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Wave Extraction in Numerical Relativity

Abstract This work focuses on a fundamental problem in modern numerical rela-

tivity: Extracting gravitational waves in a coordinate and gauge independent way to

nourish a unique and physically meaningful expression.

We adopt a new procedure to extract the physically relevant quantities from the

numerically evolved space-time. We introduce a general canonical form for the Weyl

scalars in terms of fundamental space-time invariants, and demonstrate how this ap-

proach supersedes the explicit definition of a particular null tetrad.

As a second objective, we further characterize a particular sub-class of tetrads in

the Newman-Penrose formalism: the transverse frames. We establish a new connection

between the two major frames for wave extraction: namely the Gram-Schmidt frame,

and the quasi-Kinnersley frame. Finally, we study how the expressions for the Weyl

scalars depend on the tetrad we choose, in a space-time containing distorted black

holes. We apply our newly developed method and demonstrate the advantage of our

approach, compared with methods commonly used in numerical relativity.

Abriss Diese Arbeit konzentriert sich auf eine fundamentale Problematik der nu-

merischen Relativitätstheorie: Die Extraktion von Gravitationswellen in einer eich-

und koordinateninvarianten Formulierung, um ein physikalisch interpretierbares Ob-

jekt zu erhalten.

Es wird eine neue Methodik entwickelt, um die physikalisch relevanten Größen aus

einer numerisch erzeugten Raumzeit zu extrahieren. Wir präsentieren eine allgemein-

gültige kanonische Formulierung der Weyl Skalare im Newman-Penrose Formalismus
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als eine Funktion von fundamentalen Raumzeit-Invarianten. Dadurch zeigt sich, dass

mit Hilfe dieser Methodik die explizite Konstruktion eines Vierbeins vollständig re-

dundant ist.

Als weiteren Schwerpunkt charakterisieren wir innerhalb des Newman-Penrose

Formalismus eine spezielle Untergruppe von Tetraden, die transversen Frames. Es wird

eine bisher unbekannte Verbindung zwischen den primär genutzen Vierbeinen für

die Extraktion der Wellenform abgeleitet, dem Gram-Schmidt Vierbein und dem quasi-

Kinnersley Vierbein. Abschliessend studieren wir die Abhängigkeit der Gravitations-

wellen eines gestörten Schwarzen Loches vom verwendeten Vierbein. Wir berechnen

die Form der Gravitationswellen in dieser Raumzeit und demonstrieren inwieweit

unsere neue Methodik robustere und exaktere Ergebnisse liefert, als die gewöhnlich

verwendeten Ansätze zur Extraktion des Signals.

vi



Wave Extraction in Numerical Relativity

Full list of publications by the author

This thesis is mainly based upon the following publications:

• Nerozzi, Andrea; Elbracht, Oliver - Using curvature invariants for wave extrac-

tion in numerical relativity, accepted by Physical Review D (2009).

• Elbracht, Oliver; Nerozzi, Andrea - Using curvature invariants for wave extrac-

tion in numerical relativity. II. Wave extraction in distorted black hole space-

times, submitted to Physical Review D.

• Elbracht, Oliver; Nerozzi, Andrea - A new approach to wave extraction in nu-

merical relativity, submitted to Journal of Physics: Conference Series (refereed).

Other publications by the author:

• Elbracht, Oliver; Nerozzi, Andrea; Matzner, Richard - Wave extraction in nu-

merical evolutions of distorted black holes, oclc/66137068 (2005).

• Burkart, Thomas; Elbracht, Oliver; Spanier, Felix - Simulation results of our

newly developed PIC codes, AN, Vol.328, Issue 7 (unrefereed).
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1. Introduction

In the beginning the Universe was created.

This has made a lot of people very angry

and has been widely regarded as a bad move.

Douglas Adams

The existence of gravitational radiation has become accepted as a hallmark predic-

tion of Einstein’s theory of General Relativity, but the problem of modeling astrophys-

ical events such as binary black hole coalescence and extracting the gravitational wave

signal is a very difficult task. One of the main difficulties lies in the structure of Ein-

stein’s equations: They are highly non-linear coupled partial differential equations,

for which relatively few analytical solutions are known. The question of how to solve

the initial data problem is still a very active subject of research (see e.g. [2]).

Nonetheless, the past decade has seen the birth of the field of gravitational wave

phenomenology. Several ground-based detectors (GEO, TAMA, LIGO, VIRGO), using

laser interferometry, have been constructed and operate around the world. The arrays

have taken real data and are now gradually approaching their design sensitivities

(see e.g. [3, 4, 5]) . There has also been numerous work done on LISA, a space-

based antenna that will be able to achieve far better sensitivity than any ground-based

detector, however, for the most part in a different frequency domain [6, 7]. The first

indirect evidence for gravitational waves was reported by Russell Hulse and Joe Taylor

in 1974 [8] . Their observations showed that the orbit of the pulsar PSR 1913 + 16 is

decaying, matching with extraordinary precision the prediction for such a decay, due

to the loss of orbital energy and angular momentum by gravitational waves. Since

1



1. Introduction

the universe is most likely filled with a variety of signals from countless sources, such

as super-massive black holes at the center of galaxies, neutron stars, massive stars

undergoing supernova, and perhaps exotic matter sources we have not conceived of

to date. The first direct detection of gravitational waves will open a new window

to the universe and mark the beginning of an exciting new field: gravitational wave

astronomy.

With the recent breakthroughs of long term numerical evolution of spiral infall and

collisions of multiple black hole systems has come a demand for accurate waveform

templates and algebraic expressions that describe the gravitational radiation. While

the signal we will observe from gravitational waves will give rise to information that

cannot be obtained by other means, it will be extremely weak with a bad signal-to-

noise ratio at the same time. Thus it will be a major task to extract the radiation in form

of gravitational waves from such astronomical important sources in a well-defined and

highly accurate way and therefore being able to supply the community with templates

that can distinguish the different sources in the universe from one another.

The original way to extract radiation from a numerically evolved space-time has

been black hole perturbation theory, originally developed as a metric perturbation the-

ory. Regge and Wheeler derived a single master equation for the metric perturbations

of Schwarzschild black holes [9], the so-called odd-parity solution, and Zerilli [10] de-

veloped a similar formula for the even-parity solution. Afterwards, based on the null-

tetrad formalism developed by Newman and Penrose [11, 12, 13], a master equation

for the curvature perturbation was first developed by Bardeen and Press [14] for a

Schwarzschild black hole without source (T µν = 0), and by Teukolsky [15] for a Kerr

black hole with source (T µν 6= 0).

All these perturbative schemes, describing specific limits of source behavior, have

been available for many years, but they all assume a particular knowledge of a specific

background metric which, in a typical simulation of strong gravitational fields, is not

known a priori. So, what we need is a non-perturbative scheme to extract the radiation

signals solely from the physical metric. So far, the progress has been rather slow and

the results have not been impressive.

A very promising way to perform wave extraction in numerical relativity is the

2



usage of the Newman-Penrose formalism. In this formalism five complex scalars are

defined, the Weyl scalars. These are computed by contracting the Weyl tensor on a

set of four null vectors. With the right choice of the four null vectors the Weyl scalars

obtain a precise physical meaning. In practice the right choice is dictated by linear

theory, which states that in choosing a special frame (the Kinnersley tetrad [16]) for the

background metric we end up with values for the scalars that can be associated with

radiative degrees of freedom and furthermore obey the peeling-off theorem [17, 18].

Recent developments have shed some light on the theoretical background, introduc-

ing the so called transverse frames and the quasi-Kinnersley frames [19, 20, 21, 22]. These

efforts helped to understand how it is possible to pick up the Kinnersley tetrad in a

general space-time by introducing the notion of the quasi-Kinnersley tetrad, as a mem-

ber of the quasi-Kinnersley frame. This particular set of null vectors will converge to

the right tetrad chosen by linearized theory as soon as the space-time converges to an

unperturbed Petrov type D space-time. This procedure has been applied successfully

in e.g. [23]. Still, this approach is rather lengthy and complicated to apply in a nu-

merical simulation. Even worse, it suffers from a crucial ambiguity in that it does not

fix the so-called spin-boost parameter in a rigorous way. Therefore, what is still miss-

ing is a unique and simple approach to find an algebraic expression for the radiation

quantities in the right tetrad.

In this work we develop a new approach for wave extraction and give a more rigor-

ous physical explanation for transverse tetrads, by fully characterizing the spin coeffi-

cients and Weyl scalars related to this specific choice of tetrad, namely the one which is

a member of the same equivalence class of transverse Newman-Penrose tetrads as the

Kinnersley tetrad. This is a key step towards a full understanding of the properties of

transverse tetrads and their potentiality for wave extraction. This method gives a rig-

orous expression for the spin-boost parameter, which was unknown before. By fixing

the remaining degree of freedom of gravitational waves in the Newman-Penrose for-

malism we derive an expression for the Weyl scalars as functions of two fundamental

curvature invariants, the first and second Kretschmann invariant, respectively.

As a second objective, we characterize the transverse frames in the Newman-Penrose

3



1. Introduction

formalism by establishing a new connection between the two major frames for wave

extraction: the Gram-Schmidt frame and the quasi-Kinnersley frame. This connection

facilitates to perform well-posed operations to both frames without any particular

limitations.

Finally, we consider initial data of distorted black hole space-times constructed as a

Cauchy problem, where we apply our newly developed method. We extract the wave-

form on the initial slice and compare the main approaches for wave extraction. The

results are encouraging, clearly demonstrating the advantage of our approach com-

pared with commonly used methods in numerical relativity.

This thesis is organized as follows:

In the remainder of this chapter we summarize the conventions and notations used in

this thesis. In chapter 2 we give an overview of initial data in general relativity and

how simulations of a four-dimensional space-time are commonly realized in numeri-

cal relativity, by employing the ADM formalism. In chapter 3 we give an introduction

in the theory of gravitational waves within the linearized theory of general relativity.

We describe the effect of space-time radiation, how it is measured and any information

that is deducible. We close the chapter by describing what kind of modes we expect

from a perturbed black hole, the quasi-normal modes. Chapter 4 details the concepts of

wave extraction by introducing the Newman-Penrose formalism and the notion of the

quasi-Kinnersley frame. In chapter 5 we present a new methodology for wave extrac-

tion making use of fundamental space-time invariants which emerge in a natural way

from the theory of general relativity.

Finally, chapter 6 applies these concepts to a distorted black hole space-time, explor-

ing the concepts of wave extraction in the Newman-Penrose formalism and clearly

demonstrating the advantage of the method given in chapter 5.

In chapter 7 we draw some conclusions and give an outlook for further developments.

4



1.1. Notation and Units

1.1. Notation and Units

Here we summarize the conventions and notations used in this work.

A space-like signature (−,+,+,+) will be used, with Greek indices taken to run from

0 to 3, and Latin indices from 1 to 3. We adopt relativistic units, in which G = c = 1,

thus mass, length and time have the same units in this system. The conversion is as

follows: 1 second = 299,792,458 meters ' 3x108 meters, and thus 1 solar mass is the

same as

1 M� = 1476.63 meters ' 1.5 kilometers = 4.92549 x 10−6 seconds ' 5 µs.

When dealing with black holes it is also useful to normalize these units, not to the solar

mass M�, but to the mass of a black hole M•, commonly taken to be approximately

twenty times the solar mass. Therefore, a unit of 1 M• will be a length of about 30 km

or a time of 100 µs.

We define the notion of a tetrad as a member of an equivalence class of Newman-

Penrose tetrads, a so-called frame, differing only by a class III rotation (a spin-boost

Lorentz transformation).
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1. Introduction

Figure 1.1.: This figure shows the sources that appear at various frequencies in the
gravitational wave spectrum, together with the experiments that have ei-
ther been carried out, or are planned with the intention of detecting them.
(Image: Beyond Einstein roadmap)
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2. The 3+1 Split and Initial Data

If I had only known, I would have been a locksmith.

Albert Einstein

In this chapter we introduce the fundamental structure of general relativity as well

as mathematical formulations of the Einstein equations commonly used in numerical

relativity. Furthermore, we give an introduction to Cauchy initial data for numeri-

cal evolution. The entire subject is covered comprehensively in literature, notably in

review articles by Cook and York [2, 24]

2.1. Initial Value Problem

The fundamental structure in general relativity is a 4-dimensional space-time
(
M,gµν

)
where M is a four-dimensional space-time manifold with a metric gµν satisfying the

Einstein equations

Gµν = 8πTµν , (2.1)

with the energy-momentum tensor Tµν .

In general relativity physical events are described in a global, unified space-time

manifold which is highly counterintuitive to how observers view the reality of lo-

calized phenomena. The observer naturally views events in a sequential, temporal

manner to which we attribute the notion of causality.

To recover this causal description of the observed universe one can introduce an

initial value formulation to re-examine the space-time manifold. There are two main

9



2. The 3+1 Split and Initial Data

features we wish to capture in such a formulation1: firstly, small changes in the initial

data within a bounded region of the space-time S should lead to predictably bounded

changes in the evolved solution: and secondly, changes in initial data within a space-

time should not produce changes outside the causal future, as defined by the null

vectors from the boundary of S.

Thus the question of interest from a perspective of a physicist is, can we reformulate

the Einstein’s equations as a Cauchy problem; that is, if we define a three-dimensional

hypersurface within M with an induced three-metric γ i j, and a three momentum πi j

related to the rate of change of the three-metric, can we derive a subset of the Einstein

equations which evolve γ i j and π i j on hypersurfaces in the causal future?

Hawking and Ellis demonstrated that the Cauchy problem for general relativity

is in fact well-posed, and the causal development of Cauchy surfaces is unique and

stable [25]. However, the Cauchy development has limitations; only globally hyper-

bolic space-times can be constructed by using a Cauchy ansatz. In particular, that

means that nothing hidden behind a Cauchy horizon can be found with this approach.

However, Penrose’s strong cosmic censorship conjecture [26] suggests that all generic

space-times are globally hyperbolic anyway.

With these results we can decompose M into R x Σ t where Σ t : t ∈ R are a set of

space-like hypersurfaces that are level surfaces of a scalar function t. We call this

collection of hypersurfaces {Σ t} a foliation of the space-time manifold.

Taking a close look at the reformulated Einstein equations we recognize that there

are ten independent equations and ten independent components of the 4-dimensional

metric gµν . Writing the equations in their differential form we see that these ten

equations are linear in the second derivatives and quadratic in the first derivatives of

the metric. In fact, we find that the ten equations separate into a set of four constraint

equations, and six evolution equations.

This decomposition raises a question, which has been still not fully answered,

namely how to choose initial data which satisfy the constraint equations [2]. An-

alytically, once the constraints are satisfied on an arbitrary initial slice, the Bianchi

1Outlined by Wald in his textbook
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2.1. Initial Value Problem

identities

∇νGµν = 0, (2.2)

ensures that they are satisfied on all successive hypersurfaces. Unfortunately this is

not strictly true numerically, due to natural limitations in the accuracy of numerical

codes.

time

location of an
observer

hypersurfaces at

Figure 2.1.: The figure illustrates the notion of light cones in general relativity. The
future light cone is the boundary of the causal future of a point in the
hypersurface, and the past light cone is the boundary of its causal past.

11



2. The 3+1 Split and Initial Data

2.2. The 3+1 Decomposition - Separating Space from Time

As outlined in the previous section the Einstein equations written in their usual form

are manifestly covariant, time and space only appear as equal partners, i.e. as space-

time. This is not only counterintuitive to how humans view the reality but it is also not

a well suited form for numerical simulations, where we need to adopt some quantity

as an evolution parameter. Therefore we will recast Einstein’s equations into a more

convenient form for such a task.

Among the formulations proposed for this purpose, by far the most frequently ap-

plied is the canonical “3+1” decomposition proposed by Arnowitt, Deser and Misner

(ADM) in 1962 [27]. Alternatives such as null, 2+2 or (2+1)+1 (cf. e.g. [28, 29]) splits

have also been studied, but in far less detail than the physically intuitive 3+1 decom-

position. As pointed out in section 2.1 a suitable way to decompose space-time is

the employment of an initial value problem. In the ADM formalism the space-time

is disjoint into a 1-parameter family of 3-dimensional space-like hypersurfaces and

constraints satisfying initial data are provided on one hypersurface in the form of the

spatial 3-metric and its time derivative.

In fact, there have been many modifications to the original ADM formulation, but

the main ideas of ADM still form the basis of standard approaches to numerical rel-

ativity. Our derivation of the evolution equations closely follows the textbook Grav-

itation by Misner, Thorne and Wheeler. An alternative derivation can be found in

Appendix A.

2.3. The ADM Formalism

The field variable in General Relativity is the 4- dimensional space-time metric gµν

defined on a Manifold M . Appropriate initial data can be determined via the well-

known Hilbert variational principle. In general relativity we start from the Einstein-

Hilbert action

SEH =
∫

d4x
√
−gR, (2.3)

12



2.3. The ADM Formalism

where g is the determinant of the 4-dimensional metric and R is the Ricci scalar of

an otherwise empty space. By varying the lagrangian density £ =
√
−gR in Eq. (2.3)

with respect to the space-time metric gµν we derive the covariant vacuum Einstein

equations with the dynamics encoded in the set of differential equations. We separate

the spatial degrees of freedom from the time-like degrees of freedom and introduce

the ADM quantities,

γi j = gi j, (2.4a)

α = (−g tt)
1
2 , (2.4b)

βi = g0i, (2.4c)

π
i j =

√
|g|
(
Γ

0
kl− γkl Γ

0
mn γ

mn)
γ

ik
γ

jl. (2.4d)

Arnowitt, Deser and Misner called these quantities the spatial three-metric γi j, the lapse

function α , the shift vector β i and the conjugate momenta π i j, respectively. In the ADM

formalism these quantities acquire a clear physical meaning, as illustrated in Fig. (2.2).

In fact, we may choose a time-like vector tµ to coincide with the normal vector nµ to

the hypersurfaces, but that might not be strictly true, therefore in general

tµ = αnµ +β
µ . (2.5)

Here the lapse α encodes the proper distances of the slices as measured by an ob-

server moving perpendicular to the slice, whereas the shift β i lies in the surface Σ and

describes the displacement away from the hypersurface. The three-metric γ i j can be

defined as the projection into Σ. We can invert this system of equations (2.4) and arrive

at the following construction of the 4-metric out of the 3-metric and the lapse and shift

functions

g00 = βkβ
k−α

2, (2.6a)

g0 j = β j, (2.6b)

gi0 = βi, (2.6c)

gi j = γi j. (2.6d)

13



2. The 3+1 Split and Initial Data

The contravariant space-time metric reads

g00 = −1/α
2, (2.7a)

g0 j = β
j/α

2, (2.7b)

gi0 = β
i/α

2, (2.7c)

gi j = γ
i j−β

i
β

j/α
2. (2.7d)

If we substitute (2.4a) - (2.4d) into (2.3) we derive the Einstein-Hilbert action

SEH =−
∫

dx
[

γi j∂tπ
i j +αH +βiPi +2∂i

(
π

i j
β j−

1
2

πβ
i +∇

i
α
√

γ

)]
, (2.8)

where

H = −
√

γ

(
R+

1
γ

(
1
2

π
2−π

i j
πi j

))
, (2.9a)

Pi = −2∇ j π
i j, (2.9b)

are the constraint equations, namely the hamiltonian and momentum constraint, re-

spectively. The last term in Eq. (2.8) is a spatial divergence which does not contribute

to the classical equations of motion. The dynamics are encoded in the resulting evo-

lution equations

∂tγi j = 2αg−
1
2

(
πi j−

1
2

γi jπ

)
+∇ j βi +∇i β j, (2.10a)

∂tπ
i j = −α

√
γ

(
Ri j− 1

2
γ

i jR
)

+
1
2

αγ
− 1

2 γ
i j
(

π
mn

πmn−
1
2

π
2
)

−2αγ
− 1

2

(
π

in
π

j
n −

1
2

ππ
i j
)

+
√

γ
(
∇

i
∇

i
α− γ

i j
∆α
)

+∇n
(
π

i j
β

n)−π
n j

∇nβ
i−π

ni
∇nβ

j, (2.10b)

where ∇ is the covariant derivative associated with γ i j and Ri j is the Ricci tensor

associated with γi j.

York performed a modification to the original ADM equations, introducing the ex-
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2.3. The ADM Formalism

Figure 2.2.: The foliation of space-time in the ADM 3+1 split showing the lapse func-
tion α and shift vector β i for the displacement of a point embedded in
successive hypersurfaces Σ labeled by a number t with the 3-dimensional
metric γi j.

trinsic curvature or second fundamental form Ki j:

Ki j =−γ
−1/2 (πi j− γi jπ) , (2.11)

where Eq. (2.11) shows the relation between πi j and Ki j.

Rather than evolving the canonically conjugate momenta πi j, York chose the ex-

trinsic curvature Ki j of the three dimensional slices as an evolution variable. In pure

geometrical terms, the extrinsic curvature quantifies roughly the “bend” of a hyper-

surface as measured from a higher dimensional space in which the hypersurface is

embedded. In mathematical terms, we define the extrinsic curvature by applying the

projection tensor on the covariant derivative of the normal vector ∇ν nµ :

Ki j ≡−
1
2

£nγi j, (2.12)

where £n denotes the Lie derivative along the nµ direction. By combining the Gauss-
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2. The 3+1 Split and Initial Data

Codazzi relations, which define the extrinsic curvature on a sub-manifold, with the

Einstein equations one can derive the vacuum evolution equations for Ki j and γ i j,

respectively (cf. Appendix A):

∂tγi j = −2αKi j +Oiβ j +O jβi (2.13a)

∂tKi j = α{Ri j−2KilKl
j +KKi j}−OiO jα +£β Ki j, (2.13b)

where K is the trace of Ki j.

The Hamiltonian and momentum constraints in Eq. (2.9) turn out to be

R+K2−Ki jKi j = 0, (2.14a)

∇ j
(
Ki j− γ

i jK
)

= 0, (2.14b)

giving the well-known form of the constraint equations in numerical relativity.

2.4. BSSN - An Alternative

The ADM evolution equations introduced in the previous section are in fact highly

non-unique. As long as we satisfy the constraints in Eqs. (2.14), there is no restric-

tion at all that prohibits adding arbitrary multiples of the constraints to the equations.

The physical solutions will not change, but the mathematical properties may alter

seriously. As an example, we already demonstrated how the equations may be refor-

mulated, as done by York. It has been shown that the reformulation by York behaved

better mathematically concerning its constraints violating behavior.

But by the late 1990s’, the community finally realized that even York’s formulation was

a rather unsuitable scheme for numerical black hole evolutions, due to its weak hy-

perbolicity [30]. An alternative to ADM was first suggested by Shibata and Nakamura

in 1995 [31] and made popular by a subsequent paper by Baumgarte and Shapiro in

1999 [32]. Baumgarte and Shapiro investigated the stability properties of the Shibata-

Nakamura formulation and showed the remarkable advantage compared with the

standard ADM formulation. The scheme has since become known as the BSSN formal-
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2.4. BSSN - An Alternative

ism, and is nowadays almost exclusively used in numerical simulations. With these

fundamental ingredients a major breakthrough concerning long-term binary black

hole simulations was achieved in 2001 by two independent groups [33, 34]. Research

in improving schemes continues and today there is no consensus, as to which formu-

lation is the best for numerical purposes. Here we want to give a short overview of

the fundamental equations of BSSN.

The first step to reformulate the ADM equations is the conformal split where we

redefine the determinant of the physical three-metric

φ =
1
12

logg, (2.15)

which enables us to rewrite the space-time metric by introducing the conformal metric

g̃i j:

g̃i j = e−4φ gi j, (2.16)

where now det(g̃i j) = 1. In geometrical terms, the decomposition splits the geometry

into “transverse” and “longitudinal” degrees of freedom (encapsulated by g̃i j and φ ,

respectively.) We extend this idea to the extrinsic curvature yielding

K̃i j = e−4φ Ki j (2.17a)

K = gi jKi j = g̃i jK̃i j. (2.17b)

As it is obvious from Eq. (2.17b) scalar quantities like the trace of the extrinsic curva-

ture are not affected by the transformation.

The next step is to separate the trace-free part of the extrinsic curvature in the

following manner

Ãi j = e−4φ

(
Ki j−

1
3

gi jK
)

, (2.18)

where Ki j represents the “longitudinal” part and the trace-free tensor Ãi j the “trans-

verse” part, respectively.
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2. The 3+1 Split and Initial Data

These two steps are meaningless unless the evolution equations are affected in a

non-trivial manner. A crucial step is to introduce some variables representing spatial

derivatives:

Γ̃
i = g̃ab

Γ̃
i
ab. (2.19a)

The evolution equations for these new BSSN fields can then be worked out:

∂t g̃ i j = −2α Ãi j +£β g i j, (2.20a)

∂tφ = £β φ − 1
6

αK, (2.20b)

∂t Ãi j = £β Ãi j + e−4φ [−∇i∇ j α +α Ri j]
TF +α

(
K Ãi j−2 Ãik Ãk

j

)
, (2.20c)

∂t K = £β K−∇
i
∇ j α +α

(
Ãi jÃi j +

1
3

K2
)

, (2.20d)

∂t Γ̃
i = g̃ jk

∂ j∂kβ
i +

1
3

γ̃
i j

∂ j∂kβ
k +β

j
∂ jΓ̃

i− Γ̃
j
∂ jβ

i +
2
3

Γ̃
i
∂ jβ

j

−2Ãi j
∂ jα +2α

(
Γ̃

i
jkÃ jk +6Ãi j

∂ jφ −
2
3

g̃i j
∂ jK

)
. (2.20e)

This decomposition has greatly extended evolution times in black hole simulations, in

particular together with the puncture approach [35].

In fact, there are many other possible adjustments that can be made to the BSSN

system that affect its stability properties. For example, the conformal connection has

been modified in various formulation and the original expression in Eq. (2.20e) has

been abandoned. A detailed derivation of possible formulations goes beyond the

scope of this work, for which we like to recommend an article by Yoneda & Shinkai

([30], and subsequent work) about the stability properties of slicing formulations.
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3. Gravitational Waves

If the universe is expanding, why can’t I find a parking space?

Woody Allen

General relativity is consistent with special relativity in many respects, and in par-

ticular with the principle that nothing can travel faster than light in vacuum. As a

consequence, space-time perturbation must propagate in a certain fashion. In general

relativity, as demonstrated by Einstein, these perturbation propagate at exactly the

speed of light and are denoted as gravitational waves.

The most natural starting point for any discussion of gravitational waves is the

linearized theory, where one can keep only linear terms in Einstein’s field equations.

3.1. The Linearized Theory of Gravity

This “linearized gravity” is an important theory in its own right and an adequate

approximation to general relativity in the so-called “weak field”, where the space-

time metric gµν only slightly deviates from a flat metric ηµν :

gµν = ηµν +hµν +O
(
|hµν |2

)
, |hµν | � 1. (3.1)

Here ηµν is defined to be the Minkowski metric (−1,1,1,1) and |hµν | is the magnitude

of a small perturbation to the flat space-time. In fact, it is precisely this “linearized

theory of general relativity” that one obtains in classical field theory for particles of

zero rest mass and spin two in flat space.

21



3. Gravitational Waves

Fortunately, it is rather easy to find an example of a system where we deal with a

small perturbation to an otherwise flat space-time. The conditions above are satisfied

just by looking in our Solar system. Measuring the deviation away from flat space, for

instance on the surface of the Sun, we yield

|hµν | ≈ |h00|.
Msun

Rsun
≈ 10−6. (3.2)

We might come to the misleading conclusion expecting a gravitational wave with an

enormous amplitude, namely |h| ≈ 10−6. In fact, gravitational waves are only defined

far away from the sources in an otherwise empty space-time. In the case of the earth-

sun system the minimum distance to find waves is roughly R≈ 1ly, and since |hµν | ∝

R−1 typical amplitudes will be |hµν | ≈ 10−26.

By taking a closer look at the approximation we will see that the perturbation hµν

encapsulates not only gravitational waves, but additional, non-radiative degrees of

freedom as well.

As mentioned earlier we shall restrict our attention to linear terms in the perturba-

tion and thus we shall neglect terms of second order or higher in hµν . Moreover, we

will impose a suitable outer boundary condition assuming the space-time is asymp-

totically flat (asymptotically “Minkowskian”)

lim
r→∞

hµν = 0, (3.3)

where r denotes a radial parameter.

To derive linearized theory from general relativity we start by defining the con-

travariant form of the metric perturbation hµν via

hµν ≡ η
µσ

η
νρhσρ , (3.4)

where it is true that (
ηµρ +hµρ

)
(η ρν −hρν) = δ

ν
µ , (3.5)
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3.1. The Linearized Theory of Gravity

from what we derive the contravariant form of the full metric

gµν = η
µν −hµν . (3.6)

The connection coefficients (Christoffel symbols), when linearized in hµν , read

Γ
µ

αβ
= gµσ

Γσαβ =
1
2

gµσ
(
gσα ,β + gβσ ,α − gµα ,σ

)
=

1
2

(η µσ − hµσ )
(
(ησα + hσα) ,β + (ηβσ + hβσ ) ,α − (ηµα + hµα) ,σ

)
' 1

2
η

µσ
(
hσα ,β + hβσ ,α − hµα ,σ

)
+O

([
hµν

]2)
. (3.7)

The operation of raising and lowering the indices is performed by using ηµρ and

η µρ , not the full metric, which is a consequence of linearization. Once the Christoffel

symbols are computed we can calculate the Ricci tensor and Ricci scalar to linear order,

yielding

Rµν = Γ
σ
µν ,σ − Γ

σ
µσ ,ν

=
1
2
(
h σ

µ ,νσ + h σ
ν ,µσ − h σ

µν ,σ − hµν

)
, (3.8)

and

R =
(
hµσ

,µσ − h σ
σ

)
. (3.9)

Finally, the linearized Einstein tensor turns out to be

Gµν = Rµν −
1
2

ηµν R (3.10)

=
1
2
(
h σ

µσ ,ν + h σ
νσ ,µ − h σ

µν ,σ − hµν − ηµν

(
h σρ

σρ, − h σ
, σ

))
= 0

Note that the same result can be achieved by utilizing the variational principle as in

chapter 2.

The expression in Eq. (3.10) is a bit unwieldy and does not seem yet to suggest any

sort of wave-like behavior we would normally expected for a “wave”. Somewhat re-
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3. Gravitational Waves

markably, this behavior can be significantly unveiled by changing the notation: rather

than working with the metric perturbation hµν , we use the trace-free metric perturba-

tion defined as

h̄µν = hµν −
1
2

ηµνh. (3.11)

We can perform such a transformation without loss of generality since Eq. (3.11)

merely presents a gauge transformation. With this new notation the field equations

Gµν = 8π Tµν take the form

− h̄ α
µν ,α − ηµν h̄ αβ

αβ , + h̄ α
µα, ν + h̄ α

να, µ = 16π Tµν . (3.12)

The first term on the left hand side of Eq. (3.12) is the usual d’Alembertian (or wave)

operator

� h̄µν = h̄ α
µν ,α , (3.13)

whereas the other terms are merely pure gauge. Due to this fact we exploit the gauge

freedom inherent to general relativity to recast (3.13) in a more accessible form. With-

out loss of generality we can impose a gauge condition in such a way to eliminate the

terms that spoil the wave-like nature, in particular by choosing

h̄µα

,α = 0. (3.14)

Making use of the gauge, which is mostly wrongly called the Lorentz gauge1 , the

linearized field equations then become

� h̄µν = h̄ α
µν ,α = 0, (3.15)

clearly showing the wave-like nature of the gravitational field if matter is absent (i.e.

if Tµν = 0).

1The Lorenz gauge condition is named after Ludvig Lorenz and is frequently misspelled because of
confusion with Hendrik Lorentz, after whom Lorentz invariance is named.
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3.1. The Linearized Theory of Gravity

Figure 3.1.: This is an image of the sky as viewed by gravitational waves. The Milky
Way galaxy forms the band in the middle of the image. LISA will see
thousands of binary star systems in our galaxy, and will be able to deter-
mine the direction and distance to each binary, as well as the periods of
the orbits and the masses of the stars. (Beyond Einstein Roadmap)
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3. Gravitational Waves

3.2. A Wave Solution and the Transverse-Traceless Gauge

The field equations of linearized theory bear a close analogy to the equations of elec-

trodynamics, consequently we can infer much about linearized theory. Tracking this

analogy, it is not surprising that the simplest solution to the linearized wave equation

(3.15) is that of a monochromatic plane wave:

h̄µν = ℜ

[
Aµν e iκσ xσ

]
, (3.16)

where ℜ [...] denotes the real part, Aµν is the amplitude tensor and the wave-vector κ

is light-like, κµκµ = 0. The Lorenz gauge condition implies that the amplitude and

the wave-vector are orthogonal Aµν κν = 0. Evidently, in such a solution, the plane

wave in Eq. (3.16) travels in the spatial direction ~k = (κx,κy,κz)/κ0 with frequency

ω = κ0 =
√

(κ iκi).

As mentioned before, linearized gravity can be described within classical field the-

ory by a massless spin-2 field that propagates with the speed of light. We know from

field theory that such a field has only two independent degrees of freedom (“helici-

ties” in quantum theory, and “polarizations” in a classical description). On the other

hand, one might come to the conclusion that the symmetric tensor Aµν of this plane

wave appears to have 16−6 = 10 free components. But as we will demonstrate, there

are in fact really just two dynamical degrees of freedom in linearized relativity. The

“excess” is due to the arbitrariness tied up in the gauge freedom; by choosing a par-

ticular gauge, namely the TT gauge, one gets rid of the remaining unwanted degrees

of freedom and one is only left with the two dynamical degrees. One can impose the

following conditions:

(I) Lorenz gauge conditions: Since we impose the Lorenz gauge condition

Aµν κ
ν = 0, (3.17)

4 components of the amplitude tensor can be specified.

(II) Global Lorentz Frame: Just like in special relativity one can select a four-velocity
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3.2. A Wave Solution and the Transverse-Traceless Gauge

u - the same through all space-time and define a global Lorentz frame where one can

impose the conditions:

Aµν uν = 0. (3.18)

These are only three constraints on Aµν not four, because one of them,

κ
µ Aµν uν = 0, (3.19)

is already fulfilled by the Lorenz gauge condition.

(III) Diffeomorphism Condition: We can impose an infinitesimal gauge transforma-

tion in such a way to set

A µ

µ = 0. (3.20)

We can translate these conditions in Eqs. (3.17 , 3.18 , 3.20) to constraints for the

perturbation tensor hi j by considering a reference Lorentz frame where u0 = 1, ui = 0

(globally at rest), and where κ µ does not appear directly:

(I) h i j, j = 0, i.e., the spatial components are divergence free,

(II) hµ0 = 0, i.e., only the spatial components hi j are non-zero,

(III) h ii = 0, i.e., the spatial components are trace-free.

Together these conditions define the so-called Transverse Traceless gauge (TT).

Even if there is no need in general relativity to prefer one gauge over another, it is ex-

tremely convenient to choose the TT-gauge, since it fixes all the local gauge freedom,

therefore eliminating unphysical degrees of freedom. Thus, the metric perturbation

hT T
µν contains only physical, non-gauge information about the radiation.

To be able to interpret the effects of the metric perturbation hT T
µν , we calculate the

Riemann tensor in the transverse-traceless gauge, which encodes the curvature of the

underlying space-time. It turns out that the only non-zero components of the Riemann

tensor are

R j0k0 = R0 j0k =−R j00k =−R0 jk0, (3.21)
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3. Gravitational Waves

and the explicit expressions of the components of the linearized Riemann tensor read

R j0k0 =−1
2

hT T
jk,00. (3.22)

These important relations between the metric perturbation and the components of

the Riemann tensor in linearized general relativity facilitate to associate a traveling

gravitational wave with a local oscillation of the space-time!

3.2.1. Interaction of Gravitational Waves with Test-Particles

With the results from the foregoing sections we are now able to calculate the effect

of a gravitational wave on a freely falling particle following a geodesic in space-time.

First, we will demonstrate how an unsuitable coordinate choice can lead to incorrect

results, and therefore indicate how important it is to rely on coordinate independent

quantities such as the Weyl scalars.

The motion of a particle is given by the usual geodesic equation without external

forces

d2xµ

dτ2 +Γ
µ

ρσ

dxρ

dτ

dxσ

dτ
= 0, (3.23)

where τ is the proper time of the particle. We can rewrite the equation combining the

time-like with the spatial part of the 4-vector xµ yielding an equation for the coordinate

acceleration:

d2xi

dt2 =−
(

Γ
i
tt +2Γ

i
t jv

j +Γ
i
jkv jvk

)
+ vi

(
Γ

t
tt +2Γ

t
t jv

j
Γ

t
jkv jvk

)
. (3.24)

Let us now restrict our attention to linearized theory written in TT-gauge and further

assume the velocity of the test particle is rather slow (v� 1). As a valid approximation

we can neglect the velocity dependent terms in Eq. (3.24), yielding the simplified

equation:

d2xi

dt2 =−Γ
i
tt , (3.25)
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where we now compute the Christoffel symbol Γ i
tt in the TT-gauge to lowest order

yielding the surprising result

d2xi

dt2 =−Γ
i
tt =

1
2
(
2∂thT T

jt −∂ jhT T
tt
)

= 0, (3.26)

since hT T
µt = 0 (global Lorentz frame condition). A naive interpretation of the result

would be that the test particle is not influenced by a passing gravitational wave! This

is certainly wrong, but is a clear example how important a careful coordinate choice in

general relativity can be. Even more importantly is to focus upon coordinate invariant

quantities like the Weyl scalars. We will introduce these scalar quantities in chapter 4.

To return to our example, we will now show that in fact traveling gravitational waves

produce oscillations in the separation between neighboring objects. As a gravitational

wave passes, it perturbs the geodesic motion of the two particles and contributes to

the geodesic deviation equation. To examine the action of the wave on the separation

of freely falling test particles we start by introducing a locally flat coordinate system

xa, attached to the world line of a particle A. The line element takes the form

ds2 =−dτ
2 +δ î ĵ dxî dx ĵ +O(|x ĵ|2) dx α̂ dx β̂ , (3.27)

where the first and second term on the right-hand side correspond to Minkowski-flat

space and the the last term on the right-hand site encodes the deviation from the

geodesic motion.

We start by introducing the geodesic-deviation equation

uγuβ nα

;βγ
=−Rα

βγδ
uβ uδ nγ , (3.28)

where n is the separation four-vector between two geodesic trajectories with tangent

vector u. Additionally, we define the separation vector as n ĵ ≡ x ĵ
B− x ĵ

A, reaching from

particle A to particle B. With this definition the geodesic-deviation equation can be

expressed as
d2n ĵ

dτ2 =−R ĵ
0̂k̂0̂

nk̂, (3.29)
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and with setting x ĵ
A = 0 the geodesic-deviation equation simplifies to

d2x ĵ
B

dτ2 =−R ĵ
0̂k̂0̂

x k̂
B. (3.30)

Since we want to carry out the results in the TT-gauge we use the definition of the

Riemann tensor in Eq. (3.22) yielding

d2x ĵ
B

dτ2 =
1
2

∂ 2hT T
ĵk̂

∂ t2 x k̂
B, (3.31)

with the solution

x ĵ
B(t) = x k̂

B(0)
[

δî ĵ +
1
2

hT T
ĵk̂ (t)

]
. (3.32)

In contrast to the solution in Eq. (3.26) the result above has a straightforward and

meaningful interpretation; particle B is seen oscillating with an amplitude propor-

tional to the time-dependent metric perturbation hT T
ĵk̂

(t).

3.2.2. Polarization of a Plane Wave

As discussed in the foregoing sections gravitational waves are transverse in linearized

theory and the two remaining degrees of freedom can be associated with two different

polarizations. To construct the possible polarizations of gravitational wave we start by

considering a plane wave propagating with the speed of light along the positive x-axis.

Thus, for the particular example the perturbation metric tensor in TT-gauge is defined

as

hT T
µν =


0 0 0 0

0 0 0 0

0 0 hT T
yy hT T

yz

0 0 hT T
zy hT T

zz

 , (3.33)
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A
B

Figure 3.2.: The figure illustrates how the arrival of a gravitational wave propagating
along the direction~k perturbs the geodesic motion of two particles A and
B.

with the only non-vanishing components

hT T
yy = −hT T

zz = ℜ

[
A+ e−iω(t−x)

]
(3.34a)

hT T
yz = hT T

zy = ℜ

[
A× e−iω(t−x)

]
(3.34b)

where A+ and A× represent the amplitudes of two independent modes of polarization.

As we already know from classical electrodynamics, we can recast such a planar wave

into two linearly polarized plane waves or, by superposing the linear polarizations,

into two circularly polarized ones. We call these linear polarizations “+” (“plus”) and

“×” (“cross”) -polarizations. The unit linear-polarization tensors are called e+ and e×,

respectively, and may be written as

e+ ≡ ~ez⊗~ez−~ey⊗~ey, (3.35a)

e× ≡ ~ez⊗~ey +~ey⊗~ez. (3.35b)
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The deformation of a ring of test particles is shown in Figure (3.3). Note that the

two linear polarized modes are simply rotated by π/4. In a similar manner, we can

define two tensors describing circular polarizations eR and eL (clockwise and counter-

clockwise). A ring of test particles hit by a circular polarized wave gets deformed and

rotates around either clockwise or counterclockwise:

eL ≡ 1√
2
(e+ + ie×) , eR ≡ 1√

2
(e+− ie×) . (3.36)

The deformations associated with these two modes of polarization are also shown in

Figure (3.3).

Figure 3.3.: The polarizations of a gravitational wave are illustrated by displaying their
effect on a ring of particles arrayed in a plane perpendicular to the direc-
tion of the wave. The figure shows the distortions the wave produces if it
carries plus/cross polarization or circular polarization, respectively.
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3.3. Interaction of Gravitational Waves with Detectors

To detect a gravitational wave there are two basic and very different methods available.

One is by measuring the energy deposited by the wave in a resonant-mass detector

and is based on the pioneering work by Joseph Weber [36]. The other principle is by

measuring the change in time it takes light to travel between two distinct locations.

Here we want to concentrate on the beam detectors2.

The measurement technique of beam detectors is based on an interferometric mea-

surement with a Michelson interferometer operated with highly stabilized laser light.

To have a reasonable detection rate of astronomical sources these detectors must be

able to measure changes in its arm-length that are smaller than 1 part in 10−21 (cf. e.g.

[37]). Currently four earth-based laser-interferometric detectors are taking real data.

These are TAMA [38], GEO600 [39], LIGO [40], and VIRGO [41].

TAMA is a Japanese detector, with an arm-length of 300m, assembled near Tama,

Tokyo. It was the first large scale laser-interferometric gravitational wave detector to

have taken scientific data in September 1999. The current sensitivity is 10−21/
√

Hz at 1

kHz. With such a sensitivity it is possible to detect gravitational waves from coalescing

neutron-star binaries in our galaxy.

GEO600 is a British-German detector with 600m long arms constructed in Germany

close to Hannover. The light is folded once in both arms increasing the light path to

1200m in each arm. The current sensitivity is 2×10−22/
√

Hz between 400 and 500 Hz.

LIGO is situated in the USA and consists of three long-baseline interferometers on

two sites, one (4km/2km arm-length) at the Hanford Reservation near Washington

and the other (4km arm-length) is situated at Baton Rouge, Louisiana. The current

sensitivity is 2×10−23/
√

Hz between approximately 100 and 200 Hz. LIGO now moves

into its next phase of progress, Enhanced LIGO. This consists of a set of upgrades and

hardware improvements designed to extend the astrophysical reach.

VIRGO is a French-Italian detector with 3 km long arms situated close to Pisa in

Italy. The design sensitivity is 3×10−21/
√

Hz at 1 Hz and 3×10−23/
√

Hz at 1 kHz.

2For an exhaustive overview over different detectors and related technical issues we would like to refer
to a textbook by Ciufolini et al. [37]
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Below about 1 Hz gravity gradient noises (i.e. tidal forces) are stronger than any

gravitational wave from astrophysical objects we can expect in this frequency regime

to detect on earth. This is one main reason why scientists proposed the LISA mission

in the early nineties [42].

LISA (Laser Interferometer Space Antenna) will be a triangular array of spacecraft,

with arm-lengths of 5× 106 km. The three arms can be combined to form two inde-

pendent interferometers. LISA will be sensitive in a range from 0.3 mHz to about 1

Hz and will be able, among other things, to detect supermassive binary black hole

mergers almost anywhere in the universe. In the low-frequency window of LISA most

sources will be observable during their merger for at least a few months.

Figure 3.4.: This is an artist’s impression showing the basic setup of the LISA space-
craft (Credit: ESA-C. Vijoux).
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These facilities are not competing with each other but in contrast are forming a

network of detectors. Apart from the fact that only a simultaneous detection in at

least two detectors can be trusted, only a network of detectors is able to conduct full

information of a gravitational wave. The information consists of five quantities; the

amplitude of the wave, the phase between the two polarizations, and the position

of the source, expressible in two angles. To derive these parameters at least three

detectors need to measure a gravitational wave simultaneously.

To describe the way in which a interferometric detector works, suppose one arm

of a beam detector, like GEO600, lies along the z-axis and the wave, for simplicity, is

propagating down the x-axis with a “plus” polarization. Assume further that the two

neighboring particles are located at x = x0 = 0, and are separated on the z-axis by a

distance LD. The proper distance L between the two neighbored particles is then given

by

L =
∫ LD

0
dx
√

gzz =
∫ LD

0
dx
√

1+hT T
zz (t,x0)≈ LD

[
1+

1
2

hT T
zz (t,x0)

]
. (3.37)

The fractional length change δL/L can be measured via interferometric instruments

and is given by

δL
L
≈ 1

2
hT T

zz (t,x0) . (3.38)

Even if this is a simple example it clearly shows the fundamental way a interferometric

detector works. An obvious advantage of beam detectors is that the effect induced by a

gravitational wave can be made larger simply by increasing the arm length as directly

seen from Eq. (3.38). For example, assume a detector like LIGO with an arm-length L

of approximately L = 4 km measures a gravitational wave with a strain amplitude of

10−21 and the directional dependences as described above. The measured fractional

change will be as small as

δL≈ 2×10−18m, (3.39)

which is less than 1/1000 the diameter of a proton and, unfortunately, corresponds to

the largest effects we can expect from astrophysical sources.
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Figure 3.5.: An aerial view of the gravitational wave detector GEO600. In the bottom
left corner the central building for the laser and the vacuum tanks can be
seen. The tubes, 600m in length, run in covered trenches at the edge of the
field upwards and to the right. Buildings for the mirrors are situated at the
end of each tube (Credit: AEI Hannover/Deutsche Luftbild Hamburg).
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3.4. The Energy of Gravitational Radiation

We now understand how gravitational waves emerge from the theory of general rel-

ativity and what kind of polarization a wave may have. But besides measuring the

amplitude and phase of the polarizations, we can estimate the energy flux associated

with a gravitational wave which, in general, may be extracted by a detector. Un-

fortunately, the energy is rather ill-defined in linearized theory and additionally the

stress-energy cannot be localized inside a certain region of the wave package. To de-

rive an expression for the energy flux it is necessary to assume being far from the

emitting object, i.e. to reside in an otherwise flat space-time. We start by examining

the form of the stress-energy tensor in the TT-gauge, the Issacson tensor

Tµν =
1

32π

〈
∂µhT T

i j ∂νhT T
i j
〉
, (3.40)

where 〈...〉 denotes an average over the metric perturbations. The usual definition of

the energy flux by solid angle is

∂ 2E
∂ t∂Ω

= lim
r→∞

r2T r
t . (3.41)

Combining Eq. (3.40) and Eq. (3.41) we yield a possible estimation of the energy flux

of a gravitational wave in the TT-gauge

∂ 2E
∂ t∂Ω

= lim
r→∞

r2

16π

(∂hT T
θ̂ θ̂

∂ t

)2

+

(
∂hT T

θ̂ φ̂

∂ t

)2
 . (3.42)
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3.5. Gravitational Waves from Perturbed Black Holes

One of the most interesting astrophysical sources of gravitational waves are black holes

in the centers of galaxies. These are supermassive objects with up to 108 solar masses

[43, 44, 45]. Such supermassive black holes are now believed to be common in centers

of active galactic nuclei (AGN), and there is compelling evidence for at least one black

hole of around three million solar masses in the center our own galaxy [46, 47, 48, 49].

Perhaps the most absorbing source involving massive black holes is their merger

during a galactic merger process. Such an event from anywhere in the universe “must”

be visible to LISA with very high signal-to-noise ratios. This will be a fundamentally

important objective because if unseen by LISA, it would cause us to re-evaluate the

very existence of gravitational waves.

The only remnant of such a merger allowed by general relativity is a more massive

black hole with a perturbed event horizon. Gravitational waves from perturbed black

holes are distinctive and reduce to a simple wave equation, which has been studied

extensively [9, 10, 50, 51, 52, 53, 54]. They will carry a unique fingerprint which would

lead to the direct identification of their existence.

3.5.1. Perturbation Theory and Quasi-Normal Modes

We will briefly review fundamental perturbations that characterize black holes with-

out explicit derivation3. We have to restrict ourself to non-rotating black holes due

to the fact that for the Kerr solution the analysis is highly complicated (beside being

partly still unknown). Some of the main results date back in the 70’s with first stud-

ies by Regge, Wheeler and Zerilli [9, 10]. In fact, a variety of perturbation schemes

have been developed, but we want to focus our attention on the most important ap-

proaches. We will introduce a novel approach in chapter 4 which is based on the

Newman-Penrose null-tetrad formalism, in which the tetrad components of the cur-

vature tensor are the fundamental variables.

The results obtained in the middle of the nineteenth century raised considerable

surprise and doubts at first. The idea that black holes oscillate and possess some

3For a good review we recommend an article by K. Kokkotas and B. Schmidt [55]
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Figure 3.6.: One of the most violent astrophysical events: the merging of two black
holes. (Image: MPI for Gravitational Physics/W.Benger-ZIB)

proper modes of vibration seemed rather awkward since it is not a material object, it

is a singularity hidden by a horizon.

The procedure is very similar to the analysis carried out in linearized theory (cf.

section 3.1); we deal with a static vacuum Schwarzschild space-time g0
µν superposed

with a small perturbation hµν which encodes the deviation from spherical symmetry.

T. Regge and J. A. Wheeler showed that the equations describing the perturbations

of a Schwarzschild black hole can be separated as (cf. section 2.2)

gµν = g0
µν +hµν , (3.43)

provided that the perturbed metric tensor can be expanded in tensorial spherical har-

monics. This was possible since in the Schwarzschild case the perturbations naturally

decouple due to spherical symmetry of the space-time. Regge and Wheeler called

the result odd-parity and even-parity solution, respectively. The name odd-parity and
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even-parity emerges from the properties of the tensor spherical harmonics defined as

hµν (t,r,θ ,φ) = ∑
l,m

alm(t,r)Alm
µν(θ ,φ)+blm(t,r)Blm

µν(θ ,φ), (3.44)

with distinctive transformation properties of the functions Alm
µν and Blm

µν under parity

operations. Later, it was found that the odd perturbations represent really the angular

perturbations to the metric, while the even ones are the radial perturbations to the

metric [53, 56].

The perturbation equations are still commonly used in numerical relativity to extract

the radiation quantities. That is partly due to a lack of serious investigations concern-

ing the error of the method. We conclude this section by quoting Chandrasekhar from

his book The Mathematical Theory of Black Holes and move to the next section where we

will work out the details of the perturbations, also called quasi-normal modes:

..we may expect on general grounds that any initial perturbation will, during its last stages,

decay in a manner characteristic of the black hole and independently of the original cause. In

other words, we may expect that during the very last stages, the black hole will emit gravita-

tional waves with frequencies and rates of damping, characteristic of itself, in the manner of

a bell sounding its last dying pure note. These considerations underlie the formulation of the

concept of the quasi-normal modes of a black hole.

3.5.2. The Regge-Wheeler and Zerilli Equation

The equation for the odd-parity perturbations are known as the Regge-Wheeler equa-

tion, describing the axial perturbations of the Schwarzschild metric in linear approxi-

mation, that is, we can decompose the perturbation hµν in Eq. (3.43) into tensor spher-

ical harmonics according to Eq. (3.44) considering only odd terms. As in section (2.2)

we can calculate the perturbed Einstein tensor, where we assume a time dependence

for the Regge-Wheeler function R(r,ω) and Zerilli function Z (r,ω) of the form

R(r,ω) ∝ eiωnt , Z (r,ω) ∝ eiωnt , (3.45)
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where ωn is the oscillation frequency of the nth mode and is a complex number of the

type

ωn = ωr,n + iωi,n, with n = 0,1,2, ... (3.46)

The explicit derivation goes beyond the scope of this work and leads to no additional

insight. Therefore we solely present and discuss the main results of black hole vibra-

tion modes.

Regge and Wheeler demonstrated that one ends up with three unknown variables,

commonly called h0, h1 and h2. We can set one of the three unknown variables to zero,

namely h2 = 0, by applying a particular gauge transformation, the Regge-Wheeler gauge

[9]. Finally, we are left with the nontrivial Einstein equations to be determined:

ω
2
n R(r,ωn)+∂

2
r∗R(r,ωn)−Vs(r)R(r,ωn) = 0, (3.47)

∂th0−∂r∗ [r∗R(r,ωn)] = 0 (3.48)

where R(r,ωn) is the master variable

R(r,ωn) =
h1

r

(
1− 2M

r

)
, (3.49)

and r∗ is the tortoise coordinate r∗ = r + 2M ln
( r

2M −1
)
. In general, the time derivative

of R(r,ωn) must also be calculated to provide full Cauchy data for an evolution. The

function Vs(r) is the so-called Regge-Wheeler potential defined as

Vs(r) =
(

1− 2M
r

)[
l (l +1)

r2 +
2M
(
1− s2

)
r3

]
, (3.50)

where s is the spin of the particle and l is the angular momentum of the specific wave

mode under consideration, with l ≥ s. The spin can take the values s = 0,±1±2 where

the most important cases from astrophysical point of view are s = ±1 and s = ±2,

which describe electromagnetic and gravitational waves, respectively. We can con-

sider the function V (r) as an effective, scattering potential barrier with a peak around
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r = 3.3M, which is the location of the unstable photon orbit.

Next, we look at the even parity case where we yield a similar result for the Einstein

equations commonly called the Zerilli equation

ω
2
n Z (r,ωn)+∂

2
r∗Z (r,ωn)−Ṽ Z (r,ωn) = 0, (3.51)

where Z (r,ωn) is the Zerilli master variable and Ṽ2(r) is the Zerilli potential

Ṽ2(r) =
(

1− 2M
r

)[
2n(n+1)r3 +6n2Mr2 +18nM2r +18M3

r3 (nr +3M)2

]
, (3.52)

assuming s = 2 and n = 1
2(l−1)(l +2).

We may now calculate the response of a black hole to external perturbations as the

solutions of Eq. (3.47, 3.53),

ω
2
n R(r,ωn)+∂

2
r∗R(r,ωn)−Vs(r)R(r,ωn) = 0, (3.53)

ω
2
n Z (r,ωn)+∂

2
r∗Z (r,ωn)−Ṽ2(r)Z (r,ωn) = 0. (3.54)

The approach to find the solution for the master variables R(r,ωn) and Z (r,ωn) is based

on the standard WKB treatment of wave scattering at a potential barrier (cf. [57]).

Finally, having found the QNMs of a black hole via the Regge-Wheeler and Zer-

illi approach we can calculate the gravitational wave signal in terms of the master

variables by the formula

hTT
+ (t,r,θ ,φ) =

1
2πr

∫
eiωn(t−r∗) ∑

lm

[
Z(r,ωn)

(
2Ỹ m

l −W m
l
)
+

1
ωn

R(r,ωn)W m
l

]
dωn, (3.55a)

hTT
× (t,r,θ ,φ) = − i

2πr

∫
eiωn(t−r∗) ∑

lm

[
Z(r,ωn)W m

l −
1

ωn
R(r,ωn)

(
2Ỹ m

l −W m
l
)]

dωn, (3.55b)

where Y m
l

(
sY m

l

)
is the (spin-weighted) spherical harmonics and the functions W m

l and
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2Ỹ m
l are defined as

2Ỹ m
l =

√
(l +2)!
(l−2)! 2Y m

l , (3.56a)

W m
l =

2i
sinθ

(∂θ − cotθ)∂φY m
l . (3.56b)

n ωr,n ωi,n ωr,n (kHz) (M = M�) τ (ms) (M = M�)
0 0.37367 −0.08896i 75.8695 5.5344×10−2

1 0.34671 −0.27391i 70.3905 1.7983×10−2

2 0.30105 −0.47828i 61.1297 1.0298×10−2

3 0.25150 −0.70514i 51.0597 6.9856×10−3

Table 3.1.: The first four frequencies for l = 2 are shown. The QNMs are given in ge-
ometrical units and hertz. In the third column the corresponding decaying
times τ = 1/ωi,n are calculated. For conversion into kHz one should multi-
ply by 2π (5.142 kHz)×M�/M.

Finally, let us briefly summarize what we have learned about the QNMs of a non-

rotating black hole:

• Even if we now understand how to excite the QNMs, it is a nontrivial task to

predict which ones will be excited, due to some arbitrariness in specifying the

initial data of the space-time.

• The damping times of the QNMs depends linearly on the mass of the black hole,

τ ∝ 1/ωn ∝ M. As an implication, the detection of gravitational waves emitted by

a perturbed black hole could provide a direct measure of its mass.

• Since the only parameter of a non-rotating black hole is its mass, it is the only

variable the frequencies depend on. This explains why we expect different grav-

itational wave detectors to be sensitive to black holes with different masses.

LIGO’s sensitivity lies roughly between 10M� to 103M� whereas LISA will be

sensitive to signals from black holes with masses from 105M� to 108M�.
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• The QNM frequencies of galactic size black holes, like the one at the center of

our own galaxy with masses of 106M�, will be in the mHz regime and therefore

detectable only from LISA. Figure (3.7) gives an overview over various sources

detectable by LIGO and LISA, respectively.

Figure 3.7.: The figure shows the strain sensitivity of LIGO and LISA, respectively.
Regions where various sources are predicted to be are also shown. (Image:
Beyond Einstein Roadmap)
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If I have seen further it is by standing on the shoulders of giants.

Isaac Newton, February 5, 1675

In spite of the advantages of perturbation schemes like Regge-Wheeler [9] or Zerilli

[10] there is a crucial drawback of linear perturbation theory: there is no information

within linearized theory to determine its range of applicability, i.e. to determine which

values are sufficiently small to be treated as a perturbation. These disadvantages may

be resolved by extending the perturbation schemes to a still higher order. Unfor-

tunately, the equations become extremely complicated and that makes it practically

impossible to solve the problem analytically [58].

But even worse, all these perturbation approaches are fundamentally assuming

knowledge of a background metric, in fact, they are well defined only for Schwarzschild

background, formulated in a particular coordinate system. As a natural limitation of

numerical simulations, such a specific knowledge is just not known a-priori. As a re-

sult there is a strong demand for a formalism that does not imply any knowledge of

specific background structures in the first instance.

The Newman-Penrose formalism [11] is a fundamental contribution towards this de-

mand. It has been shown that the introduced curvature quantities in this formalism,

namely the Weyl scalars and the spin coefficients, acquire a direct physical relevance,

carrying all information of the space-time under examination without the need of per-

forming a linearization a priori [16, 59]. Despite its undeniable validity, the equations

governing the formalism are rather complicated and their nature and the connection

between all the equations is yet to be fully understood.

47



4. The Newman-Penrose Formalism

In this chapter we give a general introduction to the underlying mathematical tech-

niques of the Newman-Penrose formalism, the fundamental variables and why it is

regarded as a particular suitable approach to extract the gravitational wave signal in

numerical simulations. In particular, we demonstrate how the transverse Weyl scalars

Ψ4 and Ψ0 can be identified with the outgoing and ingoing gravitational radiation,

respectively.

Afterwards, we discuss recent improvements in theoretical understanding of the

Newman-Penrose formalism [1, 60, 19, 22]. We introduce the notion of the quasi-

Kinnersley frame which assures that we recover the dynamics obeying Teukolsky’s

master equation in the limit of Petrov type D space-time [15]. This will be the ba-

sis to the next two chapters, where we propose a new formalism for wave extraction

and apply our new method to a typical situation in numerical relativity.

4.1. Mathematical Preliminaries

The concept of the tetrad formalism is to introduce a suitable tetrad basis of four

linearly independent vector-fields and project all relevant quantities of the problem

under study on to the chosen basis. The choice of the tetrad basis depends on the

underlying space-time symmetries we wish to exploit. To begin our discussion we

introduce at each point of the Manifold a basis of four vector fields eµ

(i), where i runs

from 1 to 4 designating tetrad indices, and Greek indices denote tensor indices. We

define the covariant form according to

e(i)ν = gµνeµ

(i), (4.1)

where gµν is the metric tensor of the space-time under consideration. In addition, we

can define the inverse of eµ

(i) by

eµ

( j)e
(i)
µ = δ

(i)
( j) and e(i)

µ eν

(i) = δ
ν

µ . (4.2)
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To complete the definition of the basis vectors we define a symmetric matrix according

to

eµ

(i)e( j)µ = η(i)( j). (4.3)

Supposing a particular frame where the basic vectors are orthonormal we find that the

matrix η turns out to be

η(i)( j) =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (4.4)

Therefore, as stated by the Equivalence Principle of General Relativity, starting from a

general metric gµν on a Manifold we can always remove the gravitational field locally

and thus end up locally with a Minkowski metric η .

As a simple example of this statement we consider a space-time Manifold with a sin-

gle black hole. We define the line element in pseudo-spherical coordinates according

to

ds2 =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 (dθ
2 + sin2

θdφ
2) . (4.5)

To locally remove the space-time curvature we choose the tetrad vectors as

eµ (1) =
(

1− 2M
r

) 1
2

(dt)
µ
, (4.6a)

eµ (2) =
(

1− 2M
r

)− 1
2

(dr)
µ
, (4.6b)

eµ (3) = r (dθ)
µ
, (4.6c)

eµ (4) = r sinθ (dφ)
µ
, (4.6d)

thus yielding for the metric the usual Minkowski metric

ds2 =−e2
(1) + e2

(2) + e2
(3) + e2

(4). (4.7)

49



4. The Newman-Penrose Formalism

To fully develop the tetrad formalism we need to define all space-time quantities in

our new formalism.

4.1.1. Directional Derivatives and Ricci Rotation Coefficients

The directional derivatives in the tetrad frame are defined as

e(a) = eµ

(a)
∂

∂xµ
, (4.8)

where the contravariant vectors e(a) are considered as tangent vectors. Thus we shall

write for the derivative of a scalar field

Φ,(a) = eµ

(a)
∂Φ

∂xµ
, (4.9)

and the action on a more general vector field is defined as

A(a),(b) = eµ

(b)
∂

∂xµ
eν

(a)Aν = eν

(a) Aν ;µ eµ

(b) + γ(c)(a)(b) A(c). (4.10)

The connection 1-forms γ(c)(a)(b), which are defined in Eq. (4.10) by

γ(c)(a)(b) = eµ

(c)e(a)µ;νeν

(b), (4.11)

are called the Ricci rotation coefficients and satisfy

γ(b)(a)(c) =−γ(a)(b)(c). (4.12)

We shall emphasize that there are only 24 components due to the antisymmetry of the

Ricci rotation coefficients compared with 40 components for the Christoffel symbols

Γ. An alternative formulation of Eq. (4.10) is to define the first term on the right hand

side as the intrinsic derivative A(a)|(b) of A(a) in the direction of e(b):

A(a),(b) = A(a)|(b) + γ(c)(a)(b)A
(c). (4.13)

This procedure can be readily extended to the derivatives of tensor fields.

50



4.1. Mathematical Preliminaries

4.1.2. The Commutation Relation and Structure Constants

Starting from the torsion-free condition of the derivative operator ∇µ∇ν f = ∇ν∇µ f we

are able to express this condition as the 24 commutation relations of the basis vector

fields [
e(a), e(b)

]
= C(c)

(a)(b)e(c), (4.14)

where the coefficients C(c) are the structure constants with

C(c)
(a)(b) = γ

(c)
(b)(a)− γ

(c)
(a)(b). (4.15)

4.1.3. The Ricci Identities

From the viewpoint of the results obtained in this thesis the Ricci and the Bianchi

identities take an extraordinary position, which we will demonstrate in the following

chapters. Here we will introduce the relevant identities and their definition in a tetrad

frame. The Ricci identities, often called the Newman-Penrose equations, are defined

according to

e(i)µ;νρ − e(i)µ;ρν = Rσ µνρrσ

(i), (4.16)

thus relating the Riemann tensor to the commutator of covariant derivatives. Project-

ing the Riemann tensor on to the tetrad frame it can be expressed in terms of the Ricci

rotation coefficients in the following manner:

R(a)(b)(c)(d) = − γ(a)(b)(c),(d) + γ(a)(b)(d),(c)

− γ(b)(a)( f )

[
γ

( f )
(c) (d)− γ

( f )
(d) (c)

]
+ γ( f )(a)(c)γ

( f )
(b) (d)− γ( f )(a)(d)γ

( f )
(b) (c). (4.17)

51



4. The Newman-Penrose Formalism

Newman and Penrose identified 18 independent non-vanishing complex components

of the Riemann tensor

R(1)(3)(1)(3), R(1)(3)(1)(4),
1
2
(
R(3)(4)(1)(4)−R(1)(2)(1)(4)

)
, (4.18a)

R(1)(3)(1)(2), R(2)(4)(4)(1),
1
2
(
R(1)(2)(1)(3)−R(3)(4)(1)(3)

)
, (4.18b)

R(2)(4)(3)(1), R(2)(4)(2)(1),
1
2
(
R(1)(2)(1)(2)−R(3)(4)(1)(2)

)
, (4.18c)

R(2)(4)(4)(2), R(3)(1)(4)(3),
1
2
(
R(1)(2)(3)(4)−R(3)(4)(3)(4)

)
, (4.18d)

R(2)(4)(4)(3), R(2)(4)(2)(3),
1
2
(
R(1)(2)(3)(2)−R(2)(4)(2)(3)

)
, (4.18e)

R(1)(3)(3)(2), R(1)(3)(2)(4),
1
2
(
R(1)(2)(4)(2)−R(3)(4)(4)(2)

)
, (4.18f)

and the additional complex-conjugate relations are obtained by replacing the index 3

with the index 4, and vice versa. Thus, in total we yield 36 linear independent Ricci

identities. In chapter 5 the Ricci identities will acquire the role of evolution equations

for the Weyl scalars.

4.1.4. The Bianchi Identities

Pursuing the same projection we can express the Bianchi identities

Rµν [ρσ ;τ] = 0, (4.19)

in terms of intrinsic derivatives and tetrad components, yielding

R(a)(b)[(c)(d)|( f )] =
1
6 ∑

[(c)(d)( f )]

{
R(a)(b)(c)(d),( f )

−η
(n)(m)

[
γ(n)(a)( f )R(m)(b)(c)(d) + γ(n)(b)( f )R(a)(m)(c)(d)

+γ(n)(c)( f )R(a)(b)(m)(d) + γ(n)(d)( f )R(a)(b)(c)(m)

]}
. (4.20)
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Due to the symmetries of the Riemann tensors only 20 linear independent equations

can be derived. Written out explicitly, a complete set is provided by the eight following

complex identities

R(1)(3)[(1)(3)|(4)] = 0, R(1)(3)[(2)(1)|(4)] = 0, (4.21a)

R(1)(3)[(1)(3)|(2)] = 0, R(1)(3)[(4)(3)|(2)] = 0, (4.21b)

R(4)(2)[(1)(3)|(4)] = 0, R(4)(2)[(2)(1)|(4)] = 0, (4.21c)

R(4)(2)[(1)(3)|(2)] = 0, R(4)(2)[(4)(3)|(2)] = 0, (4.21d)

and four real identities which follow from

η
(b)(c)

(
R(a)(b)−

1
2

η(a)(b)R
)
|c

= 0. (4.21e)

Again, the additional complex-conjugate relations are obtained by replacing the index

3 with the index 4, and vice versa. In chapter 5 the Bianchi identities will provide a

fundamental relation between the spin coefficients and Weyl scalars.

To summarize, the basic equations which must be satisfied in the tetrad formalism

consists of 24 commutation relations, 36 Ricci identities and 20 Bianchi identities.

4.2. Null Tetrads and Null Frames

A particularly important tetrad choice has been made by Newman and Penrose, orig-

inally based on the idea of treating general relativity in terms of spinor fields [61].

Furthermore, their choice is motivated by symmetry reasons since it is particularly

well adapted to the light-cone structure of radiation in four dimensional space-times.

The vector basis chosen is a set of four null vectors; they consist of a pair real null

vectors labeled as ` and n, completed by a pair of complex conjugate null vectors de-

noted by m and m̄. The two real tetrad vectors point asymptotically radially inward

and radially outward whereas the complex vectors are defined on a 2-sphere. The null

53



4. The Newman-Penrose Formalism

tetrad satisfies the orthogonality condition

` ·m = ` · m̄ = n ·m = n · m̄ = 0, (4.22a)

besides the requirements that the vectors be null

` · ` = n ·n = m ·m = m̄ · m̄ = 0. (4.22b)

Additionally they satisfy the normalization conditions

` ·n = 1, (4.22c)

m · m̄ = −1, (4.22d)

where this is not an essential requirement and may be dropped. Imposing these

conditions the matrix η in Eq. (4.3) takes the form

ηµν =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 . (4.23)

By utilizing the definition of the tetrad introduced in Eq. (4.1) to Eq. (4.3) we can

deduce the following correspondence between the tetrad vectors and null vectors

e(1) = e(2) = n; e(2) = e(1) = l, (4.24a)

e(3) =−e(4) =−m̄; e(4) =−e(3) =−m. (4.24b)

In this notation the metric tensor gµν of the 4-dimensional space-time takes the form

gµν = `µnν +nµ`ν −mµm̄ν − m̄µmν = 2`(µnν)−2m(µm̄ν), (4.25)
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and the inverse is defined accordingly

gµν = 2`(µnν)−2m(µm̄ν). (4.26)

4.3. Spin Coefficients

The 24 Ricci rotation-coefficients γ(a)(b)(c) introduced in 4.1.1 are now 12 complex quan-

tities and called spin coefficients, designated by a special notation:

κ = γ(3)(1)(1); ρ = γ(3)(1)(4); ε =
1
2
(
γ(2)(1)(1) + γ(3)(4)(1)

)
; (4.27a)

σ = γ(3)(1)(3); µ = γ(2)(4)(3); γ =
1
2
(
γ(2)(1)(2) + γ(3)(4)(2)

)
; (4.27b)

λ = γ(2)(4)(4); τ = γ(3)(1)(2); α =
1
2
(
γ(2)(1)(4) + γ(3)(4)(4)

)
; (4.27c)

ν = γ(2)(4)(2); π = γ(2)(4)(1); β =
1
2
(
γ(2)(1)(3) + γ(3)(4)(3)

)
. (4.27d)

An equivalent formulation in terms of tetrad components is

κ = mµ`ν
∇ν`µ , ν = nµnν

∇νm̄µ , (4.28a)

σ = mµmν
∇ν`µ , λ = nµm̄ν

∇νm̄µ , (4.28b)

ρ = mµm̄ν
∇ν`µ , µ = nµmν

∇νm̄µ , (4.28c)

τ = mµnν
∇ν`µ , π = nµ`ν

∇νm̄µ , (4.28d)

ε =
1
2
`ν
(
nµ

∇ν`µ +mµ
∇νm̄µ

)
, (4.28e)

γ =
1
2

nν
(
nµ

∇ν`µ +mµ
∇νm̄µ

)
, (4.28f)

α =
1
2

m̄ν
(
nµ

∇ν`µ +mµ
∇νm̄µ

)
, (4.28g)

β =
1
2

mν
(
nµ

∇ν`µ +mµ
∇νm̄µ

)
. (4.28h)

We want to stress here an important property related to the `↔ n exchange trans-

formation. If we exchange the two real null vectors, then the spin coefficients become
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4. The Newman-Penrose Formalism

interchanged as follows

κ ↔−ν∗, ρ ↔−µ∗, σ ↔−λ ∗, (4.29a)

α ↔−β ∗, ε ↔−γ∗, π ↔−τ∗. (4.29b)

The spin coefficients can be related to physical properties of the tetrad vectors consti-

tuting the tetrad; utilizing the exchange operation we can immediately conclude that

the physical property which connects (κ,ρ,σ ,α,ε,π) to the null vector ` is the same

that relates (ν ,µ,λ ,β ,γ,τ) to the n vector. Therefore we can restrict our attention to

the physical meaning of the spin coefficients which are related to the ` vector.

Assuming space-time contains a ray congruence (i.e. a foliation by null geodesics)

that is singled out, we can relate the spin coefficients to the ` vector in the following

manner:

• The null vector `µ may be chosen to point in the direction of the rays, whose

geodicity can be stated as κ = 0.

• Affine normalization, i.e. parallel propagation of `µ , is stated as ε + ε̄ = 0.

• ρ as the “complex divergence”, defined as ρ = 1
2

(
−∇µ`µ + i

√
∇[µ `ν ]∇

[µ `ν ]
)

.

• σ measures the shear of the null congruence of geodesics dened by

σσ̄ = 1
2

(
∇(µ `ν)∇

(µ `ν)− 1
2

(
∇µ`µ

)2
)

.

• When the ray congruence is a gradient field, i.e. `µ = ∇µΦ, then τ = ᾱ +β .

For a detailed derivation of such properties we suggest a very good textbook by Pen-

rose and Rindler [62].

4.4. Weyl Tensor and Weyl Scalars

In addition to the spin coefficients the most relevant quantities in the Newman-Penrose

formalism are the Weyl scalars, which comprise all the important information about
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the space-time under consideration. They are given by the contraction of the confor-

mal Weyl tensor over a specific combination of the null tetrad (`µ ,nµ ,mµ , m̄µ). Since

Weyl scalars are true scalars the choice of the coordinate system is irrelevant for their

calculation; however, they do depend on the tetrad choice which constitutes the gauge

freedom in this formalism.

But before we move to the calculation of these quantities we need to define the

conformal Weyl tensor. It comprises of the conformally invariant part of the Riemann

tensor, thus we introduce the Weyl tensor as the trace-free part of the Riemann tensor:

Cµνρσ = Rµνρσ −
1

(n−2)
(
gµρRνσ +gνσ Rµρ −gνρRµσ −gµσ Rνρ

)
+

1
(n−1)(n−2)

(
gµρ gνσ − gµσ gνρ

)
R. (4.30)

It is a straightforward to show that the Weyl tensor possesses the same symmetries as

the curvature tensor, namely

Cµνρσ =−Cµνσρ =−Cνµρσ = Cρσ µν , (4.31a)

Cµνρσ +Cµσνρ +Cµρσν = 0, (4.31b)

with the additional symmetry gρµ Cµνρσ = 0. Secondly, to determine the Weyl tensor

on a manifold, a connection and a metric must be defined.

Projecting the Weyl tensor on to the tetrad frame, we have in 4 dimensions

C(a)(b)(c)(d) = R(a)(b)(c)(d)−
1
2
(
η(a)(c)R(b)(d) +η(b)(d)R(a)(c)−η(b)(c)R(a)(d)−η(a)(d)R(b)(c)

)
+

1
6
(
η(a)(c)η(b)(d) − η(a)(d)η(b)(c)

)
R, (4.32)

where now we are raising and lowering quantities with ηµν instead of gµν .

A detailed analysis of the Weyl tensor shows that it has 10 degrees of freedom,

which we can express by introducing five complex self-dual scalar quantities, the Weyl
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scalars:

Ψ0 = −C(1)(3)(1)(3) = −Cαβγδ lα mβ lγ mδ , (4.33a)

Ψ1 = −C(1)(2)(1)(3) = −Cαβγδ lα nβ lγ mδ , (4.33b)

Ψ2 = −C(1)(3)(4)(2) = −Cαβγδ lα m̄β mγ nδ , (4.33c)

Ψ3 = −C(1)(2)(4)(2) = −Cαβγδ lα nβ m̄γ nδ , (4.33d)

Ψ4 = −C(2)(4)(2)(4) = −Cαβγδ nα m̄β nγ m̄δ . (4.33e)

However, it is important to stress that the Weyl scalars still possess the inherit degrees

of freedom of general relativity, even if the quantities do not depend on the coordinates

any more. We can perform so-called tetrad rotations to change the value of the Weyl

scalars. We will clarify these issues in the remaining part of the chapter.

4.5. Curvature Invariants

Still, it is possible to define quantities in the Newman-Penrose formalism which nei-

ther depend on the coordinate, nor are subject to tetrad transformations. Two well-

known complex curvature invariants are (commonly) defined by

I =
1
16
(
C ρσ

µν C µν

ρσ − iC ρσ

µν C̄ µν

ρσ

)
, (4.34a)

J =
1
96

(
C ρσ

µν C µν

ρσ C µν

αβ
− iC ρσ

µν C αβ

ρσ C̄ µν

αβ

)
, (4.34b)

where C̄ µν

ρσ = 1
2 ε

αβ

ρσ C µν

αβ
is the Hodge dual of the Weyl tensor C µν

ρσ . The scalars

are also often called Kretschmann invariants after Erich Kretschmann [63]. They are

essentially the square and cube of the self-dual part, C̃ ρσ

µν = C ρσ

µν + i
2 ε

αβ

µν C ρσ

αβ
, of

the Weyl tensor:

I = C̃µνρσC̃µνρσ , (4.35a)

J = C̃µνρσC̃ρσ

αβ
C̃αβ µν . (4.35b)
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We may re-express the curvature invariants in terms of Weyl scalars as

I = 3Ψ
2
2 +Ψ4Ψ0−4Ψ1Ψ3, (4.36a)

J = −Ψ
3
2 +2Ψ1Ψ2Ψ3−Ψ0Ψ

3
3−Ψ

2
1Ψ4 +Ψ0Ψ2Ψ4. (4.36b)

Additionally, we define the speciality index S in terms of curvature invariants

S =
27J2

I3 , (4.37)

which plays an important role in the Petrov classification in section 4.7.

4.6. Tetrad Transformations

As mentioned in section 4.4 and section 4.5, Weyl scalars are not tetrad invariant in

contrast to the curvature invariants. They are subject to transformations which we

classify in this section. We can perform a Lorentz transformation at some point and

extend it continuously through all of space-time.

The six degrees of freedom of the group of Lorentz transformations correspond to

the following tetrad rotations in the Newman-Penrose formalism, which preserve the

underlying orthogonality and normalization conditions:

• Type I `→ `; n→ n+a∗m+am̄+aa∗`; m→ m+a`; m̄→ m̄+a∗`,

• Type II n→ n; `→ `+b∗m+bm̄+bb∗n; m→ m+bn; m̄→ m̄+b∗n,

• Type III `→ |B|−1`; n→ |B|n; m→ eiΘm; m̄→ e−iΘm̄.

Here a and b are two complex functions. The spin-boost parameter B is defined as

B = Ae−iΘ, where the modulus A and the phase Θ of the complex valued boost read

A =
√

ℜ [B]2 +ℑ [B]2, (4.38a)

Θ = arctan
(

ℑ [B]
ℜ [B]

)
. (4.38b)
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4. The Newman-Penrose Formalism

In defining the tetrad rotations we follow closely the textbook by Chandrashekar, The

Mathematical Theory of Black Holes.

4.6.1. Type I Rotations

The definition of the type I rotations is that the null vector ` remains unchanged, while

the other vectors are rotated according to

` → `, (4.39)

n → n+a∗m+am̄+aa∗`, (4.40)

m → m+a`, (4.41)

m̄ → m̄+a∗`. (4.42)

The change in the Weyl scalars turns out to be

Ψ
I
0 → Ψ0, (4.43a)

Ψ
I
1 → Ψ1 +a∗Ψ0, (4.43b)

Ψ
I
2 → Ψ2 +2a∗Ψ1 +(a∗)2

Ψ0, (4.43c)

Ψ
I
3 → Ψ3 +3a∗Ψ2 +3(a∗)2

Ψ1 +(a∗)3
Ψ0, (4.43d)

Ψ
I
4 → Ψ4 +4a∗Ψ3 +6(a∗)2

Ψ2 +4(a∗)3
Ψ1 +(a∗)4

Ψ0. (4.43e)

The spin coefficients transform as follows:

κ
I = κ, (4.44a)

σ
I = σ +aκ, (4.44b)

ρ
I = ρ +a∗κ, (4.44c)

ε
I = ε +a∗κ, (4.44d)

τ
I = τ +aρ +a∗σ +aa∗κ, (4.44e)
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π
I = π +2a∗ε +(a∗)2

κ + `µ
∂µa∗, (4.44f)

α
I = αa∗(ρ + ε)+(a∗)2

κ, (4.44g)

β
I = β +aε +a∗σ +aa∗κ, (4.44h)

γ
I = γ +aα +a∗(β + τ)+aa∗(ρ + ε)+(a∗)2

σ +a(a∗)2
κ, (4.44i)

λ
I = λ +a∗(2α +π)+(a∗)2 (ρ +2ε)+(a∗)3

κ + m̄µ
∂µa∗+a`µ

∂µa∗, (4.44j)

µ
I = µ +aπ +2a∗β +2aa∗ε +(a∗)2

σ +a(a∗)2
κ +mµ

∂µa∗+a`µ
∂µa∗, (4.44k)

ν
I = ν +aλ +a∗(µ +2γ)+(a∗)2 (τ +2β )+(a∗)3

σ +aa∗(π +2α). (4.44l)

4.6.2. Type II Rotations

Instead of leaving the l null vector unchanged the n vector remains unchanged while

the other vectors are rotated according to

l → l +b∗m+bm̄+bb∗n, (4.45a)

n → n, (4.45b)

m → m+bn, (4.45c)

m̄ → m̄+b∗n. (4.45d)

The transformation behavior of the Weyl scalars is the following:

Ψ
II
0 → Ψ0 +4bΨ1 +6b2

Ψ2 +4b3
Ψ3 +b4

Ψ4, (4.46a)

Ψ
II
1 → Ψ1 +3bΨ2 +3b2

Ψ3 +b3
Ψ4, (4.46b)

Ψ
II
2 → Ψ2 +2bΨ3 +b2

Ψ4, (4.46c)

Ψ
II
3 → Ψ3 +bΨ4, (4.46d)

Ψ
II
4 → Ψ4. (4.46e)

To determine how the spin coefficients transform under a Type II rotation we utilize

the result of a Type I rotation and the property of an exchange of the real vectors `
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and n yielding

κ
II � −

(
ν

I)∗ , (4.47a)

σ
II � −

(
λ

I)∗ , (4.47b)

ρ
II � −

(
µ

I)∗ , (4.47c)

ε
II � −

(
γ

I)∗ , (4.47d)

π
II � −

(
τ

I)∗ , (4.47e)

α
II � −

(
β

I)∗ . (4.47f)

4.6.3. Type III Rotations

Type III rotations consist of performing a null rotation in the m-m̄ plane, and rescaling

the l and n vectors in the following manner:

` → A−1`, (4.48a)

n → An, (4.48b)

m → eiΘm, (4.48c)

m̄ → e−iΘm̄. (4.48d)

The effect on the Weyl scalars is

Ψ
III
0 → B−2

Ψ0, (4.49a)

Ψ
III
1 → B−1

Ψ1, (4.49b)

Ψ
III
2 → Ψ2, (4.49c)

Ψ
III
3 → BΨ3, (4.49d)

Ψ
III
4 → B2

Ψ4, (4.49e)
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and the corresponding transformations for the spin coefficients are

ρ
III = |B|−1

ρ, (4.50a)

µ
III = |B|µ, (4.50b)

λ
III = |B|e−2iΘ

λ , (4.50c)

σ
III = |B|−1e2iΘ

σ , (4.50d)

κ
III = |B|−1B−1

κ, (4.50e)

τ
III = eiΘ

τ, (4.50f)

π
III = e−iΘ

π, (4.50g)

ν
III = |B|Bν , (4.50h)

γ
III = |B|

(
γ− 1

2
∆ lnB

)
, (4.50i)

ε
III = |B|−1

(
ε− 1

2
D lnB

)
, (4.50j)

α
III = e−iΘ

(
α− 1

2
δ
∗ lnB

)
, (4.50k)

β
III = eiΘ

(
β − 1

2
δ lnB

)
. (4.50l)

4.7. Petrov Classification

From the trace-free property of the Weyl tensor gρµ Cµνρσ = 0 we can deduce impor-

tant information regarding the underlying space-time by classifying its eigenvalues

and eigenvectors. Since the Weyl tensor is anti-symmetric on each pair of indices and

symmetric under their interchange we would expect a sixth-order polynomial, but, in

fact, due to the additional symmetries in Eq. (4.31) the polynomial reduces to a quartic

equation for the Weyl scalars, namely

Ψ4b4 +4Ψ3b3 +6Ψ2b2 +4Ψ1b+Ψ0 = 0, (4.51)

where b is the complex functions we introduced for the tetrad transformations. Ob-

viously, the equation has (always) four roots and the corresponding new directions of
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4. The Newman-Penrose Formalism

`, namely, `→ `+b∗m +bm̄ +bb∗n, are called the principal null-directions of the Weyl

tensor.

By performing tetrad rotations with the possible values for the function b as solution

of Eq. (4.51) some of the Weyl scalars can be made to vanish. The question now is

which of the Weyl scalars and how many of them can be made to vanish. Petrov

classified the possible solutions and gave them a name or type as shown in Table (4.1).

Petrov Type Weyl Scalars Gauge Choice
I Ψ0 = Ψ4 = 0 Ψ1 6= 0, Ψ2 6= 0, Ψ3 6= 0 Ψ0∧Ψ4↔Ψ1∧Ψ3

II Ψ1 = Ψ3 = Ψ4 = 0 Ψ0 6= 0, Ψ2 6= 0 Ψ0↔Ψ4

D Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 Ψ2 6= 0 -
III Ψ0 = Ψ2 = Ψ3 = Ψ4 = 0 Ψ1 6= 0 Ψ1↔Ψ3

N Ψ1 = Ψ2 = Ψ3 = Ψ4 = 0 Ψ0 6= 0 Ψ0↔Ψ4

Table 4.1.: Petrov types classified by Weyl scalars

If we add to this classification the completely degenerated case of conformally flat

space-times in which the Weyl tensor vanishes (called type 0), then all types can be

arranged in a triangular hierarchy as suggested by Penrose.

Figure 4.1.: A schematic classification of the different Petrov types suggested by R.
Penrose. The arrows point in the direction of increasing specialization.

We want to consider an alternative method in classifying principal null directions

by Debever. We will recall this classification in section () to understand the physical

properties of the quasi-Kinnersley frame:

Theorem: Every vacuum space-time admits at least one and at most four null directions
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4.8. Physical Interpretation of the Weyl Scalars & Peeling-off Theorem

la 6= 0, lala = 0, which satisfy

l[aRb ]e f [cld]l
el f = 0. (4.52)

If these principal null directions coincide, and the way they coincide leads to this

classification. The details are shown in Table 4.2.

Petrov Type Description
I Four distinct principal null directions
II Two principal null directions coincide
D Principal null directions coincide in couples
III Three principal null directions coincide
N All four principal null directions coincide

Table 4.2.: Petrov types classified by the coincidence of the principal null directions

We will employ this classification to assign a physical meaning to the Weyl scalars in

the next section.

4.8. Physical Interpretation of the Weyl Scalars & Peeling-off

Theorem

In an excellent work Sachs demonstrated that the Riemann tensor of an asymptotically

flat isolated radiative system can be expanded according to

R ∝
N
r

+
III
r2 +

II
r3 +

I
r4 +

I′

r5 +O(r−6), (4.53)

in terms of an affine parameter r along each outward null ray. For simplicity we

suppressed constants coefficients. He further demonstrated that if the tetrad is chosen

appropriately, then the Weyl scalars satisfy the peeling theorem near infinity:

lim
r→∞

Ψn ∝
1

r5−n . (4.54)

This indicates that, beside the strong contribution from the background, only Ψ4 falls-

off slowly enough to be non-zero when integrated over a large sphere near infinity.
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4. The Newman-Penrose Formalism

Considering a radiative system where we start in the wave-zone (i.e. in the asymp-

totically flat regime) the Riemann tensor will be of type N according to Eq. (4.53), with

a fourfold repeated principal null directions according to Table 4.2. The other princi-

pal null directions peel of as we “move closer” towards the source of radiation, where

terms of less special nature predominate, as illustrated in Fig. 4.8. This is known as

the peeling-off theorem.

Figure 4.2.: The peeling-off theorem.

So far we have only mentioned that in general the Weyl scalars can be associated

with physical observable quantities. In order to deduce this direct physical inter-

pretation for the Weyl scalars, the natural approach is to consider their effect on the

geodesic deviation equation similar to the derivation of the influence of the metric

perturbation hµν on a ring of particles in chapter 3.

The pioneering work was done by Szekeres [59] where he investigated the effect of

type N, III and D fields on a cloud of test particles.

We will outline his treatment and deduce the relevant physical properties of the

Weyl scalars in different Petrov types.

Consider the geodesic worldline uµ of an observer and let δxµ be the displacement

between neighboring geodesics, such that uµδxµ = 0. The geodesic deviation equation

in vacuum is similar to Eq. (3.30)

δ ẍµ = Rµ

νσρuνuσ
δxρ , (4.55)

where we can substitute the Riemann tensor with the Weyl tensor in case of vacuum

space-time. We set up a coordinate system (xµ , yµ , zµ) to measure the imposed distor-
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tion on a ring of particles by the Weyl scalars in three dimensional space.

4.8.1. Petrov Type N

As outlined in the last section we end up having only Ψ0 (or Ψ4) non-zero in the most

specialized Petrov type by making use of the tetrad rotations, see table 4.1. In this

particular case the geodesic deviation equation (4.55) reads according to Szekeres [59]

δ ẍµ = Ψ0 [(xµxν − yµyν)− i(xνyµ − xµyν)]δxν , (4.56)

and considering only the real part we end up with

δ ẍµ = [ℜ(Ψ0)(xµxν − yµyν)+ℑ(Ψ0)(xνyµ − xµyν)]δxν . (4.57)

Since we have only performed type I and type II rotations so far we can make use of the

remaining degree of freedom related to type III tetrad rotations to set the imaginary

part ℑ(Ψ0) to zero, yielding

δ ẍµ = ℜ(Ψ0)(xµxν − yµyν)δxν . (4.58)

The resulting force on a ring of test particles located at z = 0 turns out being a trans-

verse distortion. Szekeres terms this a pure transverse gravitational wave. This holds

for Ψ0 as well as for Ψ4.

4.8.2. Petrov Type III

For a type III space-time all scalars vanish except Ψ3 (or Ψ1), see table 4.1. Szekeres

demonstrated that the geodesic equation reads

δ ẍµ = Ψ1 [(zµxν + xµzν)− i(zνyµ + yµzν)]δxν . (4.59)

As in case of Petrov type N we can utilize spin transformations to set ℑ(Ψ1) = 0, thus

ending up with

δ ẍµ = ℜ(Ψ1)(zµxν + xµzν)δxν . (4.60)
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4. The Newman-Penrose Formalism

Obviously, the effect on the ring of test particles located at z = 0 in type III is still planar,

but the wave contains a longitudinal directional contribution, i.e. along zµ . Thus the

two scalars Ψ1 and Ψ3 possess a longitudinal contribution which is the reason Szekeres

terms this a longitudinal wave component.

4.8.3. Petrov Type D

Here the only non-vanishing Weyl scalar is Ψ2 (table 4.1). The geodesic deviation

equation turns out as

δ ẍµ = Ψ2

[
zµzν −

1
2

(xµyν − yµxν)
]

δxν . (4.61)

The force on a ring of test particles results in a distortion to an ellipsoid with major

contribution in the orthogonal direction. We will demonstrate in section 4.12 that an

isolated black hole space-time is exactly Petrov type D. Furthermore, since Ψ2 is the

only non-vanishing scalar in type D it can be shown that the tidal force action on a

radially in-falling observer can be calculated according to Eq. (4.61) in a Schwarzschild

space-time. Szekeres terms this a Coulomb-type field.

4.8.4. Petrov Type II

According to the classification by Petrov the non-vanishing scalars for a type II field

are Ψ2 and Ψ0 (or Ψ4). Employing the results we have obtained for Petrov type D and

type N we can relate Ψ2 to the Coulomb-type contribution and Ψ0 gives a transverse

contribution, namely

δ ẍµ = [ℜ(Ψ0)(xµxν − yµyν)−ℑ(Ψ0)(xνyµ + xµyν)]δxν , (4.62)

where we perform a type III rotation to set ℑ(Ψ0) = 0. Thus the Weyl scalars in type

II space-time are related to a superposition of a Coulomb-type field (Ψ2) and a radiative

wave component (Ψ0).

68



4.9. Goldberg-Sachs Theorem

4.8.5. Petrov Type I

For an algebraically general space-time we can find a particular tetrad where only Ψ0,

Ψ2 and Ψ4 are non-vanishing. With the results we have worked out for Petrov types

N, D and II we can immediately conclude that the Weyl scalars in type I correspond

to a Coulomb-type field (Ψ2) superposed with two transverse radiative fields (Ψ0 and

Ψ4).

yes

no

NIII

DIII

TypeType

TypeTypeType

no

yes

no

no

yes

yes

Figure 4.3.: A schematic classification of the different Petrov types.

4.9. Goldberg-Sachs Theorem

The Goldberg-Sachs theorem has been very useful in constructing algebraically spe-

cial exact solutions of Einstein’s vacuum equations. Most of the physically meaningful

vacuum exact solutions, e.g. Kerr and Schwarzschild solution, are algebraically spe-

cial. Its original formulation states that a vacuum solution is algebraically special if and

only if it contains a shear-free null geodesic congruence.

According to the physical properties of the spin coefficients we derived in section
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4. The Newman-Penrose Formalism

4.3, we can reformulate this statement to deduce the consequences of the Goldberg-

Sachs theorem for the Weyl scalars and spin coefficients in the Newman-Penrose for-

malism. The proof of the theorem can be found in [64].

If a space-time is of Petrov type II and a null basis is chosen such that l is the repeated null

direction and so Ψ0 = Ψ1 = 0, then the two spin coefficients κ and σ are vanishing; conversely

if κ = σ = 0 the Ψ0 = Ψ1 = 0 and the space-time is of Petrov type II.

A consequence of this, which is commonly referred to as the Goldberg-Sachs theo-

rem, states that

Theorem 1 If a space-time is of Petrov type D and a null basis is chosen such that l is

one repeated null direction and n is the other one, such that Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0, then

the spin coefficients κ , σ , ν and λ are vanishing; conversely if κ = σ = ν = λ = 0 then

Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 and the space-time is of Petrov type D.

4.10. Bondi Frame

The calculations of gravitational radiation at future null infinity are based on the foun-

dational works of Bondi [65] and Sachs [17] and have led to the extremely important

conclusion that a gravitationally radiating system loses mass, and further to the iden-

tification of the Bondi-Metzner-Sachs asymptotic symmetry group [12, 11, 66, 67, 62,

65, 17]. The detailed derivation of these important but highly complex results goes

beyond the scope of this work. Therefore we will only present the key results.

The identification of the Bondi frame relies upon the identification of a family of

null surfaces labeled by a retarded time-coordinate u. In flat space-time a suitable

family might be the null cones emanating from a time-like world line. Each of these

surfaces is generated by a two-parameter family of null geodesics each labeled by

sphere coordinates (θ ,φ) or equivalently by complex stereographic coordinates
(
ζ , ζ̄

)
,

where ζ = eiφ cot(θ/2). The “length” along the geodesics is given by the affine “ra-

dial” parameter r. In summary, in the standard literature a null coordinate system is
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4.10. Bondi Frame

commonly chosen as

(
x0,x1,x2,x3)=

(
u,r,(ξ + ξ̄ ),

1
i
(ξ − ξ̄ )

)
. (4.63)

In fact, there is a large equivalence class of such coordinates as members of the Bondi-

Metzner-Sachs group.

Figure 4.4.: Illustrating the idea of Bondi coordinates at future null infinity.

There is a natural choice of a null tetrad system: The ` null vector is taken as the

tangent vector to the null geodesics, i.e. `a = ∂au = (1,0,0,0), while the
(
ζ , ζ̄

)
are tan-

gent to the null 3-surface. Their remaining freedom is greatly limited by having them

parallel propagated along the null geodesics. When these restrictions are translated to

the tetrad we yield

D = `a
∇a =

∂

∂ r
(4.64a)

∆ = na
∇a =

∂

∂u
+U

(
∂

∂ r

)
+X i

(
∂

∂xi

)
(4.64b)

δ = ma
∇a = ω

∂

∂ r
+ξ

i
(

∂

∂xi

)
(4.64c)

71



4. The Newman-Penrose Formalism

where X i =
(
x3,x4

)
=
(
ζ , ζ̄

)
. ξ i, U and ω are arbitrary functions of the coordinates

constituting the metric according to

g22 = 2(U−ωω̄) , (4.65)

g2A = XA−
(
ω̄ζ

A +ωζ̄
A) , (4.66)

gAB = −
(
ζ̄

A
ζ

B +ζ
A
ζ̄

B) . (4.67)

Keeping (ξ = const) and (ξ̄ = const) on the null hypersurface u = const, one moves

along a null direction by increasing r.

4.11. Kinnersley Tetrad

A particular null frame in the Newman-Penrose formalism is constructed by making

the following definition [16]:

Def. 1 A Kinnersley frame for a type D space-time is a frame where the two real tetrad null

vectors coincide with the two repeated principal null directions of the Weyl tensor.

These conditions fix 4 of 6 degrees of freedom of the Lorentz group corresponding

to type I and type II rotations.

Kinnersley enforced the additional condition ε = 0 to single out a particular tetrad,

commonly known as the Kinnersley tetrad. The motivation for his choice is presum-

ably related to the physical properties of the ` null vector: the geodesic equation for `

reads

`µ
∇µ`ν = (ε + ε

∗)`ν −κm̄ν −κ
∗mν , (4.68)

which shows that if the two spin coefficients κ and ε vanish, the vector `µ is geodesic

and affinely parametrized.

In the limit of type D the Goldberg-Sachs theorem (cf. section 4.9) guarantees that

κ = 0, so the additional condition ε = 0 enforces the affine parameterization of `µ .
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In the Kinnersley tetrad all scalars vanish except Ψ2, i.e. it is a canonical frame [68]

for Petrov type D, thus the speciality index S in Eq. (4.37) reduces to

S→
27
(
−Ψ3

2

)2(
3Ψ2

2

)3 = 1. (4.69)

4.12. Black Hole Space-Times in the NP Formalism

As an example of the Newman-Penrose formalism we calculate all relevant quantities

of the Kerr solution. Since we expect every distorted black hole to relax to the Kerr

(Schwarzschild) solution it plays a crucial role as the final state in every black hole

simulation1. We start by defining the real null vectors ` and n in terms of radial null

geodesics and adjoin orthogonally to them the complex conjugated null vector pair

(m, m̄), yielding

`µ =
1
∆

(
r2 +a2,∆,0,a

)
, (4.70a)

nµ =
1

2Σ

(
r2 +a2,−∆,0,a

)
, (4.70b)

mµ =
1√
2Σ̄

(iasinθ ,0,1, icosecθ) , (4.70c)

where Σ = r2 + a2 cos2 θ and Σ̄ = r + iacosθ . Such a tetrad still satisfies the null vector

conditions in Eqs. (4.22). We calculate the spin coefficients according to Eqs. (4.28)

yielding

ρ = − 1
r− iacosθ

, β =− cotθ

2
√

2Σ̄
, (4.71)

π =
iasinθ

Σ̃
√

2
, τ =− iasinθ

Σ
√

2
, (4.72)

µ = − ∆

2ΣΣ̃
, γ = µ +

r−M
2Σ

, (4.73)

α = π−β , κ = σ = ν = λ = 0. (4.74)

1This can be regarded as a consequence of Birkhoff’s theorem in general relativity [69].
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In agreement with the Goldberg-Sachs theorem in section 4.9 we find that the spin

coefficients κ,σ ,ν ,λ vanish, leading us to the conclusion that the Kerr space-time is

Petrov type D. Secondly, we can conclude that the only non-vanishing Weyl scalar is

Ψ2. Evaluating the Weyl scalars yields the expected result that

Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0, (4.75)

and Ψ2 reads

(Ψ2)K =− M

(r− iacosθ)3 . (4.76)

As usual in the limit of vanishing rotation, a→ 0, we recover the Schwarzschild solu-

tion.

4.13. Perturbation Approach in the NP Formalism

After introducing the basic concepts of the Newman-Penrose formalism in the for-

going sections we are now able to continue our analysis of black hole perturbations

by presenting Teukolsky’s results for the Kerr space-time. In addition, we will be

able to enhance our understanding of the physical meaning of the Weyl scalars in the

wave-zone within perturbation theory.

The perturbation equation for Schwarzschild (cf. Bardeen-Press equation [14]) can

be easily recovered from Teukolsky’s solution by letting the rotation parameter a go

to zero. The problem is of considerable complexity; therefore we will only outline

the vacuum solution and refer to the original paper by Teukolsky [15] for a detailed

description.

4.13.1. The Perturbation Equations

The first step in Teukolsky’s analysis is to consider a type D space-time, i.e. an iso-

lated (Kerr) black hole which will be gravitationally perturbed later on. We start our

analysis by defining a tetrad for wave-extraction where we can connect the transverse
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gravitational radiation with the Weyl scalars Ψ0 and Ψ4. As described in section 4.7

and section 4.8, a well-suited tetrad for such a task is the Kinnersley tetrad, where we

know from the Goldberg-Sachs theorem that

Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0; Ψ2 6= 0; (4.77a)

κ = σ = ν = λ = 0; ρ,µ,τ,π,γ,β ,α 6= 0. (4.77b)

Teukolsky managed to combine the non-vanishing Bianchi identities and Ricci identi-

ties (cf. section 4.1) for the first-order perturbation of the radiation scalars ΨP
0 and ΨP

4

in such a way that he yielded the following two decoupled equations:

[(D−3ε + ε
∗−4ρ−ρ

∗)(∆−4γ + µ) −

(δ +π
∗−α

∗−3β −4τ)(δ ∗+π−4α)−3Ψ
B
2

]
Ψ

P
0 = 0 (4.78a)

[(D−3ε + ε
∗−4ρ−ρ

∗)(∆−4γ + µ) −

(δ +π
∗−α

∗−3β −4τ)(δ ∗+π−4α)−3Ψ
B
2

]
Ψ

P
4 = 0 (4.78b)

where D, ∆, δ and δ ∗ are the usual directional derivatives defined in Eqs. (4.8)

D = lµ
∇µ , ∆ = nµ

∇µ , δ = mµ
∇µ , δ

∗ = m̄µ
∇µ . (4.79)

These two decoupled equations (4.78a, 4.78b) carry all non-trivial features of the space-

time, i.e. they describe to linear order the dynamics of a gravitationally perturbed Kerr

black hole.

4.13.2. Teukolsky Master equation

The next step is to write out the equations in a particular coordinate system. We make

use of pseudo-spherical coordinates (Boyer-Lindquist coordinates), where the metric

of a Kerr black hole reads

ds2 =
(

1− 2Mr
Σ

)
dt2 +

(
4M ar sin2

θ

Σ

)
dtdφ − Σ

∆
dr2−Σdθ

2− sin2
θ

(
∆̃

Σ

)
dφ

2, (4.80)
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with Σ = r2 +a2 cos2 θ , ∆ = r2−2M r +a2, ∆̃ = r2 +a2 +2M ar sin2
θ , M is the mass of the

black hole and Ma its angular momentum. The Kinnersley tetrad of a Kerr space-time

in pseudo-spherical coordinates reads

`µ =
1
∆

(
r2 +a2,∆,0,a

)
, (4.81a)

nµ =
1

2Σ

(
r2 +a2,−∆,0,a

)
, (4.81b)

mµ =
1√
2Σ̄

(iasinθ ,0,1, icosecθ) . (4.81c)

The non-vanishing spin coefficients, which can be derived by using their definitions

in Eq. (4.28), turn out as

ρ = − 1
r− iacosθ

, β =− cotθ

2
√

2Σ̄
, (4.82a)

π =
iasinθ

Σ̃
√

2
, τ =− iasinθ

Σ
√

2
, (4.82b)

µ = − ∆

2ΣΣ̃
, γ = µ +

r−M
2Σ

, (4.82c)

α = π−β . (4.82d)

By inserting the explicit form of the metric (4.80), null vectors (4.81) and spin coeffi-

cients (4.82) into Eqs. (4.78) Teukolsky managed to unify the perturbation equation

for Ψ0 and Ψ4 to

Psψ = 0, (4.83)

where ψ = Ψ0 or ψ = ρ−4Ψ4 and the operator Ps is given by

Ps =

[(
r2 +a2

)2

∆
−a2 sin2

θ

]
∂ 2

∂ t2 +
4M ar

∆

∂ 2

∂ t∂φ
+
[

a2

∆
− 1

sin2
θ

]
∂ 2

∂φ 2

−∆
−s ∂

∂ r

(
∆

s+1 ∂

∂ r

)
− 1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
−2s

[
a(r−M)

∆
+

icosθ

sin2
θ

]
∂

∂φ

−2s

[
M
(
r2−a2

)
∆

− r− iacosθ

]
∂

∂ t
+
(
s2 cot2 θ − s

)
(4.84)
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with the spin weight s of the field (2 for Ψ0, -2 for Ψ4). This equation is valid equally

well for a scalar field (s = 0), a neutrino field (s = ±1) and an electromagnetic field

(s =±1
2 ).

4.13.3. Asymptotic Behavior

Our particular interest lies in the behavior of the fields Ψ0 and Ψ4 in the regime where

we will observe gravitational radiation. Teukolsky took advantage of the underlying

symmetries of the space-time and managed to separate the solution to Eq. (4.83) in

the following manner

ψ = e−iωteiωφ S (θ)R(r) (4.85)

where we focus our attention on the radial part R(r) of the operator in Eq. (4.84) which

reads

∆
−s ∂

∂ r

(
∆

s+1 ∂R
∂ r

)
+
(

K2−2i s(r−M)K
∆

+4i sωr−λ

)
R = 0, (4.86)

with K =
(
r2 +a2

)
ω−am and λ = A+a2ω2−2amω . The unknown separation constant

A = sAm
l (aω) is given as a solution to the Sturm-Liouville eigenvalue problem for the

angular equation S (θ). As pointed out, our main interest lies in the behavior of the

quantities at future null infinity, i.e. when r→∞. Teukolsky introduced two additional

quantities, namely

Y = ∆
s/2 (r2 +a2) 1

2 R(r), (4.87a)

dr̃
dr

=
r2 +a2

∆
, (4.87b)

and thus Eq. (4.86) can be rewritten as

∂ 2Y
∂ r̃2 +

[
K2−2i s(r−M)K +∆(4i rωωs−λ )

(r2 +a2)2 −G2− ∂G
∂ r̃

]
Y = 0, (4.88)

77



4. The Newman-Penrose Formalism

where G = s(r−M)
r2+a2 + r∆

(r2+a2)2 . At null infinity (where r→ ∞ and consequently r̃→ ∞) the

leading order in Eq. (4.86) reads

∂ 2Y
∂ r̃2 +

(
ω

2 +
2iωs

r

)
Y ≈ 0. (4.89)

The solution to this equations can be easily worked out, yielding

Y ≈ r±se∓iω r̃. (4.90)

Consequently, the solutions for the radial part of Eq. (4.85) can be obtained from Eq.

(4.89) and Eq. (4.87a)

R1 (r̃)≈ e−iω r̃

r
, (4.91a)

R2 (r̃)≈ eiω r̃

r2s+1 . (4.91b)

From these results Teukolsky derived the radial behavior for the Weyl scalars Ψ0 and

Ψ4 to linear order, namely

Ψ0 ≈ eiω r̃

r5 , Ψ4 ≈ eiω r̃

r , (outgoing waves);

Ψ0 ≈ e−iω r̃

r , Ψ4 ≈ e−iω r̃

r5 , (ingoing waves).

The main importance of the expressions for the Weyl scalars within the Teukolsky

approach is related to the fact that the scalars are not only gauge invariant, but also

independent of infinitesimal tetrad transformation (infinitesimal diffeomorphism in-

variance) and thus we ultimately deal with truly measurable physical quantities.

4.14. An Energy Measurement

Here we want to give an estimation of the energy flux through the Weyl scalars as we

did in a similar fashion for the metric perturbation hµν in section 3.4.

In a vacuum we can write Ψ4 in terms of the perturbatively relevant Riemann tensor
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components [64], which in the weak field approximation are only Rt̂θ̂ t̂θ̂ and Rt̂θ̂ t̂φ̂ :

Ψ4 =−
(

Rt̂θ̂ t̂θ̂ − iRt̂θ̂ t̂φ̂

)
. (4.92)

Thus we can relate Ψ4 to the metric perturbation quantities hT T
µν in the transverse-

traceless gauge by utilizing the definition of the linearized Riemann tensor in terms of

the metric perturbation in Eq. (3.22), namely

Rt̂ µ̂ t̂ν̂ =−1
2

hT T
µ̂ ν̂ ,t̂ t̂ . (4.93)

Inserting Eq. (4.93) in Eq. (4.92) we yield for the Weyl scalar Ψ4

Ψ4 =
1
2

(
∂ 2hT T

θ̂ θ̂

∂ t2 − i
∂ 2hT T

θ̂ φ̂

∂ t2

)
. (4.94)

We want to stress that Eq. (4.94) relates the real and imaginary part of Ψ4 to the two

independent polarization states e+ and e×, respectively (cf. section 3.2.2).

Finally, we can estimate the energy flux per solid angle by rewriting Eq. (3.41) in

terms of the radiation scalar

∂ 2E
∂ t∂Ω

= lim
r→∞

r2

4π

[(∫ T

0
ℜ(Ψ4)dt

)2

+
(∫ T

0
ℑ(Ψ4)dt

)2
]

. (4.95)

4.15. Selecting the Proper Frame for Wave Extraction

In this chapter we have so far introduced the main concepts of the Newman-Penrose

approach which are nowadays important in gravitational wave theory. We have in-

troduced all important quantities and demonstrated how the Weyl scalars, encoding

the radiation degrees of freedom, can be extracted in a coordinate independent way.

But of course, the inherit degrees of freedom in general relativity (diffeomorphism

invariance) remain in the theory.

As pointed out, the physical quantities extracted from a numerically evolved space-

time depend strongly on the tetrad choice. But in a numerical simulation it is im-
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portant, in order to recover Teukolsky’s results, to ensure that the tetrad we choose

converges to the Kinnersley tetrad when our space-time settles down to an unper-

turbed black-hole solution. The crucial problem here is that in a numerical simulation

we do not know a priori the structure of the background metric, and therefore we are

not able to define the background tetrad in a robust and general way. In this section

we will exploit this dependence and will introduce the notion of the quasi-Kinnersley

frame which has been shown to be a crucial element for wave extraction. By utilizing

the properties of the quasi-Kinnersley frame it is possible to single out the right frame

independently from the parameters of the final background metric2.

4.15.1. Transverse Frames & Quasi-Kinnersley Frame

A quasi-Kinnersley frame, is a tetrad frame defined for a general Petrov type I space-

time, which converges continuously into the asymptotic Kinnersley frame in the limit

of Petrov type D space-time. From the definition of the Kinnersley tetrad in section

4.11 we can make the following two statements for the quasi-Kinnersley frame [60, 19]:

Def. 2 A Kinnersley frame is a frame where the two real tetrad null vectors ` and n converge

to the two repeated principal null directions of the Weyl tensor in the limit of Petrov type D.

From Def. 2 we can further derive the following proposition:

Def. 3 A quasi-Kinnersley frame for a Petrov type I space-time is a frame where Ψ0Ψ4 → 0

for S→ 1.

C. Beetle et al. [60, 19] enforced the additional condition Ψ1 = Ψ3 = 0, which they then

call transverse frames. In fact, it is only required that a quasi-Kinnersley frame satisfies

the criterion in Def. 3 and we may drop this more stringent condition of transversality.

An example of a quasi-Kinnersley frame where this condition is dropped can be found

in [70] for the Bondi-Sachs metric.

2We want to stress again that the quasi-Kinnersley frame still constitutes an infinite number of tetrads,
only one of them being the Kinnersley tetrad.
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Nevertheless, transverse tetrads, as a particular subset of all quasi-Kinnersley frames,

have turned out as a very useful construction for wave extraction in numerical relativ-

ity [23, 1]. Since the Weyl scalars Ψ1 and Ψ3 are associated with longitudinal radiation

degrees of freedom we can eliminate these non-physical effects a priori by restricting

our attention to transverse quasi-Kinnersley frames without any loss of generality.

It has been shown in [60, 1] that transverse frames come in threefold in type I space-

times, and only one of them is the transverse quasi-Kinnersley frames. It is unique for

any generic Petrov type I space-time, and hence lies its importance. Members of this

class are defined to be quasi-Kinnersley tetrads, and hence up to type III transforma-

tions, there is only one transverse quasi-Kinnersley tetrad.

a)
b)

Figure 4.5.: (a) A transverse frame which is also a quasi-Kinnersley frame: in the limit
of Petrov type D the principal null directions N1 and N1 will converge
to `. (b) A transverse frame which is not a quasi-Kinnersley frame: the
` vector of the frame sees the two principal null directions N2 and N3 as
conjugate pair and they will not coincide with ` in the limit of type D [1].

4.15.2. Finding the Quasi-Kinnersley Frame

In [1] a mathematical procedure has been constructed to find the quasi-Kinnersley

frame, while a method to single out the quasi-Kinnersley tetrad is still unknown.

Before we will outline a method to break the remaining residual spin-boost symmetry,
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4. The Newman-Penrose Formalism

we review the procedure in [1] of finding the quasi-Kinnersley frame in a numerical

simulation.

Assume a general situation having all five Weyl scalars non-vanishing in Petrov

type I space-time; as demonstrated in section 4.6 we can utilize the definition of tetrad

rotations to find a frame where Ψ1 and Ψ1 vanish. First, we perform a type I null

rotation with parameter a and secondly a type II rotation with parameter b. Finally,

we set the new values of Ψ1 and Ψ3 to zero therefore ending up with a system of two

equations we wish to solve for parameters ā and b:

0 =
(
Ψ3 +3āΨ2 +3ā2

Ψ1 + ā3
Ψ3
)

b+Ψ4 +4āΨ3 +6ā2
Ψ2 +4ā3

Ψ1 + ā4
Ψ0, (4.96a)

0 = Ψ1 + āΨ0 +3b
(
Ψ2 +2āΨ1 + ā2

Ψ0
)
+3b2 (

Ψ3 +3āΨ2 +3ā2
Ψ1 + ā3

Ψ0
)

+ b3 (
Ψ4 +4āΨ3 +6ā2

Ψ2 +4ā3
Ψ1 + ā4

Ψ0
)
. (4.96b)

The equation for b is given by the explicit formula derived from Eqs. (4.96), namely

b =− Ψ3 +3āΨ2 +3ā2Ψ1 + ā3Ψ0

Ψ4 +4āΨ3 +6ā2Ψ2 +4ā3Ψ1 + ā4Ψ0
, (4.97)

whereas we have to solve the following sixth order equation for the parameter ā

P1ā6 +P2ā5 +P3ā4 +P4ā3 +P5ā2 +P6ā+P7 = 0, (4.98)

with

P1 = −Ψ3Ψ
2
0−2Ψ

3
1 +3Ψ2Ψ1Ψ0, (4.99a)

P2 = −2Ψ3Ψ1Ψ0−Ψ
2
0Ψ4 +9Ψ

2
2Ψ0−6Ψ2Ψ

2
1, (4.99b)

P3 = −5Ψ1Ψ4Ψ0−10Ψ3Ψ
2
1 +15Ψ3Ψ2Ψ0, (4.99c)

P4 = −10Ψ4Ψ
2
1 +10Ψ

2
3Ψ0, (4.99d)

P5 = 5Ψ3Ψ0Ψ4 +10Ψ1Ψ
2
3−15Ψ1Ψ2Ψ4, (4.99e)

P6 = 2Ψ1Ψ3Ψ4 +Ψ
2
4Ψ0−9Ψ

2
2Ψ4 +6Ψ2,Ψ

2
3 (4.99f)

P7 = Ψ1Ψ
2
4 +2Ψ

3
3−3Ψ2Ψ3Ψ4. (4.99g)
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Even though we have a sixth order polynomial there are only three independent so-

lutions, corresponding to three transverse frames. This is due to a degeneracy of the

transverse frames if we exchanged the null vectors ` with n and m with m̄, respectively:

the non-vanishing Weyl scalars would be exchanged as Ψ0�Ψ4.

Obviously, we can construct any tetrad in a numerical simulation as a starting point

whereas then the main issue is to construct a solution to Eq. (4.96b); once we have

obtained a solution of the polynomial, the parameter b is easily found. Since the Eq.

(4.96, 4.96b) are well-posed (cf. [1]) it is always possible to find a transverse frame

from a general Petrov type I space-time.

Motivated by a more geometrical ansatz it has been shown recently [60, 71] that the

three different transverse frames correspond to the eigenvalues λ of a specific matrix

Qµν built by contracting the Weyl tensor with the 4-velocity u, Qµν =−C∗µρνσ uρuσ . The

solutions of the characteristic polynomial3

λ
3−2Iλ +2J = 0, (4.100)

are given by

λ1 = −
(

P+
I

3P

)
, (4.101a)

λ2 = −
(

e
2πi
3 P+ e

4πi
3

I
3P

)
, (4.101b)

λ3 = −
(

e
4πi
3 P+ e

2πi
3

I
3P

)
, (4.101c)

and P is defined as

P =
[

J +
√

J2− (I/3)3
] 1

3

. (4.102)

It is easy to see that Eq. (4.102) may lead to some ambiguity since the different so-

lutions of the cubic root permute the definitions for the λi variables. Breaking this

permutation symmetry is essential to the definition of the quasi-Kinnersley frame

3We like to refer for a comprehensive treatment of the subject to a book by Kramer et al., Exact Solutions
of Einstein’s Field Equations [72]
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[60]. It can further be shown that the coulomb scalar Ψ2 can be related to the three

eigenvalues λ , namely

Ψ
I
2 =

1
2

λ1, (4.103a)

Ψ
II
2 =

1
2

λ2, (4.103b)

Ψ
III
2 =

1
2

λ3, (4.103c)

The product of the transverse scalars can be specified accordingly

(Ψ0Ψ4)
I =

(
λ II−λ III

)2

4
, (4.104)

(Ψ0Ψ4)
II =

(
λ I−λ III

)2

4
, (4.105)

(Ψ0Ψ4)
III =

(
λ I−λ II

)2

4
. (4.106)

Thus, we are finally left with two methods to calculate all non-vanishing Weyl scalars

in the three transverse frames. However, we are faced with a residual (type III) ambi-

guity in both approaches; We do not know the exact value of Ψ0 and Ψ4 but only the

product Ψ0Ψ4, respectively.
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Extraction

I have noticed even people who claim everything is predestined,

and that we can do nothing to change it, look before they cross the road.

Stephen Hawking

In chapter 4 we presented the fundamental equations and physical results related to

the Newman-Penrose formalism. We have introduced the Weyl scalars and demon-

strated that they, extracted in a particular frame (the Kinnersley tetrad [16]), acquire

a precise physical meaning. In fact, they carry all information about the space-time

under consideration. In particular, we have demonstrated how Ψ4 and Ψ0 can be

identified with the outgoing and ingoing gravitational radiation, respectively.

In section 4.15 we introduced the notion of transverse tetrads, satisfying the condition

Ψ1 = Ψ3 = 0, and explained why those tetrads constitute a particular suitable choice

for wave extraction. Furthermore, we described the most frequently applied method

to find transverse frames in a numerical simulation; that is to calculate the Weyl scalars

using an initial tetrad, and then calculate the rotation parameters for type I and type II

rotations using the two methods given in [60, 1, 23]. This procedure is rather lengthy

to apply in practice; moreover, the condition Ψ1 = Ψ3 = 0 itself does not fix the tetrad

completely1, leaving a spin-boost (type III rotation) ambiguity. As we discussed in

section 4.11, Kinnersley imposed the additional condition ε = 0 to break the remaining

symmetry.

Finally, we outlined a method to find the quasi-Kinnersley frame, as a tetrad frame

defined for a general type I space-time. It turned out that the quasi-Kinnersley frame is
1only 4 of the 6 degrees of freedom of the Lorentz group of transformations are fixed
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part of a general set of frames which satisfy the property Ψ0Ψ4→ 0 when approaching

the limit of type D (cf. Def. 3). By defining the Weyl scalars in this particular frame

we assure that we recover Teukolsky’s results in the limit of Type D. An equivalent

statement is made by the peeling theorem [73, 18].

5.1. A new Formalism for Wave Extraction

In this chapter we will propose a new approach for wave extraction. We will present

a general method in the Newman-Penrose formalism that relates the Weyl scalars

to the connection coefficients (spin coefficients) when a specific choice of tetrad is

performed, namely the one in which Ψ1 = Ψ3 = 0 and Ψ0 = Ψ4, which always exists in

a general Petrov type I space-time. We use the approach to fix the optimal tetrad for

gravitational wave extraction in numerical relativity, in particular by giving a canonical

expression for the spin-boost parameter that was still unclear. The Weyl scalars Ψ0,

Ψ2 and Ψ4 are given as functions of the two space-time invariants I and J.

In fact, imposing the condition Ψ0 = Ψ4, what corresponds to B = 1 for the spin-boost

degree of freedom, is not the best possible choice, since in this case the two transverse

Weyl scalars have the radial fall-off of r−3 at future null infinity, which is contradictory

to the prediction of the peeling-off theorem (cf. section 4.8). Nevertheless, we can use

this choice as a starting point and reinsert the spin-boost degree of freedom into the

expressions for the scalars.

The chapter is organized as follows: In section 5.2 we deduce a new expression

for the three non-vanishing Weyl scalars Ψ0, Ψ2 and Ψ4 in the transverse frames. In

section 5.3 through section 5.5 we introduce the directional derivatives and analyze the

Bianchi and Ricci identities in the transverse frames; moreover, we study the equations

in the limit of Petrov type D. In section 5.6 we will show that the Bianchi identities

provide a unique relation between spin coefficients in the limit of Petrov type D. An

expression for ε is then obtained using the Ricci identities in section 5.7. Finally in

section 5.8 we enforce the condition ε = 0 and obtain the corresponding spin-boost

parameter. This result leads to the final expression for the Weyl scalars in section 5.9.
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5.2. Redefining the Weyl Scalars in Transverse Frames

By requiring these two conditions, namely Ψ1 = Ψ3 = 0 and Ψ0 = Ψ4, the expressions

for the two curvature invariants introduced in Eqs. (4.36) simplify to

I = Ψ
2
4 +3Ψ

2
2, (5.1a)

J = Ψ
2
4Ψ2−Ψ

3
2. (5.1b)

As discussed in detail in chapter 4 we recall that Ψ2 is given by Ψ2 = 1
2 λi, where λi

represents the three different solutions of the characteristic polynomial

λ
3−2Iλ +2J = 0. (5.2)

The three possible solutions are given by

λ1 = −
(

P+
I

3P

)
, (5.3a)

λ2 = −
(

e
2πi
3 P+ e

4πi
3

I
3P

)
, (5.3b)

λ3 = −
(

e
4πi
3 P+ e

2πi
3

I
3P

)
, (5.3c)

where P is defined as

P =
[

J +
√

J2− (I/3)3
] 1

3

. (5.4)

Eq. (5.1a) and Eq. (5.1b) can now be inverted to give not only Ψ2 but also Ψ4 as

a function of the curvature invariants I and J. We start redefining the scalars by

introducing the important variable Ψ±, which unifies the three different solutions for

the scalars in Eq. (5.3),

Ψ± = I
1
2

(
e

2πik
3 Θ± e−

2πik
3 Θ

−1
)

, (5.5)

where k is an integer number assuming the values {0,1,2} corresponding to the three

different transverse frames and Θ is defined according to
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Θ =
√

3PI−
1
2 . (5.6)

It is worth noting that a key ingredient for establishing our new methodology is rewrit-

ing the Bianchi identities in terms of these newly introduced variables Ψ±. We can

now rewrite the three non-vanishing scalars in the transverse frames in the following

manner

Ψ0 = − iB−2

2
·Ψ−, (5.7a)

Ψ2 = − 1
2
√

3
·Ψ+, (5.7b)

Ψ4 = − iB2

2
·Ψ−, (5.7c)

where we have reinserted the spin-boost parameter B,

B =
(

Ψ4

Ψ0

) 1
4

. (5.8)

We want to stress the behavior of the introduced quantities in the limit of type D

(cf. section 4.15). The speciality index in Eq. (4.37) reduces to S→ 1 from what we

immediately deduce the behavior of the space-time invariants in the type D limit

J →
√

I3/27, (5.9a)

P → I1/2/
√

3, (5.9b)

and thus the quantity Θ in Eq. (5.6) reduces to

Θ→ 1. (5.10)

We now evaluate the quantities Ψ± in Eq. (5.5) for the frame with k = 0, yielding

Ψ+ = I
1
2
(
Θ+Θ

−1)→ 2I
1
2 , (5.11a)

Ψ− = I
1
2
(
Θ−Θ

−1)→ 0, (5.11b)
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and consequently, the original Weyl scalars simplify in Petrov type D according to

Ψ0 = − iB−2

2
·Ψ−→ 0, (5.12a)

Ψ2 = − 1
2
√

3
·Ψ+→−I1/2/

√
3, (5.12b)

Ψ4 = − iB2

2
·Ψ−→ 0. (5.12c)

Since Ψ0 and Ψ4 tend to zero in Petrov type D we can conclude, by utilizing Def.

3, that the frame with k = 0 is the transverse frame which is also a quasi-Kinnersley

frame.

5.3. The Bianchi Identities

In chapter 4 we introduced the Bianchi identities and defined the projection on to

a tetrad frame. We now deduce the explicit expressions of all non-trivial terms in

the Newman-Penrose formalism, given here in terms of the Weyl scalars and spin

coefficients. As mentioned in section 4.1 the Bianchi identities can be expressed in the

Newman-Penrose formalism according to

R(a)(b)[(c)(d)|( f )] =
1
6 ∑

[(c)(d)( f )]

{
R(a)(b)(c)(d),( f )

−η
(n)(m)

[
γ(n)(a)( f )R(m)(b)(c)(d) + γ(n)(b)( f )R(a)(m)(c)(d)

+γ(n)(c)( f )R(a)(b)(m)(d) + γ(n)(d)( f )R(a)(b)(c)(m)

]}
. (5.13)

Written out explicitly, all non-vanishing identities in a vacuum space-time are given

by the eight following complex identities

−δ
∗
Ψ0 +DΨ1−2(2ρ + ε)Ψ1 +3κΨ2 +(4α−π)Ψ0 = 0, (5.14a)

−δ
∗
Ψ2 +DΨ3 +κΨ4−3πΨ2 +2λΨ1 +2(ε−ρ)Ψ3 = 0, (5.14b)

−DΨ2 +δ
∗−λΨ0 +3ρΨ2 +2(π−α)Ψ1−2κΨ3 = 0, (5.14c)

−δ
∗
Ψ3 +DΨ4 +3λΨ2−2(2π +α)Ψ3 +(4ε−ρ)Ψ4 = 0, (5.14d)
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−∆Ψ0 +3σΨ2 +(4γ−µ)Ψ0δΨ1−2(2τ +β )Ψ1 = 0, (5.14e)

−∆Ψ1 +δΨ2 +νΨ0 +2(γ−µ)Ψ1−3τΨ2 +2σΨ3 = 0, (5.14f)

−∆Ψ2 +δΨ3 +2νΨ1 +σΨ4 +2(β − τ)Ψ3−3µΨ2 = 0, (5.14g)

−∆Ψ3 +δΨ4 +3νΨ2−2(γ +2µ)Ψ3− (τ−4β )Ψ4 = 0. (5.14h)

There seems to be no obvious structure in the equations. But since we want to focus

our attention on the expressions of the scalars in the transverse frames, we enforce the

condition Ψ1 = Ψ3 = 0, considerably simplifying the Bianchi identities:

DΨ4 = −3λΨ2− (4ε−ρ)Ψ4, (5.15a)

DΨ2 = −λΨ0 +3ρΨ2, (5.15b)

∆Ψ0 = 3σΨ2 +(4γ−µ)Ψ0, (5.15c)

∆Ψ2 = σΨ4−3µΨ2, (5.15d)

δΨ4 = −3νΨ2 +(τ−4β )Ψ4, (5.15e)

δΨ2 = −νΨ0 +3τΨ2, (5.15f)

δ
∗
Ψ0 = 3κΨ2 +(4α−π)Ψ0, (5.15g)

δ
∗
Ψ2 = κΨ4−3πΨ2. (5.15h)

We want to stress that we have recast the equations in a more convenient form to

highlight the now appearing structure; we get a set of two coupled equations for

every directional derivative.

5.4. The Ricci Identities

We will perform a similar procedure with the Ricci identities as done with the Bianchi

identities. According to section 4.1 the Ricci identities are defined in the tetrad for-

malism as

R(a)(b)(c)(d) = − γ(a)(b)(c),(d) + γ(a)(b)(d),(c)− γ(b)(a)( f )

[
γ

( f )
(c) (d)− γ

( f )
(d) (c)

]
+ γ( f )(a)(c)γ

( f )
(b) (d)− γ( f )(a)(d)γ

( f )
(b) (c). (5.16)
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By projecting all non-vanishing Ricci identities on to the Newman-Penrose tetrad we

yield a set of 18 complex equations:

Dρ−δ
∗
κ =

(
ρ

2 +σσ
∗)+ρ (ε + ε

∗)−κ
∗
τ−κ (3α +β

∗−π) , (5.17a)

Dσ −δκ = σ (ρ +ρ
∗+3ε− ε

∗)−κ (τ−π
∗+α

∗+3β )+Ψ0, (5.17b)

Dτ−∆κ = ρ (τ +π
∗)+σ (τ∗+π)+ τ (ε− ε

∗)−κ (3γ + γ
∗)+Ψ1, (5.17c)

Dα−δ
∗
ε = α (ρ + ε

∗−2ε)+π (ε +ρ)+βσ
∗−β

∗
ε−κλ −κ

∗
γ, (5.17d)

Dβ −δε = σ (α +π)+β (ρ∗− ε
∗)−κ (µ + γ)− ε (α∗−π

∗)+Ψ1, (5.17e)

Dγ−∆ε = α (τ +π
∗)+β (τ∗+π)+ τπ− γ (ε + ε

∗)− ε (γ + γ
∗)−νκ +Ψ2, (5.17f)

Dλ −δ
∗
π = ρλ +σ

∗
µ +π (π +α−β

∗)−λ (3ε− ε
∗)−νκ

∗, (5.17g)

Dµ−δπ = ρ
∗
µ +σλ +π (π +α−β

∗)−λ (3ε− ε
∗)−νκ +Ψ2, (5.17h)

δρ−δ
∗
σ = ρ (α∗+β )−σ (3α−β

∗)+ τ (ρ−ρ
∗)+κ (µ−µ

∗)−Ψ1. (5.17i)

The other nine Ricci identities can be obtained by swapping the tetrad vectors ` with

n and m with m̄.

In contrast to the Bianchi identities the Ricci identities do not simplify noticeable by

enforcing the condition Ψ1 = Ψ3 = 0,

Dρ−δ
∗
κ =

(
ρ

2 +σσ
∗)+ρ (ε + ε

∗)−κ
∗
τ−κ (3α +β

∗−π) , (5.18a)

Dσ −δκ = σ (ρ +ρ
∗+3ε− ε

∗)−κ (τ−π
∗+α

∗+3β )+Ψ0, (5.18b)

Dτ−∆κ = ρ (τ +π
∗)+σ (τ∗+π)+ τ (ε− ε

∗)−κ (3γ + γ
∗) , (5.18c)

Dα−δ
∗
ε = α (ρ + ε

∗−2ε)+π (ε +ρ)+βσ
∗−β

∗
ε−κλ −κ

∗
γ, (5.18d)

Dβ −δε = σ (α +π)+β (ρ∗− ε
∗)−κ (µ + γ)− ε (α∗−π

∗) , (5.18e)

Dγ−∆ε = α (τ +π
∗)+β (τ∗+π)+ τπ− γ (ε + ε

∗)− ε (γ + γ
∗)−νκ +Ψ2, (5.18f)

Dλ −δ
∗
π = ρλ +σ

∗
µ +π (π +α−β

∗)−λ (3ε− ε
∗)−νκ

∗, (5.18g)

Dµ−δπ = ρ
∗
µ +σλ +π (π +α−β

∗)−λ (3ε− ε
∗)−νκ +Ψ2, (5.18h)

δρ−δ
∗
σ = ρ (α∗+β )−σ (3α−β

∗)+ τ (ρ−ρ
∗)+κ (µ−µ

∗) . (5.18i)

93



5. Non-Perturbative Approach for Wave Extraction

5.5. Directional Derivatives

From the definition of the Lie bracket we derive a set of relations for the commutators

and for the double derivatives in the Newman-Penrose formalism. As an example we

calculate the Lie bracket of [∆,D]:

[∆,D] = [n, `] =−γ121∆+ γ212D− (γ312− γ321)δ
∗− (γ412− γ421)δ . (5.19)

Introducing the designated symbols of the spin coefficients we derive the full set of

commutation relations

[∆,D] = (γ + γ
∗)D+(ε + ε

∗)∆− (τ∗+π)δ − (τ +π
∗)δ

∗, (5.20a)

[δ ,D] = (α +β −π
∗)D+κ∆− (ρ∗+ ε− ε

∗)δ − (τ +π
∗)δ

∗, (5.20b)

[δ ,∆] = −ν
∗D+(τ−α

∗−β )∆+(µ− γ + γ
∗)δ +λ

∗
δ
∗, (5.20c)

[δ ,δ ∗] = (µ
∗−µ)D+(ρ∗−ρ)∆+(α−β

∗)δ +(β −α
∗)δ

∗, (5.20d)

[δ ∗,∆] = −νD+(τ∗−α−β
∗)∆+(µ

∗− γ
∗+ γ)δ

∗+λδ , (5.20e)

[δ ∗,D] = (α∗+β
∗−π)D+κ

∗
∆− (ρ + ε

∗− ε)δ
∗− (τ∗+π)δ . (5.20f)

Furthermore, we can calculate double derivatives in the Newman-Penrose formal-

ism:

DD = (ε + ε
∗)D−κ

∗
δ −κδ

∗+ `µ`ν
∇µ∇ν , (5.21a)

∆∆ = −(γ + γ
∗)∆+νδ +ν

∗
δ
∗+nµnν

∇µ∇ν , (5.21b)

δδ = λ
∗D−σ∆+(β −α

∗)δ +mµmν
∇µ∇ν , (5.21c)

δ
∗
δ
∗ = λD−σ

∗
∆− (α−β

∗)δ
∗+ m̄µm̄ν

∇µ∇ν , (5.21d)

∆D = (γ + γ
∗)D− τ

∗
δ − τδ

∗+nµ`ν
∇µ∇ν , (5.21e)

D∆ = −(ε + ε
∗)∆+πδ +π

∗
δ
∗+ `µnν

∇µ∇ν , (5.21f)

Dδ = π
∗D−κ∆+(ε− ε

∗)δ + `µmν
∇µ∇ν , (5.21g)

δD = (β +α
∗)D−ρ

∗
δ −σδ

∗+mµ`ν
∇µ∇ν , (5.21h)
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Dδ
∗ = πD−κ

∗
∆− (ε− ε

∗)δ
∗+ `µm̄ν

∇µ∇ν , (5.21i)

δ
∗D = (β ∗+α)D−σ

∗
δ −ρδ

∗+ m̄µ`ν
∇µ∇ν , (5.21j)

∆δ = ν
∗D− τ∆+(γ− γ

∗)δ +nµmν
∇µ∇ν , (5.21k)

δ∆ = −(β +α
∗)∆+ µδ +λ

∗
δ
∗+mµnν

∇µ∇ν , (5.21l)

∆δ
∗ = νD− τ

∗
∆− (γ− γ

∗)δ
∗+nµm̄ν

∇µ∇ν , (5.21m)

δ
∗
∆ = −(β ∗+α)∆+λδ + µ

∗
δ
∗+ m̄µnν

∇µ∇ν , (5.21n)

δδ
∗ = µD−ρ

∗
∆− (β −α

∗)δ
∗+mµm̄ν

∇µ∇ν , (5.21o)

δ
∗
δ = µ

∗D−ρ∆+(α−β
∗)δ + m̄µmν

∇µ∇ν . (5.21p)

We will make use of these directional derivatives and double derivatives in section 5.8

to determine the function H.
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5.6. The Type D Spin Relation

As already mentioned, a key ingredient for the derivation of our new extraction for-

malism is rewriting the Bianchi identities in Eqs. (5.15, 5.18) in terms of the newly in-

troduced variables Ψ±. Since ε appears only in the first two Bianchi identities, namely

Eqs. (5.15a, 5.15b), we will give the details of the calculation only for the derivative

operator D; however, as the symmetry of the Bianchi identities suggests, the calcula-

tion for the other derivatives is analogous and trivial to perform, and we will use the

symmetry properties at the end of this chapter to deduce the expressions for the spin

coefficients γ , α and β .

We start by inserting Eq. (5.7), which relate the Weyl scalars Ψ0, Ψ2 and Ψ4 to the

new scalars Ψ+ and Ψ−, into the Bianchi identities yielding

DΨ+ = −λ̃Ψ−+3ρΨ+, (5.22a)

DΨ− = λ̃Ψ+− (4ε̃−ρ)Ψ−, (5.22b)

∆Ψ+ = σ̃Ψ−−3µΨ+, (5.22c)

∆Ψ− = −σ̃Ψ+ +(4γ̃−µ)Ψ−, (5.22d)

δΨ+ = −ν̃Ψ−+3τΨ+, (5.22e)

δΨ− = ν̃Ψ+−
(

4β̃ − τ

)
Ψ−, (5.22f)

δ
∗
Ψ+ = κ̃Ψ−−3πΨ+, (5.22g)

δ
∗
Ψ− = −κ̃Ψ+ +(4α̃−π)Ψ−, (5.22h)

where we have additionally introduced the rescaled spin coefficients

λ̃ = i
√

3λB−2, (5.23a)

σ̃ = i
√

3σB2 (5.23b)

ν̃ = i
√

3νB−2, (5.23c)

κ̃ = i
√

3κB2, (5.23d)
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and

ε̃ = ε +
1
2

D lnB, (5.23e)

γ̃ = γ +
1
2

∆ lnB, (5.23f)

β̃ = β +
1
2

δ lnB, (5.23g)

α̃ = α +
1
2

δ
∗ lnB. (5.23h)

This new set of rescaled spin coefficients now transforms in the same way under a

spin-boost transformation (cf. section 4.6): for example the three spin coefficients{
ρ, λ̃ , ε̃

}
transform according to

ρ → |B|−1
ρ, (5.24a)

ε̃ → |B|−1
ε̃, (5.24b)

λ̃ → |B|−1
λ̃ , (5.24c)

and analogous transformations for the other spin coefficients.

These transformation properties are not a surprising result when we consider how

the individual quantities in Eq. (5.22a) and Eq. (5.22b) transform under a type III

rotation:

Ψ+ and Ψ− are only functions of curvature invariants, therefore the only dependence

on the spin-boost parameter on the left hand side comes from the `µ null vector of

the D derivative operator which carries a |B|−1 factor. Obviously, the right hand side

must be consistent and show the same spin-boost dependence in the rescaled spin

coefficients, what is in fact the case as demonstrated in Eqs. (5.24).

We will now study the behavior of the Bianchi identities in the Petrov type D limit.

By dividing Eq. (5.22a) by Ψ+ and Eq. (5.22b) by Ψ− the first two Bianchi identities
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become:

DΨ+

Ψ+
= −λ̃

Ψ−
Ψ+

+3ρ, (5.25a)

DΨ−
Ψ−

= λ̃
Ψ+

Ψ−
− (4ε̃−ρ) . (5.25b)

Employing the definition of Ψ± in Eq. (5.5) and applying the D operator to Ψ+ and

Ψ− gives

DΨ+ = D lnΘ ·Ψ−+D ln
(

I
1
2

)
Ψ+, (5.26a)

DΨ− = D lnΘ ·Ψ+ +D ln
(

I
1
2

)
Ψ−. (5.26b)

In the limit of Petrov type D, what corresponds to Θ → 1 as demonstrated, these

equations simplify to:

DΨ+→ D ln
(

I
1
2

)
Ψ+, (5.27a)

DΨ−→ D ln
(

I
1
2

)
Ψ−. (5.27b)

This result implies that the left hand sides in Eq. (5.25) tend to the same value in type

D, namely D ln
(

I
1
2

)
, and therefore also the right hand sides can be set to be equal in

this limit. Moreover, from the definition of Ψ± we can calculate the limit of the ratio
Ψ−
Ψ+

, in fact

Ψ−
Ψ+

=
I

1
2

(
e

2πik
3 Θ− e−

2πik
3 Θ−1

)
I

1
2

(
e

2πik
3 Θ+ e−

2πik
3 Θ−1

) →
(

e
2πik

3 − e−
2πik

3

)
(

e
2πik

3 + e−
2πik

3

) =−i tan
(

2πk
3

)
. (5.28)

Putting this all together, and subtracting Eq. (5.25b) from Eq. (5.25a) we find that the

following relation between spin coefficients holds in the Petrov type D limit

(ρ +2ε̃)sin
(

4πk
3

)
+ iλ̃ cos

(
4πk

3

)
= 0, (5.29)

which we call the type D spin relation. Eq. (5.29) is valid for all three transverse frames,
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depending on the value of k.

If we assume to be in the transverse frame that is also a quasi-Kinnersley frame, which

corresponds to having k = 0, Eq. (5.29) reduces to λ̃ = 0 consistently with the Goldberg-

Sachs theorem (cf. section 4.9). Nevertheless, by combining Eq. (5.22a) and Eq. (5.27a)

we can deduce the expression for one of the spin coefficients, namely ρ , in terms of

curvature invariants

ρ = D ln I
1
6 . (5.30)

But the key point to stress here is that in the quasi-Kinnersley frame the Bianchi

identities leave the expression for ε̃ completely unresolved. However, it is really the

expression for ε̃ we are interested in, as it is the one related to the spin-boost transfor-

mation. To obtain additional information on this spin coefficient, we therefore analyze

the Ricci identities.

5.7. Spin Coefficients as Directional Derivatives

In this section, we will use the Ricci identities to understand how the spin coefficients

ε , γ , α and β relate to the spin-boost parameter B. We will first show that they can

be expressed as directional derivatives of the same function, and then determine the

equation that this function must satisfy in the limit of Petrov type D.

We start by assuming to be in the Petrov type D limit, where Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0

and also, as a consequence of the Goldberg-Sachs theorem, the four spin coefficients

λ , σ , ν and κ are vanishing (cf. section 4.9). We begin with the following Ricci identity

(5.18e),

Dβ −δε = σ (α +π)+β (ρ∗− ε
∗)−κ (µ + γ)− ε (α∗−π

∗) , (5.31)

simplifying in the limit of type D to

Dβ −δε = β (ρ∗− ε
∗)− ε (α∗−π

∗) . (5.32)

Here we obtain, after adding and subtracting the product βε on the right-hand side,
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the relation:

Dβ −δε = ε (π∗−α
∗−β )+β (ρ∗+ ε− ε

∗) . (5.33)

By inserting the definition of the rescaled spin coefficients ε̃ and β̃ in Eq. (5.23) we

can re-express this Ricci identity in terms of ε̃ and β̃ , leading to

Dβ̃ −δ ε̃ = ε̃ (π∗−α
∗−β )+ β̃ (ρ∗+ ε− ε

∗) . (5.34)

Comparing Eq. (5.34) with the expression of the commutator [D,δ ] (again assuming

σ = κ = 0) in Eq. (5.20b), namely

[D,δ ] = Dδ −δD = (π∗−α
∗−β )D+(ρ∗+ ε− ε

∗)δ , (5.35)

it is possible to see that these equations are consistent by assuming ε̃ = DH1 and

β̃ = δH1, where H1 is a function to be determined. Using the equivalent Ricci identity

obtained after exchanging the tetrad vectors `↔ n and m↔ m̄,

∆α̃−δ
∗
γ̃ = α̃ (γ∗− γ−µ

∗)+ γ̃ (α +β
∗− τ

∗) , (5.36)

we obtain an equivalent result for the spin coefficients γ̃ and α̃ when compared to

the commutator [∆,δ ∗] in Eq. (5.20e) and conclude that they also can be expressed as

γ̃ = ∆H2 and α̃ = δ ∗H2, where H2 is a function to be determined.

Using the properties of transformation of the spin coefficients under the exchange

operation `µ ↔ nµ and mµ ↔ m̄µ , which corresponds to exchanging ε̃ ↔−γ̃ and α̃ ↔

−β̃ , we can immediately conclude that

H1 =−H2 = H , (5.37)

where H is still to be determined. Nevertheless, the four spin coefficients can then be

written as

ε̃ = DH , γ̃ =−∆H , (5.38a)

β̃ = δH , α̃ =−δ
∗H , (5.38b)
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and the original spin coefficients are therefore given by

ε = DH − 1
2

D lnB = DH−, (5.39a)

γ = −∆H − 1
2

∆ lnB =−∆H+, (5.39b)

β = δH − 1
2

δ lnB = δH−, (5.39c)

α = −δ
∗H − 1

2
δ
∗ lnB =−δ

∗H+, (5.39d)

where we have introduced the additional quantity H± = H ± 1
2 lnB.

In the next section we make use of some other Ricci identities to find the explicit

expression for H .

5.8. The Function H

To determine the function H we consider the two following Ricci identities

Dγ−∆ε = α (τ +π
∗)+β (τ∗+π)+ τπ− γ (ε + ε

∗)− ε (γ + γ
∗)+Ψ2, (5.40a)

δα−δ
∗
β = µρ +αα

∗+ββ
∗−2αβ + γ (ρ−ρ

∗)+ ε (µ−µ
∗)−Ψ2. (5.40b)

Again, by utilizing the rescaled spin coefficients in Eq. (5.23) we can remove the

spin-boost dependence in these identities, yielding

Dγ̃−∆ε̃ = α̃ (τ +π
∗)+ β̃ (τ∗+π)+ τπ− γ̃ (ε + ε

∗)− ε̃ (γ + γ
∗)+Ψ2, (5.41a)

δ α̃−δ
∗
β̃ = µρ + α̃α

∗+ β̃β
∗−2α̃β̃ + γ̃ (ρ−ρ

∗)+ ε̃ (µ−µ
∗)−Ψ2. (5.41b)

Since we have just found that the reduced spin coefficients on the left-hand sides can

be expressed as directional derivatives of H , cf. Eq. (5.38), we yield terms of the form

D∆H or δδH among others.

Thus, we can use the definition of double derivatives in Eq. (5.21) to find an equiv-

alent form of Eq. (5.40) or Eq. (5.41), respectively. The particular equations we will
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make use of are the following

D∆ = −(ε + ε
∗)∆+πδ +π

∗
δ
∗+ `µnν

∇µ∇ν , (5.42a)

∆D = (γ + γ
∗)D− τ

∗
δ − τδ

∗+nµ`ν
∇µ∇ν , (5.42b)

δδ
∗ = µD−ρ

∗
∆− (β −α

∗)δ
∗+mµm̄ν

∇µ∇ν , (5.42c)

δ
∗
δ = µ

∗D−ρ∆+(α−β
∗)δ + m̄µmν

∇µ∇ν . (5.42d)

As an example, we calculate the term Dγ̃ on the left hand side of Eq. (5.41a). Using

the property just found that in the Petrov type D limit γ̃ =−∆H , this term is given by

Dγ̃ =−D∆H , (5.43)

and using Eq. (5.42a) this corresponds to

Dγ̃ =−D∆H = (ε + ε
∗)∆H −πδH −π

∗
δ
∗H − `µnν

∇µ∇νH . (5.44)

If we substitute α̃ =−δ ∗H and β̃ = δH we yield

Dγ̃ = −(ε + ε
∗) γ̃−πβ̃ +π

∗
α̃− `µnν

∇µ∇νH . (5.45)

By repeating the same procedure for ∆ε̃ , δ α̃ and δ ∗β̃ and comparing the expressions

with the Ricci identities in Eq. (5.41) we finally end up with the following two identities

for the function H :

2`µnν
∇µ∇νH = −2πβ̃ −2τα̃−πτ−Ψ2, (5.46a)

2mµm̄ν
∇µ∇νH = −2µε̃−2ργ̃−µρ +Ψ2. (5.46b)

As a last step, we subtract Eq. (5.46b) from Eq. (5.46a) and utilize the definition of the

metric in the tetrad, namely

gµν = 2`(µnν)−2m(µm̄ν), (5.47)
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thus obtaining the master equation for H :

∇
µ

∇µH +∇
µ ln
(

I
1
6

)
∇µ

(
2H + ln I

1
12

)
=−2Ψ2, (5.48)

where we have also used the fact that in the Petrov type D limit ρ = D ln I
1
6 , µ =−∆ ln I

1
6 ,

τ = δ ln I
1
6 and π =−δ ∗ ln I

1
6 .

In the next section we will solve Eq. (5.48) for the single black hole case to obtain

the condition on the spin-boost parameter.

5.9. Weyl Scalars in Terms of Curvature Invariants

We can now apply the results we just found to the particular case of the Kerr solution

using Boyer-Lindquist coordinates. The metric in this case reads (cf. section 4.11, 4.12)

ds2 =
(

1− 2Mr
Σ

)
dt2 +

(
4Mar sin2

θ

Σ

)
dtdφ −

(
Σ

Γ

)
dr2− Σdθ

2− sin2
θ

(
∆̃

Σ

)
dφ

2, (5.49)

where Γ = r2−2Mr +a2, Σ = r2 +a2 cos2 θ , ∆̃ = r2 +a2 +2Mar sin2
θ , M is the black hole

mass and a its rotation parameter. The Kinnersley tetrad in this coordinate system is

given by

`µ =
1
Γ

[(
r2 +a2) ,Γ,0,a

]
, (5.50a)

nµ =
1

2Σ

[
r2 +a2,−Γ,0,a

]
, (5.50b)

mµ =
1√
2ρ̄

[iasinθ ,0,1, isecθ ] , (5.50c)

where ρ̄ = r + iacosθ .

The solution for Eq. (5.48) in this particular coordinate system can be straightfor-

wardly carried out and reads

H =
1
2

ln
(

Γ
1
2 I

1
6 sinθ

)
. (5.51)

We now have all the elements to find the values of the spin coefficients ε , γ , β and α
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in the limit of type D, and in particular the condition on the spin-boost parameter. As

already shown, the four spin coefficients ε , γ , α and β can be written as follows

ε = DH − 1
2

D lnB, (5.52a)

γ = −∆H − 1
2

∆ lnB, (5.52b)

β = δH − 1
2

δ lnB, (5.52c)

α = −δ
∗H − 1

2
δ
∗ lnB. (5.52d)

This result can be compared with the expressions for the same spin coefficients in the

Kinnersley tetrad, given by

ε = 0, (5.53a)

γ = µ +ρρ
∗ (r−M)/2, (5.53b)

β = cotθ/(2
√

2ρ̄), (5.53c)

α = π−β
∗. (5.53d)

Let us consider first the spin coefficient ε . Using Eq. (5.52a) and the solution for H

found in Eq. (5.51) we can rewrite ε in the following way

ε =
1
2

D ln
(

Γ
1
2 I

1
6 B−1 sinθ

)
. (5.54)

In order for this expression to be zero, the function inside the logarithm must be con-

stant with respect to the derivative operator D. Given the form of the Kinnersley tetrad

in Eq. (5.50), one concludes that the D operator corresponds to the simple ∂r deriva-

tive (assuming that the functions do not have a t or φ dependence, which is indeed

the case, as the Kerr space-time is stationary and axisymmetric). As a consequence of

this, ε vanishes if the function on the right hand side is a generic function only of the

coordinate θ . This leads to the following condition on the spin-boost parameter

B = B0 f (θ) I
1
6 Γ

1
2 sinθ , (5.55)
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where B0 is an integration constant. By rewriting the other spin coefficients in a

similar manner, namely

γ = −1
2

∆ ln
(

Γ
1
2 I

1
6 B sinθ

)
, (5.56)

β = −1
2

δ
∗ ln
(

Γ
1
2 I

1
6 B sinθ

)
, (5.57)

α =
1
2

δ ln
(

Γ
1
2 I

1
6 B−1 sinθ

)
, (5.58)

we can determine the function f (θ). In fact, it can be easily shown that the spin

coefficient γ given in Eq. (5.53b) is consistent with Eq. (5.55), imposing no further

condition on f (θ).

The spin coefficient β can instead be used to find the unknown function f (θ): the

derivative operator δ is given by

δ = mµ
∇µ =

1√
2ρ̄

∂θ , (5.59)

and is therefore related to the θ -dependence of the spin-boost parameter. A straight-

forward calculation yields f (θ) = sin−1
θ , consistent also with the spin coefficient α .

Thus, the final result for B reads

B = B0I
1
6 Γ

1
2 . (5.60)

5.9.1. Final Expressions for the Weyl Scalars and Peeling Behavior

Finally, we want to apply these results to the Weyl scalars; by inserting the expression

of the spin-boost parameter in Eq. (5.60) into the definition of the scalars in Eq. (5.7)

we yield

Ψ0 = − i
2
B−2

0 ·Γ
−1I

1
6
(
Θ−Θ

−1) , (5.61a)

Ψ2 = − 1
2
√

3
· I

1
2
(
Θ+Θ

−1) , (5.61b)

Ψ4 = − i
2
B2

0 ·ΓI
5
6
(
Θ−Θ

−1) . (5.61c)
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It is remarkable how these expressions for the scalars immediately give the correct

radial fall-offs at future null infinity once the peeling behavior of the Weyl tensor is

assumed:

• The function Γ is only defined in the limit of Petrov type D and gives no radial

contribution at future null infinity.

• Given under the peeling assumption that I ∝ r−6, we find the same result for Θ

as it is the ratio of quantities that have the same radial behavior at future null

infinity, namely

Θ =
√

3PI−
1
2 ∝

r−3

r−3 . (5.62)

• In conclusion, the quantities that give a contribution at future null infinity are

the factors I
1
6 , I

1
2 and I

5
6 , corresponding to

Ψ0 ∝ r−1, Ψ2 ∝ r−3 and Ψ4 ∝ r−5. (5.63)

The fact that we obtain radial fall-offs for Ψ0 and Ψ4 that are exchanged with respect

to the normal assumption of outgoing radiation in the literature, where Ψ0 ∝ r−5 and

Ψ4 ∝ r−1, is not surprising: this is due to the fact that in the Kinnersley tetrad the null

vector `µ is ingoing while nµ is outgoing. The standard notation requires instead the

opposite situation where `µ is outgoing and nµ is ingoing.

This means that one needs to exchange `µ ↔ nµ to have the right convention, what

in fact results in B→B−1 and the Weyl scalars are changed to

Ψ0 = − i
2
B2

0 ·ΓI
5
6
(
Θ−Θ

−1) , (5.64a)

Ψ2 = − 1
2
√

3
· I

1
2
(
Θ+Θ

−1) , (5.64b)

Ψ4 = − i
2
B−2

0 ·Γ
−1I

1
6
(
Θ−Θ

−1) . (5.64c)

giving this time, as expected, the correct radial fall-offs for Ψ0 and Ψ4.
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5.9.2. Conclusion

Eqs. (5.64) are the main result that we propose for wave extraction in numerical rel-

ativity. As evident from the equations, the conditions on the spin coefficients do not

completely fix the values of the Weyl scalars, leaving the constant B0 undetermined.

This is not surprising as such conditions involve the directional derivatives along the

tetrad null vectors and are therefore independent of additional constant multiplication

factors. The optimal value of this integration constant will have to be determined

enforcing the values of the spin coefficients ρ , µ , τ and π . We will present a possible

value for the integration constant in the following chapter 6.

We are also investigating the comparison of these expressions with the analogous

quantities defined in the characteristic formulation of Einstein’s equations [74, 75, 76].

As we expect, this should give us more insights on how to choose this integration

constant from a more theoretical point of view. This is the subject of future work on

this topic.
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the Newman-Penrose Formalism

I was born not knowing and have only had a little time to change that here and there.

Richard Feynman

In this chapter we study on an analytical level how the expressions for the Weyl scalars

depend on the tetrad we choose in a space-time containing distorted black holes. We

will calculate all relevant quantities in the transverse frames, and show how we can

deduce the spin-boost parameter to find the quasi-Kinnersley tetrad. Finally and most

importantly, we will extract the gravitational wave signal and we will demonstrate

the advantage of our approach proposed in chapter 5 compared to commonly used

methods in numerical relativity.

In spirit this work follows [77, 78, 79, 80, 81, 82, 83, 84, 85] in constructing a distorted

black hole by superposing a Schwarzschild space-time and a pure Brill wave space-

time.

In this chapter we will refer to a symmetric tetrad as a transverse tetrad (Ψ1 = Ψ3 = 0)

obeying the additional symmetry Ψ0 = Ψ4. It further satisfies Def. 3, namely Ψ0 =

Ψ4 → 0 for S→ 1, therefore being a member of the quasi-Kinnersley frame. The quasi-

Kinnersley tetrad, belonging to the same frame, obeys the additional condition of ε→ 0

in the limit of type D, thus being equivalent to the Kinnersley tetrad in Petrov type

D. If it is at all necessary to impose the condition ε = 0 in Petrov type I has not been

clarified as to yet. This is partly due to the fact that the Kinnersley tetrad is defined

in Petrov type D, thus a more general definition of that particular tetrad just does not

exist up to date. In this chapter we demonstrate an approach of how to impose this
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condition ε = 0 in Petrov type I in general, for the perturbed black hole space-time

under consideration.

6.1. Brill Wave Initial Data

Brill waves have been used by the numerical relativity community from its earliest

days since discovery by Brill. In his original work Brill gave the first positivity of

energy result in General Relativity [77]. Brill waves are an excellent exploration tool

for such purposes because the space-time contains only radiation, it is only radiation.

Moreover, they have been interesting in their own right because they are a particularly

simple solution to the vacuum equations of General Relativity, but rich in structure.

Radiation and evolution of numerically constructed initial data of pure gravitational

waves have already been studied (e.g. [80]) . Brill wave solutions have also shed light

on the problem of accurately defining the mass of numerically generated initial data

sets. They have been used as a test of the Cosmic Censorship (e.g. [26], [86]), moreover

black hole interaction with gravitational waves (e.g. [85]) and gravitational collapse of

Brill waves (e.g. [87]) have been investigated.

6.1.1. Pure Gravitational Waves

Brill originally considered axisymmetric, time symmetric, vacuum initial data for

the Einstein equations of an asymptotically flat hypersurface with R3 topology as a

Cauchy problem, i.e. the initial data consists of a three metric γ i j and the extrin-

sic curvature Ki j. These are vacuum solutions and they satisfy the Hamiltonian and

Momentum constraints which reduce in a vacuum space-time to:

R+K2−Ki jKi j = 0, (6.1)

∇iKi
j−∇ jKi

i = 0. (6.2)

Here R is the scalar curvature and ∇ the covariant derivatives associated with γ i j. By

enforcing the condition of time symmetry of the initial slice the extrinsic curvature

tensor Ki j vanishes and leaves only the condition R = 0 for the Hamiltonian constraint
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to be satisfied. Following York’s Thin-Sandwich decomposition [88] the three metric

can be written in conformal form

γi j = ψ
4
γ̄i j, (6.3)

where ψ is the conformal factor. The axially symmetric orthogonal three-metric under

consideration takes in polar-like coordinate the form

ds̄2 = γ̄i j dxi dx j = eq (dρ
2 + dz2)+ρ

2 dθ
2, (6.4)

where r2 = ρ2 + z2 and q is an (almost arbitrary) function of ρ and z. Brill imposed an

equatorial symmetry condition across the z = 0 plane, that q decays fairly rapidly at

infinity (faster than 1/r) and that it is regular at ρ = 0:

∂q
∂ z
|z=0 = 0, lim

ρ→∞
q = O

(
ρ
−2) , ∂q

∂ρ
|ρ=0 = 0, q|ρ=0 = 0. (6.5)

With these assumptions the Ricci scalar becomes

R = ψ
−4R̄−8ψ

−5
∇̄

2
ψ, (6.6)

and thus the Hamiltonian constraint turns out to be

∇̄
2
ψ =

1
8

R̄, (6.7)

where ∇̄2 is Laplacian associated with the conformal metric γ̄i j:

∇̄
2
ψ = e−q

(
∂ 2ψ

∂ρ2 +
∂ 2ψ

∂ z2 +
1
ρ

∂ψ

∂ρ

)
, (6.8)

and the scalar curvature R̄ is, in case of a space-time consisting of radiation

R̄ =−e−q
(

∂ 2q
∂ρ2 +

∂ 2q
∂ z2

)
. (6.9)
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From the assumption that we find a solution to Eq. (6.7) we can calculate the total

energy of our space-time. In his thesis Brill gives the first positivity of mass result

in General Relativity. His proof is valid for time-symmetric, axially symmetric and

asymptotically Euclidian space-times [77]1.

The most simple solution satisfying the restrictions in Eq. (6.72) is the form first

considered by Eppley [80]:

q(ρ,z) =
aρ2(

1+
( r

λ

)n) , (6.10)

where a and λ are constants, r2 = ρ2 + z2 and n≥ 4. Another solution has been found

by Holz [90]:

q(ρ,z) = 2aρ
2e−r2

, (6.11)

where again r2 = ρ2 + z2 and a is a free choose-able parameter.

1An extension of this prove to maximal hypersurfaces and non trivial topologies was carried out by
Sergio Dain [89]
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6.1.2. Distorted Black Hole Initial Data

A distorted black hole creates a connection between pure gravitational waves and two

black hole space-times because it contains an Einstein-Rosen bridge [91] and gravita-

tional radiation, whereas interacting black holes and Brill waves are defined only in

an otherwise empty space-time. Hence one may consider initial data that represents

a black hole that is surrounded by a cloud of gravitational radiation, with a range of

parameters from a weakly perturbed black hole to an interaction in which the wave

has a mass many times the mass of the black hole. The space-time is a combination

of conformally flat wormhole data sets (cf. Misner [92], Brill-Lindquist [93]) and Brill

wave space-times. The 3-space topology of the Einstein-Rosen bridge is the one of a

hypercylinder (S2 x R), where two asymptotically flat sheets are connected through a

2-sphere.

If the amplitude of the Brill wave is equal to zero the resulting space-time is Minkowski-

flat in the pure Brill wave case, while in the distorted black hole space-time we are left

with a conformally-flat Schwarzschild space-time, logically. From this point of view

and the mentioned construction as a combination of Misner Data and pure gravita-

tional wave space-times, it is not surprising that the space-time is constructed similarly

to the pure gravitational wave data sets.

The situation can be regarded as a scattering problem; incoming gravitational radi-

ation from past null infinity “hits” a spherically symmetric hole, which is therefore

deformed by the incoming radiation and emits radiation of its own. Together they

form a state where the Bel-Robinson vector is momentarily zero2 [85]. The initial-

value problem is analogous to the case of the pure Brill wave space-time; It consists

of finding a three-metric γ i j and extrinsic curvature K i j which satisfy the Hamiltonian

and Momentum constraint of General Relativity in vacuum, cf. Eqs. (6.1, 6.2). As in

the pure Brill wave space-time we enforce the initial slice to be time-symmetric. Thus

the extrinsic curvature tensor vanishes and leaves only the Hamiltonian constraint, Eq.

2The Bel-Robinson tensor can be defined in terms of the Weyl tensor by
Tµνρσ = Cµλρδ C λ δ

ν σ
− 3

2 gµ[νCκγ]ρδ Cκγ δ

σ . This construction is closely analogous to the definition of
the stress tensor of the electromagnetic field and therefore can provide associations for the average
gravitational stress (such as the pressure of gravitational radiation).
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(6.1), ∇̄2ψ = 1
8 ψ R̄ to be satisfied. The Momentum constraint will be satisfied identi-

cally.

The way to proceed in the next section is to choose γ i j and solve Eq. (6.1) for the con-

formal factor ψ . Conformal decomposition using a flat metric γ̄ i j leads only to trivial

solutions thus we are forced to find another form for γ̄ i j. We relax the flatness criteria

and use a metric of the form

dl2 = ψ
4 [e2q (dρ

2 +ρ
2 dθ

2)+ρ
2 sinθ

2 dφ
2] , (6.12)

where the scalar curvature turns out to be

R̄ =−2e−2q
[

∂ 2q
∂ρ2 +

1
ρ2

∂ 2q
∂θ 2 +

1
ρ

∂q
∂ρ

]
, (6.13)

and ∇̄2 = e−2q× ∇̄2
f lat .

Finally the Hamiltonian constraint ∇̄2ψ = 1
8 ψ R̄ becomes

1
ρ2

∂

∂ρ

(
ρ

2 ∂

∂ρ

)
ψ +

1
ρ2 sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
ψ =−1

4
ψ

(
∂ 2q
∂ρ2 +

1
ρ2

∂ 2q
∂θ 2 +

1
ρ

∂q
∂ρ

)
. (6.14)

In case of a vanishing amplitude of the Brill waves the perturbation q(r,θ) tends to

zero.

Throughout this chapter we simplify the expressions by writing q and ψ while the

functions always depend on r and θ .

6.2. Weyl Scalars and Spin Coefficients on the Initial Slice

We choose the metric for the space-time to Schwarzschild in isotropic coordinates:

ds2 = α
2dt2−ψ

4 [e2q (dr2 + r2dθ
2)+ r2 sin2

θdφ
2] , (6.15)
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Space  outside  
wormhole

Brill wave

Figure 6.1.: The initial data of a “Brill wave plus black hole space-time” corresponds
to a wormhole connecting two universes being surrounded by a cloud of
gravitational waves.

where α is the analytic lapse, α =
(2r−M

2r+M

)
of the space-time. We will follow the stan-

dard approach [94] in constructing an orthonormal set of null vectors: We define an

extraction world-tube, x2 + y2 + z2 = r2, and construct a triad of orthonormal spatial

vectors by applying a Gram-Schmidt procedure in the following way:

ui = [−y,x,0] , (6.16a)

vi = [x,y,z] , (6.16b)

ui =
√

ggia
εabcubvc. (6.16c)

Finally, by adjoining a time-component to the tetrad, four null vectors are given by

n0 =
1√
2α

, ni =
1√
2α

(
−β i

α
− vi

)
, (6.17a)

`0 =
1√
2α

, `i =
1√
2α

(
−β i

α
+ vi

)
, (6.17b)

m0 = 0, mi =
1√
2

(
ui + iwi) . (6.17c)
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The explicit expression of the tetrad is

`
µ

B =
1√
2

(
(2r +M)
(2r−M)

,
e−q

ψ2 ,0,0
)

, (6.18a)

nµ

B =
1√
2

(
(2r +M)
(2r−M)

,−e−q

ψ2 ,0,0
)

, (6.18b)

mµ

B =
1√
2

(
0,0,− e−q

rψ2 ,
i

rψ2 sinθ

)
, (6.18c)

where the null vectors satisfy the null-vector conditions Eqs. (4.22, 4.22). The index B

indicates quantities on the initial slice.

The vectors in such a tetrad will differ from the expressions of the Kinnersley tetrad;

as a consequence, all quantities calculated in this frame will differ from the quantities

calculated in the Kinnersley tetrad as well. Most importantly, the Weyl scalars will all

be non-zero. For our particular choice of the metric these will result in

Ψ
B
2 =

e−2q(r,θ)

S

(
−6M−

(
2r2
(

∂ψ

∂ r

)2

−
(

∂ψ

∂θ

)2
)

M2
+−2ψ

(
3M±

(
cot(θ)− ∂q

∂θ

)
∂ψ

∂θ

+ 3M±ψ
(0,2) + r

(
6M2 +16rM−24r2 +3rM±

∂q
∂ r

)
∂ψ

∂ r

)
M+

− ψ
2
(

8Mr(M +6r)−3M+

(
M± cot(θ)

∂q
∂θ
− r
(
M2 +4rM−4r2) ∂q

∂ r

)))
, (6.19a)

Ψ
B
1 =

3e−2q(r,θ)M+

S

(((
M2 +4rM−4r2) ∂q

∂θ
+ rM± cot(θ)

∂q
∂ r

)
ψ

2

+ 2
(

∂ψ

∂θ

(
M±+4rM + rM±

∂q
∂ r

)
+ rM±

(
∂q
∂θ

∂ψ

∂ r
− ∂ 2ψ

∂ r∂θ

))
ψ +6rM±

∂ψ

∂θ

∂ψ

∂ r

)
,

(6.19b)

Ψ
B
4 =

3e−2q(r,θ)M+

S

((
−M± cot(θ)

∂q
∂θ

+M±
∂ 2q
∂θ 2 + r

(
2(M±+2rM)

∂q
∂ r

+ rM±
∂ 2q
∂ r2

))
ψ

2

+ 2M±

(
∂q
∂ r

∂ψ

∂ r
r2−

(
cot(θ)+

∂q
∂θ

)
∂ψ

∂θ
+

∂ 2ψ

∂θ 2

)
ψ−6M±

(
∂ψ

∂θ

)2
)

, (6.19c)

where S =−12r2M−M2
+ψ(r,θ)6 M̃± = M+M−, M+ = M +2r and M− = M−2r . The Weyl
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scalars obey the additional symmetry

Ψ
B
4 = Ψ

B
0 (6.20a)

Ψ
B
1 = −Ψ

B
3 . (6.20b)

Beside computing the Weyl scalars we want to calculate other important quantities in

the Newman-Penrose formalism. The spin coefficients are according to Eqs. (4.28):

µ
B = ρ

B, (6.21a)

π
B = κ

B =−ν
B =−τ

B, (6.21b)

σ
B = λ

B, (6.21c)

γ
B = ε

B, (6.21d)

β
B = −α

B, (6.21e)

ρ
B = − e−q

2
√

2rψ3

[
ψ

(
2+ r

∂q
∂ r

)
+4r

∂ψ

∂ r

]
, (6.21f)

λ
B = − e−q

2
√

2ψ2

∂q
∂ r

, (6.21g)

ε
B = −

√
2e−qM

(M2−4r2)ψ2 , (6.21h)

π
B =

e−q

2
√

2rψ3

(
ψ

∂q
∂θ

+2
∂ψ

∂θ

)
, (6.21i)

α
B = − e−q

2
√

2rψ3

(
ψ cotθ +2

∂ψ

∂θ

)
. (6.21j)

The scalar curvature, encoded in the Ricci scalar, is non-zero and given by:

R =−
16e−2qM

(
Mψ + r (M +2r) ∂ψ

∂ r

)
(M−2r)(M +2r)2 rψ5

. (6.22)

It vanishes for q = 0 and ψ = 1 + M
2r , corresponding to the vacuum solution of a

Schwarzschild black hole.
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6.3. Finding the Transverse Frames

We will now search for the transverse frames, which are three-fold in a Petrov type

I space-time, one of them being the quasi-Kinnersley frame containing the quasi-

Kinnersley tetrad. By applying the procedure in section 4.15.2 we calculate the trans-

formation parameters a and b to perform a rotation into a transverse frame from the

definition of the scalars on the initial slice. A solution is readily found as we will

demonstrate now.

6.3.1. The First Transverse Frame

The equation for b is given by the explicit formula derived from Eqs. (4.96).

b =− Ψ3 +3āΨ2 +3ā2Ψ1 + ā3Ψ0

Ψ4 +4āΨ3 +6ā2Ψ2 +4ā3Ψ1 + ā4Ψ0
, (6.23)

whereas we have to solve the following sixth order equation for the parameter ā

P1ā6 +P2ā5 +P3ā4 +P4ā3 +P5ā2 +P6ā+P7 = 0, (6.24)

where the Pn simplify in the case under study to

P1 = P7 =−1
5
P3 =−1

5
P5 (6.25a)

P2 = −P6, (6.25b)

P4 = 0. (6.25c)

Therefore Eq. 6.24 reduces to

P1

(
ā6 +1− 1

5
ā4− 1

5
ā2
)

+P2
(
ā5− ā

)
= 0, (6.26)

From this we can immediately find two solutions for ā, namely:

ā =±i. (6.27)
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The equation for the parameter b simplifies to

b =−
3āΨ2 +

(
3ā2−1

)
Ψ1 + ā3Ψ0

6ā2Ψ2 +4ā(ā2−1)Ψ1 +(1+ ā4)Ψ0
, (6.28)

and the corresponding solution is

b =± i
2
. (6.29)

Performing a Type I and Type II rotation using the parameters (a =−i,b = i/2) the

tetrad vectors in the resulting transverse frame read:

lµ

T F =

(
−
√

2(M +2r)
(M−2r)

,0,0,

√
2cscθ

rψ2

)
, (6.30a)

nµ

T F =
(
− (M +2r)

2
√

2(M−2r)
,0,0,− cscθ

2
√

2rψ2

)
, (6.30b)

mµ

T F =
(

0,− ie−q
√

2ψ2
,

e−q
√

2rψ2
,0
)

, (6.30c)

where quantities in the transverse frame are indicated by the sub- and superscript T F ,

respectively. Contracting the Weyl tensor with the null vectors the spin coefficients in

this tetrad turn out to be:

ρ
T F = µ

T F = λ
T F = σ

T F = γ
T F = ε

T F = 0, (6.31a)

τ
T F = − e−q

2
√

2rM̃±ψ3

[
X ψ +2M̃±

(
∂ψ

∂θ
− ir

∂ψ

∂ r

)]
, (6.31b)

π
T F = − e−q

2
√

2rM̃±ψ3

[
T ψ−2M̃±

(
∂ψ

∂θ
+ ir

∂ψ

∂ r

)]
, (6.31c)

ν
T F = − e−q

8
√

2rM̃±ψ3

[
U ψ +2M̃±

(
∂ψ

∂θ
+ ir

∂ψ

∂ r

)]
, (6.31d)

κ
T F = − 2e−q

√
2rM̃±ψ3

[
V ψ−2M̃±

(
∂ψ

∂θ
− ir

∂ψ

∂ r

)]
, (6.31e)

β
T F = − ie−q

2
√

2rψ3

[
2i

∂ψ

∂θ
+ψ

(
1+ i

∂q
∂θ

+ r
∂q
∂ r

)
+2r

∂ψ

∂ r

]
, (6.31f)

α
T F = − ie−q

2
√

2rψ3

[
−2i

∂ψ

∂θ
+ψ

(
1− i

∂q
∂θ

+ r
∂q
∂ r

)
+2r

∂ψ

∂ r

]
, (6.31g)
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where

X =
(
−i
(
M̃±−4Mr

)
+ M̃± cotθ

)
, (6.32a)

T =
(
−i
(
M̃±−4Mr

)
− M̃± cotθ

)
, (6.32b)

U =
(
i
(
M̃±+4Mr

)
+ M̃± cotθ

)
, (6.32c)

V =
(
i
(
M̃±+4Mr

)
− M̃± cotθ

)
. (6.32d)

Finally, we compute the Weyl scalars in this frame in terms of the scalars obtained

from the Gram-Schmidt procedure, yielding:

Ψ
T F
0 = 2

(
−3Ψ

B
2 −4iΨB

3 +Ψ
B
4
)
, (6.33a)

Ψ
T F
2 =

1
2
(
−Ψ

B
2 −Ψ

B
4
)
, (6.33b)

Ψ
T F
4 =

1
8
(
−3Ψ

B
2 +4iΨB

3 +Ψ
B
4
)
. (6.33c)
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Explicitly calculated the scalars read

Ψ
T F
0 =

e−2q(r,θ)

S

((
8Mr(M +6r)+M+

(
4(i(M±+4rM)−M± cot(θ))

∂q
∂θ

+M±
∂ 2q
∂θ 2

+ r
((

5M2 +16rM−20r2 +4iM± cot(θ)
) ∂q

∂ r
+ rM±

∂ 2q
∂ r2

)))
ψ

2

+ 4M+

(
2M±

∂ 2ψ

∂θ 2 +
∂ψ

∂θ

(
2i(M±+4rM)+M± cot(θ)−2M±

(
∂q
∂θ
− ir

∂q
∂ r

))
+ r

((
3M±+8rM +2M±

(
i
∂q
∂θ

+ r
∂q
∂ r

))
∂ψ

∂ r
−2iM±

∂ 2ψ

∂ r∂θ

))
ψ (6.34a)

+ 12M−M2
+

(
i
∂ψ

∂θ
+ r

∂ψ

∂ r

)2
)

,

Ψ
T F
4 =

1
16
(
Ψ

T F
0
)∗

, (6.34b)

Ψ
T F
2 =

e−2q(r,θ)

12S

(
12M−

((
∂ψ

∂θ

)2

+ r2
(

∂ψ

∂ r

)2
)

M2
+

+ 4ψ

(
3M± cot(θ)

∂ψ

∂θ
+ r (3M±+8rM)

∂ψ

∂ r

)
M+

+ ψ
2
(

8Mr(M +6r)−3M−M2
+

(
∂ 2q
∂θ 2 + r

(
∂q
∂ r

+ r
∂ 2q
∂ r2

))))
, (6.34c)

where S = −2r2M±M+ψ6, M± = M+M−, M+ = M + 2r and M− = M− 2r. That we end

up in a transverse frame is immediately recognized by the two longitudinal scalars

being zero, ΨT F
1 = ΨT F

3 = 0. Additionally, it is easy to see that we do not end up in

the quasi-Kinnersley frame by going to the limit of future null infinity. Performing the

limit of Petrov type D we yield for Ψ0 and Ψ4

Ψ
T F
0 → −6Ψ

B
2 (6.35a)

Ψ
T F
4 → −3

8
Ψ

B
2 , (6.35b)

which is contradictory to Def. 3 for the quasi-Kinnersley frame.
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6.3.2. The Quasi-Kinnersley Frame

To find the quasi-Kinnersley frame we first rescale the scalars in the transverse frame

we just found to set ΨT F
0 = ΨT F

4 . Therefore, we perform a type III transformation, cf.

Eqs. (4.48 - 4.50) with a boost parameter defined by

B =
(

ΨT F
0

ΨT F
4

)1/4

= 2

(
ΨT F

0(
ΨT F

0 .
)∗
)1/4

=
(

1
16

+
ΨB

3

6iΨB
2 −8ΨB

3 −2iΨB
4

)−1/4

= Ae−iΘ, (6.36)

where the modulus A and the phase Θ of the complex valued boost are defined as

A =
√

ℜ [B]2 +ℑ [B]2, (6.37a)

Θ = arctan
(

ℑ [B]
ℜ [B]

)
. (6.37b)

The Weyl scalars are rescaled under this type III transformation according to

Ψ
T F
0 =

1
2
(
−3Ψ

B
2 −4iΨB

3 +Ψ
B
4
)√

1+
8iΨB

3

−3ΨB
2 −4iΨB

3 +ΨB
4
, (6.38a)

Ψ
T F
4 =

(
−3ΨB

2 +4iΨB
3 +ΨB

4
)

2
√

1+ 8iΨB
3

−3ΨB
2−4iΨB

3 +ΨB
4

, (6.38b)

Ψ
T F
1 = Ψ

T F
3 = 0, (6.38c)

Ψ
T F
2 =

1
2
(
−Ψ

B
2 −Ψ

B
4
)
, (6.38d)

and the spin coefficients become

ρ
T F = µ

T F = σ
T F = λ

T F = γ
T F = ε

T F = 0, (6.39a)

κ
T F =

eiΘ(−4α +2i(2ε +ρ−σ))
A2 , (6.39b)

τ
T F = eiΘ

(
α +

1
2

i(2ε−ρ +σ)
)

, (6.39c)

π
T F =

1
2

e−iΘ(−2α + i(2ε−ρ +σ)), (6.39d)

ν
T F =

1
8

A2e−iΘ(2α + i(2ε +ρ−σ)), (6.39e)
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α
T F =

e−iΘ
(
i∂ηA`η −∂θ Amθ )+A

(
lη∂ηΘ+ imθ ∂θ Θ−2κ + i(ρ +σ)

))
2A

, (6.39f)

β
T F =

eiΘ
(
−i∂ηA`η −∂θ Amθ )+A

(
−lη∂ηΘ+ imθ ∂θ Θ+2κ + i(ρ +σ)

))
2A

. (6.39g)

Again, we want to solve Eqs. (4.96) to compute the parameters a and b. In particular,

the Pn in Eq. (4.98) now simplify to

P1 = P7 = P3 = P5 = 0 (6.40a)

P2 = −P6, (6.40b)

P4 = 0. (6.40c)

Thus, the sixth order polynomial in Eq. (4.98)

P1ā6 +P2ā5 +P3ā4 +P4ā3 +P5ā2 +P6ā+P7 = 0, (6.41)

reduces to

P2
(
ā5− ā

)
= 0. (6.42)

Since P2 is non-zero we can immediately find the solutions for ā, namely:

āI = 0, (6.43a)

āII = ±i, (6.43b)

āIII = ±1. (6.43c)

The solution āI = 0 reflects the fact that we are in a transverse frame already. The

corresponding values for the parameter b we are interested in are

bII =± i
2
, (6.44a)

bIII =±1
2
. (6.44b)
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Finally, we perform a type I and type II transformation with a = i and b =−i/2 which

brings us in the quasi-Kinnersley frame. Again, for simplicity, we express the scalars

in terms of the first transverse frame yielding

Ψ
QKF
1 = Ψ

QKF
3 = 0, (6.45a)

Ψ
QKF
0 =

1
8
(
−3Ψ

T F
2 +Ψ

T F
4
)
, (6.45b)

Ψ
QKF
4 = −6Ψ

T F
2 +2Ψ

T F
4 , (6.45c)

Ψ
QKF
2 =

1
2
(
−Ψ

T F
2 −Ψ

T F
4
)
, (6.45d)

where the indices QKF indicate quantities in the tetrad we just found, which is a

member of the quasi-Kinnersley frame. Finally, we perform a type III rotation with

the spin-boost BQKF = 1/2 to rescale the Weyl scalars to Ψ
QKF
0 = Ψ

QKF
4 . The corre-

sponding tetrad is called symmetric tetrad and indicated by the sub and superscript S,

respectively. The final result for the Weyl scalars in the symmetric tetrad turns out to

be

Ψ
S
1 = Ψ

S
3 = 0, (6.46a)

Ψ
S
0 = Ψ

S
4 =

1
2
(
3Ψ

T F
2 −Ψ

T F
4
)
, (6.46b)

Ψ
S
2 =

1
2
(
−Ψ

T F
2 −Ψ

T F
4
)
. (6.46c)

Expressing the Weyl scalars in the symmetric tetrad in terms of the initial quantities

we yield

Ψ
S
1 = Ψ

S
3 = 0, (6.47a)

Ψ
S
0 = Ψ

S
4 =

1
4

3Ψ
B
2 +3Ψ

B
4 +

(
−3ΨB

2 −4iΨB
3 +ΨB

4
)(

1+ 8iΨB
3

−3ΨB
2−4iΨB

3 +ΨB
4

)−1/2

 , (6.47b)

Ψ
S
2 =

1
4

Ψ
B
2 +Ψ

B
4 +

(
3ΨB

2 +4iΨB
3 −ΨB

4
)(

1+ 8iΨB
3

−3ΨB
2−4iΨB

3 +ΨB
4

)−1/2

 . (6.47c)
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Correspondingly, we express the spin coefficients in terms of the connection coeffi-

cients in the Gram-Schmidt tetrad, yielding

ρ
S =

(
−8AeiΘ (2sinΘ(A(α−2κ)+ `η (A∂ηΘ+ i∂ηΘ))

32A2eiΘ

+
cosΘ

(
A(2ε−3ρ−σ)−2mθ (A∂θ Θ+ i∂θ Θ)

))
32A2eiΘ

+
A4(−2iα +2ε +ρ−σ)+16e2iΘ(2iα +2ε +ρ−σ)

)
32A2eiΘ , (6.48a)

µ
S = ρ

S, (6.48b)

π
S =

(
16A(sinΘ− icosΘ)

(
∂ηA`η cosΘ)+∂θ Amθ sinΘ

)
32A2eiΘ

−
8A2eiΘ

(
2cosΘ(`η∂ηΘ+α−2κ)+ sinΘ

(
2mθ ∂θ Θ−2ε +3ρ +σ

))
32A2eiΘ

+
A4(2α + i(2ε +ρ−σ))+16e2iΘ(2α− i(2ε +ρ−σ))

)
32A2eiΘ

, (6.48c)

τ
S = −π

S, (6.48d)

ε =

(
4e2iΘ

(
A2(−2iα +2ε−ρ +σ)+4(2iα +2ε +ρ−σ)

)
32A2eiΘ

+
+A4(−2iα +2ε +ρ−σ)+4A2(2iα +2ε−ρ +σ)

)
32A2eiΘ

, (6.48e)

γ
S = ε

S, (6.48f)

κ
S =

(
16A(sinΘ− icosΘ)

(
∂ηA`η cosΘ+∂θ Amθ sinΘ

)
32A2eiΘ

+
8A2eiΘ

(
2cosΘ(−`η∂ηΘ+α +2κ)− sinΘ

(
2mθ ∂θ Θ+2ε +ρ +3σ

))
32A2eiΘ

+
+A4(−(2α + i(2ε +ρ−σ)))−16e2iΘ(2α− i(2ε +ρ−σ))

)
32A2eiΘ

, (6.48g)

ν
S = −κ

S, (6.48h)

σ
S =

(
8AeiΘ (2sinΘ(A(−`η∂ηΘ+α +2κ)− i∂ηA`η)

32A2eiΘ

+
+cos(Θ

(
A
(
2mθ ∂θ Θ+2ε +ρ +3σ

)
+2i∂θ Amθ

))
32A2eiΘ

+
+A4(2iα−2ε−ρ +σ)+16e2iΘ(−2iα−2ε−ρ +σ)

)
32A2eiΘ

, (6.48i)

λ
S = σ

S, (6.48j)

α
S =

e−iΘ
(
8A2eiΘ(2α cosΘ+(−2ε +ρ−σ)sinΘ)

32A2eiΘ

+
+A4(2α + i(2ε +ρ−σ))+16e2iΘ(2α− i(2ε +ρ−σ))

)
32A2eiΘ

, (6.48k)

β
S = −α
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The symmetric null-tetrad reads

`
µ

S =

{(
A2 +4

)
`t

4A
,−`η cos(Θ),−mθ sin(Θ),

i
(
A2−4

)
mφ

4A

}
, (6.49a)

nµ

S =

{(
A2 +4

)
`t

4A
, `η cos(Θ),mθ sin(Θ),

i
(
A2−4

)
mφ

4A

}
, (6.49b)

mµ

S =

{
−

i
(
A2−4

)
`t

4A
,−`η sin(Θ),mθ cos(Θ),

(
A2 +4

)
mφ

4A

}
. (6.49c)

The tetrad obtained from this procedure will be transverse, and moreover, is a member

of the same equivalence class of transverse Newman-Penrose tetrads as the Kinnersley

tetrad, differing only by a class III rotation (a spin-boost Lorentz transformation).

Since we know the value of εS in the symmetric tetrad, we can easily compute the

missing spin-boost parameter to break the remaining spin-boost degeneracy. From the

definition of ε in the Kinnersley tetrad, εQKT = 0, and definition of the type III rotation

for the spin coefficient ε we can deduce

0 = ε
S− 1

2
D lnBQKT, (6.50)

where BQKT refers to the boost to the Kinnersley tetrad. It is not possible analytically

to simplify the expression for the spin-boost parameter significantly in Petrov type I.

But, of course, numerically there is no major problem in calculating the value.

6.4. Connecting the Tetrads in Type D

Here we want to consider the behavior of the symmetric tetrad and the Gram-Schmidt

tetrad in the limit of Petrov type D. So far no connection between the tetrads has been

established in the literature. Actually, this is an important subject since we will gather

fundamental information about the frames and we may classify the validity of the

tetrads concerning wave extraction.
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If we consider the limit of Petrov type D we know that the Weyl scalars ΨB
3 → 0

and therefore we know how the spin-boost parameter BT F in Eq. (6.36) behaves in the

limit, namely

BT F =
(

1
16

+
ΨB

3

6iΨB
2 −8ΨB

3 −2iΨB
4

)−1/4

→ 2, (6.51)

and thus we know the values of the amplitude and modulus, respectively:

AT F =
√

ℜ [B]2 +ℑ [B]2→ 2, (6.52a)

Θ
T F = arctan

(
ℑ [B]
ℜ [B]

)
→ 0. (6.52b)

Without further assumptions we can immediately deduce the relation between the

symmetric transverse scalars and the Gram-Schmidt radiative scalars,

Ψ
S
0 = Ψ

S
4→Ψ

B
4 = Ψ

B
0 . (6.53)

The background contribution encoded in Ψ2 reads

Ψ
S
2→

1
4
(
Ψ

B
2 +3Ψ

B
2
)

= Ψ
B
2 = Ψ̃2, (6.54)

where Ψ̃2 =− 64Mr3

(M+2r)6 indicates the unperturbed coulomb scalar.

It is worth noting there is also the possibility to set the phase to Θ = π/2 yielding

the desired result Ψ4 = Ψ0 in Eq. (6.46). This results in a sign change and/or multipli-

cation by a complex number i in the scalars and spin coefficients like α (but not ε of

course), α → iα . This is a generic result due to the symmetry and degeneracy of the

Weyl scalars in the transverse frame.

To compute the spin coefficients in terms of the initial quantities we only need to

specify the modulus A and phase Θ, respectively. We find a similar result as for the

Weyl scalars; the spin coefficients in the symmetric tetrad agree with the quantities in
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the Gram-Schmidt tetrad

(ρ,µ,σ ,γ,ε,τ,π,α,β ,κ,λ ,ν)S = (ρ,µ,σ ,γ,ε,τ,π,α,β ,κ,λ ,ν)B . (6.55)

The symmetric null-tetrad reads in the limit of type D

lµ

S =
(
`t

B,−`r
B,0,0

)
, (6.56a)

nµ

S =
(
`t

B, `r
B,0,0

)
, (6.56b)

mµ

S =
(

0,0,mθ
B,mφ

B

)
, (6.56c)

leading us to the final conclusion that the symmetric tetrad is equivalent to the Gram-

Schmidt tetrad in the exact limit of type D. This is a fundamentally important re-

sult, since the transformation from the symmetric tetrad to the Kinnersley tetrad is a

well-posed calculation in type D. Therefore, we can apply the same techniques to the

Gram-Schmidt tetrad without any loss of generality.

We want to stress the fact that these results, namely the conformity of the Gram-

Schmidt tetrad and the symmetric tetrad, are presumably related to the employed

pseudo-spherical coordinates which are well adapted to a Bondi frame at future null

infinity (cf. section 6.8). We are investigating how this relation modifies in a space-

time with less symmetry and different coordinate systems. As we expect, this should

lead us to a better understanding on the connection between Gram-Schmidt frames

and quasi-Kinnersley frames.

6.5. Spin-Boost Degree of Freedom

The symmetric tetrad still deviates by a spin-boost transformation from the Kinnersley

tetrad, indicated by the important fact that εS 6= εKT = 0, in particular it is

ε
S = ε

B =− 4r2
√

2M

(M2−4r2)(M +2r)2 . (6.57)

128



6.5. Spin-Boost Degree of Freedom

By comparing the values of the spin coefficients in the two tetrads of interest it turns

out that αS, β S, τS and πS already agree with the value in the Kinnersley tetrad and

therefore we can further constrain the unknown spin-boost parameter. Using Eqs.

(4.50f, 4.50g, 4.50k, 4.50l)

τ
KT = eiΘSτ

S, (6.58a)

π
KT = e−iΘSπ

S, (6.58b)

α
III = e−iΘSα− 1

2
A−1

S e−iΘSδ
∗AS +

1
2

ie−iΘSδ
∗
ΘS, (6.58c)

β
III = eiΘSβ − 1

2
A−1

S eiΘSδAS +
1
2

ieiΘSδΘ, (6.58d)

we can not only conclude that the phase ΘS is constant but, in fact, is equal to zero.

Additionally we can conclude that AS does not depend on t and φ , thus

AS = AS (r,θ) . (6.59)

The next step is to determine the exact expression of the amplitude AS (r,θ) to per-

form a type III transformation in the Kinnersley tetrad. The starting point will be the

equation for the spin coefficient ε in the quasi-Kinnersley frame

0 =
1

AS
ε

S− 1
2

(AS)
−2 DAS, (6.60)

where the directional derivative is defined as D = `
µ

S ∂µ and the left hand side corre-

sponds to the value for the spin coefficient in the Kinnersley tetrad, εKT = 0. We may

solve this equation for AS:

ε
S =

1
2

D logAS, (6.61)

where a straightforward calculation yields the desired result for the transformation:

AS = BS = D
(M−2r)
(M +2r)

, (6.62)
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with a yet to be determined integration constant. Such a transformation will leave the

scalar Ψ2 unchanged, but will have in general a strong effect on the radiative quanti-

ties Ψ0 and Ψ4, scaling and mixing polarizations.

We can not constrain the spin-boost parameter from the spin coefficient ε any fur-

ther. For this we make use of the spin coefficients γ . The type III transformation

equation for γ is

γ
KT = AS

γ
S− 1

2
∆AS, (6.63)

fixing the integration constant to D = −1/
√

2. The final result for the spin-boost pa-

rameter BS reads

BS =− (M−2r)√
2(M +2r)

. (6.64)

We compare the value we achieve for the boost with the more general definition we

derived in chapter 5, Eq. (5.48), where the function H encodes all information of the

Weyl scalars and spin coefficients in the transverse frames,

∇
µ

∇µH +∇
µ ln
(

I
1
6

)
∇µ

(
2H + ln I

1
12

)
=−2Ψ2. (6.65)

In the limit of a single black hole, Eq.(6.65) is immediately solvable, leading us to the

following condition on the spin-boost parameter (cf. Eq. (5.60))

B = B0I
1
6 Γ

1
2 . (6.66)

We perform a suitable transformation to adapt the result to our particular coordinate

system yielding for Eq. (6.66)

B = B0

(√
3M
)(1/3) (M−2r)

(M +2r)
. (6.67)

Comparing Eq. (6.64) and Eq. (6.67) we can determine the remaining constant of
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integration B0, yielding

B−1
0 =−

√
2
(√

3M
)1/3

. (6.68)

Whether this is a generic result or a particular value of the space-time under consider-

ation is not yet fully determined. The calculation of B0 from a more theoretical point

of view is still under investigation and will be published elsewhere.

Since we end up in the Kinnersley tetrad after performing a boost with BS =− (M−2r)√
2(M+2r)

all spin coefficients have the correct value for the vacuum solution of a non-rotating

black hole in isotropic coordinates:

ε̃ = τ̃ = ν̃ = κ̃ = π̃ = σ̃ = λ̃ = 0, (6.69a)

γ̃ =
8Mr2

(M +2r)4 , (6.69b)

ρ̃ = − 4r

(M +2r)2 , (6.69c)

µ̃ =
1
2

ρ̃ +2γ̃, (6.69d)

β̃ = −α̃ =
√

2r cotθ

(M +2r)2 . (6.69e)

The tetrad agrees with the well-known expressions of the Kinnersley tetrad:

˜̀µ =

(
(M +2r)2

(M−2r)2 ,− 4r2

(M2−4r2)
,0,0

)
, (6.70a)

ñµ =

(
1
2
,
2r2 (M−2r)
(M +2r)3 ,0,0

)
, (6.70b)

m̃µ =

(
0,0,

2
√

2r

(M +2r)2 ,
2
√

2ir cscθ

(M +2r)2

)
. (6.70c)
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6.6. Perturbation Theory for the Close Limit

In this section we provide the basic mathematical formalism for evolving distorted

black holes as perturbative systems. We investigate the multipole moments of a gen-

eral space-time as a linear perturbation about its background spherical part. Roughly

speaking, this approach should be a valid way to describe black hole space-times,

whose non-spherical departure from Schwarzschild is small. We are particularly in-

terested in the radial fall-off of the Weyl scalars in the quasi-Kinnersley tetrad and the

Gram-Schmidt tetrad in the limit of Type D, respectively. In the foregoing sections we

have already deduced all expressions for the quantities in Petrov type I for both of the

tetrads. To receive explicit expressions for the radiative scalars we need to specify the

perturbation encoded in the function q. A suitable approach for such a task is per-

turbation theory. Our starting point for the perturbation analysis is the Hamiltonian

constraint in Eq. (6.14):

1
r2

∂

∂ r

(
r2 ∂

∂ r

)
ψ +

1
r2 sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
ψ =−1

4
ψ

(
∂ 2q
∂ r2 +

1
r2

∂ 2q
∂θ 2 +

1
r

∂q
∂ r

)
. (6.71)

In the literature the Brill waves have been repeatedly invoked as a tool for wave ex-

traction. The perturbation q = q(r,θ) has to satisfy a set of boundary conditions, but

is an otherwise arbitrary function. We follow [77, 85] and assume that q(r,θ) decays

fairly rapidly at infinity (at least as 1/r2) and that it is regular at θ = 0:

∂q(r,θ)
∂θ

∣∣∣∣
θ=0

= 0, lim
r→∞

q(r,θ) = O
(
r−2) , q(r,θ)

∣∣∣∣
θ=0

= 0. (6.72)

In case of a superposition of a black hole and Brill waves we impose an additional

boundary condition at the throat of the Einstein-Rosen bridge. We choose the initial

slice to be isometric at the throat. The inversion-through-the-sphere transformation

from a point r > χ to a point inside the throat r < χ is given by [85]

r′ = χ
2/r. (6.73)

From the usual tensor transformation rule for the metric component γ11,
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γ
′
11
(
r′ = χ

)
= γ11 (r = χ) , (6.74)

we can determine the throat condition on the isometry surface (assuming continuity

of the first derivate) [
∂γ11

∂ r
+

2γ11

χ

]
r=χ

= 0. (6.75)

The most natural choice would be to choose the conformal factor to have the same con-

dition as in the unperturbed Schwarzschild solution. It turned out that this conditions

introduces numerical and analytical complications for the function q(r,θ). Therefore

we will perform a coordinate transformation to make use of a widely used system of

coordinates for the Brill waves, the η-coordinates [83, 84, 95, 85, 96] . The coordinate

transformation of the form

r =
M
2

eη (6.76)

was motivated by numerical reasons initially. The isometry constraint suffers from

the fact that it is a so called “anti-Robin” condition: it has the wrong relative sign

since the normal vector points in the wrong direction relative to the inner boundary.

This behavior is not suitable for the standard proofs of uniqueness for the initial-value

problem and may introduce problems with techniques for solving elliptic equations

(see [88, 85]) . We have encountered the same issue in a preceding work (Elbracht et

al. [97]).

In the new coordinates the line element, Eq. (6.15), now takes the form

ds2 =−
(

eη −1
eη +1

)2

dt2 +ψ(η)4 [e2q (dη
2 + dθ

)
+ sin2

θ dφ
]
, (6.77)

and the Hamiltonian constraint, Eq. (6.14), is transformed into

∂
2
ηψ +∇

2
θ ψ + cotθ∂θ ψ +

1
4

ψ
(
∂

2
ηq+∂

2
θ q−1

)
= 0. (6.78)
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The inversion-through-the-sphere condition, Eq. (6.73), is now given by

η
′ =−η . (6.79)

The throat condition on the isometry surface, Eq. (6.75), transforms into[
∂γ11

∂η

]
η=0

=
[

∂q
∂η

+
2
ψ

∂ψ

∂η

]
η=0

= 0. (6.80)

We choose ψ to have the same boundary conditions as in the Schwarzschild solution,

namely

∂ψ

∂θ

∣∣∣∣
θ=0

=
∂ψ

∂θ

∣∣∣∣
θ=π/2

=
∂ψ

∂η

∣∣∣∣
η=0

= 0, (6.81)

which determines the conditions for the perturbation q to

∂q
∂θ

∣∣∣∣
θ=0

=
∂q
∂θ

∣∣∣∣
θ=π/2

=
∂q
∂η

∣∣∣∣
η=0

= 0, (6.82)

therefore decoupling the boundary conditions for the conformal factor and the per-

turbation. By imposing an outer boundary condition ψ(η) is fixed completely.

The elliptic equation for the Hamiltonian constraint in Eq. (6.78) must in general be

solved numerically. Once this is done, it can be used to compute initial data for the

perturbation equations as described in the foregoing sections and can also be evolved

with a numerical code (see e.g. Elbracht et al [97]). Here we focus on the extraction

of initial data itself, not on the evolution. We expand the conformal factor and the

function q(r,θ) appearing in this equation in terms of spherical harmonics Ylm (θ ,φ)

such that

ψ (η ,θ ,φ) = ψ̃ (η)+a
∞

∑
l=0

l

∑
m=−l

ψlm (η)Ylm (θ ,φ)+O
(
a2) , (6.83)

with ψ̃ (η) =
√

2M cosh
(

η

2

)
being the conformal factor of the Schwarzschild solution.
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The perturbation to linear order in a is

q(η ,θ ,φ) = a ∑
l=2,4...

qlm (η)Ylm (θ ,φ) , (6.84)

where we further assume a < 1 which is a reasonable assumption considering the

amplitude of the wave. We construct a perturbation q in the following manner

q(η ,θ) =
√

π

5
8aq(η)

(
−1

3
Y20 +

√
5

3
Y00

)
= 2ae−η2

sin2
θ , (6.85)

satisfying the boundary conditions in Eq. (6.82). We may now solve the Hamiltonian

constraint with that particular perturbation. The only non-zero coefficients of the

conformal factor in the first-order expansion are

ψ00 =
1
3

√
2
√

Me−η2
(

πeη2
(

erf(η)sinh
(

η

2

)
− cosh

(
η

2

))
−2
√

π cosh
(

η

2

))
, (6.86a)

ψ20 =
1
3

√
2π

5

√
Me−

1
2 η(2η+5)

(
−
√

πeη2+ 9
4 + e2η + e3η

)
+

π
√

Me
9
4−

5η

2
(
erfc

(
η− 3

2

)
− e5ηerfc

(
η + 3

2

))
3
√

10
, (6.86b)

where erf(η) and erfc(η) are the error function and complementary error function,

respectively. All terms with m 6= 0 vanish due to the imposed azimuthal symmetry.

We end up not only with an angular contribution from the Y20 spherical harmonic but

additionally we get a Y00-term. This is a particular effect caused by the way we have

constructed the perturbation. We have now all necessary information to calculate the

radiative scalars and spin coefficients in the two tetrads under investigation.

6.6.1. Perturbed Newman-Penrose Quantities in the Gram-Schmidt Tetrad

We will use the exact analytic solution to the perturbative initial data equations to

discuss a specific example of the extraction procedure applied to the axisymmetric

black hole initial data sets discussed above. We construct the perturbed null vectors

in the same way as in section 6.2, Eqs. (6.16, 6.17), still satisfying to linear order the
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null-vector conditions (cf. Eqs. (4.22, 4.22))

`µ`µ = m̄µm̄µ = 0, (6.87a)

`µnµ = mµm̄µ = 1. (6.87b)

Contracting the Weyl tensor with the perturbed vectors yields for the spin coefficients

ρ
B = −

2
√

2sinh4 (η

2

)
csch3(η)

M
− 4
√

2πQe−2η

3M
, (6.88a)

µ
B = ρ

B, (6.88b)

τ
B = −

√
2Qe−η2

sin(2θ)
M

, (6.88c)

π
B = −τ

B, (6.88d)

λ
B =

2
√

2Qe−η2
η sin2(θ)

M
, (6.88e)

σ
B = λ

B, (6.88f)

ν
B = τ

B, (6.88g)

κ
B = −τ

B, (6.88h)

γ
B =

sinh2 (η

2

)
csch3(η)

√
2M

+
2
√

2πQe−5η

3M
, (6.88i)

β
B =

sech2 (η

2

)
cot(θ)

4
√

2M
+
√

2πQe−2η cot(θ)
3M

, (6.88j)

α
B = −β

B, (6.88k)

ε
B = γ

B. (6.88l)

The Weyl scalars to linear order in a read

Ψ0 = Ψ4 =
2
√

πae−5η sin2
θ

M2 , (6.89a)

Ψ1 = −Ψ3 =
4
√

πae−5η sin(2θ)
M2 , (6.89b)
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and the correction in leading order to the background is

Ψ2 = Ψ̃2 +
4
√

πae−3η

3M2 , (6.90)

where Ψ̃2 = − 1
8M2 sech6 (η/2) is the Schwarzschild solution and the scalars still obey

the symmetry

Ψ
B
0 −Ψ

B
4 = 0+O

[
a2] , (6.91a)

Ψ
B
1 +Ψ

B
3 = 0+O

[
a2] . (6.91b)

6.6.2. Perturbed Newman-Penrose Quantities in the Symmetric Tetrad

Making use of Eqs. (6.47) the calculation of the Weyl scalars in the symmetric tetrad

in Petrov type D is a straightforward task, yielding

Ψ
S
0 = Ψ

B
0 +O

(
a2) , (6.92a)

Ψ
S
4 = Ψ

B
4 +O

(
a2) , (6.92b)

and the correction in linear order to the background is

Ψ
S
2 = Ψ̃2 +O

(
a2) . (6.93)

The longitudinal scalars vanish in the symmetric tetrad even to linear order. As ex-

pected from the general definition of the quantities in Eq. (6.47) we yield that the

transverse scalars and the coulomb contribution encoded in Ψ2 in the symmetric tetrad

agree exactly with the expressions in the Gram-Schmidt tetrad except Ψ1 and Ψ3, re-

spectively. This is the main difference which appears when comparing the Weyl scalars

in both frames. It positions the symmetric tetrad as a more rigorous frame for wave

extraction since the unphysical wave components are eliminated by construction.
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A similar result is obtained for the spin coefficients;

(ρ,µ,σ ,γ,ε,τ,π,α,β ,κ,λ ,ν)S = (ρ,µ,σ ,γ,ε,τ,π,α,β ,κ,λ ,ν)B +O
[
a2] . (6.94)

The components of the null vectors in the symmetric tetrad read to linear order in a

`
µ

S =
{

`t
B,−`η

B ,Amθ ,0
}

, (6.95a)

nµ

S =
{

ñt , `η

B ,−Amθ ,0
}

, (6.95b)

mµ

S =
{

0,A`η ,mθ
B,mφ

B

}
, (6.95c)

where the perturbation is encoded in the function A =−1
6 e−η2

η sin(2θ)a.

6.6.3. Boost to the Kinnersley Tetrad

To find the correct spin-boost to perform a transformation from the symmetric tetrad

in the Kinnersley tetrad we make use of an important property found by Teukolsky

[15, 98]; the first order tetrad and gauge invariance in the linear regime, i.e. for in-

finitesimal tetrad transformation. Knowing this important property, we can perform

the same boost as in section (6.5)

B =
tanh(η/2)√

2
, (6.96)

which brings us in the Kinnersley tetrad as expected. The final result for the null

vectors is the well known form in the Kinnersley tetrad perturbed by an amplitude a

of a Brill wave to linear order O [a].

The Weyl scalars in the Kinnersley tetrad are

Ψ0 =
4
√

πae−5η sin2
θ

M2 , (6.97a)

Ψ4 = =
√

πae−5η sin2
θ

M2 , (6.97b)

Ψ2 = Ψ̃2 +
4
√

πae−3η

3M2 , (6.97c)
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where the Weyl scalars Ψ0 and Ψ4 encode the gravitational wave signal (ingoing and

outgoing signal, respectively) and Ψ2 represents the background of a Schwarzschild

black hole perturbed by a Brill wave. In case of a vanishing amplitude of the time

symmetric gravitational wave, we end up with an unperturbed Schwarzschild space-

time without radiation.

Since we deal with scalars, we can perform a straightforward coordinate transfor-

mation to isotropic Schwarzschild to express the Weyl scalars in a more familiar way.

The radial fall-off of the Weyl scalars in isotropic coordinates is

Ψ0 =
√

πaM3 sin2(θ)
8r5 , (6.98a)

Ψ4 =
√

πaM3 sin2(θ)
32r5 , (6.98b)

Ψ2 = Ψ̃2 +
√

πaM
6r3 . (6.98c)

6.7. Extracting the Signal at Future Null Infinity

To study the dynamics we want to apply the results found by Teukolsky (cf. section

4.13) to the specific case of a Schwarzschild background. For this use we set the

angular momentum in the Teukolsky equation to zero, therefore corresponding to

the Bardeen & Press solution without source [14]. As deduced in section 4.13 the

perturbation equation for ψ , is given by

sPψ = 4πΣT, (6.99)

where ψ = Ψ0 or ψ = ρ−4Ψ4. The operator sP is

P =
r4

∆

∂ 2

∂ t2 −
1

sin2
θ

∂ 2

∂φ 2 −∆
−s ∂

∂ r

(
∆

s+1 ∂

∂ r

)
− 1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
− 2iscosθ

sin2
θ

∂

∂φ

− 2s
[

Mr2

∆
− r
]

∂

∂ t
+
(
s2 cot2 θ − s

)
, (6.100)
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where s is the spin weight of the field (2 for Ψ0, -2 for Ψ4). Our particular interest lies

in the behavior of the fields Ψ0 and Ψ4 at future null infinity where the quantities are

observed. Our particular choice of a metric represents a vacuum space-time and thus

has a vanishing energy momentum tensor T = 0. As shown by Teukolsky (cf. section

4.13) the radial behavior of the Weyl scalars Ψ0 and Ψ4 at future null infinity is given

by

Ψ0 ≈ eiω r̃

r5 , Ψ4 ≈ eiω r̃

r , (outgoing waves);

Ψ0 ≈ e−iω r̃

r , Ψ4 ≈ e−iω r̃

r5 , (ingoing waves).

Our solution for the scalars on the initial slice Eq. (6.98) is easily recognized as a

solution of the Teukolsky equation, thus we can immediately conclude the asymptotic

radial behavior for the outgoing waves, namely

Ψ0 =
√

πaM3 sin2(θ)
8r5 , (6.101a)

Ψ4 =
√

πaM3 sin2(θ)
32r

, (6.101b)

Plugging Eq. (6.101) into Eq. (4.85) the quasi-normal gravitational modes of the dis-

torted Schwarzschild space-time turn out to be

Ψ0 ≈ − 1
8r5 eiω r̃e−iωteiωφ

√
πaM3 sin2

θ , (6.102a)

Ψ4 ≈ − 1
32r

eiω r̃e−iωteiωφ
√

πaM3 sin2
θ . (6.102b)

By using perturbative techniques to compute the quasi normal modes expected in the

evolution of these data sets, we provide an important testbed for full non-linear codes

that should evolve the same systems.
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6.8. Limitations and Possible Issues of the Gram-Schmidt

Approach

In regimes where the perturbations to the underlying Schwarzschild or Kerr geome-

tries are considered moderately small, we can compare different methods to extract

the radiation from the space-time. In this section we want to show how the freedom in

the choice of the tetrad can cause serious problems, and may lead to a wrong spherical

harmonic decomposition. We demonstrate that the difference in the waveform arises

due to the tetrad adopted via the Gram-Schmidt procedure. As alluded in the fore-

going chapters this is a fundamentally important issue, since it is crucial to be able to

extract the waves in a robust and well-posed manner to define physically meaningful

quantities.

We define an extraction world-tube, x2 + y2 + z2 = r2, and construct a triad of or-

thonormal spatial vectors by applying a Gram-Schmidt procedure in the following

way (cf. section 6.2):

ui = [−y,x,0] , (6.103a)

vi = [x,y,z] , (6.103b)

ui =
√

ggia
εabcubvc, (6.103c)

where four null vectors are then given by

n0 =
1√
2α

, ni =
1√
2α

(
−β i

α
− vi

)
, (6.104a)

`0 =
1√
2α

, `i =
1√
2α

(
−β i

α
+ vi

)
, (6.104b)

m0 = 0, mi =
1√
2

(
ui + iwi) . (6.104c)

To demonstrate how a particular choice of coordinate can lead to a wrong waveform

extraction we considered a simple coordinate transformation of the form r̃ → rg(t).

This simple transformation of the radial coordinate will result in an incorrect extrac-
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tion and therefore in an incorrect radiation scalar (see also [74]). First we will carry

out the calculation of Ψ4 using the standard pseudo-spherical coordinates (t,r,θ ,φ)

and afterwards performing the mentioned transformation of the form r̃→ rg(t). As a

final step we compare different wave extraction procedures and demonstrate the clear

advantage of the method developed in chapter 5 .

We consider three different extraction methods:

1. Identifying the Bondi frame to compute the Weyl scalars (cf. section 4.10)

2. Performing a Gram-Schmidt orthogonalization to construct a tetrad

3. Using the extraction method developed in chapter 5 to calculate Ψ4 as a function

of space-time invariants

Our starting point is the space-time metric of the Brill wave and Black Hole super-

position, Eq. (6.15):

ds2 = α
2dt2−ψ

4 [e2q (dr2 + r2dθ
2)+ r2 sin2

θdφ
2] . (6.105)

6.8.1. Case I - Pseudo-Spherical Coordinates

1. Bondi Frame

Since the metric is at leading order the flat metric in spherical coordinates, the Bondi

frame is easily identified. A straightforward calculation yields

Ψ
I
4 (r,θ) =

√
πaM3 sin2

θ

32r5 . (6.106)

We will use the radiative scalar Ψ4 in the Bondi frame as a reference expression to

compare the different solutions for Ψ4.
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2. Gram-Schmidt Tetrad

As already demonstrated in this chapter a Gram-Schmidt decomposition using the

standard coordinates gives, cf. Eq. (6.98b),

Ψ
II
4 (r,θ) =

√
πaM3 sin2

θ

16r5 = 2Ψ
I
4, (6.107)

yielding the same expression for the radiation scalar as in Eq. (6.110), except a well-

known deviation by a factor of 2 introduced by a slightly different definition of the

null coordinate u (see e.g. [74] and references within).

3. Ψ4 from Space-Time Invariants

A different approach we have presented in chapter 5 calculates the Weyl scalars as

functions of the two curvature invariants I and J, which are defined in Eqs. (4.34).

The advantage in dealing with the Kretschmann scalars is the coordinate and gauge

invariance, thus the calculation of ΨIII
4 does not rely on the identification of a particular

tetrad, making it a more robust approach for wave extraction. The expression for Ψ4

is according to Eq. (5.64c)

Ψ
III
4 (r,θ) =− i

2
B−2

0 Γ
−1I

1
6
(
Θ−Θ

−1) , (6.108)

where B0 is an arbitrary constant of integration, we discussed earlier (c.f. section

6.5). In Eq. (6.68) we fixed the constant to B−1
0 = −

√
2
(√

3M
)1/3

. A straightforward

calculation gives the expected result

Ψ
III
4 (r,θ) =

√
πaM3 sin2

θ

32r5 = Ψ
I
4 (t,r,θ) . (6.109)

In pseudo-spherical coordinates all three methods agree very well, except a negligible

factor of 2. The question that may arise is: what happens in a different coordinate

system which might not that well adapted to a Bondi frame. We will demonstrate

how problems might be introduced by a simple coordinate transformation.
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6.8.2. Case II - Transformation r̃→ rg(t)

We perform the described coordinate transformation, therefore rescaling the radial

vector by r̃→ rg(t) and recomputing the Weyl scalars through the different methods.

1. Bondi Frame

A simple computation yields for the Weyl scalar in the Bondi frame

Ψ
I
4 (r,θ) =

√
πaM3 sin2

θ

32g(t)5r5 , (6.110)

thus being essentially equivalent to a pure coordinate transformation of the radial vec-

tor.

2. Gram-Schmidt Tetrad

In the second case, the coordinate transformation induces an additional factor in the

radiative quantities. The leading order of the tetrad that enters in computing Ψ4 is

n0 =
1√
2
, na =− 1√

2g(t)
[1− rġ(t)] ∂

a
r , (6.111a)

l0 =
1√
2
, la =

1√
2g(t)

[1− rġ(t)] ∂
a
r , (6.111b)

m0 = 0, ma =
1

g(t)
√

2r

[
∂

a
θ + i∂ a

φ ,
]
, (6.111c)

where for g = 1 the tetrad reduced to the null vectors of case I. Contracting the Weyl

tensor with this tetrad results in a different expression of the Weyl scalar Ψ4, namely

Ψ
II
4 (t,r,θ) =

2
g(t)

Ψ
I
4 (t,r,θ) . (6.112)

note the additional factor of g(t) in the denominator. Now, we can correct this depen-

dence as demonstrated by Lehner & Moreschi [74]. This will be in a generic setup a

nontrivial task and might introduce additional numerical errors.
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3. Ψ4 from Space-Time Invariants

Since this method does not rely on the identification of a particular tetrad and there-

fore does not depend in a crucial manner on a particular coordinate transformation

the calculation is easily performed, yielding

Ψ
III
4 (t,r,θ) =

√
πaM3 sin2

θ

32g(t)5r5 = Ψ
I
4 (t,r,θ) . (6.113)

The result obtained clearly demonstrates the advantage of the approach presented in

chapter 5, since now additional correction has to be considered.

In recapitulation, in this section we have demonstrated how difficulties may arise

in wave extraction of numerically generated space-times and how to circumvent the

difficulties inherent in the choice of tetrad for wave extraction. We have provided, to

our knowledge, the only definition of the Weyl scalars in numerical relativity which

satisfies the expected physical properties a priori without the need of further correction.

Another point worth mentioning is the well known fact that the notion of total

angular momentum in general relativity is sensitive to the so-called problem of super-

translation ambiguities [99, 100, 101, 102, 103, 104, 105, 106, 107]. This is an important

issue since there is a clear need to possess a unique notion of total angular momen-

tum to extract physical relevant information in numerically generated space-times. As

we expect, our new method should aid in defining a unique notion of total angular

moment in numerical relativity. This is subject of future work on this topic.
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7. Conclusion and Outlook

They always say time changes things,

but you actually have to change them yourself.

Andy Warhol

The enormous developments in the last years finally permit well-resolved numerical

simulations, and make it possible to address and evolve more complex and realistic

astrophysical events such as binary black hole mergers. Since the accuracy of the

numerical implementations are now at a stage where limitations of perturbation ap-

proaches have become more evident, the treatment of black hole space-times based on

a non-perturbative approach is of increasing interest.

The main focus of this dissertation was to address the role of wave extraction in

numerical relativity with the aim of having a generic and robust method without the

need of perturbation theory. Secondly, we have studied a particular subset of frames

in the Newman-Penrose formalism, the transverse frames, to some detail, gaining

important insights in the mathematical properties of these families of tetrads.

The results we have presented in this work show that we are in fact able to extract

the radiation quantities in a robust and unique way for various physical situations

showing no limitation of applicability of our new approach. More encouraging is the

realization that since our methods have been generic, therefore, the problems we can

go on to address immediately are also generic.

Applying this methodology to space-times with strong directional dependences, for

example black holes with different masses and/or spinning compact objects, will be of

great importance, since the current used perturbative methods, mainly the Zerilli ap-

proach and the Gram-Schmidt procedure, have crucial limitations. In fact, the Zerilli
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equations are well defined only for the non-rotating case of an isolated Schwarzschild

black hole, while the Gram-Schmidt approach to construct a null tetrad will not result

in a Bondi tetrad at future null infinity for sure.

As a second objective, we have surveyed the mathematical properties of transverse

frames by studying a distorted black hole space-time, using the “Brill wave plus black

hole” family of initial data sets, which mimic the behavior of two black holes that have

just collided head-on.

In this particular space-time we have been able to define the quasi-Kinnersley frame

in the general case of Petrov type I space-time. We have found the quasi-Kinnersley

tetrad with ε = 0 by breaking the residual spin-boost symmetry completely analyti-

cally. We have established a connection between the transverse quasi-Kinnersley tetrad

with Ψ0 = Ψ4 and the tetrad constructed by the usual Gram-Schmidt procedure. It

turned out that these two frames are the same in the limit of Petrov type D for the

space-time under consideration. This has an important impact on the validity of the

Gram-Schmidt tetrad as a wave extraction tool, endowing it with the properties of the

quasi-Kinnersley tetrad with Ψ0 = Ψ4. These calculations can easily be extended to a

rotating black hole superposed with a brill wave, yielding corresponding results. How

and whether these results can be carried over to a space-time with less symmetry, de-

serves further studies. So far, the results are promising, and it seems likely that such a

connection between the frames can be established in a completely generic space-time.

These results will serve as a test configuration in an ongoing study to compare the

different frames for wave extraction which have not been performed so far, therefore

giving a greater knowledge in numerical errors induced in a simulation.

Finally, we have re-examined the issue of computing gravitational radiation effects

through the use of Weyl scalars. In the case of a small amplitude of the Brill wave, we

have managed to find a perturbative solution to the initial value problem. We have

constructed a solution to the perturbative initial data problem to test the accuracy of

the main extraction techniques.

In the particular case of “brill wave plus black holes” space-times the high degree
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of symmetry of the problem indicates that the different approaches might not devi-

ate from one another significantly. But we have demonstrated that even here a sim-

ple coordinate transformation will lead to a wrong decomposition and thus wrong

waveforms. Our analysis reveals the advantage of our approach compared to com-

monly used extraction methods, which will be even more apparent for space-times

with strong directional dependences. Not only is the calculation enormously simpli-

fied, since the calculation of the Kretschmann scalars is straightforwardly carried out

as soon as a metric is defined, but even more important, it makes the calculation of

any corrections to the waveforms completely redundant. And still, since the radiation

quantities extracted by our method are completely conform to a Bondi system, it will

serve as an excellent tool to check consistency among different codes and implemen-

tations of Einstein’s equations in numerical simulations.
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A. Evolution Equations

To determine an alternative set of equations for the evolution system, we follow closely

the determination by Arnowitt, Deser and Misner [27] outlined in the textbook by

Wald.

Assume
(
M,gµν

)
is a globally hyperbolic space-time, foliated by Cauchy surfaces

and Σ t , parameterized by a global time function t. Let nµ be the unit normal vector

field to the hypersurfaces Σ t , then the space-time metric, gµν , induces a spatial metric

γµν on each Σ t by the formula

γµν = gµν +nµnν . (A.1)

The “flow of time” is encoded in a vector field t µ on M, which satisfies

tµ
∇µt = 1. (A.2)

Since the vector field t µ is not necessarily orthogonal to Σ t , it can be decomposed into

its parts normal and tangential to the hypersurface by defining the lapse function, α ,

and the shift vector, β µ according to

α = −tµ nµ = (nµ
∇µt)−1, (A.3)

βµ = γµν tν . (A.4)

To “move forward in time” we use the integral curves of tµ to construct a diffeomor-

phism between two arbitrary hypersurfaces labeled as Σ0 and Σ t , respectively. We

may view this effect of “moving forward in time” as changing the spatial metric on

the hypersurface from γµν(0) to γµν(t). Thus, we can come to the conclusion that a

globally hyperbolic space-time
(
M,gµν

)
represents the time development of a Rie-
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mannian three metric γµν . Comparing these results with the Hamiltonian formulation

(cf. chapter 1) we should expect the initial data to consist of the “dynamic variable”

γµν and its first time derivative. A natural candidate for the time derivative of gµν is

the second fundamental form Kµν , which is defined as

Ki j = γ
µ

i γ
ν
j ∇µ nν , (A.5)

where nµ is an unit time-like vector field which is normal to the hypersurfaces Σ (cf.

chapter 1). Kµν is symmetric and spatial,

nµKµν = nνKµν = 0, (A.6)

and can be rewritten as

Kµν ≡
1
2

£nγµν . (A.7)

We reformulate the Einstein equations in terms of our new evolution variables (γµν ,Kµν )

to nourish an appropriate set of equations we can evolve.

This section summarizes the derivation of the evolution equation of γµν , Kµν and intro-

duces the Hamiltonian and momentum equations, which are the governing equations

and have to be satisfied on each hypersurface at all times.

We will make use of the so-called Gauss-Codazzi relations, relating the curvature of a

manifold to that of a sub-manifold embedded in it by the following relations

(3)Rσ
µνρ = γ

σ
α γ

β

µ γ
δ
ν γ

ε
ρ Rα

βδε
−KµρKσ

ν +KνρKσ
µ , (A.8a)

γ
µ

ρ Rµνnν = ∇̄σ Kσ
ρ − ∇̄ρKσ

σ . (A.8b)
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A.1. The Evolution Equation for the Metric γµν

A.1. The Evolution Equation for the Metric γµν

To determine the evolution equation for γµν we calculate its time derivative defined as

the Lie derivate £t γµν :

∂γµν

∂ t
= £tγµν = α£nγµν +£β γµν = 2αKµν +£β γµν , (A.9)

where

£β γµν = β
σ

∇σ γµν + γµσ ∇
σ

βν + γσν∇
σ

βµ = ∇̄µβν + ∇̄νβµ . (A.10)

The nabla operator ∇̄µ is defined as the projection of the covariant derivative on the

three dimensional hypersurface, namely ∇̄µ = γ
σ

µ ∇σ . Finally, the time derivative of

γµν reads
∂γµν

∂ t
= 2αKµν + ∇̄

µ
βν + ∇̄

ν
βµ . (A.11)

A.2. The Evolution Equation for the Extrinsic Curvature Kµν

To derive the evolution equation for Kµν we project the four-dimensional Ricci tensor

Rµν onto the three-dimensional sub-manifold according to

Ri j = γ
µ

i γ
ν
j Rµν , (A.12)

where one possible convention for the Ricci tensor is

Rµν = 8πTµν +
1
2

gµνR = 8π

(
Tµν −

1
2

gµνT
)

, (A.13)

and T is the trace of Tµν :

T = gµνTµν = γ
µνTµν −nµnνTµν = S−ρ, (A.14)
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A. A1: Evolution Equations

with

Si j = γ
µ

i γ
ν
j Tµν , (A.15a)

ρ = Tµν nµnν . (A.15b)

Now we can calculate the projection of Rµν on Σ

Ri j = 8π

[
Si j−

1
2

γi j(S−ρ)
]
. (A.16)

Another possibility to calculate the three dimensional Ricci tensor is to utilize the

Gauss-Codazzi relations in Eqs. (A.8). We contract the Riemann tensor with the four-

dimensional metric gµν yielding

Rµν = gσρRµσνρ = γ
σρRµσνρ −nσ nρRµσνρ . (A.17)

By using the Gauss-Codazzi relations to project it onto the three dimensional manifold

we yield for γ σρRµσνρ

γ
σρ

γ
µ

i γ
ν
j Rµσνρ = (3)Ri j +KKi j−K k

i Kk j. (A.18)

As a next step we want to project nσ nρRµσνρ onto the hypersurface, which consists of

a more sophisticated calculation; With the definition of the Riemann tensor

∇µ∇νnσ −∇ν∇µnσ = Rµνσρ nρ , (A.19)

it follows that

Rµσνρnσ nρ = nσ (∇µ∇σ nν −∇σ ∇µnν). (A.20)

Using Eq. (A.5 - A.7), we derive the final expression for the projection on the hyper-

surface which is given by

γ
µ

i γ
ν
j Rµσνρnσ nρ = £nKi j +KikKk

j +α
−1

∇̄i∇̄ jα. (A.21)
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A.3. The Momentum Constraint

Combining Eqs. (A.17, A.18, A.21) the Ricci tensor Ri j reads

Ri j =−£nKi j−2KikKk
j−α

−1
∇̄i∇̄ jα +(3) Ri j +KKi j, (A.22)

and we can finally write down the evolution equation for Ki j, defined as £ tKi j:

£tKi j = α£nKi j +£β Ki j, (A.23)

where £β Ki j = βk∇̄kKi j +Kik∇̄kβ j +Kk j∇̄
kβi. and £nKi j is derived by combining Eq. (A.16)

and Eq. (A.22), and its explicit expression is

£nKi j = (3)Ri j +KKi j−2KikKk
j−8π

(
Si j−

1
2

γi j(S−ρ)
)
−α

−1
∇̄i∇̄ jα. (A.24)

The final result is obtained by combining Eq. (A.24) with (A.23):

∂tKi j = α

[
(3)Ri j +KKi j−2KikKk

j−8π

(
Si j−

1
2

γi j(S−ρ)
)]

−∇̄i∇̄ jα +βk∇̄
kKi j +Kik∇̄

k
β j +Kk j∇̄

k
βi. (A.25)

A.3. The Momentum Constraint

There are more governing equations then just the evolution equation. By computing

γ
ρ

µ Gρνnν = 8πγ
ρ

µ Tρνnν , (A.26)

and defining a current field jµ =−γ
ρ

µ Tρνnν the right hand side of Eq. (A.26) becomes

−8π jµ . Rewriting the right hand side in terms of derivatives of the extrinsic curvature

we get:

γ
ρ

µ Gρνnν = γ
ρ

µ

(
Rρν −

1
2

Rgρν

)
nν = ∇̄σ Kσ

µ − ∇̄µKσ
σ , (A.27)

where we used the relation γ
ρ

µ gρνnν = γ
ρ

µ nρ = 0.

Now, the final expression for the momentum constraint reads

∇̄σ Kσ
µ − ∇̄µKσ

σ =−8π jµ . (A.28)
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A. A1: Evolution Equations

A.4. The Hamiltonian Constraint

To complete the set of governing equations for the evolution system we project the

Einstein equations Gµν = 8πTµν on the hypersurface Σ t we yield

Gµνnµnν = 8πρ, (A.29)

where the matter energy density ρ is defined as ρ = Tµνnµnν . To calculate the left

hand side of Eq. (A.29) we need to reformulate the Einstein tensor Gµν : Contracting

the Gauss-Codazzi equations in Eqs. (A.8) on σ and ν , the left hand side Eq. (A.29)

reads
(3)Rµρ = γ

β

µγ
ε
ρRβε −KKµρ +KνρKν

µ . (A.30)

Multiplying both sides with γ µρ , we derive the three-dimensional Ricci scalar:

(3)R = γ
µνRµν −K2 +KµνKµν = R+2Rµνnµnν −K2 +KµνKµν . (A.31)

Finally the left hand side of Eq. (A.29) is rewritten as

Gµνnµnν = Rµνnµnν +
1
2

R =
1
2

(
(3)R+K2−KµνKµν

)
. (A.32)

Therefore we can write down the final expression for the Hamiltonian constraint

H = (3)R+K2−KµνKµν . (A.33)
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B. Weyl Scalars in 3+1 Form

For the purpose of calculating the Weyl scalars in our simulations we need a suitable

way to derive them from the ADM quantities. We review in this section work done by

Smarr [108], extended by results in the thesis by Bernard Kelly1 .

We start by defining the three-dimensional Levi-Civita tensor according to

εi jk ≡ 4εi jkl n̂l = |γ| 12 [123]i jk (B.1a)

⇒ ε i jk = |γ|− 1
2 [123]i jk , (B.1b)

where |γ| = [123]i jkγ1iγ2 jγ3k, n̂i is a time-like unit normal vector and [123] the pure al-

ternating symbol, antisymmetric under odd permutations. We lower and raise the

three-dimensional Levi-Civita tensor with the three-metric γi j and its inverse. Know-

ing these general definitions we can decompose the Weyl tensor Ci jkl into its electric,

E, and magnetic, B, part:

Ci jkl = 4n̂[iE j] [kn̂l] +2ε
m

i j Bm[kn̂l] +2ε
m

kl Bm[in̂ j] + ε
m

i j ε
n

kl Emn. (B.2)

To connect these quantities to the more familiar definitions in the ADM formalism, we

can express Ei j and Bi j as

Ei j ≡ −Ci jkl n̂kn̂l =−Ri j +K k
i K jk−KKi j, (B.3a)

Bi j ≡ −∗Ci jkl n̂kn̂l =−ε
kl

i DkKl j, (B.3b)

1The Maya project at Penn State
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B. A2: Weyl Scalars in 3+1 Form

where ∗Ci jkl = 1
2

4ε
mn

i j Cmnkl is the Hodge dual of the Weyl tensor. Smarr introduced a

new complex tensor,

Wi j ≡ Ei j + iBi j. (B.4)

To deduce the Weyl scalars we need to define a null tetrad by

li =
1√
2

(
n̂i + ûi) , (B.5a)

ni =
1√
2

(
n̂i− ûi) , (B.5b)

mi =
1√
2

(
v̂i− iŵi) , (B.5c)

and take an arbitrary orthonormal triad (ûi, v̂i, ŵi), orthogonal to n̂i, satisfying εi jkûiv̂ jŵk =

1 and therefore

ε
k

i j ûiv̂ j = ŵk. (B.6)

We now derive from these definitions

ε
k

i j ûim j =
1√
2

ε
k

i j ûi (v̂ j− iŵ j)=
1√
2

(
ŵk + iv̂k

)
= imi, (B.7a)

ε
k

i j ûim̄ j =
1√
2

ε
k

i j ûi (v̂ j + iŵ j)=
1√
2

(
ŵk− iv̂k

)
= −imi. (B.7b)

With this choice of null vectors we decompose the Weyl tensor according to:

Ci jkl = 4n̂[iE j] [kn̂l] +2ε
m

i j Bm[kn̂l] +2ε
m

kl Bm[in̂ j] + ε
m

i j ε
n

kl Emn

= n̂iE j kn̂l− n̂ jEi kn̂l− n̂iE j l n̂k + n̂ jEi l n̂k

+ε
m

i j Bmkn̂l− ε
m

i j Bml n̂k + ε
m

kl Bmin̂ j− ε
m

kl Bm jn̂i

+ε
m

i j ε
n

kl Emn. (B.8)

158



Finally, to be able to calculate the Weyl scalars we compute the contraction of the Weyl

tensor. First, contract Ci jkl with n̂i yields :

Ci jkl n̂i = −E jkn̂l +E jl n̂k + ε
m

kl Bm j, (B.9a)

Ci jkl n̂in̂l = E jk, (B.9b)

contraction with ûi gives:

Ci jkl ûi = −n̂ jEikûin̂l + n̂ jEil ûin̂k + ε
m

i j ûiBmkn̂l

−ε
m

i j ûiBml n̂k + ε
m

kl Bmiûin̂ j + ε
m

i j ûi
ε

n
kl Emn, (B.10a)

Ci jkl ûiûl = n̂ jEikûiûl n̂k− ε
m

i j ûiBml ûl n̂k + ε
m

kl ûlBmiûin̂ j + ε
m

i j ûi
ε

n
kl ûlEmn.

(B.10b)

And evaluating the contraction of Ci jkl with n̂i and ûi is:

Ci jkl n̂iûl = E jl ûl n̂k + ε
m

kl ûlBmi, (B.11a)

Ci jkl ûin̂l = n̂ jEikûi− ε
m

i j ûiBmk. (B.11b)
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B. A2: Weyl Scalars in 3+1 Form

Now it is a straightforward procedure to express the Weyl scalars in terms of the

electric and magnetic tensors. Following Kelly we first calculate Ψ2:

Ψ2 ≡ Ci jkllim jm̄knl

=
1
2

Ci jkl

(
n̂in̂l− n̂iûl + ûin̂l− ûiûl

)
m jm̄k

=
1
2

[
E jk−E jl ûl n̂k− ε

m
kl ûlBm j + n̂ jEikûi− ε

m
i j ûiBmk

−n̂ jEil ûiûl n̂k + ε
m

i j ûiBml ûl n̂k− ε
m

kl ûlBmiûin̂ j− ε
m

i j ûi
ε

n
kl ûlEmn

]
m jm̄k

=
1
4

[
E jk− ε

m
kl ûlBm j− ε

m
i j ûiBmk− ε

m
i j ûi

ε
n

kl ûlEmn

][
(v̂ jv̂k + ŵ jŵk)+ i(v̂ jŵ j− ŵ jv̂k)

]
=

1
4

(
E jk

[
(v̂ jv̂k + ŵ jŵk)+ i(v̂ jŵ j− ŵ jv̂k)

]
−Bm j

[
(−ŵm + iv̂m)v̂ j +(v̂m + iŵm)ŵ j]

−Bmk

[
(ŵm + iv̂m)v̂k +(−v̂m + iŵm)ŵk

]
−Emn [(−ŵn + iv̂n)ŵm− (v̂n + iŵn)v̂m]

)
=

1
2
(E jk− iB jk)

[
v̂ jv̂k + ŵ jv̂k

]
=

1
2
(E jk− iB jk)

[
g jk + n̂ jn̂k− û jûk

]
= −1

2
(E jk− iB jk)û jûk. (B.12)

We can calculate the other scalars in a similar manner. The transverse ingoing scalar Ψ0

reads:

Ψ0 ≡ Ci jkllim jlkml =−Ci jkllim jmkll

= −1
2

Ci jkl

(
n̂in̂l + n̂iûl + ûin̂l + ûiûl

)
m jmk

= −1
2

[
E jk +E jl ûl n̂k + ε

m
kl ûlBm j + n̂ jEikûi− ε

m
i j ûiBmk

−n̂ jEil ûiûl n̂k + ε
m

i j ûiBml ûl n̂k + ε
m

kl ûlBmiûin̂ j + ε
m

i j ûi
ε

n
kl ûlEmn

]
m jmk

= −1
2

[
E jk + ε

m
kl ûl ûlBm j− ε

m
i j ûiBmk + ε

m
i j ûi

ε
n

kl ûlEmn

]
m jmk

= −1
2

[
E jk +2ε

m
kl ûlBm j

]
m jmk− 1

4
ε

m
i j ûi

ε
n

kl ûlEmn

(
v̂ jv̂k− iv̂ jŵk− iŵ jv̂k− ŵ jŵk

)
= −1

2

[
E jk +2ε

m
kl ûlBm j

]
m jmk− 1

4
Emn (−ŵmŵn− iŵmv̂n− iv̂mŵn− v̂mv̂n)

= −1
2

[
E jk +2ε

m
kl ûlBm j

]
m jmk− 1

2
Emnmmmn

= −
[
E jk + ε

m
kl ûlBm j

]
m jmk. (B.13)
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The ingoing longitudinal scalar, Ψ1, becomes:

Ψ1 ≡ Ci jkllin jlkml = Ci jkllim jlknl

=
1
2

Ci jkl

(
n̂in̂l− n̂iûl + ûin̂l− ûiûl

)
m jlk

= −1
2

[
E jk−E jl ûl n̂k− ε

m
kl ûlBm j + n̂ jEikûi− ε

m
i j ûiBmk

−n̂ jEil ûiûl n̂k + ε
m

i j ûiBml ûl n̂k− ε
m

kl ûlBmiûin̂ j− ε
m

i j ûi
ε

n
kl ûlEmn

]
m jlk

= − 1
2
√

2

[
E jk−E jl ûl n̂k− ε

m
kl ûlBm j− ε

m
i j ûiBmk

+ε
m

i j ûiBml ûl n̂k− ε
m

i j ûi
ε

n
kl ûlEmn

]
m j(n̂k + ûk)

= − 1
2
√

2

[
E jkûk +E jl ûl− ε

m
i j ûiBmkûk− ε

m
i j ûiBml ûl

]
m j

= − 1√
2

[
E jkûk− ε

m
i j ûiBmkûk

]
m j. (B.14)

The outgoing longitudinal scalar, Ψ3, turns out to be:

Ψ3 ≡ Ci jkllin jm̄knl

=
1
2

Ci jkl

(
n̂in̂l− n̂iûl + ûin̂l− ûiûl

)
n jm̄k

=
1
2

[
E jk−E jl ûl n̂k− ε

m
kl ûlBm j + n̂ jEikûi− ε

m
i j ûiBmk

−n̂ jEil ûiûl n̂k + ε
m

i j ûiBml ûl n̂k− ε
m

kl ûlBmiûin̂ j− ε
m

i j ûi
ε

n
kl ûlEmn

]
n jn̄k

=
1

2
√

2

[
E jk− ε

m
kl ûlBm j + n̂ jEikûi− ε

m
i j ûiBmk

−ε
m

kl ûlBmiûin̂ j− ε
m

i j ûi
ε

n
kl ûlEmn

]
(n̂ j− û j)m̄k

=
1√
2

[
−E jkû j− ε

m
kl ûlBm jû j

]
m̄k. (B.15)
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B. A2: Weyl Scalars in 3+1 Form

And finally, the outgoing transverse scalar, Ψ4, becomes:

Ψ4 ≡ Ci jklnim̄ jnkm̄l =−Ci jklnim̄ jm̄knl

= −1
2

Ci jkl

(
n̂in̂l− n̂iûl− ûin̂l + ûiûl

)
m̄ jm̄k

= −1
2

[
E jk−E jl ûl n̂k− ε

m
kl ûlBm j− n̂ jEikûi + ε

m
i j ûiBmk + n̂ jEil ûiûl n̂k

+ε
m

i j ûiBml ûl n̂k + ε
m

kl ûlBmiûin̂ j + ε
m

i j ûi
ε

n
kl ûlEmn

]
m̄ jm̄k

= −1
2

[
E jk− ε

m
kl ûlBm j + ε

m
i j ûiBmk + ε

m
i j ûi

ε
n

kl ûlEmn

]
m̄ jm̄k

= −1
2

[
E jk−2ε

m
kl ûlBm j

]
m̄ jm̄k− 1

4
Emn (−ŵmŵn + iŵmv̂n + iv̂mŵn + v̂mv̂n)

= −1
2

[
E jk−2ε

m
kl ûlBm j

]
m̄ jm̄k− 1

2
Emnm̄mm̄n

= −
[
E jk− ε

m
kl ûlBm j

]
m̄ jm̄k. (B.16)

If we project the electric and magnetic tensors along and perpendicular to the pre-

ferred spatial direction, ûi, we can somewhat tie up the results. Defining

e ≡ Ei jûiû j, (B.17a)

b ≡ Bi jûiû j, (B.17b)

ei ≡ E jkû j(δ k
i − ûiûk) = Ei jû j− eûi, (B.17c)

bi ≡ B jkû j(δ k
i − ûiûk) = Bi jû j−bûi, (B.17d)

ei j ≡ Ekl(δ k
i − ûiûk)(δ l

j − û jûl)+
1
2

e(γi j− ûiû j), (B.17e)

bi j ≡ Bkl(δ k
i − ûiûk)(δ l

j − û jûl)+
1
2

b(γi j− ûiû j), (B.17f)

and reconstruct the magnetic und electric part in these quantities

Ei j =
1
2
(3ûiû j− γi j)e+2e(iû j) + ei j (B.18a)

Bi j =
1
2
(3ûiû j− γi j)b+2b(iû j) +bi j. (B.18b)
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If we define the rotation operator J j
i ≡ ε

jkl
i ûkn̂l = ε

jk
i ûk we can write the five Weyl scalars

as

Ψ0 = −
(

ei j− Jk
i b jk

)
mim j, (B.19a)

Ψ1 =
1√
2

(
ei + Jk

i bk

)
mi, (B.19b)

Ψ2 = −1
2
(e− ib), (B.19c)

Ψ3 = − 1√
2

(
ei + Jk

i bk

)
m̄i, (B.19d)

Ψ4 = −
(

ei j + Jk
i b jk

)
m̄im̄ j. (B.19e)

We still need to specify a suitable tetrad to determine the Weyl scalars in a suitable

way. This procedure is still under investigation and will be published elsewhere.
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C. Spin-Weighted Spherical Harmonic

Decomposition

We have introduced the Weyl scalars in Chapter 4 and identified them as coordinate

independent quantities. Here we will demonstrate that they are really a tensor-like

quantity. The rotation of the space-like null vectors ℜ(mµ) and ℑ(mµ) in their plane is

given by

(mµ)′ = eiϑ mµ , (C.1)

as defined in the original article by Newman and Penrose [13]. We may ask if such a

rotation effects also the Weyl scalars. In particular, we consider the effects of a rotation

on Ψ4 and Ψ0. Performing such a rotation for Ψ0 yields

Ψ
′
0 = e2iϑ

Ψ0, (C.2)

and for the outgoing transverse scalar Ψ4

Ψ
′
4 = e−2iϑ

Ψ4. (C.3)

Obviously, Ψ0 and Ψ4 transform differently what is an effect of the tetrad dependence

as explained in Chapter 4. We can generalize that behavior for an arbitrary quantity η

by introducing the spin weight s. A quantity η will have a spin weight if it behaves as

η
′ = esiϑ

η , (C.4)

under the transformation in Eq. (C.1). With this definition it is obvious that Ψ4 has

spin weight -2 and Ψ0 has spin weight +2, respectively. The spin-weighted spherical

165



C. A3: Spin-Weighted Spherical Harmonic Decomposition

harmonics are constructed to transform as scalars of a given spin weight. Effectively,

the concept of spin weight refers to the behavior of functions on the (θ , φ )-sphere at

infinity only.

Indeed the concept can be applied to any two-dimensional abstract surface, with a Rie-

mannian structure. Objects with spin weight correspond to irreducible tensor quanti-

ties on the two-dimensional surface. As a native choice, the vectors ℜ(mµ) and ℑ(mµ)

may be regarded as tangential to the coordinate lines of the 2-sphere coordinates θ

and φ , respectively. Thus it is not completely surprising that the appropriate descrip-

tion of the Weyl scalars are spin-weighted spherical harmonics rather than the usual

scalar spherical harmonics. In fact, the decomposition of spin-weighted functions on

a 2-sphere into spherical harmonics is mathematically a well-defined operation, but

using spin-weighted spherical harmonics results in a more correct decomposition.

Since we do not only want to extract Ψ4 from a numerical simulation, but also decom-

pose the signal into the contributing modes, we define the spin-weighted spherical

harmonics and the operator ð now, and list some key properties in the coming sec-

tions. We are interested in the (spin-weighted) spherical harmonic components of the

gravitational waves, since there are a few noticeable advantages of this technique, we

want to outline briefly:

• The main advantage of the decomposition process is the filtering of numerical

noise, which tends to have higher angular frequency than genuine wave signals

due to finite grid sizes.

• A priori knowledge about symmetries in the data or dominant modes associated

with physical processes allow important checks on the plausibility of numerical

solutions, in particular when exact solutions are not available.

• Some characteristics of gravitational radiation, for instance quasi-normal modes,

are best understood in terms of spherical harmonic components (cf. section 3.5).
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C.1. Definition and Properties of Spin-weighted Spherical Harmonics

C.1. Definition and Properties of Spin-weighted Spherical

Harmonics

Goldberg [109] defined the spin-weighted spherical harmonics in terms of rotation

matrices D l of the ordinary rotation group R3, and related ð to an ordinary angular-

momentum raising operator. His choice was motivated by the fact that the principal

properties of the rotation group are familiar from the theory of angular momentum.

He identified the spin-weighted spin harmonics in the following way:

sY m
l (θ ,φ) ≡

√
(2l +1)

4π
Dl
−s,m(φ ,θ ,0)

≡

√
(2l +1)(l +m)!(l−m)!

4π(l + s)!(l− s)!
sin(θ/2)2l

∑
r

 l− s

r

 l + s

r + s−m


× (−1)l−r−s eimφ [cot(θ/2)]2r+s−m (C.5)

,

where D l
−s,m(φ ,θ ,ϑ) =

√
4π

2l+1 sY m
l e−imϑ is the rotation matrix representing rotations by

the Euler angles (φ ,θ ,ϑ). We adopted a nowadays more commonly used definition

for the relation between the Wigner D-matrices, and the spin-weighted spherical har-

monics, where D l
s,−m(φ ,θ ,−ϑ) = (−1)m

√
4π

2l+1 sY m
l eimϑ .

Another possible determination of the spin-weighted spherical harmonics can be car-

ried out in the Newman-Penrose formalism [13]. We can determine a relation between

the spherical harmonics and the spin-weighted spherical harmonics without explicit

determination (cf. [13]) according to

sY m
l (θ ,φ)≡

√
(l−|s|)!
(l + |s|)!

ðsY m
l (θ ,φ) , (C.6)

where the operator ð is defined as

ð =−(sinθ)s
[

∂

∂θ
+

i
sinθ

∂

∂φ

] {
(sinθ)−s

η
}

. (C.7)
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The operator ð is effectively a covariant differentiation operator on the surface. From

this definition in Eqs. (C.1, C.4) it follows for the transformation of the quantity ðη

(ðη)′ = ei(s+1)ϑ (ðη) . (C.8)

What can be seen from Eq (C.8) is that the operator ð has the important property of

raising the spin weight by 1. We can define in a similar manner the quantity ð̄ by

ð̄ =−(sinθ)−s
[

∂

∂θ
− i

sinθ

∂

∂φ

]
{(sinθ)s

η} , (C.9)

where the quantity ð̄ lowers the spin weight by 1 now. We can ask now what happens

if we let the latter operators ð and ð̄ on the spin-weighted spherical harmonics on a

sphere (see [13] for a more general treatment of ð). Thus we apply the formalism on

sY m
l , yielding

sY m
l =


[

(l−s)!
(l+s)!

] 1
2 ðsY m

l , if 0≤ s≤ l

(−1)s
[

(l+s)!
(l−s)!

] 1
2 ð̄−sY m

l , if − l ≤ s≤ 0
, (C.10)

where sY m
l is only defined for l ≥ ‖s‖. Since we are mostly interested in the (s = ±2)

spin harmonics throughout this work we give the explicit derivation from the spherical

harmonics: The s = +2 spin-weighted harmonics are calculated via the formula

2Y m
l =

√
(l−2)!
(l +2)!

[
∂

2
θ − cotθ ∂θ ±

2i
sinθ

(∂θ − cotθ)∂φ −
1

sin2
θ

∂
2
φ

]
Y m

l , (C.11)

and the s =−2 spin harmonics are easily derived by making use of the parity relation:

sY m
l (π−θ ,φ +π) = (−1)l

−sY m
l . (C.12)
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C.2. Decomposition on the Sphere

A general definition of a decomposition of a function into its spherical harmonic com-

ponents is

f (r,θ ,φ , t) = ∑
m,l

am
l (r, t) Y m

l (θ ,φ), (C.13)

where f f (r,θ ,φ , t) denotes an arbitrary function and am
l (r, t) are the components of

the spherical harmonic decomposition. Thus we calculate the coefficients for a given

function f (r,θ ,φ , t) by recasting the relation:

am
l (r, t) =

∫
∗Y m

l (θ ,φ) f (r,θ ,φ , t) dΩ. (C.14)

Equivalently, for a spin-weighted function of certain spin weight s we can write

sam
l (r, t) =

∫
∗
sY m

l (θ ,φ) f (r,θ ,φ , t,s) dΩ. (C.15)

In a numerical simulation we replace the integrals with a sum since we are dealing

with discretized values on a finite grid:

[sam
l (r, t)]i j =

π

∑
θ0 =0

2π

∑
φ0 =0

∗
sY m

l (θi,φ j) f (r,θi,φ j, t,s) sinθi 4θi 4φ j. (C.16)

Consequently our equation for the Weyl scalars, in particular Ψ4 becomes:

(−2 [a4]
m
l (r, t))i j =

π

∑
θ0 =0

2π

∑
φ0 =0

∗
−2 Y m

l (θi,φ j) (−2 [Ψ4]
m
l (r,θi,φ j, t))i j sinθi 4θi 4φ j.

(C.17)

C.3. Group Properties

The spin-weighted spherical harmonics are elements of the irreducible matrix repre-

sentation of SU(2). Because SU(2) is the covering group of SO(3), we can conclude
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that the spin-weighted spherical harmonics are a generalization of the scalar spherical

harmonics Y m
l (θ ,φ). From group theory the properties of the spin-weighted spher-

ical harmonics follow immediately as special cases of the compatibility relation with

spherical harmonics:

0Y m
l = Y m

l ; (C.18)

the conjunction relation:

(sY m
l )∗ = (−1)m+s

−sY−m
l ; (C.19)

the orthonormality relation:

∫
dΩ (sY m′

l′ )∗ (sY m
l ) = δll′ δ

mm′ ; (C.20)

the completeness relation:

∑
l,m

[sY m
l (θ ′,φ ′)]∗ [sY m

l (θ ,φ)] = δ (φ −φ
′) δ (cosθ − cosθ

′); (C.21)

and the parity relation:

sY m
l (π−θ ,φ +π) = (−1)l

−sY m
l . (C.22)

C.4. Explicit Derivation

The calculations have been carried out for Spin 2, the Spin −2 case can be derived

by using the parity relation in Eq. (C.22). The spin-weighted spherical harmonics are

calculated according to

2Y m
l =

√
(l−2)!
(l +2)!

[
∂

2
θ − cotθ ∂θ ±

2i
sinθ

(∂θ − cotθ)∂φ −
1

sin2
θ

∂
2
φ

]
Y m

l . (C.23)
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l m 2Y m
l

2 -2 1
2 e−2iφ

√
5
π

cos4
(

θ

2

)
2 -1 −1

4 e−iφ
√

5
π

[1+ cosθ ]sinθ

2 0 1
4

√
15
2π

sin2
θ

2 1 1
4 eiφ

√
5
π

[−1+ cosθ ]sinθ)

2 2 1
2 e2iφ

√
5
π

sin4 (θ

2

)
Table C.1.: Spin-weighted spherical harmonics calculated for l = 2.

l m 2Y m
l

3 -3 e−3iφ
√

21
2π

cos5
(

θ

2

)
sin
(

θ

2

)
3 -2 1

2 e−2iφ
√

7
π

cos4
(

θ

2

)
[−2+3cosθ ]

3 -1 1
32 e−iφ

√
35
2π

[sinθ −4sin(2θ)−3sin(3θ)]

3 0 1
4

√
105
2π

cos(θ) sin2 (θ)

3 1 − 1
32 eiφ

√
35
2π

[sinθ +4sin(2θ)−3sin(3θ)]

3 2 1
2 e2iφ

√
7
π

sin4 (θ

2

)
[2+3cosθ ]

3 3 −e−3iφ
√

21
2π

cos
(

θ

2

)
sin5 (θ

2

)
Table C.2.: Spin-weighted spherical harmonics calculated for l = 3.
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l m 2Y m
l

4 -4 3e−4iφ
√

7
π

cos6
(

θ

2

)
sin2 (θ

2

)
4 -3 3e−3iφ

√
7

2π
cos5

(
θ

2

)
[−1+2cosθ ]sin

(
θ

2

)
4 -2 3

4
√

π
e−2iφ cos4

(
θ

2

)
[9−14cosθ +7cos(2θ)]

4 -1 − 3
32
√

2π
e−iφ [3sinθ −2sin(2θ)+7(sin(3θ)+ sin(4θ))]

4 0 3
16

√
5

2π
[5+7cos(2θ)]sin2

θ

4 1 − 3
32
√

2π
eiφ [3sinθ +2sin(2θ)+7(sin(3θ)− sin(4θ))]

4 2 3
4
√

π
e2iφ [9+14cosθ +7cos(2θ)]sin4 (θ

2

)
4 3 −3e3iφ

√
7

2π
cos
(

θ

2

)
[1+2cos(θ)]sin5 (θ

2

)
4 4 3e4iφ

√
7
π

cos2
(

θ

2

)
sin6 (θ

2

)
Table C.3.: Spin-weighted spherical harmonics calculated for l = 4.

l m 2Y m
l

5 -5 e−5iφ
√

330
π

cos7
(

θ

2

)
sin3 (θ

2

)
5 -4 e−4iφ

√
33
π

cos6
(

θ

2

)
[−2+5cosθ ]sin2 (θ

2

)
5 -3 1

4 e−3iφ
√

33
2π

cos5
(

θ

2

)
[17−24cosθ +15cos(2θ)]sin

(
θ

2

)
5 -2 1

8 e−2iφ
√

11
π

cos4
(

θ

2

)
[−32+57cosθ −36cos(2θ)+15cos(3θ)]

5 -1 1
256 e−iφ

√
77
π

[2sinθ −8sin(2θ)+3(sin(3θ)−4sin(4θ)−5sin(5θ))]

5 0 1
32

√
1155
2π

[5cosθ +3cos(3θ)]sin2
θ

5 1 − 1
256 eiφ

√
77
π

[2sinθ +8sin(2θ)+3(sin(3θ)+4sin(4θ)−5sin(5θ))]

5 2 1
8 e2iφ

√
11
π

sin4 (θ

2

)
[32+57cosθ +36cos(2θ)+15cos(3θ)]

5 3 −1
4 e3iφ

√
33
2π

cos
(

θ

2

)
[17+24cosθ +15cos(2θ)]sin5 (θ

2

)
5 4 e4iφ

√
33
π

cos2
(

θ

2

)
[2+5cosθ ]sin6 (θ

2

)
5 5 −e5iφ

√
330
π

cos3
(

θ

2

)
sin7 (θ

2

)
Table C.4.: Spin-weighted spherical harmonics calculated for l = 5.
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l m 2Y m
l

6 -6 3
2 e−6iφ

√
715
π

cos8
(

θ

2

)
sin4 (θ

2

)
6 -5 1

2 e−5iφ
√

2145
π

cos7
(

θ

2

)
[−1+3cosθ ]sin3 (θ

2

)
6 -4 1

8 e−4iφ
√

195
2π

cos6
(

θ

2

)
[35−44cosθ +33cos(2θ)]sin2 (θ

2

)
6 -3 3

32 e−3iφ
√

13
π

cos5
(

θ

2

)
[−98+185cosθ −110cos(2θ)+55cos(3θ)]sin

(
θ

2

)
6 -2 1

256 e−2iφ
√

13
π

cos4
(

θ

2

)
[1709−3096cosθ +2340cos(2θ)−1320cos(3θ)+495cos(4θ)]

6 -1 − 1
1024 e−iφ

√
65
2π

[20sinθ −17sin(2θ)+54sin(3θ)−12sin(4θ)+66sin(5θ)+99sin(6θ)]

6 0 1
512

√
1365

π
[35+60cos(2θ)+33cos(4θ)]sin2

θ

6 1 − 1
1024 eiφ

√
65
2π

[20sinθ +17sin(2θ)+54sin(3θ)+12sin(4θ)+66sin(5θ)−99sin(6θ)]

6 2 1
256 e2iφ

√
13
π

[
1709+3096cosθ +2340cos(2θ)+1320cos(3θ)+495cos(4θ)sin4 (θ

2

)]
6 3 − 3

2048 e3iφ
√

13
π

[20sinθ +51sin(2θ)+6sin(3θ)+20sin(4θ)−110sin(5θ)+55sin(6θ)]

6 4 1
8 e4iφ

√
195
2π

cos2
(

θ

2

)
[35+44cosθ +33cos(2θ)]sin6 (θ

2

)
6 5 −1

2 e5iφ
√

2145
π

cos3
(

θ

2

)
[1+3cosθ ]sin7 (θ

2

)
6 6 3

2 e6iφ
√

715
π

cos4
(

θ

2

)
sin8 (θ

2

)
Table C.5.: Spin-weighted spherical harmonics calculated for l = 6.
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