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Preface

The homogeneous spaces that have the same (singular) cohomology as spheres
were classified by Borel, Bredon, Montgomery and Samelson and by Poncet.
This was extended to homogeneous spaces which are simply connected and
which have the same rational cohomology as spheres by Onishchik and also
by Kramer. Furthermore, Kramer classified the simply connected homoge-
neous spaces with the rational cohomology of a sphere product

�
k ×

�
m,

where 3 ≤ k ≤ m and m is odd; and Wolfrom classified this kind of spaces
in the case 2 = k ≤ m with odd m. By results of Cartan and Serre and
Kramer it follows in both cases that the homogeneous spaces also have the
same rational homotopy as a product

�
k ×

�
m. We treat here the case of

homogeneous spaces G/H with the same rational homotopy as a product�
1 ×

�
m+1 with m ∈ � . We show that these spaces have also the rational

cohomology of
�
1×

�
m+1 if H is connected and if the quotient has dimension

m+ 2. Furthermore, we prove that if additionally the fundamental group of
G/H is cyclic, then G/H ∼= SO(2) × (A/H), where A/H is a simply con-
nected rational cohomology (m+ 1)-sphere (and hence classified). If H fails
to be connected, then the G-action on the covering space G/H1 of G/H has
connected stabilizers, and the results apply to G/H1. To show that under
the assumptions above every natural number may be realized as the order of
the group H/H1 we calculate the cohomology of certain homogeneous spaces.

We also determine the rational cohomology of the fibre bundle H1 → G →
G/H1 if G/H meets the assumptions above. This is done by considering the
respective Leray-Serre spectral sequence. The structure of the cohomology
of H1 → G → G/H1 then gives a second proof for the structure of compact
connected Lie groups acting transitively on spaces with the rational homo-
topy of a sphere product

�
1×

�
m+1. Since a quotient of a homogeneous space

with the same rational homotopy or cohomology as
�
1 ×

�
m+1 is not simply

connected, there often arises the question whether or not a considered fibre
bundle or fibration is orientable. A large amount of space will therefore be
given to the problem of showing that certain fibrations are orientable.

v
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Assume that a Lie group acts transitively on a simply connected compact
manifold. By a well known result of Montgomery, the maximal compact
subgroup of the Lie group is also transitive on the manifold. This may be
generalized to compact connected manifolds with finite fundamental groups.
But if the fundamental group of the manifold in question fails to be finite the
maximal compact subgroups need not act transitively . We will show that for
compact connected (m + 2)-manifolds with cyclic fundamental groups and
with the rational homotopy of

�
1 ×

�
m+1 the situation is not too bad: if

a connected Lie group acts transitively on the manifold, then the maximal
compact subgroups are either transitive, or their orbits are simply connected
rational cohomology spheres of codimension 1.

Homogeneous spaces with the same rational cohomology or homotopy as a
sphere product

�
k ×

�
m play a role in the study of different types of geomet-

rical objects. They appear for example as focal manifolds of isoparametric
hypersurfaces with four distinct principal curvatures. Further examples of
such spaces are the point spaces and the line spaces of compact connected
generalized quadrangles. In both cases, the case of isoparametric hypersur-
faces and the case of generalized quadrangles, there is a space that is the
total space of two fibrations, each of which has sphere-like fibres. We call
this a double fibration. Using this double fibration Münzner proved many of
his important results on isoparametric hypersurfaces. Kramer obtained sim-
ilar results for generalized quadrangles. We extend the results of Münzner
and Kramer for double fibrations to show that in certain circumstances there
appears a base space with the rational homotopy of

�
1×

�
m+1. This holds in

particular for the respective focal manifolds and the respective point spaces
of generalized quadrangles. Hence, our results on homogeneous spaces apply.

Isoparametric hypersurfaces in spheres are closed submanifolds with constant
principal curvatures. Hsiang and Lawson classified the isoparametric hyper-
surfaces that admit a transitive action of their isometry group. These so-
called homogeneous hypersurfaces are exactly the principal orbits of isotropy
representations of symmetric spaces of rank 2. To every isoparametric hyper-
surface belong two focal manifolds. Ferus, Karcher and Münzner constructed
infinitely many examples of non-homogeneous isoparametric hypersurfaces
such that their isometry groups act transitively on one of the focal mani-
folds. In most cases, the focal manifold have the cohomology of products
of two spheres

�
k ×

�
m. Kramer and Wolfrom classified the cases where

1 < k ≤ m. We apply our results to determine the transitive actions in the
case k = 1. The respective hypersurfaces are classified by a result of Takagi.

The second application of our results on homogeneous spaces will be a spe-
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cial kind of buildings. Buildings were introduced by Jacques Tits to give
interpretations of simple groups of Lie type. They are a far-reaching gen-
eralization of projective spaces, in particular a generalization of projective
planes. There is another generalization of projective planes called general-
ized polygons. A projective plane is the same as a generalized triangle. The
generalized polygons are also contained in the class of buildings: they are the
buildings of rank 2. Hence, the term building covers both generalizations of
projective planes, the projective spaces and the generalized polygons.

The (irreducible, thick) spherical buildings of rank at least three were clas-
sified by Tits. Apart from not being classified, the buildings of rank 2 are
of particular interest, because buildings are in a certain sense composed of
buildings of rank two.

For infinite generalized polygons it is necessary to impose further reason-
able assumptions on these point-line-geometries to obtain classification re-
sults. It is usually required that the point space and the line space of the
geometry carry topologies that render the geometric operations of intersect-
ing lines and joining points continuous. Grundhöfer, Knarr and Kramer
classified the compact connected generalized polygons that admit automor-
phism groups which are transitive on the flag space. Here, a flag is a pair
of a point and a line such that the point lies on the line. Furthermore,
Kramer proved that point-homogeneous compact connected polygons are al-
ready flag-homogeneous provided that the generalized polygon is not a gener-
alized quadrangle. There are indeed many point-homogeneous quadrangles
which are not flag-homogeneous. Kramer started to classify compact con-
nected quadrangles that admit an automorphism group acting transitively
on the points or on the lines. By duality of the role of points and lines it
suffices to consider point-homogeneous quadrangles. To these quadrangles
one can assign a pair of natural numbers called the topological parameters
of the quadrangles. Kramer classified the point-homogeneous quadrangles
whose topological parameters (k,m) satisfy k = m. He obtained also far-
reaching results in the cases 3 ≤ k < m. Biller classified the case of m = 1;
and Wolfrom obtained a table of possible point-transitive groups in the case
k = 2. We will treat the case k = 1 here. It turns out that there are no other
point-transitive compact connected Lie groups for (1, m)-quadrangles than
the ones for the real orthogonal quadrangles. In the case of special orthogonal
groups the group action is unique and, hence, the one of the real orthogonal
quadrangle. For the special unitary group we determine the structure of the
line space. Furthermore, we solve the problem of three infinite series of group
actions which Kramer left as open problems; there are no quadrangles with
the homogeneous spaces in question as point spaces (up to maybe a finite
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number of small parameters in one of the three series). One may summarize
the results in the following way.

Theorem If a compact connected Lie group acts as an automorphism
group transitively on the points of a compact connected quadrangle, then there
is (up to maybe a finite number of exceptions) a point-transitive action of
the group on a ’classical’ quadrangle, or on an quadrangle with parameters
(3, 4n) or (8, 7) due to Ferus, Karcher and Münzner, and in both actions, the
given one and the classical one, the connected components of the stabilizers
coincide.

The chapters are organized as follows. In the first chapter we introduce
the term double fibration in the way we will use it here. We quote some
results already obtained by Kramer and Münzner. Then we show that in
the cases we are interested in one of the two base spaces has the rational
homotopy of

�
1×

�
m+1. After that, three cases of group actions are excluded.

This is done by applying results of the last chapter, in particular we use a
certain � -orientable fibration. We treat these cases so early (even before the
classification) because there is no further structure of the double fibration
needed to exclude them.

The first sections of the second chapter consist of short introductions to (com-
pact) Lie groups, actions and homogeneous spaces. There is an extra sec-
tion for sphere-like spaces where we recall the classification of homogeneous
cohomology spheres and the classification of the simply connected rational
cohomology spheres. Here we use and extend also results of Biller on gener-
alized spheres. In the last section we quote a theorem of Mostert on actions
of Lie groups with codimension one in compact manifolds. This theorem
will be an important tool throughout the following chapters. It plays also
an important role for the description of homogeneous spaces that have the
rational homotopy of

�
1 ×

�
m+1. This description is worked out in the last

part of the section.

We apply our classification of homogeneous spaces with the rational homo-
topy of

�
1 ×

�
m+1 to the two kinds of geometric objects mentioned above.

We start with the application to focal manifolds of isoparametric hypersur-
faces. After a short introduction to isoparametric hypersurfaces, we classify
the transitive actions on the focal manifolds in question.

The following two chapters are devoted to generalized quadrangles. Their def-
inition is given and some important properties are mentioned. We recall the
definition of the most important example of generalized quadrangles for the
following sections, the real orthogonal quadrangles. The point-homogeneous
(1, 2)-quadrangles are discussed in the following section. Then each class of
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groups appearing in the classification is treated separately in a section. In
the case of the orthogonal groups it turns out that the point-transitive ac-
tion has to be the classical one on the real orthogonal quadrangle. In the
case of the unitary groups we obtain no uniqueness result. But we describe
the structure of the line space under the action of SU(n) and there are some
geometric properties of orbits derived. For example, the existence of homoge-
neous spreads is proved. We close this chapter with a short summary. Here,
most of the remaining singular cases are treated.

Also the following chapter is dedicated to point-homogeneous quadrangles.
In Kramer’s Habilitationsschrift appear three infinite classes of homogeneous
spaces as candidates for point spaces of (k,m)-quadrangles. Here, we have
k > 1 in each case. Kramer conjectured that none of these homogeneous
spaces belongs to a quadrangle, but he left it as an open problem. We show
that indeed these homogeneous spaces may not be realized as point spaces
of quadrangles, except possibly for the smallest four cases in one of the three
classes.

The last chapter addresses relations between the rational homotopy and the
rational cohomology of homogeneous spaces. We might have put this chapter
at the beginning as well (together with lemma 2.5.4). But as the concepts
and the tools here are very different from the other chapters we put this
chapter to the end. The chapter on double fibrations does not rely on new
result of this last chapter.

After defining orientable fibrations we show in this chapter that for an (m+2)-
dimensional homogeneous space X with connected stabilizers and the ratio-
nal homotopy of

�
1×

�
m+1 there is up to homotopy a � -orientable fibration

X̃ → X → Bπ where X̃ is the universal covering space of X and Bπ is the
classifying space of the fundamental group of X. We recall the definition of
spectral sequences and state a theorem on the Leray-Serre spectral sequence.
Some simple conclusions are drawn. Applying the Leray-Serre spectral se-
quence to the � -orientable fibration above, we show that the space X has
the same rational cohomology as

�
1 ×

�
m+1. Finally, we determine the ra-

tional cohomology of H1 → G → G/H1 (where X = G/H is as above).
The structure of the cohomology of the fibre bundle leads to a second proof
of the classification of homogeneous spaces with the rational homotopy of�
1 ×

�
m+1. In the last section we calculate the cohomology of certain ho-

mogeneous spaces involving the special unitary and the symplectic groups.
These homogeneous spaces are further examples of spaces having the ho-
motopy and the cohomology of

�
1 ×

�
m+1. Furthermore, they show that
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in general it is not possible to derive further conclusions on the number of
components of the stabilizers.

In all chapters we will always use singular homology and singular cohomology
when we speak of homology and cohomology, respectively. If we define a
notion, we will write it in boldface letters.

I am indebted to the Konrad-Adenauer-Stiftung, which supported me during
the last years.

I would also like to express my gratitude to several people for their help
and encouragement. Linus Kramer suggested the nice topic. From him I
learned most of the topological and geometrical background, and he was
always open to my mathematical questions. I was also encouraged by Theo
Grundhöfer who introduced me into the world of geometry. A great pleasure
were the fruitful mathematical discussions with Martin Wolfrom, who worked
on similar questions, and I also enjoyed his daily company. Nils Rosehr had
always solutions for my problems related to LATEX and Linux, and he was at
any time open to mathematical discussions.



Notation

� natural numbers
�

integers
� rational numbers
�

real numbers
�

complex numbers
�

quaternions
�
n integers modulo n

πk(X) homotopy groups
π•(X) complex of homotopy groups
Hn(X;G) singular homology groups with coefficients in G
H•(X;G) complex of singular homology groups with coefficients in G
Hn(X;G) singular cohomology groups with coefficients in G
H•(X;G) singular cohomology ring with coefficients in G�
n unit sphere in

�
n+1

�
n unit disk in

�
n+1

�
Pn real projective n-space

�
Pn complex projective n-space

�
Pn quaternionic projective n-space

�
2(

�
n) Stiefel manifold of orthonormal pairs of vectors in

�
n

BG classifying space of G
EG total space of the classifying bundle of G
X
/
G orbit space of X under the action of G

G/H Quotient of (topological) groups
Qn(

�
) orQ(1, n-3) real orthogonal quadrangle in

�
n+1

Pl points on the line l
Lp lines through the point p
p⊥ perp of the point p
' homotopy equivalence
≈ homeomorphy

xi
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Chapter 1

Fibrations and double
fibrations

Fibrations will play an important role in several chapters. In the first section
we give the definition and recall some properties of fibrations. The notion
of double fibrations is introduced in the second section. We cite results on
the cohomology of the spaces involved and derive their rational homotopy.
In particular, it is shown that under mild assumptions the base points of a
double fibration have the same rational homotopy as a product of spheres.

1.1 Fibrations

There is an important generalization of fibre bundles. A continuous map
p : E → B is called a fibration, if for every topological space X and every
commutative diagram of continuous maps

X × {0}
� _

��

// E

p

��
X × [0, 1] // B

there is a continuous map H : X × [0, 1] → E such that the diagram

X × {0}
� _

��

// E

p

��
X × [0, 1] //

H

::

B

1



2 CHAPTER 1. FIBRATIONS AND DOUBLE FIBRATIONS

is commutative. This is what sometimes is also called a Hurewicz fibre
space or a Hurewicz fibration. If we restrict this property to all disks
X =

�
n, then we call p : E → B a Serre fibration. This is the notion of,

for example, tom Dieck [67] and [66], McCleary [40], Spanier [57], Whitehead
[70], whereas some other authors call a Serre fibration simply a fibration, for
example, Bredon [11], Mimura and Toda [42].

If p : E → B is a fibration, we call E the total space, B the base space
of p, and p−1(b) the fibre over b ∈ B. If B is path-connected, then any two
fibres are homotopy equivalent, see Spanier [57, 2.8.13]. We then write F →
E → B for the fibration, where F = p−1(b) for some b ∈ B. This is indeed
a generalization of fibre bundles, because by Bredon [11, VII.6.12] every
fibre bundle is a Serre fibration, and every fibre bundle with a paracompact
Hausdorff base space is a (Hurewicz) fibration, see Spanier [57, 2.7.14].

An important property of a Serre fibration p : E → B is the exactness of the
homotopy sequence: If we take a point b ∈ B as a base point in B and some
point in F = p−1(b) as base point in F and via i : F ↪→ E also as a base
point in E, then there is an exact sequence, the homotopy sequence of
the fibration F → E → B,

. . . // πn(F )
i# // πn(E)

p# // πn(B) // πn−1(F )
i# // . . .

. . . // π1(E)
p# // π1(B) // π0(F )

i# // π0(E)
p# // π0(B),

see Spanier [57, 7.2.10] or Bredon [11, VII.6.7]. Later on, we will see some
situations in which fibrations arise.

1.2 Double fibrations

Recall that the mapping cylinder of a continuous map f : X → Y between
topological spaces X and Y is the quotient space that we get from the disjoint
union (X × [0, 1]) ∪̇ Y by identifying (x, 1) with f(x) for every x ∈ X.

If we have two continuous mappings f : X → Y and g : X → Z with
the same domain X, we consider the disjoint union Z ∪̇ (X × [0, 1]) ∪̇ Y .
Identifying (x, 0) with g(x) and (x, 1) with f(x) for every x ∈ X, we get the
double mapping cylinder D of f and g. Note that there are inclusions
Y ↪→ D, Z ↪→ D and homotopy equivalences D \ Z ' Y , D \ Y ' Z and
(D \Z)∩ (D \ Y ) = D \ (Y ∪Z) ' X. Therefore, there is a Mayer-Vietoris-
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sequence for the diagram

Y

  @
@@

@@
@@

X

f
>>~~~~~~~~

g

  A
AA

AA
AA

D

Z

>>~~~~~~~

see Bredon [11, V.8.3] or Spanier [57, 5.4.9]. The Seifert-Van Kampen the-
orem ([11, III.9.4]) also applies to the diagram and yields relations between
the fundamental groups of the four spaces. The double mapping cylinder
will be important later on for Mostert’s theorem 2.5.1 and for the notion of
double fibrations.

A subset A of a topological space X is a retract of X if there is a continuous
map r : X → A, a retraction, such that r|A = idA. A metric space X is an
absolute neighbourhood retract (ANR) if every homeomorphic image
of X in a metric space Y is a retract of a neighbourhood of X in Y . For
properties of ANRs see e.g. Hu [31].

We consider the situation that a space F is the total space of two fibrations
simultaneously. Furthermore, we assume that the fibres ’look like’ spheres.
We are particularly interested in the case where one of these fibre types is
a 1-sphere. This is the case in the situation we have in mind, and we will
apply the results to the kind of isoparametric hypersurfaces and compact
generalized quadrangles we investigate in the following chapters.

We start with the definition of double fibrations. For similar settings cf.
Strauß [59] and Markert [39].

Definition 1.2.1 Consider two fibrations Sm → F → P and Sk → F → L
with the same total space F . We call the diagram

Sk

  A
A

A
A

Sm

~~
F

~~ !!C
C

C
C

P L

a double fibration of type (k,m) if the following conditions are satisfied.

• The double mapping cylinder of the two projections is a simply con-
nected cohomology (r + 1)-sphere.
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• F is homotopy equivalent to a CW-complex and a cohomology r-mani-
fold. (See Bredon [10, V.16.7] for a definition of cohomology manifolds,
he also uses n− cm � as notation for cohomology n-manifolds.)

• P and L are locally compact and finite-dimensional ANRs and coho-
mology manifolds of dimension r −m and r − k, respectively.

• Sk '
�
k and Sm '

�
m are locally compact, finite-dimensional ANRs

and homotopy spheres.

Note the symmetry in the roles of P and L in the definition. In the situation
above

Sm

  B
B

B
B Sk

~~
F

}}   B
B

B
B

L P

is a double fibration of type (m, k); hence, we may always assume that k ≤ m.

Examples of double fibrations of type (k,m) arise in compact (k,m)-quad-
rangles and in isoparametric hypersurfaces with multiplicities k and m, see
chapters 3 and 4.

For the rest of this section we assume that we are given a double fibration of
type (k,m), and we use the notation of the definition.

Münzner [49] obtained the following results on the cohomology of double
fibrations under more specific assumptions. Kramer generalized these in [36,
6.4.1], see also Strauß [59].

Theorem 1.2.2 For a double fibration of type (k,m) as above there is an
n ∈ {1, 2, 3, 4, 6} such that there are isomorphisms of groups

H•(P;
�
2) ∼=

�
2
n,

H•(L;
�
2) ∼=

�
2
n,

H•(F ;
�
2) ∼=

�
2
2n.

The cohomology manifold F is orientable. For 0 < l < r the maps of the
fibrations induce isomorphisms

H l(F ;
�
2) ∼= H l(P;

�
2)⊕H l(L;

�
2).
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Furthermore, we have H0(F ;
�
2) ∼=

�
2; in particular, the spaces F , P and

L are arcwise connected.

Suppose now that n = 4. If k +m is odd, then P and L are both orientable
cohomology manifolds, and there are isomorphisms of graded rings

H•(P) ∼= H•(
� k ×

� k+m),

H•(L) ∼= H•(
� m ×

� k+m),

H•(F) ∼= H•(
� k ×

� m ×
� k+m).

If n = 4 and k + m is even, then k = m ∈ {2, 4} or at least one of the
parameters k, m is 1.

If n = 4, k = 1 and m > 2 is odd, then L is orientable and P is not, and
there are isomorphisms of graded rings

H•(P;
�
2) ∼= H•(

� 1 ×
� 1+m;

�
2),

H•(L;
�
2) ∼= H•(

� m ×
� 1+m;

�
2),

H•(F ;
�
2) ∼= H•(

� 1 ×
� m ×

� 1+m;
�
2)

and

H•(L; � ) ∼= H•(
� 2m+1; � ).

Furthermore, for n = 4, k = 1 and m > 1 we have π1(P) ∼= π1(F) ∼=
�
.

There is also much known about the structure of the cohomology rings in
the other cases n ∈ {1, 2, 3, 6}, see Kramer [36, 6.4.1]. We just quoted the
cases of most interest for the following chapters.

If a space has the same cohomology (with coefficients in
�
) as a product

of spheres, then this is true also for rational coefficients by the universal
coefficient theorem. Note that the fundamental groups of F , P and L are
trivial for k, m > 1. Hence, the Cartan-Serre theorem, see 6.3.3, gives the
following lemma. Note that for m even, the homotopy groups of

�
m of rank

1 are πm(
�
m) and π2m−1(

�
m) in view of 6.3.3.

Lemma 1.2.3 If in a double fibration of type (k,m) the sum k +m is odd
and if we have k, m > 1, then

π•(F)⊗ � ∼= π•(
� k ×

� m ×
� m+k)⊗ � ,

π•(L)⊗ � ∼= π•(
� m ×

� m+k)⊗ � and

π•(P)⊗ � ∼= π•(
� k ×

� m+k)⊗ � .
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Suppose that k = 1 and m > 1. If m is even, then

π•(L)⊗ � ∼= π•(
� m ×

� m+1)⊗ � ,

and if m is odd, then

π•(L)⊗ � ∼= π•(
� 2m+1)⊗ � .

We investigate now the rational homotopy of F and P in the case k = 1
and m > 1. Note that the fundamental groups of F , P and L are cyclic, in
particular abelian. Hence, tensoring these groups with � makes sense. By
tensoring the homotopy sequence of the fibration

�
1 → F → L with � and

by the last lemma we obtain the following result. For the case m = 2 note
that π1(F) ∼=

�
by 1.2.2.

Lemma 1.2.4 If m is even in a double fibration of type (1, m), then

π•(F)⊗ � ∼= π•(
� 1 ×

� m ×
� m+1)⊗ � .

If m > 1 is odd, then

π•(F)⊗ � ∼= π•(
� 1 ×

� 2m+1)⊗ � .

Now we will determine the rational homotopy of the base space P of the
fibration with 1-spheres as fibres.

Lemma 1.2.5 Assume m > 2 in a double fibration of type (1, m). Then

πk(P)⊗ � ∼=

{
� if k ∈ {1, m+ 1}
0 if k 6∈ {1, m+ 1, 2m− 1, 2m}.

If m is odd or if P has the homotopy type of an (m+2)-dimensional manifold
then the space P has the same rational homotopy as a product of a 1-sphere
and an (m + 1)-sphere:

π•(P)⊗ � ∼= π•(
� 1 ×

� m+1)⊗ � .

Proof We will distinguish two cases. First assume m to be odd, then
π•(F) ⊗ � ∼= π•(

�
1 ×

�
2m+1) ⊗ � as we saw above. Then the homotopy

sequence of
�
m → F → P implies π•(P)⊗ � ∼= π•(

�
1 ×

�
m+1)⊗ � .

Now assume m to be even. Then by 1.2.4 the total space F has the same
rational homotopy as a product of three spheres,

π•(F)⊗ � ∼= π•(
� 1 ×

� m ×
� m+1)⊗ � .
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As F is homotopy equivalent to a CW-complex by the definition of the
double fibration, we get by Kramer [36] a cell decomposition of F and an
isomorphism

Hm(
�
m)

∼= // Hm(F)

induced by the fibre inclusion. From the Hurewicz homomorphisms, see
Spanier [57, 7.4], we get a commutative diagram

πm(
�
m)

ϕ //

∼=
��

πm(F)

��
Hm(

�
m)

∼= // Hm(F),

where the vertical arrow on the left is in fact an isomorphism. Hence, the
map ϕ in the upper row has trivial kernel. Therefore, tensoring the homotopy
sequence of

�
m → F → P with � we get the following exact sequence, where

we suppress the tensoring with � ,

0 // πm+1(F) // πm+1(P) 0 // πm(
�
m)

ϕ // πm(F) // πm(P) // 0,

and it follows that πm+1(P)⊗ � ∼= � and πm(P)⊗ � ∼= 0; furthermore, the
homotopy sequence shows that πk(P) ⊗ � = 0 for k 6∈ {1, m, 2m − 1, 2m}
and that there is an exact sequence

0 // π2m(P) // π2m−1(
�
m) // π2m−1(F) // π2m−1(P) // 0.

This shows the first claim. For the second, it suffices to show that π2m(P)⊗ �
is trivial in view of the exact sequence above involving π2m−1(P) and π2m(P).
This follows if P has the homotopy type of a manifold, because then by
Tatsuo Higa [25] the homotopy groups π2l(P) are finite for 2l > dimP =
m+ 2. �

In 2.5.11 we determine the homogeneous spaces of compact connected Lie
groups with infinite cyclic fundamental group and the same dimension and
the same rational homotopy as

�
1 ×

�
m+1. In view of lemma 1.2.5 these

spaces may be one of the base spaces of a double fibration of type (1, m). We
are going to exclude some of the spaces that appear in 2.5.11 and in 2.4.2.
We do this already here, because there is no further structure on the double
fibration needed in contrast to the chapters on isoparametric hypersurfaces
and generalized quadrangles. But we will refer sometimes to chapter 6. This
is no problem, as we refer only to the statements of chapter 6 which are
well-known.
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As we will see in 2.4.2, the Stiefel manifold
�

2(
� 2n+1) = SO(2n+ 1)/SO(2n− 1)

of pairs of orthonormal vectors in
� 2n+1 is a simply connected rational coho-

mology (m+ 1)-sphere for m = 4n− 2. It has also the rational homotopy of
an (m+1)-sphere, see e.g. the rational Hurewicz theorem in Kramer [37, 2.2].
Hence, a quotient G/H of G = SO(2)×SO(2n+1) with a (closed) subgroup
H with connected component H1 = SO(2n−1) has the rational homotopy of�
1×

�
m+1 by covering theory, and this quotient space might therefore appear

as the base space P of a double fibration of type (1, m). We will show that
this is actually not possible.

Proposition 1.2.6 A quotient G/H with G = SO(2)× SO(2n+ 1), n > 1,
and H1 = SO(2n− 1) does not appear as base space P of a double fibration
of type (1, 4n− 2).

Proof We show that the cohomology of such a quotient space is not the
’right’ one. The cohomology groups of the Stiefel manifold

�
2(

� 2n+1) are
given by

Hk(
�

2(
� 2n+1)) ∼=





�
if k ∈ {0, 4n− 1},

�
2 if k = 2n and

0 otherwise,

see Bredon [11, VI.13.5]. The Universal Coefficient Theorem (see Bredon [11,
V.7.Ex.7] for an appropriate version) implies

Hk(
�

2(
� 2n+1);

�
2) ∼=

{ �
2 if k ∈ {0, 2n− 1, 2n, 4n− 1} and

0 otherwise.

The universal covering of G/H is
�

×
�

2(
� 2n+1). As we will see in 6.1.8

there is a fibration
�
×

�
2(

� 2n+1) → P → B
�
'

� 1

which is orientable over
�
2, since every automorphism of the at most one-

dimensional
�
2-vector space H

k(
�

2(
� 2n+1);

�
2) is the identity, cf. 6.1.6. The

spectral sequence collapses and one gets by a theorem of Leray and Hirsch
[37, 1.7+p.5] an isomorphism of graded groups

H•(P;
�
2) ∼= H•(

� 1 ×
�

×
�

2(
� 2n+1);

�
2) ∼= H•(

� 1 ×
�

2(
� 2n+1);

�
2);

hence

Hk(P;
�
2) =





�
2 if k ∈ {0, 1, 2n− 1, 2n+ 1, 4n− 1, 4n},

�
2 ⊕

�
2 if k = 2n and

0 otherwise,
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see e.g. Bredon [11, VI.3.2]. This does not coincide with the cohomology
given in 1.2.2 for base spaces of the respective double fibrations. Hence,
there is no quotient of the form G/H with G = SO(2) × SO(2n + 1) and
H1 = SO(2n− 1) as base space of a double fibration of type (1, 4n− 2). �

The same method as in the proof of the last theorem applies to the quotient
with SU(3)/SO(3) playing the role of SO(2n + 1)/SO(2n− 1).

Proposition 1.2.7 A quotient G/H with G = SO(2) × SU(3) and H1 =
SO(3) does not appear as base space P of a double fibration of type (1, 4).

Proof The cohomology of SU(3)/SO(3) over
�

2 is given by

H•(SU(3)/SO(3);
�
2) ∼= Λ(e2, e3),

where e2 and e3 are homogeneous elements of degree 2 and 3, respectively,
see e.g. Mimura-Toda [42, III.6.7(3)]; hence, Hk(SU(3)/SO(3);

�
2) ∼=

�
2 for

k ∈ {0, 2, 3, 5} and Hk(SU(3)/SO(3);
�
2) = 0 otherwise. Since SU(3)/SO(3)

is simply connected (see e.g. 2.4.2),
�
×SU(3)/SO(3) is the universal covering

space of P = (SO(2)× SU(3))/H. There is as in 6.1.8 a fibration

�
× SU(3)/SO(3) → P → B

�
'

� 1

which is orientable over
�
2, since every automorphism of the at most one-

dimensional
�
2-vector space Hk(SU(3)/SO(3);

�
2) is the identity, see 6.1.6.

The spectral sequence collapses and one gets by a theorem of Leray and
Hirsch [37, 1.7 and p.5] an isomorphism of graded groups

H•(P;
�
2) ∼= H•(

� 1 ×
�

× SU(3)/SO(3);
�
2) ∼= H•(

� 1 × SU(3)/SO(3);
�
2),

and, hence, by the Künneth Theorem (see e.g. Bredon [11, VI.3.2])

Hk(P;
�
2) =





�
2 if k ∈ {0, 1, 2, 4, 5, 6}

�
2 ⊕

�
2 if k = 3,

0 else.

This does not coincide with the cohomology given in 1.2.2 for base spaces
of the respective double fibrations. Hence, there is no quotient of the form
G/H with G = SO(2)× SU(3) and H1 = SO(3) that is a base space P of a
double fibration of type (1, 4). �

We finally consider the pair (Sp(2),
�

ρ3λ1) of 2.4.2, where
�

ρ3λ1 denotes a
compact connected subgroup of Sp(2) that is isomorphic to Sp(1). The quo-
tient Sp(2)/

�

ρ3λ1 is a simply connected rational cohomology 7-sphere with
π3(Sp(2)/

�

ρ3λ1)
∼=

�
10.
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Proposition 1.2.8 A quotient G/H with G = SO(2) × Sp(2) and H1 =
�

ρ3λ1 does not appear as base space P of a double fibration of type (1, 6).

Proof We determine first the cohomology of X = Sp(2)/H1 over
�
2.

Since Sp(2) and H1 ∼= Sp(1) are 2-connected, also the quotient Sp(2)/H1 is
2-connected by the homotopy sequence. The Hurewicz isomorphism theorem
and the fact that π3(X) ∼=

�
10, cf. Kramer [37, 6.A], imply that H1(X) = 0,

H2(X) = 0 and H3(X) ∼=
�
10.

The universal coefficient theorem implies that
�

2
∼= H3(X;

�
2) and that

Hk(X;
�
2) ∼= Hk(X;

�
2), since Ext(A,

�
p) = 0 for finitely generated abelian

groups and prime numbers p, see Bredon [11, V.6]. This and the Poincaré
duality for the 7-dimensional manifold X yield that

�
2

∼= H3(X;
�
2) ∼= H3(X;

�
2)

∼= H4(X;
�
2) ∼= H4(X;

�
2)

and also that
0 ∼= H2(X;

�
2) ∼= H5(X;

�
2)

and
0 ∼= H1(X;

�
2) ∼= H6(X;

�
2).

Hence,

Hk(Sp(2)/H1;
�
2) =

{ �
2 if k ∈ {0, 3, 4, 7}

0 else.

This shows that the fibration
�

× Sp(2)/H1 → P → B
�
'

� 1

is orientable over the field
�
2, since every automorphism of the at most one-

dimensional
�
2-vector space H

k(Sp(2)/H1;
�
2) is the identity, see 6.1.6. The

spectral sequence collapses, and one gets by the theorem of Leray and Hirsch
[37, 1.7 and p.5] an isomorphism of graded groups

H•(P;
�
2) ∼= H•(

� 1 ×
�

× Sp(2)/H1;
�
2) ∼= H•(

� 1 × Sp(2)/H1;
�
2),

and, hence, by the Künneth Theorem

Hk(P;
�
2) =





�
2 if k ∈ {0, 1, 3, 5, 7, 8}

�
2 ⊕

�
2 if k = 4,

0 else.

This does not coincide with the cohomology given in 1.2.2 for base spaces
of the respective double fibrations. Hence, there is no quotient of the form
G/H with G = SO(2) × SU(3) and H1 =

�

ρ3λ1 that is a base space P of a
double fibration of type (1, 6). �



Chapter 2

Lie group actions

In the first section we introduce topological groups and the notions we use
in Lie theory. Then we state some results which we will use frequently. The
focus of the representation is restricted mainly to Lie groups, but many of
these facts can be generalized to (locally) compact groups. See the book of
Hofmann and Morris [27] for results on compact groups, and Hilgert-Neeb
[26] for Lie groups and Lie algebras. For later use we also extend work of
Biller [2] in order to determine certain large subgroups of SU(n).

We give some essential facts for actions of Lie groups in the second section.
A basic introduction is given in Kawakubo [34], where also deeper results for
differential actions of Lie groups may be found. For non-differential actions
see the classics of Montgomery-Zippin [47] or Bredon [9], or chapter 9 of the
book of Salzmann et al. [54].

The third section deals with transitive actions, and in the following section
we collect some results about homogeneous spheres. First the classification of
homogeneous homology spheres is quoted, then the classification of homoge-
neous rational cohomology spheres. The term generalized sphere in the sense
of Biller is introduced and some results on generalized spheres are mentioned.

Finally, in the last section we consider almost transitive actions on compact
spaces that have the rational homotopy of a product of a 1-dimensional sphere
and a higher-dimensional sphere. This section starts with a general result
of Mostert. Then we apply Mostert’s theorem to obtain a description of
homogeneous spaces with the rational homotopy of

�
1 ×

�
m+1.

11
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2.1 Lie theory

Most of the following facts may be found in many books on Lie groups. Our
sources were Chapter 9 of Salzmann et al. [54], the book of Gorbatsevich,
Onishchik and Vinberg [20] and the book of Mimura and Toda [42].

A topological Hausdorff space is called a topological group, if it addition-
ally carries a group structure with continuous group operations. Isomor-
phisms of topological groups are also supposed to be homeomorphisms.

We are mainly interested in topological groups that are also equipped with
a differential structure.

A group is a Lie group, if it carries additionally the structure of a topological
(Hausdorff) manifold that admits local coordinates near the identity such
that the group operations are real analytic maps.

The Lie groups may be characterised among the topological groups in purely
topological terms. This is known as Hilbert’s 5th problem. The following so-
lution may be found in Montgomery-Zippin [47, 4.10], see also Gorbatsevich,
Onishchik and Vinberg [20, I, Ch. 4, 4.2]: a locally connected and locally
compact topological group of finite (covering) dimension is a Lie group.

The connected component of (the identity of) a Lie group is a normal sub-
group. It is a (closed and) open subset. If the connected component of a
topological group is a topological manifold and an open subspace, then the
topological group is a Lie group (see also [54, 93.3]).

Every (continuous) homomorphism between Lie groups is in fact analytic
(see e.g. [54, 94.9] for some references); therefore, the analytic structure of a
Lie group is unique.

If H is a closed subgroup of a Lie group G, then H is a Lie group and the
coset space G/H is a differentiable manifold of dimension dimG − dimH.
Moreover, the canonical projection G → G/H is a fibre bundle and in par-
ticular a fibration. More generally, if U and H are closed subgroups of a
Lie group G with U ⊆ H, then H/U → G/U → G/H is a fibre bundle. In
particular, if U = H1 is the connected component of H, there is a covering
G/H1 → G/H with fibre H/H1.

If H is a closed normal subgroup of G, then the quotient G/H is again a Lie
group. Hence, if we know the connected component G1 of a Lie group G,
then we know G up to the discrete group G/G1.

This means that it is particularly important to describe the structure of
connected Lie groups in order to describe the structure of Lie groups. Fur-
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thermore, for the topological structure it suffices to consider compact groups
as the following facts show. In a connected Lie group G there is a maximal
compact subgroup K. All the maximal compact subgroups of a connected
Lie group are connected and conjugate to each other; therefore, each com-
pact subgroup is contained in a maximal one. And by a theorem of Cartan,
Malcev and Iwasawa (see [33]) there is a homeomorphism G ≈

�
n ×K, and

in particular we have G ' K. The maximal compact subgroup of a simple
Lie group is also maximal as an abstract subgroup.

We now give a short overview over the structure of compact connected Lie
groups. For every connected Lie group G there is a simply connected Lie
group G̃ (unique up to an isomorphism) and a differentiable map p : G̃ → G

such that p is a group homomorphism and a universal covering. We call G̃ the
universal covering group of G. The kernel N of p is a discrete subgroup
in the centre of G̃ which is isomorphic to the fundamental group π1(G) of
G by the homotopy sequence. In particular, we have a group isomorphism
G ∼= G̃/N that in fact is also a diffeomorphism. Furthermore, it follows that
Lie groups have finitely generated abelian fundamental groups.

We call a compact connected Lie group G almost simple, if it is not abelian
and if it does not have a proper closed normal subgroup of positive dimension.
A simple compact Lie group is of course almost simple, and an almost simple
compact Lie group G may be described as a quotient G ∼= S/N of a simply
connected almost simple Lie group S and a discrete finite subgroup π1(G) ∼=
N ⊆ Z(S) in the centre of S. A non-trivial compact connected Lie group G is

called semi-simple, if the universal covering group G̃ is compact. Equivalent
descriptions are that the fundamental group of G is finite, that the centre of
G is finite, or that G′ = G, where G′ is the commutator group of G.

A typical example of a compact connected Lie group with infinite fundamen-
tal group is the 1-torus T =

�
1 ⊆

� ×, which may also be described by
T ∼= U(1) ∼= SO(2). The k-fold product of T with itself is called a k-Torus.
We call a non-trivial compact connected abelian Lie group a torus. Every
torus is a k-torus for some k. Closed tori in tori are complemented, i.e. if
there is a closed torus T1 in a torus T , then there exists a torus T2 ⊆ T such
that T ∼= T1 ×T2 as topological groups. The maximal tori of a compact con-
nected Lie group G are maximal abelian subgroups. They are all conjugate
to each other, and they cover G. Their dimension is the rank rk(G) of G.

Compact connected Lie groups are almost direct products of the almost sim-
ple compact connected Lie groups and tori, see Hoffmann and Morris [27,
9.24].
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Theorem 2.1.1 Let G be a compact connected Lie group. Then there are
simply connected almost simple Lie groups S1, . . . , Sn, such that

G̃ ∼= T k × S1 × · · · × Sn

is a covering group of G, where k = dimZ(G). The simply connected Lie
groups S1, . . . , Sn are unique (up to ordering and isomorphisms, of course).
They are called the simple factors of G.

Note that T k ∼= Z(G)1 ∼= Z(G̃)
1
is the connected component of the centre of

G and that G̃′ ∼= S1×· · ·×Sn is the commutator group of G̃ in the theorem.
If G is not trivial, it is semi-simple if and only if k = 0, and it is almost
simple if and only if k = 0 and n = 1.

A Lie group G is the locally direct product of two closed normal subgroups
G1 and G2 if G1∩G2 is discrete and G = G1G2 = {g1 ·g2 | g1 ∈ G1, g2 ∈ G2}.

For a compact connected Lie group this means that we have G̃ ∼= G̃1 × G̃2

for the respective covering groups in the theorem above.

There is a covariant functor L from the class of Lie groups to the class
of Lie algebras, which assigns to a Lie group G the Lie algebra L(G) that
may be identified with its tangent algebra. L(G) is called the Lie algebra
of G, and we will call this functor the Lie functor. The dimension of a
Lie group equals the vector space dimension of its Lie algebra. Every Lie
algebra may be realized as the Lie algebra of some simply connected Lie
group. Two compact Lie groups G1 and G2 have the same Lie algebra if and
only if their universal covering groups are the same. They are then called
locally isomorphic.The Lie functor assigns locally direct products to direct
products of Lie algebras, (virtual Lie) subgroups to subalgebras, and normal
subgroups to ideals. Hence, a compact connected group G is almost simple
if and only if its Lie algebra L(G) is a simple Lie algebra, i.e. if every proper
ideal of the Lie algebra L(G) is trivial. The Lie algebras of compact Lie
groups are called compact Lie algebras.

Via their Lie algebras the compact connected Lie groups are classified. There
are four series of local isomorphism types of compact Lie algebras

ar, r ≥ 1

br, r ≥ 2

cr, r ≥ 3

dr, r ≥ 4

and five exceptional types e6, e7, e8, f4, and g2. The subscripts indicate
the rank of the Lie algebras, i.e. the rank of the corresponding compact Lie
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groups. These Lie groups are the complex unitary groups SU(r + 1), the
orthogonal groups in odd dimensions SO(2r + 1), the quaternion unitary
groups (also called the symplectic groups) Sp(r), and the orthogonal groups
in even dimensions SO(2r), for the infinite series above, respectively. These
are called the classical compact connected Lie groups. For the five excep-
tional types there are the exceptional simply connected compact Lie groups
E6, E7, E8, F4, and G2.

In order to emphasize the connection with the classical Lie groups, we will
often also write sur+1, so2r+1 (or o2r+1), spr, or so2r (o2r) for the Lie algebras
ar, br, cr, or dr, respectively.

The complex and the quaternion unitary groups are simply connected. The
simply connected covering groups of the orthogonal groups SO(n) are called
the spinor groups Spin(n). For the types E8, F4, and G2 there is only one
compact connected Lie group of that type.

In low dimensions there are isomorphisms of the following simply connected
groups

SU(2) ∼= Spin(3) ∼= Sp(1),

Spin(5) ∼= Sp(2),

SU(4) ∼= Spin(6),

which are all almost simple, and, additionally, Spin(4) ∼= SU(2)×SU(2). The
corresponding isomorphisms of the Lie algebras are a1 ∼= b1 ∼= c1, b2 ∼= c2,
a3 ∼= d3, and d2 ∼= a1 × a1. (Here, we extend the notation given above to
the smallest ranks in the natural way via the classical groups, so by b1 we
mean the Lie algebra of SO(3), and so on. But note that d2, of course, is not
simple.)

The rational cohomology of a compact connected almost simple Lie group G
of rank r is an exterior algebra (over � ) generated by r primitive elements
u1, . . . , ur, i.e. H•(G; � ) ∼= Λ � (u1, . . . , ur), see Spanier [57, 5.8.13]. The
degrees of the primitive elements depend only on the local isomorphism type.
They are listed in table 2.1.

Much more on the cohomology and homotopy invariants of the compact
connected Lie groups can be found in Mimura’s survey article [41].

The subalgebras of maximal dimensions of simple compact Lie algebras are
given in the table of Mann in section 4 of [38]. We list them in table 2.2,
which we took from Biller [2, p. 50]. The subalgebra of maximal dimension
is in each case unique up to an inner automorphism, except in the case of
b3 ↪→ d4, where it is unique up to an automorphism of d4, see Biller [2, 2.5.1].



16 CHAPTER 2. LIE GROUP ACTIONS

Lie algebra Degrees of generators
ar (3, 5, 7, · · · , 2r + 1)
br (3, 7, 11, · · · , 4r − 1)
cr (3, 7, 11, · · · , 4r − 1)
dr (3, 7, 11, · · · , 4r − 5, 2r − 1)
e6 (3, 9, 11, 15, 17, 23)
e7 (3, 11, 15, 19, 23, 27, 35)
e8 (3, 15, 23, 27, 35, 39, 47, 59)
f4 (3, 11, 15, 23)
g2 (3, 11)

Table 2.1: The compact simple Lie algebras with the degrees of primitive
generators of their cohomology, which is the cohomology of the corresponding
Lie groups. (Note that r ≥ 2 for dr.)

g dim g h dim g− dim h

ar (r 6= 3) r(r + 2)
�

⊕ ar−1 2r
br (r ≥ 3) r(2r + 1) dr 2r
cr (r ≥ 2) r(2r + 1) a1 × cr−1 4(r − 1)
dr (r ≥ 3) r(2r − 1) br−1 2r − 1
e6 78 f4 26
e7 133

�
× e6 54

e8 248 a1 × e7 112
f4 52 b4 16
g2 12 a2 6

Table 2.2: The subalgebras of maximal dimensions in the compact simple
Lie algebras

There are relations between the dimension and the rank of a compact Lie
algebra. The following proposition was proved by Biller [2, 5.1.1]. It will be
useful in 5.1.

Proposition 2.1.2 (Biller) Let g be a compact Lie algebra with rk(g) ≤ r
and dim g >

(
2r+1
2

)
. Then either rk(g) = r, and g is isomorphic to g2, to f4

or to e7, or 8 ≤ r ≤ 11 and some ideal of g is isomorphic to e8.

In order to determine in 2.4.6 the actions of SU(k) on generalized 2k-spheres
we want to prove that for k > 4 every closed connected subgroup H of SU(k)
with dimH = dimSU(k − 1) is a conjugate of SU(k − 1) (in the standard
inclusion into SU(k)). This was done by Biller [2, 3.2.6] for k ∈ {4, 5, 6, 7}.
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For k = 2 this is trivial, for k = 3 this is false as there is also the inclusion
SO(3) ↪→ SU(3).

Dynkin [18] determined the maximal closed connected subgroups of the clas-
sical groups over

�
. Seitz [55] generalized this to algebraic groups over

algebraically closed fields. We use the classification to obtain the following
observation.

Lemma 2.1.3 Let H be a maximal closed connected proper subgroup of
SU(k) for k > 4. If dimH > dimSU(k − 1), then H is a conjugate of
S(U(1)× U(k − 1)) and its Lie algebra is isomorphic to

�
× ak−2.

Proof To use the results of Dynkin or Seitz we note that the complexifica-
tion gives a one-to-one correspondence between simple compact Lie algebras
and simple complex Lie algebras, see Onishchik-Vinberg [52, p. 136], and
between compact connected Lie groups and connected reductive complex Lie
groups ([52, Ch. 4, Th. 2.7]).

We consider for the Lie algebra h of H the complexification h⊗
�

= h⊕ ih
of h as a complex subalgebra of the complex subalgebra slk, which has suk
as compact real form, i.e. slk = suk ⊗

�
where suk is considered as a Lie

algebra over the reals. But h⊗
�

may fail to be maximal in slk. Therefore,
we consider a maximal subalgebra m of slk containing h⊗

�
. We first treat

the case that m is not semi-simple. Non-semi-simple maximal subalgebras
of complex semi-simple Lie algebras are parabolic by Onishchik-Vinberg [52,
Ch. 6, Th. 1.8], and the maximal parabolic subgroups of SLk(

�
) are the

conjugates of the subgroups

Pl = {
(
A ∗

B

)
∈ SLk(

�
) | A ∈ GLl(

�
), B ∈ GLk−l(

�
)}

with 1 ≤ l ≤ k, see [52, Ch. 6, §1.4, Ex. 1]. Since S(U(l)× U(m− l))
is a maximal compact subgroup of Pl and since dim m ≥ dim h⊗

�
and

dim h ≥ dim suk−1 it follows that H is a conjugate of S(U(1)× U(k − 1))
and hence h ∼=

�
× ak−2.

We now consider the case that m is semi-simple. Then m has a (unique) com-
pact real form m � , see [52, Ch. 4, §1.2, Th. 1.1]; in particular h ⊆ m � ( suk
(up to conjugation) since suk is a real form of slk. Hence, h ⊗

�
= m by

the maximum property of H, and h ⊗
�

is one of the maximal subalge-
bras of the classification of Dynkin or Seitz. We now only have to check
whether there appear Lie algebras in the classification other than the one
of S(U(1)× U(k − 1)) with (complex) dimension bigger than dimSU(k − 1).
Since this is not the case, the announced result follows. �

Thus we obtain the following corollary.
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Corollary 2.1.4 For k ≥ 4 a closed connected subgroup H of SU(k) with
dimH = dimSU(k − 1) is a conjugate of SU(k−1) in the standard inclusion
SU(k − 1) ↪→ SU(k).

Proof This was already obtained by Biller [2, 3.2.6] for k ∈ {4, 5, 6, 7}.
Lemma 2.1.3 yields that the subgroup H is up to conjugation a subgroup of
S(U(1)× U(k − 1)). Consider the projection of the Lie algebra

�
× ak−2 of

S(U(1)× U(k − 1)) to its first factor
�
. The restriction of the projection to

the Lie algebra h of H has an image of dimension at most one. Therefore, the
image of the projection of h to the second factor ak−2 has at least dimension
dim ak−2−1. Table 2.2 on page 16 shows that h ∼= ak−2 and the claim follows
by representation theory, see table 4.10 of Kramer [37]. �

2.2 Group actions

If a group G acts on a set X, then we denote the stabilizer of an element
x ∈ X by Gx = {g ∈ G | g · x = x}. Similarly, we write Gx,y = Gx ∩ Gy for
the stabilizer of two points. G acts transitively on each of its orbits

G · x = {g · x | g ∈ G}

and trivially on the orbit space

X
/
G = {G · x | x ∈ X}.

The kernel G[X] =
⋂

{Gx | x ∈ X} of the action is the normal subgroup of
elements acting on X as the identity. The action is effective if its kernel is
trivial. G acts transitively if and only if X consists of a single orbit X = G·x,
i.e. if X

/
G = {X}.

If a topological group G acts on a topological space X such that the map
G×X → X, (g, x) 7→ g · x, is continuous, then we call X a G-space and G
a topological transformation group on X. In this case we also call the
action of G on X a continuous action or a topological action, but we
will often suppress the words ’topological’ or ’continuous’ when it is clear in
the context that we speak of topological groups or even of Lie groups. If the
kernel has dimension 0 then we call the action almost effective.

Note that for continuous actions the orbit map π : X → X
/
G, x 7→ G · x,

is open with respect to the quotient topology on X
/
G; in fact, for an open

subset U of X it holds that π−1(π(U)) =
⋃

g∈G g · U is open.
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A closed subgroup H of G acts on G by right multiplication. The resulting
orbit space is the quotient space G/H of residue classes modulo H in G.
Furthermore, the quotient space G/H is a G-space where G acts by g ·aH =
gaH.

Assume that G is a topological transformation group on X and on Y . Then
the two actions are called equivalent (as actions of the topological group G),
if there is a homeomorphism ϕ : X → Y and an isomorphism of topological
groups Φ : G → G such that ϕ(g ·x) = Φ(g) ·ϕ(x) for every g ∈ G and every
x ∈ X, i.e. such that there is a commutative diagram

G×X

��

Φ×ϕ // G× Y

��
X

ϕ // Y.

We then write X
G
≈ Y and call this a G-equivalence.

If G is a group of homeomorphisms of a compact metric space, then the
supremum metric induces on G a (metric) topology (which coincides in this
case with the topology of uniform convergence and also with the compact-
open topology) such that G is a topological transformation group on X with
its natural action g · x = g(x) for g ∈ G and x ∈ X, see [54, 96.7].

We will use the following lemma similar to Biller’s lemma 4.1.8 in [2].

Lemma 2.2.1 Let G be a compact group with a continuous action on
�
.

Then every orbit of G contains at most two elements. If G is connected,
then G acts trivially. If G acts effectively and non-trivially, then G ∼=

�
2.

Proof As G is compact, every orbit is compact, too. Since G acts by
homeomorphisms, every g ∈ G preserves or reverses the order of

�
and

g · {minG · x,maxG · x} = {minG · x,maxG · x} for every x ∈
�
. But

G acts also transitively on every orbit; therefore, every element in an orbit
is mapped to the maximum of the orbit. It follows that every orbit G · x
contains at most two elements, i.e. G · x = {minG · x,maxG · x}.

IfG acts effectively on
�

and if there is a non-trivial element g, then g reverses
the order in some orbit, and hence on the whole line, i.e. g interchanges
maximum and minimum of every orbit. But then the homeomorphism g is
uniquely determined and G = {id, g}.

For a connected group G every orbit is connected, too. Therefore, an action
of a compact connected group on

�
is trivial. �
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We are particularly interested in (topological) actions of Lie groups.

LetG be a Lie group acting transitively as a topological transformation group
on a locally compact space X. Then the map G → X, g 7→ g ·x, is open and

induces for each x ∈ X a G-equivalence of actions G/Gx

G
≈ X. In particular,

there is an exact homotopy sequence

. . . // πk(Gx) // πk(G) // πk(X) // πk−1(Gx) // . . .

. . . // π1(X) // π0(Gx) // π0(G) // π0(X),

where we chose 1 as the base point in Gx and G, and x as base point in X.
Furthermore, we have

dimG = dimGx + dimX.

Because of Gg·x = gGxg
−1 the stabilizers of elements of an orbit G · x are

conjugate to each other and G · x
G
≈ G · y for every y ∈ G · x by an inner

automorphism of G. Therefore, we distinguish orbits only up to the conju-
gacy classes of the stabilizers, which we will call the orbit type of G · x.
But we will often, for short, call G/Gx the orbit type of G · x. For actions
of compact Lie groups on Hausdorff spaces there is a kind of ’biggest’ orbit
type. More precisely, there is a stabilizer of minimal dimension that has
a minimal number of connected components under all other stabilizers of
minimal dimension. Such stabilizers are called principal stabilizers, and
the respective orbits are the principal orbits of the action. The principal
orbits are all conjugate to each other. This and their existence was proved
by Montgomery-Yang [46] for differentiable actions. For a generalization to
topological actions see e.g. Biller [2, 2.1.6, 2.2.3]

Linear actions are very important in the theory of Lie group actions. An n-
dimensional representation of a Lie group G is an action on

�
n induced

by a continuous homomorphism G → GLn(
�
). Such an induced action is

also called a linear action of G, and
�

n is called a G-module. An effective
representation is called faithful.

Two representations ϕ1 : G → GLn1(
�
) and ϕ2 : G → GLn2(

�
) induce a

representation ϕ = ϕ1 ⊕ ϕ2 : G → GLn1+n2(
�
) on

�
n1+n2 =

�
n1 ⊕

�
n2 by

setting ϕ(g)(v⊕ w) = ϕ1(g)(v)⊕ ϕ2(g)(w) for v ∈
�

n1 , w ∈
�

n2 and g ∈ G.

A representation ϕ : G → GLn(
�
) is called irreducible and

�
n is called

a simple G-module, if there is no non-trivial invariant submodule. For
compact connected groups this means that ϕ cannot be written as a sum



2.3. TRANSITIVE ACTIONS 21

ϕ = ϕ1 ⊕ ϕ2 of two representations of strictly smaller dimensions. To avoid
confusion with the term ’irreducible action’ of section 2.3 we will avoid the
term ’irreducible representation’. Nevertheless, we will at some places use
results from representation theory, especially the tables of Kramer [37, Ch.4]
of low-dimensional irreducible representations of the almost simple compact
connected Lie groups. For more details on representation theory see Bröcker-
tom Dieck [12], chapter 95 of [54], Tits [64] or Bödi-Joswig [4].

2.3 Transitive actions

We now focus on transitive topological actions. If a (topological) action of
a (topological) group G on X is not effective, we may consider the induced
(topological) action of the quotient group G/G[X] of G and the kernel G[X].
This action is effective and has the same orbits. Another possibility to reduce
the ’size’ of an acting group is the following. We call an action of G an
irreducible action if there is no proper normal transitive subgroup of G.
For compact connected Lie groups there always exists a connected normal
subgroup that acts irreducibly. For regaining the original action or, more
generally, for ’enlarging’ a given action, see Onishchik [51], Gorbatsevich-
Onishchik-Vinberg [20, II, Ch. 2, 4.2] or Kramer [37, Prop. 3.6].

If a Lie group G acts transitively on a connected space X, then the connected
component G1 of G still acts transitively. This often allows us to assume that
a transitive Lie group is connected.

To recognize a topological transformation group as a Lie group the following
three theorems are useful. The first one was obtained by Montgomery-Zippin
[47], cf. also [20, I, Ch. 4.4, Th. 4.3].

Theorem 2.3.1 (Montgomery-Zippin) Suppose that G is a locally com-
pact topological group acting effectively and transitively on a finite-dimensio-
nal, compact and locally connected space X. Then G is a Lie group, X is a
manifold and the action is differentiable.

For the proof of the next criterion, the theorem of Szenthe [60], see also the
remarks in Salzmann et al. [54, 96.14].

Theorem 2.3.2 (Szenthe) If a locally compact topological group G with
countable basis acts effectively and transitively on a connected and locally
contractible space X, then G is a Lie group and X is a manifold.
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The next theorem is taken from Salzmann et. al [54, 96.24]. It does not
assume a transitive action in contrast to the last two theorems, see also
Biller’s version 2.4.4 for generalized spheres. Biller [2, 2.2.2] also gives a
version for metrizable cohomology manifolds.

Theorem 2.3.3 If a locally compact topological group G acts effectively on
a connected n-dimensional manifold such that a compact subgroup of G has
an orbit of dimension at least n− 2, then G is a Lie group.

The following theorem often allows to restrict the considerations to compact
Lie groups. The theorem was proved by Montgomery [43] for simply con-
nected spaces. This may be generalized to spaces with finite fundamental
groups, see e.g. the proof in [54, 96.19].

Theorem 2.3.4 If a connected Lie group G acts transitively on a compact
connected manifold X that has a finite fundamental group, then every maxi-
mal compact subgroup of G is transitive on X.

In section 2.5 we treat the case of infinite cyclic fundamental groups under
some additional assumptions.

The dimensions of the orbits give an easy criterion for the transitivity of a
compact Lie group. If a compact Lie group G acts as a topological transfor-
mation group on a locally compact, locally contractible and connected space
X and if there is an x ∈ X with dimG · x = dimX, then G · x = X, i.e.
the action of G is transitive. A space on which a compact Lie group acts
transitively is also called a homogeneous space.

There is a well-known estimate of the dimension of a transitive and ef-
fective Lie group on a given manifold, see corollary 1 of theorem 6.2.5 in
Montgomery-Zippin [47].

Proposition 2.3.5 If a compact connected Lie group G acts effectively with
an orbit of dimension k, then dimG ≤

(
k+1
2

)
.

2.4 Homogeneous spheres

Montgomery and Samelson [44] determined the structure of compact con-
nected Lie groups that act effectively and transitively on spheres. Borel ([5]
and [6]) gave an explicit list of these almost simple Lie groups. He also proved
that if a homogeneous (co)homology sphere, i.e. a homogeneous space
of a compact connected Lie group with the same (co)homology as a sphere,
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is additionally simply connected, then it is indeed an ordinary sphere. Note
that a homology sphere is a cohomology sphere by the universal coefficient
theorem, see Bredon [11, V.7.3], and a homogeneous cohomology sphere is
a homology sphere by Spanier [57, 5.5.12]. (As a homogeneous space it is
a manifold and the homology is of finite type, see Bredon [11, E.5]; hence
Spanier [57, 5.5.12] applies.)

Poncet [53] proved that these transitive actions on spheres are all equivalent
to actions of subgroups of the respective orthogonal group and hence linear.
Finally, Bredon [8, 1.1, 1.2] showed that a homogeneous cohomology sphere is
either a 1-sphere or simply connected (and hence a sphere) or the Poincaré
homology 3-sphere, i.e. the homogeneous space SO(3)/I of SO(3) and
the group I of rotational symmetries of an icosahedron (an icosahedral
subgroup), see [11, VI.8.10].

This gives a classification of homogeneous cohomology spheres. We collect
these results in the following theorem. For similar tables, see also Salzmann
et al. [54, 95.4], Grundhöfer-Knarr-Kramer [23, 1.1] and Biller [2, 3.1.1].

Theorem 2.4.1 (Homogeneous cohomology spheres) Let G be a com-
pact connected Lie group and H a closed subgroup such that G acts effectively
on G/H and such that H•(G/H) ∼= H•(

�
n) for some n ∈ � .

If G/H is not a sphere, then G = SO(3) and H is an icosahedral subgroup of
SO(3). Otherwise, the action of G is equivalent to the action of a subgroup
of SO(n+ 1) on the standard sphere

�
n ⊂

�
n+1.

If G/H is a sphere and if G acts irreducibly (i.e. if there is no proper transi-
tive normal subgroup), then there are (up to equivalence) only the following
possibilities for (G,H, n).

(SO(n + 1), SO(n), n), n ∈ �
(SU(k), SU(k − 1), 2k − 1), k ≥ 2
(Sp(k), Sp(k − 1), 4k − 1), k ≥ 2
(G2, SU(3), 6)
(Spin(7), G2, 7)
(Spin(9), Spin(7), 15)

If G/H is a sphere and if G has a proper transitive normal subgroup, then
the possibilities for (G,H, n) are (up to equivalence) the following.

(U(k),U(k − 1),2k − 1), k ≥ 2
(U(1) · Sp(k),U(1) · Sp(k − 1),4k − 1), k ≥ 2
(Sp(1) · Sp(k),Sp(1) · Sp(k − 1),4k − 1), k ≥ 2.

The homogeneous space also is known if it has the same rational cohomology
as a sphere.
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Theorem 2.4.2 (Homogeneous rational cohomology spheres) Let G
be a compact connected Lie group and H a closed subgroup such that G acts
effectively and irreducibly on G/H and such that H•(G/H; � ) ∼= H•(

�
n; � )

for some n ∈ � . Assume that G/H is simply connected, if n > 1.

Then G/H is a sphere (and one of the irreducible homogeneous spheres in
2.4.1), or n is odd and (G,H) is one of the pairs in the following table.

G H CenG(H)1 n
SU(3) SO(3) 1 5 π3(G/H) =

�
4

SO(2k + 1) SO(2k − 1) SO(2) 4k − 1 π2k−1(G/H) =
�
2, k ≥ 2

Sp(2)
�

ρ3λ1 1 7 π3(G/H) =
�
10

G2 SU(2) SU(2) 11 π3(G/H) =
�
2

G2
�
ρλ1 +

�
ρ2λ1 SU(2) 11 π3(G/H) =

�
3

G2 2
�
ρ2λ1 1 11 π3(G/H) =

�
4

G2
�
ρ6λ1 1 11 π3(G/H) =

�
28

The symbols
�

ρ3λ1 ,
�
ρλ1 +

�
ρ2λ1 , 2

�
ρ2λ1 and

�
ρ6λ1 appearing in the table

stand for the images of representations of Lie groups of type a1, cf. Kramer
[37, Ch. 4 and 6.A].

Proof If n is even, then the homogeneous space has Euler characteristic
2 and is indeed a sphere by Borel-De Siebenthal [7] and Borel [5].

A compact connected one-dimensional manifold is a 1-sphere. For odd n ≥ 3
there is an almost simple transitive normal Lie subgroup by Kramer [37, 3.7]
and Onishchik [51, §18, Prop. 2(i)]. We took the table from Kramer [37,
6.A], cf. also Onishchik [51, Ch. 5, §18, Table 10], where Sp(2) appears as
SO(5). �

Later on we will use results for the following generalization of spheres due to
Biller [2].

Definition 2.4.3 A topological space S is called locally homogeneous if
any two points have homeomorphic open neighbourhoods. The space S is
called pseudo-isotopically contractible relative to x ∈ S if there is a
homotopy F : S × [0, 1] → S such that F (·, t) is a homeomorphism of S
for all t ∈ (0, 1), such that the maps F (x, ·) and F (·, 1) are the constant
maps to x, and such that F (·, 0) = idS is the identity. S is an euclidian

neighbourhood retract (ENR) if it is homeomorphic to a retract of an
open subset of

�
n for some n ∈ � .

Finally, if S is a locally homogeneous n-dimensional ENR, such that every



2.4. HOMOGENEOUS SPHERES 25

point complement is non-empty and pseudo-isotopically contractible relative
to one of its points, then it is called a generalized n-sphere.

A generalized n-sphere is compact, homotopy equivalent to
�
n, and an n-

dimensional cohomology manifold, see [2, 1.3.2]. Note that every ordinary
sphere

�
n is indeed a generalized n-sphere. The Poincaré homology 3-sphere

of 2.4.1 is not a generalized 3-sphere since it is not simply connected.

Generalized spheres arise for example as the line pencils and point rows of
compact connected quadrangles, see 4.1.2, but in all known examples the line
pencils and point rows are genuine spheres.

The next lemma says that a generalized sphere which admits an almost
transitive action of a compact group is a sphere.

Lemma 2.4.4 (Biller) Let G be a compact group acting effectively on a
generalized n-sphere Sn. Then the action of G on every principal orbit is
also effective.
If there is an orbit of codimension at most 2, then Sn ≈

�
n and G is a Lie

group.
If n ≥ 2 and every orbit has codimension at most 1, then G acts transitively.

Proof This is lemma 1.3.3 and lemma 1.3.5 of Biller [2] together with
lemma 1.6 of Grundhöfer, Knarr and Kramer [23]. �

For a topological space X we call the quotient space of X × [0, 1] under the
identification of X × {0} and X × {1} to points [0] and [1] the (unreduced)
suspension ΣX of X.

If X is a G-space, then G acts on X × [0, 1] by g · (x, t) = (g · x, t). This
induces a G-action on ΣX which fixes [0] and [1]. We call this action the
suspension of the G-space X.

The suspension of an n-sphere is an (n + 1)-sphere, Σ
�
n ≈

�
n+1; hence, a

G-action on
�
n induces a G-action on

�
n+1. We are going to show that a

non-trivial action of SU(k) on a generalized (2k)-sphere is the suspension of
the usual SU(k)-action on

� 2k−1. The first step is the following lemma of
Biller [2, 3.2.3].

Lemma 2.4.5 (Biller) If k 6∈ {1, 2, 4} and SU(k) acts almost effectively on
a generalized 2k-sphere S, then the principal orbits have codimension 1 and
S ≈

�
2k.

Note that there are counterexamples for k ∈ {1, 2, 4}. The lemma leads to a
proof of the following proposition.
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Proposition 2.4.6 (Biller) If 4 6= k ≥ 3 and SU(k) acts almost effectively
on a generalized 2k-sphere S, then the action is the suspension of the transi-
tive action of SU(k) on

�
2k−1; in particular S ≈

�
2k.

Proof This was proved by Biller [2, 3.2.8] under the additional assumption
that

(*) the connected component of a stabilizer is conjugate to SU(k − 1).

He also observed that one may drop the assumption if one knows that all
subgroups of SU(k) of dimension dimSU(k − 1) are conjugate. But this is
corollary 2.1.4. This indeed allows us to drop the assumption (*) above. By
lemma 2.4.5 there is a principal orbit of codimension 1. Hence, there is a
stabilizer of dimension dimSU(k)− (2k− 1) = dimSU(k − 1), and corollary
2.1.4 assures that the connected component of the stabilizer is a conjugate
of SU(k − 1). Now we may apply the original result of Biller [2, 3.2.8]. �

2.5 Almost transitive actions

We will often apply the following theorem which was proved by Mostert in
[48], confer also the errata and footnote 2 in Hofmann-Mostert [28].

Theorem 2.5.1 (Mostert) Let M be a compact connected manifold with
an action of a compact connected Lie group G such that there is a G-orbit of
codimension 1 in M . Then M

/
G ≈

�
1 or M

/
G ≈ [0, 1].

If M
/
G ≈

�
1, then all G-orbits in M are of the same type, and there is

a fibre bundle N → M →
�
1 where the typical fibre N is a G-orbit of the

occuring type.

If M
/
G ≈ [0, 1], then there are points l, r and m in M such that under the

homeomorphism M
/
G ≈ [0, 1] their orbits correspond to 0, 1 and an inner

point of [0, 1], respectively, and such that Gm ⊆ Gl ∩ Gr. Furthermore, the
homogeneous spaces Gm/Gl and Gm/Gr are homology spheres, and there is a
G-equivalence between M and the double mapping cylinder of the projections
G/Gm → G/Gl and G/Gm → G/Gr:

M
G
≈ (G/Gm × [0, 1])

/
(gGm, 0) ∼ (gGl, 0), (gGm, 1) ∼ (gGr, 1).

In particular, G ·m is a principal orbit, and there are just two non-principal
orbits G · l and G · r, which are called the exceptional or singular orbits.
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Mostert treated in [48] also the case of non-compact manifolds. But we will
only need the theorem for compact manifolds, therefore the theorem is not
stated in full generality. Biller gave an application of Mostert’s theorem to
generalized spheres in [2, 3.1.2].

A typical example for the case that the orbit space is an interval is the
suspension of an action.

An easy criterion which of the two cases in Mostert’s theorem applies in a
concrete situation gives the following lemma of Montgomery-Yang [45, Cor.
2]. We give the formulation of the slight generalization in Bredon [9, II.6.3].

Lemma 2.5.2 If a compact Lie group G acts on an arcwise connected Haus-
dorff space X such that there is a connected orbit, then the orbit map X →
X
/
G, x 7→ G · x, induces a surjective homomorphism from the fundamental

group of X to the fundamental group of X
/
G, i.e.

π1(X) → π1(X
/
G) → 0

is exact.

The existence of a connected orbit follows for example if G is connected or
if there is a fixed point in X. For transitive actions the last lemma follows
from the homotopy sequence. The following lemma is of the same spirit, see
Bredon [9, II.6.5].

Lemma 2.5.3 If a compact Lie group G acts on an arcwise connected Haus-
dorff space X, then the orbit map X → X

/
G, x 7→ G ·x, induces a surjective

homomorphism from the first rational singular homology group of X to the
the first rational singular homology group of X

/
G, i.e.

H1(X; � ) → H1(X
/
G; � ) → 0

is exact.

Now we start examining the type of homogeneous spaces we are interested
in, namely compact spaces with the same rational homotopy as a product of
a 1-sphere and a higher-dimensional sphere such that the fundamental group
is torsion-free. We will see later that there arise examples of such spaces as
focal manifolds of certain isoparametric hypersurface, see chapter 3; another
type of example are the point spaces of (1, m)-quadrangles as in chapter 4.
Other examples than those arising from the mentioned geometries are given
at the end of chapter 6.

First, we will see that the cohomology over the rationals of the universal
covering is quite simple.
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Lemma 2.5.4 Let X be a compact connected topological (m + 2)-manifold
with infinite fundamental group such that πk(X) is finite for 2 ≤ k ≤ m.
If s is the rank of πm+1(X), then the rational cohomology groups of the uni-

versal covering space X̃ are given by

Hk(X̃; � ) ∼=





� if k = 0,
� s if k = m+ 1,
0 else

Proof The cohomology groups of the (m + 2)-dimensional manifold X̃

are trivial in dimensions greater than (m + 2) = dim X̃. As a covering

space with infinite fibres, X̃ is a non-compact manifold, and it follows that
Hm+2(X̃) = 0, see Bredon [11, VI.7.12 and 14].

Since X̃ is the universal covering space of X, we have

πk(X̃)⊗ � ∼= πk(X)⊗ � = 0 for 2 ≤ k ≤ m

and πm+1(X̃)⊗ � ∼= πm+1(X)⊗ � ∼= � s. There is a rational version of the
Hurewicz theorem, see Kramer [37, 2.1, 2.2], which now implies that the ratio-

nal cohomology groups in the ’middle’ dimensions vanish, i.e. Hk(X̃; � ) = 0

for 0 < k < m + 1, and that Hm+1(X̃; � ) ∼= � s. �

The assumption on the homotopy in the last lemma is in particular fulfilled
if π•(X)⊗ � ∼= π•(

� 1 ×
�
m+1)⊗ � . This gives the following corollary.

Corollary 2.5.5 Let X be a compact connected topological (m+2)-manifold
with an abelian fundamental group. Then

π•(X)⊗ � ∼= π•(
� 1 ×

� m+1)⊗ � implies H•(X̃; � ) ∼= H•(
� m+1; � )

for the universal covering space X̃ of X.

We give a characterization of transitivity for compact Lie subgroups on ho-
mogeneous spaces as in 2.5.5.

Proposition 2.5.6 Let X be an (m+2)-dimensional compact homogeneous
space of a connected Lie group G with π1(X) ∼=

�
and

π•(X)⊗ � ∼= π•(
� 1 ×

� m+1)⊗ � ,

and let K be a maximal compact subgroup of G. Then there is a point x ∈ X
such that the following statements are equivalent.
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(i) K is transitive.

(ii) π1(K/Kx
1) ∼=

�

(iii) π1(G/Gx
1) ∼=

�

(iv) Gx/Gx
1 is finite.

Proof We begin the proof as in Salzmann et al. [54, 96.19]. We choose
a point x ∈ X such that Kx

1 is maximal compact in Gx
1. This is possible,

because every compact subgroup lies in a maximal one and these are all
conjugate.

Consider the commutative diagram

K/Kx
1 j //

p

��

G/Gx
1

q

��
K/Kx

α // G/Gx

where j and α are the natural mappings and indeed embeddings by [54,
96.9]. As Kx

1 is maximal compact in Gx
1, the two inclusions K ↪→ G and

Kx
1 ↪→ Gx

1 are homotopy equivalences, and so they induce isomorphisms
in homotopy. Therefore, the induced map j of the diagram also induces an
isomorphism in homotopy by the five-lemma. But then j induces also an
isomorphism in homology, see the Whitehead theorem [57, p. 399]. As p and
q are coverings, α induces isomorphisms α# : πn(K/Kx) → πn(G/Gx) for all
n ≥ 2.

In the diagram

0 // π1(K/Kx
1) //

∼=
��

π1(K/Kx) //

��

Kx/Kx
1 //

��

0

0 // π1(G/Gx
1) // π1(G/Gx) // Gx/Gx

1 // 0

we have π1(G/Gx) ∼= π1(X) ∼=
�
by assumption. This yields the equivalence

of (ii), (iii) and (iv).

Now we will distinguish two cases. The first case is that π1(G/Gx
1) is not

trivial, i.e. π1(G/Gx
1) ∼=

�
; thus in this case Gx/Gx

1 is finite and the covering
space G/Gx

1 of X is compact. Then by the isomorphism induced by j the
covering space G/Gx

1 of X has the same homology as the compact space
K/Kx

1, and since homology over
�
2 determines the dimension of compact
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manifolds, see Bredon [11, VI.7.12], the orbit K · x of K in G/Gx
1 has full

dimension. Hence, in this case K is transitive on the covering and therefore
also on X.

In the second case G/Gx
1 is simply connected; hence, K/Kx

1 is simply con-
nected, too, and Gx/Gx

1 is infinite. This means that G/Gx
1 is the universal

covering space of X and that it is not compact and not homeomorphic to
the compact space K/Kx

1. Therefore, K is not transitive on X in this case,
because if it were, the two universal coverings G/Gx

1 and K/Kx
1 had to be

the same. �

The next example shows that in the situation of the last proposition the
maximal compact groups need not act transitively.

Example 2.5.7 The image of
�

× SU(n) in GLn+1(
�
) under the injection

(t, A) 7→

(
e2πi

√
2t

e2πitA

)

acts effectively and transitively on
�
1 ×

�
2n−1 ⊂

�
n+1 and has no transitive

compact subgroup, because the orbits of SU(n) are (2n− 1)-spheres.

Next we determine the orbits of almost transitive compact subgroups.

Proposition 2.5.8 Let X be an (m+2)-dimensional compact homogeneous
space of a simply connected Lie group G with π1(X) ∼=

�
and π•(X)⊗ � ∼=

π•(
�
1 ×

�
m+1)⊗ � . Then the orbits of every maximal compact subgroup K

of G are simply connected rational cohomology (m+1)-spheres and π•(X) ∼=
π•(

�
1 × (K · x)) for every x ∈ X.

In particular, K is not transitive and G is not compact.

Proof Let K be a maximal compact subgroup of G and x ∈ X a point
such that Kx

1 is maximal compact in Gx
1 as in the proof of 2.5.6. (In the end

we will see that all orbits are of the same type. Therefore, the choice of x is
actually arbitrary.) As G is simply connected, K is semi-simple and G/Gx

1

is also simply connected. Furthermore, G/Gx
1 is the universal covering space

of X. Then in view of 2.5.6 the action of K on X is not transitive.

In the proof of 2.5.6 we saw that K/Kx
1 ↪→ G/Gx

1 induces isomorphisms in
homotopy and (co)homology. It follows that

π•(K/Kx
1)⊗ � ∼= π•(Gx/Gx

1)⊗ � ∼= π•(
� m+1)⊗ �

and by 2.5.5 that H•(G/Gx
1; � ) ∼= H•(

�
m+1; � ). Therefore K/Kx

1 is a
simply connected rational cohomology (m+1)-sphere. As K/Kx

1 is compact,
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orientable, and has the rational cohomology of
�
m+1, one has dimK · x =

dimK/Kx = dimK/Kx
1 = m+ 1.

We now apply Mostert’s theorem 2.5.1 for orbits of codimension 1 in compact
manifolds. There are just the two possibilities X

/
K ≈

�
1 or X

/
K ≈ [0, 1].

We will show that the second case does not occur. The compact connected
Lie groups that act irreducibly on simply connected cohomology spheres are
classified, see 2.4.2. They are always almost simple. Therefore, there is a
connected almost simple normal subgroup A of K that still acts transitively
on the cohomology sphere K/Kx

1 = A/Ax
1. As almost simple compact Lie

groups have finite fundamental groups, the homotopy sequence shows that
the orbits of almost simple compact Lie groups have also finite fundamental
groups, see section 2.1. If X

/
A ≈ [0, 1], then X may be described as a

mapping cylinder of orbit projections of a principal orbit A · m onto two
exceptional orbits A · l and A · r of the action of A, see Mostert’s theorem
2.5.1. The injections of the two exceptional orbits into X induce mappings of
their fundamental groups into the fundamental group of X. By the Seifert-
Van Kampen theorem these images have to generate the fundamental group
of X. But as π1(X) ∼=

�
by assumption, the images of finite groups in π1(X)

are trivial and cannot generate π1(X). Hence, X
/
A ≈ [0, 1] is not possible.

Therefore, X
/
K ≈

�
1 ≈ X

/
A. But then all orbits are of the same type

A/Ax, and there is a fibre bundle A/Ax → X → X
/
A ≈

� 1, whose homotopy
sequence shows that π1(A/Ax) ∼= 0, i.e. Ax = Ax

1 is connected. Hence, the
orbits of A are simply connected rational cohomology (m + 1)-spheres, and
the homotopy sequence of A/Ax → X → X

/
A ≈

�
1 shows that π•(X) ∼=

π•(
�
1 × (A · x)) ∼= π•(

�
1 × (K · x)). �

Remark 2.5.9 Note that the simply connected homogeneous rational co-
homology spheres, which appear in the last proposition, are classified, see
2.4.2.

Remark 2.5.10 If π1(X) in the last lemma is abelian but fails to be torsion
free, then there still is for every x ∈ X a maximal compact subgroup ofG such
that its orbits are (not necessarily simply connected) rational cohomology
(m+ 1)-spheres.

The preceding results lead to the following description of transitive actions
of compact Lie groups on the kind of spaces we are considering. We give
another proof of the following theorem in 6.3.7 where we restrict ourselves
to irreducible actions.
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Theorem 2.5.11 Let X be an (m + 2)-dimensional homogeneous space of
a compact connected Lie group K with π1(X) ∼=

�
and π•(X) ⊗ � ∼=

π•(
�
1 ×

�
m+1) ⊗ � . Then there is a complementary one-dimensional torus

group T ∼= SO(2) for the commutator group A of K such that T · A is
transitive on X and the orbits of A are simply connected rational cohomol-
ogy (m + 1)-spheres. For every x ∈ X the quotient Kx/Kx

1 is cyclic and
Ax = A ∩Kx = (T · A)x

1 is connected.
�
1 × A/Ax is a covering space of X.

Proof The centre of K has positive dimension by 2.5.6. Furthermore, the
connected component of the centre still acts transitively on X

/
A. Up to a

finite covering, A is the maximal compact subgroup of the universal covering
group of K; hence A is connected. By 2.5.8 the orbits of A in X are simply
connected rational cohomology spheres and X

/
A ≈

�
1. It follows that there

is a complementary torus group T ∼= SO(2) in K such that T ·A is transitive
on X .

The homotopy sequence of Kx → K → X shows that π0(Kx) ∼= Kx/Kx
1 is a

quotient of the infinite cyclic group π1(X) and therefore cyclic. Furthermore,
Ax is connected, since the orbit A · x is simply connected.

Since T · A is transitive, the intersection of the first factor T with Kx is
finite, i.e. Tx is finite. Therefore, there is a covering space

�
1 × A/Ax

1 of
X ≈ T · A/(T · A)x. �

The rational cohomology of X and of Kx
1 → K → K/Kx

1 is determined in
chapter 6.



Chapter 3

Isoparametric hypersurfaces

We apply our results, in particular 2.5.11, to determine the transitive and
irreducible actions of compact connected isometry groups of isoparametric
hypersurfaces on focal manifolds that have the rational homotopy of a sphere
product

�
1 ×

�
m+1. First we give a survey on homogeneity results already

known in the literature. In the second section we describe the transitive
actions on the focal manifold.

3.1 Homogeneous hypersurfaces

An isoparametric hypersurface in a sphere is a closed hypersurface with
constant principal curvatures. For a survey on isoparametric hypersurfaces
see Thorbergsson [63]; many important results are due to Münzner [49], [50].

The sphere containing the isoparametric hypersurface M is partitioned by
M , by parallel hypersurfaces that are diffeomorphic to M and by two sub-
manifolds of smaller dimensions. This partition of the sphere is called an
isoparametric foliation, and the two smaller manifolds are the focal mani-
folds of M .

For the number g of principal curvatures there are only the possibilities 1,
2, 3, 4 or 6, see Münzner [49], and the respective multiplicities m1, . . . , mg

of the principal curvatures may be reordered such that mi = mi+2 (indices
modulo g); in particular the multiplicities are all equal if g = 3. Hence, it
suffices to know the multiplicities m1 and m2. If g = 1, then the hypersurface
is a sphere, and if g = 2, then it is a product of spheres. (This is sometimes
called a Clifford torus.) More interesting is the case g = 3. This case
was classified by Cartan [14]. There are only 4 such hypersurfaces, namely

33
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embeddings of the classical projective planes over the reals, the complex
numbers, Hamilton’s quaternions and the Cayley numbers, see also Knarr
and Kramer [35]. Here, the isoparametric hypersurface may be interpreted as
the flag space of the geometry, and the focal manifolds are the point space and
the line space, cf. chapter 4. All these four examples are homogeneous, i.e.
the isometry group of the hypersurface acts transitively on the hypersurface.

In the case g = 6 one has thatm1 = m2 ∈ {1, 2}, see Abresch [1]. Dorfmeister
and Neher [16] showed that for m1 = m2 = 1 the hypersurface is uniquely
determined. For m1 = m2 = 2 there is only one example known. Both
examples for g = 6 are also homogeneous. They are related to geometries
called generalized hexagons.

The case g = 4 is the most difficult case because there are a lot of exam-
ples. Infinitely many examples arise as principal orbits of isotropy represen-
tations. These examples are homogeneous. Ferus, Karcher and Münzner [19]
constructed other infinite series of examples; most of them are not homoge-
neous. The homogeneous examples are classified by Hsiang and Lawson [29];
they arise all from the isotropy representations of the symmetric spaces of
rank 2.

From an isoparametric hypersurface one can construct a simplicial complex.
This complex is indeed a spherical building, as was proved by Thorbergsson
[62] (for higher codimensions) and Immervoll [32] except in the case that
g = 6 and m1 = m2 = 2. The hypersurfaces are therefore related to a special
kind of buildings called generalized polygons. For generalized polygons and
buildings see also chapter 4. Projective planes are the same as generalized
triangles. This explains why there arise projective planes in the case g = 3,
and generalized hexagons for g = 6.

For g = 4 an isoparametric hypersurface with multiplicities m1 and m2 may
be interpreted as the flag space of a generalized quadrangle, more exactly of
an (m1, m2)-quadrangle.

Under the non-homogeneous examples of isoparametric hypersurfaces due
to Ferus, Karcher and Münzner there are infinitely many such that one of
the focal manifolds is a homogeneous space of the isotropy group. Kramer
[37], [36] classified the isoparametric hypersurfaces with a homogeneous focal
manifold and four distinct principal curvatures such that the multiplicities
m1, m2 are equal or such that m1 ≥ 3 and m1 + m2 is odd. Wolfrom [71]
classified the isoparametric hypersurfaces with a homogeneous focal manifold
such that m1 + m2 is odd and m1 = 2. He also treated the case m1 =
m2. The results of Münzner imply that for different multiplicities m1 6= m2

the sum m1 + m2 is odd or 1 ∈ {m1, m2}. Hence, up the exchanging the
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role of the focal manifolds the only case left for g = 4 is m1 = 1. These
isoparametric hypersurfaces were classified by Takagi [61]. For each value
of m ∈ � there is a unique example of such a hypersurface, and all these
examples are homogeneous.

We will apply our results to give the irreducible transitive actions of sub-
groups of the isometry group on the focal manifold with infinite cyclic fun-
damental group for g = 4 and m1 = 1 in 3.2.1.

3.2 Transitive actions on focal manifolds

Isoparametric hypersurfaces yield double fibrations, see Münzner [49] and
[50]. We use the same notation as in section 1.2. The total space F of the
two fibrations is the isoparametric hypersurface, and the two base spaces P
and L are the focal manifolds of F .

Suppose now we are given an isoparametric hypersurfaces with exactly g = 4
principal curvatures such that we have m1 = 1. Takagi [61] showed that
for each m ∈ � there is a unique isoparametric hypersurface in a sphere
with four distinct principal curvatures of multiplicities 1 and m. The isom-
etry group of such an isoparametric hypersurface acts transitively on the
isoparametric hypersurface F and also on the focal manifolds P and L,
see Cecil-Ryan [15, Ex. 7.4, pp 299-303] for a discussion of these exam-
ples. As a homogeneous space of the transitive isometry group we may
write the focal manifold P with infinite cyclic subgroup π1(P) ∼=

�
as

P = SO(2)× SO(m+ 2)/S(O(2)× O(m+ 1)); in particular, the focal man-
ifold P has the same rational homotopy as a product of a 1-sphere and an
(m+ 1)-sphere, i.e.

π•(P)⊗ � ∼= π•(
� 1 ×

� m+1)⊗ � ,

see also 1.2.5. Furthermore, we get by the classification of Takagi also that
π3(P) is trivial for even m > 2.

We apply 2.5.11 and the classification of simply connected rational cohomol-
ogy spheres 2.4.2 to determine the compact connected isometry groups which
are transitive and irreducible on P together with their actions. In the proof
we will use the Frattini argument (cf. Salzmann et al. [54, 91.2(a)]):

Suppose a group G acts transitively on a set X, then a subset H of G is
transitive, if and only if G = HGx for the stabilizer Gx of (any) x ∈ X.
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Theorem 3.2.1 If a subgroup G of SO(2) × SO(m + 2) is transitive and
irreducible on the focal manifold P, then there is an almost simple closed
subgroup A ⊆ SO(m+2) acting transitively on

�
m+1 and a 1-torus T ∼= SO(2)

such that G = T ·A, and the induced homomorphism

T ↪→ T · A↪→ SO(2)× SO(m + 2) → SO(2)

is an epimorphism, where the last map on the right is the projection of
SO(2)× SO(m + 2) to its first factor SO(2). Conversely, every group T · A
of this form is transitive on P.

Proof Since G acts irreducibly on the connected space P, the group G is
also connected. By 2.5.11 we know that G is locally isomorphic to SO(2)×A
with an almost simple compact connected Lie group A acting transitively
on a simply connected rational cohomology (m + 1)-sphere, and the con-
nected component of the stabilizer of G is the stabilizer of the A-action on
a cohomology (m + 1)-sphere in P. The possibilities for the A-action are
listed in 2.4.2. We show that the rational cohomology sphere is actually
a sphere. This is clear for m = 1 or m = 2 because there are no ratio-
nal 2- or 3-spheres in the table of 2.4.2. The case of the Stiefel manifolds
�

2(
� 2n+1) = SO(2n+ 1)/SO(2n− 1) was excluded in 1.2.6. Finally, for

m > 2 the third homotopy group of P is trivial as we remarked above. This
excludes the remaining cases in the table of 2.4.2. Therefore, the orbit of A
is an (m + 1)-sphere, and A is a subgroup of SO(m + 2) appearing in the
table of 2.4.1.

As SO(m + 2) is not transitive on P, we have G 6⊆ SO(m + 2), and the
projection of G to the first factor SO(2) of SO(2)×SO(m+2) has to be non-
trivial, hence it is an epimorphism; its image is the image of the T ∼= SO(2)-
factor of G because the factor A of G lies entirely in SO(m+2). This shows
the first part.

Now we show that each image of such an injection

T · A↪→ SO(2)× SO(m + 2)

is transitive. In fact, by the Frattini argument we only need to show (after
identifying P = SO(2)× SO(m+ 2)/S(O(2)×O(m + 1))) that

SO(2)× SO(m+ 2) = T · A · S(O(2)×O(m+ 1)).

We will even show that

SO(2)× SO(m+ 2) = T · A · SO(m+ 1).
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Let (t, s) ∈ SO(2) × SO(m + 2) be arbitrary. Then there is by assumption
an r ∈ SO(m + 2) with (t, r) ∈ T . As A ⊆ SO(m + 2) acts also transitively
on

�
m+1 = SO(m+ 2)/SO(m+ 1), the Frattini argument gives SO(m+2) =

A · SO(m + 1). Hence, there are a ∈ A and h ∈ SO(m + 1) with r−1s = ah,
and it follows that

(t, s) = (t, ra)(1, h) ∈ SO(2) · A · SO(m+ 1).

This shows that SO(2)× SO(m+ 2) = SO(2) · A · SO(m+ 1). �

Note that 2.4.1 lists the subgroups of SO(m + 2) that act transitively on�
m+1.
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Chapter 4

Generalized quadrangles

In this chapter generalized quadrangles are introduced and some of their
properties are stated. Then we apply our result 2.5.11 on transitive compact
connected Lie groups to the point spaces of (1, m)-quadrangles. The case
m = 2 is treated separately. After that we consider every series of possible
groups case by case. In the case of the orthogonal groups the generalized
quadrangle has to be the real orthogonal quadrangle. For the unitary groups
we determine the structure of the line space as a SU(m/2+1)-space. However,
here the incidence structure is not completely determined. The case of the
symplectic groups remains open. Most of the singular cases are solved.

4.1 Geometries and generalized quadrangles

Later on in this section we will give the definition of generalized quadrangles.
These are special cases of a much wider class of geometries called buildings.
Buildings were introduced by Tits in order to give geometric interpretations
of the simple groups of Lie type. One type of examples of buildings are pro-
jective spaces. Another type of examples are generalized polygons, which are
the buildings of rank 2. The (thick) spherical buildings of rank at least 3
were classified by Tits in [65]. The generalized triangles are nothing else than
the projective planes. Therefore, projective spaces and generalized quadran-
gles may be considered as generalizations of projective planes in different
ways. Both generalizations are contained in the even more general notion of
buildings. Here, we are interested in generalized quadrangles, which are the
buildings of type C2.

We start with making precise what we mean by a geometry. A triple Γ =
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(P,L,F) of non-empty sets with F ( P × L is called an incidence geom-
etry, or simply a geometry. The elements of P are called points. The
elements of L and of F are called lines and flags, respectively. For a flag
(p, l) ∈ F we say that p is a point on l, or that l passes through p, or that p
and L are incident.

For an incidence geometry Γ = (P,L,F) one can build the dual geometry
Γdual = (L,P,F−1), where F−1 = {(l, p) ∈ L × P | (p, l) ∈ F}.

We will examine group actions on certain geometries such that the actions
are compatible with the geometric structure. To make this precise, we call
a bijective map ϕ : P ∪̇ L → P ∪̇ L an automorphism of the geometry, if
ϕ(P) = P and ϕ(L) = L, and if

(
ϕ(p), ϕ(l)

)
∈ F ⇐⇒

(
p, l

)
∈ F .

If a group acts on a geometry by automorphisms, then we say that the group
acts as an automorphism group. If such a group action fixes a point, then it
leaves the set of lines through that point invariant. Hence, there is an action
on these lines. Of course, the dual statement—i.e. the statement in the dual
geometry—is also valid; therefore, one can interchange the roles of the points
and the lines in the statement.

Lemma 4.1.1 If a group G acts as an automorphism group transitively on
the point set of an incidence geometry and if there is a point p whose stabilizer
Gp acts transitively on the lines through this point, then the group G also acts
transitively on the set of flags of the geometry.

Proof Given two flags (p1, l1) and (p2, l2), there are g1, g2 ∈ G and h ∈ Gp

such that g1 ·p1 = p, g2 ·p = p2 and h·(g1 ·l1) = g−1
2 ·l2. Hence, g2hg1 ·(p1, l1) =

(p2, l2). �

We introduce some more terminology. Let (P,L,F) be an incidence geom-
etry. For a point p ∈ P the set Lp = {l ∈ L | (p, l) ∈ F} of lines passing
through p is called the line pencil of p. Similarly, for a line l ∈ L the set
Pl = {p ∈ P | (p, l) ∈ F} of points on l is called the point row of l. The
geometry Γ is thick if every line pencil and every point row contains at least
three elements. The perp p⊥ of a point p ∈ P is the set of points on the
lines passing through p.

A generalized quadrangle is a thick incidence geometry Γ = (P,L,F)
such that for every (p, l) ∈ (P ×L) \F there is a unique flag (q, h) ∈ F with
(p, h), (q, l) ∈ F , see figure 4.1.

We will give examples of generalized quadrangles later on. Note that for a
generalized quadrangle Γ the dual geometry Γdual is also a generalized quad-
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Figure 4.1: The projection of an anti-flag (p, l) 6∈ F

rangle, called the dual quadrangle of Γ. By definition, in a generalized
quadrangle two different lines have at most one point in common, and du-
ally there is at most one line passing through two different given points;
furthermore, the intersection of two perps is not empty.

Later on we will see orbits of group actions on generalized polygons with
particularly nice geometric properties. For example, a subset O ⊂ P is
called an ovoid, if it contains exactly one point of each line. Dually, a subset
S ⊂ L is called a spread, if it contains exactly one line of every line pencil.

As we are interested in Lie group actions on generalized quadrangles, we
will deal here only with generalized quadrangles with additional topological
structure. For more combinatorial and geometric properties of generalized
quadrangles, especially for finite ones, see Van Maldeghem [69].

A compact connected generalized quadrangle, or simply a compact
connected quadrangle is a generalized quadrangle Γ = (P,L,F) with
compact connected topological Hausdorff spaces P, L such that F is closed
in P × L.

In a compact connected generalized quadrangle Γ = (P,L,F) the restriction
of the projection P ×L → P to F induces a continuous projection πP : F →
P from the flag space to the point space. Similarly, there is a projection
πL : F → L. We may describe the line pencils as Lp = πL(π

−1
P (p)) and,

dually, the point rows as Pl = πP(π
−1
L (l)). It is well-known that any two line

pencils and any two point rows are homeomorphic.

If k and m are the finite and positive covering dimensions of the point rows
and the line pencils, respectively, then (k,m) is called the pair of topological
parameters of the compact connected quadrangle. We also call such a
compact connected quadrangle a (k,m)-quadrangle.

There are also the more general notions of a topological quadrangle and, even
more general, of a topological polygon, which also admit totally disconnected
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compact quadrangles, see Kramer [36] and Grundhöfer and Van Maldeghem
[24]. But we deal only with the notion of a compact quadrangles as it was
introduced here, i.e. with connected ones.

The topology of compact connected quadrangles was examined by Grundhöfer
and Knarr [21] and Kramer [36]. We summarize some of their results.

Proposition 4.1.2 (Topology of quadrangles) Let Γ = (P,L,F) be a
compact connected generalized quadrangle with topological parameters (k,m).

Then the line pencils and point rows are generalized k- and m-spheres, re-
spectively, in the sense of section 2.4; in particular, they are compact and
connected.

If k, m ≤ 2, then the point rows and line pencils are spheres. If k = 1 and
m ≥ 2, then the point rows are 1-spheres and π1(P) ∼=

�
.

The dimensions of the spaces are dimP = 2k + m, dimL = k + 2m and
dimF = 2k+2m. The point space P is (k− 1)-connected and the line space
L is (m− 1)-connected.

The line pencils and point rows are indeed genuine spheres in all known
examples.

For every (k,m)-quadrangle (P,L,F) the diagram

Lp

  @
@

@
@

Pl

��
F

πP

~~

πL

  A
A

A
A

P L

.

is a double fibration of type (k,m) in the sense of section 1.2, see Kramer [36].
Hence, the cohomology of (k,m)-quadrangles is given in 1.2.2, and if P is a
homogeneous space of a Lie group, then it has the same rational homotopy
as a product of a 1-sphere and a higher dimensional sphere by 1.2.5.

4.2 Homogeneous quadrangles

For an automorphism of a (k,m)-quadrangle we require in addition that
the automorphism of the generalized quadrangle is continuous. Similarly,
an action of a topological group as an automorphism group on a compact
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connected quadrangle is required to be continuous. In particular, actions of
Lie groups are supposed to be continuous (but not necessarily differentiable).

Now we give the most important examples of compact connected quadrangles
for the following sections, the real orthogonal quadrangles. They turn out to
be (1, m)-quadrangles.

Example 4.2.1 (The real orthogonal quadrangles) For n ≥ 4 consider
�

n+1 equipped with the bilinear form induced by the matrix

Q =




−1
−1

1
. . .

1




∈
� (n+1)×(n+1)

with respect to the canonical basis in
�

n+1.

Define P to be the set of one-dimensional totally isotropic vector subspaces

P = {p ⊂
� n+1 | p = v

�
, v 6= 0, vTQv = 0},

and let L be the set of two-dimensional totally isotropic vector subspaces

L = {l ≤
� n+1 | dim l = 2, ∀ v ∈ l vTQv = 0}.

As flag space F we take the pairs (p, l) ∈ P×L with p ⊂ l. Then (P,L,F) is
a (1, n−3)-quadrangle called the real orthogonal quadrangle Qn(

�
). We

sometimes denote it also by Q(1, n-3) to stress the values of the parameters.
In other words we consider the quadratic form

f(x) = −x2
1 − x2

2 + x2
3 + · · ·+ x2

n+1,

which is induced by Q, and we select the (projective) points v
�

in the pro-
jective space

�
Pn corresponding to vectors v ∈

�
n+1 that are annulated by

f. Then the lines are those projective lines which consist only of selected
points.
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Set p =




1
0
1
0
0
...
0




�
and q =




0
1
0
1
0
0
...
0




�
. Then p, q ∈ P, l = p ⊕ q ∈ L and hence

(p, l), (q, l) ∈ F . Furthermore, Pl = {




x
y
x
y
0
...
0




�
| x, y ∈

�
} =

�
P1 ≈

�
1 and

Lp = {p⊕




x1
x2
x3

...
xn+1


 �

| x1 = x3 = 0, x2
2 =

∑
k>3 x

2
k = 1} ≈

�
n−3.

The group G = {
(
A 0
0 B

)
| A ∈ SO(2), B ∈ SO(n− 1)} ∼= SO(2)× SO(n− 1)

acts naturally on the quadrangle as a topological transformation group and
by automorphisms of the quadrangle. The action of G is transitive on the
flags and hence on the points and on the lines. The stabilizer of p,

Gp = {

(
detB′

detB′

detB′

B′

)
| B′ ∈ O(n− 2)} ∼= O(n− 2),

consists of two components, and its connected component SO(n − 2) acts
transitively on Lp ≈

�
n−3.

The orbits of the second factor SO(n − 1) of G in the point space are
(n− 2)-spheres and contain exactly one point of every point row. Hence
these orbits are all ovoids. SO(n − 1) even acts transitively on the lines.
If n − 1 is even, then there is an inclusion SU(n−1

2
) ↪→ SO(n − 1), which

induces a point-transitive action of SO(2) × SU(n−1
2
) on the quadrangle

where the orbits of SU(n−1
2
) in the point space are the same as those of

SO(n − 1). But SU(n−1
2
) (and even SO(2)× SU(n−1

2
)) fails to be transitive

on the lines. Similar observations hold for (n− 1) ∈ 4 � and the embedding
Sp(n−1

4
) ↪→ SU(n−1

2
) ↪→ SO(n− 1).

There are constructions similar to the one of example 4.2.1 for complex vector
spaces and vector spaces over Hamilton’s quaternions. These constructions
yield (2, m)- and (4, m)-quadrangles, respectively. Van Maldeghem [69] gives
the more general construction for arbitrary fields.

If (P,L,F) is a compact quadrangle, then the spaces P, L and F are metriz-
able and locally contractible, and the group of (topological) automorphisms
is second countable, see Grundhöfer, Knarr and Kramer [23, 1.5, 1.8]. Burns
and Spatzier [13, 2.1] proved that the automorphism group of a compact
quadrangle with metrizable spaces P, L and F is locally compact in the
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compact-open topology, see also Bletz [3]. Hence, the automorphism group
of a compact quadrangle is also metrizable. The results of Montgomery-
Zippin 2.3.1 or Szenthe 2.3.2 imply the following theorem.

Theorem 4.2.2 If the automorphism group G of a compact connected quad-
rangle acts transitively on the point space, then G is a Lie group in the
compact-open topology.

Note that for compact metric spaces the compact-open topology may also
be described by the metric, see Dugundji [17, XII, XIII]. Note also that the
connected component of the automorphism group still acts transitively.

Grundöfer-Knarr-Kramer [22], [23] classified the compact connected polygons
that admit transitive actions of automorphism groups on the flag space; in
particular they classified the compact connected flag-homogeneous quadran-
gles. Biller [2, 4.2] determined the line-homogeneous (1, m)-quadrangles, i.e.
the (1, m)-quadrangles admitting an automorphism group which is transitive
on the line space.

We will consider point-homogeneous compact connected quadrangles. As-
sume that the automorphism group of a (k,m)-quadrangle is transitive on
the point space. Recall from 4.1.2 that the point space of a (k,m)-quadrangle
for k > 1 is simply connected. Therefore, 2.3.4 assures that the maximal com-
pact connected subgroups of the automorphism group are transitive on the
points of the quadrangle.

Kramer examined point-homogeneous (k,m)-quadrangles with k = m in [36]
and with k ≥ 3 in [37]. Wolfrom [71] gave the list of the homogeneous point
spaces with the ’right’ cohomology for k = 2.

In the following sections we treat the case k = 1. The case k = m = 1 is
covered by Kramer’s work [36] and by duality also by Biller [2]. The case
k = 1 and m = 2 is treated separately in the following section. For m > 2
the point space has the rational homotopy of

�
1×

�
m+1 by 1.2.5. Hence, the

orbits of the maximal compact connected subgroups of the automorphism
group have at most codimension 1 in the point space, see 2.5.8. But there
is no compact connected quadrangle known where the automorphism group
acts transitively on the point space and where no compact subgroup of the
automorphism group is transitive on the points. But our results do not allow
us to conclude that there is always a compact subgroup of the automorphism
group that acts transitively on the points. We therefore additionally assume
that there is a point-transitive compact subgroup of the automorphism group.
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By 2.5.11 we know the structure of an irreducible normal subgroup: an ir-
reducible point-transitive compact connected subgroup of the automorphism
group is locally isomorphic to a product SO(2) × A with an almost simple
compact Lie group A whose orbits in the point space are simply connected
rational cohomology spheres. The simply connected homogeneous rational
cohomology spheres are classified, see 2.4.2. We discuss each class of groups
appearing in the classification separately in the following sections.

We often use the following two lemmas.

Lemma 4.2.3 Let p be a point of a (k,m)-quadrangle on which the topo-
logical group G acts as an automorphism group. If G acts transitively on
the points and if the connected component H of the stabilizer Gp of p acts
trivially on p⊥, then H is in the kernel of the action.

Proof We show that H stabilizes each point of P. Then H also acts
trivially on L, as H acts by automorphisms and fixes the points on the lines.

H fixes the points in p⊥ by assumption. Let r ∈ P \ p⊥ be a point which is
not on a line through p. As perps in generalized quadrangles always intersect,
there is a point q ∈ p⊥ which is also on a line through r. We choose a g ∈ G
with g · p = q. As H acts trivially on p⊥, its conjugate gHg−1 acts trivially
on (g · p)⊥ = q⊥. In particular it fixes p, hence gHg−1 ⊆ Gp

1 = H is an open
and closed subgroup of Gp

1 and hence gHg−1 = Gp
1. As gHg−1 = H fixes

q⊥ pointwise, H also fixes r ∈ q⊥. �

The last lemma may be generalized to a bigger class of incidence geometries,
cf. Kramer [37, 7.3]. For (1, m)-quadrangles one can use slightly different
assumptions.

Lemma 4.2.4 Let p be a point of a (1, m)-quadrangle on which the topolog-
ical group G acts as an automorphism group. If G acts transitively on the
points and if the connected component H of the stabilizer Gp of p is compact
and acts trivially on Lp, then H is contained in the kernel of the action.

Proof Since H stabilizes each line in Lp, there is an action on each of
these point rows. As each of these point rows is a 1-sphere (by 4.1.2) and
as p itself is fixed, there is an action of H on Pl \ {p} ≈

�
for each l ∈ Lp.

Then 2.2.1 shows that this action of the compact connected group H has to
be trivial. Therefore, H acts trivially on p⊥, and hence on P and on L by
4.2.3. �
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4.3 Point-homogeneous (1, 2)-quadrangles

We now investigate more closely the point-transitive actions of compact au-
tomorphism groups of compact connected quadrangles. Because of the re-
striction m > 2 in 1.2.5 we treat the case m = 2 separately, i.e. we will first
treat the case of (1, 2)-quadrangles. The case of (1, 1)-quadrangles is covered
by Kramer [36, 5.2.7] and by duality also by Biller [2, 4.2.3].

The following proposition shows that the claim in 1.2.5 may be extended for
generalized quadrangles to the case m = 2.

Proposition 4.3.1 Let G be a compact connected Lie group acting as an
automorphism group transitively and irreducibly on the point space P of a
(1, 2)-quadrangle. Then G is locally isomorphic to SO(2) × SU(2), and the
stabilizer H is discrete and cyclic. Furthermore,

π•(
SO(2)× SU(2)

H
) ∼= π•(P) ∼= π•(

� 1 ×
� 3).

Proof Biller [2, 4.3.7] proved that the Lie algebra g of G embeds into
�
× o4 ∼=

�
× su2 × su2 and in [2, 5.2.3] that the centre is at most three-di-

mensional. If H is the stabilizer of a point, then the homotopy sequence of
H → G → G/H shows that

1 ≤ dimZ(G) ≤ 1 + dimZ(H),

cf. [2, 4.3.7]. Therefore, by the classification of compact Lie algebras the only
possibilities for g are

�
× su2,

� 2 × su2,
� 3 × su2, and

�
× su2 × su2. In all

of these four cases there is an action of SU(2). We first show that the orbits
of this action are three-dimensional.

Recall from table 2.2 on page 16 that there are no two-dimensional subal-
gebras of su2. Hence, orbits of SU(2) have dimension 0, 2, or 3. As G acts
transitively on the four-dimensional point space P of the quadrangle, the
su2-orbits have dimension 3 in the case g ∼=

�
× su2.

Denote by h the Lie algebra of the point stabilizer H.

If g ∼=
� 2 × su2, then dim h = dimG − dimP = 1, and also dim z(h) ≥

dim z(g) − 1 = 1, hence h ∼=
�
. If there were su2-orbits of dimension two,

then h ⊂ su2 and P would be finitely covered by
�
1 ×

�
1 × SU(2)/U(1), a

contradiction to π1(P) ∼=
�
.

Similarly, for g ∼=
� 3 × su2 we get dim h = 2 and dim z(h) ≥ dim z(g)− 1 =

2, hence h ∼=
� 2. As in the last paragraph, h ⊂ su2 is not possible. If
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dim h ∩ su2 = 1, then dim h ∩
� 3 = 1, because the projection of h into su2

has at most dimension 1. But dim h ∩
� 3 = 1 is not possible, since we

assumed G to act irreducibly and therefore almost effectively. (Note that in
the compact Lie group G there is a normal subgroup which is complementary
to the kernel.) The same is true for dim h ∩

� 3 = 2. Hence, there is no
irreducible transitive action corresponding to g ∼=

� 3 × su2.

Finally, suppose g ∼=
�
×su2×su2. Here, dim h = 3. As the semisimple group

SU(2)× SU(2) cannot act transitively on P, we get for dimensional reasons
that dim h ∩ (su2 × su2) = 3, i.e. h ⊂ su2× su2. Consider the projection of h
into the two factors. As there are no two-dimensional subalgebras in su2, the
dimensions of the image of such a projection cannot be 2 or 1. It is not 0,
either, because G acts almost effectively. Hence, it is 3 for both factors, and
both factors belong to three-dimensional orbits. In particular, this action is
not irreducible, but there are transitive actions related to

�
× su2 in this

case.

So far we have proved that the orbits of SU(2) are three-dimensional in the
four-dimensional space P. We now apply Mostert’s theorem 2.5.1. If the
orbit space of this action is a compact interval, then P is a double mapping
cylinder, and the images of the fundamental groups in π1(P) ∼=

�
of the two

exceptional orbits generate π1(P) by the Seifert–Van Kampen theorem. But
orbits of SU(2) have finite fundamental groups, and therefore the images of
these groups in π1(P) are trivial and cannot generate it. It follows that the
orbit space is not an interval. But then it is

�
1 by Mostert’s theorem, and

all orbits are of the same type B and there is a fibre bundle B → P →
�
1,

whose homotopy sequence shows that the orbit B is simply connected, i.e.
B ≈ SU(2) ≈

� 3, and that π•(P) ∼= π•(
� 1 ×

� 3). Since G acts irreducibly,

P ≈ (SO(2)× SU(2))/H

with a finite stabilizer H, which is cyclic as a quotient group of the infinite
cyclic group π1(P). �

In the following sections we will treat the case of a (1, m)-quadrangle, m > 2,
whose point space is a homogeneous space of a compact Lie group in the au-
tomorphism group of the quadrangle. As a (1, m)-quadrangle yields a double
fibration of type (1, m), the point space has an infinite cyclic fundamental
group and the rational homotopy of

�
1 ×

�
m+1 by 1.2.5. Hence, we may

apply 2.5.11 to see that the transitive Lie group contains a transitive normal
subgroup SO(2) ·A such that the connected component H of its stabilizer is a
subgroup of A and such that A/H is a simply connected rational cohomology
sphere. Hence, we may assume that (A,H) is one of the pairs (G,H) in the
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classification 2.4.2 of such rational cohomology spheres. We will go on by
considering case by case the classes of pairs (A,H) appearing in 2.4.2.

4.4 Orthogonal actions

We now examine the case in 2.4.2 where the almost simple factor in a point-
transitive group is a special orthogonal group. We will show that such an
action is the well-known action on the real orthogonal quadrangle, cf. example
4.2.1.

Proposition 4.4.1 If SO(2) × SO(m + 2) acts as an automorphism group
point-transitively on a generalized (1, m)-quadrangle, then the action is iso-
morphic to the classical action on the real orthogonal quadrangle Qm+3(

�
).

Proof LetG = SO(2)×SO(m+2) act almost effectively and transitively as
an automorphism group on the points of a (1, m)-quadrangle. The connected
component of the point stabilizer of a point p is isomorphic to the subgroup
SO(m + 1) of SO(m + 2), see 2.5.11, and acts on the line pencil Lp. As G
acts almost effectively, SO(m + 1) cannot act trivially by 4.2.4.

We claim that SO(m+ 1) acts transitively on Lp. If m 6= 3 then SO(m+ 1)
is almost simple or a torus. Then the non-trivial orbits have dimension
at least m = dimLp, because this is the smallest codimension of proper
subgroups, see table 2.2 on page 16. In the case m = 3, the stabilizer SO(4)
is locally isomorphic to SU(2)× SU(2). Here, the non-trivial orbits have at
least dimension 2. We will show that there is a three-dimensional orbit, i.e.
that the action of SO(4) on Lp is transitive. Seeking a contradiction, suppose
that there is a two-dimensional orbit of SO(4) in Lp. This implies that one
of the two factors of type SU(2) has to act transitively on that orbit, because
there is no one-dimensional SU(2)-orbit. We apply Mostert’s theorem 2.5.1
on compact manifolds with orbits of codimension 1 to this SU(2)-action on
Lp. Then Lp

/
SU(2) ≈

�
1 or Lp

/
SU(2) ≈ [0, 1]. By Montgomery and Yang

2.5.2 the orbit projection

Lp → Lp

/
SU(2)

induces an epimorphism of the fundamental groups. As Lp is a generalized 3-
sphere, and hence simply connected, Lp

/
SU(2) ≈

�
1 is not possible. Hence,

Lp

/
SU(2) ≈ [0, 1]. Then Mostert’s theorem says that there are exactly two

singular orbits SU(2) ·x and SU(2) ·y, and one may choose stabilizers of lines
x, y in the two singular orbits such that in their intersection is the stabilizer
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of a line l of a principal orbit

SU(2)l ⊆ SU(2)x ∩ SU(2)y.

Furthermore, SU(2)x/SU(2)l and SU(2)y/SU(2)l are homology spheres. But
SU(2)l is a one-dimensional subgroup of SU(2), and the one-dimensional
subgroups of SU(2) are of type SO(2) and

�
2 · SO(2). It follows that the

principal orbit type is a 2-sphere

SU(2)/SO(2) ∼= SU(2)/U(1) ∼=
�
P1 ≈

� 2,

and that the two exceptional orbits are real projective planes

� 2
/ �

2 ≈
�
P2 .

The Mayer-Vietoris-sequence of the orbit decomposition induces an exact
sequence

0 // H2(
�
P2)⊕H2(

�
P2) // H2(

�
2) ∼=

�
,

a contradiction. Therefore, even in the case m = 3, the point stabilizer
SO(m) acts transitively on the generalized m-sphere Lp, as we claimed above.

Since the point stabilizer of the point-transitive action of SO(2)×SO(m+2)
acts transitively on the corresponding line pencil, it follows by 4.1.1 that
SO(2)× SO(m + 2) acts also transitively on the flag space F and therefore
also on the line space L.

As Lp '
�
m is simply connected, the homotopy sequence allows us to con-

clude that SO(m + 2)p,l ∼= SO(m) is connected and that Lp ≈
�
m for every

flag (p, l) ∈ F and every m ∈ � , hence F = SO(2)× SO(m + 2)/SO(m).

We will now show that even the simple factor SO(m+2) acts transitively on
the line space. The connected group SO(m+ 2)p,l ∼= SO(m) acts trivially on
Pl \ {p} ≈

�
1 \ {p} ≈

�
, see 2.2.1, this implies that SO(m + 2)p,l is in the

kernel of the action of SO(m+ 2)l on Pl. From

dim SO(m+ 2) · l = dimSO(m+ 2)− SO(m + 2)p,l − dimSO(m+ 2)l · p

for p ∈ Pl it follows that dim SO(m+ 2) · l ∈ {dimL, dimL − 1}.

Assume that dimSO(m+ 2) · l = dimL− 1, i.e. that SO(m+2)l acts transi-
tively on Pl ≈

�
1 for every l ∈ L. (Otherwise there would be an SO(m+ 2)-

orbit of full dimension in L.) It follows that SO(m + 2)l ∼= T · SO(m) with
SO(2) ∼= T ⊆ CenSO(m+2)(SO(m+ 2)p,l)

1 ∼= SO(2). But all these stabilizers
SO(m+ 2)l ∼= T · SO(m) = SO(m+ 1) are conjugate in SO(m+ 2), and the
orbits are all of dimension dimSO(m+2)−dimT ·SO(m) = 2m = dimL−1



4.5. UNITARY ACTIONS 51

and equivalent. By Mostert’s result 2.5.1 on actions with orbits of codi-
mension one we get L

/
SO(m + 2) ≈

� 1. But in view of Montgomery and
Yang 2.5.2 we get also L

/
SO(m + 2) ≈ [0, 1], since L is simply connected.

Therefore, dim SO(m+ 2) · l = dimL − 1 is not possible.

It follows that dimSO(m+ 2) · l = dimL and that L = SO(m+ 2)/SO(m).
The quadrangle is uniquely determined by Kramer [37, 7.15], or Biller [2].
The uniqueness follows also from the classification of flag-homogeneous com-
pact connected generalized polygons by Grundhöfer, Knarr and Kramer [22],
[23]. �

4.5 Unitary actions

In this section we investigate point-transitive actions of G = U(1)×SU(n+1)
for m = 2n > 2 on (1, m)-quadrangles. We get a description of L as a
SU(n + 1)-space.

Proposition 4.5.1 If G = U(1) × SU(n + 1), n > 1, acts as an automor-
phism group transitive on the points of a (1, 2n)-quadrangle (P,L,F), then
for p ∈ P there are lines l, x, y ∈ Lp such that SU(n+ 1) ·x ≈ SU(n+ 1) ·y ≈� 2n+1 are spreads, and all other SU(n+1)-orbits in L are SU(n+1)-equivalent

to SU(n + 1)·l
SU(n+1)

≈ SU(n+ 1)/SU(n− 1). Furthermore, SU(n+1) is tran-
sitive on every G-orbit in L.

The induced action of the stabilizer SU(n + 1)p ∼= SU(n) on the line pencil
Lp ≈

�
2n of p is as described in 2.4.6, i.e. it is the suspension of the transitive

SU(n)-action on
�
2n−1.

Proof Let p ∈ P and identify P = G/Gp. From 2.5.11 and 2.4.2 we
know that (Gp)

1 = SU(n + 1)p = SU(n). The stabilizer SU(n) acts on the
generalized 2n-sphere Lp. This action is not trivial by 4.2.4, and 2.4.6 implies
that the action of SU(n+ 1)p = SU(n) on Lp ≈

�
2n is the suspension of the

natural action of SU(n) on
�
2n−1. This means that there are two types of

orbits, two fixed lines x and y, and the stabilizers of the other lines are
isomorphic to SU(n− 1), i.e. we have

SU(n+ 1)x,p = SU(n+ 1)p = SU(n),
SU(n + 1)y,p = SU(n + 1)p = SU(n),

∀l ∈ Lp \ {x, y} (Gp
1)l = SU(n+ 1)l,p ∼= SU(n− 1).
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We claim that for a line l ∈ Lp \ {x, y} the connected component (Gl)
1 of

the stabilizer (of the action of G on the line space) cannot act trivially on
Pl. Suppose on the contrary that (Gl)

1 acts trivially on Pl. It follows that
(Gl)

1 fixes p, which implies that (Gl)
1 = (Gp,l)

1 = SU(n+ 1)p,l ∼= SU(n− 1);
hence, dimG · l = dimU(1)× SU(n+ 1)−dim SU(n− 1) = 1 + 4n = dimL,
and the simply connected line space L = G · l is finitely covered by G/Gl

1 ≈
U(1)×SU(n+ 1)/SU(n− 1), a contradiction. Hence, the G-stabilizer of such
a line l acts transitively on Pl as we claimed above.

The kernel of the transitive action of (Gl)
1 on Pl ≈

�
1 stabilizes l and p;

therefore Gl
1 = T · SU(n + 1)p,l, where U(1) ∼= T ⊆ CenG(SU(n+ 1)l,p)

1 ∼=
U(1)× SU(2) and dimG · l = 4n = dimL − 1.

As L is simply connected, L
/
G is simply connected, too, see Montgomery-

Yang 2.5.2. By Mostert’s theorem 2.5.1, the orbit space is L
/
G ≈ [0, 1];

furthermore, L is a double mapping cylinder, and there are exactly two sin-
gular orbits, one of these has to be G · x, because of

dimG · x ≤ dim(U(1)× SU(n+ 1))− dim SU(n) = 2n+ 2 < 4n.

Similarly, we get dimG · y ≤ 2n + 2 < 4n. In other words, the two singular
orbits (fixed points) of the Gp

1 = SU(n)-action on Lp extend to singular
orbits of the G-action on L.

Mostert’s result also implies that there is an l ∈ L such that T · SU(n− 1) ∼=
Gl

1 ⊆ Gl ⊆ Gx ∩ Gy and such that Gx/Gl is a (homogeneous) homology
sphere. It follows that Gx/Gl is a sphere, see 2.4.1. Because of SU(n) =
SU(n + 1)x,p ⊆ Gx,p ⊆ Gx and in view of the classification of homogeneous
cohomology spheres 2.4.1 we get Gx

1 ∼= T1 · SU(n) and Gx/Gl ≈
�
2n−1 with

U(1) ∼= T1 ⊆ CenG(SU(n))
1 ∼= U(1)× U(1). Therefore,

dimG · x = dim(U(1)× SU(n+ 1))− dim(T · SU(n)) = 2n + 1,

and similarly, dimG · y = 2n+ 1.

As the choice of p ∈ P was arbitrary, there are exactly two lines with different
G-orbits of dimension less than 4n in every line pencil. It follows that the two
singular orbits G ·x and G ·y are different, because G ·x = G ·y would (by the
point-transitivity of G) imply that there is only one singular orbit. Hence,
G · x meets every line pencil at most once. Since a compact homogeneous
(m + 1)-dimensional set of lines containing at most one line of every line
pencil (in a (1, m)-quadrangle) is a spread, see Biller [2, 5.2.2] (where the
dual statement in the point space is shown), the orbit G · x is a spread
and in particular G · x ≈

�
2n+1 is a homogeneous sphere. It follows that
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SU(n + 1) · x = G · x ≈
�
2n+1. (Note that the factor T1 in Gx

1 ∼= T1 · SU(n)
cannot be contained in SU(n + 1), since G/Gx is simply connected).

Moreover, Gx
∼= T1 · SU(n) is connected. But then, the fibre bundle

Gl → Gx → Gx/Gl ≈
� 2n−1

shows that Gl is also connected; hence

Gl
∼= T · SU(n− 1) and G · l ≈ U(1)× SU(n + 1)/T · SU(n− 1).

From the fibration

� 2n−1 ≈ Gx/Gl ↪→ G · l ≈ G/Gl → G · x ≈ G/Gx ≈
� 2n+1

one gets that G · l is simply connected.

For the factor T in Gl
∼= T ·SU(n−1) we get as above that T is not contained

in SU(n+1), since G·l is simply connected. It follows that dimSU(n+ 1) · l =
dimG · l; hence SU(n+1) · l = G · l, and SU(n+1) · l is covered by the Stiefel
manifold SU(n + 1)/SU(n− 1), but as SU(n+1) · l is simply connected, the
covering is trivial, i.e. SU(n+ 1) · l = G · l = SU(n+ 1)/SU(n− 1). This all
holds of course for x replaced by y. �

4.6 Summary

After treating the case m = 2 separately we examined for the infinite series
of simply connected homogeneous rational cohomology spheres appearing in
2.4.2 and in 2.4.1 if they occur in point-homogeneous (1, m)-quadrangles as
described in 2.5.11. The case of the Stiefel manifolds is excluded by 1.2.6.
The cases of (SU(3), SO(3)) and (Sp(2),

�

ρ3λ1) were excluded in 1.2.7 and in
1.2.8, respectively.

In the last two sections we examined the cases of the SO(m+1)-spheres and
of the SU(m/2)-spheres. Some other of the singular cases may be solved.

The action of G2 on (1, 5)-quadrangles is unique and, hence, the classical one
on the real orthogonal quadrangle, see Biller [2, 4.2.13]. This excludes the 4
cases in 2.4.2 and settles the case of the G2-homogeneous sphere in 2.4.1.

In the case of SO(2)× Spin(7) as a point-transitive automorphism group of
a (1, 6)-quadrangle, the point stabilizer G2 cannot act trivially on the line
pencil by 4.2.4. Non-trivial G2 orbits have at least dimension 6, see table 2.2
on page 16. Hence, G2 acts transitively on the generalized 6-sphere. But then
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SO(2)× Spin(7) acts transitively on the flags by 4.1.1. The classification of
flag-homogeneous quadrangles by Grundhöfer-Knarr-Kramer [23] shows that
it is the unique action on the real orthogonal (1, 6)-quadrangle.

We have seen up to now that the groups acting flag-transitively on the real
orthogonal quadrangle have this ’classical’ action as a unique point-transitive
action on (1, m)-quadrangles.

From the homogeneous spaces in 2.4.2 and in 2.4.1 there remain the infinite
series of pairs (Sp(n), Sp(n − 1)) and the isolated case (Spin(9), Spin(7)).
For these pairs there are indeed respective actions on the real orthogonal
quadrangles which come from the injections of Sp(n) in SO(4n) and Spin(9)
in SO(16). But a further examination of these actions seems to be hard,
because in each case the action of the stabilizer on the line pencil may have
principal orbits with high codimensions, and so these actions are far away
from being transitive or almost transitive. This may be compared with the
case of Sp(1)× (Sp(n)/Sp(n− 1)) as point space of a (3, 4n− 4)-quadrangle.
This case occurs in Kramer [37, 7.H, p. 93.]. There is such an action on
non-Moufang-quadrangles of FKM-type. But it remains an open problem if
these actions are unique.

We summarize the results of the last sections as follows.

Theorem 4.6.1 If a compact connected Lie group acts transitively and irre-
ducibly as an automorphism group on the point space of an (1, m)-quadrangle,
then there is an action of this group by automorphisms on the point space
of the respective real orthogonal quadrangle, and the connected component of
the point stabilizers are the same in both actions.

If the action on the real orthogonal quadrangle is flag-transitive, then both
point-transitive actions coincide.

As the isoparametric hypersurfaces of section 3.2 may be interpreted as real
orthogonal quadrangles, theorem 3.2.1 describes also the point-transitive ac-
tions on the real orthogonal quadrangles.



Chapter 5

Three series of homogeneous
spaces

In this chapter we investigate three other series of homogeneous spaces that
are candidates of homogeneous point spaces of quadrangles, cf. Kramer [37,
7.33, 7.G and 3.15(B1)]. The homogeneous spaces are products of spheres and
the respective quadrangles, if they existed, would have parameters (5, 4n−6),
(7, 4n− 8) and (3, 2n− 2), respectively, where n ∈ � is not too small. In his
investigations of point-homogeneous quadrangles Kramer found these three
infinite series of homogeneous spaces with the ’right’ cohomology, i.e. with
the cohomology of sphere products. For these examples no such actions on
quadrangles were known and Kramer conjectured that these homogeneous
spaces do not belong to point spaces of quadrangles with the respective pa-
rameters. But he left this problem open.

We will show that (up to some small parameters in the first series) there are
indeed no quadrangles with these kinds of homogeneous point spaces. Each
of the following three sections is dedicated to one of the series.

5.1 The (5, 4n − 6)-series

In Kramer’s Habilitationsschrift [37, 7.33 and 3.15(B1)] one finds the homo-
geneous space

SU(3)× Sp(n)/Sp(1) · Sp(n− 1) ≈
� 5 ×

� 4n−1, n ≥ 2,

as a candidate for the point space of a (5, 4n − 6)-quadrangle, where the
group SU(3)× Sp(n) acts by automorphisms of the quadrangle.
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We will show that there is no such quadrangle for n ≥ 6. The idea is to
apply 2.1.2 and the following proposition (which is a part of a proposition
of Biller [2, 5.1.3]) to the kernel of the induced action of a line stabilizer on
the points of the fixed line. Then the representation theory of compact Lie
groups rules out the remaining cases. We will use the tables of Kramer [37,
Ch. 4] for low-dimensional simple modules of the occuring Lie groups.

First we quote the mentioned result of Biller [2, 5.1.3].

Proposition 5.1.1 (Biller) Suppose that a Lie group G acts effectively on
a (k,m)-quadrangle with odd k and even m such that G fixes a point row
elementwise. Then rk(G) ≤ m−2

k−1
+ 1.

Now assume that there is a quadrangle (P,L,F) with point space P =
SU(3)× Sp(n)/Sp(1) · Sp(n− 1) ≈

�
5×

�
4n−1 where SU(3)×Sp(n) acts as a

subgroup of the automorphism group. Then the parameters of the quadrangle
are 5 and 4n− 6, and G = SU(3) × Sp(n) acts effectively on the respective
line space as a subgroup of the automorphism group.

For a line l in the line space we denote by G[l] the kernel of the induced action
of Gl on the point row Pl of l. Then

8 + 2n2 + n = dimG = dimG · l + dimGl

= dimG · l + dimGl/G[l] + dimG[l].

Here, the dimension of the orbit of l is of course bounded by the dimension
8n−7 of the line space, see 4.1.2. AsGl/G[l] acts effectively on the generalized
5-sphere Pl, we get dimGl/G[l] ≤ 15 by 2.3.5. Hence, the equation above
reads now

(5.1.1) dimG[l] ≥ 2n2 − 7n.

On the other hand, Biller’s result 5.1.1 yields

rk(G[l]) ≤

⌊
4n− 6− 2

5 + 1
+ 1

⌋
=

⌊
2n− 1

3

⌋
.

It follows that
(
2 rk(G[l]) + 1

2

)
≤

(22n−1
3

+ 1)(22n−1
3

)

2
=

1

9
(4n+1)(2n−1) =

1

9
(8n2−2n−1).

A short calculation shows that 1
9
(8n2 − 2n− 1) < 2n2 − 7n for n ≥ 7; hence(

2 rk(G[l])+1
2

)
< dimG[l] for n ≥ 7.
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Now the relations 2.1.2 between the ranks and the dimensions of the Lie
algebras imply that n ≤ 6, or that G[l] is (up to a local isomorphism) one of
the exceptional groups G2, F4, E7, or 8 ≤ rk(G[l]) ≤ 11 and E8 is a normal
subgroup of G[l]. We show case by case that these possibilities do not occur.

We first consider the case G[l] = G2 and 2 = b2n−1
3

c, i.e. n = 4. Note
that there is only one compact connected Lie group with Lie algebra g2. As
G2 is almost simple and cannot inject into the first factor SU(3) of G =
SU(3) × Sp(4) by dimensional reasons, the projections to the factors of G
show that it has to inject into Sp(4). But there is no almost effective action
of G2 on

� 4 by representation theory, see Kramer [37, 4.26]. Therefore, this
case can not occur.

The next case is G[l] = F4 and 4 = b2n−1
3

c, i.e. n = 7. Here we get by the
same reasoning as above an injection of F4 into Sp(7), but there is no almost
effective action of F4 on

� 7, cf. Kramer [37, 4.24].

If G[l] = E7 and 7 = b2n−1
3

c, then n = 11 or n = 12 and there would be an
injection of E7 into Sp(12), which by Kramer [37, 4.20] does not exist.

Finally, we have to consider the case that E8 is a normal subgroup of G[l]

and 8 ≤ rk(G[l]) ≤ min{11, b2n−1
3

c}. That yields on the one hand 13 ≤ n. As
the maximal dimension of a compact connected Lie group of rank at most 3
is dim SO(7) = dimSp(3) = 21, we get on the other hand

2n2 − 7n ≤ dimG[l] ≤ dimE8 + 21 = 269,

i.e. 13 ≥ n. Hence, n = 13, and there would be an injection of E8 into Sp(13).
But there is no almost effective representation of E8 on

� 13, cf. Kramer [37,
4.22].

Therefore, the exceptional cases do not occur, and we are left with n ≤ 6.
For n = 6 the equation (5.1.1) still gives

dimG[l] ≥ 2 · 62 − 7 · 6 = 30 > 21 =

(
2 · 6 + 1

2

)
≥

(
2 rk(G[l]) + 1

2

)
,

what we excluded above.

We have proved the following result.

Proposition 5.1.2 For n ≥ 6 there is no quadrangle with point space

SU(3)× Sp(n)/Sp(1) · Sp(n− 1) ≈
� 5 ×

� 4n−1

such that SU(3)× Sp(n) acts by automorphisms.
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5.2 The (7, 4n − 8)-series

To rule out the next series, assume that Sp(2)× Sp(n)/Sp(1) · Sp(n− 1) ≈�
7 ×

�
4n−1 is the point space of a quadrangle where Sp(2) × Sp(n) acts by

automorphisms of the quadrangle, cf. Kramer [37, 7.33 and 3.15(B1)]. Then
n ≥ 3 and the pair of topological parameters is (7, 4n− 8).

If p is a point which is stabilized by Sp(n − 1), then Sp(n − 1) acts on the
generalized (4n−8)-sphere Lp. Recall that non-trivial orbits of Sp(n−1) have
at least dimension dim Sp(n− 1)−dim Sp(1)× Sp(n− 2) = 4n−8 = dimLp

by table 2.2 of maximal-dimensional subalgebras of compact simple algebras
on page 16, and for n ≥ 4 a connected closed subgroup U of Sp(n− 1) with
the dimension of Sp(1)×Sp(n−2) is conjugate to Sp(1)×Sp(n−2): in fact,
by table 2.2 on page 16 the group U is locally isomorphic to Sp(1)×Sp(n−2),
and with representation theory it can be shown that the induced action of the
spn−2-factor of U on

� n−1 is the standard one, see Kramer [37, 4.14]. Hence,
the corresponding spn−2-subgroup of U is a conjugate of Sp(n−2) in Sp(n−1).
The sp1-factor of U lies in the centralizer CenSp(n−1)(Sp(n− 2)) ∼= Sp(1)
and is therefore uniquely determined. It follows for n ≥ 4 that if there is
a non-trivial orbit of Sp(n − 1) on Lp, then the action is transitive, and

�
Pn−2 ≈ Sp(n− 1)/Sp(1) · Sp(n− 2) ≈ Lp ≈

�
4n−8, a contradiction.

Therefore, for n ≥ 4 the action of Sp(n − 1) on Lp is trivial and Sp(n − 1)
acts on the generalized 7-sphere Pl for every l ∈ Lp. But this action on
the smaller space is, of course, also trivial for n ≥ 4, and for these values
Sp(n − 1) acts trivially on p⊥. This is a contradiction to 4.2.3. Therefore,
we are left only with the case n = 3.

For n = 3 the quadrangle is dual to a (4, 7)-quadrangle and dimG = 31 >
27 =

(
2·3+1

2

)
+ 6. But Biller [2, 5.3.1] has shown that if a compact group of

dimension bigger than 27 acts on a (4, 4 · 3− 5)-quadrangle then the action
is a standard action on the quaternion hermitian quadrangle, which has a
quaternion Stiefel manifold

�
2(

� 3) ≈ Sp(3)/Sp(1) as line space. Hence,

Sp(2)× Sp(3)/Sp(1) · Sp(2) ≈
� 7 ×

� 11

had to be Sp(3)-equivalent to

�
2(

� 3) ≈ Sp(3)/Sp(1).

But the structure of
�

2(
� 3) ≈ Sp(3)/Sp(1) as homogeneous space of a max-

imal compact connected and effective Lie group is

NorSp(3)(Sp(1)) · Sp(3)/NorSp(3)(Sp(1)) · Sp(1) = Sp(2)× Sp(3)/Sp(2)× Sp(1),
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see Kramer [37, 3.6]. In the case of
�
7 ×

�
11, the intersection of the Sp(3)-

factor with the stabilizer is Sp(2) and in the case of the quaternion Stiefel
manifold it is Sp(1), a contradiction. Therefore,

�
7 ×

�
11 and

�
2(

� 3) are
not homeomorphic.

This yields the following result.

Proposition 5.2.1 There is no quadrangle with point space

Sp(2)× Sp(n)/Sp(1) · Sp(n− 1) ≈
� 7 ×

� 4n−1

such that Sp(2)× Sp(n) acts by automorphisms.

5.3 The (3, 2n − 2)-series

In this section assume that the point space of a (3, 2n − 2)-quadrangle is a
product of homogeneous spheres Sp(1) × SU(n+ 1)/SU(n) ≈

�
3 ×

�
2n+1,

where n ≥ 2 and Sp(1)× SU(n+ 1) acts by automorphisms, cf. Kramer [37,
7.G].

There is a point p which is stabilized by SU(n). We consider the action
of SU(n) on the generalized (2n− 2)-sphere Lp. Non-trivial orbits of SU(n)
have at least dimension 2n−2 by table 2.2 (page 16) of maximal-dimensional
subalgebras of simple compact Lie algebras. Hence, there cannot be a non-
trivial orbit in Lp because, otherwise, the action would be transitive and we
would have

�
Pn−1 ≈ SU(n)/S(U(1)× U(n− 1)) ≈ Lp ≈

�
2n−2, cf. Biller [2,

3.2.2], a contradiction for n ≥ 3. Since the action of SU(n) cannot be trivial
either by 4.2.3, we are left with the case n = 2.

For n = 2 the stabilizer SU(2) of p acts on the generalized 2-sphere Lp. If
this action is not trivial, then it is transitive, and G = Sp(1) × SU(3) is
flag transitive by 4.1.1. From the classification of compact connected flag
homogeneous quadrangles, cf. Grundhöfer–Knarr–Kramer [23], we see that
the quadrangle in question had to be the dual of the complex hermitian
quadrangle with parameters (2, 3). But this is not true, because then the
normal factor SU(3) in Sp(1)× SU(3) would have to be transitive, which is
not the case here.

Hence, Gp = SU(2) acts trivially on the line pencil Lp. Consider the induced
action of SU(2) on the point rows of each line of Lp, which are generalized 3-
spheres. This action cannot be trivial for all l ∈ Lp, because then Gp = SU(2)
would act trivially on p⊥ contradicting 4.2.3. It follows that there is a line
l ∈ Lp with a non-trivial SU(2)-orbit SU(2)·q which has necessarily dimension
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2; (note that there is no one-dimensional SU(2)-orbit, that the orbit of p is
trivial and thus the action is not transitive). As SU(2) · q has codimension
1 in the generalized 3-sphere Pl, we may apply Mostert’s theorem 2.5.1 and
conclude that SU(2)p/SU(2)q = SU(2)/SU(2)q is a homology 2-sphere, a
contradiction, see the classification 2.4.1 of homogeneous homology spheres.

In this section we have proved the following result.

Proposition 5.3.1 There is no quadrangle with point space

Sp(1)× SU(n + 1)/SU(n) ≈
� 3 ×

� 2n+1

where Sp(1)× SU(n+ 1) acts by automorphisms.

If we combine the last three propositions with our classification results for
(1, m)-quadrangles (see page 54) and with the classification results of Wol-
from [71] for (2, m)-quadrangles and of Kramer for (k,m)-quadrangles with
3 ≤ k < m in [37] or with k = m in [36], then we get the following result.

Theorem 5.3.2 If a compact connected Lie group acts as an automorphism
group transitively and irreducibly on the points or on the lines of an (k,m)-
quadrangle, then there is up to finitely many exceptions an action of this
group by automorphisms on a classical quadrangle or on a FKM-quadrangle
of type (3, 4n) or (8, 7), and the stabilizers of the two actions are the same
for 2 ≤ k ≤ m. For 1 = k < m the connected components of the stabilizers
coincide.

By the FKM-quadrangles we mean the quadrangles related to the construc-
tions of Ferus, Karcher and Münzner [19] with Clifford algebras.



Chapter 6

Rational cohomology

This chapter does not require results from the other chapters (apart from
Lemma 2.5.4), but we used some well-known results quoted in this chapter at
the end of chapter 1. Nevertheless, we put this chapter at the end, because
it deals with spectral sequences, which are very different objects from the
topics involved in the previous chapters. Furthermore, we intend to give the
reader an easy access to the main geometric results of this thesis.

We start this chapter by considering actions of fundamental groups arising
from fibrations. These are important for orientable fibrations. Furthermore,
we show that a certain kind of fibrations that we will use several times is
orientable over the rationals.

After a short introduction to spectral sequences, one of the main tools used
in the following sections, we recall some relations between rational homotopy
and rational cohomology, e.g. the Cartan-Serre-theorem. Then we show that
homogeneous spaces G/H with the same dimension and the same rational
homotopy as

�
1 ×

�
m also have the same rational cohomology as

�
1 ×

�
m

if H is connected. Furthermore, we determine the rational cohomology of
the fibre bundle H → G → G/H. This leads to another proof of 2.5.11, the
classification of such homogeneous spaces G/H.

Finally, we calculate the cohomology of certain homogeneous spaces. These
homogeneous examples show that there is no hope of getting further restric-
tions in 2.5.11 on the number of connected components of the stabilizer.
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6.1 Orientable fibrations

The following description of actions of the fundamental group is mainly taken
from Whitehead [70] and Hu [30].

The first action we consider may be defined for every topological space.

Definition 6.1.1 Let g, h : X → E be continuous maps between topological
spaces X and E. We fix a base point ∗ in X. Then g is called freely

homotopic to h along the path v : [0, 1] → E if there is a homotopy
H : X × [0, 1] → E such that H0 := H(·, 0) = g, H1 := H(·, 1) = h and
H(∗, ·) = v. We denote this by g 'v h.

Now we choose a base point in E and denote it also by ∗. If g and h respect
the base points, i.e. if g(∗) = ∗ = h(∗), and if we denote the constant path
to ∗ ∈ E also by ∗, then we may express base point preserving homotopy by
g '∗ h.

Let [v] ∈ π1(E, ∗) be an element of the fundamental group of E. By White-
head [70, III.1-7] there is a group automorphism τ[v] of πn(E, ∗) such that for
[g], [h] ∈ πn(E, ∗) we have

τ[v](g) = h ⇐⇒ g 'v h.

Furthermore, this group automorphism does not depend on the choices of v,
g and h in the respective homotopy classes, and [v] 7→ τ[v] defines an action
τ of π1(E, ∗) on πn(E, ∗) for every n ∈ � .

This leads to the following kind of spaces.

Definition 6.1.2 Let E be a topological space. Then E is called n-simple

if the action τ of π1(E, ∗) on πn(E, ∗) in 6.1.1 is trivial for every base point
∗ ∈ E. For a path-connected space this follows if the action is trivial for any
base point. Therefore, we may suppress the base point in this case.

If E is n-simple for every n, then we call E simple.

To distinguish the simplicity of the topology of a topological group from the
simplicity of the abstract group we will call the underlying topological space
of the group also homotopy simple.

The n-simplicity of a space may also be expressed as in Hu [30, III.16.9]:

Proposition 6.1.3 A topological space E is n-simple if and only if for every
point ∗ ∈ E and any two continuous maps g, h :

�
n → E with g(s0) = ∗ =
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h(s0), where s0 ∈
�
n is a base point, we have

g ' h =⇒ g 's0 h.

Hu [30, III.16.10] shows that connected topological groups yield examples of
simple spaces. We adapt the proof of Hu to show that also certain quotients
of topological groups are simple spaces. Note that we may set H = 1 in the
following lemma to get that the topological groups themselves are homotopy
simple. This and the following result for Lie groups may also be found in
Steenrod [58, 16.9 and 11].

Lemma 6.1.4 If G is a locally compact path-connected topological group and
H a connected closed subgroup, then the quotient space G/H is homotopy
simple.

Proof We apply 6.1.3. So assume there is a homotopy h :
�
n × [0, 1] →

G/H such that h0(∗) = gH = h1(∗) for some g ∈ G, where h0 = h(·, 0) and
h1 = h(·, 1) are obtained by fixing the second argument of h and ∗ is a base
point in

�
n. As multiplication by g is a homeomorphism of G and of G/H,

we may assume that g = 1. We have to show that h0 'H h1 where H denotes
also the constant path to H.

Consider the path w = h(∗, ·) in G/H. Since H is path-connected by as-

sumption, the exact homotopy sequence of H
� � // G // G/H shows that

π1(G) → π1(G/H) is a surjective map, see Salzmann et al. [54, 96.12] for the
homotopy sequence. Hence, there is a lift ŵ : [0, 1] → G of w to G, i.e. we
have ŵ(0) = 1, ŵ(1) = 1 and w(t) = ŵ(t)H for all t ∈ [0, 1]. Set h̄(x, t) =
(ŵ(t))−1 · h(x, t) = (ŵ(t)H)−1 · h(x, t). Then h̄(x, 0) = h(x, 0) = h0(x) and
h̄(x, 1) = h(x, 1) = h1(x) for all x ∈

�
n, and h̄(∗, t) = (ŵ(t))−1 · h(∗, t) =

(ŵ(t)H)−1·h(∗, t) = (w(t))−1·h(∗, t) = H for all t ∈ [0, 1] since w(t) = h(∗, t).
�

The following lemma gives some kind of geometric meaning of simplicity,
compare Hu [30, III.16.11].

Lemma 6.1.5 If a topological space E is path-connected and n-simple, then
there is a bijection from the base point preserving homotopy classes πn(E, ∗)
of maps g :

�
n → E, g(∗) = ∗, to the set of free homotopy classes, sending

[g] ∈ πn(E, ∗) to the set {h :
�
n → E | g ' h}.

Next we consider an action of the fundamental group of the base space of a
fibration.
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Definition 6.1.6 Let F
� � i // E

p // B be a fibration and denote by ∗ the
base point in B and also by the same symbol the base point in E (and in
F = p−1(∗)). For a closed path w, [w] ∈ πn(B, ∗), define W : F × [0, 1] → B
by W (f, t) = w(t) and let F × {1} → E, (f, 1) 7→ f be the inclusion. This
gives a commutative diagram

F × {1}
� _

��

// E

p

��
F × [0, 1] W // B,

which by the definition of fibrations on page 1 may be completed by a an
extension H : F × [0, 1] → E without affecting the commutativity of the
diagram. The commutativity then gives H(F × {t}) ⊆ p−1(w(t)) for all
t ∈ [0, 1] and H0 = H(·, 0) is homotopic (in E) to the fibre inclusion H1 =
H(·, 1). One may also consider H0 as a map to the fibre

Θw : F → F.

Then the homotopy class [Θw] depends only on the homotopy class of w and
not really on w itself, see Whitehead [70, IV.8.1-3], and

[w] 7→ (Θw)
•

defines an action of π1(B, ∗) on the cohomology ring H•(F ;R) of F over any
ring R.

The fibration F
� � i // E

p // B is called R-orientable for a ring R, if the
action of π1(B, ∗) on H•(F ;R) is trivial. If the fibration is

�
-orientable then

it is simply called orientable.

Similarly, if the fibre F is n-simple, then

[w] 7→ (Θw)#

defines an action of the fundamental group π1(B, ∗) of the base on the ho-
motopy groups πn(F, ∗) of the fibre F for every n ∈ � .

Actually, the last action is an action of π1(B, ∗) on the orbits in πn(F, ∗)
under the action of π1(F, ∗) described in 6.1.1. But we will consider this
action only for simple fibres.

Note that fibrations over simply connected base spaces are of course R-simple
for every ring R. The R-orientable fibrations are also called R-simple because
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then there is a simple system of local coefficients which may be identified
with the singular cohomology groups. Spanier [57, p. 476] uses a similar
construction of Θw and considers the induced maps in homology (and not
in cohomology as we did). Whitehead [70, p. 649, 349] calls the fibration
R-coorientable if the induced maps of Θw in cohomology are trivial.

We will see in 6.2.1 that R-orientable fibrations lead to spectral sequences
that relate the (singular) cohomology of the base and the fibre to the coho-
mology of the total space.

We aim to show that certain fibrations are � -orientable. As one step we
need the following lemma.

Lemma 6.1.7 If Y is simply connected and f : Y −→ Y induces the identity
on the first infinite homotopy group of Y , then f also induces the identity
on the first rational homology group and therefore also on the first rational
cohomology group.

Proof Let m ∈ � be the smallest value with πm(Y )⊗ � 6= 0. By a
version of the Hurewicz theorem over the rationals as in Kramer [37, 2.1,
2.2] or similarly in McCleary [40, 5.18], m is also the first value of non-trivial
homology groups over � , and these vector spaces are isomorphic by the map
induced by the Hurewicz map. Recall that the rational cohomology groups
may be interpreted as the dual vector spaces of the rational homology groups,
e.g. by the universal coefficient theorems.

From the Whitehead tower (or upside-down Postnikov tower) we get a fibra-
tion β : Y 〈m〉 −→ Y , where Y 〈m〉 is (m − 1)-connected and β induces an
isomorphism between the m-th rational homology groups as its dual is an
isomorphism between the m-th rational cohomology groups induced by β, see
Kramer [37, 2.1]. But then the Hurewicz homomorphism of Y induces like
that of Y 〈m〉 an isomorphism between the m-th rational homotopy groups
and the rational homology groups of Y . So f induces in rational homology as
in rational homotopy the identity, because the induced maps commute with
the Hurewicz homomorphisms, see the commutative diagram 6.1 on page 66.
Therefore, the dual map f • is the identity on the rational cohomology groups
of dimension m. �

Remark 6.1.8 We want to construct a fibration related to the universal
covering of a space. We use the theory of classifying spaces and universal
G-bundles as e.g. presented in Mimura-Toda [42, II.6], McCleary [40, Ch.
6.3] or tom Dieck [68, Ch. IX]. We denote the classifying space of a group G
by BG.
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Hm(Y 〈m〉; � )

β•

��

πm(Y 〈m〉)⊗ �ρoo

β#

��
πm(Y )⊗ �

ρ

uulllllllllllll

f# // πm(Y )⊗ �

ρ
''OOOOOOOOOOO

Hm(Y ; � )
f•

// Hm(Y ; � )

Figure 6.1: The commutative diagram in the proof of 6.1.7. By ρ we mean
the maps induced by the respective Hurewicz homomorphisms.

Let X be a ’nice’ space, e.g. a manifold. Then there is a universal covering
p : X̃ → X, and the fundamental group G = π1(X) acts on X̃ by deck
transformations. Furthermore, G acts freely on the total space EG of the
universal G-bundle G → EG → BG. Hence, for the principal G-bundle
G → X̃ → X there is the associated G-bundle EG → X̃ ×G EG → X with
fibre EG.

The total space EG of the universal G-bundle is contractible, hence, the ho-
motopy sequence of the universal G-bundle shows that the map X̃ ×G EG →
X in the associated G-bundle induces isomorphisms in homotopy, i.e. this
map is a weak homotopy equivalence. But a weak homotopy equivalence be-
tween connected CW-complexes is a homotopy equivalence, see e.g. Bredon
[11, VII.11.14], hence X̃ ×G EG ' X.

There is also for the universal G-bundle G → EG → BG an associated
G-bundle X̃ → X̃ ×G EG → BG with fibre X̃.

Therefore, there is up to homotopy a fibration X̃ → X → BG.

We will show that the fibration X̃ → X → BG in 6.1.8 is � -orientable under
certain additional assumptions.

Lemma 6.1.9 Let X be an (m+2)-dimensional compact connected topolog-
ical manifold with infinite fundamental group such that

πk(X)⊗ � ∼= πk(
� m+1)⊗ � for all k ≥ 2.

If X is (m + 1)-simple, then the fibration X̃ → X → Bπ1(X) in 6.1.8 is
� -orientable.
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Proof We will suppress the base points of the homotopy groups in the
following, and we will shortly write B for the base space Bπ1(X) of the
fibration. Now consider a [w] ∈ π1(B). Recall the definition of the actions
in 6.1.6; there is a homotopy H : F × [0, 1] → E such that H0 may also be

considered as a map Θw : F → F , and [w] acts on H•(X̃; � ) and on π•(X̃) by
(Θw)

• and (Θw)#, respectively. Note for the action on the homotopy groups

that X̃ is simply connected and hence simple.

By 2.5.5 we have H•(X̃; � ) ∼= H•(
�
m+1; � ), i.e. the only non-trivial rational

cohomology groups are H0(X̃; � ) and Hm+1(X̃; � ). As the action of the
fundamental group of B is induced by continuous maps and as continuous
maps between path-connected spaces induce the identity on the 0-th coho-
mology groups, the action on H0(X̃; � ) is of course trivial. Hence, we have

only to consider the action on Hm+1(X̃; � ).

We have to show that (Θw)
• = id : Hm+1(X̃; � ) → Hm+1(X̃; � ) for every

[w] ∈ π1(B). But in view of 6.1.7 it suffices to show that

(Θw)# = id : πm+1(X̃)⊗ � → πm+1(X̃)⊗ � .

We will even show that (Θw)# = id : πm+1(X̃) → πm+1(X̃).

Since the projection X̃ → X of the universal covering is up to homotopy the
fibre inclusion of the fibration, the fibre inclusion induces an isomorphism
πm+1(X̃) → πm+1(X). Note that for the homotopy H we have H0 = i ◦ Θw

and recall from 6.1.6 that H1 = i. It follows that for every [α] ∈ πm+1(X̃) the
maps i ◦Θw ◦α and i ◦α are homotopic in X by H. But X is by assumption
(m + 1)-simple; and therefore, by 6.1.5 two maps

�
m+1 → X in the same

homotopy class of X correspond to maps in the same base point preserving
homotopy class, i.e. to the same element of πm+1(X). Therefore, [i◦Θw◦α] =

[i ◦ α] ∈ πm+1(X). Since i induces an isomorphism πm+1(X̃) → πm+1(X) it

follows that (Θw)#([α]) = [α] ∈ πm+1(X̃). This shows that (Θw)# = id :

πm+1(X̃) → πm+1(X̃) and that the fibration X̃ → X → Bπ1(X) is � -
orientable. �

Quotient spaces of Lie groups and connected closed subgroups are simple
by 6.1.4. This gives the following corollary to 6.1.9 which we state only for
compact Lie groups. It would suffice to assume that the quotient space is
compact.

Corollary 6.1.10 Let H be a closed connected subgroup of a compact con-
nected Lie group G such that the fundamental group of G/H is infinite,

πk(G/H)⊗ � ∼= πk(
� m+1)⊗ � for all k ≥ 2
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and dimG/H = m+2. Then there is up to homotopy a � -orientable fibration

G̃/H → G/H → Bπ1(G/H)

where G̃/H is the universal covering space of G/H.

Recall from page 13 that connected Lie groups have abelian fundamental
groups and by the exact homotopy sequence also their quotient spaces with
closed connected subgroups. Hence, the assumption in the corollary on the
homotopy of G/H is fulfilled if π•(G/H)⊗ � ∼= π•(

�
1 ×

�
m+1)⊗ � .

To determine the rational cohomology of G/H we will use a powerful tool,
the Leray-Serre spectral sequence. We will therefore give a short introduction
to spectral sequences in the next section.

6.2 Spectral sequences

The main tool in the next section will be the Leray-Serre spectral sequence
for fibrations. Our source for the exposition was the book of McCleary [40].
We will sometimes also refer to Spanier [57].

Let R be a commutative ring with unit. A graded module over R is a
module M over R together with a decomposition (called gradation) M =⊕

n∈ � Mn in modules Mn over R. In the following all modules will be un-
derstood as modules over R, but we will suppress R most of the time.

For example, if X is a topological space and if we supplement the cohomology
groups of X by setting H−n(X;R) = 0 for n ∈ � , then

⊕
n∈ � Hn(X;R) is a

graded module.

A differential graded module is a graded moduleM additionally equipped
with an R-linear map d : M → M , called the differential, such that d2 = 0
and d is compatible with the gradation, i.e. d(Mn) ⊆ Mn+1 for n ∈

�
. Of

course, it would be more appropriate to call the pair (M, d) a differential
graded module. But we will usually not mention the differential.

A module M is a bigraded module if there is a decomposition M =⊕
p,q∈ � Mp,q in modules Mp,q. It is a differential bigraded module (M, d)

if there is a differential d : M → M such that d(M p,q) ⊆ Mp+r,q+1−r for
some r ∈

�
and all p, q ∈

�
. The pair (r, 1− r) is called the bidegree of d.

By definition there are restrictions dp,q : Mp,q → Mp+r,q+1−r of d. One may
think of a bigraded module as a grid

� 2 such that the module Mp,q sits on
the node (p, q) ∈

� 2, and the differentials dp,q : Mp,q → Mp+r,q+1−r may be
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visualised as arrows starting at the node (p, q) and ending at (p+r, q+1−r).
A differential bigraded module may be seen as a differential graded module⊕

n∈ � M̃n by setting M̃n =
⊕

p+q=nM
p,q, i.e. by summing up the modules

on the diagonals p + q = n of the
� 2-grid. An element x ∈ Mp,q is said to

have bidegree (p, q) and total degree p+ q.

For topological spaces X, Y one may set M p,q = Hp(X;R) ⊗ Hq(Y ;R) to
get an example of a bigraded module.

The cohomology module of a differential bigraded module M is the bi-
graded module

H(M) = ker d/ im d ∼=
⊕

p,q∈ �

ker dp,q/ im dp−r,q−1+r.

This is well defined because of d2 = 0.

A spectral sequence is a sequence (Ek)k≥2 of bigraded differential modules
Ek =

⊕
p,q∈ � Ep,q

k with differentials (dk)k≥2 such that dk is a differential of Ek

of bidegree (k, 1− k) and Ek+1 = H(Ek). Note that the differentials are not
related to each other in an obvious way, for example we did not require that
d2 determines dk for k > 2.

There are submodules Bk ⊆ Zk ⊆ E2 for every k ≥ 2 such that

B2 ⊆ B3 ⊆ · · · ⊆ Bk ⊆ · · · ⊆
⋃

k≥2

Bk ⊆
⋂

k≥2

Zk ⊆ Zk ⊆ · · · ⊆ Z3 ⊆ Z2 ⊆ E2

and Ek = ker dk/ imdk
∼= Zk/Bk for all k ∈

�
, see McCleary [40, 2.1]. We

set E∞ = ∩k≥2Zk/ ∪k≥2 Bk. Then also E∞ is a bigraded module E∞ ∼=⊕
p,q∈ � Ep,q

∞ . The elements x ∈ E2 with x ∈ Zk represent elements of Ek.
They are said to survive to E � .

We will always deal with the case that for every pair (p, q) there is a k0
such that for every k ≥ k0 the differential dp,q

k : Ep,q
k → Ep+k,q+1−k

k is trivial.
Then Ep,q

k+1 may be considered as a quotient of Ep,q
k , and Ep,q

∞ is the direct
limit of (Ep,q

k )k≥k0, compare Spanier [57, p. 467]. This happens for example
if (Ek)k≥2 is a first-quadrant spectral sequence, i.e. if Ep,q

2 is trivial for
p < 0 or q < 0, because then the arrows representing the differentials in the

� 2 grid get longer and longer with growing k (approaching slope −1); finally
the arrows stick out of the first quadrant of the grid, and then they map to
trivial modules.

The spectral sequences that will arise from the Leray-Serre theorem 6.2.1
later on will always be first-quadrant spectral sequences.
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A spectral sequence collapses at En if dk = 0 for all k ≥ n. Then it follows
that Ep,q

∞
∼= Ep,q

n for all p, q ∈
�
. If the spectral sequence collapses at E2, then

it is simply said to collapse.

We will also deal with multiplicative structures. A differential bigraded
algebra (over R) is a differential bigraded moduleM =

⊕
p,q∈ � Mp,q together

with an R-bilinear and associative product

· : Mp,q ×M r,s → Mp+r,q+s

with unit such that the differential is a derivation, i.e. such that the differ-
ential satisfies the Leibniz rule

d(x · y) = d(x) · y + (−1)p+qx · d(y)

for x ∈ Mp,q and y ∈ M r,s. Note that p+ q is the total degree of x.

We define a spectral sequence of algebras to be a spectral sequence
(Ek)k≥2 where E2 is a differential bigraded algebra with a product ·2 that
induces products ·k on each cohomology module Ek such that Ek with ·k is a
differential bigraded algebra for every k > 2 and for k = ∞.

Another important piece of structure in the Leray-Serre spectral sequence will
be related to the following kind of subdivision of a module. By a (decreasing)
filtration of a differential graded module M =

⊕
n∈ � Mn with differential d

we mean a sequence of submodules (FpM)p∈ � with FpM ⊆ Fp−1M ⊆ M and
d(FpM) ⊆ FpM for all p ∈

�
.

With the introduced terminology we are able to state the Leray-Serre-theorem,
for proofs see McCleary [40, 2.1], Mimura-Toda [42, III.2.10], Spanier [57,
9.4.9] or Whitehead [70, VIII.4.9*], or see the paper of Serre [56].

Theorem 6.2.1 (Leray-Serre) Let R be a commutative ring with unit and
F → E → B an R-orientable fibration with path-connected base B and
connected fibre F . Then there is a spectral sequence (Ek)k≥2 of algebras and
a filtration (FpH•(E;R))p∈ � of H•(E;R) such that the following is true.

The E2-term of the spectral sequence is

Ep,q
2 = Hp(B;Hq(F ;R)),

and the multiplication ·2 on the left hand side is up to sign defined by the
cup product ^ of H•(B;H•(F ;R)), more precisely x ·2 y = (−1)qrx ^ y for
x ∈ Ep,q

2 and y ∈ Er,s
2 .

For the filtration (FpH•(E;R))p∈ � we have F0H•(E;R) = H•(E;R), and it
is compatible with the gradation of H•(E;R), i.e. we get

Fp+1Hk(E;R) ⊆ FpHk(E;R) ⊆ F0Hk(E;R)
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for all p and all k. Furthermore, the filtration respects the cup product of
H•(E;R), i.e. for x ∈ FpHq(E;R) and y ∈ FrHs(E;R) we have x ^ y ∈
Fp+rHq+s(E;R). There are product preserving isomorphisms

Ep,q
∞

∼= FpHp+q(E;R)
/
Fp+1Hp+q(E;R)

for all p, q ∈
�
.

The spectral sequence behaves naturally under fibre-preserving maps.

There is much more to say. First note that in the theorem above Ep,q
k is

trivial if p < 0 or q < 0, i.e. Ep,q
k is a first-quadrant spectral sequence. For

all q ∈
�

we have E0,q
2

∼= Hq(F ;R), and the universal coefficient theorem
gives Ep,0

2
∼= Hp(B;R) for all p ∈

�
. Furthermore, if H•(F ;R) is projective

(for example if each cohomology group is trivial or isomorphic to
�

n), then
Ep,q
2

∼= Hp(B;R) ⊗ Hq(F ;R). In particular, we get for fields
�

that E2
∼=

H•(B;
�
)⊗H•(F ;

�
) as bigraded algebras. (But note that the multiplication

is given by (b1⊗f1)·(b2⊗f2) = (−1)qr(b1 ^ b2)⊗(f1 ^ f2) for f2 ∈ Hq(F ;
�
)

and b2 ∈ Hr(B;
�
).)

The filtration also gives rise to short exact sequences

0
FpHp+q(E;R)

Fp+1Hp+q(E;R)
oo FpHp+q(E;R)oo Fp+1Hp+q(E;R)oo 0oo .

These short exact sequences may be put together as in figure 6.2, where we
suppressed the coefficient ring.

We will consider the relation between the filtration (FpH•(E;R))p∈ � and
the nth diagonal

⊕
p+q=n E

p,q
∞ in E∞. Therefore, consider the diagram in

figure 6.2. It can be seen in the diagram that if there is just one non-trivial
module on the diagonal p+q = n in (the

� 2 grid of) E∞, then this non-trivial
module on the diagonal is isomorphic to Hn(E).

If the coefficient ring is a field
�
and, hence, the modules are

�
-vector spaces,

then the diagram implies that Hn(E;
�
) ∼=

⊕
p+q=n E

p,q
∞ as vector spaces, in

particular

dimH•(E;
�
) = dimE∞.

Now assume that d0,1
2 : E0,1

2 → E2,0
2 is trivial, e.g. because H2(B;R) = 0 is

trivial. Then E0,1
∞

∼= E0,1
2

∼= H1(F ;R) and E1,0
∞

∼= E1,0
2

∼= H1(B;R), and there
is a short exact sequence

0 H1(F ;R)oo H1(E;R)oo H1(B;R)oo 0oo .
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0 E0,n

∞

oo H
n(E)oo F1

H
n(E)oo 0oo

0 E1,n−1

∞

oo F1
H

n(E)oo F2
H

n(E)oo 0oo

0

.. .

E2,n−2

∞

oo

. . .

F2
H

n(E)oo

. . .

F3
H

n(E)oo

.

.

.

.

.

.

‖ . . .

0oo

. . .

0 En−2,1

∞

oo Fn−2
H

n(E)oo Fn−1
H

n(E)oo 0oo

0 En−1,1

∞

oo Fn−1
H

n(E)oo Fn
H

n(E)oo 0oo

0 En,0

∞

oo Fn
H

n(E)
∼=oo 0oo

Figure 6.2: A diagram involving the diagonal of E∞.

Hence, H1(E;
�
) ∼= H1(B;

�
)⊕H1(F ;

�
) if R =

�
is a field and d0,1

2 is trivial.

There is a special case, in which one can easily recognize the multiplica-
tive structure of H•(E;

�
). Namely, consider again for n ∈ � the diagonal⊕

p+q=n E
p,q
∞ in E∞; assume that the spectral sequence collapses at E2 and

that there is on every diagonal in E∞ ∼= E2 only at most one non-trivial entry.
The compatibility of the filtration (FpH•(E;

�
))p∈ � with the cup product of

H•(E;
�
) implies that H•(E;

�
) ∼= H•(B;

�
)⊗H•(F ;

�
) as algebras. (Again

be careful with the sign of the multiplication on the right.)

The last observations apply if the cohomology of the fibre is concentrated
in one dimension and the cohomology of the base space vanishes above that
dimension, or vice versa. This gives the following lemmas.

Lemma 6.2.2 Let
�

be a field and F → E → B an
�
-orientable fibration

with path-connected base B and connected fibre F . Assume there is some
n ∈ � such that Hk(F ;

�
) = 0 for k ∈ � , k 6= n, and Hk(B;

�
) = 0 for

k ≥ n. Then H•(E;
�
) ∼= H•(B;

�
)⊗H•(F ;

�
) as algebras.

Proof Because of the structure of E2
∼= H•(B;

�
)⊗H•(F ;

�
), the Leray-

Serre spectral sequence of the fibration collapses at E2. There is at most
one non-trivial entry on each diagonal

⊕
p+q=n E

p,q
∞ of E∞ ∼= E2. Hence,
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H•(E;
�
) ∼= H•(B;

�
) ⊗ H•(F ;

�
) as algebras by the observations made

above. �

Exchanging the role of fibre and base gives the following lemma.

Lemma 6.2.3 Let
�

be a field and F → E → B an
�
-orientable fibration

with path-connected base B and connected fibre F . Assume there is some
n ∈ � such that Hk(F ;

�
) = 0 for k ≥ n and Hk(B;

�
) = 0 for k ∈ � ,

k 6= n + 1. Then H•(E;
�
) ∼= H•(B;

�
)⊗H•(F ;

�
) as algebras.

We follow McCleary [40, Th. 5.9] to identify in the spectral sequence of

F
� � i // E

pr // B the maps induced by i and pr in cohomology. First note
that there are injections

E0,p
∞ = E0,p

p+1 ⊆ E0,p
p ⊆ · · · ⊆ E0,p

2
∼= Hp(F ;R)

which give rise to the commutative diagram

E0,p
2 Hp(F ;R)

∼=oo

0 E0,p
∞

oo
?�

OO

Hp(E;R)oo

i•

OO

oo

with exact bottom row. The composition of the surjective projections Eq,0
p →

Eq,0
p+1 gives the projection Ep,0

2 → Ep,0
3 → · · · → Ep,0

p → Ep,0
p+1 = Ep,0

∞ in the
diagram

0

Ep,0
∞

OO

FpHp(E) � � // Hp(E;R)

Ep,0
2

OO

∼= // Hp(B;R).

pr•

OO

where the left column is exact.

Note that we find the isomorphism of the top row of the last diagram in the
bottom row of figure 6.2. Similarly, the bottom row of the diagram before
the last one is in the top row of figure 6.2. Therefore, the last two diagrams
may be added to figure 6.2.
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6.3 Rational homotopy and rational cohomol-

ogy

We now aim to show that π•(X) ⊗ � ∼= π•(
�
1 ×

�
m+1) ⊗ � implies also

H•(X; � ) ∼= H•(
�
1 ×

�
m+1; � ) for many spaces X, i.e. if the rational homo-

topy looks like
� 1×

�
m+1, then the same is true for the rational cohomology.

We are mainly interested in homogeneous spaces of that kind and we will
determine the rational cohomology of H → G → G/H where X = G/H. We
start with the rational cohomology of X.

Proposition 6.3.1 Let X be a compact (m+ 2)-dimensional manifold with
abelian fundamental group. If X is (m+ 1)-simple and

π•(X)⊗ � ∼= π•(
� 1 ×

� m+1)⊗ � ,

then H•(X; � ) ∼= H•(
�
1 ×

�
m+1; � ) as an algebra.

Proof By 6.1.9 the universal covering space X̃ of X is up to homotopy
the fibre of a � -orientable fibration X̃ → X → Bπ1(X). The rational

cohomology of X̃ is H•(X̃; � ) ∼= H•(
�
m+1; � ), see 2.5.5.

Consider the universal G-bundle G → EG → BG for G = π1(X). Since
the total space EG is contractible, the homotopy sequence of the universal
G-bundle shows that the first homotopy group of the classifying space BG
is isomorphic to G and the higher homotopy groups are trivial. Hence, BG
is an Eilenberg-MacLane-space of type (G, 1). By assumption, π1(X) is an
abelian group of rank 1. Spanier [57, 9.5.8 and 6] shows that the rational
cohomology of BG is the one of the classifying space of the free part

�
of G.

Since
� 1 is of type (

�
, 1), we have

H•(Bπ1(X); � ) ∼= H•(
� 1; � ).

Now consider the Leray-Serre spectral sequence 6.2.1 of X̃ → X → Bπ1(X)
over � . The only non-trivial entries in

E2
∼= H•(Bπ1(X); � )⊗ � H•(X̃; � ) ∼= H•(

� 1; � )⊗ � H•(
� m+1; � )

are those with bidegrees (0, 0), (0, m+1), (1, 0) and (1, m+1), and they are
all isomorphic to � . As the differential d2 has bidegree (2,−1) it has to be
trivial; it follows that all the following differentials are also trivial; hence the
spectral sequence collapses at E2

∼= E3
∼= . . . ∼= E∞, and there is at most one

non-trivial one-dimensional � -vector space on each of the diagonals in E∞.
Therefore, H•(X; � ) ∼= H•(

�
1 ×

�
m+1; � ) as vector spaces, see page 71.
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Now recall the multiplicative properties of the spectral sequence. The prod-
uct of a non-trivial element of E1,0

∞
∼= E1,0

2 and a non-trivial element of
E0,m+1
∞

∼= E0,m+1
2 is a non-trivial element of E1,m+1

∞
∼= E1,m+1

2 . Hence, the
multiplicative structure of H•(X; � ) is the one of a sphere product. �

In view of 6.1.4 the last proposition may be applied to homogeneous spaces:

Corollary 6.3.2 If H is a closed connected subgroup of a compact connected
Lie group G such that π•(G/H)⊗ � ∼= π•(

�
1 ×

�
m+1)⊗ � and dimG/H =

m+ 2, then H•(G/H; � ) ∼= H•(
�
1 ×

�
m+1; � ).

The kind of relation between rational cohomology and rational homotopy as
in 6.3.2 was already observed for certain simply connected spaces. We quote
some of these results.

Proposition 6.3.3 1. (Cartan-Serre): If X is simply connected with ra-
tional cohomology H•(X; � ) ∼= � (a1, . . . , ar)⊗ � Λ � (u1, . . . , us) where
the degrees of a1, . . . , ar are even and the degrees of u1, . . . , us are odd,
then

rk(πk(X)) = |{i| deg(ai) = k}|+ |{i| deg(ui) = k}|.

2. (Kramer): If X is a simply connected space with rational cohomology
H•(X; � ) ∼= � (a)/(am)⊗ � Λ � (u1, . . . , us) where the degree of a is even
and the degrees of u1, . . . , us are odd, then

rk(πk(X)) =





1 if k = deg(a)

|{i| deg(ui) = k}|+ 1 if k = m · deg(a)− 1

|{i| deg(ui) = k}| else.

3. If G is a connected Lie group, then its rational cohomology is of the
form H•(G; � ) ∼= Λ � (u1, . . . , us) where the degrees of u1, . . . , us are
odd, and

rk(πk(G)) = |{i| deg(ui) = k}|.

Proof The first two assertions are 2.3, 2.4 of Kramer [37]. The third
one is well-known: since Lie groups are H-spaces, their cohomology is of the
mentioned form, see e.g. Spanier [57, 5.9.13] or Mimura-Toda [42, VI.5.3], and
as Lie groups are homotopy equivalent to their maximal compact subgroups
it suffices to consider compact Lie groups. If G is compact, then there is a
connected covering (Lie) group T s×H, where H is a finite product of simply
connected almost simple compact Lie groups and T s is a torus, see 2.1.1.
Now

H•(G; � ) ∼= H•(T s ×H; � ) ∼= H•(T s; � )⊗ � H•(H; � )
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(see Mimura-Toda [42, VI.5.2] and Bredon [11, VI.3.2]), and

π•(G)⊗ � ∼= π•(T
s ×H)⊗ � ∼= (π•(T

s)⊗ � )⊕ (π•(H)⊗ � ).

Therefore, as the claim is true for T s and as we may apply the Cartan-Serre
theorem 1 to H, the third assertion follows also for G. �

Now we will concentrate on the cohomology of fibre bundles H → G → G/H.
If the quotient space is simply connected, then the rational cohomology of the
fibre bundle was determined by Kramer [37, 3.7, 3.11] in the following cases.
Note that for connected G and simply connected G/H the exact homotopy
sequence of the fibre bundle shows that H is connected.

Theorem 6.3.4 Let G be a compact connected Lie group and H a closed
subgroup such that G/H is simply connected.

1. (Onishchik, Kramer): If the rational cohomology of G/H is

H•(G/H; � ) ∼= Λ � (u1, . . . , us)

where 1 < deg(ui) is odd for all i, then rk(G) = rk(H) + s and there is
a commutative diagram

H•(H; � )

∼=
��

H•(G; � )oo

∼=
��

H•(G/H; � )oo

∼=
��

Λ � (v1, . . . , vr) Λ � (v1, . . . , vr, u1, . . . , us)oo Λ � (u1, . . . , us).oo

2. (Kramer): If the rational cohomology of G/H is

H•(G/H; � ) ∼= � (a)/(a2)⊗ � Λ � (u)

where 0 < deg(a) is even, deg(u) is odd and deg(a) < deg(u), then
rk(G) = rk(H) + 1 and there is a commutative diagram

H•(H; � )

∼=
��

H•(G; � )oo

∼=
��

H•(G/H; � )oo

∼=
��

Λ � (v1, . . . , vr) Λ � (v1, . . . , vr, w, u)oo � (a)/(a2)⊗ � Λ � (u)oo

with deg(w) = 2 deg(a)− 1 and where a is mapped to 0.

We will now prove a similar result as 6.3.4 for certain quotients of Lie groups
with fundamental groups of rank 1.
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Proposition 6.3.5 Let G be a compact connected Lie group and H a closed
connected subgroup of G such that π•(G/H)⊗ � ∼= π•(

� 1 ×
�
m+1)⊗ � and

dimG/H = m+ 2 for some m ≥ 2.

1. If m is even, i.e. if H•(G/H; � ) ∼= Λ � (u, w) with deg(u) = 1 and
deg(w) = m + 1 ≥ 3 by 6.3.2, then there is a commutative diagram

H•(H; � )

∼=
��

H•(G; � )oo

∼=
��

H•(G/H; � )oo

∼=
��

Λ � (v1, . . . , vr) Λ � (v1, . . . , vr, u, w)oo Λ � (u, w).oo

2. If m is odd, i.e. if H•(G/H; � ) ∼= Λ � (u)⊗ � � (a)/(a2) with deg(u) = 1
and deg(a) = m + 1 by 6.3.2, then there is a commutative diagram

H•(H; � )

∼=
��

H•(G; � )oo

∼=
��

H•(G/H; � )
p•

oo

∼=
��

Λ � (v1, . . . , vr) Λ � (v1, . . . , vr, w, u)oo � (a)/(a2)⊗ � Λ � (u),oo

where deg(w) = 2 deg(a)− 1 and where a is mapped to 0.

Proof Since H is connected the fibration H → G → G/H is orientable
by Mimura-Toda [42, III.2.9(2), II.2.12]. The homotopy groups of G/H are
finite in even dimensions unequal to m+ 1 by assumption. But now exactly
the same arguments as in Kramer [37, 3.7, 3.11] apply. �

This determines the structure of irreducible normal subgroups for the kind
of homogeneous spaces we are considering.

Lemma 6.3.6 Let G be a compact connected Lie group and H a closed con-
nected subgroup of G such that π•(G/H) ⊗ � ∼= π•(

�
1 ×

�
m+1) ⊗ � and

dimG/H = m + 2 for some m ≥ 2. Then there exists a transitive nor-
mal subgroup in G that is locally isomorphic to SO(2) × A with an almost
simple compact connected Lie group A. The connected component U 1 of the
stabilizer U of SO(2)× A is also almost simple or trivial.

Proof Kramer’s result [37, 3.14] carries over to our case. Kramer used
only the special form of the cohomology of H → G → G/H, which is similar
to the one of 6.3.5.

Since the third cohomology group of a compact connected Lie group deter-
mines the number of its almost simple factors, the cohomology structure of
the fibration as given in 6.3.5 shows that H1 is almost simple or trivial. �
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Using the results on the cohomology structure of H → G → G/H we are
able to give a second proof of 2.5.11.

Theorem 6.3.7 Let G/H be an (m+2)-dimensional homogeneous space of
a compact connected Lie group G such that the fundamental group of G/H is
torsion-free and π•(G/H)⊗ � ∼= π•(

�
1 ×

�
m+1)⊗ � for an m ≥ 2. Assume

that G acts irreducibly on G/H. Then H/H1 is finite and cyclic and there
is an almost simple normal closed subgroup A of G such that G is locally
isomorphic to SO(2)× A and H1 = H ∩ A. The quotient A/H1 is a simply
connected rational cohomology (m+ 1)-sphere.

Proof The homotopy sequence of the covering G/H1 → G/H shows that
the finite fibre H/H1 is a quotient of

�
and therefore cyclic. Furthermore,

π•(G/H1)⊗ � ∼= π•(G/H)⊗ � ∼= π•(
� 1 ×

� m+1)⊗ � .

Proposition 6.3.1 shows that H•(G/H1; � ) ∼= H•(
�
1 ×

�
m+1; � ), and it fol-

lows by 6.3.6 that up to a finite covering we may write G = SO(2)×A with
an almost simple Lie group A. Furthermore, H1 is almost simple, as well, or
trivial.

We may also assume that SO(2) ∩H = 1, because otherwise we may factor
out SO(2)∩H. Since H1 is almost simple or trivial, the restriction to H1 of
the projection to the first factor SO(2) of SO(2)×A cannot be surjective as
the kernel is a normal subgroup of (the almost simple or trivial group) H1.
But as it has a connected image, this image has to be trivial.

It follows that H1 ⊂ A, and as the covering

SO(2)× A/H1 = (SO(2)× A)/H1 → (SO(2)× A)/H

has finite fibres H/H1, we get

π•(SO(2)× A/H1)⊗ � ∼= π•(X)⊗ � ∼= π•(
� 1 ×

� m+1)⊗ � ,

and hence by 6.3.2 also H•(SO(2)× A/H1; � ) ∼= H•(
� 1 ×

�
m+1; � ).

For cohomology with coefficients in a field the cohomology of the product
space of manifolds is the tensor product of the cohomology of the factors, see
Bredon [11, VI.3.2], hence we get H•(A/H1; � ) ∼= H•(

�
m+1; � ).

From the covering

SO(2)× A/A ∩H → SO(2)× A/H
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we get the exact sequence

0 → π1(SO(2)× A/A ∩H) → π1(
SO(2)× A

H
) → H/A ∩H.

Since π1(
SO(2)×A

H
) is by assumption torsion-free it follows that π1(A/A ∩H) =

1. And as the exact sequence

1 → π1(A/H
1) → π1(A/A ∩H) → (A ∩H)/H1 → 1

shows, also 1 = π1(A/A ∩H) ∼= A ∩H/H1, i.e. A/H1 is simply connected
and H1 = H ∩ A. �

Recall that the simply connected homogeneous rational cohomology spheres
A/H where A acts effectively and irreducibly on A/H are given in 2.4.2.

6.4 Cohomology of some homogeneous spaces

In this section we determine the cohomology of certain homogeneous spaces.
These spaces are covered by a sphere product

�
1 ×

�
n; therefore they have

the homotopy of
�
1 ×

�
n, and it turns out that they have also the (integral)

cohomology of
�
1 ×

�
n. But in these examples the number of connected

components of the stabilizers may be arbitrarily chosen. This shows that
there are no restrictions on the order of the connected component in 6.3.7
(or in 2.5.11).

We need some preparation.

Remark 6.4.1 Consider the cyclic subgroup (m,n) ·
�
of

�
×

�
generated

by a non-trivial element (m,n). First assume that m and n are coprime, i.e.
that 1 is their greatest common divisor. Then there are r, s ∈

�
such that

rm+ sn = 1, and we may write
�
×

�
as a direct sum

�
×

�
= (m,n) ·

�
⊕ (s,−r) ·

�
,

because of

(1, 0) = (m,n) · r + (s,−r) · n and

(0, 1) = (m,n) · s− (s,−r) ·m.

It follows that
�
×

�

(m,n) ·
� =

(m,n) ·
�
⊕ (s,−r) ·

�

(m,n) ·
� ∼=

�
.
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Let now (m,n) be an arbitrary non-trivial element of
�
×

�
. If d > 0 is the

greatest common divisor of m and n, then there are m̃ and ñ that are prime
to each other such that (m,n) = (m̃ · d, ñ · d). Again there are r and s with
rm̃+ sñ = 1, and we get

�
×

�

(m,n) ·
� =

(m̃, ñ) ·
�
⊕ (s,−r) ·

�

(m̃ · d, ñ · d) ·
� ∼=

�
d ⊕

�
.

Consider a cyclic subgroup Z in a 2-torus U(1) × U(1). Then Z lies in a
closed 1-torus T ⊆ U(1)× U(1), and there is a complementary 1-torus S of

Z in U(1) × U(1) such that U(1)×U(1)
Z

≈ S·T
Z

≈
�
1 ×

�
1. Hence, we get that

H1(U(1)×U(1)
Z

) ∼=
�
×

�
.

Lemma 6.4.2 Let Z ⊆ U(1) × U(1) be a cyclic subgroup of order µ ∈ �
with

Z ∩ (U(1)× 1) = 1 = Z ∩ (1× U(1)).

Consider the basis in H1(U(1)× U(1)) that is induced by the injection of
U(1) into U(1) × U(1) as first and second factor. Then there is a basis in

H1(U(1)×U(1)
Z

) such that relative to this basis and the basis in H1(U(1)× U(1))

the map induced by the projection q : U(1)× U(1) → U(1)×U(1)
Z

in cohomology

is described by the matrix

(
1 0
−ν µ

)
∈

� 2×2, where ν = 0 and µ = 1 or

where µ and ν are coprime natural numbers and 0 < ν < µ.

Proof If Z is trivial, then µ = 1 and we may set ν = 0 to get the
identity matrix. Now assume µ > 1. The projections from U(1) × U(1) to
the two factors yield isomorphic images of Z and project generators of Z
to generators of the cyclic subgroup of order µ in U(1). Therefore, there
is a generator z of Z which projects to ξ = exp( 2πi

µ
) in the second factor.

Furthermore, z projects to a generator of the cyclic subgroup of order µ in
the first factor, i.e. to ξν with a ν ∈ � , 1 ≤ ν < µ, that is coprime to µ. In
other words, there is a generator z = (ξν, ξ) of Z. Then Z lies in the torus
T = {(tν, t)| t ∈ U(1)} with complementary torus S = {(t, 1)| t ∈ U(1)}, so
U(1)×U(1) = S ·T ∼= S× T , and the factorisation (t1, t2) = (t1t

−ν
2 , 1)(tν2, t2)

yields an isomorphism

ϕ : U(1)× U(1) → S × T.

We denote the injections of U(1) in U(1) × U(1) as first or second factor
by i1 and i2 and the projections from S × T to S and T by prS and prT ,
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respectively. The isomorphisms U(1) → S, t 7→ (t, 1), and U(1) → T ,
t 7→ (tν , t), determine (via prS and prT ) generators of H

1(S × T ).

Then the induced maps

U(1)
i1 // U(1)× U(1)

ϕ //S × T
prS //S

and

U(1)
i2 // U(1)× U(1)

ϕ //S × T
prS //S

have mapping degrees 1 and −ν, respectively. Similarly, we get mapping
degrees 0 and 1 for

U(1)
i1 // U(1)× U(1)

ϕ //S × T
prT //T

and

U(1)
i2 // U(1)× U(1)

ϕ //S × T
prT //T .

Hence, by the Künneth theorem the map induced by ϕ between the first
cohomology groups

ϕ• : H1(S × T ) → H1(U(1)× U(1))

may be described by the matrix

(
1 0
−ν 1

)
with respect to the chosen gen-

erators, confer also Bredon [11, VI.4.14,13].

Next, consider the commutative diagram

U(1)× U(1)

ϕ∼=
��

q // U(1)×U(1)
Z

∼=
��

S × T // S × T
Z

and the induced diagram in cohomology

H1(U(1)× U(1)) H1(U(1)×U(1)
Z

)
q•oo

H1(S × T )

∼= ϕ•

OO

H1(S × T
Z
).oo

∼=

OO

We may chose generators in H1(S × T
Z
) such that the bottom map of the

diagram is described by

(
1 0
0 µ

)
.
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If we take the images of these generators under the right vertical map in
the last diagram above as basis in H1(U(1)×U(1)

Z
), then the map q• is by the

commutativity of the diagram described by the matrix

(
1 0
−ν 1

)(
1 0
0 µ

)(
1 0
0 1

)
=

(
1 0
−ν µ

)
.

�

With these preparations we are able to calculate the cohomology of some
homogeneous spaces.

Proposition 6.4.3 Let C be a cyclic subgroup in the normaliser U(1) ×
S(U(1)×U(n)) of SU(n) in U(1)×SU(n+1). Assume that SU(n+1)∩C =
SU(n) ∩ C. Then there is an isomorphism (of graded groups)

π•(
U(1)× SU(n+ 1)

C · SU(n)
) ∼= π•(

� 1 ×
� 2n+1)

and a ring isomorphism

H•(
U(1)× SU(n + 1)

C · SU(n)
) ∼= H•(

� 1 ×
� 2n+1).

Proof As U(1)×SU(n+1)
SU(n)

→ U(1)×SU(n+1)
C·SU(n)

is a covering with finite cyclic cov-
ering group C, the statement for the homotopy groups is clear.

We may assume that U(1)∩C · SU(n) = 1, because otherwise we may factor
out U(1) ∩ C · SU(n), and the homeomorphism

U(1)× SU(n+ 1)

C · SU(n)
≈

U(1)
U(1)∩C·SU(n)

× SU(n+ 1)

C·SU(n)
U(1)∩C·SU(n)

shows that the cohomology does not change. Here U(1) of course stands for
the subgroup U(1)× 1 of U(1)× SU(n+ 1).

The complex projective space may be written as

�
Pn =

SU(n+ 1)

S(U(1)× U(n))
=

U(1)× SU(n + 1)

U(1)× S(U(1)× U(n))
.

Then the tautological bundle
�
1 →

�
2n+1 →

�
Pn may also be interpreted as

U(1)× S(U(1)× U(n))

U(1)× SU(n)
→

U(1)× SU(n+ 1)

U(1)× SU(n)
→

U(1)× SU(n+ 1)

U(1)× S(U(1)× U(n))
.
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U(1)× S(U(1)×U(n))
SU(n)

q //

��

U(1)×S(U(1)×U(n))
C·SU(n)

��� 1 ×
� 2n+1 //

��

U(1)×SU(n+1)
C·SU(n)

���
Pn

�
Pn .

Figure 6.3: A bundle morphism with
�
Pn as base.

Without the factor U(1) in the nominators of the last bundle this gives the
bundle

�
1 ×

�
1 →

�
1 ×

�
2n+1 →

�
Pn, and there is the induced morphism

of bundles of figure 6.3.

Our goal is to calculate the cohomology of the total space of the fibration
on the right in figure 6.3. Therefore, we will calculate the differentials in the
respective spectral sequence with help of the transgression. The transgres-
sion τ of the tautological bundle

� 1 →
� 2n+1 →

�
Pn is a homomorphism

H1(U(1)) → H2(
�
Pn) which may be viewed as part of the differential in the

E2-term of the respective spectral sequence, τ = d0,1
2 : E0,1

2 → E2,0
2 . Here,

the transgression is indeed an isomorphism. To see this consider for example
the spectral sequence of

�
1 →

�
2n+1 →

�
Pn.

We will call τl the transgression of the fibration

� 1 ×
� 1 →

� 1 ×
� 2n+1 →

�
Pn

on the left in the diagram of figure 6.3, and by τr we will mean the trans-
gression of the fibration

U(1)× S(U(1)× U(n))

C · SU(n)
→

U(1)× SU(n + 1)

C · SU(n)
→

�
Pn

on the right.

Choose an isomorphism

ρ :
S(U(1)× U(n))

SU(n)
→ U(1).

The cyclic group

C

C ∩ SU(n)
∼=

C · SU(n)

SU(n)
⊆ U(1)×

S(U(1)× U(n))

SU(n)
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is mapped by id×ρ to U(1) × U(1). Denote by Z the image of this cyclic
group in U(1) × U(1) and by µ the order of Z. Consider the commutative
diagram

U(1)× U(1) // U(1)×U(1)
Z

U(1)× S(U(1)×U(n))
SU(n)

id×ρ ∼=

OO

q // U(1)× U(1)×SU(n+1)
C·SU(n)

∼=

OO

which is induced by ρ. (The vertical map on the right is the one induced

by id×ρ.) By lemma 6.4.2 there are generators a, b of H1(U(1)×S(U(1)×U(n))
C·SU(n)

)
such that with respect to these generators and to standard generators in

H1(U(1)× U(1)) the map q looks in cohomology like

(
1 0
−ν µ

)
.

Now we choose a generator u of H2(
�
Pn) such that H•(

�
Pn) ∼=

�
[u] and

such that we may write the transgression τl of the fibration

� 1 ×
� 1 →

� 1 ×
� 2n+1 →

�
Pn

as (0, 1) with respect to u and the standard generators of H1(U(1)× U(1))
chosen above.

As transgressions are natural, the transgression τr of the fibration

U(1)× S(U(1)× U(n))

C · SU(n)
→

U(1)× SU(n+ 1)

C · SU(n)
→

�
Pn

on the right-hand side of figure 6.3 is the composition of q• and the trans-
gression τl of the fibration on the left,

τr = τl ◦ q
• : H1(

U(1)× S(U(1)× U(n))

C · SU(n)
) → H2(

�
Pn).

Therefore, relative to the generators a, b of H1(U(1)×S(U(1)×U(n))
C·SU(n)

) and u of

H2(
�
Pn), we may describe τr as

(−ν, µ) = (0, 1)

(
1 0
−ν µ

)
:

�
×

�
→

�
,

where µ is the order of Z and ν is coprime to µ. So far we have determined
the map induced in cohomology by the map between the fibres in the bundle
morphism of figure 6.3.
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The description of τr above allows us to calculate the rest of the differential
in the E2-term of the spectral sequence of

U(1)× S(U(1)× U(n))

C · SU(n)
→

U(1)× SU(n+ 1)

C · SU(n)
→

�
Pn.

Since the fibre
�
1 ×

�
1 of the fibration has projective cohomology groups we

know that
Ep,q
2

∼= Hp(
�
Pn)⊗ Hq(

� 1 ×
� 1)

for all p and all q. Therefore, Ep,q
2 is trivial if q 6∈ {0, 1, 2} We have

E0,1
2 = (1⊗ a ·

�
)⊕ (1⊗ b ·

�
) and

E2,0
2 = u⊗ 1 ·

�
.

The calculations for τr = d0,1
2 : E0,1

2 → E2,0
2 have shown that d2(1 ⊗ a) =

−νu⊗ 1 and d2(1⊗ b) = µu⊗ 1. The Leibniz rule implies

d2(u⊗ a) = d2(u⊗ 1 · 1⊗ a) = d2(u⊗ 1) · 1⊗ a + (−1)0+2u⊗ 1 · d2(1⊗ a)

= 0 + u⊗ 1 · (−ν)u⊗ 1 = −νu2 ⊗ 1 and

d2(u⊗ b) = u⊗ 1 · µu⊗ 1 = µu2 ⊗ 1,

and we infer that d2 : E
2,1
2 → E4,0

2 is surjective (remember that µ and ν are
coprime) with kernel (µu⊗ a+ νu⊗ b)

�
. The same calculations apply if we

replace u by uk for 1 ≤ k ≤ n− 1. Of course, d2n,2
2 is trivial.

Recall that E0,2
2 = (1⊗ ab)

�
. For d2 : E

0,2
2 → E2,1

2 we get

d2(1⊗ ab) = d2(1⊗ a · 1⊗ b) = d2(1⊗ a) · 1⊗ b+ (−1)0+11⊗ a · d2(1⊗ b)

= −νu⊗ 1 · 1⊗ b− 1⊗ a · µu⊗ 1 = −νu⊗ b− µu⊗ a,

i.e. the map d0,2
2 is injective with image (µu⊗ a+ νu⊗ b)

�
.

The map d2 : E
2,2
2 → E4,1

2 is determined by

d2(u⊗ ab) = (−1)2+0u⊗ 1 · d2(1⊗ ab) = −νu2 ⊗ b− µu2 ⊗ a.

The last calculation and the calculations above show also that for all 1 ≤
k ≤ n − 2 the differential d2k,2

2 maps uk ⊗ ab
�

isomorphically to the kernel
(µuk+1 ⊗ a+ νuk+1 ⊗ b)

�
of d2k+2,1

2 in E2k+2,1
2 . For k = n− 1 we get

d2n−2,2
2 (un−1 ⊗ ab) = −νun ⊗ b− µun ⊗ a,

and hence im d2n−2,2
2 = (µun ⊗ a + νun ⊗ b)

�
. But as d2n,1

2 is trivial, the
kernel of d2n,1

2 is two-dimensional.
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The calculations above determine the differential d2. It follows that the
homology algebra E3 has non-trivial modules only in bidegree (0, 0), (0, 1),
(2n, 1) and (2n, 2), and these non-trivial modules are all isomorphic to

�
. It

follows that the differential d3 is trivial, and so are all the following differ-
entials, i.e. the spectral sequence collapses at the E3-term and E3

∼= E∞ as
bigraded algebras.

Recall from page 71 that if there is just one non-trivial module in the diagonal
i + j = k in E∞, then the non-trivial module is isomorphic to the kth
cohomology group of the total space. Hence, there is an isomorphism of
graded groups

H•(
U(1)× SU(n + 1)

C · SU(n)
) ∼= H•(

� 1 ×
� 2n+1).

In order to get the multiplicative structure we first observe that the generator
µ1⊗ a + ν1 ⊗ b ∈ E0,1

2 of ker d0,1
2 projects to a generator of E0,1

3 (and hence

to a generator of the group E0,1
∞

∼= H1(U(1)×SU(n+1)
C·SU(n)

)).

We will construct an element of ker d2n,1
2 that projects to a generator of

E2n,1
3

∼= H2n+1(U(1)×SU(n+1)
C·SU(n)

). Since µ and ν are coprime, there are r, s ∈
�

such that rµ+ sν = 1. Hence, we may write

ker d2n+1,1
2 = E2n+1,1

2 = (un ⊗ a)
�

⊕ (νun ⊗ b)
�

= (µun ⊗ a+ νun ⊗ b)
�
⊕ (sun ⊗ a− run ⊗ b)

�
,

cf. remark 6.4.1. This shows that sun ⊗ a− run ⊗ b projects to a generator
of H2n+1(U(1)×SU(n+1)

C·SU(n)
) ∼= E2n,1

3 = ker d2n+1,1
2 /im d2n−2,2

2
∼=

�
, because we saw

already that im d2n−2,2
2 = (µun ⊗ a+ νun ⊗ b)

�
.

The product of the generators µ1⊗ a+ ν1⊗ b and sun ⊗ a− run ⊗ b of E0,1
3

and E2n,1
3 , respectively, is

(µ1⊗ a + ν1⊗ b) · (sun ⊗ a− run ⊗ b) = −sνun ⊗ ab− rµun ⊗ ab

= −un ⊗ ab

because a2 = 0 = b2 and ab = −ba. (Note that the product in the last
equations is the cup-product in H•(

�
1 ×

�
1).)

Hence, the product of the mentioned generators projects to a generator of
E2n,2
3 , and then also to a generator of E2n,2

∞ and finally to a generator of

H2n+2(U(1)×SU(n+1)
C·SU(n)

).
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But then the multiplicative structure ofH•(U(1)×SU(n+1)
C·SU(n)

) is the one ofH•(
�
1 ×

�
2n+1),

i.e.

H•(
U(1)× SU(n+ 1)

C · SU(n)
) ∼= H•(

� 1 ×
� 2n+1).

�

Similarly, we get the following proposition.

Proposition 6.4.4 Let C be a cyclic subgroup in the normaliser U(1) ×
Sp(1)× Sp(n) of Sp(n) in U(1)× Sp(n + 1). Assume that Sp(n + 1) ∩ C =
Sp(n) ∩ C. Then there is an isomorphism of graded groups

π•(
U(1)× Sp(n+ 1)

C · Sp(n)
) ∼= π•(

� 1 ×
� 4n+3)

and a ring isomorphism

H•(
U(1)× Sp(n+ 1)

C · Sp(n)
) ∼= H•(

� 1 ×
� 4n+3).

Proof By covering theory the homotopy groups are as stated.

There is a fibration
�
1 →

�
4n+3 →

�
P2n+1 from the transitive action of

Sp(n + 1) on
�
4n+3. The transgression of this fibration is an isomorphism.

As Sp(1) is a group of rank 1, all 1-tori in Sp(1) are conjugate and we may
assume that

Z =
C

Sp(n) ∩ C
⊆ U(1)⊕

U(1)× Sp(n))

Sp(n)
⊆ U(1)⊕

Sp(1)× Sp(n))

Sp(n)
,

because the image of the cyclic group Z ⊂ U(1)×Sp(1) under the projection
to Sp(1) is contained in a 1-torus U(1) ⊂ Sp(1). The result follows then as
in the proof of the last proposition. �

Remark 6.4.5 1. The homogeneous spaces in the last two propositions
are examples of spaces as in 2.5.11 or 6.3.7; they have the same coho-
mology as a product

�
1×

�
m+1 even with the coefficients in the integers

(and not in the rationals), and they have exactly the same homotopy
groups as

�
1 ×

�
m+1 (and not only up to torsion).

Let µ be the order of the cyclic group Z = C
SU(n)∩C or Z = C

Sp(n)∩C ,
respectively, in the last two propositions. Then every integer occurs as
a possible value of µ. Hence, the homogeneous spaces in the last two
propositions show that one cannot restrict the number of the connected
components of the stabilizer in 2.5.11 or in 6.3.7.
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2. Another interpretation of the last two propositions is that we have
determined the integral cohomology of the orbit space (

� 1 ×
�
k)
/
Z of

the linear action of Z on
�
1 ×

�
k with certain odd k.

3. The projection
�
1 ×

�
k →

�
k onto the second factor gives an action of

Z on
�
k induced by

x 7→ exp(
2πi

µ
) · x.

Therefore, the orbit space (
�
1 ×

�
k)
/
Z may be viewed as a

�
1-fibre

bundle over the lens space Lk(µ).
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[22] T. Grundhöfer, N. Knarr, and L. Kramer. Flag-homogeneous compact
connected polygons. Geom. Dedicata, 55(1):95–114, 1995. 45, 51
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cohomology module, 69
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Lie algebras, 14

compact connected generalized quad-
rangle, 41
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differential, 68
differential bigraded algebra, 70
differential bigraded module, 68
differential graded module, 68
double fibration, 3, 35, 42

of type (k,m), 3
double mapping cylinder, 2
dual geometry, 40
dual quadrangle, 41

effective, 18
ENR, 24
equivalent, 19
euclidian neighbourhood retract, 24
exceptional, 15
exceptional orbit, 26

faithful, 20
fibration, 1, 2

homotopy sequence, 2
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71
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freely homotopic along a path, 62

generalized n-sphere, 25
generalized quadrangle, 40

(k,m)-, 41
compact connected, 41
topological parameters , 41

dual, 41
FKM-quadrangle, 60

geometry, 40
dual, 40

gradation, 68
graded module, 68
group

Lie, 12
topological, 12
topological transformation, 18
universal covering, 14

homogeneous (co)homology sphere,
22

homogeneous space, 22
homotopic

freely, along a path, 62
homotopy sequence

of fibrations, 2
homotopy simple, 62
Hurewicz fibration, 2
Hurewicz fibre space, 2

icosahedral subgroup, 23
incidence geometry, 40
incident, 40
irreducible action, 21
isoparametric hypersurface, 33

kernel, 18

Leibniz rule, 70
Lie algebra

simple, 14
Lie functor, 14

Lie group, 12
line pencil, 40
linear action, 20
lines, 40
locally direct product, 14
locally homogeneous, 24
locally isomorphic, 14

mapping cylinder, 2
module

bigraded, 68
differential bigraded, 68
differential graded, 68
graded, 68

orbit, 18
exceptional, 26
principal, 20
singular, 26

orbit map, 18
orbit space, 18
orbit type, 20
orientable, 64

fibration, 64
ovoid, 41

perp, 40
Poincaré homology 3-sphere, 23
point row, 40
points, 40
principal orbits, 20
principal stabilizers, 20
pseudo-isotopically contractible rel-

ative to, 24

quadrangle
see generalized quadrangle, 40
FKM-quadrangle, 60
real orthogonal, 43

rank, 13
real orthogonal quadrangle, 43
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representation
faithful, 20

retract, 3
retraction, 3

semi-simple, 13
Serre fibration, 2
simple

Lie algebra, 14
space, 62, 63

simple G-module, 20
simple factors, 14
singular, 26
spectral sequence, 69

collapsing, 70
spectral sequence of algebras, 70
sphere

homogeneous homology, 22
Poincaré homology, 23

spread, 41, 52
stabilizer, 18
survive to Ek, 69
suspension, 25

of an action, 25

thick, 40
topological group, 12
topological parameters, 41
topological transformation group, 18
torus, 13
total degree, 69
total space, 2

universal covering group, 13, 14
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