B. Albert, W. Berning, Ch. Burschka, S. Hünig und F. Prokschy

Chem. Ber. 117, 1465 - 1475 (1984)

Azobrücken aus Azinen, IV¹⁾

Intramolekulare [2 + 2]-Photocycloaddition zwischen parallelen C = C- und N = N-Bindungen²⁾

Bernhard Albert^{a3)}, Wilfried Berning^{a4)}, Christian Burschka^{b3)}, Siegfried Hünig^a* und Frank Prokschy^{a5)}

Institut für Organische Chemie^a und Institut für Anorganische Chemie^b der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 30. Juni 1983

In den starren Molekülen 1 - 10 reagieren die benachbarten parallelen C = C- und N = N-Bindungen nahezu quantitativ unter Photocyclisierung zu den 1,2-Diazetidinen 11 - 20, deren Struktur spektroskopisch und für 13 durch Kristallstrukturanalyse bewiesen wird. Die in Abwesenheit der C = C-Bindung beobachtete Photo-Denitrogenierung unterbleibt selbst bei den empfindlichen Derivaten des 2,3-Diazabicyclo[2.2.1]heptens. Photocyclisierung von 6 mit zwei zur N = N-Bindung benachbarten C = C-Bindungen tritt nur mit der Norbornendoppelbindung ein.

Azo Bridges from Azines, IV 1)

Intramolecular [2 + 2] Photocycloaddition of Parallel C = C and N = N Bonds

The parallel C = C and N = N bonds in the rigid molecules 1 - 10 photocyclize nearly quantitatively, forming 1,2-diazetidines 11 - 20. Their structure is confirmed by spectroscopic methods and for 13 by X-ray analysis. Radiation induced denitrogenation, the normal reaction for similar compounds without neighbouring C = C bonds, is suppressed even with the sensitive derivatives of 2,3-diazabicyclo[2.2.1]heptene. Photocyclization of 6, carrying two neighbouring C = Cbonds, includes only the norbornene bond.

Die $[\pi^{2}_{s} + \pi^{2}_{s}]$ -Photocycloaddition zwischen zwei Doppelbindungen mit gleich- oder verschiedenartigen Substituenten erfolgt über einen sehr breiten Variationsbereich so glatt, daß dieser Vierringsynthese entscheidende präparative Bedeutung zukommt⁶). Obwohl die Woodward-Hoffmann-Regeln⁷ entsprechende Photoreaktionen zwischen Alkenen und Azoverbindungen voraussagen, sind bisher noch keine solchen Cycloadditionen zu Diazetidinen bekannt⁸). Die Ursache dafür dürfte in der leichten Abspaltung von Stickstoff aus nicht aromatischen Azoverbindungen liegen (vgl. 2. Diskussion), die deshalb bisher ganz im Vordergrund des Interesses steht⁹).

Die nunmehr nach einem allgemeinen Syntheseprinzip aus cyclischen Azinen und bestimmten Cycloalkadienen zugänglichen Verbindungen mit benachbart parallelen C = C- und N = N-Bindungen^{1,10,11}) bieten eine besonders günstige Voraussetzung für Photocycloadditionen, zumal die bathochrom verschobenen UV-Absorptionen der Azogruppen^{1,10,11}) bereits eine Wechselwirkung mit der benachbarten Doppelbindung signalisieren¹²).

Die vorliegende Mitteilung beschreibt die erzielten präparativen Ergebnisse sowie die Struktur der Photoprodukte und diskutiert die Zusammenhänge mit bekannten Photoreaktionen verwandter Azoverbindungen ohne benachbarte C = C-Bindungen.

© Verlag Chemie GmbH, D-6940 Weinheim, 1984 0009 – 2940/84/0404 – 1465 \$ 02.50/0

1. Photoreaktionen der Azoverbindungen 1-10

Für die Belichtung der Azoverbindungen in Acetonitril oder Chloroform wurde eine Mitteldruckquecksilberlampe mit Pyrexfilter gewählt, um sicherzustellen, daß nur die Azogruppe angeregt wird ($\lambda > 320$ nm). Außerdem wurde bei -20 °C gearbeitet, um die temperaturabhängige¹³ Denitrogenierung möglichst zu unterdrücken.

1466

^{a)} Die Reaktion wurde in einem Bestrahlungsgefäß durchgeführt (UV-Kontrolle). – ^{b)} Die Reaktion wurde im NMR-Rohr durchgeführt (NMR-Kontrolle).

In Schema 1 sind die eingesetzten Azoverbindungen 1-10 nach ihren relevanten Strukturmerkmalen in Gruppen gegliedert. Als wichtig wird dabei die Größe des Ringes angesehen, über den die Doppelbindung (" 5_C ", " 6_C ") und die Azobrücke (" 5_N ", " 6_N ") gespannt sind. Wie man sieht, tritt unabhängig von diesen Unterschieden in allen Fällen glatt Photocycloaddition zu den Diazetidinen 11-20 ein, also ähnlich wie bei entsprechenden Ringsystemen mit zwei parallelen Doppelbindungen¹⁴⁾. Soweit NMRspektroskopisch verfolgt (siehe Schema 1, Methode b)), sind keine Nebenprodukte zu erkennen. Die Cycloaddition läuft also der Denitrogenierung praktisch quantitativ den Rang ab. Die etwas geringeren präparativen Ausbeuten sind Aufarbeitungsverlusten zuzuschreiben.

Besonders bemerkenswert ist die eindeutige Chemoselektivität der Photocycloaddition von 6, in dem die Azogruppe von zwei Doppelbindungen flankiert ist. Bereits im Rohprodukt ist nur das Diazetidin 16 zu erkennen, in dem zum Vierring nur die Norbornendoppelbindung beigetragen hat.

2. Diskussion der Photoreaktionen

Die glatte Photocyclisierung der Azoolefine 1-10 ist keineswegs selbstverständlich. Am ehesten war sie noch für die Edukte 3-10 zu erwarten, die Derivate des 2,3-Diazabicyclo[2.2.2]oct-2-ens (22) sind ("6_N"). Bei diesem beträgt nämlich die Quantenausbeute der Stickstoffabspaltung Φ_N nur 0.022 (entsprechend einer hohen Fluoreszenz-

quantenausbeute von $\Phi_{F1} = 0.20 - 0.41$). Entscheidend ist dabei das Strukturelement von 22, wie die weitgehend photoresistenten Derivate 23-26 ($\Phi_N \leq 0.1$) bezeugen ¹⁵⁻¹⁷).

Ganz im Gegensatz zu 22 wird aus 2,3-Diazabicyclo[2.2.1]hept-2-en (21) bei minimaler Fluoreszenz mit $\Phi_N = 1.00$ äußerst effizient Stickstoff abgespalten^{15,16,17)}. Da das System von 21 als Baustein auch in 1 und 2 steckt, ist die glatte Vierringbildung zu 11 und 12 verblüffend. Verzichtet man nämlich auf den olefinischen Brückenteil, so treten die Eigenschaften des Grundsystems wieder voll in Erscheinung, wie die Beispiele $27^{1,11}$, 28^{10} und 29^{10} zeigen: Während 27 nach sechsstündiger Bestrahlung unverändert zurückgewonnen wird, haben sich unter den gleichen Bedingungen 28 und 29 bereits nach 30 Minuten unter Verlust der Azogruppe zersetzt.

Daß die hier beschriebenen Photocyclisierungen mit hoher Quantenausbeute verlaufen müssen, läßt sich bereits an der glatten Reaktion $3 \rightarrow 13$ ablesen, die sich innerhalb von sechs Tagen in einem NMR-Röhrchen am Laborfenster (Nordseite, November) vollzog.

Auch in den viel kritischeren Derivaten des Diazabicycloheptens 21, den Bicyclen 1b und 2, muß die Photocyclisierung mindestens 20mal rascher verlaufen als die Stickstoffabspaltung, da sich im NMR-Versuch kein Nebenprodukt erkennen läßt.

3. Strukturermittlung der Photoaddukte 11-20

3.1. Spektroskopische Kriterien

Allen Photoaddukten fehlen der UV-Azochromophor (Abwesenheit der Banden bei 362-396 nm) und die ¹H-NMR-Signale der Brückenkopfprotonen an der olefinischen ($\delta \approx 5.4-5.9$) sowie Azobrücke ($\delta \approx 4.5$ oder 5.0-5.3)^{1,10,11}, durch deren Verschwinden sich die Photoreaktion leicht kontrollieren läßt. Neu auftretende ¹H-NMR-Signale bei $\delta \approx 4.1-4.3$ sind den Diazetidinprotonen¹⁸ zuzuschreiben, deren Lage durch das restliche Gerüst der Käfigverbindungen nur wenig beeinflußt wird. Im Gegensatz dazu verschieben sich die ¹³C-Diazetidinsignale in den Typ-Reihen 5_C5_N, 5_C6_N, 6_C6_N mit $\delta \approx 76$, 71, 65 nach höherem Feld. Auf dieser Basis wurde auch die Strukturzuordnung von 16 getroffen. Außerdem verfügt 16 im ¹H-NMR-Spektrum noch über die charakteristischen Signale der Bicycloocten-Doppelbindung ($\delta = 6.2$ dd).

Entsprechende Befunde gelten für die Derivate 30 und 18, die durch Hydrierung mit Diimid oder mit Palladium/Wasserstoff¹⁹⁾ leicht zugänglich sind.

3.2. Kristallstrukturanalyse von 13

Zur Kontrolle der spektroskopischen Strukturzuordnung wurde zusätzlich zur früher untersuchten Struktur von 3^{12} auch 13 einer Röntgenstrukturanalyse unterworfen, welche die vorgeschlagene Käfigstruktur voll bestätigte (Tab. 1 und 2).

Wie man Tab. 1 entnimmt, sind in dem nahezu quadratischen Diazetidinring die C - N-Abstände im Edukt 3 von 292¹²⁾ auf 152 pm geschrumpft. Entsprechend wächst

		3	13			3	<u> 13</u>
C1	C2	152.8	151.0 (5)	C6	C7	156.3	154.3 (5)
	C13	153.7	151.9 (5)		C16	154.2	153.1 (5)
	N14	149.5	149.6 (4)	C7	C8	152.2	153.4 (5)
C2	C3	156.4	154.4 (5)	C8	C9	153.7	152.9 (5)
	C7	155.5	157.4 (5)		N15	149.5	148.7 (4)
C3	C4	150.5	155.0 (5)	C9	C10	152.0	151.8 (5)
	C16	154.4	152.7 (5)	}	C13	155.7	156.0 (4)
C4	C5	132.0	153.7 (5)	C10	C11	135.0	135.2 (6)
	N14 a)	291.6	151.6 (4)	c11	C12	143.9	145.7 (6)
C5	C6	151.9	153.6 (5)	C12	C13	154.6	154.1 (6)
	N15 ^a)	291.6	151.5 (5)	N14	N15	125.8	155.0 (4)

 Tab. 1. Atomabstände der Verbindungen 3 (gemittelte Werte) und 13 in pm ohne Berücksichtigung der Wasserstoffatome (geschätzte Standardabweichungen in Klammern)

a) Keine Bindung.

			3	13					3	13
C2	C1	C13	107.0	115.0		C6	C7	C8	120.8	102.6
C2	C1	N14	111.2	103.7		C7	C8	C9	107.9	113.7
C13	C1	N14	106.8	110.6		C7	CS	N15	110.8	103.9
C1	C2	C3	121.0	103.4		C 9	C8	N15	106.8	111.6
C1	C2	C7	107.9	109.5		C8	C9	C10	114.6	113.7
C3	C2	C7	103.5	103.0		C8	C9	C13	107.8	109.1
C2	C3	C4	109.5	99.3		C10	C9	C13	104.8	104.5
C2	C3	C16	98.9	104.7		C9	C10	C11	107.3	110.8
C4	C3	C16	99.1	103.1		C10	C11	C12	113.2	113.2
C3	C4	C5	109.6	103.3		C11	C12	C13	110.4	106.3
C3	C4	N14	.	109.3		C1	C13	C9	108.3	109.0
C5	C4	N14		90.3		C1	C13	C12	114.5	114.9
C4	C5	C6	107.8	103.6		C9	C13	C12	104.3	105.3
C4	C5	N15		90.2		C1	N34	C4		104.0
C6	C5	N15		109.5	{	C1	N14	N15	115.1	109.7
C5	C6	C7	110.2	100.3		C4	N14	N15		89.7
C5	C6	C16	99.2	103.4	1	C5	N15	C8	••	104.3
C7	C6	C16	98.3	104.6		C5	N15	N14		89.8
cz	C7	C6	102.7	102.4	}	C8	N15	N14	114.7	109.6
CZ	C7	C8	108.7	108.1	1	C3	C16	C6	93.6	95.0
					,					

Tab. 2. Winkel der Verbindungen 3 (gemittelte Werte) und 13 in Grad (geschätzte Standardabweichungen in 13 0.3°)

der C – C-Abstand von 132^{12} auf 154 pm und der N – N-Abstand von 126 auf 155 pm. Als Folge des Ringschlusses verengt sich außerdem der Bindungswinkel C6 – C7 – C8 von 120.8° in 3 auf 102.6° in 13 (Tab. 2).

Wir danken dem Fonds der Chemischen Industrie und der BASF Aktiengesellschaft, Ludwigshafen/Rhein, für die Förderung dieser Untersuchung sowie Herrn Prof. Dr. R. Luckenbach vom Beilstein-Institut, Frankfurt, für die Hilfe bei der Benennung der dargestellten Verbindungen und dem Rechenzentrum der Universität Würzburg für die zur Verfügung gestellte Rechenzeit.

Experimenteller Teil

Allgemeine Angaben zu verwendeten Geräten, Solventien usw. vgl. Lit. 10).

Photocyclisierungen der Azoverbindungen 1b – 10 zu den Diazetidinen 11b – 20 (Tab. 3)

Methode A: Die Azoverbindung wird in Acetonitril gelöst, der auf -20 °C gekühlte Tauchschacht mit der 150-W-Quecksilber-Mitteldrucklampe taucht in die mit Stickstoff durchspülte Lö-

sung. Der Reaktionsverlauf wird im Elektronenspektrum verfolgt. Nach beendeter Reaktion wird das Lösungsmittel entfernt und der Rückstand i. Vak. sublimiert und gegebenenfalls noch aus Cyclohexan umkristallisiert.

Methode B: Versuchsaufbau und Aufarbeitung wie bei Methode A, nur daß sich die zu bestrahlende Lösung der Azoverbindung in $[D_3]$ Acetonitril oder CDCl₃ in einem NMR-Rohr befindet, das mit einem Klebeband an dem gekühlten Tauchschacht befestigt ist. Die Reaktionskontrolle erfolgt mittels ¹H-NMR-Spektroskopie.

Vers.	Azo- verb.	mg	ng Solvens		Me- tho- de (min)		Diazetidin Ausb. %	Schmp./°C
1	1b	30	0.65 CD ₃ CN	В	30	11b	93 b)	112-113
2	2	30	$0.6 CD_3CN$	В	30	12	87 ^{b)}	46 – 47
3	3	2000	400 CH ₃ CN	Α	55	13	88 ^{a)}	190 - 191
4	4	45	400 CH ₃ CN	Α	60	14	96 ^{b)}	189 - 190
5	5	15	1 CDCl ₃	В	30	15	87 ^{b)}	205 - 206
6	6	50	350 CH ₁ CN	Α	60	16	70ª)	178 – 179
7	7	230	250 CH ₃ CN	Α	70	17	91 ^{b)}	170 (Zers.)
8	8	21	0.6 CDCl ₃	В	30	18	81 ^{b)}	155 (Zers.)
9	9	100	350 CH ₃ CN	Α	60	19	95b)	220 (Zers.)
10	10	200	400 CH ₃ CN	Α	35	20	70 ^{a)}	200 (Zers.)

Tab. 3. Bestrahlungen der Azo-Verbindungen 1b-10 zu den Diazetidinen 11b-20

a) Ausbeute nach Sublimieren und Umkristallisieren. - b) Ausbeute nach Sublimieren.

11b: Decahydro-6,6-dimethyl-1,5,2,4-(nitrilometheno)pentaleno[1,6-bc]pyrrol.

12: Decahydro-5,6,6,6a-tetramethyl-1,5,2,4-(nitrilometheno)pentaleno[1,6-bc]pyrrol.

13: $(t-5a, t-8a)-\Delta^7$ -Dodecahydro-r-1, c-5, c-2, c-4-(nitrilometheno)dicyclopent[cd, g]indol.

14: (c-5a,c-9a)-Tetradecahydro-6r,9c-methano-t-1,t-5,t-2,t-4-(nitrilometheno)-1H-benzo[g]-cyclopent[cd]indol.

15: (t-5a,t-9a)-Tetradecahydro-6,9-ethano-r-1,c-5,c-2,c-4-(nitrilometheno)-1H-benzo[g]cyclopent[cd]indol.

16: $(c-5a, c-9a) - \Delta^7$ -Dodecahydro-*r*-6, *c*-9-ethano-*t*-1, *t*-5, *t*-2, *t*-4-(nitrilometheno)-1*H*-benzo[g]-cyclopent[*cd*]indol.

17: $(t-6a, t-9a)-\Delta^8$ -Dodecahydro-r-1, c-6, c-2, c-5-(nitrilometheno)-1H-benzo[cd]cyclopent[g]indol.

18: (t-6a,t-9a)-Tetradecahydro-r-1,c-6,c-2,c-5-(nitrilometheno)-1H-benzo[cd]cyclopent[g]indol.

19: $(t-6a, t-10a)-\Delta^8$ -Tetradecahydro-c-1, c-6, c-2, c-5-(nitrilometheno)-r-7, c-10-methanodibenz-[cd,g]indol.

20: (t-6a,t-10a)-Hexadecahydro-c-1, c-6, c-2, c-5-(nitrilometheno)-r-7, c-10-methanodibenz-[cd,g]indol.

30: (t-5a,t-8a)-Tetradecahydro-r-1,c-5,c-2,c-4-(nitrilometheno)dicyclopent[cd,g]indol.

Bestrahlung von 3 bei Tageslicht: Ein NMR-Rohr mit 20 mg (0.09 mmol) 3 in 1 ml CDCl₃ wird am Fenster befestigt und dem Tageslicht ausgesetzt (November, Nordseite). Nach 6 d werden im ¹H-NMR-Spektrum nur noch Signale von 13 beobachtet.

Verb.	IR (CCl ₄) cm ⁻¹	¹ H-NMR (CDCl ₃) δ/ppm	¹³ C-NMR (CDCl ₃) δ/ppm	MS (70 eV) <i>m/e</i>	Summenformel (Molmasse) Analyse (C, H, N)
116	2960, 2870, 1465	$\begin{array}{l} 0.90 - 1.00 \ (s; 3 \ H), \ 1.00 - 1.10 \\ (s; 3 \ H), \ 1.15 - 1.95 \ (AB, \\ J = 12 \ Hz; \ 2H), \ 2.35 - 2.55 \\ (bs; 2H), \ 2.60 - 2.85 \ (bs; \ 4H), \\ 3.80 - 4.00 \ (mc; \ 2H) \end{array}$	21.63, 22.72, 37.28, 45.74, 52.77, 69.34, 75.49	188 (53%) 173 (13%) 94 (100%)	C ₁₂ H ₁₆ N ₂ (188.3) Ber. 76.55 8.57 14.85 Gef. 76.25 8.39 14.85
12	2960, 2860, 1460, 1435, 1385, 1370, 1360, 1290	0.90 - 1.00 (s; 3 H), $1.00 - 1.10$ (s; 9 H), $1.40 - 2.05$ (AB, J = 11.3 Hz; 2 H), $2.55 - 2.65$ (mc; 2 H), $2.65 - 2.85$ (m; 2 H), $4.10 - 4.25$ (mc; 2 H)	13.14, 17.87, 21.14, 36.95, 45.41, 55.86, 56.30, 68.49, 78.61	-	C ₁₄ H ₂₀ N ₂ (216.3) Ber. 77.73 9.32 12.95 Gef. 77.70 9.40 12.83
13	(KBr) 3050, 2950, 1620, 1435, 1310	1.20-1.95 (AB, $J = 11.2$ Hz; 2H), 2.30-3.30 (m; 10H); 4.15-4.25 (mc; 2H), 5.50-5.90 (mc; 2H)	30.6, 31.4, 37.4, 41.7, 44.7, 45.9, 46.2, 59.6, 61.9, 69.9, 70.1, 130.3, 131.7	212 (49%) 185 (32%) 117 (100%)	$C_{14}H_{16}N_2$ (212.3) Ber. 79.21 7.59 13.19 Gef. 78.98 7.69 13.30
14	2940, 2900, 2870, 1470, 1480, 1315, 1300, 1030	1.20-2.60 (m; 16H), 2.60-2.80 (bs; 2H), 4.15-4.35 (mc; 2H)	25.02, 30.64, 31.73, 41.82, 42.25, 44.06, 48.41, 60.54, 71.09	-	C ₁₆ H ₂₀ N ₂ (240.4) Ber. 79.96 8.39 11.65 Gef. 79.54 8.35 11.75
15	2960, 2910, 2860, 1475, 1455	1.10-2.80 (m; 18H), 2.80-3.00 (bs; 2H), 4.40-4.60 (mc; 2H)	22.20, 28.60, 28.95, 31.18, 33.27, 43.92, 47.20, 61.38, 71.28	-	C ₁₇ H ₂₂ N ₂ (254.4) Ber. 80.27 8.72 11.00 Gef. 80.30 8.45 10.69

Tab. 4. Spektroskopische und analytische Daten der Diazetidine 11b-20 und 30

Chem. Ber. 117 (1984)

1472

B. Albert, W. Berning, Ch. Burschka, S. Hünig und F. Prokschy

Chem. Ber. 117 (1984)

Verb.	IR (CCl ₄) cm ⁻¹	¹ H-NMR (CDCl ₃) δ/ppm	(CDCl ₃) ¹³ C-NMR (CDCl ₃) ppm δ/ppm		Summenformel (Molmasse) Analyse (C, H, N)					
16	3050, 2930, 2860, 1455, 1440, 1300, 1030	1.10 - 1.90 (m; 6H), $2.00 - 2.10(bs; 2H), 2.25 - 2.65 (m; 8H),4.10 - 4.20$ (mc; 2H), $6.15 - 6.35(dd; 2H)$	26.30, 31.09, 34.48, 36.76, 45.01, 46.34, 61.00, 70.06, 129.67	_	$C_{17}H_{20}N_2$ (252.4) Ber. 80.91 7.99 11.10 Gef. 81.10 8.29 11.02					
17	3060, 2945, 2855, 1460, 1435	1.25 – 1.65 (m; 2H), 1.65 – 2.25 (m; 4H), 2.35 – 2.90 (m; 7H), 3.00 – 3.35 (m; 1H), 4.10 – 4.35 (mc; 2H), 5.50 – 5.90 (mc; 2H)	16.18, 30.93, 34.08, 34.40, 37.72, 39.92, 42.13, 59.68, 62.37, 65.59, 65.98, 103.86, 131.57	226 (100%) 199 (38%)	$C_{15}H_{18}N_2$ (226.3) Ber. 79.61 8.02 12.3 Gef. 79.77 8.26 12.1					
18	2980, 2870, 1465, 1445	0.80-2.15 (m; 12H), 2.15-2.45 (bs; 4H), 2.45-2.60 (bs; 2H), 4.10-4.30 (mc; 2H)	16.26, 26.08, 31.27, 34.09, 40.43, 61.85, 65.70	-	C ₁₅ H ₂₀ N ₂ (228.3) Ber. 78.91 8.83 12.2 [°] Gef. 78.62 8.56 12.11					
19	3050, 2930, 2860, 1470	1.10-2.30 (m; 10H), 2.35 (s; 2H), 2.70 (s; 2H), 2.80 (s; 2H), 4.15-4.25 (mc; 2H), 6.10-6.20 (bs; 2H)	16.08, 33.73, 35.21, 41.91, 44.34, 45.83, 60.99, 65.27, 138.31	-	$C_{17}H_{20}N_2$ (252.4) Ber. 80.91 7.99 11.10 Gef. 80.52 7.80 10.90					
20	2960, 2880, 1485, 1463	1.00-2.30 (m; 18H), 2.50-2.60, (s; 2H), 4.10-4.30 (mc; 2H)	15.98, 30.34, 33.20, 35.02, 39.70, 40.35, 40.87, 60.55, 65.56		C ₁₇ H ₂₂ N ₂ (254.4) Ber. 80.27 8.72 11.02 Gef. 80.00 8.84 11.19					
30	2970, 2870, 1455, 1435	1.20 - 1.50 (m; 2H), 1.55 - 1.95 (m; 6H), 2.15 - 2.30 (m; 2H), 2.30 - 2.40 (m; 2H), 2.50 - 2.75 (m; 4H), 4.10 - 4.20 (mc; 2H)	26.41, 31.22, 31.58, 33.72, 45.29, 45.81, 61.56, 70.04	214 (100%) 187 (23%)	C ₁₄ H ₁₈ N ₂ (214.3) Ber. 78,46 8.46 13.0 Gef. 78.35 8.66 13.0					

Azobrücken aus Azinen, IV

1473

.

Bestrahlung von 27: 100 mg (0.47 mmol) 27 werden in 110 ml Acetonitril nach Methode A bestrahlt (6 h). Man erhält nach Sublimation (120°C/0.01 Torr) 95 mg (95%) 27 zurück.

Bestrahlung von 28 und 29: 30 mg (0.16 mmol) 28 bzw. 20 mg (0.11 mmol) 29 werden 30 bzw. 60 min nach Methode B bestrahlt (jeweils in 0.6 ml CD_3CN). Die ¹H-NMR-Spektren zeigen danach keine Hinweise mehr auf das Vorliegen der Azoverbindungen; auf eine Trennung und Analyse des Produktgemisches wurde verzichtet.

Hydrierungen von 13

a) Katalytisch: 1.20 g (5.60 mmol) 13 werden in 100 ml Ethanol mit 200 mg Palladium auf Aktivkohle (5%, Degussa Typ E 10 N) bei Raumtemp. und Normaldruck in einer Schüttelente hydriert. Der nach Abfiltrieren des Katalysators und Abziehen des Lösungsmittels verbleibende Rückstand wird aus Cyclohexan umkristallisiert. Man erhält 600 mg (50%) 30 als farblose Kristalle vom Schmp. 133 – 134 °C (Lit.¹⁹⁾ 132 – 133 °C).

b) Mittels Diimid: Die Lösung von 212 mg (1.00 mmol) 13 in 30 ml Methanol wird mit 4.20 g (22.2 mmol) Dikaliumazodicarboxylat und einem Tropfen Essigsäure versetzt und 2 d bei Raumtemp. gerührt. Nach Zusatz von 40 ml 0.5 N NaOH wird mehrmals mit Dichlormethan ausgeschüttelt. Nach Trocknen (K_2CO_3) der organischen Phase, Abziehen des Lösungsmittels und Umkristallisieren des Rückstands aus Cyclohexan erhält man 140 mg (67%) 30 als farblose Kristalle vom Schmp. 132 – 134 °C.

Hydrierung von 17 mittels Diimid: Die Lösung von 100 mg (0.44 mmol) 17 in 20 ml Methanol wird mit 3.00 g (15.9 mmol) Dikaliumazodicarboxylat und einem Tropfen Essigsäure versetzt und 2 d bei Raumtemp. gerührt. Die Aufarbeitung erfolgt wie zuvor beschrieben. Man erhält 80 mg (80%) 18 als farblose Kristalle, die sich ab 155 °C zersetzen.

Strukturaufklärung von 13 durch Röntgenbeugung*): Geeignete Kristalle von 13 ließen sich aus Diethylether gewinnen. Die röntgenographische Untersuchung eines $0.2 \times 0.3 \times 0.3$ mm großen Einkristallbruchstückes (Syntex-P21-Diffraktometer, Mo-Kg-Strahlung, Graphit-Monochromator, $\lambda = 71.069$ pm, T = ca. 293 K) ergab eine orthorhombische Elementarzelle mit a =613.5(2), b = 1064.0(4) und c = 3158(1) pm, die Raum für 8 Moleküle bietet ($V = 2061.4 \cdot 10^6$ pm³, $d_{exp} = 1.28$, $d_{calc} = 1.37$ mg/mm³). Die genannten Gitterkonstanten wurden über eine kleinste Quadrate-Rechnung erhalten, basierend auf 17 zentrierten Reflexen im Bereich 2Θ = 26-27°. Vermessen wurden 1180 Intensitäten innerhalb eines Oktanten der Reflexionssphäre mit $2\Theta = 4-40^{\circ}$ (ω -scan, $\Delta\omega = 1^{\circ}$, die scan-Geschwindigkeit variierte zwischen 0.5° und 29.3°/min), von denen 968 symmetrieunabhängig waren und 855 das Kriterium $I_0 = 1.96 \sigma(I_0)$ erfüllten. Sie wurden nach der Ψ -scan-Methode bezüglich Absorption korrigiert. Aufgrund der systematischen Auslöschungen h0/ mit h + l = 2n + 1, 0k/ mit k = 2n + 1 und hk0 mit k = 2n+ 1 war die Raumgruppe Pbnb zu erkennen (Nicht-Standard-Aufstellung der Raumgruppe Pccn Nr. 56 der Int. Tab.). Eine Lösung der Struktur gelang mit Hilfe Direkter Methoden (Programm MULTAN 78). Nach Verfeinerung der Atomparameter von Kohlenstoff und Stickstoff waren auch die Wasserstoffatome in einer Differenz-Fourier-Synthese zu lokalisieren. Sie wurden bei der Strukturfaktorrechnung ebenfalls berücksichtigt, jedoch bei der anschließenden Verfeinerung über weitere least-squares-Zyklen nicht variiert. Mit den in Tab. 5 angegebenen Atomparametern ergaben sich für 855 (968) Reflexe abschließend $R_1 = 0.051$ (0.060) bzw. $R_2 = 0.053$ (0.053) bei 80 verfeinerten Variablen. Die Restelektronendichte enthielt nur Maxima $\leq 0.3 \ e/10^6 \ pm^3$.

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50584, des Autors und des Zeitschriftenzitats angefordert werden.

Tab. 5. Atomkoordinaten und isotrope Temperaturfaktoren (in 10⁴ pm²) in der Kristallstruktur von 13 mit geschätzten Standardabweichungen in Klammern

Atom	X	۲		2	8 bzw. 8	Atom	×	Y	z	B bas. B
C-1	0.1870 (6)	-0.0629	(3)	0.1089 (1)	3.18 (8)	H-1	0.3550 (0)	-0.0894 (0)	0.1027 (0)	6.0 (0)
C-2	0.0635 (6)	-0.1591	(3)	0.1346 (1)	3.02 (8)	H-2	0.0624 (C)	-0.2598 (0)	0.1205 (0)	6.0 (0)
C-3	0.1773 (6)	-0.1544	(3)	0.1782 (1)	3.49 (9)	H-3	0.3233 (C)	-0.2163 (0)	0.1817 (0)	6.0 (0)
C-4	0.2134 (6)	-0.0106	(3)	0.1818 (1)	3.25 (8)	H-4	0.3443 (C)	0.0230 (0)	0.2024 (0)	6.0 (0)
C-5	-0.0160 (6)	0.0399	(4)	0.1914 (1)	3.28 (9)	H-5	-0.0580 (C)	0.1101 (0)	0.2175 (0)	6.0 (0)
C~6	-0.1581 (6)	-0.0788	(3)	0.1923 (1)	3.67 (9)	H-6	-0.3068 (0)	-0.0641 (0)	0.2059 (0)	6.0 (0)
C-7	-0.1717 (6)	-0.1080	(3)	0.1445 (1)	3.16 (8)	H-7	-0.2998 (0)	-0.1749 (0)	0.1351 (0)	6.0 (0)
C-8	-0.1924 (6)	0.0233	(3)	0.1249 (1)	2.99 (B)	H-8	-0.3570 (0)	0.0620 (0)	0.1325 (0)	6.0 (0)
C~9	-0.1542 (6)	0.0256	(3)	0.0770 (1)	3.37 (8)	H-9	-0.2930 (0)	-0.0411 (0)	0.0624 (0)	6.0 (0)
C-10	-0.1560 (7)	0.1567	(4)	0.0581 (1)	4.23 (23)	H-10	-0.2989 (0)	0.2223 (0)	0.0635 (0)	7.0 (0)
C-11	0.0379 (8)	0.1834	(4)	0.0399 (1)	5.05 (26)	H-11	0.0686 (0)	0.2778 (0)	0.0223 (0)	7.0 (0)
C-12	D.1949 (7)	0.0810	(4)	0.0432 (1)	4.78 (24)	H-122	0.2536 (0)	0.0441 (0)	0.0115 (0)	6.0 (0)
C-13	0.0790 (6)	-0.0254	(3)	0.0674 (1)	3.47 (9)	H-121	0.3470 (0)	0.1076 (0)	0.0589 (0)	6.0 (0)
N-14	0.2042 (5)	0.0475	(3)	0.1380 (1)	3.21 (7)	H-13	0.0673 (0)	-0.1104 (0)	0.0466 (0)	6.0 (0)
N-15	-0.0266 (4)	0.0990	(3)	0.1478 (1)	3.14 (7)	H-161	-0.0632 (0)	-0.2759 (0)	0.2077 (0)	6.0 (0)
C-16	-0.0045 (6)	-0.1792	(4)	0.2101 (1)	4.10 (9)	H-162	0.0595 (0)	-0.1583 (0)	0.2402 (0)	6.0 (0)
Atom	⁸ 11 .	B ₂₂	8 ₃₃	8 ₁₂	^B 13	⁸ 23				
c-5	4.5 (3) 6	.4 (3)	3.4 (2) -0.8 (2)	0.3 (2)	0.1 (2)				
C-6	6.9 (3) 4	.3 (3)	3.9 (2) -0.7 (2)	-0.6 (2)	0.6 (2)				
C-7	5.0 (2) 4	.0 (2)	3.8 (2	0.1 (2)	0.0 (2)	0.6 (2)				_

¹⁾ III. Mitteil.: W. Berning, S. Hünig und F. Prokschy, Chem. Ber. 117, 1455 (1984), vorstehend.

²⁾ Vorläufige Mitteil.: W. Berning und S. Hünig, Angew. Chem. 89, 825 (1977); Angew. Chem., Int. Ed. Engl. 16, 777 (1977).

- 3) Kristallstrukturanalyse von 13.
- 4) Aus der Dissertation W. Berning, Univ. Würzburg 1977.
- ⁵⁾ Aus der Dissertation F. Prokschy, Univ. Würzburg 1982.
- ⁶⁾ D. Seebach in Methoden der organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. 4/4, S. 1, Thieme, Stuttgart 1971; siehe auch Lit.¹⁴⁾.
- ⁷⁾ T. L. Gilchrist und R. C. Storr, Organic Reactions and Orbital Symmetry, Cambridge University Press, Cambridge 1972.
- ⁸⁾ In Kenntnis unserer Kurzmitteilung (Lit.²⁾) wurde inzwischen eine solche Photocycloaddition durchgeführt: L. A. Paquette, R. V. C. Carr, P. Charumilind und J. F. Blount, J. Org. Chem.
- 45, 4922 (1980). ⁹⁾ W. Adam und O. De Lucchi, Angew. Chem. 92, 815 (1980); Angew. Chem., Int. Ed. Engl. 19, 762 (1980); siehe auch Lit.¹³⁾.
- ¹⁰ I. Mitteil.: K. Beck, A. Höhn, S. Hünig und F. Prokschy, Chem. Ber. 117, 517 (1984).
 ¹¹ II. Mitteil.: S. Hünig und F. Prokschy, Chem. Ber. 117, 534 (1984).

12) B. Albert, W. Berning, Ch. Burschka, S. Hünig, H.-D. Martin und F. Prokschy, Chem. Ber. 114, 423 (1981). ¹³⁾ P. S. Engel, Chem. Rev. 80, 99 (1980).

- 14) 14a) H. Meier in Methoden der organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. ¹⁷⁷ *I. Meter* in Methoden der organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. 4/5a, S. 185, Thieme, Stuttgart 1978. - ^{14b} G. Kaupp, Angew. Chem. 90, 161 (1978); Angew. Chem., Int. Ed. Engl. 17, 150 (1978). - ^{c)} *H. D. Scharf*, Tetrahedron 23, 3057 (1967). - ^{14d} W. L. Dilling, Chem. Rev. 66, 373 (1966). - ^{14e} E. Osawe, J. Org. Chem. 42, 2621 (1977).
 ¹⁵⁾ P. S. Engel, C. J. Nalepa, R. A. Leckonby und W.-K. Chae, J. Am. Chem. Soc. 101, 6435 (1979); vgl. auch P. S. Engel, D. W. Horsey, D. E. Keys, C. J. Nalepa und L. R. Soltero, J. Am. Chem. Soc. 105, 7108 (1983).
- 16) M. J. Mirbach, K.-C. Liu, M. F. Mirbach, W. R. Cherry, N. J. Turro und P. S. Engel, J. Am. Chem. Soc. 100, 5122 (1978).
- 17) B. S. Solomon, T. F. Thomas und C. Steel, J. Am. Chem. Soc. 90, 2249 (1968).
- ¹⁸⁾ Vgl. J. H. Hall und M. L. Jones, J. Org. Chem. 48, 822 (1983).
- 19) S. F. Nelsen, C. R. Kessel und H. N. Brace, J. Am. Chem. Soc. 101, 1874 (1979).

[223/83]