre-

warmed for 10 min to 42◦C). The cavities of the hybridisation chamber were loaded with 20 µl H2O,

samples were dropped contactless on the spotted areas of the slides and the slides were hybridised

overnight (about 15 h) in a 42◦C water basin.

After removal of hybridisation fluid the arrays were washed three times with 30 µl washing solution

1 (5% 20x SSC, 0.033% SDS). In all successive steps the slides were kept in darkness if possible.

The slides were consecutively transferred to chambers with washing solution 1, 2 (1% 20x SSC) and

3 (0.25% 20x SSC) and agitated for 5 min each. Finally, the slides were dried by centrifugation at

1,000 g for 3 min.

Scanning and image processing The slides were scanned in 5 µm resolution with an Axon

GenePix® 4000B microarray scanner. Scan images were processed by applying the GenePix 6.0

software to obtain raw intensities.

1.2.5. Disc diffusion test

Strains were cultivated overnight at 37◦C with aeration by constant shaking in 4 ml Mueller-Hinton

(MH) medium (23 g/l Mueller-Hinton Broth, Composition: 2 g/l beef infusion solids, 1.5 g/l starch,

17.5 g/l casein hydrolysate, pH 7.4±0.2 (37◦C)). 100 µl of the overnight culture were transferred to

4 ml MH medium and cultivated for 4 hours under constant shaking at 37◦C. These cultures were

diluted to a final culture containing between 5 × 106 − 1 × 106 CFU/ml. 100 µl of each dilution

were plated on a MH-agar plate (23 g/l MH-medium, 20 g/l agar). Susceptibility discs containing the

antibiotic substances that are listed in Table 1.5 were placed on the agar plate in a sufficiently large

distance regarding the zones of inhibition. The cells on the MH-agar plates were cultivated overnight

at 37◦C. The assignment of susceptibility, intermediate behaviour or resistance was subsequently

determined by the measurement of the diameter of the zone of inhibition around the susceptibility

discs. Table 1.5 lists the corresponding reference thresholds of this assignment, which were defined

by the Clinical and Laboratory Standards Institute (USA).

1.2.6. Evaluation of hybridisation Patterns

Subsequent microarray analyses were performed using the statistical programming software R.

Between array normalisation

Raw intensities were normalised by the algorithm for variance stabilisation between arrays (Huber

et al., 2002). The method homogenises the variance of hybridisation intensities from a set of samples

by transformation of the data with the model h (x) = arsinh (a+ bx). This transformation corrects

for an underweighting of differences in lower intensities.

Separation of hybridisation intensities in signal and noise

Microarray experiments yield two kinds of outcomes: the signal intensities upon binding of com-

plementary DNA and an unspecific fluorescence of the microarray surface or dye remnants. For log
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Table 1.5.: Standards of antimicrobial resistance

Antibiotic Class Concentration
[ µg/ml]

Resistent
[mm]

Intermediate
[mm]

Susceptible
[mm]

Amocillin β-Lactam (Aminopeni-
cillin)

2 ≤15 16-22 ≥23

Oxacillin β-Lactam (Isoxazolylpeni-
cilline)

5 ≤15 – ≥16

Imipenem β-Lactam (Carbapeneme) 10 ≤13 14-15 ≥16
Ceftriaxone β-Lactam

(Cephalosporine)
5 ≤15 – >15

Gentamicin Aminoglycoside 10 ≤14 15-20 ≥21
Erythromycin Macrolide 15 ≤16 17-20 ≥21
Tetracycline Tetracycline 30 ≤16 17-21 ≥22
Chloramphenicol Amphenicol 10 ≤20 – ≥21
Sulphometoxazole/TrimethoprimSulfonamide/Dr inhibitor 25 <15 15-17 >17

Standard values to assign susceptibility to antibiotics. The thresholds were defined by the Clinical and Laboratory
Standards Institute (USA). The listed antimicrobial agents cover all classes for which equivalent resistance probes were
designed.

normalized hybridisation patterns each type of intensity values follows a normal distribution. The

classification accuracy of microarray intensities in either one of these classes is strongly dependent

on the degree of overlap of the two distributions. In experimentally generated hybridisation patterns

the bimodal Gaussian mixture model is able to fit the two intrinsic normal distributions. Figure 1.1

graphically illustrates the distributional fitting of the two normal distributions to intensities of AMR-

associated probes as green coloured background noise fraction and a red coloured signal fraction.

Parameter estimation of the Gaussian mixture and calculation of posterior probabilities of the classi-

fication was achieved by using the R-package Mclust (Fraley and Raftery, 2002).

Analysis of variance and simultaneous inference of multiple comparisons

The analysis of variance (ANOVA) is a statistical test to determine if the mean value of groups within

a test set significantly differs to a higher extent than single values of a group from its mean. In other

words, the test determines if a significant difference in the average value between at least two groups

is observed. Formally the test statistic is calculated as

F =
variance of group means

mean of within-group variances
(1.6)

The uni-factorial and multi-factorial ANOVA are distinguished. A factor in the context of ANOVA

is an independent variable consisting of two or more internal groups, the factor levels. In case of

two groups, the ANOVA yields the same result as a two-sided t-test. In microarray applications the

factors are vectors of signal intensities corresponding to probes and the groups are biological repeats

of certain experimental condition or as in this case bacterial virulence phenotypes. ANOVA was

calculated by applying the R-function aov from the stats-package.

An ANOVA is often complemented with additional tests to determine the nature of differences

between groups. The Tukey honestly significant difference (HSD) test is often applied in such context.

This test is replaced in the described analysis by the simultaneous inference of one-sided multiple

comparisons (Hothorn et al., 2008). The algorithm evaluates individual test hypothesis derived from
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1.2. Microarray-related methods

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

Intensity

D
en

si
ty

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●
●●●●

●●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●●

●●●●
●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

background noise
signal

Figure 1.1.: Distribution of signal intensities of AMR probes. The parameters of the bimodal distribution
were fitted with a Gaussian mixture model. The intensities were then classified into a background noise (green)
and a signal fraction (red) based on the fitted distribution.

ANOVA to calculate adjusted p-values. The method is implemented in the R-package multcomp.
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2. Meta-analysis on gene expression
datasets

2.1. Data pre-processing

Microarray data were collected from the Gene Expression Omnibus (GEO) database (Barrett et al.,

2007). For our analysis, we defined a dataset as a GEO entry with a unique GSE series accession

number. Each dataset consisted of several Affymetrix CEL-files, each one representing the raw data

from one microarray hybridization. The raw data of one microarray is termed a sample in the follow-

ing section. Instead of comparing whole GEO datasets with each other, we broke down each dataset

into contrasts and used these as ’entities’ for our analysis (Fig. 1, Everitt 2005). A contrast is the

difference in gene expression between any two sample groups of the same dataset. A sample group

contains all replicate samples from one condition (e.g. treatment, mutant, see Table 2). Therefore, for

most GEO datasets, several contrasts were set up. For example, a contrast could be a comparison of

an Arabidopsis thaliana mutant with a wild type plant.

A contrast was then represented by a vector of the logarithmic (base 2) fold changes of all 22810

probe sets on the ATH1 chip. The majority of probe sets on the ATH1 chip interrogates the expression

level of one gene, some match to two or more genes. Before computing the fold changes, raw intensity

values of all samples of a contrast were normalized using the gcRMA algorithm implemented in the

gcrma package (Wu et al., 2005) which is part of Bioconductor (Gentleman et al., 2004) and runs

under the statistical software R. Logarithmic fold changes and p-values adjusted for multiple testing

using the false discovery rate method (Benjamini and Hochberg, 2000) were computed using the

limma package (Smyth, 2004) which is also integrated into Bioconductor.

We imposed the following selection criteria on the datasets: a) Availability of the Affymetrix raw

data (CEL-files) for download, b) at least two replicates of each condition are available c) time-course

experiments were excluded. 20 GEO datasets fulfilled these criteria as of November 2006. From these

datasets, 76 contrasts could be set up on the basis of 424 CEL-files. The final data matrix used for the

unsupervised meta-analysis was a 76× 22810 matrix, 76 contrasts with 22810 log fold changes.

2.2. Outlier removal and transformation

To remove experimental outliers from the data which could negatively influence any further analysis,

a filtering criterion was set up as follows. Across all experiments, 15% and 85% quantiles of the

distributions of medians and variances of the log fold changes were calculated. Experiments whose

medians laid outside the inter-quantile-range or whose variances were below the 15% quantile thresh-

old were excluded from further analysis. This resulted in a reduced data matrix X with 41 remaining
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2. Meta-analysis on gene expression datasets

contrasts. We randomly inspected the 35 removed contrasts for detectable problems and found sev-

eral contrasts having a low-variant distribution of multiple-testing corrected p-values with almost all

p-values close to one.

When dealing with heterogenous experimental datasets from different laboratories and experimen-

tal settings, efficient data transformation methods are necessary to produce a reasonable level of

comparability. Log fold changes from microarray experiments deserve special attention in that they

implicitly define a “direction” of differential expression by their algebraic sign which is semantically

not sustainable when comparing contrasts from divergent settings. We therefore only evaluated the

absolute value of the log fold changes and brought all remaining 41 contrasts approximately to a stan-

dard normal distribution by applying the Box-Cox-Transformation (Eq.2.1, Box and Cox 1964) using

Maximum-Likelihood estimated power coefficients.

For a power coefficient p and data x the box-cox-transformed data x′ is defined as follows:

x′ =

{
(xp − 1)/p if p 6= 0

log(x) if p = 0
(2.1)

The average p values were about 0.13, resulting in an approximately logarithmic transformation of

the log fold changes. Subsequently, all datasets were standardized to zero mean and unit variance to

analyze datasets without regard to their scale and location.

2.3. Kernel PCA

Principal Component Analysis (PCA) aims to provide a lower dimensional view of high dimensional

data by projecting the data points from a data matrix X onto a new coordinate system retrieved by

eigen-decomposition of the associated covariance matrix. The axes of the new coordinate system are

thereby chosen in a way that each axis or principal component explains as much of the (remaining)

variance of the data as possible and that all axes after the first are orthogonal to the ones before.

Kernel PCA (Schölkopf et al., 1998) is a non-linear extension of the regular PCA, performing the

same projection in a possibly even higher dimensional feature space. The data points are implicitly

projected from the input space I into the feature space F by replacing the standard Euclidean dot

product with a positive-semidefinite symmetric bilinear form, the kernel function κ (Eq. 2.2). The

algorithm is represented in a dual form such that all computation takes place using only the matrix of

pairwise dot products XX ′ (Shawe-Taylor and Cristianini, 2004), the Gram or Kernel matrix K (Eq.

2.3), instead of using the data points or its variances directly.

More precisely, for a row-indexed data matrix X and a mapping φ : I → F , x 7→ φ(x) the kernel

function κ and its associated kernel matrix K is defined as

κ(xi, xj) = 〈φ(xi), φ(xj)〉 (2.2)

Kij = κ(xi, xj). (2.3)

Kernel PCA has the advantage of being able to detect non-linear patterns in the data which might

be overlooked or not covered appropriately when using conventional PCA.

For our analysis we used the Kernel PCA algorithm implemented in the “kernlab” package (Karat-

54



2.4. Clustering

zoglou et al., 2004), for the kernel function κ we chose a polynomial kernel

κ(xi, xj) = (s 〈xi, xj〉+ k)d

of degree d = 2, scale s = 1 and offset k = 0.
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Figure 2.1.: Outlier removal. Median vs. log(variance) plot of all 76 contrasts and the associated bivariate
box plot, colors indicate the type of outlier (see legend). The bivariate box plot is the two-dimensional analog
of the familiar box plot of univariate data and consists of a pair of concentric ellipses, the hinge and the fence
(Everitt, 2005). This box plot is based upon a robust estimator for location, scale and correlation. Uncolored
contrasts were kept for further analysis.

2.4. Clustering

Clustering was performed on all remaining contrasts after removal of outliers. For an initial identi-

fication of the three main clusters of contrasts, we applied a spectral clustering algorithm from the

“kernlab” package (Karatzoglou et al., 2004). Spectral clustering algorithms cluster points using

eigenvectors of matrices derived from the data, the kernel matrix K in this case. Similar to k-means

clustering for data in the input space, the initial number of clusters has to be specified.

To gain structured clustering results, we applied hierarchical clustering using Ward’s minimum

variance method, which aims to find compact and spherical clusters based on Euclidean distance.
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2. Meta-analysis on gene expression datasets

Decomposition of the symmetric kernel matrix K

K = SΛS′ (2.4)

leads to a product of the orthogonal matrix S of its eigenvectors, a diagonal matrix Λ consisting of its

eigenvalues and the transpose of S, S′. As the eigenvalues of K are directly linked to the proportion

of explained variance of the principal component axes, the axes were scaled by the square roots of

their respective eigenvalues, i. e.

X̃ = SΛ1/2. (2.5)

The result is a Euclidean distance

d(xi, xj) =
√
〈x̃i, x̃j〉 (2.6)

weighted by the information content of each of the vector coefficients, thus scaling down axes that

were given a low information content in the previous kPCA analysis.

Uncertainty of the predicted clusters was estimated by a 1000-fold multi-scale bootstrap resampling

using the pvclust algorithm.
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3. Sequence analysis with HMMs

3.1. Hidden Markov models

HMMs are applied in this study according to the well described theory by Rabiner (1989) and Durbin

et al. (1998). Briefly, a HMM is a probabilistic network of nodesQ = {q1, . . . , qm}, so called states.

Each state qi except for terminal states is connected to other states qj by a transition probability

τij . Non-silent states are able to emit an alphabet of symbols O = {ω1, . . . , ωn}.The transition and

emission parameters of HMMs can be estimated if the state path of training samples is known. If no

state path is available, Baum-Welch training provides an iterative refinement of the parameter space

according to the likelihood of the data given the current model. Algorithms like Viterbi (Viterbi,

1967) and posterior decoding (Durbin et al., 1998) determine a best path through the model and state-

specific posterior probabilities for a sequence of observations (though not necessarily a valid path),

respectively.

Profile hidden Markov models This type of linear HMM for a family of protein or DNA se-

quences can be considered as a probabilistic description of homologous protein sequences. A match

state represents amino acids in conserved positions of a multiple sequence alignment. If the sequence

lacks an amino acid to match in such a column, this position is defined as a deletion and it is assigned

with a delete state. In unconserved alignment positions, amino acids are assigned with insert states.

Frequencies of amino acid occurrences are separately modelled in each state as discrete emission

probabilities and states are connected by transition probabilities in a left-to-right architecture. Var-

ious flanking states as well as begin and end states confer the adaptation to overhanging sequences

and repeated protein domains. Several databases like SMART, Pfam and TIGRFAM allow for an

assignment of homology in different categories of protein sequences. The SMART database provides

profile hidden Markov models of signalling, extracellular and chromatin-associated domains based

on expert-curated seed alignments. Domains of this HMM library were used as a source of domain

family alignments.

3.2. Maximum likelihood

The maximum likelihood method provides an optimisation of free parameters of a mathematical

model by the determinations of the set of parameters maximising the likelihood of the data to the

model (Johnson et al., 2005).
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3.3. Method of moments

The method of moments goes back to Pearson (1902). In general, the moments of a function can be

easily determined and directly yield distributional parameters. The moments of any random variable

can be obtained from the equation

E
[
Xk
]

=


∑
x
xkp(x) if X is discrete,

+∞∫
−∞

xkf(x) dx if X is continuous
(3.1)

with the probability mass function p(x) and the probability density function (PDF) f(x) of the random

variable X . The corresponding moment generating function of X equates to

M(t) = E(etX). (3.2)

The kth differentiation of M(t) at time t = 0 is equal to the expectation of the kth moment of the

function
dk

dt
M(t)|t=0 = E(Xk). (3.3)

Parameters are estimated by expressing them as functions of moments and replacing the moments by

its sample moments

E[Xk] =
1
n

n∑
i=1

xki . (3.4)

3.4. Model choice and goodness of fit

The Bayesian information criterion (BIC, Schwarz 1978) evaluates the likelihood of a model in re-

lation to its complexity and therefore serves as a criterion of model choice. The BIC is calculated

according to BIC = −2L(θ, x) + k ln(n) with the log likelihood L(θ, x) of the model, the number

k of estimated parameters and the sample size n. The MM estimator does not yield likelihood val-

ues for the calculation of the BIC. Therefore, the L1-distance was applied here as criterion of model

selection. The L1-distance of two discrete distributions x and y is given by the equation

d1(x, y) = ||x− y||1 :=
n∑
i=1

|xi − yi|. (3.5)

3.5. Receiver operating characteristic

The receiver operating characteristic (ROC) is a performance measurement of a binary classifier in

dependence of a varying discrimination threshold. The conduction of ROC curves requires a classi-

fication of outcomes of a predictor in a positive and a negative class as well as the knowledge of the

true nature of these outcomes. With this information the true positive and negative rates equate to

tpr =
true positives

true positives + false negatives
and tnr =

true negatives
true negatives + false positives

.
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3.6. Protein interaction data

ROC curves are then visualised in a scatter plot of the tpr versus the false positive rate (1 − tnr).

Predictors can be directly compared by the area under corresponding ROC curves.

3.6. Protein interaction data

As described in more detail by Pils et al. (2005) a HMMer search of all PDB sequences (October 2004

version, 27,969 structures) against the SMART database was performed to get all SMART sequences

with a structure representation in PDB. All structures without ligands and all homodimer complexes

were excluded, because homodimers are often an artefact of the crystallisation process. The remaining

sequences were scanned for atom-atom distances smaller 4 Å between protein and ligand atoms. This

length is consistent with distance between two oxygen atoms in a hydrogen bond. After filtering, the

training set contained 5,590 sequences each associated to one of 248 domains. Every sequence was

linked to its ligand-specific interaction profiles. Interaction site information was grouped according

to the three considered ligand categories: peptides, nucleotides and ions. Other ligand types were not

incorporated in our analyses because of low amount of data or unclassifiable ligands.

3.7. Validation with generated sequences

The recognition of self-emitted interaction profiles by an ipHMM is a necessary condition for the

prediction of binding sites in new sequences. In a first validation step we used the feature of trained

ipHMMs to emit domain-specific sequences according to their model parameters. Interaction sites of

generated sequences were predicted and these predictions were compared with generated state paths

in the same way as described below. This evaluation considered the same ligand-specific ipHMMs as

in cross-validation tests with a limit of at least 20 sequences in the ipHMM-alignment. The process

of generation was repeated 10 times for every domain.

3.8. Cross-validation and ROC curves for ipHMMs

We tested the prediction accuracy of the interaction profile HMM with 5-fold cross-validation. This

was done for all domains with at least 20 sequences in the training set. All domain specific sets of

sequences were partitioned into 5 equally dimensioned parts. We isolated 5 times a unique part as

test set and estimated ipHMMs with the remaining 4 parts. Testing was done by applying the devel-

oped posterior decoding algorithm on all test sequences of a domain and finding matches between

the predicted binding sites and the extracted interaction profile of the sequences (true positives, TP).

The initial threshold for the assignment of an interaction site was set to a posterior probability of

0.5. True negatives (TN) are defined as correctly predicted non-interacting sites, false positives (FP)

are predicted interacting positions that are characterised as non-interacting in the preceding structure

scan. Finally, the false negative (FN) definition is the reverse case. We then calculated sensitivity,

specificity as stated above and false positive rates as false positive rate = 1 − specificity. To

get a closer look on the quality of our interaction site predictions we determined ROC for ipHMMs

from all ligand categories in the peptide binding category (see figure 8.2). Therefore, the false posi-

tive rate of equation was plotted against the sensitivity. These values were calculated for increasing
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3. Sequence analysis with HMMs

discrimination thresholds (steps of 0.02) in the range from 0 to 1.
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Achieved methods, results and
conclusions

61





4. Comparative enterobacterial genomics

The developed approaches comprise new ways to study characteristics and differences of enterobacte-

ria. The concept benefits from the availability of many completely sequenced genomes. Concurrently,

bacterial genome sequences harbour the information to reinforce the evolutionary reconstructions and

strain characterisations obtained in the past.

4.1. Multi-level phylogeny of enterobacteria

On phylogenetic markers for enterobacteria The established concepts for phylogenetic anal-

ysis in bacteria are based on the definition of phylogenetic markers. These marker genes are found in

all organisms of the taxonomic groups under investigation and exhibit a high degree of conservation

as well as areas of variation in their sequences (Doolittle, 1999). The overall conservation is required

to build robust multiple sequence alignments, while variability allow for the differentiation of even

closely related bacteria. In previous analyses several candidate marker genes were proposed in order

to trace back the evolutionary paths of bacterial clades. The most common marker among these is

the 16S rRNA gene encoding the small ribosomal subunit. Numerous studies on the reconstruction of

the bacterial tree of life are based on 16S rRNA phylogenies (Fox et al., 1980; Ibrahim et al., 1993)

and recently the gene became a barcoding unit in metagenomic analysis (Tringe et al., 2005; Ley

et al., 2008b,a). But, contradictories resulting from the use of 16S rRNA as a phylogenetic deter-

minant were reported as a consequence of multiple 16S rRNA gene copies in E. coli genomes (Case

et al., 2007). Inconsistencies in subtree topologies were obtained from phylogenetic reconstructions

of all intragenomic 16S rRNA gene copies of E. coli and Shigella strains. Even single gene copies

of recently diverged enterohaemorrhagic O157:H7 strains revealed more distant relationship to one

another than to respective copies of other E. coli or Shigella isolates.

In a separate analysis we could confirm the stated scepticism against the application of 16S rRNA

as a molecular marker to reconstruct subspecies level phylogenies of enterobacteria. In general, the

splits tree in Figure 4.1 reveals consistency on the genus level between the Yersinia, Salmonella and

E. coli clades. But, intragenomic copies of E. coli K-12 MG1655, E. coli HSO9 and Shigella flexneri

2a 2457T lead to confusions in the reconstruction of recent evolutionary events in the E. coli clade.

Although phylogeny on distantly related taxa profits from the high degree of structural conservation of

the 16S rRNA gene, its employment in evolutionary reconstruction on subspecies level of enterobac-

teria is inadvisable. Case et al. (2007) instead suggested the RNA polymerase β-subunit gene (rpoB)

as a marker for phylogenetic analysis. Enterobacterial genomes largely contain only a single variant

of the conserved gene (exception: one recent paralog in the genome of S. enterica Arizonae 62z4z23)

with essential functionality. The rpoB marker was described to perform as good as 16S rRNA on dis-

tantly related taxa and to provide a better resolution on closely related organisms. Therefore, the gene
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Figure 4.1.: Splits tree of enterobacterial 16S rRNA genes from different cistrons per genome. The
splits tree exhibits ambiguities in the evolutionary traits of 16S rRNA sequences from different genomic loci
in selected enterobacteria. The analysis clearly disqualifies 16S rRNA genes as marker for phylogenetic recon-
structions in closely related enterobacterial subgroups.

was applied to the construction of a comprehensive phylogenetic tree of enterobacterial isolates. The

rpoB-based unrooted phylogenetic tree in Figure 4.2 reveals the existence of three main subgroups

consisting of the most clearly separated genus Yersina, as well as the genera Salmonella and E. coli

(including Shigella). According to the reconstructions E. coli diverged early after the appearance of

the taxon into intestinal, enterohaemorrhagic and extra-intestinal strains. The lineage attributed with

an intestinal habitat further subdivided into Shigella as well as pathogenic and non-pathogenic E. coli

strains.

As a consequence of the sparse representation of the genus Klebsiella, its exact evolutionary path

within the family of Enterobacteriaceae remains to be determined in detail. But, the genus most

likely separates early in the evolutionary history of Enterobacteriaceae in parallel to the other main

clades. The evolution of the genus Yersinia is characterised by an early split with the appearance of the

species Y. enterocolitica. Though Y. enterocolitica is more distantly related to Y. pseudotuberculosis

than Y. pestis, the latter species developed a distinct pathogenicity in a short time concerning the

evolutionary context (Wren, 2003). The phylogenetic tree underlines the close relationship between

Y. pseudotuberculosis and Y. pestis. The low phylogenetic distance between Y. pestis isolates further-

more highlights the recent emergence of the species.
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Figure 4.2.: Phylogenetic tree of enterobacterial strains with representation in public genome databases.
The phylogenetic reconstruction is based on the rpoB gene, which has been applied to phylogenetic analysis
for enterobacteria previously. By application of model test the GTK+I+G phylogenetic model was chosen
according to hierarchical likelihood-based decisions. Values at the nodes of trees indicate the bootstrap values
in percentages of split occurrence. Dashed rectangles enclose the three major groups considered in these
analyses. Furthermore the only member of the genus Klebsiella is highlighted in red.

4.1.1. Global evolutionary aspects

The gene pools The completion of many genome projects of enterobacterial strains enables the

comparison of genomic content. Differences in the genome sizes of enterobacterial strains imply

genomic variability. This first picture is confirmed by the presence of numerous mobile elements in

enterobacterial genomes. Multiple whole genome alignments of E. coli and Shigella isolates revealed

large blocks of collinearity between these closely related bacteria as well as concise areas of higher

variability (Mau et al., 2006). These observations indicate the existence of a core genome common to

all enterobacteria and a complemental part, which varies among the different strains. The core genome

approximates the number of genes that are probably essential to establish an enterobacterial lifestyle.

Previously, the core and complemental genome sizes only across E. coli strains were determined to

1,573 and 79, respectively (Willenbrock et al., 2007).

As an important characteristic of bacterial clades, the size of complemental and core genome frac-

tion were approximated for the larger group of enterobacteria. Figure 4.3 visualises the procedure

of repeated and stepwise evaluation of the complemental (left) and core genome (right) in randomly

sampled orders of evaluated proteomes. The amount of contribution to the overall enterobacterial
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complemental genome per newly discovered strain was estimated by non-linear regression to 278

protein families (CI95 = 77− 1, 076). Similarly, the level of core genome size was predicted for the

whole group of enterobacteria to 1,209 (CI95 = 1, 273− 1, 557) essential genes, which undershoots

the value determined for E. coli alone. The increase in the complemental part and the decrease in

the core genome size is owed to the higher degree of divergence across enterobacteria compared to

the E. coli. Additionally, enterobacteria colonise a broader range of host and have developed new

virulence mechanisms. Both facts imply larger genotypic diversity.

Genome rearrangements The complemental genome has its seeds in different evolutionary

mechanisms. Genomic variation could arise from mutations, transduction or transformation. A some-

times neglected, but at least as important source of variation constitutes the shuffling of genomic con-

tent by mobile genetic elements. Recombinations at sites of direct repeats can lead to several types

of genome rearrangements like duplication, translocation and inversion. Different types of mobile

elements occur in bacterial genomes: genomic islands, bacteriophages and insertion elements (IS el-

ements). They can give rise to gain, loss or shuffling of genomic content by insertion and excision.

The reorganisation of genes or whole genomic regions could lead to considerable changes in cellular

processes. Thus, these mechanisms represent important factors in bacterial evolution. The availabil-

ity of whole genome sequences largely enables to investigate the genomic differences introduced by

mobile elements and recombination.

In order to study the genome plasticity, conserved collinear blocks were determined based on multi-

ple genome alignments of the enterobacterial strains under investigation. Evolutionary distances were

calculated on the order and strand orientation of sequences of these genomic landmarks. The splits

tree in Figure 4.4 reflects the phylogeny of enterobacterial genome rearrangements. The rearrange-

ment metric clearly separates the Yersinia clade as in the previous phylogenetic analysis based on a

single housekeeping gene. Likewise, the split of Y. enterocolitica appears, but the recent split evok-

ing the appearance of Y. pestis and Y. pseudotuberculosis could not be detected on the rearrangement

level. A second pole within the inferred tree consists of the other strains under investigation. In terms

of genome rearrangements, the clades E. coli, Klebsiella and Salmonella largely exhibit collinearity,

whereas Shigella strains were separated from their close E. coli relatives. The substantial difference

in the order of genomic regions in Shigella isolates results from a large number of IS elements, which

increase the genome plasticity. Previous genome analyses revealed 10-20 fold larger number of IS el-

ements in Shigella compared to E. coli K-12 (Yang et al., 2005). The reported amount of IS elements

thereby correlates with the distances between Shigella and E. coli strains in the split decomposition.

The largest distance in this context was obtained for S. dysenteriae Sd197, the strain with the largest

number of IS elements among the investigated Shigella isolates.

4.2. Comparative proteome analysis

4.2.1. Identification of enterobacterial protein families

Ambiguous results from evolutionary considerations on different levels of genomic information in en-

terobacteria reflect the complexity of phylogenetic processes. At the same time these results highlight

the need to investigate all units of genetic information in genome comparisons. An important element
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Figure 4.3.: Approximation of the complemental and core genome derived from previously conducted
protein clustering. The size of complemental (left plot) and core genome (right) was determined by 10,000
random permutations of the order, in which the respective intersection or introduction of protein clusters in
a growing group of targeted genomes was simulated. The values obtained from the iterative approximations
were summarised as so-called bean plots. The vertical bean represents the density of complemental or core
genome sizes for a respective group size of strains (x-axis). The beans are extended by a so-called ‘rug’, which
indicate exact values of approximated sizes. The fitted curves refer to the estimated regression model (solid,
orange line), the 95% confidence interval (dashed, dark red) and the asymptotic threshold of the overall sizes
of complemental ωd and core genomes ωc (dashed, black).
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Figure 4.4.: Splits tree of the order and orientation of large genomic blocks in enterobacteria. A multiple
whole genome alignment resulted in the identification of large genomically conserved regions, which order and
strand location may differ between the strains. Based on differences in the order of genomic blocks, a distance
matrix was calculated by applying the rearrangement metric implemented in the web application SPRING.
Groups of strains exhibiting rarely any difference according to the applied metric are separately listed in order
to increase readability. A dashed red line points to the position of these strains in the splits tree. The block The
tree shows a clear separation of Yersinia strains. Salmonella, Klebsiella, Shigella and E. coli share a similar
genome organisation. Nevertheless, Shigella strains exhibit a higher rate of genome rearrangements due to its
large number of IS elements present in their genomes.

in this context is the compendium of the building blocks of cellular life, the proteins. The bacterial

proteome is encoded by chromosomal and plasmid DNA, and protein expression is controlled by var-

ious regulatory mechanisms. The comparison of whole proteomes provides a more comprehensive

picture of changes in lifestyle and pathogenicity than conventional phylogeny can afford.

The investigation of proteomic differences presupposes the mapping of homologs between bacterial

strains. According to the flow diagram in Figure 4.5, an assignment of protein homology was achieved

by performing large-scale protein clustering based on an MCL algorithm. In advance, an all-against-

all similarity matrix was constructed by vast pairwise sequence alignments using the Smith-Waterman

algorithm. Existing mapping approaches like the COG database were tested for suitability in protein

mapping, but the coverage of COGs comprising enterobacterial proteins was too low. In addition,

the OrthoMCL concept of protein clustering is applicable to closely related taxa while the COG

approach was optimised for distantly related organisms. The OrthoMCL programme assigned 10,040

protein clusters consisting of two or more enterobacterial homologs or recent paralogs, respectively.

A fraction of 1,321 protein clusters was detected in all strains, while 2,128 protein clusters only

occurred in two genomes. Protein cluster sizes range from specific clusters comprising only two

proteins to frequently occurring clusters with up to 751 members of the respective strains.
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Figure 4.5.: Flow diagram of the proteome comparison among enterobacteria. The comparison is based
on all-against-all protein sequence alignments. The resulting similarity matrix was subjected to the OrthoMCL
programme to determine clusters of homologs and recent paralogs. Patterns of presence/absence and abundance
of protein clusters were globally explored by hierarchical clustering and correspondence analysis. Bacterial
groups sharing similar patterns could be identified. The features of similarity - specific protein clusters - were
determined by applying statistical tests in order to determine significantly different occurrence frequencies of
respective proteins. Finally, these protein clusters were manually investigated and merged to functional units.

4.2.2. Unravelling proteomic differences

Whole proteome comparison Proteome mapping data represents a new kind of strain charac-

terisation to unravel specificities and commonalities of enterobacterial subgroups. Different types of

outcomes were obtained from protein mapping, a binary presence-absence notation, the abundance

of cluster members existent per strain and similarity indicating E-values. Analytics based on these
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different data types resulted in similar outcomes. Therefore, subsequent analyses were conducted

using the simpler binary or abundance data sets.

Evolutionary processes tackle with different strength at many sites of bacterial proteomes. The

comparison of enterobacteria on the basis of the whole proteomes therefore promises comprehensive

insights into the intrinsic evolution within the enterobacterial family. Overall proteome similarities

were investigated by hierarchical clustering on protein abundance data. The resulting dendrogram

visualised by Figure 4.6 again reveals a tripartition into distinct Yersinia (green colour), Salmonella

(blue) and E. coli (red) groups. Shigella proteomes (orange) form a distinct subgroup compared to

proteomes of other E. coli (dark red). Another separate group within E. coli refers to ExPEC iso-

lates. All other intestinal strains show high similarities and comprise the closely related subgroups of

EHEC and K-12 proteomes. The robustness of the hierarchical clustering was confirmed by adjusted

bootstrap resampling as all splits with relevance for considered subgroups yielded high confidence

(adjusted p-values > 90).

The Salmonella cluster in the dendrogram is composed of S. entericassp. enterica isolates as well

as one S. bongori and one S. entericassp. arizonae strain. The latter two strains form a distinct

group, which refers to a shared habitat in reptile hosts. Typhoid (serovars Typhi and Paratyphi)

and non-typhoid (serovar Typhimurium) salmonellae did not reveal substantial differences on the

proteome level, though they cause distinct disease patterns in humans. K. pneumoniae MGH78578

and Y. enterocolitica 8081 (dark blue) are assigned as outgroup of the Salmonella cluster. Such a

classification does not surprise regarding the intermediate position of these strains in phylogenetic re-

constructions with rpoB. A bipartite structure with a separation of Y. pseudotuberculosis and Y. pestis

dominates the Yersinia genus. Though the two species recently evolved from the same lineage, they

exhibit strong proteomic differences. The observations could be explained at least in parts by the

different clinical pathologies and ways of infection of these two Yersinia species.

Correlation between strains and protein clusters Hierarchical clustering reveals the ba-

sic overall distances between enterobacterial proteomes, but does not allow for the investigation of

the proteins that underlie these differences. The CA is an intuitive method to correlate strain-wise

profiles of present and absent protein clusters with the occurrence patterns of protein clusters in re-

spective enterobacterial strains. The matrix of presence and absence of protein clusters is far too large

to extract important differences either concerning protein clusters or strains ‘by eye’. Likewise, it is

not possible to display the raw data in conventional two-dimensional plots without losing a substantial

amount of information. CA provides a statistical framework to transform the data with the objective

of the reduction of dimensionality. The method is suited for contingency tables of the type like the

presence/absence or abundance data that was acquired for enterobacteria. After data transformation

according to an ortho-normal projection of the proteome data into a data space, where the axes are

orientated according to directions of maximum variance in the data cloud, two-dimensional visuali-

sation preserves a large part of intrinsic information. The fraction of preserved inertia decreases with

dimensionality.

Such a transformation was applied to the presence/absence profiles of protein clusters in entero-

bacteria to unravel those candidates that contribute to the group’s versatility in host colonisation,

pathogenicity or metabolism. The biplot in Figure 4.7 superimposes differences in the composition
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Figure 4.6.: Hierarchical clustering on the abundance of protein clusters in enterobacterial strains. The
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blue), which coincides with previous phylogenetic results. Furthermore the Shigella subgroup composed of
S. flexneri isolates (yellow bar) and the E. coli subgroups of EHEC (dark red bar) and ExPEC strains (red bar)
exhibit high degree of proteomic similarity.

of enterobacterial proteomes with the separation of enterobacterial protein clusters according to its

occurrences in enterobacterial strains. The separation of protein clusters is visualised as a smoothed

scatter-plot, in which colours refer to the density of proteins. Single black dots are locations of pro-

tein clusters in low-density areas. Axis annotations contain arbitrary scales with no direct impact on

the displayed entities. The origin of the coordinate system marks the area that has no influence to the

criteria of separation underlying the chosen dimensions of the CA.

The first two principal axes of the CA on enterobacterial proteome differences separate the three

main groups E. coli with Shigella, Salmonella and Yersinia. The composition and the sub-groupings

in Salmonella and Yersinia regions are consistent with groupings in the hierarchical clustering. The

highest protein density is located around the origin that corresponds to the commonly present core

proteome, and therefore does not contribute to the separation of strains. Other areas of high density

of protein clusters coincide with the locations of strains or groups of strains and represent protein

clusters with specificity for corresponding single strains or whole groups.

The third principal axis in Figure 4.8 focuses on differences between intestinal and extra-intestinal
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Figure 4.7.: Association graph of enterobacterial protein clusters and the strains they are occurring
in. The correspondence analysis divides the set of investigated enterobacteria into three main groups:
Shigella/E. coli, Salmonella and Yersinia. The distribution of protein clusters is indicated by the intensity
of blue colour (dark blue = high density of protein clusters). The cloud of protein clusters around zero deter-
mines the core genome that influences to the characterisation of all strains equally. Single black dots mark the
position of single protein clusters in areas of low protein cluster density.

E. coli proteomes. Principal axis 4 contrasts K. pneumoniae MGH78578 against other enterobacteria.

Appendix A provides plots of further principal axes, which explain less obvious differences like those

between closely related strains. The interpretation of the multivariate exploration of enterobacterial

strains provides links to specific features of numerous grouping constellations among enterobacteria.

CA applied in such context yields rapid overview of the interrelations between groups of strains and

concurrently annotates the uncovered groupings with respective important features. Hence, CA is

suggested as first stage analysis in genome comparisons across a multitude of bacterial strains.

Detection of characteristic proteins for bacterial groups The application of CA on pro-

teome mapping data of enterobacterial strains provided indications of similarities in proteomes and

the features contributing to the similarities. These protein clusters are specific or specifically ab-

sent for strains of a certain group. The general suitability of CA to assign characteristic proteins to

bacterial groups was analysed by a mapping of the presence ratio of protein clusters in predefined

enterobacterial subgroups. The groups were chosen according to previous results from proteome

comparisons and common knowledge. In purpose of simplicity, the study was initially focused on the

main groups Yersinia, Salmonella and E. coli. In order to correlate the location of protein clusters in
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Figure 4.8.: CA plot of the third and fourth principal axes, which discriminate intestinal E. coli from
extra-intestinal pathogenic E. coli and Klebsiella from other enterobacteria. Several subgroups can be dis-
tinguished within the intestinal group of E. coli strains comprising Shigella+commensal and enteohaemorrhagic
isolates, respectively.

a CA plot with the coverage of their occurrences in defined groups, we assigned protein cluster items

in conventional biplots with a colour scheme. The colours in RGB vectors were derived from group-

wise ratios of protein cluster presence as Col[RGB] =
{
RG1
PC , R

G2
PC , R

G3
PC

}
with RGPC = npres

N . The

colour Col[RGB], which is assigned to a protein cluster (small diamond) in Figure 4.9, was calcu-

lated by the ratio RGPC of present protein clusters npres in respective groups G1 . . . G3 divided by the

group size N . The red colour channel was assigned to E. coli, the green channel to Salmonella and

the blue one to Yersinia. Fully specific protein clusters assigned with the lightest pure red, green and

blue colours are located around the local centroids of bacterial groups rather than at the edges. White

colour indicates a presence in all proteomes and therefore characterises housekeeping proteins of the

core proteome. These protein clusters are located at the origin. An extraction of the group-specific

clusters by its position in the CA is difficult as these candidates assigned with light RGB colours are

surrounded by protein clusters of partial specificity. The plot of protein cluster specificity clarifies the

difficulty to directly obtain characteristic protein cluster for enterobacterial subgroups from CA.

Statistical tests for protein cluster specificity In order to overcome the limitations of the

CA with respect to the assignment of specific proteome features, we developed a method based on

statistical tests to reliably determine protein cluster specificity in enterobacteria. Specificity in a
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Figure 4.9.: CA plot with a colour-coded mapping of protein cluster presence in the predefined main
groups E. coli, Salmonella and Yersinia. The CA plot maximally discriminates protein clusters according
to the occurrence patterns in selected enterobacteria. Enterobacterial strains are categorised into the groups
E. coli (red gradient), Salmonella (green) and Yersinia (blue). Small points refer to relative positions of protein
clusters and large red squares to relative positions of strains. The protein clusters with highest specificity for
one group are assigned with the lightest colour of the gradient. The colour gradient refers to the coverage of
protein cluster presence in a group. Protein clusters with highest group specificity are located within the CA
in the centre of each group. Thus, the CA does not provide an easy access to the assignment of characteristic
protein clusters.

binary presence/absence assignment and abundance data was tested with Pearson’s χ2-test and the

Kruskal-Wallis test, respectively. A protein cluster was determined as specific for a group of strains

if the coverage or the ranks of abundance values significantly differ in one group. The p-values

derived from statistical test were multiple testing corrected. They communicate the confidence of the

assignment. The group-wise determination of characteristic protein clusters with p-values of group

specificity below 5×10−2 resulted in large libraries of special features in enterobacterial genera. The

protein clusters were made available as a database with computationally generated annotation derived

from NCBI, multiple sequence alignments and profile HMMs for the assignment of these protein

families in newly sequenced genomes.

Characteristics of enterobacterial subgroups The described approach yielded proteome

characteristics based on statistical tests of significantly different occurrence patterns of protein clus-

ters in enterobacterial subgroups. Group-specific protein clusters were manually selected with respect

to annotations quality for detailed analysis and merged to operons or regulons if possible. Table 4.1
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lists the curated library of specific traits from E. coli, Salmonella and Yersinia. In the following, some

interesting protein clusters and whole operons will be described in more detail.

The performed analysis assigned specificity for E. coli strains to the protein clusters encoded in the

uidA and uidR genes (first entry in Table 4.1; clusters CL3469 and CL3261). The β-glucuronidase

enzyme UidA hydrolyses mucopolysaccharides at β-D-glucuronic-acid residues. The expression of

UidA is repressed by the DNA-transcriptional repressor UidR. The uid-gene-locus was previously de-

scribed as a specific region for E. coli isolates and was proposed as marker for the detection of E. coli

and Shigella species (Cleuziat and Robert-Baudouy, 1990). The KEGG database of metabolic path-

ways (Kanehisa et al., 2008) associates β-glucuronidase activity [EC:3.2.1.31] amongst others with

the pathway for starch and sucrose metabolism (KEGG-Pathway: ecj00500, ecd00500, ece00500,

ecc00500) for E. coli isolates, but not for Salmonella or Yersinia strains. In vitro cultivation of E. coli

isolates on starch as sole carbon source lead to an induction of β-glucuronidase expression (Cenci

et al., 1998). Starch is available in gut environments of herbivorous vertebrate host, and can be a

factor of increased growth for intestinal pathogens like the EHEC strain O157:H7 (Callaway et al.,

2003). The exclusive presence of the enzyme is a facet of E. coli lifestyle with implications in suc-

cessful niche colonisation of vertebrate hosts.

Another enzyme, the oxalacetate decarboxylase [EC:4.1.1.3], was found to be specific for Salmonel-

la isolates (clusters CL3591, CL3869 and CL6138). In salmonellae the enzyme is part of the argi-

nine and proline metabolism and catalyses the transformation between glyoxylate, D-4-hydroxy-2-

oxoglutarate and pyruvate (KEGG-Pathway: sty00330, stt00330, spt00330, sec00330, . . . ). In E. coli

and Yersinia strains the transformation is mediated by the 2-dehydro-3-deoxyphosphogluconate al-

dolase [EC:4.1.2.14], which complements the oxaloacetate decarboxylase in salmonellae. The ox-

aloacetate decarboxylase functions as a Na+-ion pump that mediates anaerobic fermentation in Salmo-

nella by establishing a proton gradient across the inner membrane (Woehlke and Dimroth, 1994). The

Oad proteins in Salmonella are another example of specific metabolic functions acquired to enable

vertebrate host colonisation.

All investigated Salmonella isolates contain the large anaerobic vitamin-B12-synthesis pathway

(cbi- and ttr-genes; clusters CL5345-53, CL5604-05, CL5770-71, CL4915 and CL4936-38). Vitamin

B12 has a complex structure, is able to chelate an iron-ion and functions as a co-factor of important

enzymes throughout all bacteria. The anaerobic pathway to synthesise vitamin B12 is absent in E. coli

and Yersinia. Though the large operon of vitamin B12 synthesis was evolutionary maintained by se-

lection to stay functionally conserved in Salmonella, it was only found to be essential under anaerobic

conditions with tetrathionate as sole carbon source (Price-Carter et al., 2001). Even though the benefit

of the existence of the complementary pathway in Salmonella is not yet clear, elements of pathway

for vitamin B12 synthesis were described to be involved in the regulation of B12-independent enzymes

(Rodionov et al., 2003).

Salmonella pathogenicity incorporates the activity of a type-III-secretion system, which mediates

the injection of effector proteins like SifA, SifB and SptP into the infected cell. SifA and SifB

secretion normally induces the formation of Salmonella-induced filaments (Sifs) in infected epithe-

lial cells. Furthermore, SifA was reported to mediate intracellular survival of Salmonella in murine

macrophages (Brumell et al., 2001). SptP is a secreted tyrosine phosphatase that disrupts the actin

cytosceleton in host cells (Fu and Galán, 1998b). The chaperon SicP is required for the virulence
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of SptP (Fu and Galán, 1998a). These effector proteins partially shape Salmonella virulence and its

assignment as specific characteristics contribute to uncover the Salmonella pathogenicity.

Yersinia strains harbour several siderophore systems for the binding and uptake of the limited iron

sources available in host organisms. Beside the fec-feb-system, Yersinia isolates are equipped with

the yfuABC siderophore system. The yfu-siderophore operon is specific for Yersinia strains and re-

veals highest similarity to a Serratia sfu-system, while the feb-/fec-system exhibits homology to the

corresponding siderophore system in E. coli (Schubert et al., 1999). The simultaneous expression

of different iron uptake systems surely is an advantage in the highly competitive environments of

vertebrate microbiotas.

Table 4.1.: Protein families, operons and regulons specific for one of the three major enterobacterial
groups

Group Name Gene Tag(s) Function Cluster ID References
E. coli/Shigella β-glucuronidase operon uidAR enzymes truncating glucuronic acid

residues, proposed as determinants
for E. coli and Shigella

CL3469, CL3261 Cleuziat and Robert-
Baudouy (1990)

E. coli/Shigella β-galactosidase operon ebgCR β-subunit and regulator, used to
study evol. adaptation in δLacZ
mutants

CL3385-86 Hall (2003); Hazkani-
Covo and Graur (2005)

E. coli/Shigella ygcE(G)OPQRUW cluster of proteins with predicted
similarity to flavoproteins

CL3746, CL3349-
51, CL3423,
CL3565, CL3747

E. coli/Shigella ykgEFGHK transcriptional unit (Ecocyc) of pre-
dicted oxidoreductases, predicted
metabolic enzymes

CL3419-21,
CL3697, CL3792

E. coli/Shigella yhfSTUWXY put. alanine racemase (yhfX), put.
mutase (yhfW)

CL3413-16,
CL3485, CL3565

E. coli/Shigella E. coli multidrug resistance
operon

(emrKY), yibH multi-drug resistance CL2372 Lomovskaya and Lewis
(1992)

E. coli/Shigella yhdWYZ hyp. amino acid ABC transporter
ATP-binding proteins

CL3201-02,
CL3142

Hazkani-Covo and
Graur (2005)

E. coli/Shigella yfaL autotransporter domain, adhesin CL3818
E. coli/Shigella tdcABC-operon transcription

activator
tdcRF positive regulation by binding

to operon promotor, operon im-
plicated in anaerobic threonine
metabolism

CL3293 Goss et al. (1988);
Ganduri et al. (1993);
Hazkani-Covo and
Graur (2005)

E. coli/Shigella ypdABCFEGHI put. PTS system II CL3167-69,
CL3223, CL3291-
92, CL3440,
CL3892

Tchieu et al. (2001)

E. coli/Shigella cation efflux system operon cusABF PTS system II B/C/D components CL2015,CL2743,CL3277Tchieu et al. (2001)
E. coli/Shigella agaABC PTS system II components CL3612, CL3707,

CL3801
Tchieu et al. (2001)

E. coli/Shigella dihydroxyacetone kinase sub-
unit M and regulator

dhaHR glycerol metabolism operon, put.
relation to PTS system

CL3143, CL3285 Tchieu et al. (2001)

E. coli/Shigella yddABHMU cluster of metabolic proteins CL3626, CL3335,
CL3577, CL3262,
CL3511

E. coli/Shigella xanthine dehydrogenase sub-
units A and B

yagYZ,xdhAB iron-sulfur and molybden binding
subunits

CL3836-37,
CL3460-61

Xi et al. (2000)

E. coli/Shigella ygeVWYZ protein cluster for ornithine
metabolism

CL3813-15,
CL3714

Xi et al. (2000)

E. coli/Shigella carbamate kinase-like prot.
(yqeA), xanthine and CO de-
hydrogenase maturation fac-
tor (yqeB)

yqeABC CL3712-13

E. coli/Shigella yahABDEIJ metabolic protein cluster with put.
cytosine deaminase (yahJ) and car-
bamate kinase-like protein (yahI)

CL3830-35

E. coli/Shigella glycolate oxidase operon glcBC glc operon for malate synthase CL3807-08 Pellicer et al. (1996)
E. coli/Shigella RNA 3’-terminal phosphate

cyclase
rtcABR CL3179, CL3313,

CL3063
E. coli/Shigella hyp. proteins yfdEVW metabolic function, formyl-CoA

transferase (yfdW)
CL3182, CL3199,
CL3321

E. coli/Shigella yggCD Pantothenate kinase and transcrip-
tional regulator

CL3205-06

E. coli/Shigella ydiLNQT cluster of proteins involved in elec-
tron transport

CL3257-59,
CL3401

Campbell et al. (2003)

E. coli/Shigella yjdAFIJ unknown function CL2510, CL3381,
CL3486-87

E. coli/Shigella DNA damage inducible pro-
tein

dinD CL3245 Khil and Camerini-
Otero (2002)

E. coli/Shigella chemosensory pili system
protein

chpA put. involvement in regulation of
cell growth, toxin of ChpA/R toxin-
antitoxin system

CL3617 Masuda et al. (1993)

E. coli/Shigella ydcAHSU cluster for extracellular proteins CL3404, CL3367,
CL3551, CL3720

E. coli/Shigella type-1 fimbriae operon fimABCEFGHI CL3751-55,
CL3490, CL3504,
CL3569

Boyd and Hartl (1999)

Salmonella oxalacetate decarboxylase oadABG contains sodium ion pump CL3591, CL3869,
CL6138

Woehlke et al. (1992)

Salmonella suppression of copper sensi-
tivity

scsACD (CL4023-24),
CL4611

Gupta et al. (1997)

Salmonella pathogenicity island encoded
proteins

pipBB2D PAI-encoded proteins A, SPI5 and
a protein similar to pipB

CL6145, CL6175,
5459

Wood et al. (1998)

Continued on next page

76



4.2. Comparative proteome analysis

Group Name Gene Tag(s) Function Cluster ID References
Salmonella tetrathionate reductase genes,

thisulfate reductase electron
transport, anaerobic sulfide
reductase

ttrBS, phsB, asrABC sulfur reduction CL5770-71,
CL4915, CL4936-
38

Price-Carter et al.
(2001)

Salmonella vitamin B12 synthesis path-
way proteins

cbiADEFGHLNOPQT,
cobD

CL5345-
53,CL5604-05

Rodionov et al. (2003)

Salmonella invasion protein antigen, sur-
face presentation antigen

sipACD, sigDE CL5744, CL4170,
CL4303, CL4458-
59

Hermant et al. (1995);
Wallis and Galyov
(2000)

Salmonella sicP, sptP, sifAB virulence related chaperon and ef-
fector proteins

CL5746-47,
CL6147, CL6587

Marcus et al. (2000);
Brumell et al. (2001);
Lin et al. (2003)

Salmonella secretion aparatus needle as-
sembly

invIJH, orgABC cell adhesion/ invasion CL4865/5743/6184,
CL5749-51

Collazo et al. (1995)

Salmonella type III secretion system ssaBEIKMOP,sscAB,
sseABCDEFG,
STM1410

adhesion and toxin injection CL6150-65,
CL6558

Marcus et al. (2000)

Salmonella pagD put. outermembrane virulence pro-
tein, PhoP activated genes, activa-
tion inside of host cells, antimicro-
bial peptide resistance

CL6148 Ernst et al. (2001);
Navarre et al. (2005);
Gunn et al. (1995)

Salmonella type III secreted protein ef-
fector

sopDE2 CL5741, CL5455 Marcus et al. (2000)

Salmonella fimbrial proteins sthADE, steDF, bc-
fABDH, fimIWY,
safAD, STM4595

CL5329/ 41/
5477, CL7012-13,
CL5788-89/ 4847/
4160, CL5991-92/
6436, CL7061/
6546, CL5799

Boyd and Hartl (1999);
Townsend et al. (2001)

Salmonella tricarboxylic transport STM2786/87, tctDE two-component system with
catabolite repression

CL5577-78,
CL5579-80

Salmonella STM4258-62, sfbABC,
STM0509

put. ABC transport systems CL5727-30,
CL4965/4982/5591,
CL5590

Pattery et al. (1999)

Salmonella cytochrome BD2 proteins STM0360-61 subunits I and II CL3851-52
Salmonella Methyl viologen resistance smvA multi-drug efflux pump CL4619 Santiviago et al. (2002)
Salmonella DNA-damage inducible pro-

tein
dinI CL4979

Salmonella hilD invasion protein regulator CL5748 Olekhnovich and Kad-
ner (2002)

Salmonella aminoethylphosphonate
operon

phnSUVWX CL6214-17 Huang et al. (2005)

Salmonella tetrathionate metabolism
operon

ttrBS CL5770-71

Salmonella put. envelope protein envE CL5777 Gunn et al. (1995)
Salmonella STM2244 virulence protein, homolog of

MsgA
CL6567

Salmonella SPA1609 toxin subunit CL7056
Salmonella citrate transport citB CL6198

Yersinia tccC1, tcaA1C1A put. toxin subunit, insecticidal tox-
ins

CL2320, CL4632/
4784/ 5198

Pinheiro and Ellar
(2007)

Yersinia senA enterotoxin-like protein CL5658
Yersinia heme aquisition system YPO2999, hasADE HlyD-family secretion protein,

hemophore
CL4056, CL4769-
71

Rossi et al. (2001)

Yersinia shlB, hcp6 hemolysin activa-
tion/secretion/coregulation

CL3949, CL5414

Yersinia alcaligin biosynthesis ysuA, alcAB, entF3 put. iron-siderophore transport sys-
tem, siderophore biosynthesis

CL5074, CL5073/
5385

Yersinia fecB2B3B4E, febC,
btuC3C4

put. solute-binding iron ABC trans-
port system

CL5382/ 4653/
56/ 69, CL5054,
CL4654-55

Koster (2005)

Yersinia yfuABC iron-(III)-binding system CL4725-27 Schubert et al. (1999);
Gong et al. (2001)

Yersinia livF1F2G1K1M1M2 put. substrate binding/ABC-
transporter, periplasmic transport
protein

CL4283-87/4499

Yersinia potB1B2C1C2D put. binding-protein-dependent
transport system

CL4799-4800/
5119-21

Shah and Swiatlo
(2008)

Yersinia artI2M1M2 put. arginine ABC-transporter CL4812-14 Saitoh et al. (2005);
Wissenbach et al.
(1995); Lu (2006)

Yersinia mdlB2B3B7 ABC-type multidrug-protein-lipid
transport

CL4301/ 4306/
6040

Yersinia togBM solute-binding periplasmic protein
of oligogalacturonide ABC trans-
porter, lower part of pectin degra-
dation pathway

CL4313-14 Abbott and Boraston
(2008); Hugouvieux-
Cotte-Pattat et al.
(2001)

Yersinia ribose and arabinose operons rbsB1B3B4B6B10B11DK5,
araC8H1H2H4H7H8H13

sugar transport CL4928/ 5030/
5050/ 5125-26/
5132/ 5388/ 5425-
26, CL4939/ 5029/
5053/ 5131/ 5374/
5387/ 89/ 5427

Laikova et al. (2001)

Yersinia malF2F4F5F7E2G1G4G5G7,
ugpB1B3B4

sugar transport system CL4483-84/ 4752-
53/ 5101-02/ 5144-
45, CL4754/ 5146/
5145

Yersinia proP3P16P17P29P34 metabolite transport system CL5155/ 5160/
5177/ 5621/ 5652

Yersinia pstA1B1 put. phosphate transport system CL5117-18 Lamarche et al. (2005)
Yersinia YP_2473 urease protein cluster CL4507
Yersinia urease operon ureABCDEFG can be inactivated because of point

mutation (premature stop codon) in
ureD

CL3919-21/ 4017/
4744-45/ 6115

Sebbane et al. (2001)

Yersinia acrA9 multi-drug efflux pump CL4831
Yersinia mgtE put. divalent cation transport pro-

tein
CL4295

Continued on next page
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Group Name Gene Tag(s) Function Cluster ID References
Yersinia general secretion pathway YP_2839(gspC),

gspKL, hofG2G4G7
CL4661-62/ 5168,
CL5167/ 5644/
4665

Sandkvist (2001)

Yersinia YP_0412/16/19/22 put. type-III-secretion aparatus (be-
side the Yop-aparatus?)

CL5001-02/ 04/ 06 Cornelis (2002)

Yersinia YP_-
4094/3665/67/3674-77

hyp. type-VI-secretion system CL5016-20/ 23-24 Angot et al. (2007)

Yersinia nqrA1B1D1E1F Na(+)-translocation, NADH-
quinone reductase

CL4487-91 Ravcheev et al. (2007)

Yersinia ypeIR, yspR quorum sensing CL4714-15,
CL5135

Yersinia YPO3923/18,
YPO3886

Colicin Js-sensitivity, Colicin S-
type Pyocin

CL4039-40,
CL6049

Foultier et al. (2002)

Yersinia flaA3, fliEFGH-
NMQPR, fl-
gABCDEGHJK, flhB,
fleR, YPO0720/43

flaggelar system CL3355, CL3929/
4250-58/ 4420,
CL3930/ 4028/
4261-63/ 4421-23,
CL5420/ 5988

Soutourina and Bertin
(2003)

Yersinia smfA,
fimC2C3C4C5D3,
YPO0302-03/ 0700/
1707/ 10/ 1922/ 2881/
2940/ 45/ 50/ 3798-
3801

fimbrial proteins CL3517,
CL4315/4495/4761/4870-
71/5175, CL4026-
27/ 4149/ 4238/
4685-87/ 4760/
62-63/ 5176/ 5309/
5420

Yersinia put. tellurite resistance pro-
teins

treABDEXYZ induced by streptomycin in Y.
pestis, mediates resistance to tellu-
rite, bacteriophages and microcins
in E. coli

CL4283-87/4499 Orth et al. (2007);
Whelan et al. (1995)

Yersinia pilNM put. Tfp-pilus assembly CL4638-39 Nudleman and Kaiser
(2004)

Yersinia YP_3000-08, YPA_-
3099

Flp-pilus CL4645-50,
CL4651

Yersinia hmwA put. adhesin CL? Nelson et al. (2001)
Yersinia carnithine metabolism,

polyketide synthesis
caiD1D2, pksG genetic neighbourhood CL5066-67,

CL5065
Shen (2003)

Yersinia uvrA2 CL6041
Yersinia fatty acid biosynthesis fabD1F3G5G6G7G11 short chain dehydrogenase CL5061/ 5063-64/

5068/ 5070/ 5655
DiRusso et al. (1999)

Yersinia tight adherence tadG CL5165 Tomich et al. (2007)
Yersinia transposase tra5D integrase core subunit CL2996
Yersinia PH6 antigen precursor psaAFE forms individual distinct fimbrial

strands on bacterial surface for ad-
hesion to host cells

CL4717-19 Liu et al. (2006)

Yersinia cold shock-like proteins cspC3E2 stress adaptation CL4716/ 5666 Yamanaka et al. (1998)
Yersinia haemin storage system hmsS CL5179 Lillard et al. (1997)

The table lists specific protein families merged to operons or regulons wherever possible. This excerpt of the
library of specific protein clusters provides information about the bacterial group in which the proteins occur,
the name of the whole units if existent, the corresponding gene names, functional descriptions, a reference to
the constructed database (cluster ID) and literature references.

4.3. Abundance of virulence-associated protein domains

Virulence factors were deeply studied in many strains that exhibit diverse clinical pathology (Johnson,

1991; Law, 2000; Reid et al., 2000). CA was applied to profiles of virulence-associated protein do-

mains both as a proof of concept and as a new method to explore the repertoire of virulence in whole

bacterial clades. Virulence-structures were detected by HMMs of protein domains, so called profile

HMMs. Protein domains are subunits of proteins with distinct functionality. The publicly avail-

able profile HMM library Pfam contains numerous profile HMMs that model virulence-associated

protein domains or single domain proteins. Virulence determinants in the set of E. coli strains were

detected with a collection of all Pfam domains annotated with a virulence-function in bacteria. If

necessary, profile HMM assignments were finally merged to translate protein domain annotations to

the presence of virulence structures in the categories toxins, secretion systems, lipopolysaccharides

(LPS)/capsules, siderophores, microcins and fimbriae. Detailed results of the assignment were listed

in Table A.1 of the appendix. Differences in virulence between E. coli strains were summarised by

CA (Figure 4.10).

The investigated strains can be categorised into non-pathogenic (K-12 MG1655 and W3110), extra-

intestinal (536, CFT073, UTI89), intestinal (O157:H7 EDL933 and Sakai, O42, E2348/69) and com-
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Figure 4.10.: Association of the occurrence of virulence-associated protein domains and differences in
virulence between selected E. coli strains. The strains are selected from EHEC, EPEC, EAEC and UPEC
pathogroups as well as from the group of commensal isolates. The separation according to virulence exhibits
a tripartition to non-pathogenic, intestinal pathogenic and extra-intestinal pathogenic strains. The associated
virulence domains correlate well with knowledge from previous reports. Abbreviations represent: Ail/Lom-
like proteins (Ail/Lom), bacterial Ig-like domains groups 1 and 2 (Big1/2), cytolethal distending toxin (CDT),
cytotoxic necrotising factor (CNF), shiga-like toxin β-subunit (SLT-b).

mensal (Nissle 1917) E. coli isolates. As described previously, the CA correlates strain specific pat-

terns of virulence factors with occurrence patterns of virulence structures among strains. In other

words, the method overlays and correlates column-wise differences (the strains) with row-wise dif-

ferences (virulence determinants). Strong correlation between virulence structure occurrences and

strain-specific virulence patterns is visualised in a two-dimensional plot as spatial proximity.

The subsequently described interpretation derived from the CA-plot in Figure 4.10 nicely coincides

with knowledge about virulence determinants in the strains. The two non-pathogenic strains are sep-

arated from other strains by the second principal axis. They are rarely associated with any virulence

factors except for FecR, a putative sensor in siderophore systems. Iron uptake is generally required

for vertebrate gut colonisation and therefore siderophore systems also exist in non-pathogenic E. coli.

The strain Nissle 1917 is positioned in the intermediate zone between non-pathogenic and pathogenic

strains. The intermediate E. coli strain is considered as a commensal but shares many traits with

UPEC isolates. The strain’s location near the origin in the plot signifies the absence of specific viru-
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lence determinants. The O42 strain is an enteroaggregative E. coli pathogen. The classification in the

intermediate zone near the non-pathogenic isolates probably arises from an absence of profile HMMs

for EAEC-specific virulence factors.

The lower third of the plot is divided into a right and left part, which characterises intestinal and

extra-intestinal E. coli isolates, respectively. The support of the first principal axis of the CA desig-

nates this separation as the most obvious difference in the whole data set. Extra-intestinal isolates

were associated with toxins and adhesion factors, which were frequently described as typical viru-

lence factors mediating UPEC infections (Oelschlaeger et al., 2002). The same holds true for the

intestinal pathogens and their association with virulence factors. Here, the EHEC and EPEC isolates

were correlated with the presence of shiga-like toxins and the type-III-secretion system. A specific

strategy of intestinal E. coli pathogens to combat concurrent bacteria in the gut habitat is the secretion

of S-type pyocin. Interestingly, the extraintestinal group of strains was characterised amongst others

by defence mechanisms against colicins and pyocins.

4.4. Conclusions

We introduced a novel methodology to draw comprehensive pictures of molecular divergence within

bacterial clades. The prerequisite for a detailed investigation of specific bacterial characteristics is a

fundamental knowledge about the relationships between the strains of a clade. Therefore, the phy-

logeny of the bacterial group in focus, the Enterobacteriaceae, was reconstructed regarding different

levels of genomic organisation. Due to the existence of multiple intragenomic copies with different

evolutionary background, the conventional 16S rRNA marker is prone to reveal ambiguous or even

wrong phylogenetic reconstructions on enterobacterial subspecies levels. Thus, the marker was re-

placed with the single-copy gene for the RNA polymerase β-subunit, which has proved before to yield

a better phylogenetic resolution. The relationships derived from the rpoB-based phylogenetic infer-

ence coincide with common knowledge and separate the enterobacteria involved in this study into the

three macro-groups E. coli (with Shigella as a clonal lineage), Yersinia and Salmonella. The obtained

macroscopic structure was taken over as a prior in subsequent analysis that required a supervised

grouping.

Genome rearrangements were also considered as an important process in bacterial evolution. This

aspect of enterobacterial evolution was set in relation to molecular phylogeny. On the macroscopic

level both measures clearly separate the investigated enterobacteria into three macro-groups. But,

genome rearrangement occur with different rates between otherwise closely related strains and rather

reflect a rapid mechanism of genome reorganisation. The effect of genome rearrangements was pre-

viously stated as a rewiring on the transcriptional level with a potential impact on adaptation and

altering lifestyle (Pérez et al., 2008). Obviously, rearrangements play an important role in Shigella

divergence from E. coli and may contribute to the Shigella-specific ability to invade host cells upon

infections. The ability to acquire considerable frequencies of genome rearrangements was only found

in Yersinia and Shigella strains. Shigella strains are equipped with a large amount of IS elements,

which mediate genomic reorganisations (Touchon et al., 2009). The number of IS elements varies

in Yersinia isolates, but is not as large as in Shigella. Though recent studies located rearrangements

among Yersinia mainly at sites of IS elements (Chain et al., 2006), other processes like recombination
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events seem to be the major cause for the divergence in genome organisation from E. coli, Klebsiella

and Salmonella.

Recombination events and mobile genetic elements are mainly responsible for the flexible part

of the enterobacterial gene pool. In accordance to large genome plasticity, an open complemental

genome was determined with an introduction of more then 250 new genes per discovered strain. The

complemental genome fraction far exceeds the complemental genome that was recently approximated

to 79 genes for the E. coli clade alone (Willenbrock et al., 2007). The large increase can surely be

attributed to the introduction of genomic variability by Shigella (Touchon et al., 2009) and Yersinia

strains. The core part of the gene pool in enterobacteria is smaller than the core genome of E. coli, a

fact which could either indicate non-orthologous replacement or a far smaller essential genome size.

With the knowledge of basic differences between enterobacterial genomes at hand, I approached the

detailed determination of patterns in the flexible part of the proteomes that are common to members

of enterobacterial subgroups. In order to determine sets of proteins that support a divergence of whole

groups of strains and thereby a divergence of lifestyle, pathogenicity and/or metabolism, respectively,

we developed independent methodologies based on CA and statistical testing. The CA provides an

unsupervised view on striking differences between features of strains as well as characterisations

of whole bacterial groups. Unfortunately, the CA was unsuitable in filtering certain group-specific

characteristics, as it spatially locates characteristics of whole groups and those of its single members

at similar coordinates of the principal axes. These shortcomings were circumvented by the application

of statistical tests for the assignment of a significantly specific occurrence of a protein family in the

bacterial group in focus. The application of the methodology on the three major groups of our dataset

resulted in numerous assignments of group-specificity to protein families and even whole operons

or regulons. The specific character could be confirmed throughout all groups by detailed expert

investigations of selected protein families, operons or metabolic pathways. The suggested methods

substantially improve the concurrent detection specific traits of members of a bacterial group. Many

yet uncharacterised specificities constitute starting points of future investigation and concurrently

indicate a source of uncertainties concerning previously derived characterisations of enterobacterial

subgroups.

Functional characteristics of enterobacterial subgroups could also be broken down to functional

subunits of proteins, the protein domains. The potential to discriminate the functional repertoire

of bacterial groups by CA on the basis of protein domains therefore was evaluated by a mapping

of virulence-related domains in a selection of representative E. coli isolates. This analysis revealed

a strong conformity with prior expectation concerning the association of virulence factors to E. coli

isolates. Various virulence factors have been described as determinants for a uropathogenic phenotype

in human infection like type-1 and P-fimbriae, cytotoxic necrotising factor and α-haemolysin (Lloyd

et al., 2007). In the presented CA of virulence factors in E. coli these occurrences could be confirmed

as specific determinants for UPEC virulence. The same holds true for intestinal pathogenic E. coli.

EHEC isolates are generally characterised to harbour a type-III-secretion system, shiga-like toxin,

while bundle forming pili (BFP) are considered as a major virulence factor in EPEC (Kaper et al.,

2004).

Comparisons based on protein domain representations, especially HMMs, provide the advantage of

a well established framework for their detection even across large phylogenetic distances. However,
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the generality of the protein domain concept might lead to misinterpretations, if certain functionality

depends on a co-occurrence of domains in a protein. An example would be the group of proteins

harbouring a fimbrial domain (PF00419) that is involved in fimbriae construction. The domain is

found in enterobacterial proteins exhibiting three different domain architectures. Proteins with a sin-

gle fimbrial domain constitute structural subunits in fimbriae, while proteins composed of a fimbrial

and a FimH-domain (PF09160) mediate fimbrial adhesion to mannose. The combination of a fimbrial

and a lectin domain (PF09222) is found in ETEC-specific fimbriae that mediate adherence by binding

to lectin (Buts et al., 2003). Although in general the functional repertoire of enterobacterial strains

can be deduced from the nature of protein domains, domain modularity needs to be considered in

comprehensive functional analysis.

The completeness of the picture that can be drawn from the developed approaches to unravel en-

terobacterial properties strongly depends on the considered genomic information. At the time of

these studies genome sequences of enterobacterial subgroups like the genus Klebsiella, the species

Y. enterocolitica or several E. coli pathotypes were underrepresented. Most likely, this will change in

near future and the conclusions that can be drawn from comparative genome or proteome analysis will

gain in reliability. A crucial factor in all genomic analyses is the available amount of annotation for

protein families. The assigned specific protein families largely lack a reliable functional annotation

of its family members. Nevertheless, our approach provides starting points for detailed experimental

investigations of potentially elementary proteins for the development of bacterial phenotypes. The

method is flexible concerning the nature of groups to be compared in a certain bacterial clade and as

well can be applied to investigate differences in other bacterial taxa.
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5. Development of a diagnostic microarray
for clinically relevant enterobacteria

5.1. Design of a microbial diagnostic microarray

5.1.1. Concept of microarray design

Our developed strategy to design a diagnostic microarray based on a new set of pathogroup-specific

determinants is structured according to clinically distinct pathogroups of enterobacteria. Figure 5.1

depicts these subdivision assigned to the Enterobacteriaceae and illustrates the nested relations as-

sociated with the large group of clinically relevant and versatile Shigella and E. coli strains. The

hierarchical dendrogram is further denoted as the pathogroup tree. The subdivisions and comparisons

applied in this case were guided by clinical relevance. Due to co-evolution and horizontal gene trans-

fer of virulence-associated traits the taken divisions do not coincide with phylogenetic reconstructions

(Wirth et al., 2006). The groups with main impact in the described analysis generally occupy terminal

positions in the diagnostic structure. But, superior relationships between the strains were, however,

simultaneously considered as complementary indications of the pathogroups’ nature. The compar-

isons were therefore split into the intrinsic three main levels of organisation within the pathogroup

tree: (I) the genus level, (II) the distinction between Shigella, pathogenic and non-pathogenic E. coli

as well as (III) the diversity among intestinal and extraintestinal E. coli pathotypes.

5.1.2. Probe selection

The sequences of genomes and available plasmids of reference strains (see Table 1.1) were subjected

to a probe selection procedure in order to find capture probes that provide a high discrimination

between the entities of the pathogroup tree. The strategy of probe selection was based on a global

extraction of group-specific 70-mer oligonucleotides by the application of longest common factor

statistics. The string matching algorithm yielded sets of commonly found oligonucleotides without

prior restrictions in strain composition of the resulting groups. Oligonucleotides had to meet the

criteria of unique full length matches to all reference genomes of the respective group and a maximum

of 14 consecutive matches in alignments to any other sequence in the set of other enterobacterial

genomes. The provisional pool of probes (∼18,000 oligonucleotides) was expert curated to select

only those probes characterising enterobacterial subgroups with clinical importance. An even larger

provisional pool of probes (∼360,000 oligonucleotides) was obtained by applying less stringent cross-

matching criteria, but the large size of the stringent provisional pool put the need for an additional

oligonucleotide source aside. A set of candidate probes was carefully selected from the pool of

provisionals according to cross-matching behaviour to human DNA and conventional hybridisation

parameters like compositional complexity, GC-content, change in Gibb’s free energy and melting
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Enterobacteriaceae

157 Probes

32 Strains

Klebsiella

20 Probes

1 Strain

Shigella/E. coli

16 Probes

19 Strains

Shigella

10 Probes

6 Strains

Sh. flexneri

6 Probes

3 Strains

E. coli

0 Probes

13 Strains

Pathogenic E. coli

0 Probes

9 Strains

IPEC

2 Probes

4 Strains

EPEC

20 Probes

1 Strain

EAEC

13 Probes

1 Strain

EHEC

16 Probes

2 Strains

ExPEC

8 Probes

5 Strains

UPEC

3 Probes

3 Strains

Non-pathogenic E. coli

3 Probes

4 Strains

Salmonella

19 Probes

6 Strains

Yersinia

20 Probes

6 Strains

Figure 5.1.: Overview of assigned clinically relevant Enterobacteriaceae. Each node corresponds to a
pathogroup entity and the respective box comprises information about the number of probes designed for the
respective group as well as the number strains assigned to the group according to prior knowledge. The colours
refer to the genus level (red), the intermediate E. coli level (blue) and the E. coli pathotype level (green). Gray
colour refers to pathogroups for which no probes could be found and the white box titled ‘Enterobacteriaceae’
summarises the assignment.

temperature. Reverse complementary oligonucleotides were considered as autonomous candidate

probes even if they fully overlap, as the difference in base composition may have an influence in

hybridisation properties.

The choice of probe length implicates a trade-off between the signal sensitivity and the size of

the pool of capture probes. While longer oligonucleotides yield higher sensitivity, they implicate in
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parallel a smaller source of oligonucleotides from which capture probes can be selected. By reducing

the probe length, the resolution of subspecies level diagnostics would be enlarged while accepting a

higher risk of cross hybridisations. Previously, 70-mer oligonucleotides were determined as optimally

sized microarray probes, which even exceed signal intensities yielded by 100-mer capture probes

(Letowski et al., 2004).

The objective to construct a slim and cost efficient diagnostic tool as well as technical specifications

of the slide format raised the need for a strict limitation of the probe set size. Thus, no more than 20

capture probes were selected per pathogroup. Interestingly, it was impossible to define pathogroup

determinants for the generic entities ‘E. coli’ and ‘pathogenic E. coli’ implicating the absence of con-

cise genotypes across the respective strains. Pathogroups like UPEC or Shigella yielded less than 20

capture probes. But, the discrimination power rather depends on the uniqueness and quality of probes

than on the number of determinants. Figure 5.1 provides a detailed overview of the pathogroups and

the number of capture probes assigned to them. The topmost node titled ‘Enterobacteriaceae’ does

not characterise a pathogroup but provides a summary of probe selection, which resulted in a probe

set of 157 capture probes derived from 32 reference genomes.

The number of reference strains per enterobacterial subgroup depended on the availability of com-

pleted or nearly finished sequencing projects. Thus certain assigned subgroups were underrepresented

at the time of chip design (06/2006). Furthermore, genome sequences were not yet available for the

E. coli pathotypes ETEC, EIEC, SEPEC and MNEC. To compensate for limitations in the availability

of genomic sequences in certain pathogroups, comprehensive test hybridisations were conducted to

verify the discriminative power of the chosen capture probes.

By means of initially unrestricted group-wise probe selection we could specify probes separating

S. flexneri as a Shigella subgroup, though no special emphasis was put on such a subdivision. As

S. flexneri does not cause substantially different clinical symptoms upon infection, the subgroup was

not separately analysed. But, the ability to distinguish between Shigella subgroups underlines the

high sensitivity in strain typing mediated by the applied probe selection strategy.

5.1.3. Characterisation of capture probes

Selected oligonucleotide probes were mapped to the genomes of the respective groups by a BLAST

search to find general annotations of corresponding group-specific, genomic regions. The annotations

were summarised to the categories listed in Table 5.1 as column labels. In accordance to the applied,

generalised probe selection strategy, nearly 13% of probes originated from intergenic regions. The

high number of intergenic probes reflects the importance of such regions in pathotype diversity and

putatively as well in virulence. Some oligonucleotides represent regions with direct connection to

virulence-associated genes, like toxins (IPEC probe 2638_3: espF) or genes located on pathogenicity

islands (PAIs, UPEC probe 1540_10). Others were assigned to genes with a regulatory function or

with genes of extracellular structures (genes encoding proteins residing in periplasma, the outermem-

brane or secreted proteins). Interestingly, the majority of selected probes refers to genes with poor

or missing annotation. Clearly, these probes were not yet considered as characteristic markers for

certain enterobacterial subgroups.
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Table 5.1.: Overview of oligonucleotide markers and their categorisation.
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Yersinia 4 0 11 0 0 0 0 4 0 1 20
Klebsiella 7 0 5 1 0 1 0 4 2 0 20
Salmonella 1 0 6 0 0 2 0 4 3 3 19
Shigella/E. coli 1 0 3 4 0 0 1 7 0 0 16
Shigella 1 4 0 0 0 1 0 0 0 4 10
Non-pathogenic 1 0 0 0 0 0 0 1 1 0 3
ExPEC 0 0 4 0 0 0 2 2 0 0 8
IPEC 0 1 1 0 0 0 0 0 0 0 2
UPEC 0 0 2 0 0 0 1 0 0 0 3
EHEC 4 0 10 0 0 1 1 0 0 0 16
EPEC 0 0 16 1 0 1 0 1 0 1 20
EAEC 1 0 17 0 0 1 0 0 0 1 20

In total 20 5 75 6 0 7 5 23 6 10 157

The term “Probe set” refers to the contribution of genomic groups to the final set of probes. Beside
several probes in categories like virulence, extracellular (secreted proteins) or transcription, the
probe set comprises a relatively large fraction of probes originating from intergenic regions.

5.1.4. Test hybridisations

Samples of genomic DNA extracted from representative strains of various enterobacterial pathogroups

were hybridised to the microarray in order to determine its classification performance. As inferable

from Table 1.3, both, genomic DNA of reference strains and of a large number of clinical isolates

representing the whole range of pathogroups was prepared as test samples. Moreover, I conducted

test hybridisations with genomic DNA from E. coli pathotypes ETEC, EIEC and SEPEC without

representation on the microarray. As no special probes were selected for the classification of these

pathotypes, they could be considered as a kind of negative test with respect to the pathotypes in focus.

Faecal samples as well as many clinical specimens are composed of mixed bacterial communi-

ties comprising pathogens and non-pathogens. The evaluation of the microarray accounts for these

types of clinical diagnostics by specifically designed spike-in experiments. Mixed culture gDNA was

prepared according to Table 1.4. The experiments target evaluations with respect to the contrasting

ability of the microarray in the background of multiple bacteria and the sensitivity in determining

proportions of their occurrence in clinical samples.

5.2. Assessment of single probe performance

Comprehensive test hybridisations delivered insights into the reliability of single group-specific cap-

ture probes in the classification of respective pathogroups. The probe-specific contribution in group

separation was estimated by an analysis of variance (ANOVA) on signal intensities. The direction of
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Figure 5.2.: Probe-specific contribution to the detection of diagnostic groups in the genus level of the
pathogroup tree. The performance of single group-specific probes in the detection of pathogroups was deter-
mined by a combination of an ANOVA and simultaneous inference of one-sided multiple comparisons. The
resulting adjusted p-values communicate the robustness of intensity difference between pairs of pathogroups.
The p-values from single comparisons were averaged for each pathogroup in log space. Violin plots indicated
the overall distribution of non-averaged p-values on a log-scaled x-axis as relative densities (density values are
not reflected by the y-axis). The y-axis follows arbitrary units in order to improve readability of single points.
Probes of the genus level largely exhibit significant single discrimination, though Yersinia and Klebsiella probe
support is inferior putatively because of higher intra-group diversity and lower coverage, respectively.

the probe support was determined by the method of simultaneous inference of multiple comparisons.

Adjusted p-values of one-sided pairwise inference against all pathogroups were averaged in log space

in order to obtain group-specific indications of support of single capture probes. The averaged p-

values of probes in respective groups are contrasted in Figures 5.2 to 5.4 against p-value distributions

of all probes in the corresponding group. The p-value distributions are visualised as arbitrary densi-

ties of so-called violin plots on a log-scaled p-value axis (x-axis), which is cut at a p-value of 10-11.

Small densities at low p-values highlight the success of probe selection as the group-specific probes

form the body of lowest p-values.

As revealed by Figure 5.2, p-values of probes specific to genus-level pathogroups generally com-
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Figure 5.3.: Evaluation of single probe support within the intermediate level of the pathogroup tree.
The significance of discrimination power of single group-specific probes was determined as described above.
The minor support in six Shigella probes arises from its specificity to the S. flexneri subgroup of Shigella. The
generally lower p-values in comparison to the genus level indicate putatively results from closer relationships
of the groups and therefore a smaller genetic variability.

municate high confidence in the ability to classify respective strains. In comparison, the genera exhibit

differences in the overall performance of their specifically designed probes. Best support was ob-

tained for Salmonella and E. coli pathogroups while lower but still significant p-values were assigned

to probes selected from Klebsiella and Yersinia genomes. These results seem to arise from quite

different influences. The probes of the E. coli group were selected against the background of large

amount of genomic data. Salmonella constitutes a pathogroup with a largely homogenous genotype

(Porwollik et al., 2004). The observed larger variability in Klebsiella probe performance reflects the

sparse genomic data available in this group. Yersinia probe variability seems to mirror the genotypic

diversity among Yersinia ssp. strains (Hinchliffe et al., 2003; Zhou et al., 2004).

In general, lower p-values of capture probe performance were obtained in the intermediate level

downstream of the E. coli group mainly because of closer evolutionary distances between these groups

compared to the distances in the genus level. Figure 5.3 depicts probe performance evaluations

among the pathogroups denoted ‘Shigella’, ‘non-pathogens’, ‘IPEC’ and ‘ExPEC’. The evaluation of
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Figure 5.4.: Discriminative power of group-specific probes among E. coli pathotypes. The ability of
probe-wise discrimination derived from ANOVA-based simultaneous inference of one-sided multiple com-
parisons further decreases in the E. coli pathotype level of the pathogroup tree. Single red dots mark averaged
adjusted p-values of group-specific probes. The overall distribution of p-values as indicated by violin plots
exhibits a general increase of p-values. The increase is influenced by a larger number of comparisons and by
the close relation of the target groups.

Shigella-specific determinants comprises four capture probes classifying all Shigella strains as well

as those specific only for S. flexneri. The corresponding plot reveals significant support by the capture

probes representing the whole group. The three top-performing Shigella-specific probes originate

from the locus of the invasion plasmid antigen H gene (ipaH). Venkatesan et al. (1989) described

motifs of the gene locus to be effective predictors of Shigella and EIEC virulence.

Figure 5.4 reflects averaged single capture probe performance in terminal pathogroups. Increased

p-value level resulted first of all from a higher number of pairwise comparisons. But, the group-

specific probes of E. coli pathotypes still constitute the lowest fraction of the overall p-value distribu-

tion in each group. The separation of the enteroaggregative pathotype is strongly supported by two

probes. One of these high-performing probes with the ID 6806_1 is located in the plasmid encoded

aatD gene locus.
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5.3. Evaluation of hybridisation

The global aim of any diagnostic means is the detection of and the distinction between targets, here

antimicrobial resistance and clinically relevant enterobacterial pathogroups, respectively. In the fol-

lowing, the ability of the developed microarray to come to such decisions is described. Comprehen-

sive test hybridisations provide the basis for these investigations.

5.3.1. Regression analysis

In order to predict the membership to a diagnostically relevant group (see Figure 5.1) a regression

model was trained with the results from test hybridisations analogous to the method described by En-

gelmann et al. (2009). The regression model treats intensities of single probes independently from one

another because of probe specific hybridisation behaviour. The target affinity to perfect match probes

is dependent on the probe-specific sequence composition and does not allow for direct comparison

of intensities from hybridisations to different probes. Given the intensity matrix of hybridisations Y

with probes i = 1 . . . n as rows and samples k = 1 . . .m as columns and a master table containing

hybridised amounts of DNA X of the same size, the linear regression model equates to

Y = AX. (5.1)

The affinity matrix A is trained by solving the equation

Â = Y XT (XXT )−1 (5.2)

The prediction performance of the regression model was determined by leave-one-out cross-validation.

In a recurrent sampling procedure the regression model was trained in each run by all but a single hy-

bridisation pattern, which further on served as test pattern. Based on the test pattern the amount of

corresponding gDNA x̂k was predicted to

x̂k = yk A
T (5.3)

with yk being the intensity vector of test sample k. According to the specifications for the microarray

technology 2 µg of bacterial gDNA were hybridised in each single experiment. Based on prior knowl-

edge on the true nature of test strains a master table X was generated, which refers to the hybridised

amount of DNA in each pathogroup. All capture probes characterising a certain pathogroup or its

parent group of a test strain were set to an appropriate factor of hybridised DNA (for pure cultures 1.0
∼= 2 µg), while 0.0 was assigned to all other probes. The factor corresponds to the proportion of the

sample DNA coming from a certain pathogroup and drops only below one in mixed culture hybridisa-

tions. Predicted amounts of hybridised DNA for single probes are mapped back to the pathogroup by

taking the median of all pathogroup-specific probes. Each pathogroup was evaluated by samples from

different strains. Groups with no explicit representations in the probe set were treated separately. In

these cases the amount of hybridised DNA was determined by a regression model trained on all core

pathogroups.
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Figure 5.5.: Evaluation of the prediction performance on the genus level of the decision tree. In this
case the linear regression model was trained on signal intensities of probes representing the main genera of
considered Enterobacteria (Salmonella, Shigella/E. coli, Klebsiella or Yersinia, the x-axis). The model was
trained with all hybridisation patterns. The medians with standard error of predicted DNA amounts were
obtained by leaf-one-out cross-validation.

Pure cultures The regression model-based cross-validation has been determined in the context

of the previously denoted intrinsic levels of the pathogroup tree. Figure 5.5 summarises the classi-

fications on the genus level of enterobacteria subdivided to prediction outcomes of the pathogroups

‘Shigella/E. coli’ (top left), ‘Yersinia’ (top right), ‘Klebsiella’ (bottom left) and ‘Salmonella’ (bottom

right). The headline of each plot refers to the true nature of the test samples and the x-axis repre-

sents the pathogroups, which are contrasted in regression model analysis. No misclassifications were

obtained from cross-validations on the genus level. In contrast, the regression model exhibited the

ability to accurately predict DNA amounts used for hybridisation. The tests furthermore suggest an

influence of sample coverage in the accuracy of quantitative predictions.

Next, the classification accuracy among the branch of Shigella and E. coli strains was evaluated

in more detail, starting with the intermediate level of the pathogroup tree (pathogroups shaded in

blue in Figure 5.1). Figure 5.6 depicts the prediction results subdivided according to classes on this

level. The training of the regression model was restricted to intensity data from probes designed for

respective pathogroups of the intermediate level. Even in the narrow evolutionary spectrum of E. coli

isolates the regression model was able to safely separate hybridisation patterns of Shigella, ExPEC

and intestinal strains. Again, the level of prediction noise in non-target pathogroups was basically

absent except for a reciprocal interference between non-pathogenic and IPEC. As described below,

this interference could be resolved in predictions contrasting the non-pathogenic pathogroup against

E. coli pathotypes (see Figure 5.7).

Certainly, the classification of E. coli pathotypes depicted in Figure 5.7 constitutes the most difficult
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Figure 5.6.: The prediction of hybridised DNA of the groups beneath the node of E. coli and Shigella
isolates. For the distinction of hybridisation of these groups the regression model was trained only with signal
intensities of probes associated to contrasted groups (x-axis). For the commensals and intestinal pathogens we
obtained a reciprocal cross-hybridisation, which probably has arisen from the low number of probes in these
groups. In contrast, extraintestinal pathogens and Shigella isolates were predicted to an expected type and
amount.

classification scenario because of a generally low number of reference genomes in these pathogroups,

close phylogenetic relation with largely similar genotypes and high frequency of genetic interchange.

Figure 5.7 refers to cross-validations of hybridisation patterns of the E. coli pathotype level, which

was extended with clinically relevant contrasts to Shigella and non-pathogenic E. coli. The contrasting

of non-pathogenic E. coli patterns against concrete intestinal and extraintestinal pathotypes yielded

clear predictions in each pathogroup. In all classification, the prediction level of the true class can be

robustly separated from prediction levels of respective negative classes.

The robustness of model predictions was further evaluated by predictions on hybridisation patterns

from isolates of new pathotypes in terms of the developed microarray. These groups comprise EIEC,

ETEC and SEPEC pathotypes. With respect to equivalence, patterns of these pathogroups were set

in contrast to other E. coli pathotypes. The predictions are graphically displayed in Figure 5.8. They

do not reveal a clear tendency to any pathotypes. Only the hybridisation patterns of EIEC isolates

show a certain hybridisation to probes of intestinal pathotypes and Shigella isolates. The observed

interrelation between Shigella and EIEC classes coincide with the high similarity of enteroinvasive

E. coli and Shigella isolates concerning pathogenicity and genotype. The absence of any positive

prediction for ETEC and SEPEC pathotypes as well correlate with prior expectation.

Classification of bacterial communities Furthermore, the linear regression model was trained

with specifically designed spike-in experiments to detect different pathotypes within mixed bacterial

cultures. Though the regression model was not specifically trained with hybridisation patterns of
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Figure 5.7.: Prediction performance of the regression model applied to the classification of E. coli patho-
types. The model was trained with hybridisation patterns from all contrasted pathotypes, which are indicated
on the x-axis. The blue dots correspond to median values of predicted amount of hybridised gDNA from re-
spective bacterial pathogroups. The error bars signify standard errors determined from the test samples in each
class.

mixed culture sample, the predictions shown in Figure 5.9 did not only correlate with the true nature

of test strains but also correctly quantify the underlying proportions. Especially the spike-in series

with counterrotated proportions of a non-pathogenic E. coli and an EHEC strain (Plots M01-M05)

demonstrate the sensitivity of the regression model in estimations of quantities of bacterial DNA and

its mixtures. Though the tests for the prediction quality on mixed cultures did not fully characterise

the model performance, they indicate the potential to establish an accurate predictor. By conducting

comprehensive tests with biological repeats, the prediction performance of the regression model can

certainly even be improved as shown for pure culture predictions. Mixed culture test hybridisations

did not reveal any limit of detectable rates of pathogens though it most likely exists. If such a limit

is under-run - a possible scenario for faecal-samples diagnostics - appropriate measures have to be
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Figure 5.8.: Regression model behavior on the categorical prediction of hybridisation patterns from
new pathotypes that are not represented by specifically designed oligonucleotides. The model training was
based on the core pathotypes. The unspecific representation resulted in diffuse prediction outcome, where only
the group of enteroinvasive E. coli shows cross-reactions to probes of Shigella and intestinal pathogens.

taken to scale up group-specific DNA ratios in question.

5.3.2. Antimicrobial resistance screening

The developed diagnostic microarray comprises features to screen for basic antimicrobial resistance

patterns in enterobacterial samples and communities. A set of 30 previously published AMR markers

was extended with 12 newly designed probes. The AMR probe set comprises resistance mediating

enzymes and efflux pumps against aminoglycosides, β-lactams, sulfonamides, tetracyclines, dihydro-

folate reductase (Dhfr) inhibitors, amphenicols and macrolides. Due to the parallel architecture of the

microarray platform, the capacity of the spotting area was limited. Therefore the AMR diagnostics

could only afford to provide a detection of selected AMR markers.

AMR relevant, log normalised signal intensities of hybridisation patterns from all test strains were

classified into a signal and a noise fraction by fitting a Gaussian mixture model composed of two

normal distributions on all data points. The left plot of Figure 5.10 summarises single posterior sig-

nal probabilities of AMR probe intensities obtained from numerous test hybridisations as a heatmap

(red colour gradient). For about one third of hybridisation profiles, mainly originating from E. coli

and Shigella isolates, no resistance could be detected. All but one tested Salmonella strains exhibited

resistance to trimethoprim (genes dhfrXIII and dhfrXV), whereas neither isolate revealed any resis-

tance to sulfonamides. These two therapeutics are frequently applied in combination. A second large

right-most cluster, mainly consisting of pathogenic E. coli and Shigella strains, hold multiple resis-
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Figure 5.9.: Regression model behavior on the categorical prediction of various mixed hybridisations.
The regression model was trained with pure sample and the mixed-culture hybridisation patterns (excluding
new pathotypes like ETEC, EIEC and SEPEC).
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tances. SHV-type (sulfhydryl variable) β-lactamases were in correspondence with a previous report

only detected in K. pneumoniae isolates (Paterson et al., 2003).

Microarray results were validated by susceptibility tests with the disc diffusion method. Tests were

conducted for those strains and only for antimicrobial agents, for which resistance was detected by

the microarray. Figure 5.11 summarises the disc experiments and comprises a susceptibility screening

for the antimicrobial agents listed in table 1.5. The values in the plot signify the zone of inhibition

around the susceptibility discs, values in brackets refer to zones of moderate inhibition and dashes

indicate skipped tests. The class of β-lactamases was covered by 3 test antibiotics in accordance to

the frequency of observed resistance and to the complexity of resistance mechanisms and proteins in

this class (Giamarellou, 2005).

In far most tests the disc diffusion method confirms the resistances detected by the microarray anal-

ysis. Disc diffusion also revealed susceptibilities for single tests. The laboratory E. coli strain K-12

MG1655 served as a control in disc experiments. The K-12 genome contains the AMR genes ampC,

macAB, emrAB and acrAB. AmpC functions as a penicillinase which especially affects ampicillin

and other penicillins and therefore mediates resistance to oxacillin and amoxicillin. MacAB, Em-

rAB and AcrAB form efflux proteins in the extracellular matrix, which are specialised transporters of

macrolides and provides erythromycin resistance (Sánchez et al., 1997; Kobayashi et al., 2001). As

these protein complexes constitute frequently occurring chromosomally encoded AMR structures, the

respective genes were not considered in the described design of an AMR diagnostic. The K-12 strain

was susceptible for all other tested antimicrobial agents (with the tetracycline value at the threshold

between intermediate status and susceptibility). The disc experiments further revealed widespread

susceptibilities to ceftriaxone. Resistance to third-generation cephalosporines mainly arises from

the CTX-class (cefotaxime) of β-lactamases, and the hybridisation experiments did not exhibit any

positive signals for the corresponding probes. Sporadic ceftriaxone resistances can be traced back

to oxacillinases (blaOXA) or to PER-type (Pseudomonas extended resistant) extended-spectrum β-

lactamases (ESBLs) (Giamarellou, 2005). The capture probes selected by Bruant et al. (2006) (repre-

senting transport proteins FloR and CmlA) did not well predict the establishment of chloramphenicol

resistance. In contrast, chloramphenicol resistance was correctly detected by the microarray, when

conferred by type I chloramphenicol acyltransferases.
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5. Development of a diagnostic microarray for clinically relevant enterobacteria

The microarray-based detections of aminoglycoside resistances mainly refer to signals in the probe

for the streptomycin 3’-adenyltransferase which generally does not confer gentamycin resistance.

5.3.3. Designed probes and recently published enterobacterial genomes

As a consequence of the increase in sequencing efficiency and the decrease of its costs at the same

time, several new enterobacterial genomes were published recently. They contain novel sequence

information, a knowledge that impacts strain typing and diagnostics in general. This knowledge

especially of strains from new pathotypes could, however, not be integrated in the developed micro-

array. Nevertheless, the microarray’s diagnostic behaviour on these strains was appreciated by Smith-

Waterman alignments of all probe sequences against the genome sequences specified in Table 1.2.

Typing of pathogroups The updated data regarding recently published genome sequences of

enterobacteria mainly comprised E. coli strains belonging to non-pathogens, UPEC, MNEC, EHEC,

ETEC, SECEC, EAEC and Shigella pathogroups as well as strains S. Enteritidis and K. pneumoniae.

The set of strains covers mostly the full range of pathogroups represented by the microarray and

even comprises yet unconsidered E. coli pathotypes (SECEC SMS-3-5 and ETEC E24377A). The

alignment results were summarised in Figure 5.12 as an image plot of strains against pathogroups.

The plot indicates a correspondence of matching category and true pathogroup (green scale), no

matching though it was expected (grey colour) or cross-matching (red scale). Colour intensities refer

to the length of the respective longest consecutive stretch of matches.

The ability of genus level capture probes to discriminate between Shigella/E. coli and Salmonella

isolates is confirmed by the alignments. The K. pneumoniae 342 genome shows sequence similarity to

almost all Klebsiella-specific capture probes. Moreover, the strains safe detection will be assured by

the absence of similarities to probes from other pathogroups. Salmonella and non-pathogenic strains

as well promise good detectability based on the alignment results although they do not match the full

set of capture probes designed for this pathogroup. Representatives of so called new pathogroups

(ETEC: E24377A, MNEC: S88) can be correctly classified as E. coli isolates and do not reveal sub-

stantial cross-hybridisation risk. Additionally, the UPEC strains exhibit detectable patterns of the

ExPEC pathogroup. Globally, cross-matches occurred only to the same few probes, a finding which

indicates a good performance of the majority of selected probes for the classification of new isolates.

The single occurrences of cross-matching would be balanced by the linear regression model with

dominating full matches. Therefore, the theoretical assessment verifies the appropriateness of the

selected capture probes in pathogroup classification of enterobacteria.

Theoretical AMR detection In addition, the part of the probe set characterising AMR proper-

ties was evaluated by determining sequence similarities to strains with recently published genomes.

The right image plot in Figure 5.10 provides lengths of the longest consecutive matches encoded in a

green colour gradient. The SECEC strain SMS-3-5 was reported to harbour multiple antimicrobial re-

sistances Fricke et al. (2008). This finding could be confirmed by our sequence alignments which un-

cover resistance loci coding for a TEM (Temoneira, name of patient) β-lactamase (blaTEM), a chlo-

ramphenicol acetyltransferase II (catII), an aminoglycoside 3’-phosphotransferase (aph(3)-Ia aphA1),

a tetracycline efflux protein (tetA) and a type II sulfonamide resistant dihydropteroate synthase (sulII).
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5.3. Evaluation of hybridisation
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Figure 5.11.: Validation of antimicrobial resistance with the disc diffusion test. Resistances found by
microarray hybridisations were tested in correspondence to the hybridisation results by the exposure of resis-
tant strains to the following antimicrobial substances: Gentamicin (GM, Aminoglycoside), Ceftriaxone (CT, β-
lactam), Oxacillin (OC, β-lactam), Amoxicillin (AC, β-lactam), Sulphometoxazole (SX, Sulfonamide), Tetra-
cycline (TC), Trimethoprim (TP, DR inhibitor), Chloramphenicol (CP, Amphenicol) and Erythromycin (EM,
Macrolide). Values specify the size of the zone of full inhibition, those in brackets the zone of partial inhibition.
Dashes mark cases where no resistance was found in hybridisations and therefore no experimental validation
was conducted. The colours are mapped according to the resulting categories from susceptibility to resistance.
Most microarray-based resistance predictions could be confirmed by the experiments, though we also obtain
susceptibilities in single strains.

The corresponding genes were found in the published genomic sequence. Sequence analysis deter-

mined a second multiple resistant strain, the UPEC isolate UMN026. The strain’s genome encodes in

correspondence to probe alignments for the TEM-type β-lactamase, the aminoglycoside/multi-drug

efflux protein AcrD, the dihydropteroate synthase type-1 and several efflux pumps. Single resistances

were also obtained by sequence alignments to E. coli genomes of strains 55989 and SE11 for tetracy-

cline and of strain E24377A for sulfonamides. Although our AMR probes did only reveal moderate

similarity to three different regions in the K. pneumoniae isolate 342, the strain was described to be

highly resistant. The resistance mechanisms in K. pneumoniae 342 rely on β-lactamases and on the

existence of many efflux pumps Fouts et al. (2008). The β-lactam resistance could be detected with

the performed alignments to the designed probes.
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Figure 5.12.: Theoretical assessment of diagnostic probe performance based on alignments of probe
sequences to recently published enterobacterial genomes. The imageplot summarises lengths of longest
stretches of consecutive matching (green scale) and cross-matches (red scale) of probes to new genomes. Grey
colour indicates an expectation of matching without the observation of matches. Fields coloured in light red
represent weak similarities that will not lead to cross-hybridisation. The genus level categories show high
similarity to corresponding probes, in downstream levels few cross-matching was observed between E. coli
pathotypes. The cross-matching goes back to only few probes.
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5.4. Overview of prediction results

5.4. Overview of prediction results

In summary, the predictions of DNA hybridisation on signal intensities of specifically designed mark-

ers of enterobacterial pathogroups yields accurate results throughout all levels of hierarchical diag-

nostic decisions. The prediction outcome is stable regarding different compositions in training sets

of the regression model and regarding contrasts between groups from different pathogroup levels.

Overall, the regression model exhibits low levels of prediction noise in non-target classes. Accura-

cies in predictions of the amount of hybridised DNA depend on the number of biological repeats,

the distinction power and amount of group-specific probes and the homogeneity of the pathogroup in

focus. Spike-in experiments of mixed cultures underline the ability of the diagnostic microarray in

conjunction with regression analysis to decode the proportions of bacteria in clinical specimens. The

microarray proofed to detect major AMR conferred by degrading enzymes or efflux proteins and the

established signal analysis provides information on the reliability of resistance prediction as posterior

probabilities.

5.5. Conclusions

Here, I present a novel strategy in the design and analysis of a diagnostic microarray for the distinction

of subgroups within the versatile family of Enterobacteriaceae. The branch of the γ-proteobacteria

comprises frequently studied model organisms in molecular biology, genetics and computational bi-

ology. Members of this family are known as versatile pathogens causing gastrointestinal and urinary

tract infection, new-born meningitis, plague, diarrhoea or pneumonia, to name but a few (Nataro et al.,

1995; Butler, 1994; Brisse et al., 2006; Ogawa et al., 2008). The multiplicity in clinical symptoms

implies a large gene pool, genetic exchange and the requirement of complex diagnostic tests. New

technologies like DNA microarrays provide suitable high-throughput environments to determine a

large number of traits within a single diagnostic test.

The diagnostic strategy applied here is based on an initial categorisation of the target group of

bacteria. The subsequent probe selection is geared to the prior categorisation and its quality and dis-

crimination power certainly depends on a proper choice of meaningful sub-entities in the reference

set of target genomes. The initial search algorithm of probe selection, longest common factor statis-

tics, explicitly scans the whole genomes with coding and non-coding regions. The consideration of

non-coding areas as robust markers with respect to specify a group of bacteria is not straight-forward.

Intuitively, non-coding regions are expected to be less conserved and normally do not have a direct

impact on infection of a host and survival within the host environment. But, highly conserved inter-

genic motifs like repetitive sequences termed ERIC (enterobacterial repetitive intergenic consensus)

(Wilson and Sharp, 2006) or conserved transcriptional regulatory elements (Pritsker et al., 2004) were

described for enterobacteria previously. The selection of intergenic probes distributed on nearly all

levels of considered clinically relevant subgroups confirms the existence of characteristic traits out-

side of coding regions. The high number of capture probes characterising the pathogroups, which

refer to poorly or not annotated genes, indicates the existence of unrecognised genotypic traits with

an impact in pathogenicity.
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5. Development of a diagnostic microarray for clinically relevant enterobacteria

Microarray-based diagnostics in comparison The microarray technology is well suited for

diagnostic applications due to its highly parallel architecture. In the past few years many workgroups

studied the applicability of microarrays to microbial ecology and phylogenetics (Gentry et al., 2006;

Wagner et al., 2007), comparative genomics (Dorrell et al., 2005; Willenbrock et al., 2006, 2007)

and clinical diagnostics (Loy and Bodrossy, 2006). Microbial diagnostic microarrays (MDM) are

generally characterised by a low number of probes, which either target sequence differences in single

diagnostic markers or represent a library of virulence-associated genes. MDM from the first category

rely on probes designed from sequence differences in single markers like 16S rRNA (Lehner et al.,

2005) and gyrB (Kakinuma et al., 2003; Kostić et al., 2007). Though these single marker diagnostics

perform well in the distinction between distantly related organisms, its distinction performance on

subspecies level was found to be limited (Case et al., 2007). Further MDM were based on libraries of

determinants for virulence-associated genes (Dobrindt et al., 2003; Bekal et al., 2003; Bruant et al.,

2006; Korczak et al., 2005). However, high rates of horizontal gene transfer, which have been reported

to occur especially among E. coli strains (Wirth et al., 2006), frequently affect virulence-associated

genes due to selection pressure in the host. Furthermore, the virulence factors are mainly organised

in pathogenicity islands (Blum et al., 1994; Hacker et al., 1997), which can be transferred, deleted

and re-inserted (Dobrindt et al., 2004). Other studies reveal overlaps in virulence genotypes of E. coli

pathotypes (Kariyawasam et al., 2007; Rodriguez-Siek et al., 2005). Finally, the overall genome

content of many non-pathogenic E. coli isolates resembles that of extraintestinal pathogenic isolates

and thus does not allow proper strain typing and risk assessment (Grozdanov et al., 2004; Hejnova

et al., 2005; Zdziarski et al., 2008). Thus, the proposed strategy in the development of a MDM rather

relies on the determination of the genome-wide most stable subgroup-specific traits among available

non-redundant genomic information of the target group of bacteria.

AMR screening An important part in clinical treatment of bacterial infections is the choice of

an appropriate drug therapy. Many publications described an increase of antimicrobial resistances in

clinical isolates over the last years (Diekema et al., 2004; Lautenbach et al., 2001; Hyle et al., 2005).

In this context, the integration of a screening for important determinants of antimicrobial resistances

was mandatory in the development of a diagnostic tool. The AMR screening feature does not only

provide an assessment of the applicability of antimicrobial agents, but also enables the tracking of

AMR progression. Such a screening based on probes for the major classes of AMR mediated by

enzymes or efflux proteins was also found in a previous study, which targets the use of microarrays for

bacterial diagnostics (Bruant et al., 2006). Therefore, the AMR specific part of the probe set extends

previous work by selected new markers of AMR. Hybridisation with a large number of test strains

and in vitro verification of resistances by the disc diffusion method largely correlate. The choice of

the array format does not allow for an establishment of a fully detailed AMR tracking. Such a feature

would require many additional probes to target further resistance mediating genes as well as known

single nucleotide polymorphisms in AMR target structures. The challenge to establish microarray-

based diagnostics of AMR with differences between microarray detection and conventional testing

was already stated in previous studies (Frye et al., 2006). As E. coli strains possess a high number

of drug efflux systems and an even higher number of other membrane transporters (Paulsen et al.,

2001), a functional shift mediated by mutations could be the cause for such observed differences.
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5.5. Conclusions

Nevertheless, microarray based detection of AMR has been described previously as an enhancement

to conventional susceptibility testing (Bruant et al., 2006; Frye et al., 2006). Here, it was shown to

robustly detect AMR in a wide range of enterobacterial isolates.

Diagnostics of enterobacteria The microarray design strategy was optimised for the detection

and classification of enterobacteria. Probe selection was based on a previously approved longest com-

mon factor approach and on subsequent filtering of candidate capture probes according to strict match

and mismatch limits, which conferred robust signalling with low cross-hybridisation. Extensive test

hybridisations were conducted in order to assess the quality of the selected probe set and to obtain

training data for the calibration of the linear regression model. Probe-wise performance evaluations

based on these tests legitimate the separation of sense and anti-sense capture probes, which exhibited

divergence of support quality e. g. in classifications of Yersinia test isolates. Detailed investigation

concerning the nature of the selected probes reveals single markers, which were previously described

because of their group specificity. As an example two capture probes of the EAEC pathogroup in-

dicating strong group-specific support are derived from the aat gene locus. The whole aat and aap

loci were previously reported to be specific for EAEC strains and suggested for diagnostic purposes

(Nataro 2008, EP 1 917 975 A1; Jenkins et al. 2006). The function of nearly half of the capture probes

is still uncharacterised and to my knowledge these markers were not applied in enterobacterial diag-

nostics before. The finding underlines the importance of an unsupervised probe selection mechanism

considering both coding and non-coding genomic regions.

Test strains were classified to enterobacterial subgroups by a regression model. The model was

able to provide clear separation of the considered subgroups while the prediction accuracy of nature

and amount of hybridised DNA increased with the size of the training set and the distance between the

groups. Spike-in experiments with mixed culture hybridisations containing isolates from two groups

in various proportions were intended to evaluate the power of classification for bacterial communi-

ties. The tendencies of predictions based on these mixed culture hybridisations were mainly correct.

The regression model is generally able to determine the composition of bacterial communities. The

accuracy in determining the proportions in community samples can certainly be enhanced by using a

larger set of training data. In extremely unbalanced mixtures, especially if single strains are highly

underrepresented, the implementation of an amplification technology can circumvent the existence of

detection limits (Park et al., 2006).

In a separate in silico analysis we matched the probe set to recently published enterobacterial

genomes. The assessment of probe validity on yet unconsidered sequence information confirmed the

appropriateness of selected probes. Major AMR patterns reported for these strains could be recog-

nised by the corresponding capture probes of the developed microarray thus recommending it for

AMR diagnostics.

Regarding the numerous existing approaches to construct a diagnostic for the versatile group of en-

terobacteria or its subgroup E. coli, our introduced design strategy differs because of its genome-wide

probe selection, the broad range of targets and an intuitive but powerful regression model for the anal-

ysis of hybridisation patterns. The regression model features training on previous hybridisations and

thus is approved by application, which leads to constant simultaneous learning. The probe selection

was based on genomic data of published strains that represent clinically relevant phenotypes. With
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5. Development of a diagnostic microarray for clinically relevant enterobacteria

an increase in genomic data the method of probe selection even gains in accuracy of detecting stable

traits of the bacterial groups in focus. The chosen microarray platform with 12 separate spotting areas

provides a tool for highly parallel diagnostics to reduce analysis time and costs. The trade-off is a

limited number of probes. But, the obtained test results proof the suitability of the probe set size for

the distinction of the assigned clinical phenotypes. Further efforts should be focused on the reduction

of costs for a single hybridisation. A recently developed label-free system might be a step in the right

direction as it reduces the preparation and hybridisation time of sample and in parallel increases the

sensitivity (Wang et al., 2006).

A manuscript for publication is in preparation
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expression data sets

6.1. Dimension reduction by kernel principal component
analysis (kPCA)

The ATH-1 whole genome chip consists of 22810 probe sets, this led to a 41 × 22810 data matrix

(contrasts × log fold changes of probe sets) after outlier removal. To reduce the dimension of the

data matrix, a kernel PCA algorithm was applied which was able to cover virtually the complete in-

formation content by defining an orthonormal system of 38 principal component axes. The 22810

log fold changes could therefore be represented by a 41 × 38 data matrix without any measurable

loss of information. Using only the first 25 principal components, 80.585% of the variance could be

described. If we state that the remaining 20% of the variance in the data describe noise, an estima-

tion which is certainly not too strict in the context of large-scale gene expression measurements, an

effective de-noising can be reached by considering only the first 25 principal components in further

steps of the analysis. For a detailed overview of the variance distribution on the first 15 principal

components, see Table 6.1.

6.2. Unsupervised analysis reveals three clear clusters of
contrasts

The principal component plot (Fig. 6.1) revealed three major clusters of contrasts and several minor

ones. In contrast to typical meta-analyses these clusters were not a priori defined, but detected by the

proposed unsupervised meta-analysis. Based on this clustering we used an implementation (Karat-

zoglou et al., 2004) of the spectral clustering algorithm proposed by Ng et al. (2001), a variant of the

k-means clustering algorithm in a kernel defined feature space, to support the clusters shown in Fig.

2. According to the annotation of the datasets retrieved from GEO, the three clusters were related

to indole-3-acetic acid (IAA) addition or inhibition (cluster 1, triangles), pathogen defence activation

(cluster 2, solid circles) and “others” (cluster 3, outlined circles). For a detailed biological interpreta-

tion, see section “Biological interpretation of clusters”. Additionally, inspection of the pairwise plots

of the other principal components contributing to a lower extent to the variance of the data revealed

more contrast clusters.

To get further structural insights into the relationships between contrasts and the experimental

settings, we performed hierarchical clustering assessed by multi-scale bootstrapping (Fig. 6.2). In

agreement with the spectral clustering performed earlier and the graphical inspection of the pairwise

scatter plots of contrasts on the kPCA axes, the three main clusters of contrasts could also be found
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6. Meta-Analysis on diverse gene expression data sets

Table 6.1.: Variance of kernel principal components.

PC1 PC2 PC3 PC4 PC5

PV 0.10035 0.05383 0.05003 0.04640 0.03887
CP 0.10035 0.15418 0.20422 0.25062 0.28949

PC6 PC7 PC8 PC9 PC10

PV 0.03725 0.03250 0.03226 0.03142 0.02973
CP 0.32674 0.35925 0.39151 0.42293 0.45267

PC11 PC12 PC13 PC14 PC15

PV 0.02793 0.02699 0.02647 0.02606 0.02470
CP 0.48061 0.50761 0.53409 0.56016 0.58486

Variance of the first 15 principal components on the 41× 22810 data matrix of Arabidopsis thaliana microarray data,
explaining close to 60% of the variance of the data. Abbreviations: PV = Proportion of Variance, CP = Cumulative
Proportion of variance.

as the first two splits in the resulting dendrogram with high bootstrap support.

As the three clusters were mainly separable through the x-axis on the kPCA scatter plot using the

first two axes (Fig. 6.1), we postulated that the first principal component alone might be enough to

select genes whose co-regulation patterns could clearly distinguish between IAA related, pathogen-

defence related and other contrasts.

6.3. Gene selection with kPCA loadings

To accomplish an efficient feature subset selection, i.e. to identify genes that are responsible for the

clustering, a variety of methods have been described, e.g. Self-Organizing Maps (SOMs) (Tamayo

et al., 1999), Maximal Margin Linear Programming (MAMA) (Antonov et al., 2004), Correlation

Based Feature Selection (CFS) (Hall, 1999) or Recursive Feature Elimination (RFE) using Support

Vector Machines (SVM) (Guyon et al., 2002; Zhang et al., 2006). In consequent continuation of our

approach of exploratory meta-analysis, we looked for genes that have a strong association with the

first kPCA axis, i.e. we calculated the loadings of each of the genes onto the principal components.

To achieve this with respect to the kernel defined feature space we projected single artificial contrasts

containing only one deregulated gene onto the new coordinate system. Each of the 22810 artificial

contrasts was set up in a way that it showed a high absolute fold change value in one of the genes

and all others being set to zero. From the resulting 22810 × 38 matrix of loadings of each of the

genes onto the 38 principal components, we selected the 500 top genes for both positive (IAA re-

lated) and negative (pathogen related) extrema. To assess the accuracy of the gene selection process

exploratively, we repeated the previous kernel PCA analysis using only the selected genes, i.e. on

the remaining 41 × 500 data matrices, and inspected pairwise scatter plots of the first 20 principal

components for each dataset of either IAA-related or pathogen-associated genes. All kPCA plots

of the IAA-related gene set, even the one of the first two axes which contribute most to the overall

variance of the data, showed a wide spread of IAA contrasts along the principal component axes.

106



6.4. Biological interpretation of clusters

−40000 −20000 0 20000 40000 60000 80000

−
40

00
0

−
20

00
0

0
20

00
0

40
00

0

1st principal component

2n
d 

pr
in

ci
pa

l c
om

po
ne

nt

Figure 6.1.: Kernel PCA on 41 Arabidopsis thaliana contrasts. Plot of all 41 contrasts using the first
two principal component axes. Comparisons are colored according to the experiment they originated from
and correspond to the colors used in Figure 3, different shapes indicate the three different clusters obtained
from spectral clustering: Indole-3-acetic acid (IAA) related contrasts (solid circle), pathogen related contrasts
(triangles) and others (outlined circle).

This indicated a high variance of the selected genes in IAA-related contrasts. All other contrasts were

projected onto a compact local cluster by kPCA, demonstrating that the selected genes do not vary

in these contrasts. The same was found in the kPCA plots of the matrix with pathogen-associated

genes (data not shown). These findings indicate that expression patterns related neither to IAA nor

pathogen treatment were efficiently stripped off by the gene selection process.

6.4. Biological interpretation of clusters

The hierarchical clustering on all kPCA scores in Figure 6.2 revealed three main clusters of contrasts:

contrasts studying pathogen defence (blue), contrasts analyzing indole-3-acetic acid (IAA) effects

(violet) and other contrasts studying various effects (grey). These three clusters were well-supported

by high bootstrap values. The labels at the edges include the GEO accession number followed by

an index indicating the contrast number. For a detailed description of contrasts see Table 6.2. For

each contrast, two groups of samples were compared and for each group, the genetic background and

treatment is listed. The last column of Table 6.2 indicates the cluster this contrast was assigned to in

kernel PCA clustering.
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6. Meta-Analysis on diverse gene expression data sets

Figure 6.2.: Hierarchical clustering on 41 Arabidopsis contrasts. Cluster dendrogram using hierarchical
ward clustering on all 38 principal component vectors resulting from kernel PCA. Contrasts are colored accord-
ing to their experimental affiliation. Approximately unbiased (au, (Suzuki and Shimodaira, 2006)) and standard
bootstrap (bp) values are given for all splits and support the results from the previous spectral clustering (Fig.
2).

Zooming into the IAA cluster, a cluster containing only contrasts with IAA inhibition (GSE1491_2,

GSE1491_3, GSE1491_4 and GSE1491_5) was well-separated from the remaining contrasts, includ-

ing GSE1491_1, a contrast from the same dataset, but where IAA instead of an IAA inhibitor was

added to one sample group. The remaining contrasts in the IAA cluster mainly studied the effect of

IAA on different mutants with defects in IAA biosynthesis or signalling. Indole-3-acetic acid (IAA)

belongs to a group of plant growth hormones called auxins. The “others”- cluster consisted of con-

trasts studying various effects like the effect of lincomycin which is an inhibitor of plastid protein

translation, regulation changes of an embryogenesis transcription factor mutant or of stress tolerant

mutants. Naturally, in this cluster of divergent contrasts, contrasts from the same dataset clustered

closely together. The architecture of the hierarchical cluster tree shows that data preprocessing fol-

lowed by kernel PCA adjusted the data in such a way that contrasts stemming from biologically

similar experiments are indeed more similar to each other than to other contrasts. Thus, with our

analysis, we were able to achieve comparability of microarray datasets from different laboratories

addressing different biological questions. This is nontrivial and important considering the numerous

sources of variation that affect the nature of the datasets underlying this analysis.
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Table 6.2.: Overview of all contrasts included in the explorative meta-analysis.

Sample Group 1 Sample Group 2
Contrast Genetic background Treatment Genetic background Treatment Cluster

GSE1491_1 WT Col-0 IAA WT Col-0 non IAA
GSE1491_2 WT Col-0 IAA inhibitor A WT Col-0 non IAA
GSE1491_3 WT Col-0 IAA inhibitor B WT Col-0 non IAA
GSE1491_4 WT Col-0 IAA/IAA inhibitor A WT Col-0 non IAA
GSE1491_5 WT Col-0 IAA/IAA inhibitor B WT Col-0 non IAA
GSE3959_1 MU LEC2GR 1h LEC2 induction MU LEC2GR no LEC2 induction other
GSE3959_2 MU LEC2GR 4h LEC2 induction MU LEC2GR no LEC2 induction other
GSE3959_3 MU LEC2GR 1h LEC2 induction WT WS-0 4h LEC2 induction other
GSE3959_4 MU LEC2GR 4h LEC2 induction WT WS-0 NA other
GSE431_1 pmr4-1 MU non pmr4-1 MU powdery mildew pathogen
GSE4662_1 MU STA1 non WT NA other
GSE5465_2 MU OETOP6B non WT NA other
GSE5520_1 WT Col-0 DC1318 Cor 10e6 MU STA1 non pathogen
GSE5520_10 WT Col-0 EcTUV86-2 fliC 10e8 WT Col-0 non pathogen
GSE5520_3 WT Col-0 DC3000 10e6 WT Col-0 non pathogen
GSE5520_5 WT Col-0 DC1318 Cor 5x10e7 WT Col-0 non pathogen
GSE5520_6 WT Col-0 DC3000 hrpA-fliC 10e8 WT Col-0 non pathogen
GSE5520_7 WT Col-0 DC3000 hrpA 10e8 WT Col-0 non pathogen
GSE5520_9 WT Col-0 EcO157H7 10e8 WT Col-0 non pathogen
GSE5526_1 WT? non WT? non other
GSE5759_1 WT Col-0 dark plus lincomycin WT Col-0 dark other
GSE5759_2 WT Col-0 red light plus lincomycin WT Col-0 red light other
GSE5770_1 WT Col-0 lincomycin WT Col-0 non other
GSE5770_2 abi4-102 MU lincomycin abi4-102 MU non other
GSE5770_3 gun1-1 MU lincomycin gun1-1 MU non other
GSE630_1 WT Col-0 IAA (2h 5µM) WT Col-0 EtOH (2h) IAA
GSE630_10 MU arf2-6 IAA (2h 5µM) MU arf2-6 EtOH (2h) IAA
GSE630_17 MU IAA17-6 EtOH (2h) WT Col-0 I EtOH (2h) IAA
GSE630_18 MU arx3-1 EtOH (2h) WT Col-0 I EtOH (2h) IAA
GSE630_19 MU i5i6i19 EtOH (2h) WT Col-0 I EtOH (2h) IAA
GSE630_2 MU nph4-1 IAA (2h 5µM) MU nph4-1 EtOH (2h) IAA
GSE630_20 MU IAA17-6 IAA (2h 5µM) WT Col-0 I IAA (2h 5µM) IAA
GSE630_21 MU arx3-1 IAA (2h 5µM) WT Col-0 I IAA (2h 5µM) IAA
GSE630_22 MU i5i6i19 IAA (2h 5µM) WT Col-0 I IAA (2h 5µM) IAA
GSE630_24 MU arf2-6 IAA (2h 5µM) WT Col-0 A2 IAA (2h 5µM) IAA
GSE630_3 MU arf19-1 IAA (2h 5µM) MU arf19-1 EtOH (2h) IAA
GSE630_6 MU IAA17-6 IAA (2h 5µM) MU IAA17-6 EtOH (2h) IAA
GSE630_8 MU i5i6i19 IAA (2h 5µM) MU i5i6i19 EtOH (2h) IAA
GSE631_2 MU arf2-6 IAA (2h 5µM) MU arf2-6 non IAA
GSE631_4 MU arf2-6 IAA (2h 5µM) WT Col-0 IAA (2h 5µM) IAA
GSE911_4 35S::LFY non WT ler 35S::LFY other

Each contrast consists of two groups which are described by their genetic background (genotype) and treatment. The last
column “Cluster” derives from the clustering of the kernel PCA scores. Contrasts are labelled with the GEO series number
followed by contrast index.

6.4.1. Arabidopsis thaliana genes regulated by indole-3-acetic acid (IAA)

To get an overview of the functions of the selected genes representative for the contrast clusters

“IAA” or “pathogen”, the Arabidopsis thaliana pathway analysis program MapMan (Usadel et al.,

2005) was used. With MapMan, gene expression values can be displayed onto diagrams of functional

categories and metabolic and regulatory pathways. In this study, MapMan was used to visualise the

representative genes for the two clusters “IAA” and “pathogen”.

Among the genes representative for IAA contrasts, the functional category “hormones” with the

subgroup “IAA” defined by MapMan showed the highest proportion of regulated genes (diagram not

shown). The subgroup “IAA” consists of 215 genes in MapMan. We selected 500 genes representative

for IAA with our approach and out of these, 43 genes are cataloged in the MapMan subgroup “IAA”.
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6. Meta-Analysis on diverse gene expression data sets

Thus, by selecting 500 genes from the ATH1 microarray which comprises roughly 2% of the array,

we were able to capture 20% of the genes annotated as IAA-related in MapMan.

In the “hormones” subgroup “ethylene”, and in the category “transcription factor” many genes

are regulated under IAA treatment, while a smaller number of genes is regulated in the categories

“Cytochrome P450” and “cell wall” (data not shown).

Regulated genes in the subgroup “ethylene” are either involved in ethylene synthesis or signal

transduction. Ethylene plays a role in the regulation of a number of developmental processes, often in

interaction with other plant hormone signals. For example, auxins can induce ethylene formation and

in turn ethylene can trigger an auxin increase. Some processes such as root elongation, differential

growth in the hypocotyl and root hair formation and elongation are regulated by both auxin and

ethylene in Arabidopsis thaliana (Stepanova et al., 2005). All the GEO datasets we annotated as

IAA-related originate from seedling RNA extracts. Since IAA belongs to the group of auxins, the

aforementioned processes are likely to be regulated under IAA treatment.

Cytochrome P450 monooxygenases are involved in various biosynthetic reactions which synthesise

for example plant hormones or defence compounds. Regulation of cell wall genes is also expected as

auxins mediate cell elongation by stretching of the cell wall which requires restructuring processes.

In conclusion, the gene selection of our unsupervised meta-analysis approach chose many genes

which are annotated and independently validated as being IAA regulated.

6.4.2. Arabidopsis thaliana genes regulated by pathogen exposure

Gene selection for contrasts studying plant response to pathogens revealed a high number of regulated

genes in the following functional categories of MapMan (Usadel et al., 2005): “biotic stress”, “recep-

tor kinases”, “photosynthesis” (light reactions), “alkaloid-like proteins” from “secondary metabolism”,

“nitrilases”, “cell wall” genes and “WRKY transcription factors”. For all of the functional categories

mentioned above, it has been reported that genes in these categories are regulated after pathogen at-

tack and play a role in plant defence. Figures 6.3 and 6.4 show details of the MapMan maps which

harbour these categories. In the figures, grey areas inside the diagrams represent all the individual

genes present on the ATH1 chip and annotated in MapMan. The selected genes representative for

contrasts studying the effects of pathogen exposure are highlighted by small dark blue squares. For

example, Fig. 6.3 C shows that there are 41 DUF26 receptor kinases present on the ATH1 chip, of

which 9 are regulated after pathogen exposure. In the following, we give a short description of the

functions of the genes regulated after pathogen exposure.

A change in carbohydrate metabolism after pathogen attack as observed here (Fig. 6.3 A, upper

right: “light reactions”) has also been reported by Berger et al. (2004) for the pathogens Pseudomonas

syringae or Botrytis cinerea. The authors have shown a co-regulation of defence, sink and photosyn-

thetic gene expression in response to the pathogens under study.

As the cell wall is a natural barrier for plant pathogens, plant defence includes cell wall modi-

fications and biosynthesis to thicken cell walls and impede further pathogen attack (Cheong et al.,

2002). Figure 6.3 A shows that several genes of the cell wall metabolism are regulated after pathogen

exposure.

The regulation of WRKY transcription factors (Fig. 6.3 B, upper left) is also described in the

publication accompanying the GEO dataset GSE5520 (Thilmony et al., 2006). Our findings confirm
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their suggestion that these transcription factors regulate plant response to bacteria.

Alkaloids (Fig. 6.3 A, lower left) are secondary metabolites listed in the “N-misc.” category of

MapMan. They are generally not essential for the basic metabolic processes of the plant but play an

important role in plant defence (Dixon, 2001). They are produced by the plant to restrict pathogen

feeding. The accumulation of antimicrobial substances is often regulated by signal-transduction path-

ways which require the perception of the pathogen by a plant receptor encoded by host resistance

genes (Dangl and Jones, 2001; Piroux et al., 2007). Thus, the regulation of DUF26 containing genes

postulated by our analysis of the Arabidopsis thaliana transcriptome (Fig. 6.3 C) might reflect their

function in pathogen recognition. Receptor kinases are discussed in more detail in the next section.

The functional category “biotic stress” (Fig. 6.4 A) comprises a number of different genes which

are annotated to be pathogen related.

Nitrilases (Fig. 6.4 B, upper right) are involved in IAA biosynthesis and catalyze the conversion

of indole-3-acetonitrile to IAA. The induction of four Arabidopsis thaliana nitrilases by the pathogen

Pseudomonas syringae has been shown by Bartel and Fink (1994).

Thus, gene selection by unsupervised meta-analysis was able to pinpoint biologically important

genes of which many are experimentally validated to be regulated by pathogen attack. Clearly, one

could postulate that the remaining genes of unknown function are also associated with responses to

pathogen attack.

6.4.3. Serine-threonine kinases involved in plant response to pathogens

As presented in Figure 6.3 C, the extracted set of genes deregulated in response to pathogens includes

a number of receptor kinases. Many kinases belong to the group of serine/threonine kinases of the

DUF26 subfamily. They all share the same domain composition and order consisting of a signal

peptide, an extracellular region containing two domains of unknown function (DUF26, PF01657) and

a cytosolic serine/threonine kinase domain (pkinase, PF00069). According to the SMART database

(Letunic et al., 2006), proteins of this family are exclusively found in Streptophyta. The 9 putative

receptor kinases exhibit high similarity in domain composition and nucleotide sequence with the

receptor-like kinase 4 of Arabidopsis thaliana (Swiss-Prot-ID Q9C5T0). This enzyme is reported

to be a member of the systemic acquired resistance pathway in higher plants. Its expression can be

activated by a regulatory protein induced via pathogen and salicylic acid interaction (Du and Chen,

2000). Salicylic acid is a signalling molecule which induces systemic acquired resistance in the host

plant (Ryals et al., 1996). These findings suggest a function for the putative receptor-like kinases in

host defence processes.

Two of the DUF26 kinase genes (At4g21400, At4g21410) were also regulated in the contrasts

from dataset GSE3959 and in one contrast from the dataset GSE5770. In the former dataset, the

function of B3 domain protein LEAFY COTYLEDON2 (LEC2) was studied. This transcription

factor is required for several aspects of embryogenesis including the maturation phase. In the latter

contrast, abi4 mutant plants were treated with lincomycin and compared to untreated mutants. ABI4

is a transcription factor, lincomycin inhibits plastid protein translation. From this finding it may be

concluded that these two DUF26 kinase genes either play a role in more than one signalling pathway

or that the same pathway is used to regulate several functions. This might be an interesting starting

point to study these pathways in more detail.
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6. Meta-Analysis on diverse gene expression data sets

Figure 6.3.: Overview of genes regulated in pathogen associated contrasts. The grey areas inside the
individual diagrams of the functional categories represent all genes present on the ATH1 chip. Dark blue
squares highlight genes regulated in contrasts of the “pathogen” cluster. Regulation of cell wall genes (upper
left), alkaloids which fall into the category “N-misc.” of “secondary metabolism” and “Light Reactions” of
photosynthesis (upper right) is apparent. B) Part of the “transcription” map indicating regulation of WRKY
transcription factors. C) Section of the “receptor like kinases” map indicating regulation of DUF26 kinases.
Figure reading example: In subfigure C, a total of 41 DUF26 kinases are represented on the ATH1 chip of
which 9 are regulated after pathogen exposure. The figure is based on maps from the pathway analysis program
MapMan (Usadel et al., 2005).

As can be seen from Figure 6.5, the DUF26 kinase genes were not regulated in all of the contrasts

involving pathogen exposure. This could be due to several reasons. For example either the variance

in the single microarray intensities was so high that differential expression could not be detected in

the contrast or the difference in expression levels (i.e. the logarithmic fold change) was too low to be

significant because of biological reasons. Again, this finding might be an interesting starting point to

analyze the function and regulation of the DUF26 kinase genes.

6.5. Conclusions

Public microarray data repositories accumulate large amounts of data which have so far rarely been

used for large-scale analyses. Using this wealth of information, additional implications for the func-

tion and regulation of genes can be made which could not be derived from single microarray datasets.

This stresses the importance of meta-analyses and their benefit over classical microarray experiments.
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Figure 6.4.: Overview of (A) stress genes and (B) genes of large enzyme families regulated in pathogen-
associated contrasts. The grey areas inside the individual diagrams of the functional categories represent all
genes present on the ATH1 chip. Dark blue squares indicate regulated genes. Subcategories “Biotic Stress”
(A) and “Nitrilases etc.” (B) contain a high number of genes regulated after pathogen exposure. The figure is
based on maps from the pathway analysis program MapMan (Usadel et al., 2005).

In this study, we apply a novel approach of an unsupervised meta-analysis on a large number of

gene expression microarrays. Before conducting the analysis, we performed a pre-processing which

included a conservative outlier removal. Kernel PCA, followed by hierarchical clustering, revealed

robust and significant clusters of contrasts which reflect similar experimental conditions. Thus we

were able to detect biologically important known and unknown factors (e.g. IAA- or pathogen-

associated) through an unsupervised analysis.

To find genes specifically regulated in these clusters, a novel approach of gene selection was con-

ceived. Gene selection was performed using loadings of features on kernel PCA scores, which has to

our knowledge not been performed in the context of meta-analysis before. Gene selection based on

loadings of features on kernel PCA scores circumvents a major drawback of most proposed methods

of feature selection: They tend to find linear combinations of features, i.e. genes, that separate the

given experimental classes best (e.g. different cancer types, etc.). This is challenging as the search

space for all possible linear combinations is too large to be searched exhaustively and sophisticated

heuristics and optimization methods have to be chosen which likely yield differing results, see e.g.

Zhang et al. (2006). An unsupervised analysis as proposed here circumvents this problem efficiently

by working directly on the loadings from the kPCA analysis. Eigen-decomposition of the kernel

matrix is deterministic and so are the results from our gene selection process, provided the projec-

tion is capable of clustering the contrasts appropriately. The genes selected by our feature extraction

were found to be representative of a group of contrasts and could in part be experimentally validated.

Furthermore, adding random noise to the data did not change the set of selected genes, proving the

robustness of the proposed gene selection method.

It is the gene-selection in the first place that benefits most from an analysis across several datasets.

Weak regulation signals can easily be overlooked in a single dataset, i.e. the genes will likely receive
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lincomycin : GSE5770_2
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Figure 6.5.: Regulation of DUF26 kinase genes. Red cells indicate low p-values for a gene in a particular
contrast, light yellow cells represent high p-values. The DUF26 kinase genes are strongly regulated in four
pathogen-associated contrasts.

an insignificant p-value due to their low fold changes compared to a relatively high variance. The

situation becomes even worse after a correction for multiple testing has raised the overall p-value

level, efficiently removing those subtle signals. In a meta-analysis approach which integrates many

datasets, even a small signal that is consistent across several contrasts can be detected. To ensure

this surplus and to prevent early losses of information, we used fold changes and not p-values for our

analysis. We performed the unsupervised meta-analysis on absolute fold changes to reduce variation

introduced by different experimental settings. For example, when there are contrasts in the dataset

which compare a surplus of a factor with a control and other contrasts comparing a lack of a factor

with another control, we might expect fold changes with opposite signs but still want the contrasts to

cluster closely together because the same factor was studied in both. In some cases the direction of

the experimental setup was not even apparent from the description of the dataset.

To ensure that results of similar quality could not be obtained by a simpler model and thus to

prevent overfitting of the data we compared the results to the ones obtained from traditional linear

PCA. Even though linear PCA was also able to detect some of the major clusters in principle, its

accuracy as assessed by hierarchical clustering as well as by the gene selection process fell far short of

the results from the kernelised version. Additionally, it should be noted that kernel PCA outperforms

the traditional approach significantly, considering that the dimension of the kernel matrix as a matrix
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of pairwise scalar products between the data points is independent of the dimension of the data, which

is 22810 (the number of probe sets) in the case of the ATH-1 arrays.

For a large Arabidopsis thaliana microarray dataset, we demonstrate here that gene selection, based

on the study of principal components, proposed genes typical for either IAA- or pathogen-associated

contrasts. These genes were proved to be related to either IAA effects or plant reactions in response

to pathogen exposure by previous studies. Furthermore, starting from our finding that DUF26 ki-

nases are regulated in pathogen-associated contrasts, we applied homology modeling to propose that

DUF26 kinases have a function in plant pathogen defence. Further experiments are needed to confirm

this hypothesis. Nonetheless, this example demonstrates how unsupervised analysis can aid and guide

the next steps of such an analysis.

In general, unsupervised meta-analysis embracing several highly divergent experimental settings

can suggest novel gene functions by revealing the regulation of a gene under different conditions. It

is noteworthy that these analyses are not restricted to datasets addressing the same topic, but that they

profit from the divergence of the experimental settings.

However, it has to be mentioned that an unsupervised meta-analysis is suggestive rather than defini-

tive. But since it is common in classical statistics to precede a supervised, parametric analysis with an

explorative approach to check the integrity and quality of the data, we recommend the same here for

microarray meta-analyses. Hypotheses from unsupervised analyses can then be tested with supervised

methods and biological experiments.

We have shown here that it is feasible to integrate various datasets spanning a large range of ex-

perimental questions and originating from various laboratories into a coherent unsupervised analysis.

This analysis can be applied to find genes representative of a cluster of related contrasts. Based on

expression changes between clusters, the function and regulation of genes can be predicted. Our study

is based on the Affymetrix ATH1 Genome Array platform here, but our approach can be transferred

to any platform, organisms and experimental design which allows one to compute a logarithmic fold

change, e.g. human or mouse microarray datasets. To achieve easy access to our unsupervised meta-

analysis results, we intend to set up a database web server where new datasets can easily be added

and compared to our curated database of Arabidopsis thaliana ATH-1 microarrays.

This project is published in Bioinformatics and Biology Insights (Engelmann et al., 2008).
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7. Optimal adjustment of HMM toplogies

7.1. Adaptation of HMM states to length distributions

HMMs consist of states, which emit a sequence of observables with a certain length. A two-state

HMM with a symbol alphabet OS1 = 1 of state S1 and OS2 = 2 of state S2 emits a sequence of

symbols Ohmm = 111122221112211111. The partial sequences of ones and twos arise from single

emission events and refer to the holding time of the two states. The holding time is related to a

self-transition of the state occurring with a certain probability. Concurrently, the probability of self-

transition determines the length distribution of observation sequences associated to a self-transitive

state in conventional HMM topologies. Single self-transitive states are characterised by the emission

of geometrically distributed observation sequences.

Previous studies revealed in contrast that the length distributions of genetic elements in E. coli

genes like the spacer after the ribosome binding site or the 3’-UTR spacer (Yada et al., 1999) as well

as exons (Melodelima et al., 2007) and M-isochores (Melodelima et al., 2006) in eukaryotic DNA

are bell-shaped. Thus, we propose a statistical framework in order to optimise HMM topologies

with respect to an appropriate representation of sequence length. An adequate modelling of length

properties of emitted sequences is achieved by serially chain-linking self-transitive states (Durbin

et al., 1998), which results in sequence length of observables distributed according to the negative

binomial law.

Description of optimisation structures

The types of state optimisation can be divided into three nested parts, which will be described in an

order of increasing complexity. The nesting of types of state optimisation is derived from the nesting

in the family of negative binomial distributions. In other words, our approach benefits from the fact

that the sum of geometric distributions results in a negative binomial distribution. A chain of serially

linked self-transitive states therefore emits sequences distributed according to the negative binomial

law. In the following we will denote a chain of identical, sequentially linked states mediating the

adaptation of a single self-transitive state to a certain length distribution as a macro state (MS).

7.1.1. The geometrically distributed p macro state

While modelling the duration of stay in a certain hidden state in the HMM by a geometric distribution

(geo(p)), we get the likelihood:

L(p|x1, . . . , xn) =
n∏
i=1

p(1− p)xi−1, (7.1)
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Figure 7.1.: Overview of the developed types of state adjustment and the estimation of the parameters
s, r and p in terms of method of moment and maximum likelihood. The scheme illustrates the nested
modular composition of macro states with the simple p macro state, the rp macro state consisting of a chain of
self-transitive hidden states and the srp macro state with additional shifting states.

for given length data x1, . . . , xn. Thus we obtain the maximum likelihood estimator for p by maxi-

mizing the log-likelihood:

p̂ = argmax
p
L(p|x1, . . . , xn) (7.2)

= argmax
p

log(
n∏
i=1

p(1− p)xi−1) (7.3)

= argmax
p

log p+
n∑
i=1

(ni − 1) log(1− p) (7.4)

Therefore solving the equation

δL(p|x1, . . . , xn)
dp

= 1
p −

∑n
i=1(ni − 1) 1

1−p = 0 (7.5)
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yields the maximum-likelihood estimator p̂ = 1
x̄ . The simplest macro state is represented by a single

self-transitive state with geometrically shaped sequence emissions. The left column of Figure 7.1

graphically illustrates the macro state together with an exemplified distributional shape of sequence

lengths and the concurrent estimator of ML and MM to obtain the p-parameter of state duration.

7.1.2. The rp macro state – a negative binomial law

The probability density function in Table 7.1 indicates that the geometric distribution is a special

case of the negative binomial law with the parameter r = 1. As visualised in the middle column of

Figure 7.1, sequence lengths following a negative binomial distribution can be modelled by simply

chain-linking copies of self-transitive states in an appropriate r-times repetition. In order to obtain

the MM estimator we initially express the first two moments µ1
nbin and µ2

nbin in terms of the unknown

parameters r and p

µ1
nbin =

r

p
, µ2

nbin = r
1− p
p2

. (7.6)

In a second step we replace theoretical by empirical moments

x̄ =
r

p
, x̄2 = r

1− p
p2

(7.7)

and finally solve both equations for r and p

p̂ =
x̄

x2 + x̄
, r̂ =

x̄2

x2 + x̄
. (7.8)

In respect of model simplicity and time efficiency, the ML estimate for the r-parameter was re-

stricted to integer values. Hence, the determination of macro state parameters relied on maximising

the likelihood L(r, p|x1, . . . , xn) given a discretised r-parameter space.

geometric negative binomial generalised negative binomial
macro state p rp srp

PDF p(1− p)n−1
(
n−1
r−1

)
pr(1− p)n−r

(
n−s−1
r−1

)
pr(1− p)n−s−r

E[X] 1
p

r
p

r
p

+ s

V ar[X] 1−p
p2

r 1−p
p2

r 1−p
p2

Table 7.1.: Summary of properties characterising the different macro states. The table contains the type
of distribution, the probability density function (PDF), the expectation value (E[X]) and the variance (V ar[X]).

7.1.3. The srp macro state – a shifted negative binomial law

While screening the length distribution of diverse biological sequences and motifs (see section bio-

logical examples), the negative binomial law did not always provide an optimal fit. The incorporation

of a shifting parameter s aims at increasing the distributional flexibility especially for distributions

of higher location parameter. The s-parameter represents a fraction of single-visit states without

self-transition, resulting in a shift of the distribution along the x-axis. We termed this extension to the
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7. Optimal adjustment of HMM toplogies

negative binomial distribution the generalised negative binomial law (gnbin(s, r, p)). MM Estimators

given in the right panel of Figure 7.1 were derived from the moment generating function

Mnbin(t) =
∞∑

xi=s+r

etxf(x) (7.9)

= et(r+s)p
r(1−et+etp)−r . (7.10)

The estimators of s, r and p were obtained as described for the rp macro state.

7.1.4. Evaluation

With estimators for an optimisation of HMM topologies at hand a crucial aim should be the ver-

ification of their beneficial performance. For the purpose of a simple test framework, artificially

constructed data sets served as sources of test sequences. These sequences were subjected to a re-

estimation procedure in order to evaluate the estimation accuracy of MM against ML in a plain setup.

Similarly, the prediction error of HMMs, which topologies were gradually adjusted to length distri-

butions of artificial test sequences, was determined. Several sources of biological sequences were

investigated with regard to their length distributions and corresponding parameters were fitted by ML

and MM estimation of the various distribution subtypes.

7.2. Artificial test scenario

7.2.1. Construction of artificial test sets

Differently distributed test sets were generated by self-constructed HMMs consisting either of 3

macro states (ROC analysis) or of a single macro state (comparison between MM and ML). The

tripartite HMM architecture consists of two flanking macro states, which simulate various length dis-

tributions (either by means of p or rp macro states) and a central macro state, which was always

designed to generate sequences with negative binomial length distribution (nbin(32, 0.03)).

7.2.2. Estimation performance of maximum likelihood vs. method of
moments

The performance of MM and ML in determining distributional parameters of empirical sequence

length may differ in dependence of its location parameter. This hypothesis was tested by setting up

a series of sequence generation processes with differently designed HMMs. HMM topologies in this

kind of analysis ranged from a simple p macro state to rp macro states with up to 100 times chain-

linked single states. For each of these data sets the underlying length distribution was further on back

estimated by ML and MM and the entropy between the reference and the back-estimated distributions

was determined. Surprisingly, the analysis revealed an increasing error of the ML estimates and the

reference distributions with increasing r-parameter. The MM estimates remain in contrast at a low

entropy level throughout the whole range of reference distributions. Only in the first section of the

r-parameter ML exhibits slightly better re-estimates than MM (data not shown).
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7.2. Artificial test scenario

Both, ML and MM are point estimators and their ability to accurately re-estimate parameters of

lengths distributed according to the negative binomial family based on a sample of previously gen-

erated sequences was investigated. In the setup of the corresponding experiment, reference HMM

topologies with different, r-times chain-linked states generated 1000 sequences each.
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Figure 7.2.: The plot contrasts the point estimation accuracy of maximum likelihood and method of
moments in the light of an increasing location parameter of the generating distribution. The axes x
and y refer to the distance between the r-parameter of the generating HMM and estimates r̂MM/ML of a re-
estimation with MM and ML, respectively. The dashed diagonal marks the balance line between ML and MM.
Surprisingly, re-estimations with MM are in contrast to back-estimation results with ML not influenced by the
location parameter of the distribution and significantly more accurate regarding r-parameter estimation above
r = 10.

Figure 7.2 contrasts the distances between r-parameters from re-estimations and original distribu-

tions of ML against MM for re-estimations with rp (blue circles) and srp (red squares) macro states.

Likewise in the previous comparison of differences in the shapes of distributions, MM estimates

reveal more accurate point estimation properties. ML is again able to compete with MM only for

samples from reference distributions with small r-parameters. The picture changes when comparing

point estimation properties of srp macro states. Here the difference between both methods is small,

especially because the point estimates of MM were less stable. The macro state-dependant behaviour

of MM could reflect an increasing variance of higher sample moments (Johnson et al., 2005), and

therefore the estimator also shows a higher variability.

ROC curves on artificial test data

The following paragraph is guided by the question if and to which extent the prediction quality

changes with the suggested topology adjustment of HMMs. Test sequences were sampled 100 times

each with HMMs composed of the following macro states:
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Figure 7.3.: The ROC curve reflects the prediction accuracy of different HMM topologies on datasets
generated by 3 HMMs (the central macro state was set to r = 32) and the flanking states were varied
with repetitions r = {1, 10, 60} (squares, circles and triangles). Symbols reflect re-estimations on these
datasets with HMMs adjusted by a running value in the range of r2 = 1 to the minimum length of generated
test sequences of each HMM. The rank of symbol size indicates the value of r2 beginning with the smallest one
(the p macro state). Sensitivity and specificity are calculated with a focus on the central macro state (positive
class), while the flanking macro states were regarded as negative class. The dashed line marks the trade-
off between sensitivity and specificity. Further symbols indicate the original (upside-down triangle, red), the
simplest topology (dark red cross) as well as the favoured topologies for the data set estimated by ML (black
star) and MM (violet diamond).

MS1 = MS3 = {geo(0.03), nbin(10, 0.03), nbin(60, 0.03)}, MS2 = nbin(32, 0.03). Discrete

emissions with values 0.4, 0.3 and 0.3 were assigned in permutated order to a single alphabet of

3 symbols for all macro states. Subsequent analysis exclusively focused on MS2, assigned as the

positive class, while MS1 and MS3, denoted as negative class, represent the influence of preced-

ing and successional parts of a HMM topology. In each run, the set of sample sequences was sub-

jected to posterior decoding with a set of re-estimation HMMs which differ in the r-parameter of

MS2 = {geo(0.03), . . . , nbin(rmax2 , 0.03)} with rmax2 set to the minimum length of all test se-

quences generated by MS2. The different HMMs were indicated in Figure 7.3 with symbols of

varying size in correlation to the running r2-parameter. To further highlight the importance of the

topology adjustment, a prediction was performed with a simple 3-state HMM consisting exclusively

of p macro states (dark red cross).

In summary, the ROC curves underline our expectation of improvements in model prediction

through the adaptation of HMM topologies to length distribution of target sequence motifs. Both, the

generating HMM topology (up-side-down triangle, red) and the topology suggested by MM (violet

diamond) represent a compromise between sensitivity and specificity, while the ML estimate (black

star) seems to put increased weight on topologies leading to an optimal sensitivity. Similar analy-
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Figure 7.4.: Histograms of empirical length of motifs in protein and DNA sequences and estimations
of corresponding distributions of srp, rp and p macro states with maximum likelihood and method of
moments. Macro states with identical parameters like the ML estimates for MSp, MSrp and MSsrp in graph
C result in the same distributional shape. The BIC selection is plotted on top in these cases. Best models
according to either the BIC for ML estimates or the L1 for MM estimates are highlighted by an open or filled
star, respectively. The sources of these examples are (A) the lengths of transmembrane β-sheets, (B) the lengths
of signal peptides, (C) the lengths of 3’-UTR sequences from C. elegans and (D) the lengths of the opening
stem 3 of internal transcript spacer 2 sequences from Asteraceae.

sis with varying flanking conditions revealed a strong dependency between a decreasing variance in

length distributions associated with MS1 and MS3 and an increasing specificity. Concurrently, the

posterior decoding score of predictions increases with the variance in distributions of flanking macro

states.

7.3. Biological examples

Pattern search with HMMs is applied to a wide variety of data types with diverse properties concern-

ing amino acid/nucleotide composition and length distribution. Here, we exemplarily investigated

biological sequences and motifs for cases following a negative binomial law. The empirical distri-

butions of the sequences in Figure 7.4 are overlaid with fitted distributions from geometric (ML and

MM: long dashes), neg. binomial (ML: short dashes, MM: dots) and generalised neg. binomial (ML:

solid line, MM: dashes and dots) macro states. Line colours indicate an order of fitting quality ac-

cording to the BIC in case of ML estimation. The best fitting estimators are additionally annotated in

the legend with a filled (MM) and open star (ML).

A prominent application to predict transmembrane regions in proteins, TMHMM, is based on

HMMs, which model length varieties by jumps in their topology (Sonnhammer et al., 1998). Graph
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7. Optimal adjustment of HMM toplogies

A of Figure 7.4 reflects the length distribution of 232 β-sheet core regions of transmembrane proteins

obtained from TMPDB (Ikeda et al., 2003). The ML fitting of motif lengths resulted in identical

models for srp and rp macro states, which exhibit a beneficial modelling compared to the geometric

macro state. MM provides similar estimations for the srp and rp state types. The estimations suggest

the core membrane structure as a target for state optimisation, which would provide a slim alternative

to state-of-the-art modelling.

A closely related subject in automated protein annotation is the search for signal peptides. In

previous publications signal peptides were modelled with a topology consisting of 3 main structural

parts, the n-, h- and c-regions (Käll et al., 2004). Considering signal peptides as an entire structure, the

competing model fitting proposed a bell-shaped distribution (see plot B, Figure 7.4) with a repetition

factor between r = 8 and r = 11. In reference to the r-parameters of fitted distribution at least

some sub-elements are likely to follow a negative binomial law and its modelling can be improved by

adjusted states.

The rapidly growing number of sequenced genomes requires efficient and accurate methods to

determine genomic structures like exons and introns, intergenic regions, splice sites or untranslated

flanking regions. In Plot C of Figure 7.4, variants of the negative binomial distribution were fit-

ted to 3’-UTR sequence length of C. elegans from UTRome database (Mangone et al., 2008). The

length distribution of 3’-UTR sequences was consistently predicted to follow a geometric distribution

suggesting conventional HMM modelling.

Internal transcript spacer 2 (ITS2) sequences are frequently used as markers in phylogenetic analy-

sis. They separate the 5.8S and 28S rRNA sequences within ribosomal cistrons and are applied to phy-

logenetic reconstructions because of its sequence variability while maintaining its highly conserved

secondary structure with four stem-loops (Coleman, 2007). Example D represents the length distri-

bution and fitted models of the third opening stem of Asteraceae sequences from the ITS2 database

(Schultz et al., 2006). Recently, a profile HMM based approach for the detection of ITS2 sequences

was developed (Keller et al., 2009), providing potential for further improvement with appropriate

length models.

7.4. Conclusion

In the previous sections we introduced a methodology to optimise the modelling characteristics of

HMM topologies with respect to signal length distributions. We implemented two different ways

to estimate distributional parameters, based on maximum likelihood and on an efficient alternative,

the method of moments. The presented results of parameter re-estimation on artificial test samples

suggest the application of MM as a valuable complement to ML, especially when the location of the

expectation value of the target data is large.

Within the framework to optimise HMM topologies we integrated a generalised negative binomial

distribution to gain flexibility in distribution modelling. Though tests revealed a good generalisation

even with the conventional negative binomial law, some length distributions of biological data sources

could be modelled more accurate with the extended negative binomial law (see Figure 7.4 plot B).

This finding may as well be due to the restriction of the parameter space for ML estimations to

integer values. In principle, the adjustment method can be suited to deal with real-values as chaining

124



7.4. Conclusion

parameters r by an additional serially linked state with a decreased probability of stay appropriate to

the real fraction of the r-parameter. This adaptation may increase the accuracy of ML estimations in

general as well as the flexibility of the conventional negative binomial distribution to fit empirical data.

But, the parameter space and in parallel the computational demand would be dramatically increased.

The performance tests for adjusted HMM topologies comprised different scenarios like a central

macro state with and without adjustment in flanking macro states. We also varied the extent of adjust-

ment in the central as well as in the flanking macro states. It turned out from these test cases that the

error rate in state prediction is dependent on the variance in length distributions of the macro states.

Differences between estimation methods The method of moments provides in general a

simple and efficient structure to derive estimators for distributional parameters. As an advantage

compared to ML in the presented scenario, MM provides direct parameter estimation without the need

of numerical approximation. Though ML is known, at least for large data sets, to provide desirable

estimation accuracy, we found in comparative tests higher parameter accuracy with MM. The trade-off

was less control of the desired parameter space. Formal restriction to a valid parameter interval did not

lead to MM estimators, which implicates the possibility to obtain estimates outside of the parameter

domain. Nevertheless, MM outperformed ML in comparative tests. Similarly, previous publications

reported lower bias and mean squared error of MM compared to other estimation methods, especially

ML (Yamamoto and Yanagimoto, 1992; Allison et al., 2002).

Decoding algorithms Our results indicate a superior prediction accuracy of posterior over Viterbi

decoding. The recent implementation of posterior decoding in new HMMer version, HMMer3, might

support this observation (Eddy, 2008).

Comparison issues The existence of a number of approaches which adapt HMMs to cope with

bell-shaped length varieties indicates the high impact of the topic. Most of the studies focus on the

assignment of genes. But, our screening of the length distributions in a broad range of sequence

motifs underlines the universal interest associated with the ability to incorporate length information.

The sequence length will have an explicit impact when motif detection is based on length-flexible,

compositional features rather then on position specific conservation. State-of-the-art gene predictors

like GENSCAN rely on semi-HMMs to model typical codon usage as well as length distribution of

coding regions. But, explicit connection of states with duration of stay is paid with an increased

algorithmic complexity and requires special implementation of training and decoding algorithms.

In contrast, "in-house"-adjustment of conventional topologies as proposed here preserves the ap-

plicability of efficient algorithms like posterior decoding. Previously proposed approaches implicate

either an accelerating heuristic (Bobbio et al., 2002) or a discretisation of parameter space, while both

is avoided by the use of the proposed simple and efficient MM-based method.

In principal, HMMs bear no limitations in distributions which can be modelled. Bilmes (2004)

described HMM topologies, which are able to model bimodal distributions via parallelisation of uni-

modal architectures by a distributing state. The generalisation of the approach is paid by an increase

in estimation complexity and may require numerical algorithms for parameter estimation.

With the proposed method at hand, the adjustment of HMM topologies to length distributions of
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various source data can be easily achieved as a tool either in rapid prototyping or to optimise existing

approaches.

A manuscript of the project is in review for publication in Statistical Applications of Genetics and

molecular Biology.
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domains

8.1. Interaction profile hidden Markov model

We applied the probabilistic approach of hidden Markov models to the problem of predicting protein-

ligand interaction sites. Our approach is based on the assumption that sequence patterns encoding

protein function are shared between members of a domain family. These patterns are often weak and

variable. To describe the above mentioned features of domain families, a novel HMM topology was

designed by the adaptation of the pHMM (Eddy, 1998; Krogh et al., 1994a) architecture, which is

the method of choice for homology detection (Madera and Gough, 2002). The state repertoire was

extended by one further match state, namely an interacting match state (Mi). It inherits all features of

a match state in the pHMM architecture. The resulting hidden Markov model topology is shown in

Figure 8.1.

Every ipHMM is like a pHMM a probabilistic representation of a protein or domain family. The pa-

rameters of an ipHMM are estimated from a multiple sequence alignment of domain family members

incorporating data on their binding sites and ligands from Pils et al. (2005). The same classification

of alignment columns as for pHMMs is used here except that an additional occurrence of Mi states is

allowed in matching columns. The new kind of states is provided with the same properties as a match

state in the classic profile hidden Markov model architecture. These interacting match states are able

to emit all amino acid symbols with probabilities according to their fitted parameters. In Figure 8.1,

all bold arrows indicate new transition possibilities. Transition events are restricted to delete, insert

and the two match states (main states). The last non-interacting match state demands a transition to

the end state.

The information content of domain specific training data influences the accuracy of model param-

eters. Therefore, ipHMMs were only built for protein domains with more than 20 domain family

members in heterocomplexes with resolved structure information in PDB. All sequence positions

were labelled with the corresponding interaction status (0 for not interacting and 1 for interacting).

The model estimation of the ipHMMs is achieved by maximum likelihood. Transition events were

counted together with state emission. A position based weighting scheme (Henikoff and Henikoff,

1994) was applied to compensate for sequence redundancies that occur because of PDB-entries of

one protein with different ligands. The weighting calculates sequence weights by associating column-

specific weights with the degree of redundancy within one alignment column. The fact that there may

be small amount of data in some domains requires the integration of a regularisation method. It pre-

vents zero probabilities in the HMM especially in case of small training sets. Weighted pseudocounts

(Durbin et al., 1998) with a total value of 20 for emissions and 5 for a transition set of each type of

states are used to solve these problems. The models were estimated for all ligand groups separately
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Figure 8.1.: Topology of the interaction profile hidden Markov model following the restrictions and
connectivity of the HMMer architecture. The match states of the classical pHMM are split into a non-
interacting (Mni) and an interacting match state (Mi). Bold arrows indicate inserted transitions to or from new
match states.

with the intention to increase the power of prediction.

Now the problem of applying ipHMMs to the prediction of binding sites in proteins of unknown

function has to be faced. A major advantage of the approach is the adaptation of the posterior decoding

to the new topology. The algorithm calculates probabilities for all emitting states at each sequence

site as shown in Figure 8.3 for the EF-hand domain displaying probabilities of non-interacting and

interacting match state. Additionally, delete state probabilities can be displayed to get alignment

information corresponding to the domain family. It was necessary to adapt the recursion of forward

and backward algorithm to the extended architecture of the interaction profile hidden Markov models.

fMk
i
(j) =

eMk
i
(xj)

eNull(xj)

(
fMk−1

ni
(j − 1)τMniMi(k − 1)

+fMk−1
i

(j − 1)τMiMi(k − 1)

+fIk−1(j − 1)τIMi(k − 1)

+fDk−1(j − 1)τDMi(k − 1)
)

(8.1)

bMk
i
(j) =

eMk
i
(xj)

eNull(xj)

(
bMk+1

ni
(j + 1)τMiMni(k + 1)

+bMk+1
i

(j + 1)τMiMi(k + 1)

+bIk(j + 1)τMiI(k)

+bDk(j + 1)τMiD(k)
)

(8.2)

In equations (8.1) and (8.2) the adaptation in the case of the forward and backward values of the inter-

acting match state Mi at sequence site j and profile position k is presented. The emission probability

is denoted by e for the indicated state corresponding to a certain sequence and profile position. The
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transition probability τ is subscripted with indices of the present and the following state as well as

the profile position. Forward and backward probabilities for other states are achieved analogously

(Rabiner, 1989; Durbin et al., 1998).

The posterior probabilities could be calculated from the knowledge of forward and backward val-

ues. The final step is the search of the state path with maximum posterior probabilities via back-

tracking.

8.2. Validation tests with generated sequences

Estimated ipHMMs are able to emit typical sequences for the corresponding domain family. This fea-

ture was used to generate a large test set for a first validation of the prediction power of ipHMMs. The

sequences were derived from ipHMM-specific emission and transition probabilities. The dependence

of a sequence to model parameters of a certain domain family was the prerequisite of predicting its

binding sites. The predicted state path was aligned to the one that was generated afterwards. Sen-

sitivity, specificity and accuracy were calculated in the analysis of the alignment of state paths as

mentioned below. Detailed results of all considered domains are listed in Tables C.1 to C.3 of sup-

plementary material. The average sensitivity and specificity values of 0.64 and 0.70 reveal a good

quality of predictions for domain-related sequences in contrast to alternative methods (see below).

8.3. Receiver operator characteristics

The evaluation of the prediction method was performed by receiver operator characteristics for sev-

eral SMART domains. As shown in Figure 8.2 A, ROC curves were calculated for peptide-ligand

ipHMMs of the EF-Hand domain, the pancreatic RNAse domain, the alkaline phosphatase domain

and the extension to Ser-/Thr-type protein kinase. Figure 8.2 B presents ROC curves of the predic-

tion of ion binding sites. The ipHMMs correspond to the alkaline phosphatase, EF-Hand, PBPe and

Villin headpiece domain. In part C of Figure 8.2 ROC of ipHMMs focused on nucleotide-ligands

comprising Pumilio-like repeats, pancreatic RNAse domain, HTH lactose operon repressor and C4

zinc finger domain were plotted. Table C.7 of supplementary material summarises test values of all

considered ipHMMs. The evaluation consists of cross-validation for a varying discrimination thresh-

old. In this case ROC curves allow to estimate the expected prediction quality of a predictor on new

data. Accurate predictors exhibit areas under ROC curves near one.

The examined ipHMMs trained on nucleotide-ligand data showed on average the largest areas

under their ROC curves (AUC) and consecutively the highest prediction power. The diversity of

prediction quality is higher in the other two ligand-categories. The EF-hand ipHMM is an example

of a non-optimal predictor in the cases of peptide- and ion-binding. This might be caused by too few

or too similar training data. In contrast the alkaline phosphatase-ipHMM turned out to be a good

predictor of ion-ligand interaction sites, while the prediction of peptide-interactions is not perfect.

Though the prediction quality of ipHMM varied in some cases, AUC values were overall at a high

level.
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Figure 8.2.: ROC curves indicating the prediction power at various thresholds for the prediction of
peptide, ion and nucleotide interaction sites. These calculations were performed for ipHMMs concerning
peptide (A), ion (B) and nucleotide ligands (C).

8.4. Validation of predictions on SMART domains

Further testing was enlarged to the whole set of estimated ipHMMs with at least 20 sequences of

known structure. We performed a 5-fold cross-validation to calculate the expected prediction accuracy

on new data. Referring to results of the described ROCs, a discrimination threshold of 0.2 for posterior

match probabilities was chosen as a switching point between an interaction and no interaction to

balance average sensitivity and specificity.

With the evaluation of the new approach in mind, different prediction quality indicators were cal-

culated including sensitivity, specificity and accuracy. Their values of all ipHMMs are given in the

supplementary material. Results of the validation methods and of ROC indicate the best prediction

performance for sites, which interact with nucleotide ligands. These findings are supported by the

higher sensitivity values for predictions of nucleotide binding sites.
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Figure 8.3.: The stacked bar graph represents the prediction result of the posterior decoding for the
C-terminal EF-hand motif of Xenopus laevis. It contains posterior probabilities of interacting (dark red) and
non-interacting match states (orange) and delete states depending on the sequence position. The probabilities
for all other states are not displayed because of their low level. All sites with a posterior probability higher than
0.5 for the interacting match were predicted to interact with a peptide ligand.

An investigation of the prediction performance in case of the EF-Hand domain reveals accuracies

between 0.73 and 0.86 depending on test and ligand type.

8.5. Interaction site prediction for the EF-hand domain

As an example of use the method was applied to EF-Hand domains of calmodulin from Xenopus

leavis, whose structure has already been resolved in complex with a peptide of Caenorhabditis ele-

gans CaM-kinase kinase (Kurokawa et al., 2001). Predictions of peptide binding sites were performed

for all sequences of the EF-Hand family separately using the trained ipHMM for the EF-Hand domain.

The output of posterior probabilities for the C-terminal domain is displayed in Figure 8.3. The initial

threshold for the prediction of interacting sites was set to a posterior probability of 0.5. The upper

graph contains probabilities of non-interacting match states while the graph below shows posterior

values of possible interacting sites. Overall, we find tendencies for higher interacting probabilities

for match states at the edges of the domain. These areas correspond to its α-helices. The observed

interacting positions are localised at sites 1, 5, 9, 22, 25 and 26 while sites 4 and 8 are incorrectly

predicted as interactions (false positives, FP). The alignment of the EF-Hand sequence to the ipHMM

resulted in 6 correct out of 8 predicted interacting sites.

Figure 8.4 visualises the mapping of correct and false predictions focused on peptide-binding for

all four EF-Hand domains of calmodulin from Xenopus laevis. All proposed interaction sites were

located on the α-helices and their residues were orientated towards the ligand.

8.6. Alternative approaches

An alternative approach to predict protein-protein interactions from sequence information only is

based on a neural network with back-propagation (Ofran and Rost, 2003). The underlying data set

was derived from PDB by defining interactions as atom-atom distances smaller 6 Å. The method
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8. Modelling interaction sites in protein domains

Figure 8.4.: The 3-dimensional protein structure of Xenopus laevis calmodulin in a calcium induced
ligand binding conformation. The α-helix in the centre of the molecule is a ligand group from a CaM-kinase
kinase. The four EF-hand domains are indicated in different blue colours. Residues marked in red are correctly
predicted as interacting sites, orange residues are not detected as interactions and yellow residues are erroneous
labelled as interacting.

showed a high rate of contact site detection, when only trying to predict sites with highest interacting

evidence. But when the algorithm was trimmed to predict less evident contact sites, the prediction

quality dropped significantly. The application of the neural network to an unfiltered prediction of

binding sites revealed a low sensitivity of approximately 30%. The results of this neural network

based approach suggest that ipHMMs will exhibit a better performance for predictions of whole

binding interfaces.

Many studies dealt with the binding characteristics of protein sequences. Most of them focused, in

contrast to the method presented here, on the investigation of binding patches in proteins of known

structure. For this reason we will only concentrate on a comparison to the most recently published

method for predicting small molecule binding interfaces of proteins (Snyder et al., 2006). In order to

exemplify differences between the approaches, the peroxisome proliferator-activated receptor-gamma

(PPAR-γ) was choosen as query protein. A large scale comparison of both approaches was not rea-

sonable because of the restriction of SMID-BLAST to small molecule interactions. The transcription

factor in complex with coactivating ligands influences important cellular processes like adipogenesis,

anti-inflammatory effects and antiproliferating function in many types of cancer (Lehrke and Lazar,

2005). Experimentally determined interaction sites to a protein were derived from the homodimeric

crystal structure of PPAR-γ with a fragment of the steroid receptor coactivator 1 (SRC-1) and rosigli-

tazone, a high affinity ligand for PPAR-γ (PDB-Identifiyer: 2PRG, Figure 8.5, Nolte et al. (1998)).

The PPAR-γ sequence was excluded from the training set (consisting of 32 sequences) of a new

HOLI-ipHMM, which was built for comparison purpose.

The binding interface of PPAR-γ is located on the hormone receptor binding domain (SMART
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8.6. Alternative approaches

Figure 8.5.: A comparison of SMID-BLAST and ipHMMs mapped to the crystal structure of the ho-
modimeric peroxisome proliferator-activated receptor γ (PPAR-γ) in complex with an LXXLL helix of
the SRC-1 co-activator (yellow). PPAR-γ contains a ligand binding domain (SMART: HOLI, brick red) at
amino acids 81 to 220. All verified interacting residues were highlighted by red sticks. The colors blue and
green represent false positives of SMID-BLAST and ipHMM predictions respectively.

domain Holi). Then the interaction sites were determined as described above. The predictions are

mapped on the structure of the PPAR-γ complex. The holi domain is coloured in brick red, correctly

predicted peptide-binding sites with the ipHMM are displayed in red colour. The SMID-BLAST

prediction overlaps only at position 314Q with the experimentally derived binding interface. Further

incorrectly assigned interactions by SMID-BLAST are shown in blue. SMID-BLAST provides a list

of binding patches to the user, each binding one small molecule. While evaluating the results of

SMID-BLAST, all top ten binding patches were scanned to get an entire set of different predicted

interaction sites.

The example prediction underlines the advantages of the HMM-based method in predicting the

more variable protein interaction sites. The knowledge of interaction sites is in contrast to SMID-

BLAST not directly transferred from single members of the domain family, but probabilistically as-

signed taking all known interactions in the domain at a given position into account. The ipHMM

was able to find all verified peptide interactions except those at sites 20 and 26, while SMID-BLAST

only found one contact site which overlaps with the binding patch derived from the structure of the

complex. In contrast SMID-BLAST seems to reveal a high rate of false positives in this case. The

ligands proposed by SMID-BLAST were mainly ions or organic compounds. With the purpose of

a general comparison of Blast-based approaches to ipHMMs, a simple predictor was created, which

searches for homologous sequences in the dataset of proteins with verified interactions. The best hit

at a given identity threshold was taken to transfer its interactions to the query. The Sensitivity of the
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prediction was significantly lower compared to the average values observed for ipHMMs. Data on

the results of this predictions can be found in supplementary material.

8.7. Large-scale analysis of point mutations

The described method was furthermore applied to the detection of interactions involved in diseases.

The aim of this investigation was to understand the mechanisms of molecular dysfunctions arising

from point mutations. The OMIM database contains informations of known mutations that cause

diseases. In cases where these mutations were located within SMART domains, an interaction site

prediction outlined consequences of mutated protein binding sites. We found 38 cases, where a

disease-triggering mutation was associated with an interaction site. The results of this investigation

are presented in Table 8.1. An interaction site to an ion-ligand at position 317 concerns a severe

mutation in the human alkaline phosphatase (PPBT_HUMAN). The structure of this protein is not

yet available. Mutations in this domain cause different forms of hypophosphatasia, a defect in bone

mineralisation. Glycine at position 317 is located in the highly conserved region of the active site

(Greenberg et al., 1993). The residue is described to form hydrogen bonds to residues 315 and 320

(Zurutuza et al., 1999). The first is involved in Mg2+-coordination and the last in Zn2+-binding. This

information explains a severe defect in the enzymatic activity of the alkaline phosphatase because

of a non-conservative mutation in the ion-binding site. A detailed look at mutated interaction sites

of tissue-non-specific human alkaline phosphatase corroborates the predictions. All listed mutations

were found in patients with hypophosphatasia (Taillandier et al., 1999, 2000, 2001; Zurutuza et al.,

1999; Greenberg et al., 1993). Structure prediction via homology modelling located the active site of

the enzyme at the following residues: 43, 92, 93, 94, 154, 156, 167, 170, 315, 320, 324, 361, 362,

364 and 437 (Zurutuza et al., 1999). A severe mutation was described at position 317 of the active

enzyme (Zurutuza et al., 1999; Greenberg et al., 1993). This amino acid builds hydrogen bonds to

the residues 315 and 320 of the active site. Residue 315 is involved in Mg2+-coordination and site

320 interacts with Zn2+. The prediction by the ipHMM method determined the residue as an ion- and

peptide-ligand binding site.

The human cyclic nucleotide-gated cation channel α 3 (CNGA3_HUMAN) protein belongs to a

family of ion-channels that share a common structure containing six transmembrane domains and

a carboxy-terminal cGMP-binding site. A mutation at site 529 from valine to methionine destroys a

conserved VVA motif, which is associated with cGMP-binding. Miss-sense mutations provoke achro-

matopsia, the total colour blindness (Kohl et al., 1998). In the ipHMM-based analysis this residue

was identified as interacting to nucleotide ligands. As in the case above no structure information to

this protein is currently available.

These two cases demonstrate the importance of knowledge about interacting positions in under-

standing molecular reasons of hereditary diseases. The application of ipHMMs will provide the profit

of prior information about interaction sites in mutational analysis.
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Table 8.1.: Interaction site prediction in sequences with disease-related mutations.

Sequence Domain Diseases OMIM-ID Mutation1

BTK_HUMAN SH2

Hypogammaglobulinemia and isolated
growth hormone deficiency, X-Linked;
X-linked agammaglobulinemia (XLA)
and isolated growth hormone deficiency

307200, 300300 288P, 308P, 334P

PPBT_HUMAN alkPPc Hypophosphatasia
171760, 241500,
241510, 146300

71P, 211I, 220PI,
223PI, 235P,
249PI, 334PI,
426I, 436I, 450PI,
456PI

RB_HUMAN CYCLIN
Retinoblastoma; osteosarcoma; blad-
der cancer; pinealoma with bilateral
retinoblastoma

180200, 109800,
259500

661P, 712P

CAN3_HUMAN EFh
Muscular dystrophy, limb-girdle, type
2A

253600, 114240 705I, 744P

DAX1_HUMAN HOLI
Congenital adrenal hypoplasia with
hypogonadotropic hypogonadism;
dosage-sensitive sex reversal

300200, 300018,
300473

267P

INS_HUMAN IlGF
Diabetes mellitus, rare form; MODY,
one form; familial hyperproinsulinemia

176730 89PI, 92PI

ANDR_HUMAN ZnF_C4

Androgen insensitivity, several forms;
spinal and bulbar muscular atrophy of
Kennedy; prostate cancer; perineal hy-
pospadias; male breast cancer with
Reifenstein syndrome

300068, 312300,
313200, 313700

568I, 571IN,
580IN, 581IN,
582N, 585N,
608N, 615N

CNGA3_HU-
MAN

cNMP Achromatopsia 2 216900, 600053 529N, 547N

ABCD1_HUMAN AAA
Adrenoleukodystrophy; adreno-
myeloneuropathy

300100, 300371 514P, 518P, 515N

NKX25_HUMAN HOX
Atrial septal defect with atrioventricular
conduction defects

108900, 600584 188N, 191N

GELS_HUMAN GEL Amyloidosis, finnish type 137350, 105120 214I

GLI3_HUMAN ZnF_C2H2

Greig cephalopolysyndactyly syn-
drome; Pallister-Hall syndrome;
preaxial polydactyly, type IV; postaxial
polydactyly, types A1 and B

165240, 175700,
174700, 174200,
146510

515I

1In this column the mutation site is displayed together with a shortcut indicating the corresponding
type. The following abbreviations occur: “P” for Peptide ligands, “I” for Ion ligands and “N” for
Nucleotide ligands. Combinations of shortcuts denote binding sites interacting with different types
of ligands

8.8. Conclusion

In this article, a new method for the prediction of protein binding sites to different types of protein

ligands was introduced. It is the first in incorporating information about homology as well as bind-

ing sites in a hidden Markov model topology. Those HMMs have already been applied to various

analytical tasks as a result of their efficiency and comparatively high accuracy. The main novelty in

the architecture of the interaction profile HMM is a second match state that represents interacting

sequence positions. It was demonstrated in validation tests and on the example of calmodulin binding

sites that the algorithm is able to detect the majority of existing interactions in a protein sequence.

Interacting positions were determined from structures of protein-ligand complexes according to the

length of a hydrogen bond (4 Å).

The detection of a wide range of ligand binding sites is enabled with the introduced approach. In
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contrast to most alternative solutions, the ipHMMs predict interaction sites in the context of domain

families, which leads to a higher prediction quality. The increase of predictive power is indicated by

a significantly higher sensitivity. IpHMMs provide in comparison to alternative methods like SMID-

BLAST a larger spectrum of predictable types of interaction sites. Furthermore, interfaces consisting

of a novel combination of known interaction sites in a domain family could be detected by ipHMMs.

For all existing predictors including ipHMMs, initial structure information is necessary for the

training process. Once the corresponding ipHMMs have been trained, binding sites could be deter-

mined in sequences of unknown structure. The sensitivity for contact site detection of ion ipHMMs

is slightly lower than for peptide and nucleotide ipHMMs, because of lower sequence coverage. In-

creasing amounts of identified protein structures will improve the prediction power of ipHMMs in

general and especially in cases where still little sequence information is available.

The proposed method provides further information on the quality of single interaction site predic-

tions. The state-associated posterior probabilities of sequence positions indicate how well the used

ipHMM can distinguish between state alternatives. This is a valuable assistance in interpreting pre-

diction results. The new ipHMMs inherited all features of profile hidden Markov models. Once the

amount of interaction site data reaches a certain level, existing HMMs in frequently used databases

like SMART and Pfam could be replaced by ipHMMs.

The developed approach supplements existing experimental tools for the investigation of changes in

molecular mechanisms caused by miss-sense mutations. The ability of ipHMMs to predict interaction

sites and ligand types assists the analysis of mutated sites in proteins. Due to the homology-based

approach, these studies can be performed for proteins which structure is still unknown. This technique

highlighted the consequence of mutations e. g. in the ion-binding region of the human tissue non-

specific alkaline phosphatase and in the cGMP-binding motif of the human cyclic nucleotide gated

cation channel 3. The large-scale screening of mutated interaction sites in human protein highlight the

impact of interaction site prediction in elucidating causes of severe inheritable diseases like prostate

cancer, breast cancer, diabetes mellitus or muscular dystrophy.

8.8.1. Future perspective

Increasing data of protein sequences and structures will lead to a good sequence coverage for the

majority of domain families and consecutively to improved interaction profile hidden Markov models.

Furthermore, these new protein sequences and structures open up the possibility to build ipHMMs of

new domain families or known families that are not yet included in the ipHMM library because of

a small basis of data. Other types of binding interfaces like those for carbohydrates or lipids could

easily be modelled with the same HMM-topology.

This project is published in Bioinformatics (Friedrich et al., 2006).
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General discussion

The rapid development of high-throughput technologies in many fields like ecology, systems biol-

ogy, microbiology or molecular biology faces new challenges in the analysis of massively generated

data. This work describes many facets of modern biomedical research beginning with inference of

knowledge by large-scale comparisons over a holistic approach of a data driven development of high-

throughput diagnostics to methodical improvements in sequence analysis. The first project comprises

a concept to gain insights into taxonomic diversity via a highly parallel comparison of enterobacte-

rial genomes. Novel methods for the comparison and processing of genomic sequences, including

correspondence analysis and statistical tests, have been established. These methods contribute to

the construction of an overall picture of enterobacteria and to the specification of factors of genus

diversity. A second genomic approach concerns the development of a diagnostic microarray for en-

terobacteria based on the determination of maximally discriminating oligonucleotide probes. Ac-

cording to clinical pathology, this medically important bacterial family was diagnostically addressed

by a completely new concept of microarray design and analysis. Enhanced evaluation of microarray

experiments concerning A. thaliana gene expression was in focus of another project. As in the first ap-

proach, I demonstrate the advancing application of multivariate analysis to multiple genomic datasets,

in this case genome-wide expression profiles under different conditions. Algorithmic improvements

have been in focus of two HMM-related projects. The first approach provides a general enhance-

ment of modelling properties of HMMs in sequence analysis. This goal is achieved by topological

optimisation based on a moment estimator or maximum likelihood. The second approach extends

conventional profile HMMs to cope with structural data in order to predict interaction sites in protein

domains.

Chapter 4 describes the comparison of a multitude of enterobacterial genomes on different lev-

els of genomic organisation. Preliminary phylogenetic and phylogenomic reconstructions highlighted

the fundamental need for the consideration of the different levels as they represent independent evo-

lutionary processes. Novel methods for the simultaneous comparison in unsupervised and supervised

manner are introduced. Unsupervised investigations do not require prior knowledge about the na-

ture of compared strains, though subsequent interpretations require the integration of the results into

a broader context. Here, CA was applied on protein-related and domain-related mapping data to

cluster the strains into functionally distinct groups. Guided by this first-order exploration, follow up

supervised analysis assure the determination of specific protein families among groups of genotypi-

cally related strains. The obtained candidates were functionally investigated and grouped according

to metabolic context. A considerable fraction of the specific protein family exhibited only puristic or

totally lacking functional annotation. Although homology based transfer of knowledge is invaluable

to get global insights into the diversity within taxonomic groups, the applied methods cannot fully

replace experimentally determined functionality and rather require a baseline annotation. Therefore,

it remains an important future challenge to increase the efficiency of functional annotation in genomic

projects. Starting points for such experimental analysis are supplied by the described methods. Within

a target taxon the applied methods allow nearly free scaling of subgroups excepting a minimal group

size (6) due to limitations of statistical tests. Up-coming genome sequences will further strengthen

the drawn conclusions on characteristic traits not only in enterobacterial groups, as the presented

approaches are in principally portable to any bacterial taxon.

Enterobacteria do not only represent an interesting bacterial family with prominent model organ-
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isms in life-science and biotech, they are predominantly known as versatile pathogens causing sev-

eral distinct clinical symptoms with high annual incidences worldwide. The distinction of strains

to pathogroups responsible for these different symptoms has been in focus of several studies (Cas-

sone et al., 2007; Loy and Bodrossy, 2006). In chapter 5 the complete process including microarray

layout, probe selection, sample preparation, testing, development of analytical methods as well as

evaluation of analytical results is presented. The designed diagnostic microarray is based on novel

principles concerning diagnostic target, probe selection and data analysis. As the main novelty, the

oligonucleotide probes were recruited from both coding and non-coding areas of reference genomes

using a sophisticated string matching algorithm. Some pathogroups exhibited small sets of candi-

date probes suggesting a liberalisation of probe selection criteria or a reduction of probe length to

increase the pool of backup probes. The selected probes exhibit interesting links e. g. to intergenic

regions or to virulence associated genes. Further investigation should be performed regarding the

many uncharacterised traits underlying the probes, as these genes likely contribute to specific fea-

tures of respective pathogroups. A main objective in clinical diagnostic constitutes cost reduction of

single tests in conjunction with efficiency in testing time. Consequently, the chosen slide format, the

HTATM Slide12 from Greiner Bio-One, allows for parallel hybridisations. Certainly, further mea-

sures of cost-reduction have to be taken with respect to broad clinical applications. Cost-reduction is

achievable by a reduction of the number of probes and especially by removing suboptimal performing

reverse complementary probes. Future technical developments will also contribute to progress in this

direction, though it is not yet clear if microarrays will replace conventional diagnostics.

Another strength of the developed microarray constitutes the applied regression model to evaluate

hybridisation profiles. The model is able to predict hybridised amounts of DNA and serves in par-

allel as a classificator for enterobacterial pathogroups. Classifications based on comprehensive test

hybridisations generally coincide with expected pathogroups of test samples. Ambiguities arise from

classifications in the group of avian pathogenic E. coli (APEC, data not shown). The pathogroup has

not been included in the core study as it is only indirectly relevant in clinical diagnostics. Merely

a single and maybe atypical APEC genome (Johnson et al., 2007) has been available as reference

in probe selection. Furthermore, a large study aiming at a characterisation of the APEC pathotype

failed to identify common patterns of known virulence genes amongst isolates from Ireland (McPeake

et al., 2005). Non-pathogenic E. coli strains form a second inhomogeneous and rarely characterised

subgroup. Beside commensal intestinal isolates, the subgroup is compost of a mixture of laboratory

strains like the K-12 isolates and the Nissle strain, which genotypically resembles UPEC strains with-

out expressing UPEC-specific virulence factors (Grozdanov et al., 2004). E. coli K-12 is in use as a

laboratory strains for nearly 90 years and was frequently passaged and genetically manipulated (Bach-

mann, 1972). Therefore the K-12 lineage does probably not represent ‘typical’ commensals. Though

this heterogeneous subgroup could be characterised by oligonucleotide determinants, it would be ad-

vantageous in a diagnostic context to focus on ‘true’ commensals that were isolated from the intestinal

tract, given the respective genomic data. These examples underline the importance of well defined

bacterial subgroups in order to enhance the performance of any microbial diagnostic device.

The basic concept and analytical elements of the described microarray development can be easily

transferred to other bacterial clusters and even beyond. Although the microarray design was focused

on clinical diagnostics, its application to further fields like quality control of food or water as well
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as veterinary medicine is imaginable. In summary, a novel, complete developmental process of a

diagnostic microarray, which enhances the diagnostic reliability especially on subspecies levels, is

demonstrated. The specifically adapted regression model further improves the diagnostic performance

via continuous learning abilities in the process of its application

Gene expression analysis is an important and well established method to unravel and connect

metabolic functions of genes. Despite the availability of microarray platforms for many organisms

and a wealth of expression profiles generated under various conditions, only few approaches that are

capable to integrate all these results exist. In chapter 6 I describe a meta-analysis methodology
based on kPCA and hierarchical clustering to integrate results of different experiments. The meta-

analysis requires a certain data quality which is not always provided by data sets in public databases.

Especially processed expression data sets largely vary in quality. Thus, the restriction to unprocessed

data in conjunction with rigorous outlier removal is advisable and was implemented to assure reason-

able results. KPCA provides an unsupervised clustering of similar contrasts and in parallel allows

for deriving most influencing features. Principal component analysis is methodically related to CA.

Therefore, gene selection might even be optimised by appropriate statistical tests as described in the

first project on enterobacterial genomics.

The integration of expression results obtained by using platforms with differences in spotted gene

libraries remains a challenge. Appropriate solutions are the restriction of the analysis to the inter-

section of gene libraries or the restriction to a single platform, as preferred here for reason of sim-

plicity. Although whole genome microarrays of different developers may differ in probe length, slide

chemistry, target labelling or printing variables (Hardiman, 2004), the general comparability and re-

producibility of gene expression results across platforms has been reported (Consortium et al., 2006).

Once setup, the meta-analysis steadily gains in robustness concerning the detection of commonly

deregulated genes. In contrast, growing data sources shift the focus of the analysis towards more dis-

tinct differences in expression profiles. Minor aspects of differential gene expression might become

more difficult to detect. However, as a strength of the described meta-analysis, the ‘resolution’ can be

modulated by reducing the data set to relevant contrasts. The approach is portable to other platforms

like whole genome oligonucleotide microarrays designed for H. sapiens, M. musculus or E. coli. The

most relevant objective in the choice of appropriate platform types certainly is acceptance and estab-

lishment of these platforms in the microarray community, as a seed amount of expression profiles is

required to obtain the maximum performance with the meta-analysis approach.

HMMs found wide-spread use in many applications of computational biology. The probabilis-

tic models provide flexible frameworks, which can be adapted to various modelling problems by

changes in its topology. Despite its wide-spread usage, I demonstrated the suboptimal modelling

behaviour due to distributional characteristics of single self-transitive states. Therefore, a methodol-
ogy to optimise the modelling behaviour of HMMs by serial chain-linking of self-transitive states

was developed (see chapter 7), while the number of chain-linked states and the respective holding

time was estimated by maximum likelihood and the straight forward moment estimator. Optimised

HMMs revealed better modelling properties in artificially constructed test scenarios and especially in

modelling of biological sequence data. In contrast to existing solutions implemented in algorithms

for the prediction of genes the proposed optimisation maintains the class of conventional HMMs.

The efficient and highly sensitive decoding algorithms remain unchanged. The moment estimator
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outperforms maximum likelihood concerning distributional re-estimation on artificially constructed

test scenarios. Nevertheless, no moment estimator could be defined, which includes restrictions of

parameter space to positive r-values. But, both tests on artificially constructed and real life data sets

confirm the could confirm the validity of estimates obtained from method of moments In the current

implementation, optimised models are restricted to representations of unimodal negative binomial

distributions. Principally, the distributional repertoire, which can be modelled by simple topological

changes, enables extensions to multi-modal distributions and beyond (Bilmes, 2006).

Although protein sequence databases have dramatically increased in size over the last years, struc-

tural information especially on protein complexes is still rare. Several approaches exist to determine

binding interfaces, accessible surface area and other parameters of existing protein structures (Zhou

and Qin, 2007). A more challenging task constitutes the determination of structural properties on

sequence information alone. The development of an HMM-based method as the first fully proba-

bilistic approach to predict interaction sites in protein domains (see chapter 8) enables large-scale

structural annotation by homology-based knowledge transfer.

Limitations have arisen from rarely available structure information of protein complexes in a ma-

jority of domains. Although a recently generated update resulted in substantial increase in the amount

of training data (data not shown), the overall coverage of interaction data to protein domains is still not

optimal. Even the incorporation of Pfam domains does not fill this gap. The applied SMART database

of profile HMMs obviously contains models of protein domain families showing high connectivity.

Therefore, SMART domains exhibit higher abundance in resolved structures of protein complexes

than Pfam. Protein structures deposited in PDB are generated by individual research projects. The

nature of resolved proteins and protein complexes reveals a certain bias towards candidates of high

interest e. g. from certain model organisms or simply towards candidates showing appropriate prop-

erties to facilitate structure determination (Peng et al., 2004). The influence of this bias is higher in

the small PDB database than in large protein repositories like UniProt. Potential overfitting arising

from such bias was overcome by the implementation of sequence weighting in HMM training. Re-

cent developments further prevent overfitting by an alternative training approach, which incorporates

distributional parameters of profile HMMs. Thus, ipHMMs inherit the properties of profile HMMs

trained on large, manually curated seed alignments as background distributions of transitions and

emissions events. Currently, these new features are incorporated into a web application to provide

access to ipHMMs for a broader community. In contrast to several other approaches (Bradford and

Westhead, 2005; Fariselli et al., 2002; Jones and Thornton, 1997) ipHMMs are capable to detect and

classify different categories of interactions. Initially the ipHMMs were separately trained accord-

ing to the categories peptide ligands, ion ligands and nucleotide ligands. The spectrum is currently

extended to the detection of carbohydrate and miscellaneous ligands.

In applications to proteins associated with inheritable diseases, ipHMMs provided prediction-based

explanations for protein dysfunctions. Severe diseases like certain types of cancer or muscular dystro-

phy are associated with mutated interaction sites indicating the method’s medical impact. In combi-

nation with threading or molecular modelling, ipHMMs could be applied to large-scale assessments

of effects arising from missense mutations. Previously, the application of automatic design algo-

rithms has successfully modulated binding properties in an apoptosis-related ligand (van der Sloot

et al., 2006). A large study of interaction sites in single nucleotide polymorphisms (SNPs) of the
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human genome revealed an unexpectedly large number of 1710 SNPs at interacting positions (data

not shown). Exemplarily, the investigation of SNPs at interacting positions revealed substantial dis-

ruptions in binding capacity. Although binding interfaces of proteins mostly rely on more than one

interaction site, at least decreased ability of binding could be stated. Mutational events could prin-

cipally also lead to the formation of new interaction sites in vicinity to the binding interface, but

such effects have not yet been investigated. Overall, these applications underline the importance of

ipHMMs in studying functional sites of protein domains and they give an impression of the methodi-

cal potential in the light of increasing amounts of structural information.

The presented work describes analytical methods for different levels of biological information in-

cluding genomes, proteomes, transcriptomes, single protein sequences and protein domain structures.

The simultaneous consideration of several sources of information about organisms and whole envi-

ronments will become more and more important to understand the systems, in which these organisms

participate. In all fields I observed the further requirement of additional high quality source data to

increase the reliability of analytical results. Due to recent technical progress, it seems to be just a

matter of time that these objectives will be met.
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Kostić, T., Weilharter, A., Rubino, S., Delogu, G., Uzzau, S. et al. (2007) A microbial diagnostic
microarray technique for the sensitive detection and identification of pathogenic bacteria in a back-
ground of nonpathogens. Anal Biochem 360(2): 244–254.

153



References

Krogh, A., Brown, M., Mian, I. S., Sjolander, K. and Haussler, D. (1994a) Hidden Markov models in
computational biology. Applications to protein modeling. J Mol Biol 235(5): 1501–1531.

Krogh, A., Mian, I. S. and Haussler, D. (1994b) A hidden Markov model that finds genes in E. coli
DNA. Nucleic Acids Res 22(22): 4768–4778.

Kruskal, W. H. and Wallis, W. A. (1952) Use of Ranks in One-Criterion Variance Analysis. Journal
of the American Statistical Association 47(260): 583–621.

Kulp, D., Haussler, D., Reese, M. G. and Eeckman, F. H. (1996) A generalized hidden Markov model
for the recognition of human genes in DNA. Proc Int Conf Intell Syst Mol Biol 4: 134–142.

Kurokawa, H., Osawa, M., Kurihara, H., Katayama, N., Tokumitsu, H. et al. (2001) Target-induced
conformational adaptation of calmodulin revealed by the crystal structure of a complex with nema-
tode Ca2+/calmodulin-dependent kinase kinase peptide. J Mol Biol 312(1): 59–68.

Laikova, O. N., Mironov, A. A. and Gelfand, M. S. (2001) Computational analysis of the transcrip-
tional regulation of pentose utilization systems in the gamma subdivision of Proteobacteria. FEMS
Microbiol Lett 205(2): 315–322.

Lamarche, M. G., Dozois, C. M., Daigle, F., Caza, M., Curtiss, R. et al. (2005) Inactivation of the
pst system reduces the virulence of an avian pathogenic Escherichia coli O78 strain. Infect Immun
73(7): 4138–4145.

Lan, R. and Reeves, P. R. (2002) Escherichia coli in disguise: molecular origins of Shigella. Microbes
Infect 4(11): 1125–1132.

Lautenbach, E., Strom, B. L., Bilker, W. B., Patel, J. B., Edelstein, P. H. et al. (2001) Epidemiological
investigation of fluoroquinolone resistance in infections due to extended-spectrum beta-lactamase-
producing Escherichia coli and Klebsiella pneumoniae. Clin Infect Dis 33(8): 1288–1294.

Law, D. (2000) Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli.
Journal of Applied Microbiology 88(5): 729–745.

Lehner, A., Loy, A., Behr, T., Gaenge, H., Ludwig, W. et al. (2005) Oligonucleotide microarray for
identification of Enterococcus species. FEMS Microbiol Lett 246(1): 133–142.

Lehrke, M. and Lazar, M. A. (2005) The Many Faces of PPARγ. Cell 123(6): 993–999.

Letowski, J., Brousseau, R. and Masson, L. (2004) Designing better probes: effect of probe size,
mismatch position and number on hybridization in DNA oligonucleotide microarrays. J Microbiol
Methods 57(2): 269–278.

Letunic, I., Copley, R. R., Pils, B., Pinkert, S., Schultz, J. et al. (2006) SMART 5: domains in the
context of genomes and networks. Nucleic Acids Res 34(Database issue): D257–D260.

Letunic, I., Copley, R. R., Schmidt, S., Ciccarelli, F. D., Doerks, T. et al. (2004) SMART 4.0: towards
genomic data integration. Nucleic Acids Res 32(Database issue): D142–D144.

Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R. et al. (2008a) Evolution of
mammals and their gut microbes. Science 320(5883): 1647–1651.

Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. and Gordon, J. I. (2008b) Worlds within worlds:
evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6(10): 776–788.

Li, L., Stoeckert, C. J. and Roos, D. S. (2003) OrthoMCL: identification of ortholog groups for
eukaryotic genomes. Genome Res 13(9): 2178–2189.

154



References

Lichtarge, O., Bourne, H. R. and Cohen, F. E. (1996) An evolutionary trace method defines binding
surfaces common to protein families. J Mol Biol 257(2): 342–358.

Lillard, J. W., Fetherston, J. D., Pedersen, L., Pendrak, M. L. and Perry, R. D. (1997) Sequence and
genetic analysis of the hemin storage (hms) system of Yersinia pestis. Gene 193(1): 13–21.

Lin, S. L., Le, T. X. and Cowen, D. S. (2003) SptP, a Salmonella typhimurium type III-secreted
protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. Cell
Microbiol 5(4): 267–275.

Lin, Y. C., Lu, C. L., Liu, Y.-C. and Tang, C. Y. (2006) SPRING: a tool for the analysis of genome
rearrangement using reversals and block-interchanges. Nucleic Acids Res 34(Web Server issue):
W696–W699.

Liu, F., Chen, H., Galván, E. M., Lasaro, M. A. and Schifferli, D. M. (2006) Effects of Psa and F1
on the adhesive and invasive interactions of Yersinia pestis with human respiratory tract epithelial
cells. Infect Immun 74(10): 5636–5644.

Lloyd, A. L., Rasko, D. A. and Mobley, H. L. T. (2007) Defining genomic islands and uropathogen-
specific genes in uropathogenic Escherichia coli. J Bacteriol 189(9): 3532–3546.

Lomovskaya, O. and Lewis, K. (1992) Emr, an Escherichia coli locus for multidrug resistance. Proc
Natl Acad Sci U S A 89(19): 8938–8942.

Loy, A. and Bodrossy, L. (2006) Highly parallel microbial diagnostics using oligonucleotide micro-
arrays. Clin Chim Acta 363(1-2): 106–119.

Lu, C.-D. (2006) Pathways and regulation of bacterial arginine metabolism and perspectives for ob-
taining arginine overproducing strains. Appl Microbiol Biotechnol 70(3): 261–272.

Lukashin, A. V. and Borodovsky, M. (1998) GeneMark.hmm: new solutions for gene finding. Nucleic
Acids Res 26(4): 1107–1115.

Madera, M. and Gough, J. (2002) A comparison of profile hidden Markov model procedures for
remote homology detection. Nucleic Acids Res 30(19): 4321–4328.

Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E. et al. (1998) Multilocus sequence
typing: a portable approach to the identification of clones within populations of pathogenic mi-
croorganisms. Proc Natl Acad Sci U S A 95(6): 3140–3145.

Mangone, M., MacMenamin, P., Zegar, C., Piano, F. and Gunsalus, K. (2008) UTRome.org: a plat-
form for 3’UTR biology in C. elegans. Nucleic Acids Research 36(Database issue): D57.

Marcus, S. L., Brumell, J. H., Pfeifer, C. G. and Finlay, B. B. (2000) Salmonella pathogenicity islands:
big virulence in small packages. Microbes Infect 2(2): 145–156.

Masuda, Y., Miyakawa, K., Nishimura, Y. and Ohtsubo, E. (1993) chpA and chpB, Escherichia coli
chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100. J
Bacteriol 175(21): 6850–6856.

Mau, B., Glasner, J. D., Darling, A. E. and Perna, N. T. (2006) Genome-wide detection and analysis
of homologous recombination among sequenced strains of Escherichia coli. Genome Biol 7(5):
R44.

McClelland, M., Sanderson, K. E., Clifton, S. W., Latreille, P., Porwollik, S. et al. (2004) Comparison
of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica
that cause typhoid. Nat Genet 36(12): 1268–1274.

155



References

McClelland, M., Sanderson, K. E., Spieth, J., Clifton, S. W., Latreille, P. et al. (2001) Complete
genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413(6858): 852–856.

McPeake, S. J. W., Smyth, J. A. and Ball, H. J. (2005) Characterisation of avian pathogenic Es-
cherichia coli (APEC) associated with colisepticaemia compared to faecal isolates from healthy
birds. Vet Microbiol 110(3-4): 245–253.

Melodelima, C., Gautier, C. and Piau, D. (2007) A markovian approach for the prediction of mouse
isochores. J Math Biol 55(3): 353–364.

Melodelima, C., Guéguen, L., Piau, D. and Gautier, C. (2006) A computational prediction of iso-
chores based on hidden Markov models. Gene 385: 41–49.

Milburn, D., Laskowski, R. A. and Thornton, J. M. (1998) Sequences annotated by structure: a tool
to facilitate the use of structural information in sequence analysis. Protein Eng 11(10): 855–859.

Moreau, Y., Aerts, S., Moor, B. D., Strooper, B. D. and Dabrowski, M. (2003) Comparison and meta-
analysis of microarray data: from the bench to the computer desk. Trends Genet 19(10): 570–577.

Mothershed, E. A. and Whitney, A. M. (2006) Nucleic acid-based methods for the detection of bac-
terial pathogens: present and future considerations for the clinical laboratory. Clin Chim Acta
363(1-2): 206–220.

Munch, K. and Krogh, A. (2006) Automatic generation of gene finders for eukaryotic species. BMC
Bioinformatics 7: 263.

Nataro, J. P. and Kaper, J. B. (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11(1):
142–201.

Nataro, J. P., Seriwatana, J., Fasano, A., Maneval, D. R., Guers, L. D. et al. (1995) Identification and
cloning of a novel plasmid-encoded enterotoxin of enteroinvasive Escherichia coli and Shigella
strains. Infect Immun 63(12): 4721–4728.

Navarre, W. W., Halsey, T. A., Walthers, D., Frye, J., McClelland, M. et al. (2005) Co-regulation of
Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA
and PhoP/PhoQ. Mol Microbiol 56(2): 492–508.

Nelson, K. M., Young, G. M. and Miller, V. L. (2001) Identification of a locus involved in systemic
dissemination of Yersinia enterocolitica. Infect Immun 69(10): 6201–6208.

Ng, A., Jordan, M. and Weiss, Y. (2001) On spectral clustering: Analysis and an algorithm. Advances
in Neural Information Processing Systems 14.

Nie, H., Yang, F., Zhang, X., Yang, J., Chen, L. et al. (2006) Complete genome sequence of Shigella
flexneri 5b and comparison with Shigella flexneri 2a. BMC Genomics 7: 173.

Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H. et al. (1998) Ligand binding and
co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395(6698):
137–143.

Nudleman, E. and Kaiser, D. (2004) Pulling together with type IV pili. J Mol Microbiol Biotechnol
7(1-2): 52–62.

Oelschlaeger, T. A., Dobrindt, U. and Hacker, J. (2002) Pathogenicity islands of uropathogenic E. coli
and the evolution of virulence. Int J Antimicrob Agents 19(6): 517–521.

Ofran, Y. and Rost, B. (2003) Predicted protein-protein interaction sites from local sequence infor-
mation. FEBS Lett 544(1-3): 236–239.

156



References

Ogawa, M., Handa, Y., Ashida, H., Suzuki, M. and Sasakawa, C. (2008) The versatility of Shigella
effectors. Nat Rev Microbiol 6(1): 11–16.

Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Simpson, G. L. et al. (2008) vegan: Community
Ecology Package. R package version 1.13-2.

Olekhnovich, I. N. and Kadner, R. J. (2002) DNA-binding activities of the HilC and HilD virulence
regulatory proteins of Salmonella enterica serovar Typhimurium. J Bacteriol 184(15): 4148–4160.

Orth, D., Grif, K., Dierich, M. P. and Würzner, R. (2007) Variability in tellurite resistance and the
ter gene cluster among Shiga toxin-producing Escherichia coli isolated from humans, animals and
food. Res Microbiol 158(2): 105–111.

Oshima, K., Toh, H., Ogura, Y., Sasamoto, H., Morita, H. et al. (2008) Complete genome sequence
and comparative analysis of the wild-type commensal Escherichia coli strain SE11 isolated from a
healthy adult. DNA Res 15(6): 375–386.

Park, H. G., Song, J. Y., Park, K. H. and Kim, M. H. (2006) Fluorescence-based assay formats and
signal amplification strategies for DNA microarray analysis. Chemical Engineering Science 61(3):
954 – 965. Biomolecular Engineering.

Parkhill, J., Dougan, G., James, K. D., Thomson, N. R., Pickard, D. et al. (2001a) Complete genome
sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413(6858):
848–852.

Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T. et al. (2001b) Genome
sequence of Yersinia pestis, the causative agent of plague. Nature 413(6855): 523–527.

Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, N., Coulson, R. et al. (2007)
ArrayExpress–a public database of microarray experiments and gene expression profiles. Nucleic
Acids Res 35(Database issue): D747–D750.

Paterson, D. L., Hujer, K. M., Hujer, A. M., Yeiser, B., Bonomo, M. D. et al. (2003) Extended-
spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries:
dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrob
Agents Chemother 47(11): 3554–3560.

Pattery, T., Hernalsteens, J. P. and Greve, H. D. (1999) Identification and molecular characterization
of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. Mol Microbiol
33(4): 791–805.

Paulsen, I. T., Chen, J., Nelson, K. E. and Saier, M. H. (2001) Comparative genomics of microbial
drug efflux systems. J Mol Microbiol Biotechnol 3(2): 145–150.

Pearson, K. (1902) On the systematic fitting of curves to observations and measurements. Biometrika
1(3): 265–303.

Pellicer, M. T., Badía, J., Aguilar, J. and Baldomà, L. (1996) glc locus of Escherichia coli: characteri-
zation of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J Bacteriol
178(7): 2051–2059.

Pelludat, C., Prager, R., Tschäpe, H., Rabsch, W., Schuchhardt, J. et al. (2005) Pilot study to evaluate
microarray hybridization as a tool for Salmonella enterica serovar Typhimurium strain differentia-
tion. J Clin Microbiol 43(8): 4092–4106.

Peng, K., Obradovic, Z. and Vucetic, S. (2004) Exploring bias in the Protein Data Bank using contrast
classifiers. Pac Symp Biocomput pages 435–446.

157



References

Perna, N. T., Plunkett, G., Burland, V., Mau, B., Glasner, J. D. et al. (2001) Genome sequence of
enterohaemorrhagic Escherichia coli O157:H7. Nature 409(6819): 529–533.

Pils, B., Copley, R. and Schultz, J. (2005) Variation in structural location and amino acid conservation
of functional sites in protein domain families. BMC Bioinformatics 6(1): 210.

Pineiro, J., Bates, D., DebRoy, S., Sarkar, D. and the R Core team (2008) nlme: Linear and Nonlinear
Mixed Effects Models. R package version 3.1-88.

Pinheiro, V. B. and Ellar, D. J. (2007) Expression and insecticidal activity of Yersinia pseudotubercu-
losis and Photorhabdus luminescens toxin complex proteins. Cell Microbiol 9(10): 2372–2380.

Piroux, N., Saunders, K., Page, A. and Stanley, J. (2007) Geminivirus pathogenicity protein C4 inter-
acts with Arabidopsis thaliana shaggy-related protein kinase AtSKeta, a component of the brassi-
nosteroid signalling pathway. Virology 362(2): 428–440.

Porwollik, S., Boyd, E. F., Choy, C., Cheng, P., Florea, L. et al. (2004) Characterization of Salmonella
enterica subspecies I genovars by use of microarrays. J Bacteriol 186(17): 5883–5898.

Posada, D. and Crandall, K. A. (1998) MODELTEST: testing the model of DNA substitution. Bioin-
formatics 14(9): 817–818.

Pérez, A. D. G., González, E. G., Angarica, V. E., Vasconcelos, A. T. R. and Collado-Vides, J. (2008)
Impact of Transcription Units rearrangement on the evolution of the regulatory network of gamma-
proteobacteria. BMC Genomics 9: 128.

Price-Carter, M., Tingey, J., Bobik, T. A. and Roth, J. R. (2001) The alternative electron accep-
tor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar Ty-
phimurium on ethanolamine or 1,2-propanediol. J Bacteriol 183(8): 2463–2475.

Pritsker, M., Liu, Y.-C., Beer, M. A. and Tavazoie, S. (2004) Whole-genome discovery of transcription
factor binding sites by network-level conservation. Genome Res 14(1): 99–108.

Qian, B. and Goldstein, R. A. (2001) Distribution of Indel lengths. Proteins 45(1): 102–104.

R Development Core Team (2004) R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Rabiner, L. R. (1989) A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proc of the IEEE 77(2): 257–286.

Rahmann, S. (2002) Rapid large-scale oligonucleotide selection for microarrays. Proc IEEE Comput
Soc Bioinform Conf 1: 54–63.

Rahmann, S. (2003) Fast large scale oligonucleotide selection using the longest common factor ap-
proach. J Bioinform Comput Biol 1(2): 343–361.

Ravcheev, D. A., Gerasimova, A. V., Mironov, A. A. and Gelfand, M. S. (2007) Comparative ge-
nomic analysis of regulation of anaerobic respiration in ten genomes from three families of γ-
proteobacteria (Enterobacteriaceae, Pasteurellaceae, Vibrionaceae). BMC Genomics 8: 54.

Reid, S., Herbelin, C., Bumbaugh, A., Selander, R. and Whittam, T. (2000) Parallel evolution of
virulence in pathogenic Escherichia coli. Nature 406(6791): 64–67.

Rodionov, D. A., Vitreschak, A. G., Mironov, A. A. and Gelfand, M. S. (2003) Comparative genomics
of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 278(42): 41148–41159.

Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J., Fakhr, M. K. et al. (2005)
Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian
colibacillosis. Microbiology 151(Pt 6): 2097–2110.

158



References

Rossi, M. S., Fetherston, J. D., Létoffé, S., Carniel, E., Perry, R. D. et al. (2001) Identification and
characterization of the hemophore-dependent heme acquisition system of Yersinia pestis. Infect
Immun 69(11): 6707–6717.

Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. et al. (1996) Systemic
Acquired Resistance. Plant Cell 8(10): 1809–1819.

Saebø, P. E., Andersen, S. M., Myrseth, J., Laerdahl, J. K. and Rognes, T. (2005) PARALIGN: rapid
and sensitive sequence similarity searches powered by parallel computing technology. Nucleic
Acids Res 33(Web Server issue): W535–W539.

Saitoh, M., Tanaka, K., Nishimori, K., ichi Makino, S., Kanno, T. et al. (2005) The artAB genes
encode a putative ADP-ribosyltransferase toxin homologue associated with Salmonella enterica
serovar Typhimurium DT104. Microbiology 151(Pt 9): 3089–3096.

Sandkvist, M. (2001) Type II secretion and pathogenesis. Infect Immun 69(6): 3523–3535.

Santiviago, C. A., Fuentes, J. A., Bueno, S. M., Trombert, A. N., Hildago, A. A. et al. (2002) The
Salmonella enterica sv. Typhimurium smvA, yddG and ompD (porin) genes are required for the
efficient efflux of methyl viologen. Mol Microbiol 46(3): 687–698.

Schliep, A., Schönhuth, A. and Steinhoff, C. (2003) Using hidden Markov models to analyze gene
expression time course data. Bioinformatics 19 Suppl 1: i255–i263.

Schölkopf, B., Smola, A. and Müller, K.-R. (1998) Nonlinear Component Analysis as a Kernel Eigen-
value Problem. Neural Computation 10(5): 1299–1319.

Schubert, S., Fischer, D. and Heesemann, J. (1999) Ferric enterochelin transport in Yersinia entero-
colitica: molecular and evolutionary aspects. J Bacteriol 181(20): 6387–6395.

Schultz, J., Milpetz, F., Bork, P. and Ponting, C. P. (1998) SMART, a simple modular architecture
research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95(11): 5857–5864.

Schultz, J., Müller, T., Achtziger, M., Seibel, P. N., Dandekar, T. et al. (2006) The internal transcribed
spacer 2 database–a web server for (not only) low level phylogenetic analyses. Nucleic Acids Res
34(Web Server issue): W704–W707.

Schultz, J., Ponting, C. P., Hofmann, K. and Bork, P. (1997) SAM as a protein interaction domain
involved in developmental regulation. Protein Sci 6(1): 249–253.

Schwarz, G. (1978) Estimating the Dimension of a Model. Annals of Statistic 6(2): 461–464.

Sebbane, F., Devalckenaere, A., Foulon, J., Carniel, E. and Simonet, M. (2001) Silencing and reacti-
vation of urease in Yersinia pestis is determined by one G residue at a specific position in the ureD
gene. Infect Immun 69(1): 170–176.

Shah, P. and Swiatlo, E. (2008) A multifaceted role for polyamines in bacterial pathogens. Mol
Microbiol 68(1): 4–16.

Shawe-Taylor, J. and Cristianini, N. (2004) Kernel Methods for Pattern Analysis. Cambridge Univer-
sity Press.

Shen, B. (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms.
Curr Opin Chem Biol 7(2): 285–295.

van der Sloot, A. M., Tur, V., Szegezdi, E., Mullally, M. M., Cool, R. H. et al. (2006) Designed tumor
necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the
DR5 receptor. Proc Natl Acad Sci U S A 103(23): 8634–8639.

159



References

Smyth, G. K. (2004) Linear models and empirical Bayes methods for assessing differential expression
in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3: Article
3.

Sánchez, L., Pan, W., Viñas, M. and Nikaido, H. (1997) The acrAB homolog of Haemophilus influen-
zae codes for a functional multidrug efflux pump. J Bacteriol 179(21): 6855–6857.

Snyder, K. A., Feldman, H. J., Dumontier, M., Salama, J. J. and Hogue, C. W. V. (2006) Domain-
based small molecule binding site annotation. BMC Bioinformatics 7: 152.

Song, Y., Tong, Z., Wang, J., Wang, L., Guo, Z. et al. (2004) Complete genome sequence of Yersinia
pestis strain 91001, an isolate avirulent to humans. DNA Res 11(3): 179–197.

Sonnhammer, E. L., von Heijne, G. and Krogh, A. (1998) A hidden Markov model for predicting
transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6: 175–182.

Soutourina, O. A. and Bertin, P. N. (2003) Regulation cascade of flagellar expression in Gram-
negative bacteria. FEMS Microbiol Rev 27(4): 505–523.

Stepanova, A. N., Hoyt, J. M., Hamilton, A. A. and Alonso, J. M. (2005) A Link between ethylene
and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in
Arabidopsis. Plant Cell 17(8): 2230–2242.

Stoughton, R. B. (2005) Applications of DNA microarrays in biology. Annu Rev Biochem 74: 53–82.

Suzuki, R. and Shimodaira, H. (2006) Pvclust: an R package for assessing the uncertainty in hierar-
chical clustering. Bioinformatics 22(12): 1540–1542.

Taillandier, A., Cozien, E., Muller, F., Merrien, Y., Bonnin, E. et al. (2000) Fifteen new mutations
(-195C>T, L-12X, 298-2A>G, T117N, A159T, R229S, 997+2T>A, E274X, A331T, H364R,
D389G, 1256delC, R433H, N461I, C472S) in the tissue-nonspecific alkaline phosphatase
(TNSALP) gene in patients with hypophosphatasia. Hum Mutat 15(3): 293.

Taillandier, A., Lia-Baldini, A. S., Mouchard, M., Robin, B., Muller, F. et al. (2001) Twelve novel mu-
tations in the tissue-nonspecific alkaline phosphatase gene (ALPL) in patients with various forms
of hypophosphatasia. Hum Mutat 18(1): 83–84.

Taillandier, A., Zurutuza, L., Muller, F., Simon-Bouy, B., Serre, J. L. et al. (1999) Characterization
of eleven novel mutations (M45L, R119H, 544delG, G145V, H154Y, C184Y, D289V, 862+5A,
1172delC, R411X, E459K) in the tissue-nonspecific alkaline phosphatase (TNSALP) gene in pa-
tients with severe hypophosphatasia. Mutations in brief no. 217. Online. Hum Mutat 13(2): 171–
172.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S. et al. (1999) Interpreting patterns of gene
expression with self-organizing maps: methods and application to hematopoietic differentiation.
Proc Natl Acad Sci U S A 96(6): 2907–2912.

Tatusov, R. L., Koonin, E. V. and Lipman, D. J. (1997) A genomic perspective on protein families.
Science 278(5338): 631–637.

Tchieu, J. H., Norris, V., Edwards, J. S. and Saier, M. H. (2001) The complete phosphotranferase
system in Escherichia coli. J Mol Microbiol Biotechnol 3(3): 329–346.

Tekaia, F., Lazcano, A. and Dujon, B. (1999) The genomic tree as revealed from whole proteome
comparisons. Genome Res 9(6): 550–557.

Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D. et al. (2005) Genome analysis
of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-
genome". Proc Natl Acad Sci U S A 102(39): 13950–13955.

160



References

Thanos, C. D., Goodwill, K. E. and Bowie, J. U. (1999) Oligomeric structure of the human EphB2
receptor SAM domain. Science 283(5403): 833–836.

Thilmony, R., Underwood, W. and He, S. Y. (2006) Genome-wide transcriptional analysis of the Ara-
bidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000
and the human pathogen Escherichia coli O157:H7. Plant J 46(1): 34–53.

Thomson, N. R., Clayton, D. J., Windhorst, D., Vernikos, G., Davidson, S. et al. (2008) Compara-
tive genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides
insights into evolutionary and host adaptation pathways. Genome Res 18(10): 1624–1637.

Thomson, N. R., Howard, S., Wren, B. W., Holden, M. T. G., Crossman, L. et al. (2006) The complete
genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocol-
itica strain 8081. PLoS Genet 2(12): e206.

Tomich, M., Planet, P. J. and Figurski, D. H. (2007) The tad locus: postcards from the widespread
colonization island. Nat Rev Microbiol 5(5): 363–375.

Touchon, M., Hoede, C., Tenaillon, O., Barbe, V., Baeriswyl, S. et al. (2009) Organised genome
dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5(1):
e1000344.

Townsend, S. M., Kramer, N. E., Edwards, R., Baker, S., Hamlin, N. et al. (2001) Salmonella enterica
serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 69(5): 2894–
2901.

Tringe, S. G., von Mering, C., Kobayashi, A., Salamov, A. A., Chen, K. et al. (2005) Comparative
metagenomics of microbial communities. Science 308(5721): 554–557.

Usadel, B., Nagel, A., Thimm, O., Redestig, H., Blaesing, O. E. et al. (2005) Extension of the visu-
alization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and
comparison with known responses. Plant Physiol 138(3): 1195–1204.

Venables, W. N. and Ripley, B. D. (2002) MASS: Modern Applied Statistics with S. Springer, New
York, fourth edn. ISBN 0-387-95457-0.

Venkatasubbarao, S. (2004) Microarrays–status and prospects. Trends Biotechnol 22(12): 630–637.

Venkatesan, M. M., Buysse, J. M. and Kopecko, D. J. (1989) Use of Shigella flexneri ipaC and ipaH
gene sequences for the general identification of Shigella spp. and enteroinvasive Escherichia coli.
J Clin Microbiol 27(12): 2687–2691.

Viterbi, A. J. (1967) Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory 13(2): 260 – 269.

Wagner, M., Smidt, H., Loy, A. and Zhou, J. (2007) Unravelling microbial communities with DNA-
microarrays: challenges and future directions. Microb Ecol 53(3): 498–506.

Wallis, T. S. and Galyov, E. E. (2000) Molecular basis of Salmonella-induced enteritis. Mol Microbiol
36(5): 997–1005.

Walsh, C. (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406(6797):
775–781.

Wang, X., L.Cooper, K., Wang, A., Xu, J., Wang, Z. et al. (2006) Label-free DNA sequence detection
using oligonucleotide functionalized optical fiber. Applied Physics Letters 89(16): pp.163901.

Wang, X. and Seed, B. (2003) Selection of oligonucleotide probes for protein coding sequences.
Bioinformatics 19(7): 796–802.

161



References

Ward, J. H. (1963) Hierarchical Grouping To Optimize An Objective Function. Journal Of The
American Statistical Association 58(301): 236–244.

Wei, J., Goldberg, M. B., Burland, V., Venkatesan, M. M., Deng, W. et al. (2003) Complete genome
sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun
71(5): 2775–2786.

Welch, R. A., Burland, V., Plunkett, G., Redford, P., Roesch, P. et al. (2002) Extensive mosaic struc-
ture revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad
Sci U S A 99(26): 17020–17024.

Welch, T. J., Fricke, W. F., McDermott, P. F., White, D. G., Rosso, M.-L. et al. (2007) Multiple
antimicrobial resistance in plague: an emerging public health risk. PLoS ONE 2(3): e309.

Whelan, K. F., Colleran, E. and Taylor, D. E. (1995) Phage inhibition, colicin resistance, and tellurite
resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. J Bacteriol
177(17): 5016–5027.

Willenbrock, H., Hallin, P., Wassenaar, T. and Ussery, D. (2007) Characterization of probiotic Es-
cherichia coli isolates with a novel pan-genome microarray. Genome Biol 8(12): R267.

Willenbrock, H., Petersen, A., Sekse, C., Kiil, K., Wasteson, Y. et al. (2006) Design of a seven-
genome Escherichia coli microarray for comparative genomic profiling. J Bacteriol 188(22):
7713–7721.

Wilson, L. A. and Sharp, P. M. (2006) Enterobacterial repetitive intergenic consensus (ERIC) se-
quences in Escherichia coli: Evolution and implications for ERIC-PCR. Mol Biol Evol 23(6):
1156–1168.

Wirth, T., Falush, D., Lan, R., Colles, F., Mensa, P. et al. (2006) Sex and virulence in Escherichia
coli: an evolutionary perspective. Mol Microbiol 60(5): 1136–1151.

Wissenbach, U., Six, S., Bongaerts, J., Ternes, D., Steinwachs, S. et al. (1995) A third periplasmic
transport system for L-arginine in Escherichia coli: molecular characterization of the artPIQMJ
genes, arginine binding and transport. Mol Microbiol 17(4): 675–686.

Woehlke, G. and Dimroth, P. (1994) Anaerobic growth of Salmonella typhimurium on L(+)- and
D(-)-tartrate involves an oxaloacetate decarboxylase Na+ pump. Arch Microbiol 162(4): 233–237.

Woehlke, G., Wifling, K. and Dimroth, P. (1992) Sequence of the sodium ion pump oxaloacetate
decarboxylase from Salmonella typhimurium. J Biol Chem 267(32): 22798–22803.

Wood, M. W., Jones, M. A., Watson, P. R., Hedges, S., Wallis, T. S. et al. (1998) Identification of a
pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol 29(3): 883–891.

Wren, B. W. (2003) The yersiniae–a model genus to study the rapid evolution of bacterial pathogens.
Nat Rev Microbiol 1(1): 55–64.

Wu, C. H., Apweiler, R., Bairoch, A., Natale, D. A., Barker, W. C. et al. (2006) The Universal Protein
Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34(Database
issue): D187–D191.

Wu, J., Irizarry, R. and with contributions from James MacDonald and Jeff Gentry (2005) gcrma:
Background Adjustment Using Sequence Information. R package version 2.2.1.

Xi, H., Schneider, B. L. and Reitzer, L. (2000) Purine catabolism in Escherichia coli and function of
xanthine dehydrogenase in purine salvage. J Bacteriol 182(19): 5332–5341.

162



References

Yada, T., Nakao, M., Totoki, Y. and Nakai, K. (1999) Modeling and predicting transcriptional units
of Escherichia coli genes using hidden Markov models. Bioinformatics 15(12): 987–993.

Yamamoto, E. and Yanagimoto, T. (1992) Moment estimators for the beta-binomial distribution. Jour-
nal of Applied Statistics 19(2): 273–283.

Yamanaka, K., Fang, L. and Inouye, M. (1998) The CspA family in Escherichia coli: multiple gene
duplication for stress adaptation. Mol Microbiol 27(2): 247–255.

Yang, F., Yang, J., Zhang, X., Chen, L., Jiang, Y. et al. (2005) Genome dynamics and diversity of
Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33(19): 6445–
6458.

Yoo, S. M., Lee, S. Y., Chang, K. H., Yoo, S. Y., Yoo, N. C. et al. (2009) High-throughput identifi-
cation of clinically important bacterial pathogens using DNA microarray. Molecular and Cellular
Probes 23(3-4): 171 – 177.

Zdziarski, J., Svanborg, C., Wullt, B., Hacker, J. and Dobrindt, U. (2008) Molecular basis of commen-
salism in the urinary tract: low virulence or virulence attenuation? Infect Immun 76(2): 695–703.

Zhang, X., Lu, X., Shi, Q., Xu, X.-Q., Leung, H.-C. E. et al. (2006) Recursive SVM feature selection
and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics 7: 197.

Zhou, D., Han, Y., Song, Y., Tong, Z., Wang, J. et al. (2004) DNA microarray analysis of genome
dynamics in Yersinia pestis: insights into bacterial genome microevolution and niche adaptation. J
Bacteriol 186(15): 5138–5146.

Zhou, H.-X. and Qin, S. (2007) Interaction-site prediction for protein complexes: a critical assess-
ment. Bioinformatics 23(17): 2203–2209.

Zhou, H. X. and Shan, Y. (2001) Prediction of protein interaction sites from sequence profile and
residue neighbor list. Proteins 44(3): 336–343.

Zurutuza, L., Muller, F., Gibrat, J. F., Taillandier, A., Simon-Bouy, B. et al. (1999) Correlations of
genotype and phenotype in hypophosphatasia. Hum Mol Genet 8(6): 1039–1046.

163



References

164



Part IV.

Appendix

165





A. Supplementary data on comparative
enterobacterial genomics

A.1. Proteome comparison
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Figure A.1.: Variance explanation of principal axes in the correspondence analysis of proteome map-
ping data from enterobacteria. The values refer to the ratio of variance in the common data space of enter-
obacterial strains and protein families that is covered by respective principal axes.
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Figure A.2.: Association graph of enterobacterial protein clusters and the strains, in which they occur.
The distribution of protein clusters is indicated by the intensity of blue colour (dark blue = high density of
protein clusters).
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Figure A.3.: Association graph of enterobacterial protein clusters and the strains, in which they occur.
The distribution of protein clusters is indicated by the intensity of blue colour (dark blue = high density of
protein clusters).
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Figure A.4.: Association graph of enterobacterial protein clusters and the strains, in which they occur.
The distribution of protein clusters is indicated by the intensity of blue colour (dark blue = high density of
protein clusters).
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A.2. Virulence structures in E. coli

A.2. Virulence structures in E. coli

Table A.1.: Abundance of virulence structures in selected E. coli strains
Category Vir. structure Escherichia coli strains

non-pathogens UPEC EHEC EPEC EAEC MNEC
MG1655 W3110 Nissle CFT073 UTI89 536 Sakai EDL933 E2348-69 O42 IHE3034

Toxins
α-Hemolysin 0 0 0 1 1 2 0 0 0 0 0
Hemolysin-C 0 0 0 2 1 2 0 0 0 0 0
Hemolysin-E 1 1 0 0 0 0 1 1 0 1 0
CNF 0 0 0 0 1 0 0 0 0 0 0
CDT 0 0 0 0 0 0 0 0 0 0 2
hs-enterotoxin 0 0 0 0 0 0 0 0 0 0 0
hl-enterotoxin 0 0 0 0 0 0 0 0 0 0 0
Ecotin 1 1 1 1 1 1 1 1 1 1 1
Sm. Mul. Drug Res. 4 4 4 4 6 6 4 4 3 3 4
Big_1 1 1 2 2 2 2 5 4 2 3 2
Big_2 0 0 2 2 3 1 7 6 3 2 5
Enterotoxin ShET2 1 2 1 1 1 1 4 4 2 3 0
CcdB 0 0 1 1 0 1 1 1 2 1 0
Ail_Lom 2 2 1 3 3 1 12 12 5 5 7
SLT β 0 0 0 0 0 0 2 2 0 0 0
InvE 0 0 0 0 0 0 1 1 0 1 0
Type III sec. proteins 0 0 0 0 0 0 1 1 1 0 0

Secretion
Systems

ABC-Transporter (fam 1) 64 78 90 90 88 88 84 84 79 82 87
ABC-Transporter (fam 2) 4 4 5 5 5 5 4 4 4 5 5
ABC-Transporter (fam 3) 1 1 3 3 3 4 1 1 1 3 3
Sec-System 1 1 1 1 1 1 1 1 1 1 1
Type-II 1 1 1 1 1 1 1 1 1 1 1
Type-III 0 0 0 0 0 0 1 1 1 0 0
Type-IV 0 0 0 0 0 0 0 0 0 0 0
HlyD 13 13 15 16 15 16 15 15 14 14 14
Autotransporter (Type-V) 7 9 11 9 5 7 9 9 4 12 6

Fimbriae
CS1-like pili (CS2,CFA) 0 0 0 0 0 1 0 0 0 0 0
Chaperone/Usher 11 11 8 10 10 10 11 13 7 10 9
K88 pili 0 0 0 0 0 0 0 0 0 0 0
P-pili 0 0 0 1 1 1 1 0 0 0 0
Type-IV-pili 0 0 0 0 0 0 0 0 0 0 0
Afimbrial adhesive sheath 0 0 0 0 0 0 0 0 0 0 0
Dr-family adhesin 0 0 0 0 0 0 0 0 0 0 0
Bundle-forming pili 0 0 1 0 0 0 0 1 0 0 0
Fimbrial proteins 15 15 13 21 19 19 18 19 10 10 14
Flp/Fap pili 0 0 0 0 0 0 0 0 0 0 0

Siderophors
Ferric dicitrate uptake 1 1 1 0 0 0 0 0 0 1 0
TonB-dependent receptor 9 9 19 19 16 16 13 14 10 12 16
siderophore interaction
protein

1 1 1 1 1 1 1 1 1 1 1

Heme-binding protein A 0 0 0 0 0 0 0 0 0 0 0
aerobactin biosynthesis 0 0 2 2 2 0 0 0 0 0 0
Hemin degradation 0 0 1 1 1 1 1 1 1 1 1

Microcins
Colicin E1 immunity 0 0 0 0 0 0 0 0 0 0 0
Colicin/Pyocin immunity 0 0 2 2 3 3 0 0 0 0 3
Cloacin immunity 0 0 0 0 0 0 0 0 0 0 0
Cloacin 0 0 0 0 0 0 0 0 0 0 0
S-type Pyocin 0 0 1 0 1 1 0 0 0 0 1
Colicin 0 0 0 0 0 0 0 0 0 0 0
Colicin V production 1 1 1 1 1 1 1 1 1 1 1
HNH endonucleases 1 1 0 1 1 0 0 1 0 2 2
Bacteriocins 0 0 0 0 0 0 0 0 0 0 0
α/β enterocin/ lactococ-
cin G

0 0 0 0 0 0 0 0 0 0 0

Colicin release/ transloca-
tion

1 1 1 1 1 1 1 1 1 1 1

LPS/Capsule
Assembly core region 1 1 1 1 1 1 1 1 1 1 1
O-Antigen biosynthesis 1 1 1 1 1 1 1 1 1 1 1
Polysaccharide biosyn-
thesis

2 2 2 2 2 2 1 1 1 1 2

LPS kinase (Kdo/WaaP) 2 2 2 2 2 2 2 2 2 2 2
LPS Saccharide biosyn-
thesis

0 0 0 0 0 0 0 0 0 0 0

capsule polysaccharide
biosynthesis

0 0 2 2 2 3 0 0 0 2 2

The occurrences of virulence structures was detected for all components with a representation in the Pfam
database.
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A. Supplementary data on comparative enterobacterial genomics
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B. Supplementary information on the
diagnostic microarray for enterobacteria

B.1. Probe specification
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B. Supplementary information on the diagnostic microarray for enterobacteria
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B.1. Probe specification
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B. Supplementary information on the diagnostic microarray for enterobacteria
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B. Supplementary information on the diagnostic microarray for enterobacteria
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B.1. Probe specification
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B. Supplementary information on the diagnostic microarray for enterobacteria

G
ro

up
Pr

ob
e-

ID
T

m
∆

G
C

om
pl

ex
ity

D
es

cr
ip

tio
n

C
at

eg
or

y

Se
qu

en
ce

:G
G
G
C
C
A
G
G
G
T
G
T
C
C
G
C
G
A
T
G
T
C
T
C
C
C
A
G
T
T
C
C
C
C
A
G
G
A
C
G
T
T
C
C
T
G
A
G
G
T
A
A
C
T
T
T
C
G
T
A
T
C
A
G
A
G
G
A
C
G

K
le

bs
ie

lla
83

55
_2

80
.9

50
2

-1
28

.9
45

1
0.

60
91

4
pu

ta
tiv

e
tr

an
sc

ri
pt

io
na

lr
eg

ul
at

or
(L

ys
R

fa
m

ily
)

un
ch

ar
ac

te
ri

se
d

Se
qu

en
ce

:T
T
C
T
G
C
C
G
T
C
G
G
C
C
G
T
A
C
G
T
G
C
C
G
G
G
T
G
G
T
A
C
G
A
T
G
T
A
G
C
A
G
C
C
G
C
G
C
C
C
C
G
A
G
A
C
T
G
A
C
C
T
C
C
A
A
C
G
C
T

K
le

bs
ie

lla
99

26
_1

0
71

.1
66

4
-1

11
.0

06
4

0.
63

58
1

in
te

rg
en

ic
,b

et
w

ee
n

tw
o

hy
po

th
et

ic
al

pr
ot

ei
ns

in
te

rg
en

ic
Se

qu
en

ce
:T
C
T
G
G
G
A
C
G
T
G
C
A
C
T
T
C
C
A
A
G
G
C
C
G
G
A
A
A
T
C
T
A
T
C
T
C
G
A
T
T
A
T
G
A
T
A
T
C
G
C
A
A
G
G
G
A
T
A
T
T
T
G
C
C
A
C
T
T
C

K
le

bs
ie

lla
81

21
_3

76
.0

33
2

-1
19

.8
71

4
0.

61
08

9
an

ae
ro

bi
c

C
4-

di
ca

rb
ox

yl
at

e
tr

an
sp

or
te

r
Tr

an
sp

or
t

Se
qu

en
ce

:G
C
G
C
G
T
T
A
A
G
A
T
A
A
T
G
G
G
T
A
A
G
C
G
G
G
C
T
A
A
G
C
T
T
G
T
C
C
G
G
A
G
T
A
C
G
G
G
C
T
A
C
C
T
C
T
C
C
G
G
G
G
T
C
G
C
G
A
T
A

K
le

bs
ie

lla
85

87
_1

0
75

.3
15

5
-1

20
.4

86
0.

62
50

1
m

et
hi

on
in

e
am

in
op

ep
tid

as
e

m
et

ab
ol

is
m

Se
qu

en
ce

:G
A
A
A
G
C
G
G
C
C
C
A
C
C
G
T
C
A
T
A
G
A
G
A
A
A
G
G
G
A
A
G
C
A
A
C
T
C
A
G
C
G
G
A
T
C
C
G
C
G
A
C
T
G
T
T
C
A
T
C
G
T
C
G
C
G
T
A
A
C

K
le

bs
ie

lla
82

68
_2

78
.3

94
1

-1
24

.2
17

9
0.

60
04

8
pu

ta
tiv

e
PT

S
fa

m
ily

en
zy

m
e

II
B

C
,g

lu
ci

to
l/s

or
bi

to
l-

sp
ec

ifi
c

tr
an

sp
or

t
Se

qu
en

ce
:T
G
A
T
T
C
G
G
T
A
G
C
C
C
T
G
T
C
G
C
G
G
A
C
C
G
A
T
G
T
G
G
C
T
C
G
C
G
A
T
G
T
A
C
G
T
A
C
C
C
C
G
G
T
C
A
C
C
G
A
G
T
C
G
T
G
G
G
T
A

K
le

bs
ie

lla
88

21
_2

72
.4

91
1

-1
14

.7
31

6
0.

63
44

8
in

te
rg

en
ic

,b
et

w
ee

n
tr

an
sp

os
as

e,
IS

4
an

d
L

,D
-c

ar
bo

xy
pe

pt
id

as
e

A
(i

n
m

ur
ei

n
re

cy
cl

in
g)

in
te

rg
en

ic
Se

qu
en

ce
:A
A
A
T
T
A
A
T
C
C
G
G
A
C
C
A
T
T
G
T
C
C
G
C
G
C
C
T
T
G
C
A
C
G
A
A
T
C
G
G
A
A
A
A
G
T
T
A
A
C
T
G
C
A
C
T
G
A
A
G
A
T
C
C
G
C
T
C
T
G

K
le

bs
ie

lla
92

61
_4

81
.6

32
1

-1
30

.7
31

9
0.

59
39

1
fo

rm
at

e
hy

dr
og

en
-l

ya
se

tr
an

sc
ri

pt
io

na
la

ct
iv

at
or

tr
an

sc
ri

pt
io

n
Se

qu
en

ce
:C
T
G
G
C
G
G
C
G
G
A
C
G
G
G
C
G
G
A
T
C
T
T
T
G
G
C
G
G
T
T
G
C
G
A
A
T
T
C
C
T
C
C
G
C
C
G
T
G
A
C
A
A
C
C
G
G
C
C
G
T
G
G
A
G
C
G
A
G
A

K
le

bs
ie

lla
93

07
_2

78
.4

22
3

-1
25

.5
59

9
0.

62
23

pr
op

io
na

te
ki

na
se

m
et

ab
ol

is
m

Se
qu

en
ce

:C
G
G
C
A
T
A
A
A
C
G
A
C
G
C
G
C
C
T
C
C
T
C
T
T
G
C
G
G
A
G
A
A
T
C
A
T
G
G
T
A
A
C
C
G
G
C
G
G
G
T
C
G
C
C
A
T
G
C
C
A
C
T
A
T
G
C
G
C
C

K
le

bs
ie

lla
96

34
_3

77
.9

70
7

-1
23

.9
27

1
0.

61
67

8
pu

ta
tiv

e
re

gu
la

to
r

un
ch

ar
ac

te
ri

se
d

Se
qu

en
ce

:T
G
G
C
C
G
C
T
G
C
T
G
T
C
G
T
C
G
C
A
G
G
T
C
C
C
G
C
A
T
C
A
C
T
C
G
C
A
T
A
T
A
G
G
G
C
C
C
G
C
T
A
A
A
A
T
C
G
T
A
G
A
A
C
T
G
C
C
G
G

K
le

bs
ie

lla
96

98
_1

5
72

.3
81

3
-1

13
.8

21
8

0.
64

81
8

in
te

rg
en

ic
,b

et
w

ee
n

pe
ri

pl
as

m
ic

re
pr

es
so

ro
fc

px
re

gu
lo

n
by

in
te

ra
ct

io
n

w
ith

C
px

A
an

d
fe

rr
ou

s
ir

on
ef

flu
x

pr
ot

ei
n

F
in

te
rg

en
ic

Se
qu

en
ce

:G
G
T
A
A
A
T
C
A
A
C
T
C
C
T
T
C
G
C
C
T
A
T
C
C
C
G
T
G
A
G
C
G
T
C
A
C
A
A
G
T
T
C
G
G
G
T
T
A
T
A
C
T
A
A
G
C
G
C
A
T
T
G
C
A
G
G
A
G
A

K
le

bs
ie

lla
10

14
7_

17
77

.2
08

6
-1

22
.4

70
7

0.
63

14
5

in
te

rg
en

ic
on

pl
as

m
id

pK
PN

5,
be

tw
ee

n
pu

ta
tiv

e
an

ti-
re

st
ri

ct
io

n
pr

ot
ei

n
an

d
hy

po
th

et
ic

al
pr

ot
ei

n
in

te
rg

en
ic

Se
qu

en
ce

:C
A
G
C
G
G
C
C
G
G
G
C
T
A
A
A
G
T
G
A
A
G
G
C
A
C
G
G
C
A
C
A
A
C
C
C
G
T
C
G
C
G
A
T
G
C
A
G
G
A
G
G
T
T
G
A
A
T
A
C
A
G
G
G
T
T
T
C
T
C

K
le

bs
ie

lla
79

50
_1

69
.8

56
6

-1
07

.6
08

0.
62

18
6

in
te

rg
en

ic
,b

et
w

ee
n

tw
o

hy
po

th
et

ic
al

pr
ot

ei
ns

in
te

rg
en

ic
Se

qu
en

ce
:C
T
A
T
T
T
C
C
C
C
T
A
C
C
T
G
A
T
A
G
A
C
T
T
A
G
T
G
T
C
A
C
C
G
T
A
T
C
C
T
G
T
T
A
C
T
A
A
G
A
G
C
A
C
G
G
G
G
C
T
A
C
C
T
A
C
T
C
A
T

K
le

bs
ie

lla
92

49
_2

77
.7

5
-1

23
.6

69
3

0.
62

92
2

hy
po

th
et

ic
al

pr
ot

ei
n

un
ch

ar
ac

te
ri

se
d

Se
qu

en
ce

:A
C
C
A
T
T
C
G
C
A
C
G
C
C
C
T
G
C
A
C
T
C
G
G
C
G
T
G
T
G
A
C
T
T
C
T
A
T
G
G
C
T
C
G
T
T
T
A
G
C
G
C
T
C
T
C
C
G
C
G
G
A
G
G
A
G
A
C
A
A

K
le

bs
ie

lla
96

79
_2

0
73

.9
03

4
-1

15
.9

24
9

0.
62

71
6

ri
bo

nu
cl

ea
se

B
N

m
et

ab
ol

is
m

Se
qu

en
ce

:G
C
T
G
A
T
C
C
T
C
T
C
C
T
G
G
G
C
A
G
C
G
T
T
C
T
G
G
C
T
G
C
T
C
T
A
T
A
G
T
A
T
T
G
T
A
C
C
G
A
C
T
A
C
C
C
A
G
G
T
A
C
G
T
A
A
C
C
G
C

K
le

bs
ie

lla
98

53
_3

9
76

.0
81

1
-1

19
.2

84
6

0.
63

47
3

pu
ta

tiv
e

ca
rb

oh
yd

ra
te

ki
na

se
un

ch
ar

ac
te

ri
se

d
Se

qu
en

ce
:A
C
C
A
A
T
C
T
G
C
T
G
G
G
C
A
T
A
G
A
G
G
T
C
G
A
C
G
G
C
C
A
C
C
C
G
A
C
C
T
A
T
A
C
A
G
A
T
G
A
C
G
T
C
G
A
G
C
C
G
C
T
T
T
A
C
T
G
C
T

Y
er

si
ni

a
20

99
4_

24
75

.4
22

7
-1

19
.0

85
7

0.
62

44
3

pu
ta

tiv
e

ox
id

or
ed

uc
ta

se
un

ch
ar

ac
te

ri
se

d
Se

qu
en

ce
:C
C
C
T
C
C
G
T
G
T
A
A
G
A
C
A
A
G
C
T
T
G
G
G
G
T
T
C
G
A
C
C
C
T
A
A
C
A
A
G
C
G
T
G
C
A
G
A
G
T
A
A
G
T
G
C
G
A
A
G
C
C
C
C
A
A
C
T
C
G

Y
er

si
ni

a
21

60
1_

47
75

.0
34

4
-1

16
.8

53
7

0.
64

10
9

N
A

D
H

de
hy

dr
og

en
as

e
Ic

ha
in

A
m

et
ab

ol
is

m
Se

qu
en

ce
:A
T
T
C
A
T
A
A
G
G
C
A
C
G
T
T
T
T
T
G
G
C
A
C
G
A
G
C
C
T
G
G
G
C
T
C
T
C
C
C
C
C
C
G
A
G
G
A
A
G
T
A
C
G
C
A
C
C
T
A
A
A
A
G
C
A
T
C
A
A

Y
er

si
ni

a
26

91
2_

2
75

.0
34

4
-1

16
.8

53
7

0.
64

10
9

N
A

D
H

de
hy

dr
og

en
as

e
Ic

ha
in

A
(r

ev
er

se
co

m
pl

em
en

to
fS

eq
.2

16
01

)
m

et
ab

ol
is

m
Se

qu
en

ce
:T
T
G
A
T
G
C
T
T
T
T
A
G
G
T
G
C
G
T
A
C
T
T
C
C
T
C
G
G
G
G
G
G
A
G
A
G
C
C
C
A
G
G
C
T
C
G
T
G
C
C
A
A
A
A
A
C
G
T
G
C
C
T
T
A
T
G
A
A
T

Y
er

si
ni

a
22

24
3_

19
68

.4
49

4
-1

06
.7

13
3

0.
61

25
7

in
te

rg
en

ic
,b

et
w

ee
n

as
pa

rt
at

e
se

m
ia

ld
eh

yd
e

de
hy

dr
og

en
as

e
an

d
pu

ta
tiv

e
m

em
br

an
e

pr
ot

ei
n

in
te

rg
en

ic
Se

qu
en

ce
:C
T
A
A
C
A
C
C
A
C
T
A
C
A
A
C
G
T
C
A
A
G
T
A
C
G
A
G
G
G
G
T
A
T
A
T
C
T
A
G
C
A
C
G
G
C
A
G
A
C
T
G
A
C
T
A
A
G
A
T
A
G
A
C
T
T
G
A
T
A

Y
er

si
ni

a
28

63
0_

10
68

.4
49

4
-1

06
.7

13
3

0.
61

25
7

in
te

rg
en

ic
,b

et
w

ee
n

as
pa

rt
at

e
se

m
ia

ld
eh

yd
e

de
hy

dr
og

en
as

e
an

d
pu

ta
tiv

e
m

em
br

an
e

pr
ot

ei
n

(r
ev

er
se

co
m

pl
em

en
to

fS
eq

.2
22

43
)

in
te

rg
en

ic

Se
qu

en
ce

:T
A
T
C
A
A
G
T
C
T
A
T
C
T
T
A
G
T
C
A
G
T
C
T
G
C
C
G
T
G
C
T
A
G
A
T
A
T
A
C
C
C
C
T
C
G
T
A
C
T
T
G
A
C
G
T
T
G
T
A
G
T
G
G
T
G
T
T
A
G

C
on

tin
ue

d
on

ne
xt

pa
ge

..
.

180
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B. Supplementary information on the diagnostic microarray for enterobacteria
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B.1. Probe specification
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B. Supplementary information on the diagnostic microarray for enterobacteria
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C. Supplementary data on ipHMMs

C.1. Validation of ipHMMs based on generated sequences

Table C.1.: Validation Results of Peptide-ligand ipHMMs using generated Sequences

Domain SMART Abr. Sensitivity Specificity Accuracy

Domain present in cyclins, TFIIB and Retinoblastoma CYCLIN 0.57 0.80 0.77
Histone H3 H3 0.97 0.49 0.69
WD40 repeats WD40 0.50 0.83 0.79
Alkaline phosphatase homologues alkPPc 0.76 0.69 0.71
Actin ACTIN 0.74 0.59 0.63
Insulin / insulin-like growth factor / relaxin family IlGF 0.88 0.70 0.75
Trypsin-like serine protease TrypSPc 0.35 0.77 0.72
Beta-propeller repeat PQQ 0.59 0.60 0.60
BPTI/Kunitz family of serine protease inhibitors KU 0.61 0.71 0.70
Src homology 2 domains SH2 0.74 0.80 0.79
Kazal type serine protease inhibitors KAZAL 0.82 0.68 0.71
Epidermal growth factor-like domain EGF 0.22 0.79 0.66
Alpha-lactalbumin / lysozyme C LYZ1 0.70 0.77 0.76
Histone H2B H2B 0.97 0.35 0.66
Caspase, interleukin-1 beta converting enzyme (ICE)
homologues

CASc 0.68 0.47 0.53

Pancreatic ribonuclease RNAsePc 0.74 0.58 0.62
EF-hand, calcium binding motif EFh 0.67 0.72 0.73
Immunoglobulin IG 0.36 0.83 0.75
Ligand binding domain of hormone receptors HOLI 0.49 0.79 0.74
Serine/Threonine protein kinases, catalytic domain STKc 0.26 0.86 0.82
Ricin-type beta-trefoil RICIN 0.58 0.76 0.73
Extension to Ser/Thr-type protein kinases STKX 0.70 0.65 0.66
Immunoglobulin C-Type IGc1 0.62 0.73 0.72
Zinc-dependent metalloprotease ZnMc 0.45 0.69 0.65
ATPases associated with a variety of cellular activities AAA 0.24 0.87 0.77
Immunoglobulin V-Type IGv 0.29 0.86 0.82
ankyrin repeats ANK 0.78 0.64 0.67
Serine Proteinase Inhibitors SERPIN 0.46 0.72 0.68
Armadillo/beta-catenin-like repeats ARM 0.28 0.90 0.84
Immunoglobulin C-2 Type IGc2 0.61 0.74 0.72
Histone H4 H4 0.90 0.36 0.61
Histone 2A H2A 0.88 0.43 0.63
Alpha-amylase domain Aamy 0.34 0.77 0.70
Gelsolin homology domain GEL 0.61 0.65 0.64
Rho (Ras homology) subfamily of Ras-like small GT-
Pases

RHO 0.90 0.61 0.68

Src homology 3 domains SH3 0.74 0.71 0.72

Summary 0.61 0.69 0.70

The table lists constructed HMMs for SMART domains with known interactions to peptide ligands
and with a minimum set of 20 seed sequences. Sensitivity, specificity and accuracy are calculated
based on the re-estimation of generated sequences as parameters of prediction quality.
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C. Supplementary data on ipHMMs

Table C.2.: Validation results of nucleotide ligand ipHMMs using generated sequences

Domain SMART Abr. Sensitivity Specificity Accuracy

Zinc finger ZnF_C2H2 0.62 0.55 0.56
RNA recognition motif RRM 0.76 0.66 0.68
Actin ACTIN 0.88 0.73 0.76
Cyclic nucleotide-monophosphate binding domain cNMP 0.63 0.68 0.67
DNA polymerase X family POLXc 0.80 0.91 0.90
3’-5’ exonuclease 35EXOc 0.68 0.73 0.72
Histidine kinase-like ATPases HATPasec 0.46 0.68 0.63
Pancreatic ribonuclease RNAsePc 0.80 0.62 0.66
Pumilio-like repeats Pumilio 0.81 0.66 0.70
Serine/Threonine protein kinases, catalytic domain STKc 0.37 0.78 0.72
DNA polymerase A domain POLAc 0.79 0.77 0.77
ATPases associated with a variety of cellular activities AAA 0.51 0.95 0.93
Homeodomain HOX 0.79 0.60 0.66
Helix-hairpin-helix DNA-binding motif class 1 HhH1 0.85 0.80 0.80
Basic region leucin zipper BRLZ 0.78 0.58 0.65
C4 zinc finger in nuclear hormone receptors ZnF_C4 0.83 0.61 0.67
Rab subfamily of small GTPases RAB 0.78 0.68 0.70
Helix-turn-helix lactose operon repressor HTHLACI 0.88 0.62 0.70

Summary 0.72 0.70 0.72

Table of HMM prediction quality for SMART domains with interactions to nucleotide ligands.
Domains can exhibit binding interfaces of different ligand types (like the actin and zinc finger
domains).

Table C.3.: Validation results of peptide-ligand ipHMMs using generated sequences

Domain SMART Abr. Sensitivity Specificity Accuracy

Alkaline phosphatase homologues alkPPc 0.67 0.55 0.58
Zinc finger ZnFC2H2 0.55 0.56 0.55
Insulin / insulin-like growth factor / relaxin family. IlGF 0.83 0.60 0.65
Trypsin-like serine protease TrypSPc 0.38 0.75 0.69
Alpha-lactalbumin / lysozyme C LYZ1 0.73 0.77 0.76
EF-hand, calcium binding motif EFh 0.75 0.74 0.74
DNA polymerase A domain POLAc 0.85 0.76 0.77
Zinc-dependent metalloprotease ZnMc 0.50 0.78 0.74
ATPases associated with a variety of cellular activities AAA 0.33 0.89 0.83
Immunoglobulin V-Type IGv 0.52 0.79 0.76
Eukaryotic homologues of bacterial periplasmic sub-
strate binding proteins

PBPe 0.88 0.65 0.70

Alpha-amylase domain Aamy 0.30 0.84 0.78
C-type lectin (CTL) or carbohydrate-recognition do-
main (CRD)

CLECT 0.23 0.83 0.77

Gelsolin homology domain GEL 0.66 0.67 0.68
Bacterial periplasmic substrate-binding proteins PBPb 0.52 0.65 0.63

Summary 0.58 0.72 0.71
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C.2. Cross-validation results of ipHMMs

C.2. Cross-validation results of ipHMMs

Table C.4.: Cross validation results of peptide ligand ipHMMs

Domain SMART Abr. Sensitivity Specificity Accuracy

Domain present in cyclins, TFIIB and Retinoblastoma CYCLIN 0.00 0.70 0.68
Histone H3 H3 1.00 0.65 0.79
WD40 repeats WD40 0.00 0.91 0.87
Alkaline phosphatase homologues alkPPc 0.90 0.59 0.62
Actin ACTIN 0.47 0.48 0.48
Insulin / insulin-like growth factor / relaxin family IlGF 0.77 0.62 0.65
Trypsin-like serine protease TrypSPc 0.20 0.82 0.72
Beta-propeller repeat PQQ 1.00 0.47 0.50
BPTI/Kunitz family of serine protease inhibitors KU 0.33 0.60 0.57
Src homology 2 domains SH2 1.00 0.68 0.69
Kazal type serine protease inhibitors KAZAL 0.46 0.80 0.72
Epidermal growth factor-like domain EGF 0.10 0.82 0.66
Alpha-lactalbumin / lysozyme C LYZ1 0.80 0.66 0.67
Histone H2B H2B 1.00 0.31 0.63
Caspase, interleukin-1 beta converting enzyme (ICE)
homologues

CASc 0.00 0.55 0.37

Pancreatic ribonuclease RNAsePc 0.82 0.64 0.67
EF-hand, calcium binding motif EFh 0.57 0.86 0.79
Immunoglobulin IG 0.00 1.00 0.96
Ligand binding domain of hormone receptors HOLI 1.00 0.78 0.79
Serine/Threonine protein kinases, catalytic domain STKc 0.41 0.91 0.88
Ricin-type beta-trefoil RICIN 0.56 0.73 0.72
Extension to Ser/Thr-type protein kinases STKX 0.00 0.60 0.59
Immunoglobulin C-Type IGc1 0.45 0.65 0.62
Zinc-dependent metalloprotease ZnMc 1.00 0.66 0.66
ATPases associated with a variety of cellular activities AAA 0.00 1.00 0.97
Immunoglobulin V-Type IGv 0.00 0.95 0.93
Ankyrin repeats ANK 1.00 0.71 0.76
Serine Proteinase Inhibitors SERPIN 0.29 0.73 0.72
Armadillo/beta-catenin-like repeats ARM 0.20 0.92 0.83
Immunoglobulin C-2 Type IGc2 0.56 0.73 0.71
Histone H4 H4 0.96 0.33 0.62
Histone 2A H2A 0.88 0.43 0.58
Alpha-amylase domain Aamy 0.19 0.77 0.75
Gelsolin homology domain GEL 0.38 0.72 0.68
Rho (Ras homology) subfamily of Ras-like small GT-
Pases

RHO 1.00 0.51 0.55

Src homology 3 domains SH3 0.44 0.60 0.55

Summary 0.52 0.69 0.69

The same parameters as above were determined in cross-validation experiments to assess the
prediction quality in yet unseen protein sequences.

187



C. Supplementary data on ipHMMs

Table C.5.: Cross validation results of nucleotide ligand ipHMMs

Domain SMART Abr. Sensitivity Specificity Accuracy

Zinc finger ZnFC2H2 0.67 0.48 0.50
RNA recognition motif RRM 0.89 0.62 0.64
Actin ACTIN 0.56 0.61 0.61
Cyclic nucleotide-monophosphate binding domain cNMP 0.67 0.75 0.75
DNA polymerase X family POLXc 1.00 0.85 0.85
3’-5’ exonuclease 35EXOc 1.00 0.55 0.55
Histidine kinase-like ATPases HATPasec 0.56 0.64 0.63
Pancreatic ribonuclease RNAsePc 0.67 0.51 0.52
Pumilio-like repeats Pumilio 1.00 0.85 0.87
Serine/Threonine protein kinases, catalytic domain STKc 0.55 0.82 0.81
DNA polymerase A domain POLAc 1.00 0.63 0.64
ATPases associated with a variety of cellular activities AAA 0.50 0.98 0.98
Homeodomain HOX 0.71 0.58 0.61
Helix-hairpin-helix DNA-binding motif class 1 HhH1 1.00 0.82 0.84
Basic region leucin zipper BRLZ 0.88 0.71 0.73
C4 zinc finger in nuclear hormone receptors ZnFC4 1.00 0.58 0.65
Rab subfamily of small GTPases RAB 1.00 0.63 0.65
Helix-turn-helix lactose operon repressor HTHLACI 1.00 0.41 0.41

Summary 0.81 0.67 0.68

Table C.6.: Cross validation results of ion ligand ipHMMs

Domain SMART Abr. Sensitivity Specificity Accuracy

Alkaline phosphatase homologues alkPPc 0.63 0.49 0.49
Zinc finger ZnFC2H2 0.33 0.52 0.50
Insulin / insulin-like growth factor / relaxin family IlGF 0.00 0.67 0.66
Trypsin-like serine protease TrypSPc 0.00 0.76 0.75
Alpha-lactalbumin / lysozyme C LYZ1 0.33 0.68 0.67
EF-hand, calcium binding motif EFh 1.00 0.83 0.86
DNA polymerase A domain POLAc 1.00 0.64 0.64
Zinc-dependent metalloprotease ZnMc 0.00 0.71 0.68
ATPases associated with a variety of cellular activities AAA 1.00 0.95 0.95
Immunoglobulin V-Type IGv 0.00 0.85 0.83
Eukaryotic homologues of bacterial periplasmic sub-
strate binding proteins

PBPe 1.00 0.57 0.57

Alpha-amylase domain Aamy 0.00 0.81 0.80
C-type lectin (CTL) or carbohydrate-recognition do-
main (CRD)

CLECT 0.25 0.82 0.81

Gelsolin homology domain GEL 0.50 0.70 0.69
Bacterial periplasmic substrate-binding proteins PBPb 0.17 0.44 0.43

Summary 0.41 0.70 0.69
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C.3. Receiver operating characteristic

C.3. Receiver operating characteristic

Table C.7.: ROC and Cross-validation Results of ipHMMs

Ligand Group Domain Name AUC Specificity Sensitivity

EF-Hand 0.80 0.75 0.77
Pancreatic RNAse 0.85 0.90 0.61
Alkaline Phosphatase 0.81 0.94 0.58Peptides

Ext. Ser-/Thr-type protein kinase 0.96 0.97 0.81

Pumilio-like repeats 0.98 0.94 0.97
Pancreatic RNAse 0.90 0.92 0.74
HTH lactose operon repressor 0.97 0.92 0.88Nucleotides

C4 zinc finger 0.98 0.88 0.96

Alkaline Phosphatase 0.96 0.98 0.74
EF-Hand 0.77 0.79 0.66
PBPe 0.95 1.00 0.81Ions

Villin headpiece 0.89 0.96 0.69

Performance of interaction site prediction in selected domains was measured by the area under the
ROC curves (AUC) as well as by the trade-off between sensitivity and specificity. An optimal
prediction performance would yield a value of 1.0 for the area under the curve.

C.4. BLAST-based interaction site prediction
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A simple method for the transfer of knowledge concerning the location of functional sites relies on a BLAST search. This

comparative approach was applied to the training data of the ipHMM method. All homologous sequences were detected

for every sequence from this set using BLAST (version 2.2.13). Clustering effects of sequences could be observed in the
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data set due to sequence redundancies within the PDB. In order to establish a better comparability to the HMM-based

method, only hits up to an identity threshold ranging from 90 down to 50% and more than 60% coverage were considered

as a source of prediction. Gradual thresholding allows for the evaluation of the decrease of predictive power from closely

to remotely related sequences. The coverage is calculated as the percentage of the query sequence which is covered by

the BLAST alignment to the considered hit. The interaction site profile of each first hit sequence that fits the thresholds

was subsequently transferred to the query sequence according to the alignment of the BLAST program. Predictions were

restricted to the area which was covered by the BLAST alignment. The prediction quality was evaluated in the same

way as described for the ipHMM methodology. As expected, the prediction quality drops with lower sequence identity.

For an identity threshold of 90% the method predicted 35.88% of all observed interaction sites correctly while 87.23% of

all non-binding positions were precisely detected. In case of 50% maximum identity the sensitivity decreases to 25.65%

whereas the specificity remains at the level of 87%. Regarding the more important prediction quality of interaction sites the

BLAST-predictor performed substantially worse than ipHMMs.
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