


Titelbild:
Das Titelbild zeigt eine Falschfarbendarstellung einer Küstenlinie nahe Drew Point in
Alaska, basierend auf Sentinel-1 Satellitendaten. Für den roten Kanal wurde hierbei
die Median-Rückstreuung in einer vertikal-horizontal Polarisation, für den grünen
Kanal die Median-Rückstreuung in einer vertikal-vertikal Polarisation, und für den
blauen Kanal die Standardabweichung der Rückstreuung in einer vertikal-vertikal
Polarisation gewählt. Die Illustration deckt den Zeitraum Juni September 2020 ab.
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“What we know is a drop, what we don’t know is an ocean.”

Isaac Newton
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Summary

Permafrost degradation is observed all over the world as a consequence of climate
change and the associated Arctic amplification, which has severe implications for the
environment. Landslides, increased rates of surface deformation, rising likelihood of
infrastructure damage, amplified coastal erosion rates, and the potential turnover of
permafrost from a carbon sink to a carbon source are thereby exemplary implications
linked to the thawing of frozen ground material. In this context, satellite earth
observation is a potent tool for the identification and continuous monitoring of relevant
processes and features on a cheap, long-term, spatially explicit, and operational basis
as well as up to a circumpolar scale.

A total of 325 articles published in 30 different international journals during the
past two decades were investigated on the basis of studied environmental foci, remote
sensing platforms, sensor combinations, applied spatio-temporal resolutions, and study
locations in an extensive review on past achievements, current trends, as well as
future potentials and challenges of satellite earth observation for permafrost related
analyses. The development of analysed environmental subjects, utilized sensors and
platforms, and the number of annually published articles over time are addressed in
detail. Studies linked to atmospheric features and processes, such as the release of
greenhouse gas emissions, appear to be strongly under-represented. Investigations
on the spatial distribution of study locations revealed distinct study clusters across
the Arctic. At the same time, large sections of the continuous permafrost domain are
only poorly covered and remain to be investigated in detail. A general trend towards
increasing attention in satellite earth observation of permafrost and related processes
and features was observed. The overall amount of published articles hereby more
than doubled since the year 2015. New sources of satellite data, such as the Sentinel
satellites and the Methane Remote Sensing LiDAR Mission (Merlin), as well as novel
methodological approaches, such as data fusion and deep learning, will thereby likely
improve our understanding of the thermal state and distribution of permafrost, and
the effects of its degradation. Furthermore, cloud-based big data processing platforms
(e.g. Google Earth Engine (GEE)) will further enable sophisticated and long-term
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analyses on increasingly larger scales and at high spatial resolutions.

In this thesis, a specific focus was put on Arctic permafrost coasts, which feature
increasing vulnerability to environmental parameters, such as the thawing of frozen
ground, and are therefore associated with amplified erosion rates. In particular, a
novel monitoring framework for quantifying Arctic coastal erosion rates within the
permafrost domain at high spatial resolution and on a circum-Arctic scale is presented
within this thesis. Challenging illumination conditions and frequent cloud cover restrict
the applicability of optical satellite imagery in Arctic regions. In order to overcome
these limitations, Synthetic Aperture RADAR (SAR) data derived from Sentinel-1
(S1), which is largely independent from sun illumination and weather conditions, was
utilized. Annual SAR composites covering the months June September were combined
with a Deep Learning (DL) framework and a Change Vector Analysis (CVA) approach
to generate both a high-quality and circum-Arctic coastline product as well as a coastal
change product that highlights areas of erosion and build-up. Annual composites in
the form of standard deviation (sd) and median backscatter were computed and used
as inputs for both the DL framework and the CVA coastal change quantification. The
final DL-based coastline product covered a total of 161,600 km of Arctic coastline
and featured a median accuracy of ±6.3 m to the manually digitized reference data.
Annual coastal change quantification between 2017 2021 indicated erosion rates of
up to 67 m per year for some areas based on 400 m coastal segments. In total,
12.24% of the investigated coastline featured an average erosion rate of 3.8 m per year,
which corresponds to 17.83 km2 of annually eroded land area. Multiple quality layers
associated to both products, the generated DL-coastline and the coastal change rates,
are provided on a pixel basis to further assess the accuracy and applicability of the
proposed data, methods, and products.

Lastly, the extracted circum-Arctic erosion rates were utilized as a basis in an
experimental framework for estimating the amount of permafrost and carbon loss
as a result of eroding permafrost coastlines. Information on permafrost fraction,
Active Layer Thickness (ALT), soil carbon content, and surface elevation were thereby
combined with the aforementioned erosion rates. While the proposed experimental
framework provides a valuable outline for quantifying the volume loss of frozen ground
and carbon release, extensive validation of the utilized environmental products and
resulting volume loss numbers based on 200 m segments are necessary. Furthermore,
data of higher spatial resolution and information of carbon content for deeper soil
depths are required for more accurate estimates.
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Zusammenfassung

Als Folge des Klimawandels und der damit verbundenen „Arctic Amplification“
wird weltweit eine Degradation des Dauerfrostbodens (Permafrost) beobachtet, welche
schwerwiegende Auswirkungen auf die Umwelt hat. Erdrutsche, erhöhte Oberflächen-
verformungsraten, eine zunehmende Wahrscheinlichkeit von Infrastrukturschäden,
verstärkte Küstenerosionsraten und die potenzielle Umwandlung von Permafrost von
einer Kohlenstoffsenke in eine Kohlenstoffquelle sind dabei beispielhafte Auswirkun-
gen im Zusammenhang mit dem Auftauen von gefrorenem Bodenmaterial. In diesem
Kontext ist die Satelliten-gestützte Erdbeobachtung ein wirkmächtiges Werkzeug zur
Identifizierung und kontinuierlichen Überwachung relevanter Prozesse und Merkmale
auf einer kostengünstigen, langfristigen, räumlich expliziten und operativen Basis und
auf einem zirkumpolaren Maßstab.

Insgesamt 325 Artikel, die in den letzten zwei Jahrzehnten in 30 verschiedenen
internationalen Zeitschriften veröffentlicht wurden, wurden auf Basis der adressierten
Umweltschwerpunkte, Fernerkundungsplattformen, Sensorkombinationen, angewand-
ten raum-zeitlichen Auflösungen und den Studienorten in einem umfassenden Überblick
über vergangene Errungenschaften und aktuelle Trends untersucht. Zusätzlich wur-
den zukünftige Potenziale und Herausforderungen der Satelliten-Erdbeobachtung
für Permafrost-bezogene Analysen diskutiert. Auf die zeitliche Entwicklung der un-
tersuchten Umweltthemen, eingesetzten Sensoren und Satelliten-Plattformen sowie
die Zahl der jährlich erscheinenden Artikel wurde detailliert eingegangen. Studien zu
atmosphärischen Eigenschaften und Prozessen, wie etwa der Freisetzung von Treibhaus-
gasemissionen, waren stark unterrepräsentiert. Deutliche geografische Schlüssel-Gebiete,
auf welche sich der Großteil der Studien konzentrierte, konnten in Untersuchungen
zur räumlichen Verteilung der Studienorte identifiziert werden. Gleichzeitig sind große
Teile des kontinuierlichen Permafrost-Gebiets nur spärlich abgedeckt und müssen noch
im Detail untersucht werden. Es wurde ein allgemeiner Trend zu einer zunehmenden
Aufmerksamkeit bezüglich der Satelliten-gestützten Erdbeobachtung von Permafrost
und verwandten Prozessen und Merkmalen beobachtet. Die Gesamtzahl der veröf-
fentlichten Artikel hat sich dabei seit dem Jahr 2015 mehr als verdoppelt. Neue
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Zusammenfassung

Quellen für Satellitendaten, wie beispielweise die Sentinel-Satelliten und die Methane
Remote Sensing LiDAR Mission (Merlin), sowie neuartige methodische Ansätze, wie
Datenfusion und Deep Learning, werden dabei voraussichtlich unser Verständnis bzgl.
des thermischen Zustands und der Verteilung von Permafrost-Vorkommen sowie die
Auswirkungen seines Auftauens verbessern. Darüber hinaus werden Cloud-basierte
Big-Data-Verarbeitungsplattformen (z.B. Google Earth Engine (GEE)) anspruchsvolle
und langfristige Analysen in immer größeren Maßstäben und mit hoher räumlicher
Auflösung erleichtern.

In dieser Arbeit wurde ein besonderer Fokus auf arktische Permafrost-Küsten
gelegt, die eine zunehmende Vulnerabilität gegenüber Umweltparametern wie dem
Auftauen von gefrorenem Boden aufweisen und daher von verstärkten Erosionsraten
betroffen sind. Ein neuartiger Ansatz zur Quantifizierung der arktischen Küstene-
rosion innerhalb des Permafrost-Gebiets mit hoher räumlicher Auflösung und auf
zirkum-arktischem Maßstab wird in dieser Dissertation präsentiert. Schwierige Be-
leuchtungsbedingungen und häufige Bewölkung schränken die Anwendbarkeit optischer
Satellitenbilder in arktischen Regionen ein. Um diese Einschränkungen zu überwinden,
wurden Synthetic Aperture RADAR (SAR) Daten von Sentinel-1 (S1) verwendet, die
weitgehend unabhängig von Sonneneinstrahlung und Wetterbedingungen sind. Jährli-
che SAR-Komposite, welche die Monate Juni bis September abdecken, wurden mit
einem Deep Learning (DL)-Ansatz und einer Change Vector Analysis (CVA)-Methode
kombiniert, um sowohl ein qualitativ hochwertiges und zirkum-arktisches Küstenli-
nienprodukt als auch ein Produkt für die Änderungsraten (Erosion und küstennahe
Aggregation von Sedimenten) der Küste zu generieren. Jährliche Satelliten-Komposite
in Form von der Standardabweichung (sd) und des Medians der SAR Rückstreuung
wurden hierbei berechnet und als Eingabedaten sowohl für den DL-Ansatz als auch
für die Quantifizierung der CVA-basierten Küstenänderung verwendet. Das endgül-
tige DL-basierte Küstenlinienprodukt deckt insgesamt 161.600 km der arktischen
Küstenlinie ab und wies eine Median-Abweichung von ±6,3 m gegenüber den ma-
nuell digitalisierten Referenzdaten auf. Im Zuge der Quantifizierung von jährlichen
Küstenveränderungen zwischen 2017 und 2021 konnten Erosionsraten von bis zu 67 m
pro Jahr und basierend auf 400 m Küstenabschnitten identifiziert werden. Insgesamt
wiesen 12,24% der untersuchten Küstenlinie eine durchschnittliche Erosionsrate von
3,8 m pro Jahr auf, was einer jährlichen erodierten Landfläche von 17,83 km2 entspricht.
Mehrere Qualitäts-Datensätze, die beiden Produkten zugeordnet sind, wurden auf
Pixelbasis bereitgestellt, um die Genauigkeit und Anwendbarkeit der präsentierten
Daten, Methoden und Produkte weiter einordnen zu können.

Darüber hinaus wurden die extrahierten zirkum-arktischen Erosionsraten als Grund-
lage in einem experimentellen Ansatz verwendet, um die Menge an Permafrost-Verlust

XVI



Zusammenfassung

und Kohlenstofffreistzung als Konsequenz der erodierten Permafrost-Küsten abzu-
schätzen. Dabei wurden Informationen zu Permafrost-Anteil, Active Layer Thickness
(ALT), Höhenmodellen und der Menge an im Boden gespeichertem Kohlenstoff mit den
oben genannten Erosionsraten kombiniert. Während der präsentierte experimentelle
Ansatz einen wertvollen Ausgangspunkt für die Quantifizierung des Volumenverlusts
von gefrorenem Boden und der Kohlenstofffreisetzung darstellt, ist eine umfassende
Validierung der verwendeten Umweltprodukte und der resultierenden Volumenzah-
len erforderlich. Zusätzlich werden für genauere Abschätzungen Daten mit höherer
räumlicher Auflösung und Informationen zum Kohlenstoffgehalt für tiefere Bodentiefen
benötigt.
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Russian Summary

Деградация вечной мерзлоты наблюдается во всем мире как следствие изме-
нения климата, которое имеет серьезные последствия для окружающей среды.
Таким образом, оползни, повышенная скорость деформации поверхности, расту-
щая вероятность повреждения инфраструктуры, ускоренная береговая эрозия и
потенциальное превращение вечной мерзлоты из поглотителя углерода в источник
углерода являются показательными последствиями, связанными с оттаиванием
мерзлого материала грунта. В этом контексте спутниковое наблюдение за Землей
является мощным инструментом для идентификации и непрерывного монито-
ринга соответствующих процессов и характеристик на дешевой, долгосрочной,
пространственной и оперативной основе, а также вплоть до циркумполярного
масштаба.

В общей сложности 325 статей, опубликованных в 30 различных международ-
ных журналах за последние два десятилетия, были исследованы по изучаемым
экологическим очагам, платформам дистанционного зондирования, комбинаци-
ям датчиков, прикладным пространственно-временным разрешениям и месту
исследования в обширном обзоре прошлых достижений, текущих , а также бу-
дущие возможности и проблемы спутникового наблюдения Земли для анализа
вечной мерзлоты. Подробно рассматривается развитие анализируемых объектов
окружающей среды, используемых датчиков и платформ, а также количество
ежегодно публикуемых статей с течением времени. Исследования, связанные
с атмосферными особенностями и процессами, такими как выбросы парнико-
вых газов, представлены крайне недостаточно. Исследования пространственного
распределения мест проведения исследований выявили отчетливые исследова-
тельские кластеры по всей Арктике. В то же время большие участки сплошной
области вечной мерзлоты охвачены слабо и требуют детального изучения. На-
блюдалась общая тенденция к увеличению внимания к наземным спутниковым
наблюдениям вечной мерзлоты и связанных с ней процессов и особенностей. Об-
щее количество опубликованных статей более чем удвоилось с 2015 года. Новые
источники спутниковых данных, такие как спутники Sentinel и миссия LiDAR для
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дистанционного зондирования метана (Merlin), а также новые методологические
подходы, такие как объединение данных обучения, тем самым, вероятно, улучшит
наше понимание теплового состояния и распределения вечной мерзлоты, а также
последствий ее деградации. Кроме того, облачные платформы обработки больших
данных (например, Google Earth Engine (GEE)) в дальнейшем позволят проводить
сложный и долгосрочный анализ во все более крупных масштабах и с высоким
пространственным разрешением.

В этой диссертации особое внимание было уделено арктическим побережьям
вечной мерзлоты, которые характеризуются повышенной уязвимостью к парамет-
рам окружающей среды, таким как таяние мерзлых грунтов, и, следовательно,
связаны с усиленной скоростью эрозии. В частности, в рамках этой диссертации
представлена новая система мониторинга для количественной оценки скорости
эрозии арктических берегов в области вечной мерзлоты с высоким простран-
ственным разрешением и в циркумарктическом масштабе. Сложные условия
освещенности и частая облачность ограничивают возможности применения оп-
тических спутниковых снимков в арктических регионах. Чтобы преодолеть эти
ограничения, были использованы данные радара с синтезированной апертурой
(SAR), полученные от Sentinel-1 (S1), которые в значительной степени не зависят
от солнечного освещения и погодных условий. Ежегодные составные данные SAR,
охватывающие период с июня по сентябрь, были объединены со структурой глубо-
кого обучения (DL) и подходом анализа вектора изменений (CVA) для создания
как высококачественного продукта для циркумарктической береговой линии, так
и продукта для прибрежных изменений, который выделяет участки эрозии и
наростов. Годовые композиты в форме стандартного отклонения (sd) и медиан-
ного обратного рассеяния были рассчитаны и использованы в качестве входных
данных как для структуры DL, так и для количественной оценки прибрежных
изменений CVA. Окончательный продукт береговой линии на основе DL охваты-
вал в общей сложности 161.600 км береговой линии Арктики и имел медианную
точность ±6,3 м по сравнению с оцифрованными вручную справочными данными.
Ежегодная количественная оценка изменения береговой линии в период с 2017 по
2021 год показала скорость эрозии до 67 м в год на основе 400-метровых участков
побережья для некоторых районов. Всего на 12,24% исследованной береговой
линии средняя скорость эрозии составила 3,8 м в год, что соответствует 17,83 км2

ежегодно эродируемой площади суши. Несколько слоев качества, связанных с обо-
ими продуктами, сгенерированной DL-береговой линией и скоростью изменения
берегов, предоставляются на основе пикселей для дальнейшей оценки точности и
применимости предлагаемых данных, методов и продуктов.

Наконец, извлеченные скорости циркумарктической эрозии использовались в
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Russian Summary

качестве основы для экспериментальной оценки количества вечной мерзлоты и
потерь углерода в результате эрозии береговых линий вечной мерзлоты. Таким
образом, информация о доле вечной мерзлоты, толщине активного слоя (ALT),
содержании углерода в почве и высоте поверхности была объединена с вышеупо-
мянутыми скоростями эрозии. В то время как предлагаемая экспериментальная
схема обеспечивает ценную схему для количественной оценки потери объема мерз-
лого грунта и выброса углерода, необходима обширная проверка используемых
экологических продуктов и результирующих значений потери объема на основе
200-метровых сегментов. Кроме того, для более точных оценок требуются данные
с более высоким пространственным разрешением и информация о содержании
углерода в более глубоких слоях почвы.
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Chapter 1
Introduction∗

1.1 Scientific Relevance

Roughly one quarter of the terrestrial land area on the Northern Hemisphere is
covered by permafrost, making it an integral part of the cryosphere (J. Brown et al.,
2002). The amount of carbon which is stored in its frozen masses is almost double in
quantity compared to the carbon content that is present in the atmosphere (Schuur
et al., 2015; Pörtner et al., 2019). The thawing of permafrost triggers the release of
this carbon content to the atmosphere in the form of greenhouse gases, which in turn
could cause climate change to accelerate more rapidly than estimated by current Earth
system models (Schuur et al., 2015). A global economic damage within the realm of
trillions of dollars due to abrupt releases of methane and caused by the thawing of
permafrost is hereby predicted if no mitigation actions are taken (Whiteman et al.,
2013). Thus, substantial consequences for human society and the environment can be
expected by a widespread degradation of permafrost. An increasing thickness of the
active layer (L. M. Farquharson et al., 2019), the development of geological hazards,
(Arenson & Jakob, 2015), amplified coastal erosion rates (Isaev et al., 2019; Cunliffe et
al., 2019; B. M. Jones et al., 2018), magnified rates of surface deformation (X. Zhang
et al., 2019; Rudy et al., 2018; C. Wang et al., 2017), and the release of greenhouse
gases (C. Song et al., 2012; Watts et al., 2014; Curasi et al., 2016) are hereby just some
examples of the implications associated with the climate change driven degradation of
permafrost soils.

Permafrost is defined as ground material that remains constantly frozen for two or
more consecutive years (Van Everdingen et al., 2005). Over 65% of terrestrial area

∗Parts of this chapter are based on Philipp et al. (2021), Philipp et al. (2022), and Philipp et al.
(2023).
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above 60°N and roughly 24% of exposed land on the Northern Hemisphere is underlain
by this continuously frozen ground material which highlights its importance (Bartsch,
Höfler, et al., 2016; A. M. Trofaier et al., 2017). Figure 1.1 illustrates the permafrost
fraction in percent across the Northern Hemisphere for the year 2017 based on data
by Obu et al. (2021b).

Definition of Permafrost:
Permafrost, which is also characterized as permanently frozen ground, is defined
as ground material (soil, sediment, or rock) that remains constantly frozen for
two or more consecutive years (Subcommittee, 1988). Furthermore, permafrost is
commonly divided into separate zones depending on the relative amount of frozen
ground in a given area (J. Brown et al., 2002):

Isolated: <10%; Sporadic: 10 50%; Discontinuous: 50 90%; Continuous: 90 100%

Figure 1.1: The fraction of permafrost across the Northern Hemisphere for the year 2017
based on data by Obu et al. (2021b). A shaded relief by Natural Earth (n.d.) was used as a
background map. Modified after Philipp et al. (2023).
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On top of the permafrost lies the so-called active layer, which is defined as the
uppermost ground layer that varies in thickness and, unlike the continuously frozen
permafrost, seasonally freezes and thaws (Duguay et al., 2005). Figure 1.2 provides
a schematic overview of the ground profile in permafrost environments, including
permafrost, the active layer, deep unfrozen ground, and the temperature profile. In
order to fully assess the degradation of permafrost, an understanding of both the
dynamics of the active layer thickness and the thermal state of permafrost is crucial
(W. Chen et al., 2003; Westermann et al., 2014). Bodies and layers of non-frozen
ground material in the form of crypegs and taliks can be present in permafrost
(Van Everdingen et al., 2005). Cryopegs are hereby defined as permanently croytic
soils with temperatures below 0°C but at the same time remain unfrozen due to
dissolved-solids that are present in the pore water (Van Everdingen et al., 2005).
Taliks are further separated into closed taliks which represent depressions in the
frozen ground below lakes and rivers, whereas open taliks connect the sub- and
supra-permafrost water and therefore completely penetrate the layer of frozen ground
material (Van Everdingen et al., 2005; Stephani et al., 2020).

Figure 1.2: Schematic cross-section of the ground profile in permafrost environments
including the active layer, permafrost, deep unfrozen ground, and seasonal temperature
variations of the ground. The blue line represent the annual minimum temperature and
the red line the annual maximum temperature for a given depth. The purple dashed line
visualises the minimum depth of seasonally invariant ground temperature. Modified after
Arctic Development and Adaptation to Permafrost in Transition (ADAPT) (n.d.).
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1.1.1 Permafrost in a warming World

The term “Arctic amplification” refers to the phenomenon of temperatures rising
twice as fast in the Arctic compared to the global average temperature increase
(J. Cohen et al., 2014). Annual mean surface air temperatures have increased by
roughly 2°C since the year 1900 based on data from weather stations distributed over
the Northern High Latitudes (NHL), while strongest temperature increase is taking
place during the winter and autumn seasons (Serreze & Barry, 2011). During the
period 1970 2010 the snow extent across the Northern Hemisphere was observed to
have decreased by 7% 11% for the months March and April compared to the snow
cover prior to the year 1970 (R. D. Brown & Robinson, 2011). Furthermore, no less
than half of the vegetated areas within the Arctic is projected to shift to a different
class by the mid of this century based on the CAVM and several climate change
scenarios (Pearson et al., 2013). Another major driver for Arctic greening has been
identified to be the longer duration and earlier start of the non-frozen season (Y. Kim
et al., 2012).

Increasing ground temperatures are reported for the majority of regions within
the permafrost domain (Romanovsky et al., 2010). As a consequence, a substantial
decrease of the permafrost extent is predicted in projections on the future distribution
of frozen ground (Slater & Lawrence, 2013; Pastick et al., 2015; S. Zhao et al., 2019).
Permafrost temperatures across high-mountain and polar regions are reported to have
increased on average by 0.29°C ± 0.12°C within the time span 2007 2016, as mentioned
in the Intergovernmental Panel on Climate Change (IPCC) Special Report on the
Ocean and Cryosphere in Changing Climate by Pörtner et al. (2019).

The thawing of permafrost has drastic implications for the environment. The
infographic in Figure 1.4 illustrates various landscape processes and features related
to the degradation of permafrost, including coastal erosion (e.g. Günther et al., 2013;
K. Barnhart et al., 2014; Novikova et al., 2018; Obu, Lantuit, Grosse, et al., 2017),
thermokarst ponds and lakes (e.g. Rey et al., 2019; L. Wang, Jolivel, et al., 2018; Nitze
et al., 2017; L. Farquharson et al., 2016), thaw slump activities (e.g. Luo, Niu, et al.,
2019; Swanson & Nolan, 2018; Segal et al., 2016), wild fires (e.g. B. M. Jones et al., 2015;
Gibson et al., 2018; Zhou, Liu, et al., 2019), patterned ground (e.g. Kartoziia, 2019;
Lousada et al., 2018), the deepening of the active layer (e.g. M. Jorgenson & Osterkamp,
2005; H. Park et al., 2016; Grosse et al., 2016), magnified surface deformation rates due
to thaw settlement and frost heave (e.g. Strozzi et al., 2018; Antonova et al., 2018; J. Hu
et al., 2016; Short et al., 2014), landslides (e.g. Kääb, 2002; Hao et al., 2019; Kharuk
et al., 2016), changing rock glacier movements (e.g. Kääb, 2002; Strozzi et al., 2020;
Brenning, Long, & Fieguth, 2012), and the aforementioned emissions of previously
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stored greenhouse gases (e.g. Nassar et al., 2014; Hartley et al., 2015; Jørgensen et
al., 2015; Anthony et al., 2016, 2018; Schneider et al., 2009). In addition, a change
in the organization of of soil carbon stocks, vegetation composition, and hydrological
flowpaths are further consequences of degrading frozen ground (M. T. Jorgenson et
al., 2013). The warming of permafrost also negatively impacts its physical stability,
which in turn lowers the load capacity for human infrastructure such as railroads,
pipelines, and buildings (F. Chen et al., 2012; Hinzman et al., 2005; Hjort et al., 2018).
Additionally, more frequent mass movements and ground surface deformations in the
form of e.g. detachments of the active layer have the potential to become geohazards
and thus endanger exposed human infrastructure (Radosavljevic et al., 2016; Couture
et al., 2018; B. M. Jones et al., 2018; M. T. Jorgenson & Grosse, 2016). Both the size
and quantity of surface water areas within the permafrost domain are highly dynamic,
as the expansion of lakes is cased by thermoerosion while subsurface drainage leads to
the disappearance or shrinking of lakes (B. M. Jones et al., 2011; Yoshikawa & Hinzman,
2003). Increasing input rates from groundwater to surface streams are thereby the
result of thinning permafrost, which consequently forces changes in chemical properties
and temperature of lakes and rivers (Hinzman et al., 2005). Example photographs of a
patterned ground, a pingo, thaw lakes and ponds, coastal erosion, and thaw slumping
in a permafrost environment is provided in Figure 1.3.

The expanding risk of structural damage through the thawing of permanently frozen
ground makes infrastructure engineering in permafrost environments exceptionally
challenging (Schnabel et al., 2020). The reduced load capacity of the warming ground
in combination with magnified surface deformation rates lead to an increased risk of
foundation failure (Humlum et al., 2003; Qingbai et al., 2002). By the year 2050, it is
anticipated that roughly 70% of Arctic infrastructure will be situated in regions that
are classified as vulnerable to ground subsidence and permafrost degradation (Meredith
et al., 2019). This is of particular importance for heated structures such as pipelines
and heated buildings which have to be elevated above the ground using pilings with
ventilated space in between so that a heat exchange and the consequent thawing of
frozen ground can be prevented (Schnabel et al., 2020). Nonetheless, replacing the
original surface cover in permafrost environments with unheated but warmer materials
such as asphalt roads can already cause ground temperatures to rise (Schnabel et al.,
2020). Proactive cooling methods of the frozen ground are therefore recommended to
lower maintenance fees on buildings and other infrastructure that are caused by the
thawing of permafrost (G. Cheng, 2005; Schnabel et al., 2020; Humlum et al., 2003;
F. Chen et al., 2012).
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Figure 1.3: A variety of common processes and features in permafrost environments. (a)
Patterned ground, (b) pingos, (c) thaw lakes and ponds, (d) coastal erosion, and (e, f) thaw
slumps are displayed. Photos taken by Tobias Ullmann. Modified after Philipp et al. (2023)
& Department of Remote Sensing - University of Würzburg (2023).
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Atmospheric Features and Processes 10: Thaw slumps
1: Greenhouse gas emissions 11: Wild fires

Surface Water Features and Processes Thermal Features and Processes
2: Surface water extent dynamics 12: Land surface temperature dynamics
3: Coastal erosion 13: Ground temperature dynamics
4: Bog/fen development

Subsurface Features and Processes
Surface Land Features and Processes 14: Active layer thickness dynamics
5: Rock glaciers 15: Permafrost
6: Landslides 16: Unfrozen ground
7: Pingo development 17: Cryopeg
8: Patterned ground 18: Talik
9: Frost heave and thaw settlement

Figure 1.4: The info-graphic illustrates various permafrost related processes and features.
Processes are thereby written in italics. Several symbols illustrated in the infographic were
modified or adopted according to courtesy of the Integration and Application Network,
University of Maryland Center for Environmental Science (n.d.). Modified after Philipp et
al. (2021).

A further critical aspect about permanently frozen ground is the aforementioned
massive amount of present organic carbon content. Current estimates indicate that
roughly 1460 1600 billion tonnes of organic carbon is stored in permafrost, which is
roughly twice the amount of carbon that is currently present in the atmosphere (Schuur
et al., 2015; Pörtner et al., 2019). An ongoing thawing of permafrost could therefore
trigger the emerge of organic carbon stocks in the form of greenhouse gas emissions and
further speed up climate change through a positive feedback loop (M. Yang et al., 2010;
Schuur et al., 2015). Arctic greening could hereby act as a carbon sink to some extent,
however, the predicted amount CO2 uptake via vegetation in the NHL varies strongly
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across different models (Voigt et al., 2017; Abbott et al., 2016; A. M. Trofaier et al.,
2017). Amplified carbon emissions of up to 75% through Arctic rivers and coastal
erosion, and a fourfold increase of carbon releases caused by fires are hereby expected
by the end of the century based on an expert assessment by Abbott et al. (2016).
It is further mentioned that permafrost environments are likely to become carbon
sources by the year 2100 independent of the climate scenario. However, the authors
also stress that around 65% 85% of carbon releases related to permafrost could still be
mitigated by lowering human emission rates (Abbott et al., 2016). Models dedicated
to predict future permafrost carbon releases are frequently based on Representative
Concentration Pathways (RCP) scenarios (Kleinen & Brovkin, 2018). RCPs were
developed as a starting point for long- and near-term climate modelling approaches
and represent four different pathways for the future development of greenhouse gas
concentrations (Van Vuuren et al., 2011). Each pathway is thereby labeled after a
different potential radioactive forcing value (2.6, 4.5, 6.0, or 8.5 W/m2) predicted for
the year 2100 (Van Vuuren et al., 2011). While carbon releases under the moderate
warming scenario RCP4.5 are predicted to be 6 33 Pg carbon by the end of the century,
the total amount of released carbon under the strong warming scenario RCP8.5 is
estimated to range between 23 174 Pg carbon (Schuur et al., 2015; Koven, Schuur,
et al., 2015; Koven, Lawrence, & Riley, 2015; Anthony et al., 2018). According to
Schaefer et al. (2014), the continuous degradation and the associated release of carbon
could lead to a global temperature increase of 0.29 ± 0.21°C by the end of the century
under the scenario RCP8.5, which threatens the goal to not overshoot the desired
warming target of no more than 2°C over pre-industrial temperatures in 2100. The
authors further express their concerns regarding the lack of such permafrost related
carbon emission pathways in climatic projections that are communicated in the IPCCs
Fifth Assessment Report (AR5) (Schaefer et al., 2014).

1.1.2 Efforts in monitoring Permafrost Landscapes from Space

In recognition of its significance, permafrost was added to the list of the 50
Essential Climate Variables (ECV) as specified by the Global Climate Observing
System (GCOS) of the World Meteorological Organization (WMO) (Grosse et al.,
2016; A. M. Trofaier et al., 2017). The relevant parameters for the ECV permafrost are
hereby both “Permafrost temperature (K)” and “Depth of active layer (m)” (European
Space Agency, n.d.-g). In addition to ongoing projects, such as European Space
Agency (ESA) “LST_cci” or “Snow_cci”, permafrost was also included in the list
of ESA Climate Change Initiative (CCI) programs (European Space Agency, n.d.-g;
Westermann et al., 2018). Table 1.1 provides details for a variety of frequently cited
in literature, ongoing, and recent networks and programs in the context froze ground.
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As a subsurface feature, permafrost itself cannot be directly monitored from space.
Nonetheless, several land surface processes and features (Figures 1.3 & 1.4), which
are associated by permafrost and its degradation, can be remotely measured and
analyzed via satellites. The thermal state of permafrost can hereby indirectly be
assessed through such land surface target features (Westermann et al., 2014). Table
1.2 lists several review articles dedicated the satellite remote sensing of permafrost
and published during the last two decades.

Table 1.1: A variety of recent and ongoing programs and networks associated with permafrost.
Modified after Philipp et al. (2021).

Name Objective Runtime Reference

Global Terrestrial
Network for
Permafrost (GTN-P)

Management and organisation
of permafrost data. since 1998

Biskaborn et al.
(2015);
International
Permafrost
Association;
Arctic Portal;
Alfred-Wegener-
Institut (n.d.)

Swiss Permafrost
Monitoring
Network (PERMOS)

Documentation of changes
and of the current state of
mountain permafrost in the
Swiss Alps.

since 2000
Vonder Mühll et
al. (2008);
PERMOS (n.d.)

PermaNET –
Permafrost
Long-Term
Monitoring Network

Monitoring of alpine-wide
permafrost. 2007 - 2013

Mair et al. (2011);
PermaNet Alpine
Space (n.d.)

Permafrost Carbon
Network

Quantification of the role of
permafrost on future climate
change.

since 2011
Permafrost
Carbon Network
(n.d.)

ArcticNet
Investigating the impacts of
climate change in the
Canadian North.

since 2003 ArcticNet
(n.d.-b,-a)

Cooperative Global
Air Sampling
Network

International effort in
gathering regular discrete air
flask samples.

since 1967

NOAA Earth
System Research
Laboratories
(n.d.-a)

(Table continues on the next page ...)
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Table 1.1: Continued.

Name Objective Runtime Reference

PAGE21

Studying the feedback
mechanisms and vulnerability
of permafrost environments
associated with increasing
greenhouse gas emissions.

2011 - 2015 PAGE21 (n.d.)

Circumpolar Active
Layer
Monitoring (CALM)

Observing the response of the
active layer and near-surface
permafrost to climate change
over long (multi-decadal) time
scales.

since 1991

Shiklomanov et al.
(2008);
International
Permafrost
Association
(n.d.-a)

Thermal State of
Permafrost (TSP)

Database for assessing the
changes in distribution and
temperatures of permafrost.

since 2007

Romanovsky et al.
(2010);
International
Permafrost
Association
(n.d.-b)

ESA
Atmosphere-Land
Interactions
Study (ALANIS)

Contribution and interaction
of boreal Eurasia to
greenhouse gas concentration.

2010 - 2012

Hayman et al.
(2010);
Marconcini et al.
(2010)

ESA Data User
Element (DUE)
Permafrost

Establishment of a systematic
and satellite-based permafrost
monitoring program.

2009 - 2012

Heim et al.
(2011); European
Space Agency
(n.d.-f)

ESA GlobPermafrost

Development, implementation,
and validation of permafrost
related products by
integrating data from Earth
observation.

2016 - 2019

Bartsch, Grosse,
et al. (2016);
European Space
Agency (n.d.-c)

ESA Climate
Change
Initiative (CCI)
Permafrost

Development of permafrost
maps as Essential Climate
Variables (ECV) products via
space-borne observations.

2018 - 2021

Westermann et al.
(2018); European
Space Agency
(n.d.-g)

Arctic-Boreal
Vulnerability
Experiment
(ABoVE)

Major field campaign in
western Canada and Alaska
to help predict and
understand ecosystem
responses of climate change in
the Arctic and Boreal regions.

since 2015

Miller et al.
(2019); National
Aeronautics and
Space
Administration
(NASA) (n.d.)

(Table continues on the next page ...)
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Table 1.1: Continued.

Name Objective Runtime Reference

Climate and
Cryosphere (CliC)

Enhance our understanding of
the cryosphere and its
interactions with the global
climate system as well as to
build-up the utilization of
cryospheric observations for
detecting climate change.

since 2001

Allison et al.
(2001); Climate
and Cryosphere
(CliC) (n.d.)

Next-Generation
Ecosystem
Experiments
(NGEE) Arctic

Enhance our predictive
understanding of carbon-rich
Arctic system feedbacks and
processes to the climate.

2012 - 2022

S. Wullschleger et
al. (2011);
S. D. Wullschleger
(2019)

Study of
Environmental
Arctic
Change (SEARCH)

Understanding the impact of
shrinking land/sea ice and
degrading permafrost on the
Arctic and global systems.

since 2001

Study of
Environmental
Change
(SEARCH)
(2005); SEARCH
(n.d.)

PermaSAR

Development of
methodologies to detect
subsidence through remote
sensing investigations in
permafrost domains.

2015 - 2019 Antonova et al.
(2019)

SatPerm -
Satellite-based
Permafrost Modeling
across a Range of
Scales

Studying the feasibility of
satellite observations as input
for permafrost modelling.

2015 - 2018
University of Oslo
- Department of
Geosciences (n.d.)

COmbining remote
sensing and field
studies for
assessment of
Landform Dynamics
and permafrost state
on Yamal (COLD
Yamal)

Development of
methodologies for the
observation of permafrost and
linked land surface features
on the Yamal peninsula.

2013 - 2016

Central Institute
for Meteorology
and Geodynamics
Section Climate
Change Impacts
(n.d.)

Horizon 2020
Nunataryuk

Analysing the impacts of
thawing coastal and sub-sea
permafrost and developing
mitigation strategies for the
population of Arctic coastal
environments.

2017 - 2022
Lantuit (2019);
NUNATARYUK
(n.d.)

(Table continues on the next page ...)
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Table 1.1: Continued.

Name Objective Runtime Reference

Modular
Observation
Solutions for Earth
Systems (MOSES)

A joint observation system
that primarily targets four
events: ocean eddies,
hydrological extreme events,
the thawing of permafrost,
and heat waves.

2017 - 2021 Alfred-Wegener-
Institute (n.d.-b)

PETA-CARB

Quantification of the amount,
distribution, and vulnerability
of deep carbon stocks in
permafrost deposits.

2013 - 2018 Alfred-Wegener-
Institute (n.d.-c)

CARBOPERM

Investigations on the turnover,
formation, and the release of
organic carbon stored in
northern Siberian permafrost
environments.

2013 - 2016 Schwamborn &
Wetterich (2015)

KoPf

Joint research project
dedicated to examine carbon
dynamics in north-eastern
Siberian landscapes, which
are underlain by permafrost,
via field observations and
mathematical models.

2017 - 2020 KoPf (n.d.)

Changing Arctic
Carbon cycle in the
cOastal Ocean Near-
shore (CACOON)

Quantifying the effects of
degrading terrestrial
permafrost and changes in
freshwater exports of organic
matter to Arctic coastal
waters.

2018 - 2021 Alfred-Wegener-
Institute (n.d.-a)

(... end of continued table.)

Disadvantageous environmental conditions in Arctic environments, such as steep
sun angles, continuous cloud cover, polar night and low light intensities, but also
technical constraints of satellite imagery including the decorrelation between SAR
observations, complicates remote sensing investigations of permafrost and its associated
features and processes (Duncan et al., 2020; Zwieback et al., 2016; Westermann et
al., 2014). The implementation of thermal satellite data derived from e.g. Advanced
Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spec-
troradiometer (MODIS) allows for modelling the thickness of the active layer and for
estimating indices related to thawing (T. Zhang et al., 2004). Optical imagery based

12



1.1 Scientific Relevance

on Landsat data provides land surface information since 1972, which can be used for
change detection analyses (T. Zhang et al., 2004). On the other hand, investigations
based on Landsat data are limited by scarce data acquisitions for the temporal window
1989 1998 for a large portion of the Arctic (Bartsch, Höfler, et al., 2016). In addition,
cloud cover strongly impacts both optical and thermal satellite scenes, leading to data
gaps and thus confine their applicability (T. Zhang et al., 2004; A. M. Trofaier et al.,
2017). In contrast, Radio Detection and Ranging (RADAR) data acquired in the form
of SAR is largely independent of sun illumination and cloudiness or other weather
condition and may therefore overcome the restrictions of thermal and optical images
(Kääb et al., 2005; Kääb, 2008). Surface movements can be assessed with high accuracy
via Differential Interferometric Synthetic Aperture Radar (D-InSAR) analyses (Short
et al., 2014). However, decorrelation between individual SAR acquisitions caused by
altering surface attributes including soil moisture, snow cover or vegetation heavily
impair the usability of D-InSAR (Zwieback et al., 2016; Westermann et al., 2014).
There is a strong potential in the complementary use of optical and SAR data for
analyses in the context permafrost, since working with SAR data might be successful
where optical data fails, and vice versa (Westermann et al., 2014). Another promising
field of application for RADAR data is the detection of surface soil thawing and freezing
via passive RADAR sensors such as the Special Sensor Microwave/Imager (SSM/I),
which provides ongoing data with a global coverage and multiple observations per day
since the year 1987 (T. Zhang et al., 2004). That being said, the high temporal data
frequency is contrasted by a poor spatial resolution of multiple kilometres per pixel
(André et al., 2015). Several articles mention the lack of space-borne data with a high
spatial resolution which is essential for many permafrost-related analyses (Kääb et
al., 2005; Bartsch, Höfler, et al., 2016; M. T. Jorgenson & Grosse, 2016). Although
high resolution satellite imagery is available and was also successfully implemented
in various studies on investigating smaller scale features and processes (e.g. Ulrich
et al., 2014; B. M. Jones et al., 2018; Godin et al., 2019), the restricted access and
oftentimes expensive acquisition plans strongly limit the applicability (Kääb et al.,
2005; Boyle et al., 2014). In order to detect and analyse highly dynamic features
and processes, there is also a need for frequent and long-term satellite acquisitions in
addition to a better spatial resolution (Bartsch, Höfler, et al., 2016; A. M. Trofaier et
al., 2017). Combining remote sensing data from different sources is hereby of particular
interest in order to overcome platform- and sensor-specific constraints for investigating
processes and features in the context of permafrost, including coastal erosion, dynamics
in vegetation cover, permafrost distribution, or emerging greenhouse gases with high
spatial resolution and temporal frequency (M. T. Jorgenson & Grosse, 2016; Runge &
Grosse, 2019).
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Table 1.2: A variety of remote sensing of permafrost related review articles published during
the past two decades. Modified after Philipp et al. (2021).

Author Title

T. Zhang et al. (2004) Application of Satellite Remote Sensing Techniques to Frozen
Ground Studies

Kääb et al. (2005) Remote sensing of glacier- and permafrost-related hazards in
high mountains: an overview

Kääb (2008) Remote sensing of permafrost-related problems and hazards

National Research
Council (2014)

Opportunities to use remote sensing in understanding
permafrost and related ecological characteristics: Report of a
workshop

Arenson et al. (2016) Detection and analysis of ground deformation in permafrost
environments

M. T. Jorgenson &
Grosse (2016) Remote Sensing of Landscape Change in Permafrost Regions

Bartsch, Höfler, et al.
(2016)

Land Cover Mapping in Northern High Latitude Permafrost
Regions with Satellite Data: Achievements and Remaining
Challenges

A. M. Trofaier et al.
(2017)

Progress in space-borne studies of permafrost for climate
science: Towards a multi-ECV approach

Duncan et al. (2020) Space-Based Observations for Understanding Changes in the
Arctic-Boreal Zone

1.1.3 Erosion of Arctic Permafrost Coasts

Approximately one-third of Earth’s coastlines is located within the permafrost
domain (Lantuit et al., 2012). A widespread phenomenon which is linked to the
degradation of frozen ground is the previously mentioned erosion of Arctic coastlines
(Günther et al., 2013; Novikova et al., 2018; Obu, Lantuit, Grosse, et al., 2017).
Accelerated rates of erosion in recent years are hereby frequently reported for Arctic
environments (B. M. Jones et al., 2020; Lantuit et al., 2012). Average erosion rates
more than doubled for unlithified coasts of Siberia, Canada, and Alaska since the
year 2000 (Irrgang et al., 2022). Not only the thawing of permafrost alone, but the
interplay of several drivers are amplifying the erosion of Arctic coasts (B. M. Jones
et al., 2020, 2018). Environmental factors, such as the decreasing extent of sea ice
(L. M. Farquharson et al., 2018; M. Wang & Overland, 2009, 2012; Mahoney et
al., 2014), the increasing length of the open-water period (Crawford et al., 2021;
K. R. Barnhart et al., 2016), rising air and sea temperatures (J. Cohen et al., 2014;
Serreze & Barry, 2011; Alexander et al., 2018), and increasing storm frequencies
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(Hakkinen et al., 2008) all contribute to the accelerated retreat of Arctic coasts. In
addition, degrading permafrost leads to a destabilization of the coastline and therefore
further increases its vulnerability to erosion processes (B. M. Jones et al., 2020; Lantuit
et al., 2012). A continuous sea level rise is also expected to put additional stress on
coastal cliffs by the end of the century (Shadrick et al., 2022; Oppenheimer et al., 2019).
Figure 1.5 visualizes various features and processes linked to amplified erosion rates
of Arctic permafrost coasts. The amplified risk of infrastructure damage (Shadrick
et al., 2022; Fritz et al., 2017; Radosavljevic et al., 2016; Nielsen et al., 2022) and
alterations in fish and wildlife habitats (B. M. Jones et al., 2018; M. T. Jorgenson
& Grosse, 2016; Overduin et al., 2014) can be observed as consequences of eroding
permafrost coastlines. Moreover, the erosion of permafrost coastlines trigger the release
of previously stored organic carbon content into the oceans (Couture et al., 2018;
B. M. Jones et al., 2018; Nielsen et al., 2022; Tanski et al., 2019; Vonk et al., 2012;
Terhaar et al., 2021).

Figure 1.5: The info-graphic illustrates diverse features and processes linked to amplified
erosion rates of Arctic permafrost coasts: (1) Permafrost, (2) unfrozen ground material, (3)
rising permafrost temperatures, (4) rising air temperatures, (5), rising sea temperatures, (6)
rising storminess, (7) wave action, (8) decreasing sea ice extent, (9) decreasing permafrost
extent, (10) coastal erosion, (11) organic carbon release. Some symbols within the info-
graphic were adopted or modified according to courtesy of the Integration and Application
Network, University of Maryland Center for Environmental Science (n.d.). Modified after
Philipp et al. (2022).

In order to effectively evaluate the implications of eroding permafrost coastlines
on the environment, but also on human infrastructure and society, high resolution
and large scale quantification of changing coastlines in the Arctic is required. Satellite
remote sensing is hereby a powerful tool for spatially explicit, quick, and low coast
analyses over diverse spatial scales. The applicability of diverse SAR data in the context
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of monitoring coastal change was recently investigated in a study by Bartsch, Ley, et
al. (2020). Even though the application was considered to be feasible, the authors also
mentioned remaining challenges, including issues with ambiguous scattering behaviour,
complications with viewing geometries, and inconsistent data acquisitions (Bartsch,
Ley, et al., 2020).

First attempts to quantify coastal erosion on a circum-Arctic scale were undertaken
by Lantuit et al. (2012), who published a geomorphological categorization for 100,000
km of Arctic coastline divided into 1,315 segments. Information on volumetric ground
ice content, shore material, soil organic carbon content, and several other parameters
are provided, in addition to coastal change rates (Lantuit et al., 2012). Another recent
study by Rolph et al. (2022) introduced a physics-based model, called “ArcticBeach
v1.0”, designed for coastal erosion simulations on a circum-Arctic scale. Coastal retreat
rates, as simulated by the model, were hereby in the same magnitude range as the
reference data from two test sites (Rolph et al., 2022).

1.2 Research Motivation

According to the scientific background presented in the previous sections, the main
focus of this thesis lies on the exploitation of space-borne remote sensing data for a
better understanding on erosion processes of coastlines in permafrost environments
and the associated environmental implications by (1) assessing the applicability of
SAR data for analyzing Arctic coastal environments, (2) quantifying annual coastal
erosion rates in permafrost environments with high resolution and on a pan-Arctic
scale, and (3) linking the extracted erosion rates with the amount of permafrost and
carbon that is lost during that process.

1.3 Research Objectives

In order to close existing gaps in high resolution and continuous quantification
of coastal erosion rates in permafrost environments as well as to comply with the
research motivation introduced in section 1.2, this thesis aims to build a comprehensive
monitoring framework based on SAR satellite data to measure annual erosion rates
with high spatial resolution and on a pan-Arctic scale. In this regards, this thesis
investigates the usability of SAR data in combination with a DL work-flow and the
feasibility of CVA for detecting coastal change in permafrost regions. The three
primary research objectives of this thesis can be expressed more precisely as follows:
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1.4 Thesis Outline

This thesis consists of five chapters which are shortly outlined below.

Chapter 1 provides a brief introduction on the scientific relevance of permafrost in a
warming world. In addition, previous efforts in monitoring permafrost landscapes
from space, the effects of thawing frozen ground on the erosion of Arctic permafrost
coasts, as well as current research gaps and future monitoring requirements are
presented. Lastly, the research motivation and objectives of this thesis are summarized.

Chapter 2 presents a review on trends in satellite earth observation for permafrost
related analysis. A total of 325 articles published in 30 different international journals
during the past two decades were investigated based on the environmental focus, study
location, platform, resolution of applied remote sensing data, and sensor combinations.
Moreover, previous accomplishments and future challenges and prospects are provided.

Chapter 3 introduces a novel framework for circum-Arctic quantification of Annual
erosion rates of permafrost coasts. In particular, the applicability of S1 SAR
backscatter in combination with DL and CVA is investigated based on ten test sites
that are distributed across the entire Arctic and covering 1038 km of coastline. The
feasibility of the proposed data and methods as well as future potentials are discussed.

Chapter 4 presents an experimental framework for estimating permafrost and carbon
loss associated to Arctic coastal erosion. The previously generated coastal erosion prod-
uct is hereby combined with publicly available data on Arctic permafrost extent, Active
Layer Thickness (ALT), soil organic carbon content, and surface elevation. A discus-
sion o the applicability and uncertainties of the proposed data and methods is provided.

Chapter 5 briefly summarizes the entire thesis with respect to the fulfilment of
research objectives and questions outlined in Chapter 1.3. Moreover, opportunities for
future development and improvements are highlighted.
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Chapter 2
A Review on Trends in Satellite Earth

Observation for Permafrost related
Analyses∗

The following chapter provides a comprehensive overview of recent trends in satellite
earth observation for studying permafrost related processes and features. A total of
325 articles were investigated based on annual publication frequency, geographical
study hot spots, the relationship between the first author’s institution nationality
and the study country, the distribution of addressed environmental foci, the applied
spatio-temporal resolutions and scales, as well as the distribution of satellite platforms
and sensor types. In addition, a collection of publicly available and permafrost related
datasets is presented.

2.1 Review Objectives and Methodology

SCI papers related to remote sensing of permafrost were searched via the Web of
Science (WoS) (formerly known as ISI Web of Knowledge) platform. The literature
was filtered using a search string with the following conditions: At minimum one of
the following terms “Satellite”, “Earth Observation”, or “Remote Sensing” and the
term “Permafrost” have to be present in either keywords, abstract, or title of an article.
In case one of the keywords “Satellite”, “Earth Observation”, or “Remote Sensing”
is already present in the name of a journal, only the term “Permafrost” has to be
present in either keywords, abstract, or title. Furthermore, only articles in English
language were considered in this review. Remaining publications were further filtered

∗This chapter is based on Philipp et al. (2021).
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based on the publication date, which was limited from January 2000 until February
2020. Therefore, a time span of two decades was covered. The number of publications
which met the initial filtering criteria was over 700. The remaining literature was
further filtered to eleven international journals which have a thematic focus on earth
observation. In addition to articles from remote sensing specific journals, further
publications from 19 acclaimed non-earth observation specific international journals
were included. The total number of remaining articles after filtering by journals
was 536. The last phase of literature filtering consisted of manually screening the
articles based on the following criteria: (1) Exclusion of extra-terrestrial investigations
(permafrost occurrences on Mars). (2) Remote sensing data has to be utilized in
the analysis of a study. (3) Articles that exclusively used airborne data as the only
remote sensing data source were excluded, since the main interest of this review lies
on satellite-based observations of permafrost and its associated processes and features.
(4) The main investigation has to be about permafrost, or it has to be at least directly
connected to frozen ground. Thus, if the term “Permafrost” occurred in the abstract
but no actual analysis was dedicated to permafrost or any associated feature/process,
the article was taken into consideration for this review. An overview of the filtering
approach is provided in Figure 2.1. The final 325 remaining articles that met all of the
above-mentioned requirements were subsequently investigated based on the following
parameters:

• The annual number of published articles

• The number of investigations per country

• The nationality of the first authors institution

• Spatial study hot spots across the globe

• The number and distribution of investigated environmental categories

• The number and distribution of investigated research foci

• Distribution of the spatio-temporal resolutions of remote sensing data

• The temporal window covered in time series analyses

• Distribution of spatial scales

• Number and distribution of remote sensing platforms

• Sensor types and sensor combinations utilized
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Figure 2.1: Flow chart of the selection process for relevant articles within this review.
Modified after Philipp et al. (2021).

Table 2.1 lists all journals and the associated number of articles included in this
review. The above-mentioned filtering approach may led to the exclusion of some
relevant articles published in journals which were not considered in this review process.
Adding more journals would, however, go beyond the scope of this review. On the
same basis, non-English articles were not taken into consideration. Therefore, this
strategy should constitute an acceptable compromise for a representative overview
of recent trends and current efforts in satellite remote sensing for analyses related to
frozen ground.
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Table 2.1: List of reviewed Science Citation Index (SCI) journals. Infos about the number
of covered articles per journal and their respective 5-year impact factor as well as the impact
factor for the year 2019 are provided according the Web of Science Clarivate Analytics (n.d.)
(rounded to the first decimal place). Source: Philipp et al. (2021).

Journal Name
No. of

reviewed
Articles

Impact
Factor
2019

Impact
Factor
5 year

Remote Sensing 60 4.5 5
Remote Sensing of Environment 34 9.1 9.6
Permafrost and Periglacial Processes 29 2.7 2.7
Environmental Research Letters 28 6.1 6.7
The Cryosphere 21 4.7 4.9
Geomorphology 17 3.8 3.9
Journal of Geophysical Research: Biogeosciences 15 3.4 4.2
Biogeosciences 14 3.5 4.2
Global Change Biology 14 8.6 9.8
Journal of Geophysical Research: Earth Surface 10 3.6 4
Hydrological Processes 10 3.3 3.6
International Journal of Remote Sensing 8 3 2.7
Journal of Geophysical Research: Atmospheres 8 3.8 4.3
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 7 3.8 3.9

Science of the Total Environment 7 6.6 6.4
Scientific Reports 6 4 4.6
IEEE Transactions on Geoscience and Remote
Sensing 5 5.9 6

Water Resources Research 5 4.3 5
Nature Communications 4 12.1 13.6
Nature Geoscience 3 13.6 16.1
Journal of Applied Remote Sensing 3 1.4 1.3
GIScience & Remote Sensing 3 6 4.2
Global and Planetary Change 3 4.4 5.1
Remote Sensing Letters 2 2.3 2.4
International Journal of Applied Earth Observation
and Geoinformation 2 4.7 5.4

Frontiers in Earth Science 2 2.7 NA

(Table continues on the next page ...)
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Table 2.1: Continued.

Journal Name
No. of

reviewed
Articles

Impact
Factor
2019

Impact
Factor
5 year

ISPRS Journal of Photogrammetry and Remote
Sensing 2 7.3 8.6

IEEE Geoscience and Remote Sensing Letters 1 3.8 3.7
Earth System Science Data 1 9.2 9.6
Palaeogeography, Palaeoclimatology, Palaeoecology 1 2.8 3

Total 325

(... end of continued table.)

All research articles considered in this review were linked to the following five
environmental categories “Subsurface Features and Processes”, “Thermal Features
and Processes”, “Surface Land Features and Processes”, “Surface Water Features and
Processes”, and “Atmospheric Features and Processes”. Subsurface processes and
features, such as dynamics in the ALT, dynamics in the freezing and thawing of the soil,
or the distribution of permafrost are all covered by the category “Subsurface Features
and Processes”. The category “Thermal Features and Processes” encompasses topics
related to heat fluxes and dynamics in ground temperature or land surface temperature.
Surface movements (e.g. frost heave/thaw settlement), dynamics in the vegetation
cover, snow cover, and other land surface related topics are covered by “Surface Land
Features and Processes”. “Surface Water Features and Processes” includes all topics
related to the surface water, such as coastal erosion, lake extent dynamics, or lake
ice. Finally, the category “Atmospheric Features and Processes” encompasses all
environmental topics associated to the atmosphere, including evapotranspiration or
greenhouse gas emissions. Each environmental focus was subsequently classified as
a sub-category of one of the presented spheres. Several articles featured multiple
environmental foci across different categories. Findings from a selection of highly cited
and representative articles are provided per category.

The applied spatio-temporal resolution of utilized earth observation data is another
important parameter investigated in this review. Four categories were established
for the temporal resolution. Namely the categories, “Time Series”, “Multitemporal”,
“Bitemporal”, and “Unitemporal”. Within the context of this review, a study was
categorized as a “Time Series” if ten or more time steps were used. In case 3 9 times
steps were applied, the study was classified as “Multitemporal”. In terms of spatial
resolution, it was differentiated between the four classes low (>1000 m), medium
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low (100 1000 m), medium high (10 100 m) or high (<10 m). Moreover, different
categories for scales were defined as follows: circum-Arctic, national, regional large
(>250.000 km2), regional small (10.000 250.000 km2), and local (<10.000 km2).

Even though studies based on aerial-only remote sensing data were excluded from
the review process, many articles applied aerial footage either in conjunction with
satellite data, for validation, as a historical reference, or other complementary use.
Therefore, the category “aerial” was also included in the analysis on platform frequency.
Lastly, a variety of openly available and permafrost related data sets are presented.

2.2 Results of the Literature Review

Key findings on the spatial distribution of study sites, the amount of annually
published articles in the context of remote sensing of permafrost, as well as distribution
and relationships between study and author countries are presented in the following
sections. Additionally, details on the number and frequency of environmental research
foci and the spatio-temporal resolutions across all investigated articles are provided.
Moreover, applied sensor combinations and the frequency of utilized platforms are
visualized and described in detail.

2.2.1 Temporal Development of Permafrost related Studies

The degradation of frozen ground and its associated features and processes received
increasing attention in recent years (Grosse et al., 2016; A. M. Trofaier et al., 2017).
This rise in awareness is also reflected in the number of annually published articles,
which increased during the observed time frame from January 2000 until February
2020 (Figure 2.2). The rise in publication number was particularly high during the last
decade, with the year 2018 having the most publications (62) across all years observed
within this review. One potential reason could be that permafrost was added as an
ECV to the ESA CCI program line-up in the same year (European Space Agency,
n.d.-g; Westermann et al., 2018). Only twelve articles are listed for the year 2020,
which can be attributed to the observed time span that was limited to February 2020.
Based on the trend in publication numbers over the past two decades, a continuously
increasing amount of remote sensing studies related to permafrost and its associated
features/processes can be expected in future years.
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2.2 Results of the Literature Review

Figure 2.2: Number of published satellite Earth observation studies related to permafrost
per year based on the reviewed articles. Modified after Philipp et al. (2021).

2.2.2 Distribution of Study Countries and first Author Institution
Nationalities

The frequency of the first author’s institution nationalities and the number of
studies per country are illustrated in Figure 2.3. With 75 articles, Russia was revealed
to be the most studied country, closely followed by Canada (71), the USA (68), and
China (54) (Figure 2.3 a,b). In case of the nationality of the first authors institution,
USA is most common with 91 articles. Other frequent institution nationalities are
China (57), Germany (48) and Canada (47) (Figure 2.3 c,d). The high positions of
China, Canada and the USA in both study and author frequency can be explained by
the widespread permafrost occurrences in all three countries as visualized in Figure 1.1.
In contrast, Russia, as the most studied country, appears strongly under-represented in
terms of author frequency. Especially, since Russia features the largest distribution of
permafrost across all countries based on the permafrost fraction by Obu et al. (2021b).
As previously mentioned in section 2.1, only articles in English language were considered
in this review. This might explain the low amount of Russian institution nationalities.
Germany, on the other hand, is among the most common author nationalities, even
though almost no permafrost occurrences, with the exception of mountain permafrost
located at the Zugspitze (Gallerman et al., 2017), are present in this country.
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Figure 2.3: Map showing the frequency of study countries (a) and the relative distribution
(b). Circumpolar studies are thereby not included in the map (a). Next to the study
countries, the frequency of first author institution nationalities are displayed via a map (c)
and the relative distribution as a pie chart (d). Some articles featured study areas in more
than one country. Modified after Philipp et al. (2021).

The relationships between the institution nationalities and study countries is
visualized in Figure 2.4. The Sankey diagram reveals a tendency for authors to conduct
their investigations in the same country as the first author’s institution nationality,
provided that the respective country features permafrost occurrences. Thus, 93% of
investigations in China were undertaken by Chinese institutions. A total of 80% of
studies applied in the USA are associated with American institutions, followed by
7% of Canadian institutions. The two most common institution nationalities that
conducted their analysis in Canada are Canadian (58%) and German (21%). In
contrast, institution nationalities of studies carried out in Russia are distributed more
heterogeneously. Most investigations were hereby carried out by German institutions
(36%), followed by the USA (21%), Russia (10%), and Austria (6%). As one of the
top three author countries, German institutions applied almost half (48%) of their
investigations in Russia, followed by Canada (26%) and the USA (9%). The majority
of circum-Arctic studies were conducted by American institutions (46%), followed by
German institutions (11%).
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Figure 2.4: Sankey diagram of the relationship between the top five most frequent first
author institution nationalities (left side) and the investigated countries (right side). Modified
after Philipp et al. (2021).
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2.2.3 Spatial Distribution of reviewed Articles

Only 9% of the reviewed articles conducted their analyses on a circum-Arctic scale
(e.g. Oelke et al., 2003; Oelke & Zhang, 2004; Euskirchen et al., 2006; Epstein et al.,
2012; Soliman et al., 2012; Watts et al., 2012; Fichot et al., 2013; K. Barnhart et al.,
2014; Watts et al., 2014; André et al., 2015; Y. Kim et al., 2015; Paltan et al., 2015;
Y. Yi et al., 2015; H. Park et al., 2016; Bartsch et al., 2017; Muster et al., 2017; Xia
et al., 2017; Kroisleitner et al., 2018; Lyu & Zhuang, 2018; Suzuki et al., 2018; Liang
et al., 2019; Raynolds et al., 2019; Obu et al., 2020; Naeimi et al., 2012; Nassar et
al., 2014; Forkel et al., 2015; T. Hu et al., 2019). The spatial distribution of all other
non-circum-Arctic investigations is illustrated in Figure 2.5. Specific key study regions
can be identified across the four most studied countries Russia, Canada, the USA, and
China.

The vast majority of studies applied in the USA are located in Alaska. Regions
of particular interest are thereby the North Slope Borough together with its Arctic
Coastal Plain (e.g. Frost et al., 2018; Engram et al., 2018; Schaefer et al., 2015; Lyons
et al., 2013; K. Hinkel et al., 2017; Frohn et al., 2005; Nitze et al., 2017; Kupilik et
al., 2018; B. M. Jones et al., 2018; Strozzi et al., 2018; Iwahana, Uchida, et al., 2016;
Stephani et al., 2020; Hachem et al., 2012; Raynolds & Walker, 2016; Marchand et al.,
2018; L. Liu et al., 2014; Nitze et al., 2018; Anthony et al., 2018, 2016; Tape et al.,
2018; Gangodagamage et al., 2014; Lara et al., 2018; Muster et al., 2019; Piliouras &
Rowland, 2020; Högström et al., 2018; L. Liu et al., 2015; Andresen & Lougheed, 2015;
Balser et al., 2014; Tape et al., 2011; Ping et al., 2011; L. Liu et al., 2010; E. Kim
& England, 2003; Liljedahl et al., 2016) (Figure 2.5 key study region 1), Seward
Peninsula (e.g. Ulrich et al., 2014; Regmi et al., 2012; Engram et al., 2018; Liljedahl
et al., 2016; Anthony et al., 2016; Iwahana, Harada, et al., 2016; M. C. Jones et al.,
2012) (Figure 2.5 key study region 2), as well as the Yukon Kuskokwim Delta (e.g.
Whitley et al., 2018; M. T. Jorgenson et al., 2018; Michaelides et al., 2019; Muster
et al., 2019; Piliouras & Rowland, 2020) (Figure 2.5 key study region 3). Only three
studies did not exclusively apply their research in Alaska. Two of which conducted
their analyses in the Rocky Mountains located in southwestern Colorado (Brenning,
2009; Evans et al., 2018) (Figure 2.5 key study region 4), whereas the third exception
is a paper published by T. Zhang et al. (2003), who investigated dynamics in freezing
and thawing of the near-surface soil throughout the contiguous states of the USA.

The Tuktoyaktuk Coastlands and Mackenzie Delta within the Northwest Territories
are the major study hot spots in Canada (e.g. Nill et al., 2019; Nguyen et al., 2009;
Segal et al., 2016; Zwieback et al., 2018; Samsonov et al., 2016; Olthof et al., 2015;
Marchand et al., 2018; Muskett & Romanovsky, 2009; Brooker et al., 2014; Fraser et
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al., 2014; S. Kokelj et al., 2015; Kohnert et al., 2018; Vesakoski et al., 2017; Beighley
et al., 2015; Zwieback et al., 2019; Muster et al., 2019; Fouest et al., 2018; Doxaran
et al., 2015, 2012; Piliouras & Rowland, 2020) (Figure 2.5 key study region 5). The
Northwest Territories featured a number of further investigations (e.g. Y. Zhang et
al., 2014; Fraser et al., 2014; Chasmer et al., 2014; Marchand et al., 2018; Chasmer et
al., 2011; Carpino et al., 2018; Quinton et al., 2011; Gibson et al., 2018; Chasmer &
Hopkinson, 2017; Helbig et al., 2016; Connon et al., 2014; Quinton et al., 2003; Abis
& Brovkin, 2017; Morse & Wolfe, 2015). Additional frequently studied regions were
identified to be the eastern shore of Hudson Bay in proximity to the Inuit village of
Umiujaq in Northern Quebec (e.g. L. Wang et al., 2017; Freitas et al., 2019; Beck et
al., 2015; L. Wang, Marzahn, et al., 2018; Watanabe et al., 2011) (Figure 2.5 key study
region 6) and Herschel Island in the Yukon territory (e.g. Cunliffe et al., 2019; Short et
al., 2011; Obu, Lantuit, Myers-Smith, et al., 2017; Lantuit & Pollard, 2008; Ramage
et al., 2018; Coch et al., 2020; Irrgang et al., 2018; Ramage et al., 2017). Both Arctic
islands and the mainland of the Nunavut territory appear poorly investigated, despite
the presence of continuous permafrost in these regions.

Several key study areas were identified in Russia, one of which is the Lena River
Delta (e.g. Muskett & Romanovsky, 2009; Zwieback et al., 2018; Morgenstern et al.,
2011; Antonova et al., 2016; Langer et al., 2010, 2013; Nitze & Grosse, 2016; Antonova
et al., 2018; Strozzi et al., 2018; J. Chen et al., 2018; Runge & Grosse, 2019; Stettner et
al., 2018; Reschke et al., 2012; Ulrich et al., 2014; Zwieback et al., 2016; Morgenstern
et al., 2013; Grosse et al., 2007; Westermann et al., 2017; Grosse et al., 2005; Muster
et al., 2019; Juhls et al., 2019; Mikola et al., 2018; Fuchs et al., 2018; Heim et al.,
2014; Günther et al., 2013; Piliouras & Rowland, 2020) (Figure 2.5 key study region
7). Other key study areas were observed to be the Gydan and Yamal Peninsulas and
the areas in proximity (e.g. D. Walker et al., 2009; Widhalm et al., 2017; Dvornikov et
al., 2018; Bartsch et al., 2019; Kizyakov et al., 2018; Novikova et al., 2018; A. Trofaier
et al., 2013; Frost et al., 2014; Nitze et al., 2018; Frost & Epstein, 2014; Forbes et
al., 2010; Liljedahl et al., 2016; Flessa et al., 2008; Abis & Brovkin, 2017; Bohn et al.,
2015; Rawlins et al., 2015; Piliouras & Rowland, 2020; Sannel & Kuhry, 2011) (Figure
2.5 key study region 8), and the Kolyma Lowland (e.g. Nitze et al., 2017; Sakai et
al., 2016; Broderick et al., 2015; Curasi et al., 2016; Frost & Epstein, 2014; Anthony
et al., 2016; Muster et al., 2019; Günther et al., 2013; Piliouras & Rowland, 2020;
Siewert et al., 2015; Loranty et al., 2014; C. G. Griffin et al., 2011) (Figure 2.5 key
study region 9). The Central Yakutia Lowland features a few other clusters as well
(e.g. S.-E. Park et al., 2011; Runge & Grosse, 2019; Nitze et al., 2017; Dupeyrat et al.,
2018; Séjourné et al., 2015) (Figure 2.5 key study region 10). Although most studies
out of any country were conducted in Russia, there are still many regions within the
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continuous permafrost zone that remain to be investigated.

Figure 2.5: Spatial distribution of study areas across the reviewed articles for the Northern
Hemisphere combined with the circum-Arctic permafrost map by J. Brown et al. (2002)
(purple coloured areas). One study may have more than one study area. A shaded relief
by Natural Earth (n.d.) was used as a background map. All data is illustrated in a polar
Lambert azimuthal equal area projection. Circum-Arctic studies were excluded from this
visualization. 13 key regions with study clusters are highlighted and labelled. Modified after
Philipp et al. (2021).

In case of China, the majority of studies focused their investigations inside the
Qinghai Tibet Plateau (QTP), with a specific interest on the Beiluhe region (e.g.
F. Chen et al., 2013, 2012; C. Wang et al., 2017; Y. Song et al., 2018; C. Wang, Zhang,
Paloscia, et al., 2018; Niu et al., 2018; Yin et al., 2018; Luo, Yin, et al., 2019; Jia et al.,
2017; Z. Zhang et al., 2018; P. Tang et al., 2017; C. Xie et al., 2010; Tian et al., 2016;
Z. Zhang et al., 2019; Tian et al., 2017; C. Wang, Zhang, Zhang, et al., 2018; Luo,
Niu, et al., 2019; L. Huang et al., 2020) (Figure 2.5 key study region 11). Both the
Qinghai Tibet Highway (QTH) and the Qinghai Tibet Railway (QTR) with a length
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of 1.956 km are thereby main study interests (e.g. X. Zhang et al., 2019; F. Chen et
al., 2013, 2012; C. Wang et al., 2017; Niu et al., 2018; Yin et al., 2018; Jia et al., 2017;
Z. Zhang et al., 2018; P. Tang et al., 2017; Zou et al., 2014; Chang & Hanssen, 2015;
C. Xie et al., 2010; Z. Zhang et al., 2019; C. Wang, Zhang, Zhang, et al., 2018).

Aside from the previously mentioned regions, Svalbard in Norway (e.g. Westermann
et al., 2012, 2011; Rouyet et al., 2019; Eckerstorfer et al., 2017; Bernhardt et al., 2017;
Kasprzak et al., 2020; Lousada et al., 2018; Woelders et al., 2018) 2.5 key study
region 12) and the European Alps (e.g. Bertone et al., 2019; Strozzi et al., 2020;
Gruber & Hoelzle, 2001; Kääb, 2002; Strozzi et al., 2004; Kenyi & Kaufmann, 2003;
Ravanel et al., 2017; Strozzi et al., 2010) 2.5 key study region 13) are further frequently
investigated areas. In addition, a significant amount of articles put their research
focus on Greenland (e.g. Westermann, Elberling, et al., 2015; Strozzi et al., 2018, 2020;
Jørgensen et al., 2015; Westergaard-Nielsen et al., 2018; Finger Higgens et al., 2019)
and Scandinavia (e.g. Eriksen et al., 2017; Jagdhuber et al., 2014; Torbick et al., 2012;
Gisnås et al., 2013; Zwieback et al., 2016; Etzelmüller et al., 2001; Hartley et al., 2015;
Sannel & Kuhry, 2011).

The vast majority (94%) of articles applied their analysis across the Northern
Hemisphere. However, a number of authors also dedicated their research to features
and processes in the context of permafrost on the Southern Hemisphere 2.6. A common
study region is hereby the Andes, with a particular focus on the kinematics of rock
glaciers and the distribution of mountain permafrost (e.g. Brenning, Long, & Fieguth,
2012; Villarroel et al., 2018; Nagy et al., 2019; Monnier et al., 2014; Janke et al., 2017;
Brenning, Peña, et al., 2012; Batbaatar et al., 2020; Strozzi et al., 2020) (2.6 key
study region 1). Another common study area is hereby the South Shetland Islands
and specifically Byers Peninsula on Livingston Island within the Antarctic region (e.g.
Strozzi et al., 2018; Mink et al., 2014; López-Martínez et al., 2012; Moura et al., 2012;
Vieira et al., 2014; Miranda et al., 2020) (2.6 key study region 2). Furthermore, rock
glaciers in the McMurdo Dry Valleys were the subject of one single article (Bockheim,
2014) (2.6 key study region 3). Finally, modelling of near-surface temperatures of
permafrost across the entire Antarctic was conducted in a recent study by Obu et al.
(2020). A minimum permafrost temperature of −36°C was hereby modelled which
represents the global minimum based on worldwide efforts in modelling permafrost
temperatures (Obu et al., 2020).
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Figure 2.6: Spatial distribution of study areas across the reviewed articles for the Southern
Hemisphere. One study may have more than one study area. A shaded relief by Natural Earth
(n.d.) was used as a background map. All data is illustrated in a polar Lambert azimuthal
equal area projection. Circum-Antarctic studies were excluded from this visualization. Three
key regions with study clusters are highlighted and labelled. Modified after Philipp et al.
(2021).

2.2.4 Categorization of environmental Research Foci

The distribution of research foci and the associated categories are visualized in
Figure 2.7. Roughly 25% of studies are associated with “Surface Water Features and
Processes”, which makes it the second most common category. Within this category,
almost half of all articles dedicated their work on “Lake Extent/Dynamics” (∼47%
in category; ∼12% in total). Relatively small numbers of articles are associated with
other environmental foci, such as “Coastal Erosion” (∼14% in category; ∼4% in total),
“Ocean Colour” (∼7% in category; ∼1% in total), or “Wetland Dynamics” (∼6% in
category; ∼1% in total).

“Surface Land Features and Processes” represents the most common category with
∼43% of articles associated to it. The most frequently investigated research foci are
thereby “Vegetation Cover (Dynamics)” (∼27% in category; ∼12% in total), “Frost
Heave/Thaw Settlement” (∼16% in category; ∼7% in total), “Rock Glacier Map-
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ping/Dynamics” (∼10% in category; ∼4% in total), “Thaw Slump Mapping/Dynamics”
(∼10% in category; ∼4% in total), and "Wildfires" (∼10% in category; ∼4% in total).

Roughly 21% of articles are linked to the category “Subsurface Features and
Processes”. Common environmental topics are hereby “Permafrost Distribution” (∼32%
in category; ∼7% in total), “Active Layer Thickness (Dynamics)” (∼21% in category,
∼4% in total), and “Freeze/Thaw Dynamics” (∼18% in category; ∼4% in total).

Both “Atmospheric Features and Processes” and “Thermal Features and Processes”
represent the least frequent categories with ∼4% and ∼7%, respectively. In case
of “Atmospheric Features and Processes”, most studies dedicated their efforts on
“Methane/Carbon Dioxide Emissions” (∼75% in class; ∼3% in total). The most
frequent topic within “Thermal Features and Processes” was revealed to be “Land
Surface Temperature (Dynamics)” (∼50% in category; ∼3% in total), closely followed
by “Ground Temperature (Dynamics)” (∼43% in category; ∼3% in total).

Figure 2.7: Distribution and frequency of the study foci across the reviewed articles.
Research foci are categorized into the five spheres "Subsurface Features and Processes",
"Thermal Features and Processes", "Surface Land Features and Processes", "Surface Water
Features and Processes", and "Atmospheric Features and Processes". Modified after Philipp
et al. (2021).

The top 25 most frequently investigated environmental foci across all categories
are displayed in Figure 2.8. The two most frequently occurring foci are hereby “Lake
Extent/Dynamics” (50 articles) and “Vegetation Cover (Dynamics)” (49 articles).
All other environmental topics are covered significantly less compared to the two
aforementioned topics. Further commonly investigated environmental foci are “Frost
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Heave/Thaw Settlement” (29 articles), “Permafrost Distribution” (27 articles), “Active
Layer Thickness (Dynamics)” (18 articles), “Rock Glacier Mapping/Dynamics” (18
articles), “Thaw Slump Mapping/Dynamics” (18 articles), and “Wildfires” (18 articles),
amongst others.

Figure 2.8: The top 25 most frequently studied environmental foci across the reviewed
articles. Several articles covered more than one environmental focus.

Figure 2.9 a) visualizes the temporal development of the distribution of the 15
most frequent environmental foci on an annual basis. Similar to Figure 2.2, a general
trend to a higher publication number per topic can be observed, specifically during
the second half of the observation period. Looking at foci related to “Subsurface
Features and Processes”, the mapping of the permafrost occurrences is among the
earliest publications in the context of satellite earth observation of permafrost and
related features/processes. First investigations date back to the year 2001. However,
major attention to this topic was brought back not before the last 10 years, with
2018 and 2019 having the most publications about it. Studies on the storage volume
and dynamics of groundwater peaked, similar to several other topics, in 2018. A
general increase in attention to the active layer thickness and its dynamics can be
observed since 2013. Dynamics in freezing and thawing behaviour was, for the most
part, studied between 2010 and 2020, with most articles published in both years 2015
and 2019.
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As for the environmental category “Thermal Features and Processes”, first efforts
in studying ground temperature dynamics were conducted in 2003. Greatest attention
to this topic could be observed for 2018, followed by 2019 and 2015. In contrast,
investigations related to land surface temperature first occurred in 2009, with 2012
featuring the most publications.

Addressing the topics linked to “Surface Land Features and Processes”, earliest
study efforts on the effects of wildfires within the permafrost domain can be reported
for 2009. In increase in related publications can be observed since 2016. Attention
on thaw slumps was particularly high within the years 2014 and 2018. Although first
efforts in studying the effects of snow cover and associated parameters on frozen ground
already started in 2006, publication associated to this topic are in general sparsely
distributed. Research on the dynamics of rock glaciers is overall scarce, although it
is spread out through time rather evenly, with peaks in 2012 and 2019. Research
efforts on thaw settlement and frost heave started in 2010 with a trend towards a
higher annual publication rate since 2014. Lastly, the majority of studies related to
vegetation cover (dynamics) were published during 2010 2020, with a peak in 2018.

In case of the category “Surface Water Features and Processes”, earliest investiga-
tions on eroding permafrost coastlines from a satellite earth observation perspective
can be reported for 2008. However, the topic regained attention not before the year
2018. In contrast, lake extents and their dynamics were studied on a rather regular
basis within the last two decades. Peaks were hereby observed for the years 2013 and
2018.

Finally, emissions of carbon dioxide and methane was the only topic associated to
the category “Atmospheric Features and Processes” and listed under the top 15 most
frequently investigated environmental foci. Within the context of this review, earliest
research efforts can be dated back to the year 2008. The overall largest amount of
annual publications was observed for the year 2015.

A general overview on the temporal development of annually published articles for
each of the environmental categories “Subsurface Features and Processes”, “Thermal
Features and Processes”, “Surface Land Features and Processes”, “Surface Water
Features and Processes”, and “Atmospheric Features and Processes” is provided in
Figure 2.9 b). An increasing discrepancy in the cumulative sum of articles per year
can be observed across the individual categories over time. The growing difference in
article quantity over time and across different categories is particularly visible during
the last decade. Greatest rise in publication frequency can be observed for the category
“Surface Land Features and Processes”. Slightly weaker increases in the article quantity
can be reported for both categories “Subsurface Features and Processes” and “Surface
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Water Features and Processes”. Comparably overall weak increases in published articles
can be observed for “Atmospheric Features and Processes” and “Thermal Features
and Processes”.

Figure 2.9: (a) Frequency of the top 15 most frequent environmental foci across the reviewed
articles per year. Various articles covered more than one environmental focus. (b) The
cumulative sum of articles per environmental category and per year. Modified after Philipp
et al. (2021).

Since the frequency of studied environmental foci are not only distributed over
time but also over space, the spatial distribution of environmental research foci across
the reviewed articles was investigated. In particular, quantity and geographical spread
of individual topics were studied on a country basis. Figure 2.10 illustrates the study
focus distribution for the top four most frequently studied countries and studies that
applied their analyses on a circum-Arctic scale.

The most common environmental category in Canada proved to be “Surface Land
Features and Processes” with 40%. Articles dedicated to “Surface Water Features and
Processes” represent 33% of studies within this country. Significantly smaller study
efforts were undertaken within the category “Subsurface Features and Processes” (17%),
while both categories “Thermal Features and Processes” and “Atmospheric Features
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and Processes” were investigated the least with 6% and 4% of articles, respectively.
Most research efforts were directed towards the extents of lakes and thaw slumping.
Furthermore, dynamics in vegetation cover and permafrost distribution were also
frequently covered subjects.

In case of the USA, the environmental category “Surface Land Features and
Processes” was, again, studied the most with 39%. The second most frequent category
is “Surface Water Features and Processes” with 32%, followed by “Subsurface Features
and Processes” with 25%. Both spheres “Atmospheric Features and Processes” and
“Thermal Features and Processes” each represent only 2% of studies. Most efforts
were dedicated to study lake extent (dynamics). Further common topics are wildfires,
vegetation cover (dynamics), and permafrost distribution.

The category “Surface Land Features and Processes” was also studied the most
in Russia with 43% of articles. Articles associated to “Surface Water Features and
Processes” make up 34%, followed by “Subsurface Features and Processes” with 15%.
Again, the two least frequently studied categories were “Atmospheric Features and
Processes” (5%) and “Thermal Features and Processes” (3%). The highest number
of studies located in Russia were investigating lake extents and dynamics in the
vegetation.

In China, the category “Surface Land Features and Processes” proved once more
to be associated with the most (43%) articles. In contrast to the previously covered
countries, the second most frequent category in China was observed to be “Subsurface
Features and Processes” with 27%, followed by "Surface Water Features and Processes"
with 14%. Articles linked to “Thermal Features and Processes” make up 10%, while
studies related to “Atmospheric Features and Processes” were least frequent with 5%.
Dynamics in thaw settlement and frost heave were hereby studied the most. Other
common environmental foci were related to the vegetation cover, lake extents, and the
active layer thickness.

Finally, a total of 28 articles applied their investigations on either a circum-
Antarctic, or a circum-Arctic scale. In contrast to the distribution of categories
within individual countries, the following two categories “Surface Land Features and
Processes” and “Subsurface Features and Processes” are distributed equally and make
up 29% of studies, each. Similarly frequent is the category “Surface Water Features
and Processes” which is associated to 26% of investigations. At last, the categories
“Thermal Features and Processes” and “Atmospheric Features and Processes” make
up 11% and 6%, respectively. The most frequently analysed topic on a circumpolar
scale was hereby dynamics in soil freezing and thawing. Further common research foci
were observed to be vegetation cover and snow cover.
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Figure 2.10: Study focus distribution for the top four most frequently studied countries
and circum-Arctic studies. Featured countries are Canada (a), United States (b), Russia (c)
China (d) and circumpolar studies (e). Modified after Philipp et al. (2021).

2.2.4.1 Subsurface Features and Processes

The frequency of studied environmental foci which are linked to subsurface processes
and features was 21% (e.g. Haq & Baral, 2019; S. Panda et al., 2012; Dulamsuren et
al., 2016; Xu et al., 2019; Ou, Leblon, et al., 2016; Ou, LaRocque, et al., 2016; Bibi et
al., 2019; Landerer et al., 2010; Pastick et al., 2014; Kremer et al., 2011; Hugelius et
al., 2010; S. K. Panda et al., 2010; Cao et al., 2019; Etzelmüller et al., 2006; Bai et al.,
2018; Y. Shi et al., 2018; Fraser et al., 2018; Muskett & Romanovsky, 2011; Gagarin et
al., 2020; Zheng et al., 2019; J. Wang et al., 2020; Yin et al., 2017; Y. Yi et al., 2018;
Bernard-Grand’Maison & Pollard, 2018; B. M. Jones et al., 2016). Geographical hot
spots were hereby observed in the QTP, the Mackenzie Delta in Canada, and in Alaska.
In addition, a couple of circum-Arctic investigations are linked to this category. The
most frequent environmental focus in this category was identified to be the distribution
of permafrost. Additional information based on satellite data can hereby improve
modelling accuracies in the context of permafrost distribution (Riseborough et al.,
2008). Space-borne imagery was used within two studies by Obu et al. (2019) and
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Westermann, Østby, et al. (2015) for Mean Annual Ground Temperature (MAGT)
investigations across the entire Northern Hemisphere and specifically for the North
Atlantic permafrost area, as well as for developing permafrost zonation maps. In this
context, Obu et al. (2019) mentioned that the total land area underlain by frozen
ground is 22% in case of the Northern Hemisphere. The modelled numbers suggest
therefore around 2 x 106 km2 less area underlain by permafrost compared to numbers
of previous modelling efforts (Obu et al., 2019). The mentioned circumpolar maps on
the distribution of permafrost as well as the MAGT are openly available products and
also listed in Table 2.2. A higher resolution but smaller scale approach on mapping
permafrost distribution was undertaken by Y. Zhang et al. (2014), who modelled
permafrost occurrences for a region in the Canadian Northwest Territories covering
∼8836 km2. Space-borne derived land cover information made it possible to map
occurrences of permafrost with finer resolution compared to previously released maps.
Nonetheless, the comparatively low spatial resolutions of available data on ground and
soil conditions were hereby significant limitations factors (Y. Zhang et al., 2014).

The environmental focus with the second greatest number of articles within this
category is “Active Layer Thickness (Dynamics)”. Pastick et al. (2013) modelled
the ALT in the Yukon River Flats, Alaska with a spatial resolution of 30 m based
on Landsat satellite imagery, airborne electromagnetic data, and further spatial
information. A successful application of the proposed data and methods for estimating
ALT was hereby communicated by the authors. The authors further mention that
an increased quantity in field observations as well as geological and topographical
data of higher resolution could improve the model output (Pastick et al., 2013). The
application of the Remotely Sensed Active Layer Thickness (ReSALT) algorithm on
Interferometric Synthetic Aperture Radar (InSAR) analyses based on L-band data
acquired by the Advanced Land Observing Satellite (ALOS) Phased Array L-Band
Synthetic Aperture Radar (PALSAR) sensor was performed in a study by Schaefer
et al. (2015) in order to estimate ALT close to Barrow in Alaska. Good agreement
between the ALT estimations based on ReSALT and in-situ measurements could
be observed for ∼76% of the investigation regions. On the other hand, ALT was
overestimated for ∼1% and underestimated for ∼23% of the study area, which was
attributed to the presence of gravel, unsaturated soils, and artifacts in the InSAR
analyses. The authors suggest to implement data on gravel distribution and size as well
as detailed information on soil moisture for future studies in order to improve the output
quality on ALT estimations based on the ReSALT algorithm (Schaefer et al., 2015).
Another study by Widhalm et al. (2017) implemented TerraSAR-X based X-band
SAR data for modelling the ALT at 10 m spatial resolution for an area associated with
deep ALT in central Yamal, Russia. A positive correlation between the backscatter
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signal and the ALT was thereby observed. The authors attributed uncertainties to
the surface roughness, soil moisture, vegetation cover, and heterogeneity within one
pixel. Furthermore, the authors speculated on the usefulness of polarimetric SAR
in the context of differentiating between the aforementioned uncertainties and other
mechanisms responsible for variations in the scattering behaviour (Widhalm et al.,
2017).

Several articles also dedicated their research efforts to “Freeze/Thaw Dynamics”.
X. Li et al. (2012) investigated changes in the thawing and freezing cycle over the QTP
via daily passive RADAR data derived from SSM/I. Between 10 and 50 fewer days of
frozen soils were observed from 1988 2007. The authors further identified postponed
freezing of the soil by 10.1 ± 11.2 days and earlier starting dates of soil thawing by 14.3
± 13.0 days. Hydrological and ecological conditions and their impacts on the thaw-
freeze behaviour require hereby further investigation, while rising air temperatures
are speculated to be a key factor on the freeze-thaw behaviour (X. Li et al., 2012).
In another study by Roy et al. (2015), the feasibility of applying L-band passive
RADAR data for monitoring freezing and thawing dynamics was tested over Canada.
A good agreement between reference data and the weekly satellite-based freeze-thaw
observations was reported. At the same time, ice cover throughout the transition period,
the presence of liquid water in snow, as well as growing vegetation were identified to
be remaining challenges for the precise monitoring of freeze-thaw dynamics (Roy et al.,
2015). T. Hu et al. (2019) introduced in a recent publication a continuous and globally
applied record on thawing and freezing dynamics of the near-surface soil via passive
RADAR imagery derived from the Advanced Microwave Scanning Radiometer - Earth
Observing System (AMSR-E) and the Advanced Microwave Scanning Radiometer
2 (AMSR2). The freeze/thaw dynamics output of the model was in good agreement
with in-situ reference data. The authors further suggested a synergistic use with
additional high resolution satellite products in future studies, which could potentially
also increase the resolution of the freeze-thaw analysis (T. Hu et al., 2019).

2.2.4.2 Thermal Features and Processes

A generally sparse spatial distribution of study areas could be observed for the
category “Thermal Features and Processes”, which can be explained by the relatively
low number of articles (e.g. C. Li et al., 2019; Hachem et al., 2009; K. P. Klein et
al., 2019; Muster et al., 2015; Ran et al., 2018) associated to this category. The key
geographical study region was hereby identified to be the QTP. Further isolated
study locations were observed in Canada, Alaska, Norway, Greenland, the Lena Delta,
and additionally some circumpolar investigations. Several articles addressed the use
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of Land Surface Temperature (LST) as a potential proxy for assessing permafrost
and its thermal state. Satellite-based LST measurements derived from MODIS were
compared by with air and ground temperatures for Northern Quebec, Canada in a
publication by Hachem et al. (2012). Results revealed hereby better agreement for
air temperatures, taken 1 3 m above ground, vs. subsurface (3 5 cm) temperatures.
Snow cover and a diversity of different ground materials were hypothesized to be
major sources of uncertainty in correlation analyses between ground temperature
measurements and satellite-derived LST data. The authors further stressed the limited
usability of remote sensing LST data within the Arctic domain as a consequence of
heavy cloud contaminations. Nonetheless, the applicability could be improved by
combining LST data from both satellites, Aqua and Terra, as well as by applying
temporal interpolation algorithms on the fragmented data (Hachem et al., 2012).
Batbaatar et al. (2020) undertook further investigations in a recent study on the use of
LST for mapping permafrost occurrences in proximity to the volcano Ojos del Salado
in Chile. The authors thereby utilized LST time series data derived from MODIS and
the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to
investigate the “zero curtain”, which stands for the transition phase from liquid to ice
and is caused by the release of latent heat. The applicability of this method to delineate
boundaries of permafrost occurrences was classified to be feasible for arid regions,
however, and in agreement with Hachem et al. (2012), the authors communicated
snow cover, cloudiness, and heterogeneity of surface materials to be major limitations
factors (Batbaatar et al., 2020).

Another common environmental focus in this category was “Ground Temperature
(Dynamics)” with 14 articles addressing this topic. Gisnås et al. (2013) applied an
equilibrium model called CryoGRID 1.0 that is based on the Temperature at the
Top of Permafrost (TTOP) model originally introduced by Smith & Riseborough
(1996). MAGT and permafrost occurrences across Norway were thereby estimated
with a spatial resolution of 1 km2 (Gisnås et al., 2013). An overall good agreement
between in-situ data and the modelled MAGT values were reported. Additionally, a
minimum MAGT of −3.5°C was identified, which indicates generally warm MAGTs
for most areas in Norway (Gisnås et al., 2013). At best 0.2% of the mainland
permafrost in Norway is predicted to remain stable by 2071 2100, in case of the severe
degradation of permafrost scenario A2 as mentioned in the IPCC Special Report on
Emission Scenarios (SRES) (Gisnås et al., 2013). Continuous development efforts on
the CryoGRID 1.0 model were undertaken by Westermann, Østby, et al. (2015), who
extended the analysis for estimating MAGT over the North Atlantic permafrost region.
The authors highlighted the need for further investigations on uncertainties in required
model parameters, such as land cover maps, which may impact the output quality
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(Westermann, Østby, et al., 2015). Developments on the CryoGRID model ultimately
cumulated in the application on the entire Northern Hemisphere and with a spatial
resolution of 1 km2 (Obu et al., 2019). The authors hereby included information on
the land cover from the ESA CCI project, ERA-Interim climate reanalysis data, and
remote sensing based LST measurements. Average deviation between in-situ borehole
measurements and modelled MAGT was revealed to be ±2 °C (Obu et al., 2019).
Next to the Northern Hemisphere, the CryoGRID 1.0 model was also utilized in a
later study for modelling the MAGT across the Antarctic (Obu et al., 2020).

2.2.4.3 Surface Land Features and Processes

The majority (43%) of investigated environmental foci are associated with the cat-
egory “Surface Land Features and Processes” (e.g. Klinge et al., 2018; M. K. W. Jones
et al., 2019; S. Yi et al., 2011; Q. Yu et al., 2015; Forkel et al., 2012; Lu & Zhuang, 2011;
Bartsch et al., 2009; Xue et al., 2009; Mohammadimanesh et al., 2019; Boike et al.,
2016; Pastick et al., 2019; Lara et al., 2016; Yamazaki et al., 2007; Chimitdorzhiev et
al., 2016; Herzschuh et al., 2013; X. Li et al., 2019; Holloway et al., 2016; Eshqi Molan
et al., 2018; J. C. Jorgenson et al., 2018; J. Hu et al., 2016; Sun et al., 2015; Meng et
al., 2015; Kizyakov et al., 2017; X. Shi et al., 2014; Necsoiu et al., 2016; Gong et al.,
2019; R. Zhao et al., 2016; Dini et al., 2019; Juszak et al., 2014; Ulrich et al., 2009; Xu
et al., 2018; Nagai et al., 2013; Y. Yi et al., 2019; X. Wang et al., 2017; Belshe et al.,
2013; Veremeeva & Gubin, 2009; Davidson et al., 2016). Geographical hotspots in the
Mackenzie Delta, the Lena Delta, Yamal and Gydan Peninsulas, and northern Alaska
were identified. Further frequently studied regions were observed in alpine regions,
including the Andes and European Alps, the South Shetland Islands in the Antarctic,
and the QTP.

The most common environmental focus within this category proofed to be “Vege-
tation Cover (Dynamics)”. Large amounts of in-situ measurements were coupled with
Normalized Difference Vegetation Index (NDVI) time series analysis based on data
from AVHRR on a circumpolar scale and covering the years 1982 2010 in a study by
Epstein et al. (2012) in order to estimate changes in the phytobiomass of the Arctic
tundra. An average growth of 19.8% in above-ground biomass was revealed, which
implies substantial consequences for a wide range of aspects of the tundra ecosystem,
including the active layer thickness, wildlife, hydrology, permafrost distribution, and
anthropogenic land use. In addition, the authors highlighted the relevance of exten-
sive and continuous field works in future investigations as a basis for quality control
(Epstein et al., 2012). Another study by Kharuk et al. (2015) dedicated their work to
the growth response of larch trees distributed across the permafrost domain of central
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Siberia by linking satellite based optical data derived from Aqua and gravimetric data
derived from the Gravity Recovery And Climate Experiment (GRACE) mission with
climate data and locally extracted tree-ring samples. A productivity increase in larch
stands was hereby reported for the beginning of the current century. Tree ring growth
rates correlated, amongst others, with drought conditions and air temperatures from
the early summer months, as well as with water from permafrost- and snow-melt
(Kharuk et al., 2015). Y. Song et al. (2018) investigated vegetation cover changes in
proximity to the QTP engineering corridor via an Enhanced Vegetation Index (EVI)
time series based on MODIS data and covering the years 2000 2016. A trend towards
decreasing vegetation cover was hereby observed for about one-fifth of the vegetation,
which was linked to the degradation of permafrost and overgrazing. As a result of
degrading permafrost, water infiltration increased which in turn caused the retreat of
shallow rooted alpine meadows (Y. Song et al., 2018).

“Frost Heave/Thaw Settlement” was the second most frequently investigated topic
within the category “Land Surface Features and Processes”. F. Chen et al. (2012)
studied the deformation of the surface along the QTR by applying Persistent Scatterer
Interferometry (PSI) on L- and C-band SAR data. Substantial rates in deformation
of ±20 mm/yr were hereby observed alongside the embankment. Proactive cooling
methods in the form of using e.g. crushed stone or block stone were recommended
by the authors, instead of solely relying on techniques designed for the protection of
permafrost in proximity to the embankment of the QTR (F. Chen et al., 2012). Other
surface displacement investigations were undertaken by, e.g. Short et al. (2011), who
tested the application of L-, C-, and X-band SAR imagery based on ALOS-PALSAR,
RADARSAT-2, and TerraSAR-X for measuring the surface displacement on Herschel
Island. The high temporal and spatial resolution of X-band TerraSAR-X data provided
a feasible basis for detecting thaw slumps. At the same time, high noise levels limited
the applicability of X-band SAR data for long-term observations of surface movements.
Furthermore, C-band was considered overall more reliable, although L-band imagery
revealed generally best results. Long-term observations of the stability of permafrost
are highly important, which highlights the promising prospects of satellite-based L-
and C-band SAR imagery (Short et al., 2011). Strozzi et al. (2018) also dedicated their
work to surface movement analyses via SAR satellite data for a selection of low-land
permafrost areas located in both the Antarctic and the Arctic. The authors revealed
high coherence levels between individual scenes within the snow-free summer months,
which allowed for computing one-year interferograms and therefore long-term analysis
on the surface deformation. Nonetheless, small rates in deformation were reported to
be limitation factors in accurately estimating annual movement rates. Site-specific
in-situ data in combination with longer temporal observation windows are thereby
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required for the validation of future InSAR measurements (Strozzi et al., 2018).

A significant number of articles dedicated their work to the topic “Rock Glacier
Mapping/Dynamics”. Kääb (2002) was among the earliest authors to investigate
mountain permafrost from a remote sensing perspective. The author hereby applied
photogrammetry techniques on both space-borne and airborne optical imagery, which
allowed for the creation of a DEM per stereo-pair of images. Differences in DEMs
from different observation times allowed for the quantification of movement rates
from e.g. rock glaciers and landslides in the Swiss Alps. It was thereby estimated
that the horizontal accuracy equals the pixel size (Kääb, 2002). Kinematics of
rock glaciers in Greenland, the Swiss Alps, and the Andes were investigated via SAR
interferometry based on data from TerraSAR-X, the Constellation of small Satellites for
Mediterranean basin Observation (COSMO-Skymed), the Japanese Earth Resources
Satellite 1 (JERS-1), and S1 in a recent study by Strozzi et al. (2020). The authors
reported good performance of S1 imagery alongside SAR data of very high resolution
derived from other platforms. S1-based long-term monitoring of moving rock glaciers
are further expected to be important proxies for evaluating the condition of mountain
permafrost in future investigations (Strozzi et al., 2020).

Both environmental foci “Wildfires” and “Thaw Slump Mapping/Dynamics” were
further frequently addressed topics within this category. D. Brown et al. (2016) hereby
dedicated their work to the effects of wildfires on the permafrost occurrence for a study
site in the White Mountains National Recreation Area, Alaska, covering 100 km2. The
degradation and extent of permafrost was observed to be strongly influenced by high
burn severities, which affected the drainage conditions and consequently resulted in
the drying of soils (D. Brown et al., 2016). Another work by L. Huang et al. (2020) was
among the few studies that applied DL for their investigations. The authors identified
220 thaw slumps via imagery from CubeSat across an area covering 5200 km2 and
located within the Beiluhe region of the QTP (L. Huang et al., 2020).

2.2.4.4 Surface Water Features and Processes

About 25% of studied foci across all reviewed articles are linked to the category
“Surface Water Features and Processes” (e.g. Yao et al., 2018; Necsoiu et al., 2013;
Carroll & Loboda, 2018; J. Liu et al., 2009; Turner et al., 2014; Duan et al., 2017;
Jepsen et al., 2016; Wanchang et al., 2000; Gao et al., 2013; Lantz & Turner, 2015;
Mętrak et al., 2019; Sjöberg et al., 2013; K. M. Hinkel et al., 2005; Karlsson et al.,
2014; Mao et al., 2018; Muster et al., 2013; Lara et al., 2019; Zakharova et al., 2018;
Günther et al., 2015; Ulrich et al., 2017). Geographical hot spots were hereby observed
in the Mackenzie Delta, the North Slope and its Arctic Coastal Plain in Alaska, Yamal
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and Gydan Peninsulas, and the Lena Delta. “Lake Extent/Dynamics” was by far
the most frequently investigated environmental focus with almost half of all articles
within this category being associated to this topic. Morgenstern et al. (2011), e.g.,
investigated the geographical distribution of thermokarst lakes and basins located
in proximity to the Lena River Delta and within the Yedoma uplands. Much of
the study area was influenced by thermokarst, with thermokarst basins making up
four times the area compared to thermokarst lakes. The authors further classified
33.7% of the Kurungnakh Island’s surface area to be at risk of future thermokarst
processes. At the same time, Morgenstern et al. (2011) hypothesized that future
lake extension and erosion caused by thawing deposits might be limited due to the
widespread degradation of the original Yedoma landscapes from past thermokarst
processes. Lyons et al. (2013) investigated the quantification of errors in mapping lake
extents via Landsat data. A total of seven satellite images derived from two sensors,
the Thematic Mapper (TM) and the Multi Spectral Scanner (MSS), where analysed.
Rising error rates were hereby observed for smaller lake sizes. The authors further
associated varying spectral properties depending on suspended materials in lakes,
vegetation, and lake depth to be limiting factors for a threshold approach. Moreover,
the authors suggest minimizing the effects of seasonality in order to investigate inter-
annual changes and long-term trends (Lyons et al., 2013). Another recent study by
Rey et al. (2019) also incorporated Landsat imagery in addition to electromagnetic
airborne surveys to detect changes in the lake extent. The time series investigation
revealed more asynchronous dynamics for lakes within the discontinuous permafrost
domain, in contrast to the more synchronous dynamics of lake extents in landscapes of
continuous permafrost. The authors hypothesize that more synchronous lake extents
in the continuous permafrost areas are mainly controlled by hydro-climatic factors,
whereas a more widespread subsurface-connectivity may explain the differences in
lake extent dynamics across discontinuous permafrost areas. The authors further
argue that a continuous thawing of the frozen ground could once again potentially
lead to synchronous lake dynamics, caused by widespread sub-surface-connectivity. In
agreement with Morgenstern et al. (2011), dynamics in lake extents are expected to
decrease in the future, as thawing permafrost acts as a low-pass filter on hydro-climatic
processes and their variability (Rey et al., 2019).

“Coastal Erosion” was the second most common environmental topic in this
category, although this focus featured drastically fewer publications compared to “Lake
Extent/Dynamics”. Coastal erosion rates on Herschel Island located in the western
part of the Canadian Arctic were quantified over a temporal window of 50 years
via IKONOS satellite data and historical airborne imagery in a study by Lantuit &
Pollard (2008). A generally decreasing trend in the rates of coastal erosion could be
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observed, although ice-rich shorelines with surface features linked to ground-ice (e.g.
thaw slumps) revealed increasing erosion rates (Lantuit & Pollard, 2008). Another
study by K. Barnhart et al. (2014) utilized passive RADAR data with a pixel size
of 25 km in order to investigated the influence of changing sea ice concentrations
on Arctic coastlines. The pan-Arctic analysis revealed a doubling in the length of
the open water season since 1979, which consequently makes Arctic coasts more
vulnerable to fluvial erosion induced by wave actions. The authors further stress
the complex relationship between the length of the open water period and eroding
coastlines, which is further influenced by the present ice content, geomorphological
conditions, orientation, lithology, and storminess (K. Barnhart et al., 2014). A recent
study by Isaev et al. (2019) addressed the cliff retreat of a permafrost coast via high
resolution Quickbird-2 satellite imagery and handheld Differential Global Positioning
System (DGPS) for a permafrost coast located in the south-western Baydaratskaya
Bay in Russia. Similar to the findings of K. Barnhart et al. (2014), wind-driven wave
action throughout the open-water period was observed to have a greater influence on
erosion rates compared to rising air temperatures alone (Isaev et al., 2019).

A number of additional articles investigated other topics linked to surface water
processes and features, including wetland dynamics (e.g. Reschke et al., 2012; Torbick
et al., 2012), dynamics in the sea/lake ice extent (e.g. K. Barnhart et al., 2014; Engram
et al., 2018; Surdu et al., 2016), or ocean colour (e.g. Doxaran et al., 2012; Heim et al.,
2014).

2.2.4.5 Atmospheric Features and Processes

Even though a noteworthy number of articles focused their work on a topic linked
to “Atmospheric Features and Processes” (e.g. C. Song et al., 2012; Watts et al.,
2014; Curasi et al., 2016; J. Liu et al., 2003; Flessa et al., 2008; Nassar et al., 2014;
Bohn et al., 2015; Hartley et al., 2015; Jørgensen et al., 2015; Rawlins et al., 2015;
Anthony et al., 2016; Helbig et al., 2016; Anthony et al., 2018; Kohnert et al., 2018;
W. Yang et al., 2020; Nassar et al., 2014; Hammerling et al., 2015; Crowell et al.,
2018), said category was still the least investigated environmental category within
this review analysis. This relative scarcity in published articles in the context of
permafrost and atmosphere emphasizes the requirement of satellite earth observation
of degrading frozen ground and its effects on carbon emissions. A study by C. Song et
al. (2012) covered the effects of thawing natural wetlands on the release of methane.
Exceptionally high emission rates of CH4 were hereby observed during the spring
season caused by bubbling, next to emissions of methane from thaw lakes. The authors
strongly suggest to include the effects of spring thawing into permafrost-carbon models,
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especially since the mentioned thawing process is expected to increasing under climate
change (C. Song et al., 2012). Watts et al. (2014) focused their work on linking surface
moisture and surface temperature with methane releases in Arctic wetlands. Due
to the especially strong dynamics in surface water in northern high latitudes, the
authors advise future research to take potential effects of fractional water scaling for
regional modelling into consideration. The authors further raise their concerns in
regard to insufficient resolution of applied remote sensing data that does not allow
for the detection of small scale variations in soil moisture and temperature, which in
turn may lead to an overestimation of predicted emission rates. Nevertheless, new
sources of satellite data with better spatial resolution and/or temporal frequency, e.g.
via the Soil Moisture Active Passive (SMAP) satellite, may provide a means for large
scale modelling with lower uncertainty rates (Watts et al., 2014). Emission of carbon
dioxide were intersected with subsurface water tracks and their distribution across a
tundra landscape in Siberia in a study by Curasi et al. (2016). Shrub expansion is
positively influenced by the favourable conditions provided by water tracks, which can
be a helpful proxy for investigations on geographical variations in current and future
carbon cycles (Curasi et al., 2016).

According to a recent study by Jackson et al. (2020), methane emission rates in
high latitudes (>60°N) were not indicating a noteworthy increase when comparing
the year 2017 with the average emission rates during 2000 2006. Similar results were
also reported by Dlugokencky et al. (2009), who suggest that the turnover point for
a continuously increasing emission rate of CH4 as a consequence of thawing frozen
ground has yet to be reached in the Arctic. Nevertheless, the authors also state that
thawing permafrost has a strong potential for increased emission rates of methane in
the future (Dlugokencky et al., 2009).

Anthony et al. (2016) dedicated their work on CH4 emissions from thaw lakes
across the Arctic. The authors observed a direct proportional relationship between the
amount of eroded soil carbon caused by thawing frozen ground, and the emissions from
increasing thermokarst lake extents (Anthony et al., 2016). Details about rising carbon
emissions via rapid thawing of frozen ground beneath Arctic lakes were provided in
another study by Anthony et al. (2018). Moreover, CH4 hotspots were analysed in an
airborne survey covering a total area of ∼30.000 km2 over north-western Canada and
Alaska, as communicated by Elder et al. (2020). Results of the campaign revealed 2
million methane hotspots in proximity (∼40 m) to lakes (Elder et al., 2020).

The transatlantic and collaborative community initiative Arctic Methane and
Permafrost Challenge (AMPAC) by ESA and the National Aeronautics and Space
Administration (NASA) aims to tackle the problem of investigating thawing permafrost
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and methane release throughout the Arctic via a interdisciplinary research approach
(European Space Agency, n.d.-a, 2020). New satellite earth observation missions such
as the Methane Remote Sensing LiDAR Mission (Merlin) and Sentinel-5P are hereby
viable new sources of data for future investigations on Arctic emissions in the context of
permafrost degradation. Sentinel-5P constitutes a recent satellite mission by ESA for
monitoring key atmospheric elements, including CH4, CO, NO2, CH2O, O3, and SO2 via
the TROPOspheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012). The
mission provides extended data in combination with records from previous instruments
such as the Ozone Monitoring Instrument (OMI), the Scanning Imaging Absorption
Spectrometer for Atmospheric Chartography (SCIAMACHY), or the Global Ozone
Monitoring Experiment (GOME) (D. Griffin et al., 2019). Numerous studies employed
data derived from Sentinel-5P for investigations on methane concentrations in the
atmosphere since its launch in February 2017 (e.g. H. Hu et al., 2018; Lorente et
al., 2021; Schneising et al., 2019; Varon et al., 2019). The TROPOMI instrument
installed on Sentinel-5P outperforms other current satellite systems in terms of spatial
resolution, signal-to-noise ratio, and spectral range, which allows for better trace
gas detection, as mentioned in a recent review article by Duncan et al. (2020). At
the same time, the authors also highlight remaining challenges for passive satellites
such as Sentinel-5P in the form of continuous cloud cover, steep sun angles, bright
surfaces (e.g. snow), and low light intensities (Duncan et al., 2020). By utilizing
active satellite systems, such as the Light Detection and Ranging (LiDAR) instrument
on board the upcoming Merlin mission, present limitations of passive sensors can
partly be overcome. Merlin constitutes hereby a Franco-German space mission by
the French National Centre for Space Studies (CNES) and the German Aerospace
Center (DLR) for measuring methane concentrations in the atmosphere on large to
global scales (Ehret et al., 2017). Merlin will thereby be the first satellite mission to
monitor methane from space by using Integrated Path Differential Absorption (IPDA)
LiDAR (Pierangelo et al., 2016). As an active system, the LiDAR sensor enables
measurements of atmospheric methane independent of the lighting conditions or season
across all latitudes (Stephan et al., 2011). Moreover, the capability of penetrating
through thin cirrus clouds further enhances the observation potential of the active
LiDAR system (German Aerospace Centre (DLR), n.d.). Combining the use of passive
and active sensors is hereby a powerful means to overcome present challenges and
enhance our knowledge on emission rates throughout the Arctic (Duncan et al., 2020).

2.2.5 Applied spatio-temporal Resolutions

Figure 2.11 a) visualizes the overall distribution of applied temporal resolutions
across the reviewed publications. The majority of articles (47%) applied a time series
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in their investigations. The second most frequent temporal resolution was unitemporal
with 28%, followed by multitemporal with 21%. Lastly only 4% of articles featured
bitemporal analyses. As seen in Figure 2.11 b), a tendency towards longer time series
in more recent studies could be observed for articles published during 2000 2020. This
can be explained by the longer satellite data records that were available for more recent
studies, compared to earlier published works. Figure 2.12 illustrates the frequency of
different time series lengths applied across the reviewed articles. More than half of
articles, which employed time series investigations, cover a temporal window of less
than 10 years. Moreover, 39% of articles with time series analysis observe periods
even less than 5 years. 47% of articles with time series analysis observed temporal
time frames of 10 years or more, while 21% even covered at least 20 years. Minimum
time series lengths are less than a year, while maximum lengths are up to 44 years. A
median time series length of 9 years could be observed.

Figure 2.11: (a) Distribution of the applied temporal resolution across the reviewed articles.
Within the context of this thesis, “Multitemporal” describes analyses which use 3–9 time
steps. On the other hand, an analysis is classified as a “Time Series” in this thesis if ten
or more time steps are covered. (b) Timeline visualizing the length of applied time series
across the reviewed articles. The y-axis visualizes the temporal order in which articles that
employed time series investigations were published, the x-axis shows the temporal coverage
of applied time series per article. The colour gradient refers to the publication year. Modified
after Philipp et al. (2021).
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Figure 2.12: The number of publications that applied different time series lengths across
the reviewed articles. Modified after Philipp et al. (2021).

In addition to visualizing the distribution of temporal resolutions and lengths of
applied time series, the distribution of applied spatial resolution and scales across
the reviewed articles is illustrated in Figure 2.13. The majority of articles (62%)
performed their investigations on processes and features related to frozen ground on
local scales. 16% of studies applied their analysis on small regional scales, while 12%
conducted their research on large regional scales. Studies that performed circumpolar
investigations only make up 8% of articles, whereas national studies are barely present
with just 1%. In summary, most investigations were conducted on small to local scales
(Figure 2.13 a).

Details on the applied spatial resolutions within each scale is visualized in Figure
2.13 b). 52% of studies, which were performed over areas smaller than 10.000 km2,
relied on remote sensing imagery of high resolution. Further 38% of investigations
utilized imagery of medium high resolution within the same scale. 6% of analyses
were performed on spatial resolutions between 100 1000 m, and only 4% are based on
imagery with spatial resolutions coarser than 1 km2. All resolution categories are also
present across investigations on small regional scales. Contrary to local studies, the
amount of utilized high resolution imagery is significantly lower with only 11%. On
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the other hand, the majority (57%) of investigations relied on medium high resolution
data. Analyses on large regional and national scales did not incorporate any high
resolution imagery. Moreover, the relative amount of medium-low and low resolution
data generally increases with the applied scale. Consequently, roughly three-quarters
(74%) of circum-Arctic studies relied on satellite data of low resolution. Within the
circum-Arctic scale, four studies utilized medium low resolution data and two further
studies applied medium high resolution imagery. One single investigation combined
high resolution satellite and airborne data for mapping lakes and ponds on a pan-Arctic
scale (Muster et al., 2017). In general, a strong relationship between the applied
spatial resolution and the size of the study area was identified. There is a tendency
for small scale studies to utilize high resolution imagery, whereas large scale studies
usually depend on satellite imagery of lower spatial resolution.

Figure 2.13: (a) Distribution of the applied spatial scales across the reviewed articles. The
scales are categorized as circum-Arctic, national, regional large (>250,000 km2), regional
small (10,000–250,000 km2), or local (<10,000 km2). (b) Applied spatial resolutions per
scale. Spatial resolutions are categorized as low (>1000 m), medium low (100–1000 m),
medium high (10–100 m), or high (<10 m). Modified after Philipp et al. (2021).

The covered area, length of time series, and applied spatio-temporal resolutions
for the top 20 most common environmental foci is illustrated in Figure 2.14. The
majority of study region extents cover relatively small areas (100 10.000 km2 or even
<100 km2). In particular, investigations on rock glaciers, frost heave/thaw settlement,
ice wedge volumes, coastal erosion, and thaw slumps are for the most part conducted
on small spatial scales. In contrast, the majority of studies on the dynamics of freezing
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and thawing are conducted on large (>1 Mio. km2) to pan-Arctic scales (Figure 2.14
a).

Most studies carried out their analyses on medium-high (10 100 m) to high
(<10 m) resolutions. This can be observed in particular for investigations on rock
glacier movements, ice wedges, eroding coastlines, soil carbon/nitrogen stocks, thaw
slumps, and lake extents. The application of high resolution data is also reflected in the
previously identified smaller study area extents for the aforementioned topics. Likewise,
lower spatial resolutions could be observed for investigations that are typically applied
on larger scales, such as studies on the dynamics of ground water storage volume, or
dynamics in soil freezing and thawing (Figure 2.14 b).

As previously mentioned, 47% of all articles utilized as time series approach in
their analyses. This is also reflected in the top 20 most common environmental topics,
all of which featuring publications that applied time series analyses, with the topic
soil carbon/nitrogen stocks being the only exception. Nearly all articles related to
either frost heave/thaw settlement, the dynamics in ground water storage volume,
or the dynamics in soil freezing and thawing included a time series in their research
approach. On the other hand, investigations on soil nitrogen and carbon stocks, ice
wedge volume/dynamics, and permafrost distribution are for the most part studied on
a unitemporal basis (Figure 2.14 c).

The time series frequency, which, in the context of this review, describes the
temporal size of individual time steps within a time series analysis, differs across
various topics. Some environmental topics feature mostly higher frequencies in the
form of weekly or even daily time steps (e.g. dynamics in ground and land surface
temperature, or dynamics in soil freezing and thawing), while other topics indicate
more evenly distributed time series frequencies (e.g. dynamics in the vegetation cover
and lake extents). In case of the environmental topic “Ice Wedge Volume/Dynamics”,
only one publication included a time series in its study approach (Figure 2.14 d).

Analogous to the frequency of time series, the length of applied time series also
differed significantly across various topics. Some environmental foci feature mainly long
time series of 10 years or more (e.g. ice wedge volume, eroding coastlines, thickness
of the active layer, dynamics in the vegetation cover and lake extents), while others
cover mostly shorter temporal windows of 5 years or less (e.g. landslides, dynamics of
rock glaciers, and frost heave/thaw settlement). The environmental topic “Ice Wedge
Volume/Dynamics” suggests all of its related articles to include time series lengths
of over 20 years. Nonetheless, and as previously stated, only a single publication by
Fraser et al. (2018) featured a time series analysis in the context of studying dynamics
in ice wedges and within the scope of this review (Figure 2.14 e).
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Figure 2.14: Distribution of spatio-temporal resolutions for the top 20 most frequent
environmental topics across the reviewed articles. The y-axis is ordered by topic frequency.
(a) Spatial extent of the study area. (b) Spatial resolution that is either low (>1000 m),
medium low (100–1000 m), medium high (10–100 m), or high (<10 m). (c) Temporal
resolution of reviewed studies. If at least ten time steps are used it is considered a time
series within this review. (d) Temporal resolution applied within time series studies. (e)
Length of applied time series analysis. Modified after Philipp et al. (2021).
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2.2.6 Platform and Sensor Distribution

The distribution of sensor types and platforms is visualized in Figure 2.15. Optical
imagery proofed hereby to be the predominantly used data type (55%). The second
most common data type was SAR, which covers 20% of all data types. A further 9%
is attributed to thermal imagery and another 7% is associated to passive RADAR
data (Figure 2.15 b).

As illustrated in Figure 2.15 a), “Aerial” proved to be the most frequent platform
(31% of all platforms), despite the exclusion of aerial-only remote sensing investigations
in this review. Mainly optical imagery was hereby utilized, although some studies also
included aerial-based electromagnetic, LiDAR, and RADAR measurements.

Making up 27% of all platforms, the Landsat mission (satellites Landsat 1 8) was
identified to be the most common satellite platform. Similar to airborne data, mainly
imagery of optical nature was utilized. Only a few investigations exploited the thermal
capabilities of the sensors on board the Landsat satellites.

Both Terra and Aqua proved to be frequently utilized satellites across the reviewed
articles. Thermal data derived from the ASTER and MODIS sensors were the main
focus, followed by optical measurements. A handful of studies also took advantage of
the passive RADAR data generated by the AMSR-E sensor on board of Aqua.

A large number of permafrost related investigations relied on high resolution
optical satellite data. Specifically, imagery from QuickBird-2, Worldview-1 3, GeoEye-
1, IKONOS, the RapidEye system, Gaofen-1/2, and the Satellite Pour l’Observation
de la Terre (SPOT) satellites were commonly used. TerraSAR-X, RADARSAT-1/2,
and S1 constitute hereby the most popular SAR-only satellite platforms.

Data generated by the ALOS satellite was also included in several studies. The
majority of investigations thereby exploited the SAR capabilities of the PALSAR
sensor. A handful of articles also worked with optical imagery from the Panchromatic
Remote-sensing Instrument for Stereo Mapping (PRISM) and Advanced Visible and
Near Infrared Radiometer Type 2 (AVNIR-2) on board the satellite.

The Environmental Satellite (Envisat) provides a variety of different data types
generated by various sensors. Mainly SAR data generated by the Advanced Synthetic
Aperture Radar (ASAR) sensor was utilized. Several studies also implemented thermal
data from the Advanced Along Track Scanning Radiometer (AATSR), altimetric data
by the Radar Altimeter 2 (RA-2), and optical imagery from the Medium Resolution
Imaging Spectrometer (MERIS). Furthermore, a single study investigated trace gases
in the atmosphere with data from the SCIAMACHY sensor.
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Another noteworthy platform was the Defense Meteorological Satellite Pro-
gram (DMSP). Only passive RADAR data from the SSM/I sensor on board the
DMSP satellites was hereby used. Furthermore, a few studies included gravimetric
measurements generated by the GRACE mission in their research frameworks. Addi-
tionally, optical images from the CORONA satellite program enabled long time series
investigations or were alternatively implemented as a historical reference for analyses
on change detection.

Lastly, there were only eight studies which employed optical data from S2. Both
satellites S2A and S2B were just recently launched in 2015 and 2017 (European Space
Agency, n.d.-h), respectively, which might explain the lack of articles working with
data from these satellites.

Figure 2.15: The frequency of utilized remote sensing platforms within the reviewed articles
(a). Several platforms carry multiple sensors. Therefore, the frequency of applied sensor
types is shown per platform (a). The overall distribution of sensor types across all platforms
is visualized in (b). “Aerial” was also considered for the platform frequency investigation
since many articles employed aerial photography either for validation, as a historical reference,
or other complementary use with satellite imagery and is therefore included for completeness.
Modified after Philipp et al. (2021).

Figure 2.16 a) visualizes the frequency and distribution of utilized platforms on an
annual basis. Aerial imagery was applied in almost every year over the observed time
span and covered articles, with the years 2006 and 2007 being the only exceptions. This
highlights the ongoing relevance of airborne data for permafrost related analyses. Data
from ALOS was first applied in 2010 and thereupon continuously used. Within the
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framework of this review, first studies based on Aqua data were published in 2009 with
peaks in publication counts in 2018 and 2019. Initial studies based on Terra data were
already published in 2002, with highest publications numbers in 2018 and 2019, as well.
Occasional investigations using data from the CORONA satellites can be observed
since 2005. Sporadic usage was also identified for DMSP across the observed temporal
window. Earliest investigations based on imagery by Envisat took place in 2010, with a
peak in publication numbers in 2012. High resolution imagery from GeoEye-1 was first
employed in 2013 and most frequently applied in 2018. Images of high resolution and
derived from IKONOS was initially exploited in 2003 and was sporadically included
since then. Most IKONOS-based investigations were hereby observed for the year 2018.
Landsat data was used across the entire observation window, with the years 2000,
2002, 2004, and 2008 being the only exceptions. A steady trend towards an increased
usage of Landsat imagery can be reported. Studies that implemented space-borne
data derived from the National Oceanic and Atmospheric Administration (NOAA)-6
to -19 satellites were published on a regular basis since 2003. Earliest usage of high
resolution QuickBird imagery can be reported for 2005 and a regular application can
be seen since 2010. Other high resolution imagery by SPOT was first utilized in 2009,
with the highest publication count in 2018. Most investigations based on SAR data
by TerraSAR-X were published in 2017 and 2018. Finally, imagery from WorldView
was initially implemented in 2014 within the context of studying permafrost related
features and processes. Data from WorldView was frequently applied since then and
constitutes the most common source of high resolution optical satellite data across all
platforms.

Figure 2.16 b) illustrates the cumulative sum of utilized sensor types on an annual
basis. An ongoing trend towards increasing annual publication numbers can be
observed across all sensor types during the second half of the temporal observation
window. Especially the years since 2018 indicate an extraordinary jump in publication
numbers. Overall largest increase was identified for optical sensor types. The sensor
type with the second strongest growing rate was SAR, although the growth is hereby
significantly less compared to optical sensor types. Passive RADAR,thermal sensors
and other sensor types indicate overall weak growth rates.

Figure 2.16 c) visualizes the percentage of Sentinel-based investigations compared
to other platforms per year. Optical and SAR imagery based on the Sentinel-fleet was
first utilized in 2018. A trend towards a growing percentage of studies that include
Sentinel data can be observed in recent years. In case of S2, the year 2020 features a
slightly lower share across all platforms compared to the previous year. Nonetheless,
only studies published within the first two months of 2020 are hereby covered. The
actual share of Sentinel data for the whole year 2020 therefore might deviate. Despite
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the launch of and S2A in 2015 and S1A in 2014 (European Space Agency, n.d.-b,-h),
earliest investigations based on data from these satellites were published not before
2018.

Figure 2.16: (a) Temporal development of the top 15 most frequently utilized remote
sensing platforms across the reviewed articles over the past two decades. Several articles
used data from more than one platform. (b) Cumulative sum of applied sensor types over
the past twenty years. (c) Annual percentage of articles that utilized imagery derived from
Sentinel satellites during the years 2015–2020. Modified after Philipp et al. (2021).

Details on the applied sensor combinations across the reviewed articles is illustrated
in Figure 2.17. Space-borne and airborne sensors were hereby associated to individual
categories. Roughly one third (∼33%; 107 articles) of investigations based their
analyses exclusively on optical satellite imagery. The second most common (∼15%;
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49 articles) and first actual sensor combination covers optical imagery from both
satellite and aerial platforms. Airborne images where hereby commonly used as a
historical reference, for investigating small scale features and processes at very high
spatial resolution, or to increase the temporal frequency of multi-temporal and time
series analysis. The third most frequent combination (∼11%; 37 articles) is again
not an actual combination but covers investigations based on purely SAR data. The
next most common combination includes satellite-based optical and thermal images
(∼5%; 16 articles), followed by passive RADAR-only investigations (∼5%; 15 articles).
Several studies also employed other sensor combinations, such as SAR + optical +
and airborne optical (∼4%; 13 articles), SAR + optical (∼4%; 12 articles), exclusively
thermal imagery (∼3%; 11 articles), as well as SAR and optical aerial imagery (∼3%;
10 articles). Moreover, a total of six studies (∼2%) combined optical imagery from
satellite and airborne platforms in addition to airborne LiDAR information. Further 49
articles (∼15%) utilized different sensor combinations as the previously mentioned ones
and therefore highlight the possibilities of combining data from various platforms and
of different types to effectively investigate permafrost related features and processes.

Figure 2.17: Distribution of the top ten most frequently utilized sensor combinations across
the reviewed articles. A differentiation between space-borne and airborne sensor types was
applied. Modified after Philipp et al. (2021).

2.2.7 Relevant and openly-available Products for
Permafrost-related Analyses

Table 2.2 lists diverse and openly available products that are relevant in the context
satellite remote sensing of permafrost and its associated features/processes. The
international Cooperative Global Air Sampling Network hereby provides information
about the atmospheric composition via air flask samples for a variety of greenhouse
gases, such as methane, carbon dioxide, and carbon monoxide (NOAA Earth System
Research Laboratories, n.d.-a,-b). Datasets on surface water are provided by, e.g.,
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Pekel et al. (2016), who introduced an approach for global mapping of surface water
on a monthly basis since 1984 and a 30 m spatial resolution by combining three million
Landsat images. Another publicly available data set on global surface water at higher
temporal frequency but coarser spatial resolution is the Global WaterPack, for which
daily MODIS imagery is used to classify water areas at a 250 m resolution (I. Klein et
al., 2017). Furthermore, a high resolution and circum-Arctic mapping effort of lakes
and ponds at 5 m spatial resolution (or less) was undertaken by Muster et al. (2017) and
published via the Permafrost Region Pond and Lake (PeRL) database. Information
about coastal change was provided by Lantuit et al. (2012) in form of the previously
mentioned Arctic Coastal Dynamics Database (ACD). A total of ∼101.447 km of
Arctic coastline was hereby divided into 1.315 segments, with details on the coastal
geomorphology, build-up, and erosion rates for each segment (Lantuit et al., 2012).
Insights on the duration of snow cover at 500 m spatial resolution and on a daily basis
are provided by the Global SnowPack (Dietz et al., 2015). Further information on the
daily Snow Water Equivalent (SWE) and Snow Extent (SE) are available via the ESA
GlobSnow SWE and GlobSnow SE data sets at spatial resolutions of 20 km and 1 km,
respectively (Metsämäki et al., 2015; Larue et al., 2017). Various different land cover
products based on satellite data are available. Some of which are the CAVM, GLC2000,
GlobeLand30, MODIS land cover, and ESA CCI land cover (Plummer et al., 2017;
Friedl et al., 2002; Jun et al., 2014; Bartholome & Belward, 2005; Raynolds et al., 2019;
D. A. Walker et al., 2005). Liang et al. (2019) examined differences and similarities
of four frequently applied global land cover products in a recent study. The authors
reported highest overall accuracy in Arctic regions for the ESA CCI land cover product
(63.6%), followed by GlobLand30 (62.2%). The MODIS land cover product and
the Global Land Cover by the National Mapping Organization (GLCNMO) revealed
accuracies of 29.5% and 48.8%, respectively, and were therefore not recommended as a
reference for investigations in Arctic environments (Liang et al., 2019). As mentioned
in a review article on mapping land cover in NHL by Bartsch, Höfler, et al. (2016),
the most common map to address circumpolar investigations was revealed to be
CAVM. Although offering adequate thematic information for various different Arctic
inquiries, the missing separation between lichen- and shrub-dominated land cover types,
limitations in non-forested regions, and the spatial resolution of 1 km were identified to
be major limitation factors (Bartsch, Höfler, et al., 2016). Next to the land cover itself,
information about trends in changing land cover is provided by Nitze et al. (2018).
The authors hereby applied time series analyses on various multi-spectral indices based
on Landsat data across four transects at regional scale within the permafrost domain
(Nitze et al., 2018). Information on surface elevation at 30 m spatial resolution and
covering the terrestrial area between 56° south and 60° north is provided by the Shuttle
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Radar Topography Mission (SRTM) DEM product (Farr et al., 2007). The ALOS
Digital Surface Model (DSM) is another product on surface elevation at the same
spatial resolution but with a global coverage and generated via stereoscopic observations
of optical imagery based on the PRISM sensor (Takaku et al., 2016). In addition,
the ArcticDEM elevation product, which is based on optical stereo-imagery from the
Worldview-1, 2, and 3 satellites, enables detailed topographic investigations due to its
high spatial resolution of 2 m for areas above 60° northern latitude (Morin et al., 2016).
Several datasets on soil properties are openly available. One example is hereby the
SoilGrids database which offers details on soil texture, organic carbon content, and soil
pH value, among other soil properties, at a global scale and 250 m spatial resolution
(Hengl et al., 2017). Information on the carbon content for soil depths of 0 3 m is
provided by the Northern Circumpolar Soil CarbonDatabase version 2 (NCSCDv2)
(Hugelius et al., 2013). Furthermore, the Harmonized World Soil Database (HWSD)
offers details on the geographical distribution of 15,000 soil mapping units at a spatial
resolution of 30-arc seconds (FAO et al., 2012, 2020). Moreover, the ESA CCI Soil
Moisture product presents daily soil moisture observations at a global scale and a
spatial resolution of 0.25° based on two active and four passive RADAR satellite
sensors (Dorigo et al., 2015). Information on freeze/thaw dynamics are available
for the years 1979 2017 via daily passive RADAR satellite observations at a spatial
resolution of 25 km and on a global scale within the NASA Making Earth System
Data Records for Use in Research Environments (MEaSUREs) program (Y. Kim
et al., 2017). The CALM network provides in-situ reference data of near-surface
permafrost and active layer thickness for more than 100 sites since 1990 on an annual
basis (International Permafrost Association, n.d.-a; J. Brown et al., 2000). Additional
borehole measurements are publicly provided by the TSP program (Biskaborn et al.,
2015). Finally, information about the distribution of permafrost itself is available via
the frequently cited map by J. Brown et al. (2002), which features the geographical
distribution of different permafrost zones at a scale of 1:10,000,000. Permafrost zones
are hereby categorized as isolated, sporadic, discontinuous, or continuous permafrost
regions (J. Brown et al., 2002). In addition, recent modelling efforts by Obu et al.
(2019) and Obu et al. (2020) resulted in pan-Arctic and pan-Antarctic maps of the
permafrost fraction and MAGT at a spatial resolution of 1 km. Table 2.3 lists a
number of databases which host several of the aforementioned data sets.
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Table 2.2: Overview of a variety of openly available products related to permafrost and
associated features and processes. The column “Temporal Resolution” describes the covered
time span and in parenthesis the temporal frequency of available data if multiple scenes are
available within the time span. Modified after Philipp et al. (2021).

Name Spatial
Resolution

Temporal
Resolution Reference

Greenhouse Gases

Cooperative Global Air Sampling
Network

in-situ
observations

since 1967
(varies)

NOAA Earth
System
Research
Laboratories
(n.d.-a)

Surface Water

Global WaterPack 250 m since 2003
(daily)

I. Klein et al.
(2017)

Global Surface Water 30 m since 1984
(monthly)

Pekel et al.
(2016)

Permafrost Region Pond and
Lake (PeRL) database < 5 m 2002–2013 Muster et al.

(2017)

Coastal Dynamics

Arctic Coastal Dynamics Database varies 2012 Lantuit et al.
(2012)

Snow Cover and Snow Water Equivalent

Global Snow Pack 500 m since 2000
(daily)

Dietz et al.
(2015)

ESA GlobSnow Snow Water
Equivalent (SWE) 20 km since 1979

(daily)
Metsämäki et
al. (2015)

ESA GlobSnow Snow Extent (SE) 1 km since 1995
(daily)

Larue et al.
(2017)

Land Cover

ESA Climate Change
Initiative (CCI) land cover 300 m 1992–2015

(annual)
Plummer et al.
(2017)

MODIS land cover 500 m since 2001
(annual)

Friedl et al.
(2002)

GlobeLand30 30 m 2000, 2010 Jun et al.
(2014)

(Table continues on the next page ...)
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Table 2.2: Continued.

Name Spatial
Resolution

Temporal
Resolution Reference

GLC2000 1 km 2000
Bartholome &
Belward
(2005)

Circumpolar Arctic Vegetation
Map (CAVM) Raster Version 1 km 2003 Raynolds et al.

(2019)
Trends of land surface change from
Landsat 30 m 1999–2014 Nitze et al.

(2018)

Digital Elevation and Surface Models

ArcticDEM 2 m 2016 Morin et al.
(2016)

SRTM 30 m 2000 Farr et al.
(2007)

ALOS DSM 30 m 2006–2011 Takaku et al.
(2016)

Soil Properties

SoilGrids250m 2.0 250 m 1905–2016 Poggio & de
Souse (2020)

Harmonized World Soil Database 30 arc-seconds 2012 FAO et al.
(2012)

Northern Circumpolar Soil Carbon
Database version 2 (NCSCDv2) 0.012 degrees 2013 Hugelius et al.

(2013)
ESA Climate Change
Initiative (CCI) Soil Moisture 0.25 degrees 1978–2019

(daily)
Dorigo et al.
(2015)

Freeze/Thaw Dynamics

MEaSUREs Global Record of Daily
Landscape Freeze/Thaw Status 25 km 1979–2017

(daily)
Y. Kim et al.
(2017)

Active Layer Thickness

Circumpolar Active Layer
Monitoring (CALM) program

in-situ
observations

since 1990
(annual)

J. Brown et al.
(2000)

Climate Change Initiative (CCI)
Active Layer Thickness (ALT) 927 m 2017–2019

(annual)
Obu et al.
(2021a)

Borehole Measurements

(Table continues on the next page ...)
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Table 2.2: Continued.

Name Spatial
Resolution

Temporal
Resolution Reference

Thermal State of Permafrost (TSP)
program

in-situ
observations 2007–2009 Biskaborn et

al. (2015)

Permafrost Extent and Ground Temperature Maps

Circum-Arctic Map of Permafrost
and Ground-Ice Conditions, Version
2

Scale of
1:10.000.000 2002 J. Brown et al.

(2002)

Permafrost Extent and Ground
Temperature Map 1 km 2000–2016 Obu et al.

(2019)
Climate Change Initiative (CCI)
Permafrost Fraction 927 m 1997–2019

(annual)
Obu et al.
(2021b)

Pan-Antarctic map of near-surface
permafrost temperatures 1 km 2000–2017 Obu et al.

(2020)

(... end of continued table.)

Table 2.3: Overview of diverse databases with permafrost related and openly available data.
Modified after Philipp et al. (2021).

Name Description Reference

PANGAEA Data publisher and library for Earth and
environmental science.

Diepenbroek et
al. (2002)

GTN-P database Active Layer Thaw Depth & Permafrost
Temperatures.

Biskaborn et al.
(2015)

The Permafrost
Information System
(PerSys)

Portal for GlobPermafrost products,
related results, and data sets - Including
ground and surface temperature,
permafrost extent, Freeze/Thaw dynamics
and others.

Haas et al.
(2017)

National Snow &
Ice Data Center

Management and distribution of
cryospheric data.

National Snow
and Ice Data

Center (NSIDC)
(2020)
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2.3 Discussion on Potentials and future Requirements

Within this review a clear relation between the study country and the first authors
institution nationality could be seen. This is likely caused by available local reference
data, the location of in-situ field sites, and research funding. Geographical study
clusters were identified in the Beiluhe region within the QTP, the Lena Delta, Gydan
and Yamal Peninsulas, the Mackenzie Delta, and in the North Slope of Alaska (Figure
2.5). Large parts of the permafrost regions in Russia outside the Gydan/Yamal
Peninsulas and the Lena delta feature hardly any satellite earth observation based
investigations, despite Russia being the most frequently studied country (Figure 2.3).
Similarly, while most investigations in Canada are concentrated in proximity to the
Mackenzie Delta, both the Arctic islands and the mainland of the Nunavut territory
are for the most part barely covered (Figure 2.5). Significantly fewer studies dedicated
their research efforts within the southern Hemisphere, which can be explained by the
relatively sparse distribution of permafrost occurrences that are limited to ice-free
regions of the South Shetland Islands in the Antarctic or alpine environments, e.g., the
Andes (Figure 2.6). Nonetheless, recently published and permafrost-related products
for the southern Hemisphere, such as the near-surface permafrost temperature map at
a pan-Arctic scale by Obu et al. (2020), may trigger some future studies to focus their
work within the southern Hemisphere.

Investigations on high spatial resolution, high temporal frequency, large to cir-
cumpolar scales, and covering long time periods are required to assess long-term
implications of thawing frozen ground on the atmosphere and land cover. Nevertheless,
most articles (62%) exercised their study efforts on local scales, while only 9% of publi-
cations considered in this review performed circum-Arctic investigations (Figure 2.13).
60% of studies which dedicated their analyses to quantifying coastal erosion covered
an area less than 100 km2 (Figure 2.14 a). Although roughly half of investigations
utilized a time series approach, only 47% of these studies covered temporal observation
periods of more than 10 years. Moreover, only 21% of all time series investigations
are longer than 20 years (Figure 2.11 & 2.12). Free and openly available tools, such
as the recently released geospatial and cloud-based analytic platform Google Earth
Engine (GEE), enable processing of large time series and massive amounts of data,
even if an individual’s computing capacity is restricted (Gorelick et al., 2017). One
of the earliest works which utilized the cloud computing capabilities of GEE was
published by Nyland et al. (2018), who quantified changes in the land cover within
central Siberia via a dense time series analysis of Landsat imagery since 1985 for an
area the size of ∼60.750 km2. Nill et al. (2019) dedicated their work on analysing
changing spectral properties and land surface temperatures within the Mackenzie
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Delta, Canada, by exploiting the processing capabilities of GEE, as well. Cloud-based
analysis platforms such as GEE together with the rising spatio-temporal availability
of satellite records hereby allow for analysing permafrost-related process and features
on continuously growing spatial and temporal scales.

Only a handful of the reviewed articles exploited the potential of DL within the
context of investigating permafrost-related processes and features. In addition to the
aforementioned study by L. Huang et al. (2020), a successful implementation of DL
was demonstrated by Langford et al. (2019), who mapped the distribution of Arctic
vegetation for a ∼343 km2 region in western Alaska. W. Zhang et al. (2020) combined
DL with space-borne and airborne imagery for mapping ice-wedge polygons. Another
publication by W. Zhang et al. (2018) demonstrated the potential of combining DL
with high resolution aerial imagery for classifying individual ice-wedge polygons with
an accuracy of 95% for a study region covering 134 km2 in northern Alaska. A recent
study by Bartsch, Pointner, et al. (2020) explored the feasibility of combining DL,
space-borne SAR, and optical satellite imagery for mapping Arctic settlements. The
authors further performed comparisons between the segmentation capabilities of DL vs.
using Gradient Boosting Machines (GBM). User accuracy scores were hereby higher
for the DL approach. Nonetheless, the authors suggest to combine both DL and GBM
for best possible results (Bartsch, Pointner, et al., 2020). Based on the promising
segmentation capabilities of DL, increasing applications rates of DL for investigations
on permafrost related features can be expected in future studies.

“Surface Land Features and Processes” proved to be both the fastest growing and
the overall most common category (43% of all foci) among the five categories introduced
in this review. The categories “Subsurface Features and Processes” and “Surface Water
Features and Processes” indicate a generally similar growing rate and an overall similar
distribution (21% and 25% of all foci). Weakest increase in publication numbers
and overall fewest articles were associated with the categories “Thermal Features
and Processes” and “Atmospheric Features and Processes”. Especially “Atmospheric
Features and Processes” appears drastically under-represented and makes up only ∼4%
of all study foci across the reviewed articles (Figure 2.7). As mentioned by Dlugokencky
et al. (2009) and Jackson et al. (2020), current Arctic emission rates are relatively small
compared to other latitudes. Nevertheless, emissions of greenhouse gases are expected
to increase with a continuous degradation of permafrost in the near future (Jackson
et al., 2020; Dlugokencky et al., 2009). This demonstrates the necessity of further
satellite-based investigations on permafrost-atmosphere-related processes. AMPAC, as
an exemplary new joint community initiative, provides hereby a foundation for future
research approaches to tackle this challenging field of study (European Space Agency,
n.d.-a, 2020). Thermal capabilities of satellite sensors, especially those of the Landsat
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mission, also appear heavily under-utilized (Figure 2.15). Albeit some studies include
thermal imagery as a supplementary proxy for investigating subsurface features, only a
handful of articles put particular focus on the application possibilities of thermal data.
Hachem et al. (2012) and Batbaatar et al. (2020), e.g., extracted valuable insights via
the use of thermal imagery. Thus, the potential of thermal analyses may still remain
partly unexplored and the application of long-term thermal investigations, as offered,
e.g., by the Landsat thermal products, could reveal crucial details within the context
of satellite earth observation of permafrost and its related features/processes.

Next to the distribution of frozen ground on land, marine permafrost occurrences
constitute another important parameter within the permafrost research domain. Since
the Late Pleistocene, a global sea level rise of roughly 120 m has been taken place
which consequently resulted in the flooding of permafrost-underlain coastal land areas
(Brothers et al., 2012). A potential release of previously stored methane hydrates to
the oceans via rising ground temperatures could be the consequence of the flooding of
former land areas within the permafrost zone (Taylor, 1991; Rachold et al., 2007). Out
of the 325 reviewed articles, not a single study directed their research efforts towards
submarine-permafrost. Although numerous articles addressed sea surface properties in
the context of permafrost research (e.g. Doxaran et al., 2012; Fichot et al., 2013; Heim
et al., 2014; Doxaran et al., 2015; Fouest et al., 2018; Juhls et al., 2019; K. P. Klein et
al., 2019), sub-sea permafrost is for the most part not detectable by current satellite
remote sensing technology (Angelopoulos et al., 2020), which explains the absence of
this topic within the reviewed articles.

Despite rapid advances in satellite technologies (e.g. Sentinel-5P and Merlin)
and new methodologies (e.g. DL), many challenges in satellite earth observation of
permafrost and its associated processes and features still remain. Although imagery
derived from the Landsat mission enables long time series investigations based on
regular observations, data availability before the year 2000 is comparatively scarce,
especially in the Arctic (Bartsch, Höfler, et al., 2016). Low light intensities, frequent
cloudiness, and steep sun angles in Arctic environments constitute additional compli-
cations for passive satellite systems (Duncan et al., 2020). As stated in Myers-Smith
et al. (2020), polar remote sensing features many and often unique challenges which
are frequently understated. SAR data is largely independent from the aforementioned
limitations, but comes with its own restrictions (Kääb et al., 2005; Kääb, 2008). The
decorrelation between individual SAR scenes as a result of changes in surface properties
(e.g. dynamics in vegetation cover, soil moisture, and snow cover extent) limit the
feasibility of D-InSAR studies for investigations on surface deformation (Zwieback et
al., 2016; Westermann et al., 2014). SAR data of shorter wavelengths (e.g. X-band
data) usually offers high spatial resolution, but at the cost of higher noise levels in
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long-term observations of surface movements compared to longer wavelength data
derived from, e.g., L-band SAR (Short et al., 2011). Also, the generally limited access
to high resolution imagery on large spatial and temporal scales is another commonly
mentioned restraint, especially in the context of analysing small scale processes and
features (Kääb et al., 2005; Bartsch, Höfler, et al., 2016; M. T. Jorgenson & Grosse,
2016).

Although airborne-exclusive studies were excluded from this review, “aerial” still
proved to be the most common platform type across all investigated articles (Figure
2.15). Detailed assessment of small scale processes and features, such as thaw slumps,
coastal erosion, and patterned ground, requires data of correspondingly high spatial
resolution and temporal frequency (M. T. Jorgenson & Grosse, 2016). Given this
fact, one can assume that aerial imagery will continue to play a crucial role in near
future analyses (S. V. Kokelj & Jorgenson, 2013; Arenson et al., 2016; M. T. Jorgenson
& Grosse, 2016). At the same time, this highlights the importance of large scale
availability and easy access to space-borne and high resolution images for a broader
audience.

Data from optical sensors are most commonly applied across the investigated
articles. Optical data also features the strongest growth rate in the number of
applications per year across all sensor types. The second most common sensor type
and also second fastest growing rate could be observed for SAR (Figure 2.15 & 2.16
b). The accelerated application in the frequency of applied SAR and optical data
in recent years may be explained be the openly available data from new satellites,
such as Sentine-1/2. At this point, only a small percentage of applied remote sensing
data for permafrost-related analyses and within the scope of this review is derived
from the Sentinel satellites. In comparison to other long-term satellite observation
mission, e.g., Aqua/Terra or Landsat, Sentinel satellites were just recently launched,
which may explain the small portion of studies associated with this data. At the same
time, the application frequency of Sentinel data was observed to expand significantly
during the last couple of years (Figure 2.16 c). The spatio-temporal availability, global
coverage, and spatial resolution of Sentinel imagery constitute an attractive data
package for future permafrost studies. Furthermore, combining different data types
(e.g. SAR & optical) or combining data of the same type but from different platforms
(e.g. Landsat-8 & S2) has tremendous potential, as shown by, e.g., Runge & Grosse
(2019), who investigated the complimentary use of S2 and Landsat-8 data. Results of
their investigations revealed good agreement between the spectral information from
the two platforms. Nonetheless, the authors recommend local adjustments to spectral
properties rather then using global parameters (Runge & Grosse, 2019).
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A variety of openly available products are provided on various platforms, which
may act as a reference or as a means for validation (Table 2.2 & 2.3). Nevertheless,
there is still room for improvement in terms of accuracy, spatial coverage, spatial
resolution, and thematic detail of land cover products (Liang et al., 2019). Thus,
there is still a need for a circum-Arctic land cover dataset with high thematic detail,
sufficient spatial resolution, and high accuracy (Bartsch, Höfler, et al., 2016). Also,
in-situ reference data is commonly distributed in clusters instead of being evenly
distributed across the ∼23 million km of permafrost affected terrain, which can be
attributed to the difficult to access terrain and general remoteness of the majority of
permafrost environments (Grosse et al., 2016).

In this review, a total of 325 articles published in 30 different international journals
were investigated. Some relevant studies may have been published in other journals
which were not included in this review. Additionally, non-English articles were excluded
from the review process. Moreover, the proposed filtering approach may have led to
the exclusion of some fitting publications. At the same time, the applied filtering
criteria should provide a representative sample of articles related to space born earth
observation of permafrost and its related processes and features. Therefore, the
proposed review framework is considered to be a reasonable compromise in order to
ensure a representative overview of recent trends in this field of study.

2.4 Summary

This chapter summarized trends in satellite earth observation for permafrost
related analyses during the past 20 years and based on 325 articles published in 30
international journals. Articles were investigated on the basis of the applied spatial
scales, resolutions, and temporal frequencies of satellite data, the spatial distribution
of study locations, sensor and platform distribution, as well as the relationship between
the first author institution nationality and the study country. Moreover, a variety of
public and freely available datasets in the context of permafrost research are listed.
The key findings of this review are as follows:

• The total number of published articles more than doubled since the year 2015.

• A clear connection between the first author’s institution nationality and the
investigated country was observed. 58% of studies in Canada were conducted
by Canadian institutions, 80% of research efforts in the United States of Amer-
ica (USA) were performed by American institutions, and almost all (93%)
investigations located in China are associated with Chinese institutions.
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• 75% of studies sites are located in Canada, USA, China, or Russia.

• Russia appears heavily under-represented among the author countries with only
2% of articles being associated to this country.

• Key study regions were observed to be the Lena Delta and Gydan and Yamal
Peninsulas in Russia, the Mackenzie Delta in Canada, the Beiluhe region located
on the Qinghai Tibet Plateau (QTP) in China, and the North Slope Borough
and its Arctic Coastal Plain in Alaska.

• Large parts of the continuous permafrost domain in the Nunavut territory in
Canada and Russia remain largely unexplored from a satellite remote sensing
perspective.

• Nearly all (94%) articles investigated the northern Hemisphere. Only a handful
of studies were located on the southern Hemisphere, likely due to the restricted
permafrost presence in Alpine regions and ice-free areas in the Antarctic.

• 43% of articles investigated land surface processes and features. 25% of in-
vestigations were dedicated to surface water processes/features, followed by
21% for subsurface processes/features. Studies on atmospheric and thermal
features/processes were the minority with 4% and 7%, respectively.

• Regional differences in study foci were identified. Lake extent dynamics proved
to be the most common subject in Canada, USA and Russia, whereas surface
movement was the main topic in China.

• Even though 47% of studies employed time series analyses, only 21% of which
cover more than 20 years.

• Only 8% of investigations were applied on a circumpolar scale, whereas 62% of
articles limited their analysis to local scales.

• With increasing spatial scales, a general tendency towards the application of
coarser resolution data was observed.

• Deviations of the applied spatial resolutions and temporal frequencies could
be observed for different topics. Thaw slumps, coastal erosion, or surface
movements were mostly investigated with high resolution imagery and on local
scales, whereas dynamics in soil freezing and thawing were generally studied
with coarse resolution data and on larger scales.

• Optical data was the most common data type (55% of all data types), followed
by Synthetic Aperture RADAR (SAR) (20% of all data types).
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• Aerial was identified to be the most frequent platform (31% of all platforms),
although aerial-exclusive studies were already excluded from the review pro-
cess. Using airborne data for validation, the investigation of small scale pro-
cesses/features, or as a historical reference are hereby explanations. The most
frequent satellite platform proved to be Landsat (27% of all platforms). Data
from Sentinel satellites only made up 6% of utilized platforms, however a ten-
dency towards more frequent usage of data from the Sentinel missions in recent
years could be observed.

• Several openly available products in the context permafrost research have al-
ready been published. Some products, however, still feature insufficient extent,
resolution, thematic detail, or accuracy for many permafrost related analyses.
Moreover, reference data sets are often concentrated in clusters, instead of being
evenly distributed across the Arctic.

The combination of data from different origins and the application of Deep Learning
(DL) for segmentation tasks are promising new approaches for future investigations
within the context of satellite earth observation of permafrost. Thermal data, especially
from Landsat satellites, hereby still remains heavily under-utilized. A high demand
for easily accessible and free satellite data of high spatial resolution exists within the
permafrost research community. Data of high temporal and spatial resolution allows for
monitoring small scale features and processes, such as thaw slumps, patterned ground,
or coastal erosion at high detail. In addition, more long-term and large scale analyses
are required to fully assess the thermal state of permafrost and the implications of
its degradation on the environment and human society. Only a few studies dedicated
their research efforts to carbon emissions thus far. New satellite missions such as
Sentinel-5P and the Methane Remote Sensing LiDAR Mission (Merlin) are hereby
likely to accelerate the publication frequency within this field of study. Moreover, data
derived from Landsat will continue to be an important source for lengthy time series
investigations. Especially the exploitation of cloud-based processing platforms such as
Google Earth Engine (GEE) will thereby make processing of long-term and large scale
analyses more accessible. Finally, the available spatial resolutions, spectral coverage,
temporal frequency, global coverage, and open data policy of Sentinel imagery will
likely lead to more frequent research applications based on data from Sentinel satellites.
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Chapter 3
A novel Monitoring Framework for

circum-Arctic Quantification of annual
Erosion Rates of Permafrost Coasts∗

The following chapter introduces a novel framework for circum-Arctic quantification
of Arctic coastal erosion rates at high spatial resolution and on an annual basis. The
presented analysis and products provide detailed information about Arctic coastal
change rates at an unprecedented combined spatial scale and resolution. Sentinel-
1 (S1) Ground Range Detected (GRD) Synthetic Aperture RADAR (SAR) scenes in
Interferometric Wide (IW) swath mode were hereby used as a basis for the analysis.
The methodology includes the generation of a high quality Arctic coastline product via
a Deep Learning (DL) approach. Nine different U-Net models were thereby combined
to create a robust and accurate output dataset covering 161,600 km of Arctic coastline.
The DL product served as a reference for the Change Vector Analysis (CVA) based
quantification of coastal erosion and build-up rates. The generated products may act as
a valuable tool for further investigations in permafrost affected coastal environments.

3.1 Input Data

A variety of different datasets were utilized within the framework of this analysis.
The computation of a high quality reference coastline dataset as well as the coastal
change investigations were mainly based on S1 Ground Range Detected (GRD) Syn-
thetic Aperture RADAR (SAR) scenes in Interferometric Wide (IW) swath mode
(ESA Communications, 2012). In addition, optical imagery from Google Earth (L. Yu

∗This chapter is for the most part based on Philipp et al. (2022) and Philipp et al. (2023).
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& Gong, 2012) and S2 (European Space Agency, 2016) were employed for further
quality control. In particular, high resolution imagery from CNES/Airbus and Maxar
Technologies was accessible via Google Earth. The extent of the study area was partly
defined by the coastline dataset from OSM (OpenStreetMap contributors, 2017) and
the circum-Arctic CCI fraction of permafrost product by Obu et al. (2021b). Further-
more, the impact of changing tides on the presented data and methods was investigated
by utilizing MTL data from the National Oceanic and Atmospheric Administration
(NOAA) (2022b) as a reference. Both the daily sea ice concentration based on the
ARTIST Sea Ice (ASI) dataset (Spreen et al., 2008) and details on glacier extents via
the Global Land Ice Measurements from Space (GLIMS) glacier database (Raup et al.,
2007) were incorporated for further quality assurance. Extracted coastal change rates
were compared with existing data on coastal build-up and erosion provided by the
ACD by Lantuit et al. (2012). Table 3.1 lists further details on the temporal coverage,
spatio-temporal resolution and type of applied data within this thesis.

Table 3.1: List of utilized datasets within the framework of this chapter. The column
“Temporal Coverage & Resolution” provides information about the temporal window of
utilized data. The frequency of available data within this time period is shown in parentheses.
Modified after Philipp et al. (2023).

Name Data
Type

Spatial
Resolution

Temporal
Coverage &
Resolution

Reference

Climate Change
Initiative (CCI)
Permafrost Fraction

Raster 927 m 2017 Obu et al.
(2021b)

ARTIST Sea Ice (ASI)
Arctic Sea Ice
Concentration

Raster 3125 m 2017–2021
(daily)

Spreen et al.
(2008)

Sentinel-1 (S1) Ground
Range Detected (GRD)
Interferometric
Wide (IW) swath

Raster 10 m 2017–2021 (up
to 6 days)

ESA
Communications

(2012)

Sentinel-2 (S2)
Level-2A Surface
Reflectance (SR)

Raster 10 m 2017–2021 (up
to 5 days)

European Space
Agency (2016)

Google Earth Raster varies 2017–2021
(varies)

L. Yu & Gong
(2012)

(Table continues on the next page ...)
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Table 3.1: Continued.

Name Data
Type

Spatial
Resolution

Temporal
Coverage &
Resolution

Reference

Buoy Mean Tidal
Level (MTL) Data Table - 2020 (6

minutes)

National Oceanic
and Atmospheric
Administration

(NOAA) (2022b)

OpenStreetMap (OSM) Vector - 2022
OpenStreetMap

contributors
(2017)

Global Land Ice
Measurements from
Space (GLIMS) glacier
database

Vector - 2022 Raup et al. (2007)

Arctic Coastal
Dynamics
Database (ACD)
Database

Vector - 2012 Lantuit et al.
(2012)

International
Hydrographic
Organization (IHO) Sea
Areas

Vector - 2018 Flanders Marine
Institute (2018)

(... end of continued table.)

3.1.1 Sentinel-1

Optical satellite imagery derived from the Landsat legacy allows for lengthy time
series investigations since 1972 (T. Zhang et al., 2004). Recent satellite missions such
as the ESA S2 mission, enable land surface investigations with a pixel size of up to
10 m and a temporal resolution of up to 5 days when combining both satellites S2
A/B (European Space Agency, 2016). However, the applicability of optical imagery
in the Arctic is heavily limited by the scarce availability of data combined with
frequent cloud cover in these regions (T. Zhang et al., 2004; A. M. Trofaier et al.,
2017; Bartsch, Höfler, et al., 2016). In contrast, SAR data is largely independent of
weather conditions and sun illumination and may therefore surpass present limitations
of optical imagery (Kääb et al., 2005; Kääb, 2008). This thesis aims to exploit the
uninterrupted monitoring capabilities of SAR data derived from S1 for quantifying
changing Arctic permafrost coastlines. In particular, S1 Level-1 GRD SAR data in IW
swath mode where thereby utilized, which represents focused SAR imagery that has
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been detected, multi-looked, and projected to ground range with the help of both an
ellipsoid model and a DEM (ESA Communications, 2012). S1 data was available at
10 m spatial resolution and accessible via the cloud computing platform GEE (Google
Developers, 2021).

3.1.2 Optical Satellite Data

As previously mentioned, optical imagery from both the ESA Sentinel mission as
well as Google Earth was utilized. The optical satellite data was hereby utilized as an
additional reference data set for assessing the quality of the generated DL coastline
product, as well as to validate the coastal change rates derived from SAR imagery.
High resolution imagery from CNES/Airbus and Maxar Technologies was available in
Google Earth. In case of S2, Level-2A SR data with a 10 m spatial resolution and a
revisit time of up to 5 days was incorporated (European Space Agency, 2016).

3.1.3 Auxiliary Data

A number of additional auxiliary data was included to successfully perform the
analysis on a circum-Arctic scale. First, the OSM Arctic coastline product was used as
a reference for both defining the extent of the study area and as a additional training
source of the DL based segmentation between sea and land. Quality fluctuations for
various areas are regularly observed within the OSM dataset (Barron et al., 2014).
Nevertheless, the huge quantity of added training data outweighed these changing
levels of quality of the OSM product. The CCI permafrost fraction dataset was also
utilized for confining the study area to regions that feature permafrost occurrences.
The dataset is available on an annual basis from 1997 2019 (version 3.0) and with
a spatial resolution of ∼927 m (Obu et al., 2021b). Information on the Arctic sea
ice concentration was included via the ASI dataset, which provides insights on daily
sea ice concentration at a spatial resolution of ∼3125 m and is based on data from
the AMSR-E passive-microwave radiometer system (Spreen et al., 2008). Details on
the sea ice concentration was used as an additional quality layer for assessing the
applicability of the proposed data and methods. The GLIMS glacier database was
used for further quality control (Raup et al., 2007). Since the focus of this thesis lies on
the quantification of coastal change in the form of erosion and build-up, glacier areas
were removed to minimize the effects of changing glaciers on the analysis. Additional
information on the MTL from four different buoy stations and provided by the National
Oceanic and Atmospheric Administration (NOAA) (2022b) was included to study the
effects of tidal changes on the SAR investigations. MTL data was thereby available on
a six minute basis within the observation period of this thesis. The identified coastal
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change rates based on the proposed data and methods were compared with numbers
in previously published literature, as well as with change rates available via the ACD
by Lantuit et al. (2012). Next to statistics on coastal change per country, change rates
were also computed per sea based on the IHO sea areas (Flanders Marine Institute,
2018).

3.2 Methodological Framework

The methodological framework was mainly split into three parts (Figure 3.1). The
first part was dedicated to the confinement of the study area and the pre-processing
of S1 GRD SAR backscatter images in IW swath mode. Annual (months June
September) sd and median composites were thereby computed for each polarisation
and covering the years 2017 2021.

Figure 3.1: Flowchart of the study outline. The analysis was split into three parts. In
the first part, the study area was defined. In addition, satellite data was pre-processed
and annual Sentinel-1 (S1) composites were computed. The second part was dedicated to
generate a high-quality Arctic coastline product via Deep Learning (DL). In the third part,
Arctic coastal erosion and build-up rates were quantified via the application of Change Vector
Analysis (CVA) in conjunction with the previously computed coastline product which acted
as a reference. The following abbreviations are used throughout the flowchart: Ground Range
Detected (GRD); standard deviation (sd); Red-Green-Blue (RGB); Deep Learning (DL);
and Change Vector Analysis (CVA). Modified after Philipp et al. (2022).
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In the second step, a high quality coastline product was generated at a circum-
Arctic scale via a DL approach. A total of nine different U-net architectures were
hereby trained and combined to generate a robust and accurate output covering 161,600
km of the Arctic coastline. The created coastline product acted as a reference for the
third and final step, which was dedicated to quantifying coastal change rates at 10 m
spatial resolution by combining the previously computed annual S1 SAR composites
with a CVA approach. Next to the coastline and coastal change products, several
quality layers were generated to assess the applicability of the proposed methodologies
and data across the investigated area. Finally, average coastal change in the form
of build-up and erosion were computed for 400 m segments along the 161,000 km of
observed coastline. The effect of tidal changes on the analysis was also examined.
Particularly for sandy and flat coasts, variations in local tides may significantly affect
the precise position of the zone where sea and land meet. Detailed descriptions of
each processing step and dataset are provided in the following sections.

3.2.1 Training and Testing Sites

The first task was to define the extent of the study area, which was limited to
regions with available S1 GRD backscatter data in IW swath mode. It was further
limited to coastal regions in close proximity to the presence of permafrost. The OSM
Arctic coastline product acted thereby as a reference for confining the study area.
First, the extent of permafrost was defined via the CCI permafrost fraction product for
the year 2017 by Obu et al. (2021b). The continuous data was converted into a binary
map that differentiates between permafrost presence (≥1% permafrost occurrence) and
permafrost absence. Since the dataset is provided at a spatial resolution of ∼927 m, a
buffer of 20 km around the permafrost presence areas was computed in order to also
include smaller islands, which were not contained within the CCI product. Secondly,
the spatio-temporal coverage of available S1 GRD imagery in IW swath mode above
30 degrees latitude was assessed. Imagery was filtered to the months June September
and until the end of the year 2021 (Figure 3.2). It was further differentiated between
images acquired from a descending or an ascending orbit. The most frequent orbit per
pixel was extracted and used as a basis for filtering the SAR data before computing
the annual composites. In case an equal amount of images were available for both
orbits, the ascending orbit was used (Figure 3.2 e). Figure 3.2 f) also illustrates the
spatial variations in the first year with available data across the northern Hemisphere.
S1 data was accessed, filtered and downloaded via the cloud computing platform GEE.
Finally, both the binary permafrost presence map and information about S1 data
coverage were used to clip the OSM Arctic coastline product. A buffer of 10 km was
computed around the OSM product in order to account for any inaccuracies within
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the dataset. The buffered and clipped OSM coastline revealed the final area of interest
visualized in Figure 3.3.

The investigated coastline was split into separate training and testing sites. Train-
ing and testing were hereby performed on two levels, in case of the DL work-flow. For
the first level, a total of 1,038 km of manually digitized Arctic permafrost coastline
divided into ten regions which are distributed across the Arctic and covering a com-
bined area of 19,275 km2 was used. All areas featured significant coastal change rates
based on the ACD by Lantuit et al. (2012) and were therefore classified as suitable
test regions. The manually digitized sites were further separated into seven training
areas and three validation areas, as highlighted in Figure 3.3 by the light-green and
dark-green points, respectively. A spatial separation between the testing and training
sites was conducted to avoid spatial auto-correlation within the training process. Fur-
ther details on the center coordinates, covered area, coastal length, country, and region
name of each manually digitized site is provided in Table (3.2). Moreover, detailed
description of the manual digitization process is given in Section 3.2.6.

The purpose of the second level was to generate additional validation an training
data for the DL approach. OSM data was thereby exploited to overcome the challenge
of the massive training data requirements by Convolutional Neural Networks (CNN)
as well as to cover the wide range of diverse coastal morphologies. OSM is among
the largest Volunteered Geographic Information (VGI) projects with more than eight
million contributors (OpenStreetMap, n.d.). OSM data is imported and edited by
various editors from a variety of sources (Barron et al., 2014). Data quality of available
geometries within the OSM dataset heavily depends on the utilized sources, e.g. Global
Positioning System (GPS) tracks and airborne imagery (Mooney et al., 2010; Barron
et al., 2014). A number of different companies, such as Aerowest, Yahoo!, and Bing,
provided, at least temporally, access to airborne imagery as a basis for creating new
OSM content (Barron et al., 2014). Despite the tremendous community efforts, the
quality of the OSM product is observed to vary across different areas. In addition,
while being updated on a regular basis, OSM data may not precisely represent the
current state of surface land features, especially for highly dynamic regions, such as
Arctic coastal environments. At the same time, it is presumed that the enormous
amount of additional data will offset present fluctuations in data quality, particularly
when using CNNs. Thus, OSM based land polygons were acquired for all areas outside
the manually digitized regions and within the previously defined study area. The land
polygons were then turned into binary rasters, where the pixels have a value of 0 for
sea area, while the pixels have a value of 1 for terrestrial areas. The binary reference
data extracted from OSM was further split into 136 individual tiles, 109 of which were
randomly selected for training and the remaining 27 tiles were used for validation.
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The distribution of training and validations sites based on OSM is visualized as orange
and red lines in Figure 3.3.

Figure 3.2: Data availability of Sentinel-1 (S1) Ground Range Detected (GRD) Interfer-
ometric Wide (IW) swath mode images since launch until the end of 2021 for the months
June–September above 50◦ latitude. (a) Total data coverage. (b) Number of available images
with an Ascending (Asc) orbit. (c) Number of available images with a Descending (Desc)
orbit. (d) Number of available images with Asc and Desc orbits combined. (e) The orbit
(either Asc, Desc, or same) with the highest number of images per pixel. (f) Year of first
available data per pixel. A shaded relief by Natural Earth (n.d.) was utilized as a background
map. Administrative boundaries are based on the Global Administrative Unit Layers (GAUL)
dataset, implemented by the Food and Agriculture Organization of the United Nations (FAO)
within the CountrySTAT and Agricultural Market Information System (AMIS) projects.
Modified after Philipp et al. (2023).
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Figure 3.3: Training and validation regions from the manually digitized sites (green points),
as well as training and validation regions based on OpenStreetMap (OSM) (orange and red
lines). A shaded relief by Natural Earth (n.d.) in combination with the permafrost fraction
across the Northern Hemisphere for the year 2017 based on data by Obu et al. (2021b) was
used as a background map. All data is visualized in a polar Lambert azimuthal equal area
projection. Modified after Philipp et al. (2023).

Table 3.2: List of manually digitized test regions. Information about the region’s name,
country, length of the present coastline, covered area, and the center coordinates per Area of
Interest (AOI) are provided. Validation sites are highlighted in bold text. Modified after
Philipp et al. (2022).

No. Name Country Coast
Length Area Center

Coords.

1 Corwin Bluffs USA 67.8 km 1631 km2 68.8◦N;
165◦W

2 Drew Point–Cape
Halkett USA 142.4 km 1335 km2 70.9◦N;

153◦W

3 Shoalwater Bay Canada 113.7 km 636 km2 68.8◦N;
136.7◦W

(Table continues on the next page ...)
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Table 3.2: Continued.

No. Name Country Coast
Length Area Center

Coords.

4 Kolgujev Russia 49.4 km 685 km2 69◦N;
48.2◦E

5 Sims Bay Russia 97.2 km 1280 km2 76.7◦N;
109◦E

6
Mus-Khaya

Cape–Mouth of
Peshanaya

Russia 170.2 km 3454 km2 73.6◦N;
116◦E

7 Bykovsky Peninsula Russia 115 km 828 km2 71,9◦N;
129.3◦E

8 Muostakh Island Russia 15.7 km 212 km2 71.6◦N;
130◦E

9
Bezimyanniy

Cape–Eastern Oyagoss
Cape

Russia 109 km 2748 km2 72.6◦N;
144◦E

10
Mouth of

Kurdugina–Malyy
Chukochiy Cape

Russia 158.4 km 6476 km2 70.5◦N;
159.8◦E

(... end of continued table.)

3.2.2 Pre-Processing of Sentinel-1 Data

As mentioned in section 3.1.1, S1 GRD SAR backscatter data in IW swath mode
and with a spatial resolution of 10 m was used as a basis for both the DL approach to
generate a high quality Arctic coastline product as well as for the CVA-based coastal
change quantification. The data was available in GEE with pixel values representing the
backscatter coefficient sigma nought (σ0) in the unit decibel (dB) (Google Developers,
2021). Imagery between 2017 2021 and covering the months beginning of June until
the end of September was considered throughout this analysis. A temporal filtering
to the months June September was applied in order to reduce the effects of sea ice
presence on individual scenes. The satellite imagery was further filtered to the orbit
with the largest amount of available images on a pixel basis (Figure 3.2 e). In case of
the manually digitized reference sites (Figure 3.3 green points), available scenes were
additionally filtered to the most frequent relative orbit per AOI. Table 3.3 lists the
number of available scenes and the associated most frequent relative orbit per AOI
and for the years 2017 and 2020. Further pre-processing included the application of a
median Moving Window (MV) with a window size of 3×3 on each scene to reduce the
amount of speckle. For the purpose of removing speckle, pixel values were temporarily
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changed from dB to natural via Equation 3.1 and afterwards converted back to dB via
Equation 3.2. As a next step, sd and median backscatter images were computed on an
annual basis and separately for each polarisation, vertical-vertical (VV) and vertical-
horizontal (VH). Since the median is more robust to outliers than the arithmetic
mean, it was chosen as a statistical metric (Mutlu, 2019). The annual SAR composites
were subsequently combined into Pseudo-RGB images, by linking the VH-polarised
median backscatter to the red channel, the VV-polarised median backscatter to the
green channel, and lastly the VV polarised sd backscatter to the blue channel. Each
Pseudo-RGB images was further normalized to the 2nd and 98th percentile per channel.
An example Pseudo-RGB image, and the individual composites its made out of, is
illustrated for a subsection of Cape Halkett, Alaska in Figure 3.4.

Figure 3.4: Composition of a Pseudo-Red-Green-Blue (RGB) image based on Sentinel-
1 (S1) Ground Range Detected (GRD) backscatter data from June–September 2020 for a
subsection of the study area Cape Halkett in the United States of America (USA) (Area
of Interest (AOI) 02). (a) Annual median vertical-horizontal (VH) backscatter, (b) annual
median vertical-vertical (VV) backscatter, (c) annual standard deviation (sd) VV backscatter,
and (d) the pseudo-RGB composite by combining (a–c). All data is visualized in a Universal
Transverse Mercator (UTM) zone 5 North projection. Modified after Philipp et al. (2022).
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Finally, all data was re-projected to a polar Lambert azimuthal equal-area pro-
jection for further processing. The generated RGB composites were used as training
input for the DL framework. The individual median and sd composites acted as a
basis for the CVA. The number of scenes that were accessible per pixel was retrieved
as an additional quality layer for both the final DL coastline product and the CVA
coastal change quantification. All pre-processing of S1 data was performed in GEE.

σ0 = 10
σ0(db)

10 (3.1)

σ0(dB) = 10 ∗ log10 σ0 (3.2)

Table 3.3: Number of available Sentinel-1 (S1) Ground Range Detected (GRD) Interfero-
metric Wide (IW) swath mode scenes per path direction and year after filtering the data to
the months June–September and further filtering the images to the most frequent relative
orbit per Area of Interest (AOI). Validation sites are highlighted in bold text. The minus
symbol “-” represents no available scenes. Modified after Philipp et al. (2022).

AOI Year Rel. Orbit No. of Scenes

1 2017 88 (Desc.); 153 (Asc.) 10 (Desc.); 9 (Asc.)
2020 88 (Desc.); 153 (Asc.) 9 (Desc.); 9 (Asc.)

2 2017 73 (Desc.); 94 (Asc.) 10 (Desc.); 9 (Asc.)
2020 73 (Desc.); 94 (Asc.) 10 (Desc.); 10 (Asc.)

3 2017 116 (Desc.); 108 (Asc.) 10 (Desc.); 5 (Asc.)
2020 116 (Desc.); 108 (Asc.) 10 (Desc.); 10 (Asc.)

4 2017 123 (Desc.); - (Asc.) 10 (Desc.); - (Asc.)
2020 123 (Desc.); - (Asc.) 7 (Desc.); - (Asc.)

5 2017 48 (Desc.); - (Asc.) 10 (Desc.); - (Asc.)
2020 48 (Desc.); - (Asc.) 5 (Desc.); - (Asc.)

6 2017 135 (Desc.); - (Asc.) 10 (Desc.); - (Asc.)
2020 135 (Desc.); - (Asc.) 10 (Desc.); - (Asc.)

7 2017 149 (Desc.); - (Asc.) 10 (Desc.); - (Asc.)
2020 149 (Desc.); - (Asc.) 8 (Desc.); - (Asc.)

8 2017 149 (Desc.); - (Asc.) 10 (Desc.); - (Asc.)
2020 149 (Desc.); - (Asc.) 8 (Desc.); - (Asc.)

9 2017 61 (Desc.); - (Asc.) 10 (Desc.); - (Asc.)
2020 61 (Desc.); - (Asc.) 9 (Desc.); - (Asc.)

10 2017 31 (Desc.); - (Asc.) 10 (Desc.); - (Asc.)
2020 31 (Desc.); - (Asc.) 10 (Desc.); - (Asc.)
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3.2.3 Pre-Processing of optical Satellite Data

Similar to the S1 satellite scenes, optical imagery derived from S2, Level-2A
SR data was filtered to the years 2017 2021 and to the months June September.
Filtering the data to summer months was performed in order to reduce the amount
of sea ice content in each image to a minimum. Only scenes covering the manually
digitized sites were hereby considered. The data was further stripped from cloud-
and snow-contaminated pixels by using the associated scene classification product
available for each observation (European Space Agency, 2016). Lastly, annual median
SR reflectance values were computed on a pixel basis. Working on annual median
composites instead of single scenes not only reduced the effects of remaining clouds,
sea ice, and snow, but also further reduced the geolocation uncertainty of individual
scenes (Schubert et al., 2015, 2017).

3.2.4 Deep Learning for Arctic Coastline Extraction

DL CNNs gained increasing popularity in the past couple of years. It was found
that CNNs frequently outperform more traditional Machine Learning (ML) classifiers
like support vector machines and random forest (Zhu et al., 2017; R. Li et al., 2018).
In comparison to conventional image processing, CNNs were observed to perform
particularly better at segmentations tasks between land and water, and are therefore
considered a valuable tool for identifying coastlines (D. Cheng et al., 2016; R. Li et
al., 2018). One of the primary objectives of this thesis is to take advantage of the
DL segmentation capabilities for the creation of a circum-Arctic and high-quality
coastline product. In order to achieve this goal, CNN-based U-Net architectures
were incorporated which were reported to be very effective in accurately identifying
coastlines based on SAR data (e.g. Baumhoer et al., 2019, 2020, 2021; Heidler et al.,
2021). A detailed explanation of the structure and functionality of a U-Net can be
found in the original paper by Ronneberger et al. (2015). A brief description of the
CNN-based U-Net structure and associated hyper-parameters employed in this work
will be provided from here onwards.

A U-Net comprises an encoder in the form of a contracting path, which extracts
the context of a given scene, as well as a decoder in the form of an expanding path,
which enables the precise localisation of the extracted features (Ronneberger et al.,
2015). A number of filters (also called kernels) are applied on the input image within
the contracting path, which emphasize specific features. The filters have a size of 3×3
pixels and scan the image via a MV method with a stride of 1 pixel and return the
dot product for each position. By adding a frame of zero pixel values around the
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image (also called padding), shrinking in y- and x-direction is avoided throughout
the convolution process. The weights for the aforementioned kernels are randomly
initialized and are modified while the model is trained. A Rectified Linear Unit (ReLU)
activation function (Equation 3.3) is subsequently applied on the generated feature
map after running the kernel across the image. Negative pixel values are thereby
replaced with 0. As a next step, MaxPooling is performed on the feature map. The
process of MaxPooling hereby describes the application of another MV, but this time
the highest value for a given window is extracted. The window size is 2×2 pixels and
a stride of 2 pixels is used. During MaxPooling, the size of the feature map in x- and
y-dimensions is reduced, which leads to lower computational requirements in further
processing steps. The mentioned procedure is continuously performed numerous times
with a growing number of applied filters during each step. As a result, a growing
number of feature maps are generated, while at the same the image size is drastically
reduced in x- and y-direction. During the condensing of the present information in
the form of features, the localisation of the extracted information is gradually lost.
Information on the spatial distribution of identified features is subsequently restored
during the expanding path. Here, the generated feature maps are up-sampled and
concatenated with the features of the corresponding level in the contracting path. A
repetition of this process is performed until the x-y-dimensions of the up-sampled
feature stack are equal to the x-y-dimensions of the input image. Lastly, a final
convolution combined with a Sigmoid activation function (Equation 3.4) is applied on
the feature stack, which results in a probability map where pixel values range from
0 1. A schematic overview of a U-Net architecture is illustrated in Figure 3.5.

y = max(0, x) (3.3)

σ(x) = 1
1 + e−x

(3.4)

3.2.4.1 Training the U-Net Models

In order to perform a high-quality and circum-Arctic segmentation between ter-
restrial area (including inland lakes and rivers) and sea area, nine different U-Net
architectures were trained, and the model outputs combined. The following model
architectures were utilized within the framework of this thesis: SE-ResNeXt50 (J. Hu
et al., 2018), ResNeXt50 (S. Xie et al., 2017), DenseNet121 (G. Huang et al., 2017),
Inception-ResNet v2 (Szegedy et al., 2017), Inception v3 (Szegedy et al., 2016), VGG19,
(Simonyan & Zisserman, 2014), VGG16 (Simonyan & Zisserman, 2014), ResNet34
(He et al., 2016), and ResNet50 (He et al., 2016). All models were hereby accessible
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with pre-trained encoder weights via the ImageNet database. The ImageNet database
comprises ≈14 Mio. images associated to over 20,000 classes (Russakovsky et al.,
2015).

Figure 3.5: Schematic illustration of a VGG16 U-Net architecture. The vertical numbers
at the side of each feature block describe the size in x–y-dimensions. The numbers in italic
above each block describe the amount of feature maps (layers). Feature maps inside the
down-sampling path of the (pre-trained) encoder are illustrated in light purple colour, whereas
feature maps within the up-sampling path of the decoder are visualized in dark purple colour.
The following abbreviations are used: Batch Normalization (BN), Convolution (Conv), and
Rectified Linear Unit (ReLU). Modified after Philipp et al. (2022).

Further training of the presented models was performed in two phases. In the first
phase, additional training of models was based on reference data from the manually
digitized sites. Input images were separated into tiles with x-y-dimensions of 512×512
pixels. Augmentation in the form of rotating the tiles by 90, 180, and 270 degrees, as
well as flipping the images was applied to further increase the amount of reference data.
As a results, 49,096 tiles were available for further model training within the first phase.
Out of the 49,096 tiles, 32,606 tiles were used for actual training, while 16,490 tiles
from the independent validation sites were deployed for validation. Different hyper-
parameter settings were tested for best-possible model output results. A batch size of 8,
binary accuracy as an accuracy metric, a Root Mean Square Propagation (RMSprop)
optimizer with a learning rate of 0.001, and a binary cross-entropy loss function were
identified as the most suitable parameter settings. By choosing binary cross-entropy
(also called log loss) as a loss function, the negative log of the predicted probability of
a certain class is taken, as shown in Equation 3.5 (Bishop & Nasrabadi, 2006). As a
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result, the loss value grows exponentially as the estimated probability for the actual
class gets closer to zero. Thus, heavy penalties are associated with large differences
between the actual probability and the estimated probability of a given class. All
models were trained for a total of 30 epochs. The number of epochs indicates how
frequently the full dataset is shown to the network for adjusting its weights. The
representative trained model per network architecture was thereby chosen based on
the epoch that featured the highest binary validation accuracy.

CE = − 1
n

n∑
i=1

yi · log(pi) + (1 − yi) · log(1 − pi) (3.5)

where:
CE = Binary cross entropy;
n = Total number of observations;
i = Current observation;
y = Current label ∈ {0,1};
p = Probability of belonging to label 1.

For the second phase, each of the nine representative models was further trained
based on reference data from the OSM sites. No augmentation was applied on the
reference images based on OSM. Identical to the images from the manually digitized
sites, reference data from OSM was also converted into separate tiles with a size of
512×512 pixels each. The total number of tiles was thereby 307,056, 237,460 of which
were used for training and the remaining 67,760 tiles were used for validation. Identical
parameter settings as specified in the first training phase were applied for training
the networks in the second phase. Once again, the representative trained model per
network architecture was chosen based on the epoch that featured the highest binary
validation accuracy.

Probability maps were then produced using the fully trained networks for the whole
investigated area, with values ranging from 0 1 for each 512 by 512 pixel tile. In order
to separate terrestrial area (including inland lakes and rivers) from sea area, a threshold
of 0.5 was applied on each probability tile from each network. Thus, nine binary
classifications, one from each trained network, were available per tile. The mode value
per pixel was subsequently extracted based on the individual binary classifications to
generate the most representative output across all models. Additionally, the level of
agreement between all network outputs was extracted on a pixel basis via Equation
3.6. This information was utilized as a quality layer for the DL coastline product.
Lowest possible agreement of 0.11 is present if only 5 out of 9 models predicted the
same class, whereas an agreement of 1 is achieved if all models predicted the same
class.
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modelagreement =
nmode − nmodels

nclasses

nmodels − nmodels

nclasses

(3.6)

where:
nmode = Number of occurrences of the mode value;
nmodels = Total number of models;
nclasses = Total number of classes

3.2.4.2 Deep Learning post-Processing

Final touch-ups comprised the closing of holes with sizes that are smaller ≈3 km2

as well as removing objects smaller than ≈0.2 km2. The final combined DL coastline
product was revealed by vectorizing the border line between the terrestrial area and sea
area. Minor local adjustments were applied to the coastline product during a manual
screening of the generated product. The generated DL coastline was further compared
with openly accessible and circumpolar coastline products, namely the Circumpolar
Arctic Vegetation Map (CAVM) coastline dataset (D. A. Walker et al., 2005), the Global
Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) product
(Wessel & Smith, 1996), and OpenStreetMap (OSM) (OpenStreetMap contributors,
2017).

3.2.5 Coastal Change Quantification via Change Vector Analysis

As demonstrated in Figure 3.4, the sd and median backscatter behave inversely for
terrestrial and sea areas. Generally, higher sd values are observed over water vs. land,
whereas a higher median backscatter is shown over land compared to water. This
behaviour was subsequently utilized to study changes between water and land in Arctic
coastal environments through the application of CVA. CVA constitutes a frequently
applied technique for detecting changes between individual scenes and provides further
information not only on the direction, but also the magnitude of present change
(Wegmann et al., 2016). Moreover, and contrary to traditional post-classification change
analyses, CVA prevents the aggregation of uncertainties in individual classification,
which are used for detecting change (J. Chen et al., 2010). Due to the mentioned
advantages of CVA, the technique was combined with the previously generated S1
backscatter composites to quantify annual change rates of Arctic permafrost coasts on
a circumpolar scale.
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3.2.5.1 Magnitude of Change

The previously generated annual sd and median backscatter images, as described
in section 3.2.2, were used as input data for the CVA on coastal change. Specifically,
SAR composites for the year 2017 2021 were incorporated. In case no SAR data was
available in 2017 for a specific region, S1 composites covering the year 2018 were used.
As mentioned in the previous section, an inverse behaviour of the sd and median
backscatter was observed over land vs. water areas. If the sd backscatter between the
two observed years increased, while the median backscatter decreased, it was assumed
as an erosion-related transition from land to water. If a transition in the opposite
direction was detected, it was considered as build-up. The extracted magnitude of
change from CVA refers to the Euclidean distance of the two positions of one pixel
based on different dates in a two-dimensional Euclidean plane (Equation 3.7) (D. Cohen
et al., 2004). The extracted magnitude of change data was re-scaled to a value range
between 0 1. Alongside to the magnitude of change itself, the number of available
SAR scenes per pixel and per year was investigated and provided in the form of a
quality layer to assess the applicability of the CVA based coastal change investigation.

d(x,y) =
√

(xi − yi)2 + (xj + yj)2 (3.7)

where:
d = Euclidean distance;
x = Date 1 (e.g. the year 2017);
y = Date 2 (e.g. the year 2021);
i = Band 1 (in this study: VV standard deviation backscatter);
j = Band 2 (in this study: VV median backscatter)

3.2.5.2 Change Vector Analysis post-Processing

The DL coastline product was utilized as a reference for defining the area in which
coastal change was quantified. The DL coastline was buffered by 200 m towards the
sea and a buffer of 50 m was added towards the land area. The additional buffer
towards terrestrial area was added in order to make up for any potential errors and
inaccuracies within the DL coastline product. The CVA-based magnitude of change
data was subsequently clipped to the buffered coastline. Therefore, the analysis was
limited to exclusively quantify change along the coastline. As the magnitude of change
maps present continuous numbers (range 0 1), a suitable threshold needed to be
identified for differentiating between noise and actual change. For this reason, and as
mentioned in section 3.2.3, high resolution imagery from Google Earth together with
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optical data from S2 were combined with the investigated S1 composites to manually
outline changes along the coastline within the manual test regions. The manually
digitized areas of change were used as a reference to identify ideal threshold-values for
erosion and build-up. More details and examples for the manual delineation of coastal
change rates are provided in the upcoming section 3.2.6. Most suitable threshold
values of 0.6 and 0.35 were hereby identified for build-up and erosion, respectively.
Further post processing included the application of a mode MV with a size of 3×3
in order to minimize the remaining noise within the thresholded change maps. In
addition, the distance of each cluster of build-up and erosion to the DL coastline
was computed. In case a change-cluster featured a distance of 100 m or larger it
was regarded as noise within the sea and therefore discarded. Also, glacier polygons
from the GLIMS glacier database (Raup et al., 2007; GLIMS Consortium, 2005) were
buffered by 500 m and the resulting area was subsequently removed from the CVA
coastal change quantification. Thus, the impact of glacier movements on the proposed
framework was reduced to a minimum. The next step of CVA post processing covered
the removal of areas which featured less than ten scenes in either the “before” year
(2017/2018) and/or the “after” year (2021). Within the framework of the proposed
data and methods, it is presumed that a higher number of available satellite scenes in
general results in more reliable change quantification. The application extent of the
CVA was further confined to areas that are sea-ice-free for more than half of the days
within the observation window June September. The ASI database was thereby used
as a reference for daily sea-ice concentration data (Spreen et al., 2008). A pixel was
classified as affected by sea-ice if 20% or more ice concentration was present. As a
last step, average erosion and build-up rates alongside the DL coastline product and
within 200 m and 400 m segments were separately extracted. A rectangular polygon
with a size of 400×400 m (40×40 pixels) was thereby generated (in case of the 400 m
segments) around the center point located on the coastline for each segment. The
number of change pixels (separately for erosion and build-up) within the polygon of
each segment was extracted and the average change rates within this segment was
calculated via Equation 3.8.

changeseg = lengthwindow ∗ nchange

ntotal

(3.8)

where:
changeseg = Average change (either erosion or build-up) per segment in meters;
lengthwindow = Length of the rectangular observation window in meters;
nchange = Number of pixels that indicate change (either erosion or build-up);
ntotal = Total number of pixels in the observed window
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Although various examples for a successful application of CVA in quantifying land
cover change were already published (e.g. Malila, 1980; Siwe & Koch, 2008; Vorovencii,
2014; Flores & Yool, 2007; Perbet et al., 2019; C. Huang et al., 2016; Dewi et al., 2017;
Landmann et al., 2013), this study represents the first attempt in measuring coastal
change rates within Arctic permafrost environments and on a circumpolar scale by
combining CVA with S1 SAR data.

3.2.6 Validation and Quality Control

Both the CVA coastal change investigation and the DL coastline product underwent
extensive validation. Manually digitized coastlines were utilized as reference data
to extract accuracy metrics of the generated DL output and the CVA products. In
addition, quality layers, such as the duration of sea-ice coverage, the number of available
scenes, and the level of agreement between individual model outputs are provided per
pixel. Lastly, the effects of variations in tide levels on the shoreline identification was
further examined.

3.2.6.1 Deep Learning Coastline Extraction

By splitting the reference data from both the manually digitized sites and the
OSM sites into separate training and validation areas, spatial-autocorrelation between
the train and test sets could be avoided and therefore ensured, that accuracy metrics
were not inflated. 1038 km of manually digitized reference coastline for ten different
sites across the Arctic were generated for training the individual U-Net models and for
validation purposes (Figure 3.6). Binary accuracy and loss information were extracted
per model and per epoch, as well as separately after training on the manually digitized
sites and after further training with OSM sites. Differences between the predicted
coastline and the manually digitized reference coastline, which is based on annual
composites of S1, S2, and high resolution imagery from Google Earth, was utilized for
accuracy assessment of the final DL product. Additionally, accuracy metrics within
a buffer of 500 m around the manually digitized coastline were extracted based on
the final binary output classifications, after combining the results of each model. It
was hereby differentiated between accuracy metrics for training and validation sites.
Overall accuracy values are expected to be relatively high across an entire scene, since
the output product represents a binary classification.
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Figure 3.6: Subsections of the two regions of interest, Bezimyanniy Cape in Russia (Area
of Interest (AOI) 09) (a, b), and Corwin Bluffs in the United States of America (USA)
(AOI 01) (c, d). Median images covering the months June–September in the year 2020
from Sentinel-1 (S1) in vertical-vertical (VV) polarization (a, c) and Sentinel-2 (S2) in
Red-Green-Blue (RGB) (b, d) are shown together with the manually digitized reference
coastline (red line). All data is projected and visualized in the respective local Universal
Transverse Mercator (UTM) zone. Modified after Philipp et al. (2022).

Because the focus lies on the position of the transition zone between land and
sea, further accuracy statistics were derived for the area in proximity (500 m) to the
coastline. Frequently used accuracy metrics, namely the F1-score, recall, precision,
and overall accuracy were employed to assess the quality of the final DL-based binary
classification maps. Precision is hereby an appropriate metric for evaluating false
positives, since it measures the ratio of accurate positive predictions to all positive
predictions (Powers, 2020). Recall captures the ratio between the true positive
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predictions vs. all positives, whether correctly predicted or not, and is thereby a
suitable metric for assessing real positives (Fawcett, 2006). The F1-score measures the
harmonic mean between the recall and the precision and is therefore a balance of both
metrics (Taha & Hanbury, 2015). In addition to the accuracy assessment, a variety of
pixel-wise quality layers are provided alongside the DL coastline product, including
the number of available scenes for generating the S1 annual composites, the number
of days within the observation period that feature over 20% sea-ice concentration per
pixel based on the ASI database (Spreen et al., 2008), and the level of agreement
across the individual output products from each of the nine models.

3.2.6.2 Change Vector Analysis on Coastal Change

The identification of the most suited threshold for converting the continuous
magnitude of change maps into binary information for build-up and erosion is crucial.
Annual composites from S1, S2, and Imagery from Google Earth were employed to
manually digitize coastal changes between 2017 and 2020 across the manual test sites
(Figure 3.7). Areas with strong coastal change rates as well as stable coastlines were
hereby included as a reference in order to avoid under- or overestimations of the CVA-
based products. Different thresholds were applied and the deviations to the manually
digitized erosion and build-up rates extracted to determine the most suitable threshold
values. Differences between the thresholded change maps and the reference data were
thereby used as a metric for assessing the quality of the CVA-based coastal change
products. Additionally, and similar to the DL product, a variety of associated quality
layers are provided to assess the applicability and quality of the generated coastal
change rates. The duration of sea-ice presence and the number of available S1 SAR
images per pixel are thereby included for each of the investigated years. The number
of sea ice days with more than 20% ice concentration per pixel for the years 2017 and
2021 are illustrated in Figure 3.8. Furthermore, details about the spatial distribution
of glacier extents based on the GLIMS glacier database (GLIMS Consortium, 2005)
acted as another quality layer. The previously generated magnitude of change maps
themselves are also a quality layer, which can be further utilized for differentiating
between actual change and noise as well as for the application of user-defined threshold
values.
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Figure 3.7: Example of the erosion reference data for a subsection of Cape Halkett in
the United States of America (USA) (Area of Interest (AOI) 02) in the year 2017 (a, b)
and 2020 (c, d). Median images for the months June–September from Sentinel-1 (S1) in
vertical-vertical (VV) polarization (a, c) and Sentinel-2 (S2) in Red-Green-Blue (RGB)
(b, d) are shown together with the manually digitized reference coastlines for the years
2017 (orange line) and 2020 (red line). All data is visualized in a Universal Transverse
Mercator (UTM) zone 5 North projection. Modified after Philipp et al. (2022).
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Figure 3.8: Spatial variation of the number of days with at least 20 % sea ice between
the months June–September for the years 2017 (a) and 2021 (b). Sea ice concentration
data is based on the ARTIST Sea Ice (ASI) database (Spreen et al., 2008). A shaded relief
by Natural Earth (n.d.) in combination with the permafrost fraction across the Northern
Hemisphere for the year 2017 based on data by Obu et al. (2021b) was used as a background
map. Modified after Philipp et al. (2023).
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3.2.6.3 Influence of tidal Changes

Changes in local tide levels may cause the exact position of the Arctic coastline to
fluctuate within the observation window June September. For this reason, working on
temporal composites instead of single observations likely provides a more representative
positioning of the coastline, especially for regions with flat and sandy coasts. At the
same time, the quality of the composite may vary depending on the number of available
images and local tidal levels at satellite acquisition times. Therefore, six-minutely
MTL data derived from four buoy stations covering the same temporal observation
frame as the Pseudo-RGB satellite imagery (June September 2020) were accessed
via the National Oceanic and Atmospheric Administration (NOAA) (2022b). Data
from the following stations, 9497645 Prudhoe Bay, 9491094 Red Dog Dock, 9468756
Nome, and 9468333 Unalakleet were accessed. Figure 3.9 illustrates the geographical
distribution of the four buoy stations across Alaska.

Figure 3.9: Spatial distribution of the buoy stations 9468756 Nome, 9468333 Unalakleet,
9497645 Prudhoe Bay, and 9491094 Red Dog Dock provided by the National Oceanic and
Atmospheric Administration (NOAA) (2022b). A shaded relief by Natural Earth (n.d.) in
combination with the permafrost fraction across the Northern Hemisphere for the year 2017
based on data by Obu et al. (2021b) was used as a background map. Modified after Philipp
et al. (2023).
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The MTL represents the arithmetic mean of mean low water and mean high water
(National Oceanic and Atmospheric Administration (NOAA), 2022a). Local MTL
was extracted for the acquisition times and dates of available S1 GRD SAR data
in IW swath mode over each buoy location. For each buoy location, the average
MTL at satellite acquisition dates was compared with the overall average MTL from
the whole buoy data set within the temporal observation window. It was confirmed
that buoy data and satellite acquisition dates were formatted in the same time zone
(Greenwich Mean Time (GMT)). A close average MTL from S1 acquisition to the
overall average MTL was assumed to indicate that the annual satellite composite is
highly representative in terms of its visualized transition zone between land and water.

3.3 Results

The following section presents the results of both the DL work-flow for generating
a high-quality Arctic coastline product as well as the CVA-based quantification of
coastal change rates. First, details on the DL model performance, segmentation results,
and a comparison between the DL coastline product and other openly available Arctic
coastline data sets is provided. Secondly, accuracy metrics and statistics of coastal
erosion and build-up are provided. Lastly, the effects of tidal changes on the generated
composites are highlighted.

3.3.1 Deep Learning

Results of the deep learning framework are described in detail from here on out.
The overall performance of individual models, effects of different hyper-parameter
settings, the level of agreement on the output between different models, accuracy
statistics of the final binary segmentation maps and statistics on the quality of the
extracted coastline are provided in the following sections. Moreover, the quality of the
generated coastline was compared to other publicly available coastline products.

3.3.1.1 Model Performance

As mentioned in section 3.2.4.1, different hyper-parameters and their effects
on model performance were tested. Specifically, the two optimizers “Adam” and
“RMSprop”, as well as the two loss functions “binary cross-entropy” and “mean
absolute error” were compared. Details on the accuracy and loss values for each
optimizer and loss-function combination applied on the two models ResNet34 and
VGG16 are provided in Table 3.4. Statistics hereby represent the epoch with the
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highest validation accuracy over a 30 epoch training period per model/optimizer/loss-
function combination. In case of the model ResNet34, both highest training accuracy
(0.9991) and validation accuracy (0.998) could be achieved with a combined use of
RMSprop and binary cross-entropy. The same behaviour was also observed for the
model VGG16, where highest training accuracy (0.9991) and validation accuracy
(0.9979) were also achieved by combining the RMSprop optimizer with the binary
cross-entropy loss-function. This highlights the reasoning for choosing RMSprop and
binary cross-entropy as hyper-parameters within the DL framework.

Table 3.4: Statistics of the hyper-parameter testing after training on the manually digitized
sites. Hyper-parameters were tested on the models VGG16 and ResNet34. The two optimizers
Adam and Root Mean Square Propagation (RMSprop), and the two loss functions binary
cross-entropy and mean absolute error were compared. Statistics for the epoch with the
highest validation accuracy are listed for each model and hyper-parameter combination.
Numbers are rounded to the fourth decimal place.

Model: ResNet34

Optimizer Loss
Function Epoch Train.

Acc.
Train.
Loss

Val.
Acc.

Val.
Loss

Adam binary
cross-entropy 25 0.9934 0.0204 0.9966 0.013

Adam mean absolute
error 16 0.9866 0.0134 0.9967 0.0043

RMSprop binary
cross-entropy 29 0.9991 0.003 0.998 0.0087

RMSprop mean absolute
error 17 0.9964 0.0036 0.9971 0.0034

Model: VGG16

Optimizer Loss
Function Epoch Train.

Acc.
Train.
Loss

Val.
Acc.

Val.
Loss

Adam binary
cross-entropy 6 0.9911 0.0262 0.9973 0.0203

Adam mean absolute
error 8 0.9897 0.0104 0.9977 0.0025

RMSprop binary
cross-entropy 22 0.9991 0.003 0.9979 0.0085

RMSprop mean absolute
error 20 0.9978 0.0022 0.9966 0.0103
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Accuracy values per epoch after training with SAR composites from the manually
digitized sites are visualized for each model and separately for training and validation
data in Figure 3.10. Training accuracy was hereby already relatively high (>0.9) after
the first one or two epochs and was close to 1 after the first couple of epochs across all
models. Validation accuracy featured stronger fluctuations within the first couple of
epochs but generally also featured accuracy values close to 1 in later training epochs.
Figure 3.11 illustrates the dynamics of loss values during training on the manual sites.
Similarly to the accuracy values, stronger variations were observed for the validation
data in contrast to the training data. Loss vales for all models and both training
and validation sites were generally close to 0 after the first couple of epochs. Table
3.5 provides details on accuracy and loss statistics for the epoch with the highest
validation accuracy per model. All models were trained for at least 14 epochs before
reaching the highest validation accuracy after training on the manually digitized sites.
Validation accuracies per model after the first training phase ranged between 0.9957
(Inception v3) and 0.998 (VGG19 and ResNet34) with an average validation accuracy
of 0.9973. Training accuracies from 0.9977 (ResNet50 and DenseNet121) to 0.9998
(SE-ResNeXt50) were observed with an average training accuracy of 0.9989. Validation
loss ranged from 0.0075 (VGG19) to 0.0167 (Inception v3) with an average loss of
0.0106. Training loss values between 0.0005 (SE-ResNeXt50) to 0.0091 (DenseNet121)
and an average training loss of 0.0039 were identified.

A slightly different behaviour was observed for the training process based on
reference data from the OSM sites compared to the first training phase. Since the
models were already pre-trained not only on the ImageNet database, but also on data
from the manually digitized sites, accuracy measures for both training and validation
stayed continuously very high and close to 1 during the entire training procedure
(Figure 3.12). On the other hand, loss values were observed to continuously slightly
decrease in case of training data, but tend to moderately increase in case of validation
data throughout the second training phase (Figure 3.13). The epoch which led to
the highest validation accuracy after training on OSM data therefore strongly varied
across the individual models. The earliest epoch of 4 was observed for ResNet34,
whereas the models VGG16 and Inception v3 achieved highest validation accuracy
during the 29th epoch of the second training phase. Final validation accuracies per
model after the second training phase ranged between 0.9785 (Inception v3) and 0.9805
(ResNeXt50) with an average validation accuracy of 0.9792. Training accuracies from
0.9838 (ResNet34) to 0.9952 (Inception v3) were observed with an average training
accuracy of 0.991. Validation loss ranged from 0.0696 (ResNet34) to 0.1508 (Inception
v3) with an average loss of 0.1051. Training loss values between 0.0121 (Inception v3)
to 0.0488 (ResNet34) and an average training loss of 0.0253 were identified. Detailed
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statistics on accuracy and loss rates are provided in Table 3.5.

Figure 3.10: Training and validation accuracies per model and epoch after training the
networks on the manually digitized sites. Each model was trained for 30 epochs. A batch
size of 8, a binary cross-entropy loss function, a Root Mean Square Propagation (RMSprop)
optimizer with a learning rate of 0.001, and binary accuracy as an accuracy metric were used
for training.
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Figure 3.11: Training and validation loss per model and epoch after training the networks
on the manually digitized sites. Each model was trained for 30 epochs. A batch size of 8, a
binary cross-entropy loss function, a Root Mean Square Propagation (RMSprop) optimizer
with a learning rate of 0.001, and binary accuracy as an accuracy metric were used for
training.
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Figure 3.12: Training and validation accuracies per model and epoch after additional
training of the networks on the OpenStreetMap (OSM) sites. Each model was trained for
30 epochs. A batch size of 8, a binary cross-entropy loss function, a Root Mean Square
Propagation (RMSprop) optimizer with a learning rate of 0.001, and binary accuracy as an
accuracy metric were used for training.
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Figure 3.13: Training and validation loss per model and epoch after additional training of the
networks on the OpenStreetMap (OSM) sites. Each model was trained for 30 epochs. A batch
size of 8, a binary cross-entropy loss function, a Root Mean Square Propagation (RMSprop)
optimizer with a learning rate of 0.001, and binary accuracy as an accuracy metric were used
for training.
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Table 3.5: Accuracy statistics and epochs per model after training on the manually digitized
sites and after additional training on the OpenStreetMap (OSM) sites. The epoch with
the highest validation accuracy was chosen as the representative output for each model.
Accuracy and loss values were rounded to the fourth decimal place. Modified after Philipp
et al. (2022) and Philipp et al. (2023).

Manually Digitized Sites

Model Epoch Training
Acc.

Training
Loss

Validation
Acc.

Validation
Loss

ResNet34 29 0.9991 0.003 0.998 0.0087
ResNet50 14 0.9977 0.0082 0.9969 0.0116
Inception v3 29 0.9997 0.001 0.9957 0.0167
Inception-ResNet v2 26 0.9992 0.0025 0.9979 0.0081
ResNeXt 20 0.9986 0.0053 0.9967 0.0113
DenseNet121 15 0.9977 0.0091 0.9976 0.0111
SE-ResNeXt50 25 0.9998 0.0005 0.9964 0.0117
VGG16 22 0.9991 0.003 0.9979 0.0085
VGG19 24 0.9993 0.0027 0.998 0.0075

OpenStreetMap (OSM) Sites

Model Epoch Training
Acc.

Training
Loss

Validation
Acc.

Validation
Loss

ResNet34 4 0.9838 0.0488 0.9790 0.0696
ResNet50 27 0.9900 0.0276 0.9787 0.1000
Inception v3 29 0.9952 0.0121 0.9785 0.1508
Inception-ResNet v2 20 0.9933 0.0175 0.9796 0.1160
ResNeXt 23 0.9885 0.0323 0.9805 0.0844
DenseNet121 18 0.9894 0.0311 0.9796 0.1003
SE-ResNeXt50 20 0.9941 0.0155 0.9799 0.1080
VGG16 29 0.9945 0.0143 0.9787 0.1283
VGG19 12 0.9900 0.0289 0.9787 0.0881

Table 3.6 lists accuracy statistics of the combined binary classification map within
a 500 m buffer around the reference coastline after training on the manual sites.
Accuracy statistics within the 500 m buffer are thereby slightly lower compared to
the full scenes as listed in Table 3.5, but overall still very high. Overall accuracy
values across all manual sites ranged from 0.965 and 0.992, with an average overall
accuracy of 0.974 within the mentioned buffer. Recall values between 0.936 and 0.995,
and an average recall of 0.976 was observed for sea areas. Terrestrial areas featured
recall values from 0.944 to 0.998, with an average value of 0.972. Precision scores
between 0.953 and 0.999, and an average precision score of 0.974 were observed for sea
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areas. Precision values from 0.945 to 0.995, with an average precision of 0.974 could be
identified for terrestrial regions. Finally, F1-scores ranging from 0.963 to 0.993, and an
average F1-score of 0.975 were observed for the sea class. The terrestrial class featured
F1-scores between 0.964 and 0.991, while the average F1-score proved to be 0.973.

Further accuracy statistics after additional training on the OSM sites and within a
500 m buffer are provided in Table 3.7. Overall accuracy scores for the final combined
binary classification map after post-processing proved to be 0.95 for training areas
and 0.97 for validation areas in case of the manually digitized sites. Comparable high
values were identified for the F1-score, recall, and precision for both land and marine
locations, as well as both training and validation sites of the manually digitized areas.
Overall accuracy values for OSM sites of 0.95 and 0.94 were observed for training and
validation areas, respectively. Again, similarly good agreement between the reference
data and the predicted binary classification is reflected in the F1-score, recall, and
precision values for both training and validation sites.

Table 3.6: Accuracy statistics within a 500 m buffer around the manually digitized reference
coastline after training on the manually digitized sites. Recall, precision, and F1-scores are
given for both classes, terrestrial area (including inland rivers and lakes) and sea per AOI.
Validation sites are highlighted in bold text. Accuracy measures are rounded to the third
decimal place. Modified after Philipp et al. (2022).

AOI Overall
Acc. Label Recall Precision F1

1 0.992 Terrestrial 0.988 0.995 0.991
Sea 0.995 0.988 0.992

2 0.972 Terrestrial 0.944 0.99 0.967
Sea 0.993 0.958 0.975

3 0.967 Terrestrial 0.993 0.947 0.97
Sea 0.936 0.992 0.963

4 0.982 Terrestrial 0.969 0.995 0.982
Sea 0.995 0.971 0.983

5 0.969 Terrestrial 0.948 0.987 0.967
Sea 0.988 0.953 0.97

6 0.965 Terrestrial 0.957 0.972 0.964
Sea 0.973 0.958 0.965

7 0.977 Terrestrial 0.973 0.977 0.975
Sea 0.981 0.977 0.979

(Table continues on the next page ...)

106



3.3 Results

Table 3.6: Continued.

AOI Overall
Acc. Label Recall Precision F1

8 0.99 Terrestrial 0.998 0.965 0.981
Sea 0.987 0.999 0.993

9 0.964 Terrestrial 0.983 0.945 0.964
Sea 0.945 0.983 0.963

10 0.986 Terrestrial 0.996 0.977 0.986
Sea 0.976 0.996 0.986

(... end of continued table.)

Table 3.7: Accuracy statistics within a 500 m buffer around the manually digitized reference
coastline (Manual) as well as the OpenStreetMap (OSM) coastline for the final combined
binary classification product after training on the OSM sites and post-processing. Recall,
precision, and F1-scores are shown for both classes, terrestrial area (including inland lakes
and rivers) and sea. Accuracy measures are rounded to the second decimal place. Modified
after Philipp et al. (2023).

Manually Digitized Sites

Area Overall
Acc. Label Recall Precision F1

Training 0.95 Terrestrial 0.93 0.97 0.95
Sea 0.97 0.93 0.95

Validation 0.97 Terrestrial 0.96 0.98 0.97
Sea 0.98 0.96 0.97

OpenStreetMap (OSM) Sites

Area Overall
Acc. Label Recall Precision F1

Training 0.95 Terrestrial 0.97 0.92 0.94
Sea 0.93 0.97 0.95

Validation 0.94 Terrestrial 0.99 0.90 0.94
Sea 0.91 0.99 0.95

3.3.1.2 Circum-Arctic Coastline Extraction

The total length of the final extracted DL coastline product is ≈161,600 km. S1
pseudo-RGB backscatter composites, the associated binary classification result after
combining the outputs of all nine trained networks, as well as the extracted coastline
are visualized for four different Arctic regions in Figure 3.14.
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Figure 3.14: Subsets of annual Sentinel-1 (S1) pseudo-Red-Green-Blue (RGB) images
(a, e, i, m), the associated Deep Learning (DL)-based binary classification maps (b, f, j,
n), and the derived coastlines (c, g, k, o) for four different regions, including Mus-Khaya
Cape–Mouth of Peshanaya in Russia (Area of Interest (AOI) 06) (a–d), Mouth of Kurdugina–
Malyy Chukochiy Cape in Russia (AOI 10) (e–h), Sims Bay in Russia (AOI 05) (i–l), and
Shoalwater Bay in Canada (AOI 03) (m–p). All data is projected and visualized in their
respective Universal Transverse Mercator (UTM) zone. Modified after Philipp et al. (2022).

Average deviation of ±8.7 m and ±131.2 m were observed to the reference coastline
of the manually digitized sites and OSM sites, respectively. The median deviation
proved to be ±6.3 m in case of the manual sites and ±29.6 m in case of the OSM
sites. sd values of ±8.5 m (manual sites) and ±404.8 m (OSM sites) were observed.
Minimum deviation was 0 m for both reference data sets. A strong discrepancy between
the maximum deviation for manual sites (±50 m) and OSM sites (±8989.3 m) could
be measured. Lastly, 2nd and 98th percentile values of ±0.2 m and ±36.9 m were
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identified within the manual sites, while the 2nd and 98th percentiles were ±1.1 m
and ±1402.5 m for the OSM sites. Table 3.8 lists statistics on the deviation between
the reference coastline of the manually digitized sites and the generated DL coastline
product, as well as statistics for three other openly available and circumpolar coastline
data sets. The DL-based product hereby featured significantly lower deviations to the
reference compared to the other listed products. Out of the three products CAVM,
GSHHG, and OSM, best performance was observed for OSM, which featured a median
deviation of ±40.1 m and an average distance to the reference line of ±331 m. At the
same time, the highest sd of ±768.7 m, strongest maximum deviation of ±5525.6 m,
and the largest 98th percentile of ±3215.6 m was also observed for the OSM dataset.
Second lowest median (±386.8 m) and average (±563 m) deviations were identified for
the GSHHG product. CAVM featured the weakest accuracy in terms of average and
median deviation to the reference coastline, with ±707.7 m and ±584.6 m, respectively.
Figure 3.16 further illustrates differences in quality of the mentioned coastline products
for the area Drew Point Cape Halkett in Alaska. The figure reflects the average
deviation of each coastline product as listed in Table 3.8. While the DL coastline
product runs, for the most part, smoothly along the reference coastline, the other
three products feature partly strong deviations to the reference across the entire area.
Boxplots of the distance values to the manually digitized reference coastline for each
of the mentioned products is visualized in Figure 3.16. Figure 3.17 further illustrates
the distance between the manually digitized reference coastline and the generated DL
coastline product based on points located every 200 m along the coastline. The two
regions Drew Point Cape Halkett in Alaska (Figure 3.17 a,b) and Sims Bay in Russia
(Figure 3.17 c,d) are shown. The majority of points indicate distances of less than 10
m. All statistics on the deviation of coastline products to the reference line are based
on reference points every 200 m along the respective coastline.

An exemplary annual S1 Pseudo-RGB composite over Shoalwater Bay in Canada,
together with the level of agreement across the output products from the individual
networks, and the derived binary classification and extracted coastline are visualized
in Figure 3.18. A high level of agreement among the implemented models is observed
over large parts of the sea and terrestrial area. Areas of stronger disagreement between
the models are hereby identified for large river deltas, large lake areas, and the exact
location of the transition zone between land and water (Figure 3.18 b). This confusion
among the individual models can partly also be depicted in the final combined binary
classification map, that features partly noisy transitions between the two classes,
especially for larger river deltas (Figure 3.18 c).
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Figure 3.15: Comparison of different coastline products to the reference line for Drew
Point–Cape Halkett, United States of America (USA) (Area of Interest (AOI) 02). (a)
Deep Learning (DL) coastline product, (b) OpenStreetMap (OSM) coastline, (c) Global
Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) coastline, (d)
and the Circumpolar Arctic Vegetation Map (CAVM) coastline are displayed. A Sentinel-
1 (S1) annual median backscatter image for the year 2020 (months June–September) in
vertical-vertical (VV) polarization is utilized as a background image. All data is visualized
in a Universal Transverse Mercator (UTM) zone 5 North projection. Modified after Philipp
et al. (2022).
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Figure 3.16: Boxplots of the deviation between different coastline products to the reference
line across the manually digitized sites, including the Deep Learning (DL) coastline product,
the OpenStreetMap (OSM) coastline, the Global Self-consistent, Hierarchical, High-resolution
Geography Database (GSHHG) coastline, and the Circumpolar Arctic Vegetation Map
(CAVM) coastline. Numbers are based on reference points every 200 m along the coastline
products. The y-axis is visualized in a logarithmic scale.

Table 3.8: The deviation of four different coastline products to the reference coastline of
the manually digitized sites. Numbers are based on reference points every 200 m along the
coastline products. Listed coastlines are the Deep Learning (DL)-based coastline product
after training on both the manually digitized sites and OpenStreetMap (OSM) sites, the
Circumpolar Arctic Vegetation Map (CAVM) coastline product, the OSM coastline, and the
Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) coastline.
Various statistics are shown, including the arithmetic mean, median, minimum (Min),
maximum (Max), standard deviation (sd), and the 2nd (P02) and 98th (P98) percentiles.
Modified after Philipp et al. (2022).

Name Mean Median Min Max SD P02 P98

DL 8.7 m 6.3 m 0 m 50 m 8.5 m 0.2 m 36.9 m
OSM 331 m 40.1 m 0 m 5525.6 m 768.7 m 1.1 m 3215.6 m
GSHHG 563 m 386.8 m 0.2 m 5098.4 m 614.4 m 12.9 m 2527.6 m
CAVM 707.2 m 584.6 m 0 m 3773.8 m 642.6 m 12.9 m 2828.3 m
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Figure 3.19 illustrates the number of available S1 GRD SAR images in IW swath
mode during the observation period June September 2020, which were used for the
computation of the final DL coastline product. In the figure, data availability over
Alaska vs. a section in Central Siberia is contrasted. Overall higher data quantity
along the coastline can be observed across Alaska compared to Russia.

A full overview of the DL coastline extent is provided in Figure 3.20. Next to the
extent of the DL coastline itself (Figure 3.20 a), zoom-in plots on the two regions Drew
Point in Alaska (Figure 3.20 b,c) and an area in the Canadian Archipelago (Figure
3.20 d,e) are visualized. The coverage of the Canadian Arctic Archipelago by the DL
coastline product is severely constrained due to a shortage of available S1 GRD data
in IW swath mode in this region during the observation period June September 2020.
Greenland, as well as the Franz Josef Land archipelago, Yuzhny Island, and Severny
Island in Russia were fully excluded, since there was no data available within the
temporal observation window. The zoom-in plots on Drew Point in Alaska (Figure
3.20 b,c) highlight the accuracy of the DL-based coastline in comparison to the OSM
product for the depicted region. On the other hand, several small islands were excluded
during the post-processing of the DL product, which are still present in the OSM
dataset, as seen in sub-Figures 3.20 d) & e).
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Figure 3.17: Comparison between the location of the Deep Learning (DL)-based predicted
coastline (dark blue line) and the reference coastline (turquoise line) (a, c) as well as the
distance of the Deep Learning (DL) line to the reference line (b, d) for Drew Point–Cape
Halkett, United States of America (USA) (Area of Interest (AOI) 02) (a, b) and Sims
Bay, Russia (AOI 05) (c, d). A Sentinel-1 (S1) annual median backscatter image for the
year 2020 (months June–September) in vertical-vertical (VV) polarization is utilized as
a background image. All data is projected and visualized in their respective Universal
Transverse Mercator (UTM) zone. Modified after Philipp et al. (2022).
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Figure 3.18: (a) Sentinel-1 (S1) Pseudo-Red-Green-Blue (RGB) composite covering the
months June–September in 2020. (b) The level of agreement between the nine individual
classifications from different U-Net architectures. (c) Final binary segmentation map derived
from the mode of nine individual classifications from different U-Net models. The two classes
represent sea area (dark-blue colour) and terrestrial area, including inland lakes and rivers
(light-green colour). All images display a section of Shoalwater Bay in Canada and are
visualized in a Universal Transverse Mercator (UTM) zone 8 projection. Modified after
Philipp et al. (2023).
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Figure 3.19: The amount of available Sentinel-1 (S1) Ground Range Detected (GRD) scenes
in Interferometric Wide (IW) swath mode for coastal regions across Alaska (a) and Northern
Siberia (b) within the time span June–September 2020. The number of images serve hereby
as a quality layer for the Deep Learning (DL) coastline product. A shaded relief by Natural
Earth (n.d.) in combination with the permafrost fraction across the Northern Hemisphere for
the year 2017 based on data by Obu et al. (2021b) was used as a background map. Modified
after Philipp et al. (2023).
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Figure 3.20: Circum-Arctic overview (a) with exemplary zoom-ins (b–e) on the final Deep
Learning (DL) coastline product (turquoise line) and the OpenStreetMap (OSM) coastline
(orange line). The two example regions Drew Point in Alaska (b, c), and an area in the
Canadian Archipelago (d, e) are visualized. A Sentinel-1 (S1) annual median backscatter
image for the year 2020 (months June–September) in vertical-vertical (VV) polarization
is utilized as a background image for (b–e). A shaded relief by Natural Earth (n.d.) in
combination with the permafrost fraction across the Northern Hemisphere for the year 2017
based on data by Obu et al. (2021b) was used as a background map for (a). Modified after
Philipp et al. (2023).
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3.3.2 Coastal Erosion and Build-up

The best thresholds were identified to be 0.6 for detecting build-up and 0.35 for
detecting erosion when comparing the CVA probability of the change to the manually
digitized coasts for the years 2017 and 2020. An average deviation of −10.3 m can be
reported between the thresholded CVA magnitude of change maps and the reference
data. Furthermore, an r2 value of 0.92 and a sd of ±12.9 m between the predicted
and actual change was observed.

CVA probability of change maps and the threshold-applied coastal change for
subsections of the two regions Shoalwater Bay in Canada (AOI 03) and Drew Point
Cape Halkett in the USA (AOI 02) are visualized in Figure 3.21. Although areas of
coastal erosion and build-up can already be identified in the probability of change
maps (Figure 3.21 a,c), a significant amount of noise in the form of low probability
of change pixels scattered throughout the sea are observable. After applying the
previously mentioned thresholds, most of the noise for both build-up and erosion could
be removed, while the actual areas of change were retained (Figure 3.21 b,d).

Table 3.9 provides detailed information about the average and maximum build-up
and erosion rates between 2017 2020 for each of the manually digitized sites. Maximum
erosion of up to 160.3 m and a total average erosion of 4.4 m was observed within the
mentioned time span. An average build-up rate of 1.9 m across all manually digitized
sites and a maximum build-up of 166.7 m can be reported. Both the strongest average
(22 m) and maximum (160.3 m) erosion were identified for Drew Point Cape Halkett
in the USA. Second highest erosion rates were observed for Shoalwater Bay in Canada
(average: 10.3 m, max: 70 m). Figure 3.22 further illustrates average coastal erosion
rates for 200 m segments within the temporal observation window 2017 2020 for a
subsection of Shoalwater Bay in Canada (AOI 03). On the other hand, Bezimyanniy
Cape Eastern Oyagoss Cape in Russia featured strongest maximum (166.7 m) and
average (8.7 m) build-up, followed by Sims Bay in Russia with an average build-up of
1.4 m and a maximum build-up rate of 58 m.

Average annual erosion rates from 2017 2018 based on 20 km segments are visu-
alized for the entire circum-Arctic study area in Figure 3.23. Coastal erosion rates
are illustrated for areas with less than 50% sea-ice cover and more than ten available
S1 GRD SAR scenes in IW swath mode from June September per year. Less than
1% of segments indicate annual average erosion of more than 50 m. Annual erosion
rates between 20-50 m were observed for 1.3% of segments. 2.4% featured annual
erosion rates of 10 20 m, while erosion numbers from 5 10 m were observed for 3.8% of
segments. Significantly more areas (12.8% of segments) featured erosion rates between
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1 5 m. A total of 35% of segments were observed to feature erosion of less than
1 m, while 44.3% did not indicate any erosion at all. In addition to the circumpolar
overview (Figure 3.23 a), zoom-in plots for a coastal area in Alaska (Figure 3.23 b d)
and a sandy delta in Russia (Figure 3.23 e g) are provided. For each zoomed-in area,
the median backscatter in VV polarisation covering the months June September are
illustrated separately for both years 2017 and 2021. Moreover, the eroded coastline
within this time span is highlighted in red colour. The exemplary delta in Russia
(Figure 3.23 e g) illustrates how the CVA algorithm classifies changes in sandy deposits
as coastal erosion.

Figure 3.21: Probability maps of build-up and erosion rates between 2017 and 2020 for
subsets of Shoalwater Bay, Canada (Area of Interest (AOI) 03) (a), and Cape Halkett,
United States of America (USA) (AOI 02) (c), together with their respective and threshold
applied maps of coastal change (b, d). A threshold of 0.6 for the build-up and 0.35 for the
erosion was applied (b, d). All data is projected and visualized in their respective Universal
Transverse Mercator (UTM) zone. Modified after Philipp et al. (2022).

Table 3.11 lists statistics on annual build-up and erosion rates per country and
based on 400 m segments. Numbers for the countries Canada, Norway (Svalbard
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and Jan Mayen), Norway (Scandinavian Peninsula), Russia, and the USA (Alaska)
are provided. The USA (Alaska) featured overall strongest average annual erosion
(0.75 m), followed by an average erosion of 0.62 m in Russia. In contrast, the lowest
average erosion rate of 0.01 m was identified for Norway (Scandinavian Peninsula).
Norway also featured the weakest average build-up rate (0 m). On the other hand,
average build-up rate was highest in Svalbard and Jan Mayen with 0.07 m per year.
Highest overall annual erosion rate per segment was identified in Russia with 67 m,
followed by 62.5 m in Alaska. Russia also featured the maximum annual build-up
rate per segment with 53.25 m, followed by 52.67 m in Svalbard and Jan Mayen.
Alaska featured both the highest sd and 98th percentile values in erosion of 3.45 m
and 10.25 m, respectively. Build-up statistics in the form of the 98th percentile were 0
across all countries. The highest sd of build-up per segment was observed in Svalbard
and Jan Mayen (1.62 m).

Table 3.9: Average and maximum rates of build-up and erosion between 2017 and 2020
per Area of Interest (AOI). The numbers are based on average values for 200 m segments
along the coastline. Highest build-up rates were observed for Bezimyanniy Cape–Eastern
Oyagoss Cape in Russia (AOI 09), whereas Drew Point–Cape Halkett, United States of
America (USA) (AOI 02) features strongest erosion rates. Modified after Philipp et al.
(2022).

Build-Up Erosion Rates
AOI Mean Max Mean Max

1 0 m 0 m 0.2 m 10.3 m
2 4 m 79 m 22 m 160.3 m
3 0 m 2 m 10.3 m 70 m
4 0.2 m 10.2 m 0.5 m 7.6 m
5 1.4 m 58 m 0.7 m 30 m
6 0 m 0.5 m 1.4 m 62 m
7 0.1 m 14 m 0.6 m 13.6 m
8 0.5 m 7.2 m 1.1 m 26.2 m
9 8.7 m 166.7 m 1.3 m 20.5 m
10 1 m 36 m 0.9 m 40.5 m

All: 1.9 m 166.7 m 4.4 m 160.3 m

Next to statistics on a country basis, numbers are also provided for different
seas based on the IHO Sea Areas dataset in Table 3.10. With 1.12 m per year, the
Beaufort Sea featured overall strongest average erosion, followed by 0.91 m in the East
Siberian Sea. Highest average annual build-up was identified for the Sea of Okhotsk
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(0.09 m), followed by 0.07 m for the Laptev Sea. Highest overall annual erosion rate
per segment was observed for the Bering Sea (62.5 m) and the Barents Sea (67 m). On
the other hand, the Laptev Sea and the Barents Sea featured highest annual build-up
per segment with 53.25 m and 52.67 m, respectively. In case of annual erosion, highest
98th percentile values were observed in the East Siberian Sea (9.5 m) and the Bering
Sea (9.75 m). In case of annual build-up, 98th percentile values were for the most
part 0 m, with the exception of the East Siberian Sea (0.25 m), the Hudson Strait
(0.25 m), and the Arctic Ocean (0.33 m). Highest sd in annual erosion was observed
for the Bering Sea (3.26 m) and the Barents Sea (3.63 m). In contrast, highest sd
in annual build-up was identified for the Barents Sea (0.97 m) and the Laptev Sea
(1.17 m). Numbers in both Tables 3.11 and 3.10 are based on average annual erosion
and build-up rates within 400 m segments. For this reason, numbers are rounded to the
second decimal place. Nevertheless, the actual accuracy for a pixel-wise comparison
can only be as good as the pixel size of the input data, which is 10 m. Across the
entire investigated Arctic coastline, 12.24% of segments showed an average annual
erosion rate of 3.8 m and a combined annual land loss of 17.83 km2, whereas 1.05%
of segments showed an average yearly build-up rate of 2.3 m and a combined annual
build-up area of 1.02 km2.

Figure 3.22: Average erosion rates between the years 2017 and 2020 for 200 m segments
along a section of Shoalwater Bay, Canada (Area of Interest (AOI) 03). A Sentinel-1 (S1)
median backscatter image in vertical-vertical (VV) polarisation of the year 2020 (months
June–September) is used as a background image. All data is visualized in a Universal
Transverse Mercator (UTM) zone 8 North projection. Modified after Philipp et al. (2022).
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Figure 3.23: Circum-Arctic overview (a) and exemplary zoom-ins (b–g) on the Change
Vector Analysis (CVA) based Arctic coastal erosion. Annual average erosion rates for 20 km
segments are shown in (a). The Sentinel-1 (S1) annual (months June–September) median
backscatter in vertical-vertical (VV) polarisation is shown for the years 2017 (b, e), 2021 (c,
f), and again for the year 2021 with the CVA based erosion highlighted in red colour (d, g).
The two zoom-ins cover a sandy delta in Russia (e–g) and a coastal area in Alaska (c–f). A
shaded relief by Natural Earth (n.d.) in combination with the permafrost fraction across the
Northern Hemisphere for the year 2017 based on data by Obu et al. (2021b) was used as a
background map for (a). Modified after Philipp et al. (2023).
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Table 3.10: Change Vector Analysis (CVA) derived annual build-up and erosion statistics
based on 400 m segments per sea after the International Hydrographic Organization (IHO)
sea areas. The average, maximum, 98th percentile, and the standard deviation (sd) are listed
per sea. Build-up statistics are written in parentheses. Modified after Philipp et al. (2023).

Sea Mean Max P98 SD

Arctic Ocean 0.05 m
(0.01 m)

3.67 m
(1 m)

0.74 m
(0.33 m)

0.31 m
(0.1 m)

Barents Sea 0.69 m
(0.03 m)

67 m
(52.67 m)

11.75 m
(0 m)

3.63 m
(0.97 m)

Beaufort Sea 1.12 m
(0.02 m)

46 m
(14.75 m)

11.5 m
(0 m)

3.38 m
(0.35 m)

Bering Sea 0.65 m
(0.02 m)

62.5 m
(19 m)

9.75 m
(0 m)

3.26 m
(0.28 m)

Chukchi Sea 0.19 m
(0.01 m)

26 m
(11.25 m)

2.52 m
(0 m)

1.06 m
(0.21 m)

Davis Strait 0.73 m
(0 m)

38.75 m
(0 m)

10 m
(0 m)

3.03 m
(0 m)

East Siberian Sea 0.91 m
(0.03 m)

33.25 m
(10 m)

9.5 m
(0.25 m)

2.66 m
(0.34 m)

Greenland Sea 0.09 m
(0.02 m)

39.33 m
(12.67 m)

0.67 m
(0 m)

1.08 m
(0.37 m)

Hudson Bay 0.22 m
(0.02 m)

40 m
(18.25 m)

2.5 m
(0 m)

1.43 m
(0.37 m)

Hudson Strait 0.5 m
(0.05 m)

39 m
(17.50 m)

7.75 m
(0.25 m)

2.33 m
(0.64 m)

Labrador Sea 0.05 m
(0 m)

13 m
(2.25 m)

0.5 m
(0 m)

0.38 m
(0.02 m)

Laptev Sea 0.25 m
(0.07 m)

42 m
(53.25 m)

2.75 m
(0 m)

1.83 m
(1.17 m)

Kara Sea 0.59 m
(0.02 m)

51.75 m
(5.5 m)

7.25 m
(0 m)

2.77 m
(0.22 m)

Norwegian Sea 0.01 m
(0 m)

18 m
(5 m)

0 m
(0 m)

0.26 m
(0.08 m)

Sea of Okhotsk 0.56 m
(0.09 m)

43.75 m
(23.75 m)

8.75 m
(0 m)

2.89 m
(0.93 m)

The Northwestern
Passages

0.22 m
(0 m)

28.25 m
(3.50 m)

3 m
(0 m)

1.31 m
(0.09 m)
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Table 3.11: Change Vector Analysis (CVA) derived annual build-up and erosion statistics
based on 400 m segments per country. The average, maximum, 98th percentile, and the
standard deviation (sd) are listed per country. Build-up statistics are written in parentheses.
Modified after Philipp et al. (2023).

Country Mean Max P98 SD

Canada 0.24 m
(0.01 m)

40 m
(18.25 m)

3.25 m
(0 m)

1.42 m
(0.27 m)

Norway (Svalbard
and Jan Mayen)

0.09 m
(0.07 m)

39.33 m
(52.67 m)

1 m
(0 m)

1.01 m
(1.62 m)

Norway (Scandi-
navian Peninsula)

0.01 m
(0 m)

18 m
(5 m)

0 m
(0 m)

0.21 m
(0.08 m)

Russia 0.62 m
(0.04 m)

67 m
(53.25 m)

8.75 m
(0 m)

3.01 m
(0.65 m)

United States
(Alaska)

0.75 m
(0.01 m)

62.5 m
(14.75 m)

10.25 m
(0 m)

3.45 m
(0.25 m)

Further comparisons were made between the generated coastal change rates based
on the proposed methods and data and the ACD. The comparisons were limited to
the 36.8% of segments in the ACD that overlap with the investigated coastline of
this thesis. Thus, a total of 484 segments from the ACD were compared with results
from this thesis. Erosion and build-up rates derived from the CVA framework were
combined and average rates of coastal change based on the proposed methods and data
were extracted for each segment of the ACD. A deviation of less than 0.5 m in coastal
change were observed for 69.4% of segments. Differences between 0.5 1 m could be
observed for 3% of segments. A further 9.9% of segments indicated differences between
1 2 m, while deviations larger than 2 m were observed for only 7.6% of segments.
Figure 3.24 visualizes the retreat rates of the mentioned coastal segments as published
in the Soil Atlas of the Northern Circumpolar Region (A. Jones et al., 2009).
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Figure 3.24: Reference data on the retreat rates of coastal segments in the Arctic Ocean.
Original figure taken from the Soil Atlas of the Northern Circumpolar Region (A. Jones et
al., 2009).

3.3.3 Effects of changing tidal Levels

Changes in the MTL from four different buoy stations during the observation
period June September 2020 is illustrated in Figure 3.25. Six-minutely MTL data
from the buoy stations 9468756 Nome (Figure 3.25 a), 9468333 Unalakleet (Figure
3.25 b), 9497645 Prudhoe Bay (Figure 3.25 c), and 9491094 Red Dog Dock (Figure
3.25 d) are shown. The blue dots represent the S1 acquisition date-times over each
region. The dashed blue line represents the average MTL at S1 acquisition date-times.
The grey dashed line, on the other hand, illustrates the overall average MTL across
the whole buoy data set. Despite variations in the MTL of up to 2.4 m across the
observed regions and time frame, average MTL levels from S1 acquisition date-times
are generally similar to the overall average MTL levels based on the full buoy data set
per region. Observed deviations were thereby 0.09 m for Nome, 0.23 m for Unalakleet,
0.04 for Prudhoe Bay, and 0.02 m for Red Dog Dock. The amount available S1 images
were 20 for Nome, 16 for Unalakleet, 22 for Prudhoe Bay, and 39 for Red Dog Dock.
Thus, a larger deviation can be observed for lower quantities of available SAR scenes.
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Figure 3.25: Mean Tidal Level (MTL) in meters based on buoy data from June 1st–
September 30th 2020. The temporal frequency of measurements is hereby six minutes. Data
from the stations 9468756 Nome (a), 9468333 Unalakleet (b), 9497645 Prudhoe Bay (c),
and 9491094 Red Dog Dock (d) is shown. Buoy data was accessed via the National Oceanic
and Atmospheric Administration (NOAA) (2022b). The blue points represent the MTL at
Sentinel-1 (S1) acquisition times for each respective region. The dashed lines represent the
overall MTL from June–September based on the tidal levels at the S1 acquisition times (blue
line), and the full buoy data set (grey line). Modified after Philipp et al. (2023).

3.4 Discussion

This study proposed a novel circum-Arctic monitoring strategy for assessing the
annual rates of erosion and build-up of permafrost coastlines. A high-quality Arctic
shoreline product was created using DL CNNs and S1 GRD C-Band SAR data in IW
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swath mode. Furthermore, S1 backscatter imagery in combination with CVA allowed
for the quantification of coastal change with high spatial resolution and on an annual
basis. The following section discusses the findings of the proposed data and methods.
The applicability of SAR data, DL, and CVA in Arctic coastal environments is further
reflected. In addition, identified coastal change rates are compared with numbers
published in previous literature. Furthermore, limitations and future potentials for
the proposed framework are provided.

3.4.1 Backscatter Behaviour over Land and Sea

The applicability of S1 backscatter data for analysing coastal erosion is limited
by ambiguities in the scattering behaviour of single SAR images (Bartsch, Ley, et
al., 2020). Nevertheless, the amount of speckle and other noise factors could be
significantly reduced by working on annual (June September) backscatter composites,
instead of using single observations. Combining multiple images into one composite
further reduced the geolocation uncertainty which may be present in single scenes
(Schubert et al., 2015, 2017). As this study aimed to investigate coastal changes at
a spatial resolution of 10 m, reducing any noise and uncertainty factors is crucial in
order to accurately measure coastal change.

Median backscatter over land was observed to be generally higher compared to
the backscatter signal over water. In contrast, a higher sd in the backscatter were
identified over water vs. terrestrial areas within the temporal window June September
(Figure 3.4). Rough terrain leads to diffuse scattering behaviour and therefore higher
backscatter intensities, whereas water areas are associated with the specular reflection
of the SAR signal and therefore with generally lower backscatter values (Ulaby et
al., 1982; Richards et al., 2009). This discrepancy in backscatter characteristics is
reflected in the median backscatter images. At the same time, the water surface in
the sea is characterized by different wave actions and therefore also not perfectly flat.
Wind-driven capillary waves are hereby a type of wave, that relies on the tension of
the water’s surface (Richards et al., 2009). Gravity waves, on the other hand, are
subject to gravitational forces and act as the counterpart to mass disturbances caused
by wind-driven waves (Richards et al., 2009; Lighthill & Lighthill, 2001). Each SAR
scene detects a unique wave constellation in the sea for a given region, and therefore a
unique backscatter signal. This variability in the texture of the surface water results
in higher sd backscatter values compared to the relatively stable terrestrial surface
texture within the temporal observation window. In addition to the variation in the
texture of the surface water, a higher sd over water can also be attributed to the
logarithmic transformation (Equation 3.2) that has been applied to the SAR GRD
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backscatter images. The closer the values are to 0 in the power scale unit the larger
the variation after logarithmic transformation to dB scale. Since values over water are
observed to be generally lower compared to values over terrestrial areas, variations
over water areas appear amplified when working with backscatter coefficient sigma
nought (σ0) in the unit dB.

3.4.2 Deep Learning for terrestrial-Sea Segmentation

The inverse behaviour of the median and the sd backscatter could be exploited
for the creation of a high quality DL coastline product by using annual pseudo-RGB
SAR composites as training data (Figure 3.4). Nine different U-Net architectures were
employed for the segmentation between sea and terrestrial area (including inland rivers
and lakes). One limitation of applying CNNs is the identification of the optimal network
depth required for a specific task (Zhou, Siddiquee, et al., 2019). While a traditional
approach in machine learning requires the selection of relevant input features by the
user (also called feature engineering) for best possible model performance (Heaton,
2016), a CNN is capable of identifying relevant features within the input data by
itself (LeCun et al., 2015). Still, the selection of a network of appropriate depth and
architecture to successfully assess and solve the complexity of a given task remains
challenging (Zhou, Siddiquee, et al., 2019). By merging the results of nine different
U-Net models, which feature various architectures and depths, a representative and
reliable prediction per pixel is achieved. Another common limitation of CNN-based
algorithms is the vast amounts of data required for training the network (C. Tang et
al., 2020). Several measures were taken to overcome this limitation. First, pre-trained
models were used, which were trained on the ImageNet database (14 Mio. images).
Second, augmentation was applied to images derived from the manually digitized sites,
which increased the amount of reference data for these areas seven-fold. Lastly, OSM
data was utilized as an additional source of reference data for further network training.
Despite the frequently communicated fluctuations in data quality of OSM, the massive
amount of additional training material outweighed the variations in quality of the data.
In comparison to linear regression models, Neural Networks are identified to be more
resistant to errors (Bansal et al., 1993). Despite being exposed to one-third erroneous
training data, CNNs are reported to achieve accuracies of 90% (Rozhnova, 2021).
Some authors even observed moderate performance gains by adding small amounts of
errors ranging from 5 15% during the training process of the Neural Network (B. Klein
& Rossin, 1999).

Minimum training accuracies across all models of ≥0.9838 and validation accuracies
of ≥0.9785 were observed after training on both the manually digitized sites and the

127



Chapter 3 A novel Monitoring Framework for circum-Arctic Quantification of annual
Erosion Rates of Permafrost Coasts

OSM sites, which indicates a largely successful segmentation between terrestrial area
and sea across all models (Table 3.5). Similarly high accuracy statistics were also
observed within a 500 m buffer around the reference coastline, in which overall accuracy
values of ≥0.944 were observed for both training and validation sites. There were
no significant differences in the accuracy metrics between the validation and training
sites. A median deviation of ±6.3 was measured between the final DL-based coastline
product and the reference line across the manually digitized sites. In case of the OSM
sites, a median deviation of ±29.6 m was identified. The greater discrepancy between
the DL coastline product and the reference data from OSM sites can be attributed to
the previously mentioned fluctuations in OSM data quality and the greater variety of
coastline types represented by OSM. While the DL product outperformed the OSM
data set in many regions by providing more accurate and up-to-date information, OSM
retained many small islands (<0.2 km2) that were excluded during post-processing in
the DL product. Moreover, OSM provides a larger data coverage due to the limited
availability of S1 data for generating the DL product in some Arctic regions. Fewer
excluded islands might result from lowering the minimum threshold for object removal,
but at the cost of increasing noise levels.

Uncertainties in the segmentation were observed for flat, sandy shores, where it is
challenging to clearly distinguish between the sea and the land. River deltas constitute
another source of uncertainty, as the networks have trouble in some cases to separate
the end of a river and the beginning of a river’s mouth. Despite being exposed to
challenging environments and limited data availability, the proposed framework was
still capable in generating a high quality circum-Arctic coastline product. All U-Net
models showed good performance in the differentiating between sea area and inland
waters, including rivers and lakes. The left-over lakes after combining the output
results of each network could be removed by applying a closing holes algorithm. The
manually digitized reference coastline is based on information from high resolution
Google Earth imagery, as well as S1 and S2 satellite data. Combining over 1000 km of
manually referenced coastline based on high resolution (≥10 m) data with additional
reference data based on OSM was classified as a reasonable approach in the context of
generating a circum-Arctic product.

The generated DL coastline product featured a median accuracy of ±6.3 to the
manually digitized reference data and therefore outperformed other coastline products,
which are openly available on a circum-Arctic scale (Table 3.8). The coastline product
from CAVM is based on the Digital Chart of the World (DCW) dataset, which was
released in 1992 at a spatial scale of 1:1,000,000 (Langaas, 1995). It was one of the
most complete world databases at the time, but it hasn’t been updated since 1992.
Furthermore, the initial DCW coastline product was further simplified by, e.g., the

128



3.4 Discussion

combination of two lines in proximity (500 m) to each other, and by removing islands
that are smaller than 49 km2 (Alaska Geobotany Center, 2012). The GSHHG dataset
which was formerly known as the Global Self-consistent, Hierarchical, High-resolution
Shorelines (GSHHS), received its last update in 2017 and is based on the Atlas of
the Cryosphere (AC), the CIA World Data Bank II (WDBII), and the World Vector
Shorelines (WVS) dataset (Bennett, 2010). As previously stated, OSM constitutes
a non-commercial project that is community driven (Bennett, 2010). Since OSM
featured the highest mean and median accuracy out of the three mentioned publicly
available datasets (Table 3.8), it was chosen as an additional training source for the
DL work-flow. At the same time, largest maximum and standard deviation values were
also observed for the OSM dataset, which reflects its varying quality across different
regions. The proposed framework of generating a S1 and DL-based coastline product,
provides both high resolution and up-to-date information about the coastal position
on a circum-Arctic scale.

Good agreement between the overall average MTL based on six-minutely buoy
data and the average MTL based on S1 acquisition times can be reported for the
observation period June September 2020 (Figure 3.25). It was also observed, that a
larger amount of available satellite scenes for a given region led to smaller deviations
between the total average MTL and the average MTL at satellite acquisition times.
Nonetheless, comparisons with a higher amount and spatially more distributed buoy
data are needed for thorough investigations on the impact of tidal changes on the
generated satellite composites. Still, the observed results highlight the impact of the
satellite data availability on the quality of the generated coastline product. Especially
flat and sandy coasts are hereby of concern, where changes in the tidal level may have
a significant impact on the location of the transition zone between land and the sea.
The number of available S1 GRD scenes in IW swath mode are therefore a valuable
proxy for assessing the quality of the output products for a given region (Figure 3.19).

3.4.3 Feasibility of Change Vector Analysis on Coastal Change

The inverse behaviour of the sd and median backscatter for terrestrial vs. sea
areas was also employed in the analysis on coastal change via a CVA approach. In
addition to avoiding an accumulation of errors from individual input classifications,
CVA tends to be less computationally demanding and more flexible when compared to
detecting changes via a post-classification method (J. Chen et al., 2010; C. Huang et
al., 2016). Threshold values of 0.6 for build-up and 0.35 for erosion were identified as
most suitable based on the manually digitized reference sites. A deviation of −10.3 m
was measured between the reference data and the CVA change maps after applying
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the aforementioned threshold values. Thus, actual coastal change rates are likely
underestimated by a small margin for the sake of keeping the amount of left-over noise
after post-processing as low as possible. Nevertheless, depending on the amount of
available satellite data and coastal type, a different threshold might be better suited for
a specific region. The magnitude of change information is thereby a valuably quality
layer to manually adjust the threshold value for a given area (Figure 3.21).

An overall maximum annual erosion rate of up to 62.5 m based on segments
covering 400 m of coastline was identified in Russia, while the overall average erosion
rate on a country basis was highest in the USA (Alaska) with 0.75 m per year. Both
weakest build-up and erosion were identified in Norway. The mostly lithified coasts,
which are less vulnerable to erosion processes, are thereby likely the reason (Lantuit et
al., 2012). Highest average build-up rates per year were observed in Svalbard and Jan
Mayen. Movements of small glaciers, which were not covered by the GLIMS database,
might hereby explain these numbers. Furthermore, accumulations of sandy deposits
along the coastline are another source of build-up across the Arctic coastline.

Overall good agreement between the CVA-based erosion rates and numbers pub-
lished in previous literature can be reported. B. M. Jones et al. (2018) and J. Wang
et al. (2022) identified erosion along Drew Point in Alaska at rates of 30.8 51.4 m
and 6.7 22.6 m per year, respectively. This matches the findings from the proposed
methods and data in this thesis, which suggest annual erosion rates of 20 50 m for
the same area. Annual erosion of 12.5 15 m were observed for the Bell Bluff site
on Herschel Island in Canada based on the CVA approach. Fittingly, Obu, Lantuit,
Grosse, et al. (2017) also observed maximum retreat rates of the same shoreline
ranging from 10 17 m and covering the temporal window 2012 2013. The authors
further observed erosion rates of 0 1 m along Kay Point near Herschel Island (Obu,
Lantuit, Grosse, et al., 2017). In accordance with this finding, the CVA approach
also suggests no erosion for the same region. Irrgang et al. (2018) identified average
erosion rates of 0.7±0.2 m per year for a section of Yukon coast in Canada with a
length of 210 km by utilizing both high resolution satellite data and historical aerial
imagery, covering a time-span from the 1950s to the year 2011. Erosion rates in the
same order of magnitude (0.5 m per year) were observed via the proposed data and
methods in this thesis. Relatively small coastal retreat rates of <1 m per year were
observed for the west coast of the Buor Khaya Peninsula in Russia by Günther et
al. (2013), which matches with numbers of this study. Further comparisons between
the CVA-based coastal change rates and numbers present in the ACD suggest good
agreement (deviations <0.5 m) for two-thirds of the overlapping segments. Overall
strongest coastal erosion was observed for the Beaufort Sea in both the ACD and the
CVA products. Deviations between coastal change rates proposed in the ACD and
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coastal change rates generated by CVA can be attributed to uncertainties in both
products, differences in the spatial resolution of applied reference data, and differences
in observed temporal examination periods.

3.4.4 Limitations and future Potentials

The presented data and methods constitute a potent approach in quantifying
annual coastal build-up and erosion rates at high spatial resolution. Nevertheless, the
quality and applicability of the proposed framework strongly depends on the available
frequency of S1 GRD SAR backscatter data in IW swath mode, which differs across
space and time (European Space Agency, n.d.-e; Alaska Satellite Facility, n.d.). Spatial
variations in the data availability is visualized in Figure 3.2. While Europe features a
relatively high data frequency, the Canadian archipelago and large portions of Russia
are associated with poor S1 data coverage. Due to an anomaly on-board the S1B
satellite, data is currently generated by S1A only since December 23rd 2021 (European
Space Agency, n.d.-d). As a consequence, data availability is further limited until the
launch of S1C, which might impair the quality of current observations. Moreover, SAR-
specific challenges, such as ambiguities in the backscatter behaviour and geometric
distortions in SAR images in the form of foreshortening, layover, and shadow, may
further limit the applicability of the proposed framework for some locations. At the
same time, large parts of uncertainties in the geolocation, noise from backscatter
ambiguities, and the effects of changing tidal levels were minimized by using annual
composites instead of individual scenes as a foundation of the analyses. Several quality
layers are provided on a per-pixel-basis, including the absence or presence of glaciers,
the level of agreement between the individual model output classifications (Figure
3.18), the number of sea ice days (Figure 3.8), and the amount of available S1 GRD
SAR scenes in IW swath mode. The mentioned quality layers may thereby contribute
as valuable proxies for assessing the quality and applicability of the proposed data,
methods, and output products.

Investigations on Arctic coastal change rates were limited to areas that feature
eleven or more scenes and less than 50% sea-ice days during the months June September.
This way, the amount of noise could be further reduced, while at the same time
restricting the analysis to 42,992 km (≈27%) of the original 161,600 km of observed
Arctic coastline within the permafrost domain. It is noteworthy to further mention
that quantifying coastal change is only meaningful if the change rates between two
observed years are larger then the pixel size of the input data, which is 10 m in case
of the applied S1 GRD data in IW swath mode. The aforementioned threshold values
for the CVA approach led to best results across the manually digitized reference sites.
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However, the ideal threshold value may deviate across different regions depending
on the S1 data availability, sea ice duration, and present coastal type. In particular,
areas with low data frequency and long sea-ice durations may require adjustments to
the threshold values for optimal results. As previously mentioned, the magnitude of
change layer is hereby a powerful proxy for manual adjustments of threshold values
for a potential improvement in the change detection. The analysis of lengthier time
series will be possible with future data. In this context, temporal observation windows
for generating SAR composites could be extended over two years, especially for areas
with limited data availability. Nevertheless, larger temporal observation windows also
lead to greater variations across the individual scenes for creating the composite. The
intersection between the observed coastal erosion rates with information about the
ground ice content, lithification stage of the coastline, and other geomorphological
parameters, as present in the ACD by Lantuit et al. (2012), could further deepen
our knowledge and help us to understand the mechanics of Arctic coastal erosion of
permafrost coasts. Lantuit et al. (2008) hereby highlighted the influence of ground ice
content on the coastal retreat rates. The authors identified a weak but statistically
significant correlation (r = 0.48 and α = 0.01) when performing a linear regression
analysis between the ground ice content and the coastal retreat rates based on 545
coast segments of the ACD database across the Arctic. The authors further observed
a similar but slightly lower correlation value when comparing annual volume loss rates
with ground ice content (r = 0.41). It was emphasized that, despite the statistical
analyses indicating only a subtle correlation, ground ice plays a significant role as a
primary contributor to the erosion process, since the process of eroding Arctic coastlines
is influenced by multiple factors (Lantuit et al., 2008). Also worth mentioning are the
potential effects of rising sea levels (Shadrick et al., 2022) and the Fennoscandian land
uplift (Ekman, 1996) on the present methods and data for long-term investigations.
More detailed focus should be put on these topics in future analyses to fully asses their
impact on the proposed framework. Lastly, even though the suggested approaches and
data were only implemented and validated in the Arctic permafrost region, there is
a strong likelihood that the proposed coastal monitoring strategy can be adapted to
other latitudes.

This thesis focused on the potential of S1 GRD SAR backscatter data in IW swath
mode for monitoring Arctic coastal environments. However, the combination of the
S1 imagery with SAR data from other satellite missions could be a potent approach
in future analyses. Moreover, the combination of SAR and optical data constitutes
another promising technique in increasing both the data quantity and amount of
information per pixel. Especially data from the Landsat legacy and S2 satellites are
thereby attractive data sources, as they provide fairly high spatial resolutions and
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observation frequencies. On the one hand S2 satellites provide data of higher spatial
resolution then Landsat satellites. On the other hand, significantly longer time series
observations are possible with Landsat data. Figure 3.26 visualizes annual (June
September) median RGB composites for all years with available Level 2, Collection 2,
Tier 1 surface reflectance data from the satellites Landsat 4, 5, 7, and 8 over Drew
Point in Alaska. Images were masked from snow/ice and cloud/cloud shadows based
on the associated quality layer per scene (Department of the Interior - U.S. Geological
Survey, 2022). First images that cover this were taken in 1985, although images are not
available for all years from this point on forward. Several composites feature artefacts
from insufficient cloud and snow/ice masking, as well as pixels with missing data after
masking. Moreover, the failure of the Scan Line Corrector (SLC) of the Enhanced
Thematic Mapper Plus (ETM+) sensor on-board Landsat-7 in 2003 (Alexandridis et
al., 2013) is visible in the form of stripes within the median composites. Figure 3.27
visualizes annual (June September) median RGB composites for available S2 Level-2A
surface reflectance data over the same region. The images were also removed from
clouds and snow by using the associated scene classification layers (European Space
Agency, 2016). However, all annual S2 composites feature artefacts within the sea
in the form of remaining sea ice content which were not covered by the associated
scene classifications. Figure 3.28 illustrates Pseudo-RGB backscatter composites for
all years with available data. Annual Pseudo-RGB composites were created identically
as described in section 3.2.2. Compared to optical imagery, no data gaps or large
scale artefacts can be identified. Since composites are made from scenes from different
relative orbits, some delineations of individual scenes with different extents can partly
be recognized. A comparison between the three mentioned datasets is visualized in
Figure 3.29. The zoom-ins (Figure 3.29 d f) highlight the differences in the spatial
resolution. The exact delineation of the coastline is more clearly visible in case of S1
and S2 in contrast to the Landsat 8 median composite. Remaining artefacts from
insufficient cloud and sea-ice masking are potential limitation factors for a successful
application of optical imagery. Therefore, additional efforts in cloud and sea-ice
masking are necessary to achieve best possible results. At the same time, sea-ice will
likely continue to be a challenging factor for both optical and SAR data, especially for
areas with long sea-ice durations. Nonetheless, the combination of data from different
satellites constitutes a promising approach in improving on the quality and extent of
the proposed coastal monitoring framework.
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Figure 3.26: Annual median (June–September) Red-Green-Blue (RGB) images of Drew
Point, Alaska derived from the Landsat Level 2, Collection 2, Tier 1 surface reflectance
data. Imagery from the satellites Landsat 4, 5, 7, and 8 were used to compute the annual
median composites. Black pixels represent areas with no data after cloud-, cloud shadow-,
and snow/ice-masking. All data is visualized in a Universal Transverse Mercator (UTM)
Zone 5 North projection. The number in the upper left corner of each image represents the
displayed year.
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Figure 3.26: Continued.

A comparison between the three mentioned datasets is visualized in Figure 3.29.
The zoom-ins (Figure 3.29 d f) highlight the differences in the spatial resolution. The
exact delineation of the coastline is more clearly visible in case of S1 and S2 in contrast
to the Landsat 8 median composite. Remaining artefacts from insufficient cloud and
sea-ice masking are potential limitation factors for a successful application of optical
imagery. Therefore, additional efforts in cloud and sea-ice masking are necessary to
achieve best possible results. At the same time, sea-ice will likely continue to be a
challenging factor for both optical and SAR data, especially for areas with long sea-ice
durations. Nonetheless, the combination of data from different satellites constitutes a
promising approach in improving on the quality and extent of the proposed coastal
monitoring framework.
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Figure 3.27: Annual median (June–September) Red-Green-Blue (RGB) images of Drew
Point, Alaska derived from Sentinel-2 (S2) Level-2A reflectance data. All data is visualized
in a Universal Transverse Mercator (UTM) Zone 5 North projection. The number in the
upper left corner of each image represents the displayed year.
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Figure 3.28: Annual median (June–September) Pseudo Red-Green-Blue (RGB) images of
Drew Point, Alaska derived from Sentinel-1 (S1) Ground Range Detected (GRD) backscatter
data in Interferometric Wide (IW) swath mode. Pseudo-RGB images consist of vertical-
horizontal (VH) (red channel), median vertical-vertical (VV) (green channel), and standard
deviation (sd) VV (blue channel) backscatter. All data is visualized in a Universal Transverse
Mercator (UTM) Zone 5 North projection. The number in the upper left corner of each
image represents the displayed year.
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Figure 3.29: Median Red-Green-Blue (RGB) images (June–September 2020) of Drew Point,
Alaska based on optical Landsat 8 (a, d), Sentinel-2 (S2) (b, e), and Synthetic Aperture
RADAR (SAR) Sentinel-1 (S1) (c, f) imagery. A true colour visualization is shown for
Landsat-8 (a, d) and S2 (b, e). S1 data (c, f) is illustrated in Pseudo-RGB using median
vertical-horizontal (VH) (red channel), median vertical-vertical (VV) (green channel), and
standard deviation (sd) VV (blue channel) backscatter. The red rectangle in sub-figures
a–c represents the zoom-in areas visualized by sub-figures d–f. All data is visualized in a
Universal Transverse Mercator (UTM) Zone 5 North projection.
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Amplified erosion rates for Arctic permafrost coasts are frequently reported in
recent years and erosion rates are further expected to continuously increase in future
years (Günther et al., 2013; B. M. Jones et al., 2018, 2009; Irrgang et al., 2022). An
interdisciplinary and coordinated effort of the local population, stakeholders, policy-
makers, and scientists alike are necessary to tackle the challenge of rapidly changing
coastlines (Irrgang et al., 2022). Within this context, the presented DL circum-Arctic
coastline product and CVA-based coastal change quantification may provide a valuable
contribution towards addressing this issue.

3.5 Summary

This chapter introduced a novel framework for quantifying annual build-up and
erosion rates of permafrost coasts on a circum-Arctic scale and with a spatial resolution
of 10 m by combining Deep Learning (DL) and Change Vector Analysis (CVA) with
Sentinel-1 (S1) Ground Range Detected (GRD) Synthetic Aperture RADAR (SAR)
backscatter images in Interferometric Wide (IW) swath mode. Annual composites in
the form of standard deviation (sd) and median backscatter were implemented for the
computation of a DL-based circum-Artic coastline product, covering 161,000 km of
coastline. The annual composites further served as a basis for the detection of coastal
changes via CVA. The following main conclusions can be drawn:

• Higher median backscatter was observed over land compared to water, whereas
the sd backscatter proved to be higher over water and lower over land. Therefore,
a change from high median to high sd backscatter can be classified as a transition
from terrestrial area to water and thus, erosion.

• The inverse behaviour of the sd and median backscatter could be successfully
implemented for the generation of both a DL-based high quality Arctic coastline
product and the quantification of coastal change via CVA.

• OpenStreetMap (OSM) proved to be a valuable asset for additional training of the
Convolutional Neural Networks (CNN) U-Net architectures, despite variations
in its data quality.

• The combination of nine different U-Net architectures allowed for the generation
of a high quality coastline product covering 161,600 km of Arctic permafrost
coastline. The median deviation to 1038 km of manually digitized reference
coastline proved to be ±6.3 m.

• A good level of agreement between the overall average Mean Tidal Level (MTL)
from six-minutely buoy data and the average MTL based on the respective S1
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acquisition times for each buoy location can be reported. The lower the number
of available S1 scenes, the higher the deviation between the average MTL at S1
acquisition times and the actual average MTL.

• The quality of the output products from the proposed data and methods strongly
depend on the local sea ice duration, the present coastal type, and the number
of available satellite scenes for a given region.

• Strongest average erosion on a country basis was observed for the United States
of America (USA) (Alaska) with 0.75 m per year, followed by Russia with 0.62 m
per year. The weakest average erosion per country and per year of was observed
in Norway with 0.01 m. Maximum annual erosion rates based on 400 m coastal
segments were identified in Russia (67 m), followed by Alaska (62.5 m). Out of all
seas, the Beaufort Sea was associated with the highest average erosion of 1.12 m
per year. Numbers are thereby based on all segments within a country/sea, even
if no coastal change is present.

• Over the entire investigated Arctic coastline, 12.24% demonstrated an average
annual erosion rate of 3.8 m and a combined annual eroded land area of 17.83 km2,
whereas 1.05% of the coastline indicated an average yearly build-up rate of 2.3 m
and a combined area of 1.02 km2 in annual build-up.

• Several quality layers, including the presence and absence of glaciers, the level of
agreement between individual output classifications of different DL models, the
sea-ice duration, and the number of available S1 GRD scenes in IW swath mode
are available on a per-pixel basis and may be used as valuable proxies for the
evaluation of the product quality and applicability of the presented data and
methods.

The proposed methods and data proved to be very effective in both generating a
high-quality and circum-Arctic coastline product and for quantifying annual change
rates of Arctic permafrost coastlines. The framework may also be transferred to
different latitudes for investigating coastal changes. The output products might also
be employed to estimate carbon emissions and determine the quantity of lost frozen
ground due to the erosion of permafrost coastlines. The CVA-based magnitude of
change maps, the related quality layers, and the final circum-Arctic DL coastline will
all be made publicly available through the German Aerospace Center (DLR) Earth
Observation Center (EOC) Geoservice.
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Chapter 4
Estimating Permafrost and Carbon

Loss based on Arctic coastal
Erosion—An experimental Framework

The following chapter proposes a first experimental approach for estimating the
amount of permafrost loss and carbon release as a consequence of eroding permafrost
coastlines. The previously extracted information on circum-Arctic coastal erosion
rates via S1 backscatter data and CVA was combined with information on surface
elevation, permafrost fraction, Active Layer Thickness (ALT), and soil Organic Carbon
Stocks (OCS) for quantifying the loss of permafrost and carbon release.

4.1 Input Data

A variety of different datasets were involved for both the quantification of per-
mafrost loss and the release of formerly stored soil organic carbon contents as a
consequence of eroding coastlines within the permafrost domain. The previously
generated annual and circum-Arctic erosion rates covering the years 2017 2021, as
described in detail in the chapter 3, were used as a basis for this experimental frame-
work. Information on the duration of sea ice cover via the ASI dataset (Spreen et
al., 2008), and the glacier coverage based on the GLIMS dataset (Raup et al., 2007)
were utilized for further restringing the extent of the analysis. In addition to the
erosion rates themselves, information on the surface elevation was incorporated via the
ArcticDEM Version 3 Mosaic DEM (Porter et al., 2018), and the Copernicus GLO-30
DEM (European Space Agency, Sinergise, 2021). Details on the permafrost presence
was available in the form of the Climate Change Initiative (CCI) permafrost fraction
dataset by Obu et al. (2021b). Information on the Active Layer Thickness (ALT) was
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included via the CCI Active Layer Thickness (ALT) data by Obu et al. (2021a). Lastly,
information on the soil organic carbon content was accessed via the SoilGrids250m 2.0
- Soil OCS dataset (Poggio & de Souse, 2020) and used as a basis for the quantification
of carbon emissions. Details on each implemented dataset, including the data type,
spatial resolution, and the temporal frequency are listed in Table 4.1.

Table 4.1: List of utilized datasets within the framework of this chapter. The column
“Temporal Coverage & Resolution” provides information about the temporal window of used
data. The frequency of available data within this time span is in shown in parentheses.

Name Data
Type

Spatial
Resolution

Temporal
Coverage &
Resolution

Reference

ArcticDEM Version 3
Mosaic Raster 2 m 2016 Porter et al.

(2018)

ARTIST Sea Ice (ASI)
Arctic Sea Ice
Concentration

Raster 3125 m 2017–2021
(daily)

Spreen et al.
(2008)

Circum-Arctic erosion
rates per 200 m segment Vector - 2017–2021 Philipp et al.

(2023)

Climate Change
Initiative (CCI) Active
Layer Thickness (ALT)

Raster 927 m 2017–2019
(annual)

Obu et al.
(2021a)

Climate Change
Initiative (CCI)
Permafrost Fraction

Raster 927 m 2017–2019
(annual)

Obu et al.
(2021b)

Copernicus GLO-30
Digital Elevation
Model (DEM)

Raster 30 m 2011–2015
European Space

Agency, Sinergise
(2021)

Global Land Ice
Measurements from
Space (GLIMS) glacier
database

Vector - 2022 Raup et al. (2007)

Sentinel-1 (S1) Ground
Range Detected (GRD)
Interferometric
Wide (IW) swath

Raster 10 m 2017–2021 (up
to 6 days)

ESA
Communications

(2012)

SoilGrids250m 2.0 - Soil
Organic Carbon
Stocks (OCS)

Raster 250 m 1905–2016 Poggio & de
Souse (2020)
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4.1.1 Permafrost Extent

The CCI permafrost fraction dataset (version 3.0) is available on an annual basis
from 1997 2019 and with a spatial resolution of ∼927 m (Obu et al., 2021b). The data
is generated via the TTOP model, which constitutes an equilibrium state model, and
is further based on satellite-derived land surface temperature information, land cover
data from the ESA CCI Landcover project, and ERA-Interim climate reanalysis data
(Obu et al., 2019). Figure 1.1 illustrates the permafrost fraction across the Northern
Hemisphere for the year 2017.

4.1.2 Active Layer Thickness

Identical to the CCI permafrost fraction dataset, information on the ALT was
available at the same spatio-temporal resolution, temporal coverage, and also based
on satellite-derived land surface temperature data as well as ERA-Interim climate
reanalysis data (Obu et al., 2021a). Figure 4.1 illustrates the average ALT from 2017
2019 across the Northern Hemisphere. Although the dataset is originally available as
continuous data type, it was converted to a discrete scale for visualization purposes.
Actual analysis was conducted with the original continuous data type.

Figure 4.1: The average Active Layer Thickness (ALT) between 2017–2019 across the
Northern Hemisphere based on data by Obu et al. (2021a). The continuous data was
converted to a discrete scale for this visualization. A shaded relief by Natural Earth (n.d.)
was used as a background map.
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4.1.3 Digital Elevation Models

The ArcticDEM mosaic constitutes a high resolution DEM made up from pairs
of optical stereo satellite imagery of sub-meter (0.32 0.5 m) resolution derived from
WorldView-1 3 and GeoEye-1 (Polar Geospatial Center, 2023). The data was accessed
in GEE which provides individual stripes within the temporal window 2009 2017,
while the mosaic is a collection of strips that have been feathered and blended to reduce
artefacts and voids (Google Developers, n.d.-b,-a). The Copernicus DEM GLO-30, on
the other hand, is a global DEM with a spatial resolution of 30 m and based on the
“WorldDEM”, which in turn was generated via RADAR data from the TanDEM-X
mission with acquisition times between 2011 2015 (European Space Agency, Sinergise,
2021). Mainly high resolution surface elevation data from the ArcticDEM product
was used for estimating volume loss. For areas with no available ArcticDEM data, the
Copernicus GLO30 DEM was used, instead. Figure 4.2 highlights the regions with
available ArcticDEM data, and areas where surface elevation information from the
GLO30 product was utilized.

Figure 4.2: Areas of the Deep Learning (DL) coastline product covered by the ArcticDEM
(green line). The Copernicus GLO-30 Digital Elevation Model (DEM) was used for the
remaining coastline sections (blue line) which are not covered by the ArcticDEM. A shaded
relief by Natural Earth (n.d.) in combination with the permafrost fraction across the Northern
Hemisphere for the year 2017 based on data by Obu et al. (2021b) was used as a background
map.
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Figure 4.3 further visualizes the ArcticDEM for Drew Point in Alaska, together
with the correspoding S1 Pseudo-RGB image and a binary map that highlights areas
below and above sea level. Large parts of the terrestrial area in the visualized scene
are associated with elevation numbers below sea level.

Figure 4.3: (a) Sentinel-1 (S1) Pseudo-Red-Green-Blue (RGB) composite covering the
months June–September in 2017. (b) Surface elevation based on the ArcticDEM version
3 Digital Elevation Model (DEM) with a 2 m spatial resolution. (c) Binary map that
differentiates between areas above and below sea level based on the ArcticDEM elevation
data.
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4.1.4 Soil Carbon

Data on soil OCS in the unit tonnes per hectare for depths of 0 30 cm were accessed
via the SoilGrids250m 2.0 product, which provides global information on soil organic
carbon content at a spatial resolution of 250 m (Poggio & de Souse, 2020). The data
set was generated based on reference data from ≈240,000 locations distributed across
the entire world and more than 200 additional environmental covariates that provide
details on the hydrology, geology, climate, morphology, terrain, and the vegetation
cover (Poggio et al., 2021). Figure 4.4 illustrates the OCS in the unit tonnes per
hectare across the northern hemisphere. Although the data set is provided in the
form of a continuous data type, it was converted to a discrete scale for visualization
purposes. Actual analysis was conducted with the original continuous data type.

Figure 4.4: Soil Organic Carbon Stocks (OCS) in the unit tonnes per hectare for soil depths
of 0–30 cm across the Northern Hemisphere based on data by Poggio & de Souse (2020).
The continuous data was converted to a discrete scale for this visualization. A shaded relief
by Natural Earth (n.d.) was used as a background map.
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4.1.5 Arctic coastal Erosion Rates

S1 GRD SAR scenes in IW swath mode at a spatial resolution of 10 m were utilized
in combination with a CVA approach to quantify coastal erosion rates (Chapter 3).
As mentioned in the previous chapter, analyses on Arctic coastal change was limited
to areas in proximity to permafrost based on the CCI permafrost fraction by Obu et
al. (2021b), and with more than ten available S1 scenes per year. A further limitation
on the investigation extent was applied based on the number of sea ice days (less
than 50% during the observation period June September) via the ASI Arctic sea ice
concentration. Lastly, areas in proximity (500 m) to glaciers based on the Global
Land Ice Measurements from Space (GLIMS) were excluded from the analysis. Thus,
erosion rates across a total of 42,992 km of Arctic permafrost coastline served as a
basis for the quantification of permafrost loss and carbon release. The remaining
coastline and associated erosion rates are visualized in Figure 3.23.

4.2 Methodology

Average erosion rates between 2017 2021 based on 200 m segments were utilized
as a reference. Details on how the average erosion per segment was computed is
described in detail in Section 3.2.5.2 and Equation 3.8. For each segment, a center
point on the coastline was generated and the average erosion was added as a property.
Each segment point was subsequently intersected with raster data on the permafrost
fraction, ALT, soil OCS, and surface elevation. In case of the permafrost fraction
and ALT, data was available on an annual basis for the years 2017 2019 within the
observation time span of the coastal erosion (2017 2021). The average permafrost
fraction and ALT per pixel across the three available years was computed in order to
have the most representative value within the observed temporal window. Furthermore,
since both data sets are available at relatively coarse spatial resolution of ≈927 m,
the pixel value from the pixel whose center was closest to each segment point and
where the pixel value was not masked was extracted. The extracted pixel value was
interpreted as the representative value for this segment. The same procedure was also
applied for extracting the soil OCS value per segment. In case of surface elevation
data, a slightly different approach was applied. As visualized in Figure 4.3, terrestrial
areas in proximity to the coastline are often associated with elevation values below
0. This issue was frequently observed, especially for areas with flat terrain near the
shoreline. In order to still be able to investigate volumetric land loss, the difference
between surface elevation values of the local terrestrial area and the local sea area was
computed. To achieve this, a buffer with a size of 100 m was computed around each
segment point. Within this buffer, all pixel values were extracted and the 5th and
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95th percentile values were interpreted as the representative values for the local sea
level and local terrestrial elevation, respectively. By using the 5th and 95th percentiles
instead of the min and max values, outliers could be avoided. The difference between
the 5th and 95th percentiles of elevation values within each buffered segment point
was ultimately interpreted as the elevation of the local shoreline for each segment.
Finally, the volume of lost permafrost in m3 and the amount of released carbon stocks
in tonnes were estimated via Equations 4.1 and 4.3, respectively. For the calculation
of carbon loss, the percentage of the depth limit of measured OCS (30 cm) which
is covered by the elevation difference between local sea and terrestrial area is also
considered via Formula 4.2. The equation is used to convert the ratio between the
elevation difference and the OCS depth limit to 1 if it is greater than 1. Otherwise, if
the ratio is smaller than 1, the original ratio value [0;1] will be left unchanged. As
information about OCS was only available for maximum soil depths of 0 30 cm, the
quantification of carbon release was limited to the this soil depth, even if the elevation
difference was greater than 30 cm.

vperma = (diffele − alt) ∗ eroseg ∗ lenseg ∗ fracperma (4.1)

where:
vperma = Volume loss of permafrost in m3;
diffele = Elevation difference between terrestrial area and sea area in m;
alt = Active layer thickness in m;
eroseg = Average annual erosion per coastal segment in m;
lenseg = Length of the coastal segment in m;
fracperma = Fraction of permafrost in percent [0;1]

percdepth = min( diffele

depthocs

, 1) (4.2)

vcarbon = ocs ∗ percdepth ∗ eroseg ∗ lenseg (4.3)

where:
vcarbon = Volume of released carbon in tonnes;
ocs = Soil organic carbon content in tonnes per m2 for depths of 0–30 cm;
percdepth = Percentage of covered OCS depth by diffele [0;1];
depthocs = Depth limit of the measured OCS in m;
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4.3 Results

The following section present the results of the experimental framework for both
the quantification of lost permafrost volume and carbon releases due to the erosion of
Arctic coastlines. First, details on the permafrost loss on a country basis are provided.
Next, estimated carbon releases are highlighted per country.

4.3.1 Permafrost Loss

Strongest average annual loss of permafrost volume per 200 m segment was
observed in Alaska with 129.68 m3, followed by Russia (108.56 m3) and Svalbard & Jan
Mayen (105.97 m3). Lowest average annual permafrost volume loss per segment was
observed in Norway (Scandinavian Peninsula) with 0.49 m3. However, the majority of
permafrost in these regions is limited to mountain areas and do not represent coastal
permafrost. The coarse resolution (927 m) of the permafrost fraction reference dataset
can be linked to this misleading observation. The highest maximum annual volume
loss per segment was identified in Alaska with 217,817.72 m3, followed by Svalbard
& Jan Mayen (157,847.94 m3). The two countries also featured highest sd values in
annual permafrost volume loss. The overall highest amount of lost permafrost as a
consequence of Arctic coastal erosion can be reported for Russia (7,891,167.72 m3),
followed by Alaska (4,583,853.16 m3). The country with the lowest total amount of lost
permafrost was predicted to be Norway (Scandinavian Peninsula) with 15,124.38 m3.
The total amount of estimated permafrost volume loss is estimated to be 16,409,376 m3

per year. Table 4.2 provides further details on the average, maximum, sd and total
loss of permafrost per year and per country.

4.3.2 Carbon Loss

The average amount of annually released carbon stocks based on 200 m segments
and caused by coastal erosion ranges between 0.01 t (Norway - Scandinavian Peninsula)
and 1.39 t (Alaska). The maximum amount of annually lost carbon stocks per segment
was observed in Alaska (142.50 t), followed by Russia (131.32 t). Both countries
also feature the highest sd values in carbon releases per year. Overall highest total
carbon loss per year can be reported for Russia (62,405.59 t) and Alaska (49,117.99 t).
The country with the lowest total amount of annual carbon releases was identified
to be Norway (Scandinavian Peninsula) with 262 t. The overall total amount of
annual carbon releases across all countries and as a consequence of eroding permafrost
coastlines was predicted to be 127,234.30 t. Table 4.3 lists statistics in the form of the
average, max, sd, and total annual carbon release in tonnes per country and based on
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200 m coastline segments.

Table 4.2: Statistics on the coastal erosion-based annual volume loss of permafrost per
country in the unit cubic meters. Numbers are based on 200 m segments and the observation
period 2017–2021. Statistical measures in the form of the arithmetic mean, maximum, and
the standard deviation (sd) per 200 m segment together with the total volume of annually
lost permafrost is provided per country.

Country Mean Max SD Total

Canada 43.37 m3 58,195.57 m3 731.32 m3 2,945,976.73 m3

Norway (Svalbard
and Jan Mayen) 105.97 m3 157,847.94 m3 2,606.48 m3 973,253.95 m3

Norway
(Scandinavian
Peninsula)

0.49 m3 1,832.20 m3 20.78 m3 15,124.38 m3

Russia 108.56 m3 96,114.55 m3 1,243.67 m3 7,891,167.72 m3

United States
(Alaska) 129.68 m3 217,817.72 m3 2,501.92 m3 4,583,853.16 m3

Total 16,409,376 m3

Table 4.3: Statistics on the coastal erosion-based annual release of soil Organic Carbon
Stocks (OCS) per country in the unit tonnes. Numbers are based on 200 m segments and
the observation period 2017–2021. Statistical measures in the form of the arithmetic mean,
maximum, and the standard deviation (sd) per 200 m segment together with the total
amount of annually released soil OCS is provided per country.

Country Mean Max SD Total

Canada 0.20 t 69.75 t 1.48 t 13,864.06 t
Norway (Svalbard
and Jan Mayen) 0.17 t 73.16 t 1.91 t 1,584.70 t

Norway
(Scandinavian
Peninsula)

0.01 t 31.68 t 0.28 t 262.00 t

Russia 0.86 t 131.32 t 4.65 t 62,405.59 t
United States
(Alaska) 1.39 t 142.50 t 6.89 t 49,117.99 t

Total 127,234.30 t
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4.4 Discussion

A variety of different data sources were utilized in this experimental framework for
estimating the annual volume of lost permafrost and released organic carbon content
due to coastal erosion. However, various uncertainties are also associated with the
proposed approach and data. While data on Arctic coastal erosion was generated at a
high spatial resolution of 10 m (Chapter 3), information on the soil carbon content,
permafrost fraction, and ALT was available at relatively course spatial resolutions.
Pixel sizes were 250 m in case of soil carbon and ≈927 m in case of permafrost fraction
and ALT (Table 4.1). Although the analysis was down-scaled from an erosion-based
pixel level (10 m) to coastal segments with a length of 200 m, the spatial resolutions
of the aforementioned environmental datasets were still lower than the size of one
segment. Thus, the attributed pixel value to one segment covers a larger area than
the segment itself, which is a major source of uncertainty. Moreover, strong variations
in permafrost temperatures and ALT are reported even on smaller scales (Y. Zhang
et al., 2021), which means that the low resolution data may not accurately depict
the local properties of the permafrost fraction and thickness of the active layer. The
quality of the ALT product is communicated to strongly vary across space, with
lower accuracy in particular for areas where ground stratigraphic measurements are
erroneous (Bartsch et al., 2021). Uncertainties in the data quality are also present for
the soil OCS information. As mentioned by Poggio et al. (2021), the importance of
more in-situ soil observations, particularly in areas of high-latitude, was underlined
by the spatial uncertainty at the global scale. Estimations on carbon loss are further
limited to depths of 0 30 cm, as the available data was restricted to this soil depth.

In case of elevation data by the ArcticDEM and the Copernicus GLO-30 DEM,
spatial resolutions were higher than the size of one segment. However, data on surface
elevation in coastal environments were observed to come with its own challenges. As
visualized in Figure 4.3, partly strong variations in the surface elevation data were
observed within the sea area in proximity to the coastline. Moreover, terrestrial areas
were often associated with negative elevation values, especially for flat terrestrial
regions near the coastline. Thus, working with absolute elevation values in coastal
areas was not feasible. As a compromise, the 5th and 95th percentiles in surface
elevation numbers within one segment were interpreted as the representative local
elevations of the sea and terrestrial area, respectively. The difference in the two values
was therefore assigned as the local elevation of the shoreline. Working with the 5th
and 95th percentiles instead of the minimum and maximum values thereby minimized
the risk of introducing outliers. In some regions, however, the sea area was completely
masked out and no information on the local surface elevation of the sea was available.
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In this case, the pixel with the lowest elevation of terrestrial area was assumed to be
the representative elevation of the sea level for this segment, which constitutes another
source of uncertainty. Also, only the area above the (local) sea level was considered
for estimated volume loss of permafrost. Sub-sea permafrost loss was not considered
in this experimental framework.

The analysis was limited to areas with more than ten available S1 GRD backscatter
scenes in IW mode for both years 2017 and 2021. The investigated extent was further
restricted to areas with less than 50% sea ice days during the observation period
June September in order to reduce the amount of noise in the CVA analysis to a
minimum. Furthermore, and as mentioned in Section 3.2.4.2, islands smaller than
≈0.2 km2 were excluded from the analysis. Thus, large parts of the Arctic permafrost
coastline were not considered in this experimental framework. Glaciers were also
excluded from the analysis via the GLIMS glacier database, which minimized the
impact of changing glaciers on the proposed data and methods. However, remaining
smaller glaciers, which were not covered by the GLIMS glacier database, can have
a significant impact on the statistics on the volume of lost permafrost and released
carbon content.

Present uncertainties in the form of variations in data quality, the partly low
spatial resolution of available data, the limitation of the carbon analysis to soil depths
of 0 30 cm, the restriction of the quantification of permafrost loss to areas above (local)
sea level, and the previously mentioned uncertainties of the proposed methods and
data for quantifying Arctic coastal erosion (Section 3.4) are all limiting factors to this
experimental approach. At the same time, this experimental investigation demonstrates
the potential of SAR satellite-based coastal erosion quantification for circum-Arctic
monitoring of permafrost loss and carbon releases. Nevertheless, extensive in-situ
validation and higher resolution auxiliary data is needed for quality assessment and
the computation of more realistic estimates. Due to the mentioned uncertainties in
input data, methodologies, and missing large scale validation, the proposed framework
should be interpreted as a first experimental outline. The generated statistics on the
volume of lost permafrost and released carbon content should further be treated with
caution.

4.5 Summary

This chapter introduced an experimental framework for quantifying the coastal
erosion-based loss of permafrost and carbon releases. Various different data sources
were incorporated in this framework, including information about the permafrost
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fraction, active layer thickness, soil Organic Carbon Stocks (OCS), surface elevation,
number of sea-ice days, glacier presence, and the previously generated circum-Arctic
coastal erosion rates derived from Sentinel-1 (S1) Ground Range Detected (GRD)
backscatter imagery in Interferometric Wide (IW) swath mode. The following main
conclusions can be drawn:

• Strongest average annual loss of permafrost volume per 200 m segment was
observed in Alaska (129.68 m3) and Russia (108.56 m3). Russia also featured
the overall highest amount (7,891,167.72 m3) of annually lost permafrost due to
Arctic coastal erosion, followed by Alaska (4,583,853.16 m3). The total amount
of lost permafrost across the entire investigated Arctic coastline was observed to
be 16,409,376 m3 per year.

• Highest average amount of annually released carbon stocks based on 200 m
segments and caused by coastal erosion was observed in Alaska (1.39 t). Overall
highest annual carbon loss per year and on a regional scale can be reported for
Russia (62,405.59 t), followed by Alaska (49,117.99 t). The total amount of
annual carbon releases as a consequence of eroding permafrost coasts across the
entire investigated Arctic coastline were estimated to be 127,234.30 t.

• While the proposed data and methods provide a valuable first insight in circum-
Arctic permafrost and carbon loss, many uncertainties in both the data and the
methodology are present.

• Information on soil carbon, permafrost fraction, and Active Layer Thickness
(ALT) is only available at a relatively course spatial resolutions on a circum-Arctic
scale. Spatial variations in the data quality are thereby a further challenge.

• Surface elevation data in Arctic coastal environments is associated with many
artefacts in some areas, which limits the precise estimation of volume loss.
Moreover, high resolution data on surface elevation is only available for areas
above the (local) sea level. No sub-sea volumetric changes were investigated.

• Some terrestrial regions in proximity to the coastline were associated with values
below the sea level within the available surface elevation data. The 5th and
95th percentiles in surface elevation numbers within one segment were therefore
interpreted as the representative local elevations of the sea and terrestrial area.
However, some regions were fully masked from water areas, which leads to an
increased uncertainty in estimating the actual shoreline surface elevation.

• Glaciers were excluded from the analysis via the Global Land Ice Measure-
ments from Space (GLIMS) glacier database. However, small remaining glaciers,
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which are not covered by the GLIMS database, can have a significant effect on
volumetric estimations for erosion-based permafrost loss.

• Estimations on carbon loss were restricted to depths of 0 30 cm, as the available
data on soil OCS was limited to this soil depth.

• Data on coastal erosion was not available for the entire Arctic coastline, but
was limited to areas with more than ten S1 GRD scenes in IW mode for both
years 2017 and 2021, and further limited to areas with less than 50% sea-ice
duration within the observation time-frame June September. Thus, absolute
volume estimations on carbon release and permafrost loss are not representing
the entire Arctic coastline.

• Extensive and large scale in-situ validation is necessary to further assess and
improve on the quality of the proposed data and methods.

The suggested framework should be viewed as a first experimental outline due to
the acknowledged uncertainties in the input data, techniques, and missing large scale
validation. Caution should be exercised when interpreting the generated numbers on
the amount of permafrost loss and the released carbon content as presented in this
chapter.

154



Chapter 5
Synthesis and Outlook

This chapter provides a synthesis of the conclusive findings of this dissertation.
Section 5.1 gives a short summary and discussion of the results with respect to the
initially set-up research questions in Section 1.2. Section 5.2 subsequently focuses
on future challenges and opportunities in the context of quantifying the effects of
permafrost degradation in Arctic coastal environments via satellite earth observation.

5.1 Summary and conclusive Findings

In the introduction (Chapter 1), the importance of permafrost and the consequences
of its degradation for both the environment but also human society were presented.
The need for continuous and large scale observations of permafrost-related features
and processes was also stressed. In particular, the effects of degrading permafrost in
coastal environments was highlighted. Within this context, SAR-based satellite earth
observation was introduced as a promising data source for closing existing gaps on the
continuous and automated quantification of circum-Arctic coastal erosion rates at a
high spatial resolution.

Within this dissertation, current trends in satellite earth observation for permafrost
related analyses during the past two decades were investigated. In addition, a novel
monitoring framework for circum-Arctic quantification of annual erosion of permafrost
coasts based on S1 SAR backscatter data, DL, and CVA was proposed. Lastly, an
experimental outline for intersecting circum-Arctic coastal erosion with the amount
of lost permafrost and released carbon stocks was presented. In this context, initial
research questions were defined in Section 1.2 and addressed in the Chapters 2, 3, and
4. The following paragraphs provide a short summary of the answers on each research
question:
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while roughly half (52%) of local studies were using high resolution imagery (<10 m),
about three quarters (74%) of circum-Arctic studies relied on low resolution data
(>1000 m). Optical data was the most frequently applied data type with 55% of all
data types, followed by 20% SAR data. Despite the exclusion of aerial-only studies,
the type “aerial” still proved to be the most frequently used platform (31% of all
platforms), followed by satellites within the Landsat legacy (27% of all platforms). The
sentinel satellites only made up 6% of all incorporated platforms, but a strong tendency
towards increased exploitation of data from these platforms was observed in recent
years. Several research gaps in the context of satellite earth observation for permafrost
related analyses were identified. First, many openly available products related to
permafrost feature insufficient accuracy, spatial resolution, thematic detail, and/or
extent for large scale investigations. Also reference data is often concentrated around
key study regions, while large parts of the continuous permafrost zone feature little to
no reference data. More frequent and a more spatially homogeneous distribution of
reference data could improve future models and analyses. While first investigations
on applying a DL framework showed promising results, only a handful of studies
explored the potential of DL in the context permafrost. In terms of environmental foci,
very little attention was so far directed towards investigations on thermal topics and
atmospheric features and processes within the context permafrost. Thermal data from
the Landsat satellites appears hereby heavily under-utilized. An increased application
of thermal data from the Landsat mission could potentially contribute to an enhanced
understanding of the thermal state of permafrost. Moreover, new satellite missions
such as Merlin and Sentinel-5P are attractive data sources for future investigations on
atmospheric effects of permafrost degradation. Even though Arctic regions feature
unfavourable environmental conditions for optical remote sensing (low light intensities,
cloud cover, etc.), it still proved to be the most commonly applied data type. SAR
data, which is largely independent on these environmental factors, therefore appears
under-represented and, at the same time, constitutes an attractive data source for
many use-cases in future Arctic investigations. The previously mentioned lack of
large to circum-Arctic scale studies, especially based on medium-high high resolution
data, was identified as another research gap. Also, long-term (>20 years) time series
investigations were sparsely applied. Cloud-based computing platforms, such as GEE,
will thereby likely accelerate both analyses on larger scales and facilitate long-term
time series studies.
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areas where no data from the ArcticDEM was available. The GLIMS glacier database
was used to remove glaciers from the analysis. Lastly, details on the stored carbon
content in Arctic soils was accessed via the SoilGrids250m 2.0 - Soil OCS dataset.
Although the suggested data and applied methods offer a useful initial impression
on circum-Arctic permafrost and carbon loss, there are several uncertainties in both
the methodology and the data. First, data on different environmental parameters are
available at different spatial resolutions. Especially the permafrost fraction, ALT and
soil OCS is provided with relatively coarse pixel sizes, making a pixel-wise analysis at
the original resolution (10 m) of the S1 GRD data in IW swath mode difficult. As a
compromise, numbers were computed for 200 m coastal segments. Moreover, spatial
variations in data quality are reported for all data sets. While the spatial resolution of
applied surface elevation data was feasible, many artefacts were observed in Arctic
coastal environments. Flat terrain in proximity to coastlines were often associated
with elevation values below 0 m. In order to estimate the local heights of the shoreline,
the 5th and 95th percentile values of surface elevation within one coastal segment
were interpreted as the representative local sea and terrestrial elevation levels. For
some regions, however, the sea area was fully masked, which further complicated
estimations on coastal elevations above the sea level. Furthermore, although glaciers
were masked out based on the GLIMS glacier database, small remaining glaciers
may have a significant effect on the volume estimations of lost permafrost. Also,
the estimated release of carbon stocks is limited to carbon content in soil depths
of 0 30 cm, as available in the SoilGrids250m 2.0 dataset. Therefore, the proposed
framework should be viewed as a first experimental outline in quantifying permafrost
loss and carbon releases as a consequence of eroding coastlines. Extensive and large
scale validation is needed for further verification of the estimated volume losses. In
order to generate more representative numbers on permafrost and carbon loss, data on
permafrost fraction, soil carbon, and ALT of higher spatial resolution is required. Also,
information on carbon stocks for deeper soil depths are required for more realistic
estimations on the release of carbon.

5.2 Future Challenges and Opportunities

This thesis presented a novel and potent approach in generating a high-quality
Arctic coastline product as well as quantifying annual coastal change rates on a circum-
Arctic scale and at a high spatial resolution. The applicability of the proposed data
and methods, however, strongly depends on the number of available satellite images.
The recent failure of the S1B satellite constitutes a further challenge due to a restricted
data availability until the launch of S1C. While large parts of noise, geolocation
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uncertainty, and backscatter ambiguities could be removed by working on annual
backscatter composites, some SAR specific challenges, such as geometric distortions
(foreshortening, layover, and shadow), may still impair the quality of the output
products in some regions. Analyses on Arctic coastal change were limited to areas with
more than ten satellite observations and less than 50% sea-ice cover duration per year.
Therefore, the analysis was restricted to 27% of the entire observed Arctic coastline. As
a continuous satellite mission, S1 provides high potential especially for future analysis.
Longer time series investigations allow for the quantification of coastal change rates
also for coastal environments, where annual erosion/build-up rates are relatively small.
By increasing the temporal observation window, annual erosion rates less the size of one
pixel (10 m) will eventually also become quantifiable. Moreover, by having lengthier
time series data, temporal windows for the computation of single composites could
be extended from one year to two or more years. This is especially valuable for areas
with poor data availability. At the same time, the variation in surface information
within one composite also increases with larger temporal observation windows. Also,
available S1 scenes were separated by their associated orbit direction (ascending or
descending). Both the DL-based high-quality coastline product and the CVA-based
coastal change analysis were based on data from the most frequent orbit direction
(ascending or descending) per pixel. However, a combination of both orbit directions
would greatly improve the overall amount of data per pixel and could therefore not
only improve the quality of the analysis, but also the extent of the coastal change
investigation. At the same time, the impact of combining scenes from different orbit
directions on the product quality should be further investigated.

While this thesis focused on utilizing SAR data derived from S1, combining SAR
imagery from different satellite sources constitutes a promising approach for future
analyses. In addition, combining different data types, e.g. SAR and optical data
could be another potent technique in increasing not only the temporal frequency
of observations, but also the diversity of available information per pixel. S2 and
Landsat here thereby particularly attractive sources of data due to the spatio-temporal
resolution of available imagery. While Landsat allows for longer time-series observations,
S2 features higher spatial resolution. At the same time, frequent cloud cover, sea-ice
contamination, and data gaps are remaining challenges when working with optical
datasets in Arctic environments (Figures 3.26 & 3.27). Nonetheless, combining data
from various satellites represents a viable strategy for enhancing the accuracy and
extent of the suggested coastal monitoring framework.

A global application of the proposed coastal observation framework seems plausible,
as the presented methods are not restricted to specific properties of Arctic environments.
However, and as mentioned earlier, additional training of the CNNs and further
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investigations of suitable threshold values in case of the CVA-based magnitude of
change maps for other regions are advised. Moreover, intersecting the extracted erosion
rates with high resolution geomorphological parameters, such as lithification stage
or ground ice content, may further help to improve our understanding of underlying
mechanics and drivers of coastal erosion. For accurate estimates of permafrost loss and
carbon release, environmental data of higher resolution are necessary. Additionally,
carbon content of deeper soil depths are required. Lastly, extensive validation of the
permafrost fraction, ALT, soil OCS and extracted erosion rates are highly recommended
for future investigations on the loss of permafrost and carbon release related to Arctic
coastal erosion. The degradation of permafrost has many effects on the environment
but also on human infrastructure and society. Widespread Arctic coastal erosion
and the associated release of previously stored organic carbon stocks are hereby
significant challenges we are currently facing and will likely continue to face in the
future. The proposed DL circum-Arctic coastline product and CVA-based coastal
change quantification may thereby constitute a relevant and important basis to address
this challenge.

162



Bibliography

Abbott, B. W., Jones, J. B., Schuur, E. A., Chapin III, F. S., Bowden, W. B., Bret-
Harte, M. S., . . . others (2016). Biomass offsets little or none of permafrost carbon
release from soils, streams, and wildfire: an expert assessment. Environmental
Research Letters, 11 (3), 034014.

Abis, B., & Brovkin, V. (2017). Environmental conditions for alternative tree-cover
states in high latitudes. Biogeosciences, 14 (3), 511 527.

Alaska Geobotany Center. (2012). Circumpolar Arctic Coastline and Treeline Bound-
ary. http://www.arcticatlas.org/maps/themes/cp/cpcoast. (Accessed on 10
February 2022)

Alaska Satellite Facility. (n.d.). Sentinel-1 Acquisition Maps. https://asf.alaska
.edu/data-sets/sar-data-sets/sentinel-1/sentinel-1-acquisition-maps/.
(Accessed on 10 February 2022)

Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A., Pershing,
A. J., & Thomas, A. C. (2018). Projected sea surface temperatures over the 21st
century: Changes in the mean, variability and extremes for large marine ecosystem
regions of Northern Oceans. Elementa: Science of the Anthropocene, 6 .

Alexandridis, T. K., Cherif, I., Kalogeropoulos, C., Monachou, S., Eskridge, K., &
Silleos, N. (2013). Rapid error assessment for quantitative estimations from Landsat
7 gap-filled images. Remote Sensing Letters, 4 (9), 920 928.

Alfred-Wegener-Institute. (n.d.-a). Changing Arctic Carbon cycle in the cOastal Ocean
Near-shore - CACOON. https://www.awi.de/forschung/geowissenschaften/
permafrostforschung/projekte/cacoon.html. (Accessed: February 26th 2021)

Alfred-Wegener-Institute. (n.d.-b). Modular Observation Solutions for Earth Sys-
tems MOSES. https://www.awi.de/en/science/geosciences/permafrost
-research/projects/moses.html. (Accessed: February 26th 2021)

Alfred-Wegener-Institute. (n.d.-c). PETA-CARB: Rapid Permafrost Thaw in a Warm-
ing Arctic and Impacts on the Soil Organic Carbon Pool. https://www.awi.de/
en/science/junior-groups/peta-carb.html. (Accessed: February 26th 2021)

Allison, I., Barry, R. G., & Goodison, B. E. (2001). Climate and cryosphere (CliC)
project science and co-ordination plan: version 1 (Vol. 114). Joint Planning Staff
for WCRP, World Meteorological Organization.

163



Bibliography

André, C., Ottlé, C., Royer, A., & Maignan, F. (2015). Land surface temperature
retrieval over circumpolar Arctic using SSM/I SSMIS and MODIS data. Remote
Sensing of Environment, 162 , 1 10.

Andresen, C. G., & Lougheed, V. L. (2015). Disappearing Arctic tundra ponds: Fine-
scale analysis of surface hydrology in drained thaw lake basins over a 65 year period
(1948 2013). Journal of Geophysical Research: Biogeosciences, 120 (3), 466 479.

Angelopoulos, M., Overduin, P. P., Miesner, F., Grigoriev, M. N., & Vasiliev, A. A.
(2020). Recent advances in the study of Arctic submarine permafrost. Permafrost
and Periglacial Processes, 31 (3), 442 453.

Anthony, K. W., Daanen, R., Anthony, P., von Deimling, T. S., Ping, C.-L., Chanton,
J. P., & Grosse, G. (2016). Methane emissions proportional to permafrost carbon
thawed in Arctic lakes since the 1950s. Nature Geoscience, 9 (9), 679 682.

Anthony, K. W., von Deimling, T. S., Nitze, I., Frolking, S., Emond, A., Daanen, R., . . .
Grosse, G. (2018). 21st-century modeled permafrost carbon emissions accelerated
by abrupt thaw beneath lakes. Nature communications, 9 (1), 1 11.

Antonova, S., Beck, I., Marx, S., Anders, K., Boike, J., & Höfle, B. (2019). PermaSAR:
Entwicklung einer Methode zur Detektion von Subsidenz in Permafrostgebieten mit
D-InSAR: Schlussbericht. TIB.

Antonova, S., Kääb, A., Heim, B., Langer, M., & Boike, J. (2016). Spatio-temporal
variability of X-band radar backscatter and coherence over the Lena River Delta,
Siberia. Remote Sensing of Environment, 182 , 169 191.

Antonova, S., Sudhaus, H., Strozzi, T., Zwieback, S., Kääb, A., Heim, B., . . . Boike, J.
(2018). Thaw subsidence of a yedoma landscape in northern Siberia, measured in
situ and estimated from TerraSAR-X interferometry. Remote Sensing, 10 (4), 494.

Arctic Development and Adaptation to Permafrost in Transition (ADAPT). (n.d.).
Permafrost 101. https://science.cen.ulaval.ca/adapt/communications/
permafrost101.php. (Accessed: Januar 6th 2023)

ArcticNet. (n.d.-a). ArcticNET - About us. https://arcticnet.ulaval.ca/vision
-and-mission/about-us. (Accessed: November 16th 2020)

ArcticNet. (n.d.-b). ArcticNet annual report 2019 / 2020. https://arcticnet.ulaval
.ca//pdf/media/arcticnet-ra-19-20-ang.pdf. (Accessed: October 28th 2020)

Arenson, L. U., & Jakob, M. (2015). Periglacial geohazard risks and ground temperature
increases. In Engineering geology for society and territory-volume 1 (pp. 233 237).
Springer.

Arenson, L. U., Kääb, A., & O’Sullivan, A. (2016). Detection and analysis of ground
deformation in permafrost environments. Permafrost and Periglacial Processes,
27 (4), 339 351.

Bai, X., Yang, J., Tao, B., & Ren, W. (2018). Spatio-Temporal Variations of Soil Active
Layer Thickness in Chinese Boreal Forests from 2000 to 2015. Remote Sensing,
10 (8), 1225.

164



Bibliography

Balser, A. W., Jones, J. B., & Gens, R. (2014). Timing of retrogressive thaw slump
initiation in the Noatak Basin, northwest Alaska, USA. Journal of Geophysical
Research: Earth Surface, 119 (5), 1106 1120.

Bansal, A., Kauffman, R. J., & Weitz, R. R. (1993). Comparing the modeling
performance of regression and neural networks as data quality varies: A business
value approach. Journal of Management Information Systems, 10 (1), 11 32.

Barnhart, K., Overeem, I., & Anderson, R. (2014, 09). The effect of changing sea ice
on the physical vulnerability of Arctic coasts. The Cryosphere, 8 (5), 1777 1799.
doi: 10.5194/tc-8-1777-2014

Barnhart, K. R., Miller, C. R., Overeem, I., & Kay, J. E. (2016). Mapping the future
expansion of Arctic open water. Nature Climate Change, 6 (3), 280 285.

Barron, C., Neis, P., & Zipf, A. (2014). A comprehensive framework for intrinsic
OpenStreetMap quality analysis. Transactions in GIS , 18 (6), 877 895.

Bartholome, E., & Belward, A. S. (2005). GLC2000: a new approach to global
land cover mapping from Earth observation data. International Journal of Remote
Sensing, 26 (9), 1959 1977.

Bartsch, A., Balzter, H., & George, C. (2009). The influence of regional surface soil
moisture anomalies on forest fires in Siberia observed from satellites. Environmental
Research Letters, 4 (4), 045021.

Bartsch, A., Grosse, G., Kääb, A., Westermann, S., Strozzi, T., Wiesmann, A., . . .
Goler, R. (2016). GlobPermafrost How space-based Earth observation supports
understanding of permafrost. In Proceedings of the esa living planet symposium,
prague, czech republic (pp. 9 13).

Bartsch, A., Höfler, A., Kroisleitner, C., & Trofaier, A. M. (2016). Land cover mapping
in northern high latitude permafrost regions with satellite data: Achievements and
remaining challenges. Remote Sensing, 8 (12), 979.

Bartsch, A., Leibman, M., Strozzi, T., Khomutov, A., Widhalm, B., Babkina, E.,
. . . Bergstedt, H. (2019). Seasonal progression of ground displacement identified
with satellite radar interferometry and the impact of unusually warm conditions on
permafrost at the Yamal Peninsula in 2016. Remote Sensing, 11 (16), 1865.

Bartsch, A., Ley, S., Nitze, I., Pointner, G., & Vieira, G. (2020). Feasibility study for
the application of Synthetic Aperture Radar for coastal erosion rate quantification
across the Arctic. Frontiers in Environmental Science, 8 , 143.

Bartsch, A., Obu, J., Westermann, S., & Strozzi, T. (2021). CCI+ Phase 1 New ECVS
Permafrost D4.3 PRODUCT USER GUIDE (PUG) Version 3.0. https://climate
.esa.int/media/documents/CCI_PERMA_PUG_v3.0.pdf. (Accessed: January 14th

2023)

Bartsch, A., Pointner, G., Ingeman-Nielsen, T., & Lu, W. (2020). Towards Circumpolar
Mapping of Arctic Settlements and Infrastructure Based on Sentinel-1 and Sentinel-2.
Remote Sensing, 12 (15), 2368.

165



Bibliography

Bartsch, A., Pointner, G., Leibman, M. O., Dvornikov, Y. A., Khomutov, A. V., &
Trofaier, A. M. (2017). Circumpolar mapping of ground-fast lake ice. Frontiers in
Earth Science, 5 , 12.

Batbaatar, J., Gillespie, A. R., Sletten, R. S., Mushkin, A., Amit, R., Liaudat, D. T.,
. . . Petrie, G. (2020). Toward the Detection of Permafrost Using Land-Surface
Temperature Mapping. Remote Sensing, 12 (4), 695.

Baumhoer, C. A., Dietz, A. J., Kneisel, C., & Kuenzer, C. (2019). Automated
extraction of antarctic glacier and ice shelf fronts from sentinel-1 imagery using deep
learning. Remote Sensing, 11 (21), 2529.

Baumhoer, C. A., Dietz, A. J., Kneisel, C., Paeth, H., & Kuenzer, C. (2020). Driving
Forces of Circum-Antarctic Glacier and Ice Shelf Front Retreat over the Last Two
Decades. The Cryosphere Discussions, 2020 , 1 30.

Baumhoer, C. A., Dietz, A. J., Kneisel, C., Paeth, H., & Kuenzer, C. (2021).
Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over
the last two decades. The Cryosphere, 15 (5), 2357 2381.

Beck, I., Ludwig, R., Bernier, M., Lévesque, E., & Boike, J. (2015). Assessing
permafrost degradation and land cover changes (1986 2009) using remote sensing
data over Umiujaq, sub-arctic Québec. Permafrost and Periglacial Processes, 26 (2),
129 141.

Beighley, R., Eggert, K., Wilson, C., Rowland, J., & Lee, H. (2015). A hydrologic
routing model suitable for climate-scale simulations of arctic rivers: application to
the Mackenzie River Basin. Hydrological Processes, 29 (12), 2751 2768.

Belshe, E., Schuur, E., & Grosse, G. (2013). Quantification of upland thermokarst
features with high resolution remote sensing. Environmental Research Letters, 8 (3),
035016.

Bennett, J. (2010). OpenStreetMap: Be your own cartographer. Packt Publishing Ltd.

Bernard-Grand’Maison, C., & Pollard, W. (2018). An estimate of ice wedge volume
for a High Arctic polar desert environment, Fosheim Peninsula, Ellesmere Island.
The Cryosphere, 12 (11), 3589 3604.

Bernhardt, H., Reiss, D., Hiesinger, H., Hauber, E., & Johnsson, A. (2017). Debris
flow recurrence periods and multi-temporal observations of colluvial fan evolution
in central Spitsbergen (Svalbard). Geomorphology, 296 , 132 141.

Bertone, A., Zucca, F., Marin, C., Notarnicola, C., Cuozzo, G., Krainer, K., . . . Seppi,
R. (2019). An unsupervised method to detect rock glacier activity by using Sentinel-1
SAR interferometric coherence: a regional-scale study in the eastern European Alps.
Remote Sensing, 11 (14), 1711.

Bibi, S., Wang, L., Li, X., Zhang, X., & Chen, D. (2019). Response of groundwater
storage and recharge in the Qaidam Basin (Tibetan Plateau) to climate variations
from 2002 to 2016. Journal of Geophysical Research: Atmospheres, 124 (17-18),
9918 9934.

166



Bibliography

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning
(Vol. 4). Springer.

Biskaborn, B. K., Lanckman, J.-P., Lantuit, H., Elger, K., Dmitry, S., William, C.,
& Vladimir, R. (2015). The new database of the Global Terrestrial Network for
Permafrost (GTN-P). Earth System Science Data, 7 , 245 259.

Bockheim, J. G. (2014). Distribution, properties and origin of viscous-flow features in
the McMurdo Dry Valleys, Antarctica. Geomorphology, 204 , 114 122.

Bohn, T. J., Melton, J. R., Ito, A., Kleinen, T., Spahni, R., Stocker, B., . . . others
(2015). WETCHIMP-WSL: intercomparison of wetland methane emissions models
over West Siberia. Biogeosciences, 12 (11), 3321 3349.

Boike, J., Grau, T., Heim, B., Günther, F., Langer, M., Muster, S., . . . Lange, S.
(2016). Satellite-derived changes in the permafrost landscape of central Yakutia,
2000 2011: Wetting, drying, and fires. Global and Planetary Change, 139 , 116 127.

Boyle, S. A., Kennedy, C. M., Torres, J., Colman, K., Pérez-Estigarribia, P. E., &
Noé, U. (2014). High-resolution satellite imagery is an important yet underutilized
resource in conservation biology. PLoS One, 9 (1), e86908.

Brenning, A. (2009). Benchmarking classifiers to optimally integrate terrain analysis
and multispectral remote sensing in automatic rock glacier detection. Remote
Sensing of Environment, 113 (1), 239 247.

Brenning, A., Long, S., & Fieguth, P. (2012). Detecting rock glacier flow structures
using Gabor filters and IKONOS imagery. Remote Sensing of environment, 125 ,
227 237.

Brenning, A., Peña, M., Long, S., & Soliman, A. (2012). Thermal remote sensing
of ice-debris landforms using ASTER: an example from the Chilean Andes. The
Cryosphere, 6 (2), 367.

Broderick, D. E., Frey, K. E., Rogan, J., Alexander, H. D., & Zimov, N. S. (2015).
Estimating upper soil horizon carbon stocks in a permafrost watershed of Northeast
Siberia by integrating field measurements with Landsat-5 TM and WorldView-2
satellite data. GIScience & Remote Sensing, 52 (2), 131 157.

Brooker, A., Fraser, R. H., Olthof, I., Kokelj, S. V., & Lacelle, D. (2014). Mapping the
activity and evolution of retrogressive thaw slumps by tasselled cap trend analysis
of a Landsat satellite image stack. Permafrost and Periglacial Processes, 25 (4),
243 256.

Brothers, L. L., Hart, P. E., & Ruppel, C. D. (2012). Minimum distribution of
subsea ice-bearing permafrost on the US Beaufort Sea continental shelf. Geophysical
research letters, 39 (15).

Brown, D., Jorgenson, M. T., Kielland, K., Verbyla, D. L., Prakash, A., & Koch, J. C.
(2016). Landscape effects of wildfire on permafrost distribution in interior Alaska
derived from remote sensing. Remote Sensing, 8 (8), 654.

167



Bibliography

Brown, J., Ferrians, O., Heginbottom, J., & Melnikov, E. (2002). Circum-Arctic map of
permafrost and ground-ice conditions, version 2. Boulder, Colorado USA, National
Snow and Ice Data Center . (doi: https://doi.org/10.7265/skbg-kf16)

Brown, J., Hinkel, K. M., & Nelson, F. (2000). The circumpolar active layer monitoring
(CALM) program: research designs and initial results. Polar Geography, 24 (3),
166 258.

Brown, R. D., & Robinson, D. A. (2011). Northern Hemisphere spring snow cover
variability and change over 1922-2010 including an assessment of uncertainty. The
Cryosphere, 5 (1), 219.

Cao, B., Zhang, T., Wu, Q., Sheng, Y., Zhao, L., & Zou, D. (2019). Permafrost
zonation index map and statistics over the Qinghai Tibet Plateau based on field
evidence. Permafrost and Periglacial Processes, 30 (3), 178 194.

Carpino, O. A., Berg, A. A., Quinton, W. L., & Adams, J. R. (2018). Climate
change and permafrost thaw-induced boreal forest loss in northwestern Canada.
Environmental Research Letters, 13 (8), 084018.

Carroll, M. L., & Loboda, T. V. (2018). The sign, magnitude and potential drivers of
change in surface water extent in Canadian tundra. Environmental Research Letters,
13 (4), 045009.

Central Institute for Meteorology and Geodynamics Section Climate Change Impacts.
(n.d.). COLD Yamal - COmbining remote sensing and field studies for assessment
of Landform Dynamics and permafrost state on Yamal. http://cold.zgis.net/.
(Accessed: October 28th 2020)

Chang, L., & Hanssen, R. F. (2015). Detection of permafrost sensitivity of the
Qinghai Tibet railway using satellite radar interferometry. International journal of
remote sensing, 36 (3), 691 700.

Chasmer, L., & Hopkinson, C. (2017). Threshold loss of discontinuous permafrost and
landscape evolution. Global change biology, 23 (7), 2672 2686.

Chasmer, L., Hopkinson, C., Veness, T., Quinton, W., & Baltzer, J. (2014). A
decision-tree classification for low-lying complex land cover types within the zone of
discontinuous permafrost. Remote Sensing of Environment, 143 , 73 84.

Chasmer, L., Quinton, W., Hopkinson, C., Petrone, R., & Whittington, P. (2011).
Vegetation canopy and radiation controls on permafrost plateau evolution within
the discontinuous permafrost zone, Northwest Territories, Canada. Permafrost and
Periglacial Processes, 22 (3), 199 213.

Chen, F., Lin, H., Li, Z., Chen, Q., & Zhou, J. (2012). Interaction between permafrost
and infrastructure along the Qinghai Tibet Railway detected via jointly analysis of
C-and L-band small baseline SAR interferometry. Remote sensing of environment,
123 , 532 540.

Chen, F., Lin, H., Zhou, W., Hong, T., & Wang, G. (2013). Surface deformation
detected by ALOS PALSAR small baseline SAR interferometry over permafrost en-

168



Bibliography

vironment of Beiluhe section, Tibet Plateau, China. Remote sensing of environment,
138 , 10 18.

Chen, J., Chen, X., Cui, X., & Chen, J. (2010). Change vector analysis in posterior
probability space: A new method for land cover change detection. IEEE Geoscience
and Remote Sensing Letters, 8 (2), 317 321.

Chen, J., Günther, F., Grosse, G., Liu, L., & Lin, H. (2018). Sentinel-1 InSAR
Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island,
Lena Delta. Remote Sensing, 10 (7), 1152.

Chen, W., Zhang, Y., Cihlar, J., Smith, S. L., & Riseborough, D. W. (2003). Changes
in soil temperature and active layer thickness during the twentieth century in a region
in western Canada. Journal of Geophysical Research: Atmospheres, 108 (D22).

Cheng, D., Meng, G., Cheng, G., & Pan, C. (2016). SeNet: Structured edge network
for sea land segmentation. IEEE Geoscience and Remote Sensing Letters, 14 (2),
247 251.

Cheng, G. (2005). Permafrost studies in the Qinghai Tibet plateau for road construc-
tion. Journal of Cold Regions Engineering, 19 (1), 19 29.

Chimitdorzhiev, T. N., Dagurov, P. N., Bykov, M. E., Dmitriev, A. V., & Kirbizhekova,
I. I. (2016). Comparison of ALOS PALSAR interferometry and field geodetic leveling
for marshy soil thaw/freeze monitoring, case study from the Baikal lake region,
Russia. Journal of Applied Remote Sensing, 10 (1), 016006.

Clarivate Analytics. (n.d.). Web of Science. https://apps.webofknowledge.com/.
(Accessed: September 13th 2020)

Climate and Cryosphere (CliC). (n.d.). About CliC. http://www.climate
-cryosphere.org/about. (Accessed: November 16th 2020)

Coch, C., Ramage, J., Lamoureux, S., Meyer, H., Knoblauch, C., & Lantuit, H. (2020).
Spatial variability of dissolved organic carbon, solutes, and suspended sediment
in disturbed Low Arctic coastal watersheds. Journal of Geophysical Research:
Biogeosciences, 125 (2), e2019JG005505.

Cohen, D., Lee, T. B., & Sklar, D. (2004). Precalculus: A Problems-Oriented Approach.
Cengage Learning.

Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D.,
. . . others (2014). Recent Arctic amplification and extreme mid-latitude weather.
Nature geoscience, 7 (9), 627 637.

Connon, R. F., Quinton, W. L., Craig, J. R., & Hayashi, M. (2014). Changing
hydrologic connectivity due to permafrost thaw in the lower Liard River valley,
NWT, Canada. Hydrological Processes, 28 (14), 4163 4178.

Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H., & Fritz, M. (2018). Coastal
erosion of permafrost soils along the Yukon Coastal Plain and fluxes of organic carbon
to the Canadian Beaufort Sea. Journal of Geophysical Research: Biogeosciences,
123 (2), 406 422.

169



Bibliography

Crawford, A., Stroeve, J., Smith, A., & Jahn, A. (2021). Arctic open-water periods are
projected to lengthen dramatically by 2100. Communications Earth & Environment,
2 (1), 1 10.

Crowell, S. M., Randolph Kawa, S., Browell, E. V., Hammerling, D. M., Moore, B.,
Schaefer, K., & Doney, S. C. (2018). On the ability of space-based passive and
active remote sensing observations of CO2 to detect flux perturbations to the carbon
cycle. Journal of Geophysical Research: Atmospheres, 123 (2), 1460 1477.

Cunliffe, A. M., Tanski, G., Radosavljevic, B., Palmer, W. F., Sachs, T., Lantuit, H.,
. . . Myers-Smith, I. H. (2019). Rapid retreat of permafrost coastline observed with
aerial drone photogrammetry. The Cryosphere, 13 , 1513 1528.

Curasi, S. R., Loranty, M. M., & Natali, S. M. (2016). Water track distribution
and effects on carbon dioxide flux in an eastern Siberian upland tundra landscape.
Environmental Research Letters, 11 (4), 045002.

Davidson, S. J., Santos, M. J., Sloan, V. L., Watts, J. D., Phoenix, G. K., Oechel,
W. C., & Zona, D. (2016). Mapping Arctic tundra vegetation communities using
field spectroscopy and multispectral satellite data in North Alaska, USA. Remote
Sensing, 8 (12), 978.

Department of Remote Sensing - University of Würzburg. (2023). Permafrost Research.
https://permafrost.remote-sensing.org/. (Accessed: January 14th 2023)

Department of the Interior - U.S. Geological Survey. (2022). Landsat 8-9 Collection
2 (C2) Level 2 Science Product (L2SP) Guide. https://d9-wret.s3.us-west
-2.amazonaws.com/assets/palladium/production/s3fs-public/media/files/
LSDS-1619_Landsat-8-9-C2-L2-ScienceProductGuide-v4.pdf. (Accessed:
January 14th 2023)

Dewi, R. S., Bijker, W., & Stein, A. (2017). Change vector analysis to monitor the
changes in fuzzy shorelines. Remote sensing, 9 (2), 147.

Diepenbroek, M., Grobe, H., Reinke, M., Schindler, U., Schlitzer, R., Sieger, R., &
Wefer, G. (2002). PANGAEA an information system for environmental sciences.
Computers & Geosciences, 28 (10), 1201 1210.

Dietz, A. J., Kuenzer, C., & Dech, S. (2015). Global SnowPack: a new set of snow
cover parameters for studying status and dynamics of the planetary snow cover
extent. Remote sensing letters, 6 (11), 844 853.

Dini, B., Daout, S., Manconi, A., & Loew, S. (2019). Classification of slope processes
based on multitemporal DInSAR analyses in the Himalaya of NW Bhutan. Remote
Sensing of Environment, 233 , 111408.

Dlugokencky, E. J., Bruhwiler, L., White, J., Emmons, L., Novelli, P. C., Montzka,
S. A., . . . others (2009). Observational constraints on recent increases in the
atmospheric CH4 burden. Geophysical Research Letters, 36 (18).

Dorigo, W., Gruber, A., De Jeu, R., Wagner, W., Stacke, T., Loew, A., . . . others
(2015). Evaluation of the ESA CCI soil moisture product using ground-based
observations. Remote Sensing of Environment, 162 , 380 395.

170



Bibliography

Doxaran, D., Devred, E., & Babin, M. (2015). A 50% increase in the mass of terrestrial
particles delivered by the Mackenzie River into the Beaufort Sea (Canadian Arctic
Ocean) over the last 10 years. Biogeosciences, 12 (11), 3551 3565.

Doxaran, D., Ehn, J., Bélanger, S., Matsuoka, A., Hooker, S., & Babin, M. (2012).
Optical characterisation of suspended particles in the Mackenzie River plume (Cana-
dian Arctic Ocean) and implications for ocean colour remote sensing. Biogeosciences,
9 (8), 3213 3229.

Duan, L., Man, X., Kurylyk, B. L., Cai, T., & Li, Q. (2017). Distinguishing streamflow
trends caused by changes in climate, forest cover, and permafrost in a large watershed
in northeastern China. Hydrological Processes, 31 (10), 1938 1951.

Duguay, C. R., Zhang, T., Leverington, D. W., & Romanovsky, V. E. (2005). Satellite
remote sensing of permafrost and seasonally frozen ground. GEOPHYSICAL
MONOGRAPH-AMERICAN GEOPHYSICAL UNION , 163 , 91.

Dulamsuren, C., Klinge, M., Degener, J., Khishigjargal, M., Chenlemuge, T., Bat-
Enerel, B., . . . others (2016). Carbon pool densities and a first estimate of the
total carbon pool in the Mongolian forest-steppe. Global Change Biology, 22 (2),
830 844.

Duncan, B. N., Ott, L. E., Abshire, J. B., Brucker, L., Carroll, M. L., Carton, J.,
. . . others (2020). Space-Based Observations for Understanding Changes in the
Arctic-Boreal Zone. Reviews of Geophysics, 58 (1), e2019RG000652.

Dupeyrat, L., Hurault, B., Costard, F., Marmo, C., & Gautier, E. (2018). Satellite
image analysis and frozen cylinder experiments on thermal erosion of periglacial
fluvial islands. Permafrost and Periglacial Processes, 29 (2), 100 111.

Dvornikov, Y., Leibman, M., Heim, B., Bartsch, A., Herzschuh, U., Skorospekhova,
T., . . . others (2018). Terrestrial CDOM in lakes of Yamal peninsula: connection to
lake and lake catchment properties. Remote Sensing, 10 (2), 167.

Eckerstorfer, M., Malnes, E., & Christiansen, H. (2017). Freeze/thaw conditions at
periglacial landforms in Kapp Linné, Svalbard, investigated using field observations,
in situ, and radar satellite monitoring. Geomorphology, 293 , 433 447.

Ehret, G., Bousquet, P., Pierangelo, C., Alpers, M., Millet, B., Abshire, J. B., . . . others
(2017). MERLIN: A French-German space lidar mission dedicated to atmospheric
methane. Remote Sensing, 9 (10), 1052.

Ekman, M. (1996). A consistent map of the postglacial uplift of Fennoscandia. Terra
Nova, 8 (2), 158 165.

Elder, C. D., Thompson, D. R., Thorpe, A. K., Hanke, P., Walter Anthony, K. M.,
& Miller, C. E. (2020). Airborne mapping reveals emergent power law of arctic
methane emissions. Geophysical Research Letters, 47 (3), e2019GL085707.

Engram, M., Arp, C. D., Jones, B. M., Ajadi, O. A., & Meyer, F. J. (2018). Analyzing
floating and bedfast lake ice regimes across Arctic Alaska using 25 years of space-
borne SAR imagery. Remote sensing of environment, 209 , 660 676.

171



Bibliography

Epstein, H. E., Raynolds, M. K., Walker, D. A., Bhatt, U. S., Tucker, C. J., & Pinzon,
J. E. (2012). Dynamics of aboveground phytomass of the circumpolar Arctic tundra
during the past three decades. Environmental Research Letters, 7 (1), 015506.

Eriksen, H. Ø., Lauknes, T. R., Larsen, Y., Corner, G. D., Bergh, S. G., Dehls, J., &
Kierulf, H. P. (2017). Visualizing and interpreting surface displacement patterns
on unstable slopes using multi-geometry satellite SAR interferometry (2D InSAR).
Remote Sensing of Environment, 191 , 297 312.

ESA Communications. (2012). Sentinel-1: ESA’s Radar Observatory Mission
for GMES Operational Services. https://sentinel.esa.int/documents/247904/
349449/S1_SP-1322_1.pdf. (Accessed on 14 January 2022)

Eshqi Molan, Y., Kim, J.-W., Lu, Z., Wylie, B., & Zhu, Z. (2018). Modeling
wildfire-induced permafrost deformation in an alaskan boreal forest using InSAR
observations. Remote Sensing, 10 (3), 405.

Etzelmüller, B., Heggem, E. S. F., Sharkhuu, N., Frauenfelder, R., Kääb, A., &
Goulden, C. (2006). Mountain permafrost distribution modelling using a multi-
criteria approach in the Hövsgöl area, northern Mongolia. Permafrost and Periglacial
Processes, 17 (2), 91 104.

Etzelmüller, B., Ødegård, R. S., Berthling, I., & Sollid, J. L. (2001). Terrain
parameters and remote sensing data in the analysis of permafrost distribution and
periglacial processes: principles and examples from southern Norway. Permafrost
and Periglacial Processes, 12 (1), 79 92.

European Space Agency. (n.d.-a). Arctic Methane and Permafrost Chal-
lenge (AMPC). https://eo4society.esa.int/communities/scientists/
arctic-methane-and-permafrost/. (Accessed: November 28th 2020)

European Space Agency. (n.d.-b). Copernicus: Sentinel-1 - The SAR Imaging
Constellation for Land and Ocean Services. https://directory.eoportal.org/
web/eoportal/satellite-missions/c-missions/copernicus-sentinel-1. (Ac-
cessed: September 1st 2020)

European Space Agency. (n.d.-c). GlobPermafrost- A Service for Global Per-
mafrost Monitoring. http://due.esrin.esa.int/page_project161.php. (Ac-
cessed: November 16th 2020)

European Space Agency. (n.d.-d). Mission ends for Copernicus Sentinel-1B satel-
lite. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/
Sentinel-1/Mission_ends_for_Copernicus_Sentinel-1B_satellite. (Ac-
cessed on 29 November 2022)

European Space Agency. (n.d.-e). Observation Scenario Archive.
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/
observation-scenario/archive. (Accessed on 10 February 2022)

European Space Agency. (n.d.-f). Permafrost - Information System on Permafrost.
http://due.esrin.esa.int/page_project116.php. (Accessed: November 16th

2020)

172



Bibliography

European Space Agency. (n.d.-g). Permafrost is a phenomenon of the subsurface
thermal state and is defined as ground at or below the freezing point of water for
two or more years. https://climate.esa.int/en/projects/permafrost/about/.
(Accessed: September 11th 2020)

European Space Agency. (n.d.-h). Sentinel-2 Mission Details. https://earth.esa
.int/web/guest/missions/esa-operational-eo-missions/sentinel-2. (Ac-
cessed: September 1st 2020)

European Space Agency. (2016). Sentinel-2 User Handbook. https://sentinels
.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook. (Ac-
cessed on 14 January 2022)

European Space Agency. (2020). A NASA and ESA collaborative community initiative
on Arctic methane and permafrost. https://eo4society.esa.int/2020/09/01/
a-nasa-and-esa-collaborative-community-initiative-on-arctic-methane
-and-permafrost/. (Accessed: November 28th 2020)

European Space Agency, Sinergise. (2021). Copernicus Global Digital Elevation Model.
Distributed by OpenTopography. https://doi.org/10.5069/G9028PQB. NERC
EDS Centre for Environmental Data Analysis. (Accessed: November 14th 2022)

Euskirchen, E., McGUIRE, A. D., Kicklighter, D. W., Zhuang, Q., Clein, J. S.,
Dargaville, R., . . . others (2006). Importance of recent shifts in soil thermal
dynamics on growing season length, productivity, and carbon sequestration in
terrestrial high-latitude ecosystems. Global Change Biology, 12 (4), 731 750.

Evans, S. G., Ge, S., Voss, C. I., & Molotch, N. P. (2018). The role of frozen soil in
groundwater discharge predictions for warming alpine watersheds. Water Resources
Research, 54 (3), 1599 1615.

FAO, IIASA, ISRIC, ISSCAS, & JRC. (2012). Harmonized World Soil
Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Aus-
tria. http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil
-database/HTML/HWSD_Data.html?sb=4. (Accessed: September 11th 2020)

FAO, IIASA, ISRIC, ISSCAS, & JRC. (2020). Harmonized World
Soil Database v 1.2. http://www.fao.org/soils-portal/soil-survey/soil
-maps-and-databases/harmonized-world-soil-database-v12/en/. (Accessed:
September 11th 2020)

Farquharson, L., Mann, D. H., Grosse, G., Jones, B. M., & Romanovsky, V. (2016).
Spatial distribution of thermokarst terrain in Arctic Alaska. Geomorphology, 273 ,
116 133.

Farquharson, L. M., Mann, D., Swanson, D., Jones, B., Buzard, R., & Jordan, J.
(2018). Temporal and spatial variability in coastline response to declining sea-ice in
northwest Alaska. Marine Geology, 404 , 71 83.

Farquharson, L. M., Romanovsky, V. E., Cable, W. L., Walker, D. A., Kokelj, S. V.,
& Nicolsky, D. (2019). Climate change drives widespread and rapid thermokarst
development in very cold permafrost in the Canadian High Arctic. Geophysical
Research Letters, 46 (12), 6681 6689.

173



Bibliography

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., . . . others
(2007). The shuttle radar topography mission. Reviews of Geophysics, 45 (2).

Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters,
27 (8), 861 874.

Fichot, C. G., Kaiser, K., Hooker, S. B., Amon, R. M., Babin, M., Bélanger, S., . . .
Benner, R. (2013). Pan-Arctic distributions of continental runoff in the Arctic
Ocean. Scientific reports, 3 (1), 1 6.

Finger Higgens, R., Chipman, J., Lutz, D., Culler, L., Virginia, R., & Ogden, L. (2019).
Changing lake dynamics indicate a drier Arctic in Western Greenland. Journal of
Geophysical Research: Biogeosciences, 124 (4), 870 883.

Flanders Marine Institute. (2018). IHO Sea Areas, version 3. https://www
.marineregions.org/. doi: 10.7265/N5V98602

Flessa, H., Rodionov, A., Guggenberger, G., Fuchs, H., Magdon, P., Shibistova, O., . . .
Blodau, C. (2008). Landscape controls of CH4 fluxes in a catchment of the forest
tundra ecotone in northern Siberia. Global Change Biology, 14 (9), 2040 2056.

Flores, S. E., & Yool, S. R. (2007). Sensitivity of change vector analysis to land
cover change in an arid ecosystem. International Journal of Remote Sensing, 28 (5),
1069 1088.

Forbes, B. C., Fauria, M. M., & Zetterberg, P. (2010). Russian Arctic warming and
‘greening’are closely tracked by tundra shrub willows. Global Change Biology, 16 (5),
1542 1554.

Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., Weber, U., &
Carvalhais, N. (2015). Codominant water control on global interannual variability
and trends in land surface phenology and greenness. Global change biology, 21 (9),
3414 3435.

Forkel, M., Thonicke, K., Beer, C., Cramer, W., Bartalev, S., & Schmullius, C. (2012).
Extreme fire events are related to previous-year surface moisture conditions in
permafrost-underlain larch forests of Siberia. Environmental Research Letters, 7 (4),
044021.

Fouest, V. L., Matsuoka, A., Manizza, M., Shernetsky, M., Tremblay, B., & Babin,
M. (2018). Towards an assessment of riverine dissolved organic carbon in surface
waters of the western Arctic Ocean based on remote sensing and biogeochemical
modeling. Biogeosciences, 15 (5), 1335 1346.

Fraser, R. H., Kokelj, S. V., Lantz, T. C., McFarlane-Winchester, M., Olthof, I., &
Lacelle, D. (2018). Climate sensitivity of high Arctic permafrost terrain demonstrated
by widespread ice-wedge thermokarst on Banks Island. Remote Sensing, 10 (6), 954.

Fraser, R. H., Olthof, I., Kokelj, S. V., Lantz, T. C., Lacelle, D., Brooker, A., . . .
Schwarz, S. (2014). Detecting landscape changes in high latitude environments using
landsat trend analysis: 1. Visualization. Remote Sensing, 6 (11), 11533 11557.

174



Bibliography

Freitas, P., Vieira, G., Canário, J., Folhas, D., & Vincent, W. F. (2019). Identification
of a Threshold Minimum Area for Reflectance Retrieval from Thermokarst Lakes
and Ponds Using Full-Pixel Data from Sentinel-2. Remote Sensing, 11 (6), 657.

Friedl, M. A., McIver, D. K., Hodges, J. C., Zhang, X. Y., Muchoney, D., Strahler,
A. H., . . . others (2002). Global land cover mapping from MODIS: algorithms and
early results. Remote sensing of Environment, 83 (1-2), 287 302.

Fritz, M., Vonk, J. E., & Lantuit, H. (2017). Collapsing arctic coastlines. Nature
Climate Change, 7 (1), 6 7.

Frohn, R. C., Hinkel, K. M., & Eisner, W. R. (2005). Satellite remote sensing
classification of thaw lakes and drained thaw lake basins on the North Slope of
Alaska. Remote sensing of environment, 97 (1), 116 126.

Frost, G. V., Christopherson, T., Jorgenson, M. T., Liljedahl, A. K., Macander, M. J.,
Walker, D. A., & Wells, A. F. (2018). Regional patterns and asynchronous onset
of ice-wedge degradation since the Mid-20th Century in Arctic Alaska. Remote
Sensing, 10 (8), 1312.

Frost, G. V., & Epstein, H. E. (2014). Tall shrub and tree expansion in Siberian
tundra ecotones since the 1960s. Global change biology, 20 (4), 1264 1277.

Frost, G. V., Epstein, H. E., & Walker, D. A. (2014). Regional and landscape-scale
variability of Landsat-observed vegetation dynamics in northwest Siberian tundra.
Environmental Research Letters, 9 (2), 025004.

Fuchs, M., Grosse, G., Strauss, J., Günther, F., Grigoriev, M., Maximov, G. M., &
Hugelius, G. (2018). Carbon and nitrogen pools in thermokarst-affected permafrost
landscapes in Arctic Siberia. Biogeosciences, 15 (3), 953 971.

Gagarin, L., Wu, Q., Melnikov, A., Volgusheva, N., Tananaev, N., Jin, H., . . . Zhizhin,
V. (2020). Morphometric Analysis of Groundwater Icings: Intercomparison of
Estimation Techniques. Remote Sensing, 12 (4), 692.

Gallerman, T., Haas, U., Teipel, U., von Poschinger, A., Wagner, B., Mahr, M.,
& Bäse, F. (2017). Permafrost Messstation am Zugspitzgipfel: Ergebnisse und
Modellberechnungen. Bayerisches Landesamt für Umwelt.

Gangodagamage, C., Rowland, J. C., Hubbard, S. S., Brumby, S. P., Liljedahl, A. K.,
Wainwright, H., . . . others (2014). Extrapolating active layer thickness measurements
across Arctic polygonal terrain using LiDAR and NDVI data sets. Water resources
research, 50 (8), 6339 6357.

Gao, L., Liao, J., & Shen, G. (2013). Monitoring lake-level changes in the Qinghai
Tibetan Plateau using radar altimeter data (2002 2012). Journal of Applied Remote
Sensing, 7 (1), 073470.

German Aerospace Centre (DLR). (n.d.). MERLIN - Die deutsch-französische
Klimamission. https://www.dlr.de/rd/en/desktopdefault.aspx/tabid-2440/
3586_read-31672/. (Accessed: February 20th 2021)

175



Bibliography

Gibson, C. M., Chasmer, L. E., Thompson, D. K., Quinton, W. L., Flannigan, M. D.,
& Olefeldt, D. (2018). Wildfire as a major driver of recent permafrost thaw in
boreal peatlands. Nature communications, 9 (1), 1 9.

Gisnås, K., Etzelmüller, B., Farbrot, H., Schuler, T., & Westermann, S. (2013).
CryoGRID 1.0: Permafrost distribution in Norway estimated by a spatial numerical
model. Permafrost and Periglacial Processes, 24 (1), 2 19.

GLIMS Consortium. (2005). GLIMS Glacier Database, Version 1. https://nsidc
.org/data/NSIDC-0272/versions/1. NASA National Snow and Ice Data Center
Distributed Active Archive Center. doi: 10.7265/N5V98602

Godin, E., Osinski, G. R., Harrison, T. N., Pontefract, A., & Zanetti, M. (2019).
Geomorphology of Gullies at Thomas Lee Inlet, Devon Island, Canadian High Arctic.
Permafrost and Periglacial Processes, 30 (1), 19 34.

Gong, W., Darrow, M. M., Meyer, F. J., & Daanen, R. P. (2019). Reconstructing
movement history of frozen debris lobes in northern Alaska using satellite radar
interferometry. Remote Sensing of Environment, 221 , 722 740.

Google Developers. (n.d.-a). ArcticDEM Mosaic. https://developers.google.com/
earth-engine/datasets/catalog/UMN_PGC_ArcticDEM_V3_2m_mosaic#
description. (Accessed: January 14th 2023)

Google Developers. (n.d.-b). ArcticDEM Strips. https://developers.google.com/
earth-engine/datasets/catalog/UMN_PGC_ArcticDEM_V3_2m#citations. (Ac-
cessed: January 14th 2023)

Google Developers. (2021). Sentinel-1 Algorithms. https://developers.google.com/
earth-engine/guides/sentinel1. (Accessed on 14 January 2022)

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017).
Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote
sensing of Environment, 202 , 18 27.

Griffin, C. G., Frey, K. E., Rogan, J., & Holmes, R. M. (2011). Spatial and interannual
variability of dissolved organic matter in the Kolyma River, East Siberia, observed
using satellite imagery. Journal of geophysical research: Biogeosciences, 116 (G3).

Griffin, D., Zhao, X., McLinden, C. A., Boersma, F., Bourassa, A., Dammers, E., . . .
others (2019). High-resolution mapping of nitrogen dioxide with TROPOMI: First
results and validation over the Canadian oil sands. Geophysical Research Letters,
46 (2), 1049 1060.

Grosse, G., Goetz, S., McGuire, A. D., Romanovsky, V. E., & Schuur, E. A. (2016).
Changing permafrost in a warming world and feedbacks to the Earth system.
Environmental Research Letters, 11 (4), 040201.

Grosse, G., Schirrmeister, L., Kunitsky, V. V., & Hubberten, H.-W. (2005). The use
of CORONA images in remote sensing of periglacial geomorphology: an illustration
from the NE Siberian coast. Permafrost and periglacial processes, 16 (2), 163 172.

Grosse, G., Schirrmeister, L., Siegert, C., Kunitsky, V. V., Slagoda, E. A., Andreev,
A. A., & Dereviagyn, A. Y. (2007). Geological and geomorphological evolution of a

176



Bibliography

sedimentary periglacial landscape in Northeast Siberia during the Late Quaternary.
Geomorphology, 86 (1-2), 25 51.

Gruber, S., & Hoelzle, M. (2001). Statistical modelling of mountain permafrost
distribution: local calibration and incorporation of remotely sensed data. Permafrost
and Periglacial Processes, 12 (1), 69 77.

Günther, F., Overduin, P. P., Sandakov, A. V., Grosse, G., & Grigoriev, M. N. (2013).
Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea
region. Biogeosciences, 10 (6), 4297 4318.

Günther, F., Overduin, P. P., Yakshina, I. A., Opel, T., Baranskaya, A. V., & Grigoriev,
M. N. (2015). Observing Muostakh disappear: permafrost thaw subsidence and
erosion of a ground-ice-rich island in response to arctic summer warming and sea
ice reduction. The Cryosphere, 9 (1), 151 178.

Haas, A., Grosse, G., Heim, B., Schäfer-Neth, C., Laboor, S., Nitze, I., . . . Seifert,
F.-M. (2017). PerSYS Permafrost Information System Web-GIS: Visualization of
permafrost-related Remote Sensing products for ESA GlobPermafrost. In 2nd asian
conference on permafrost, hokkaido university, sapporo.

Hachem, S., Allard, M., & Duguay, C. (2009). Using the MODIS land surface
temperature product for mapping permafrost: an application to Northern Quebec
and Labrador, Canada. Permafrost and Periglacial Processes, 20 (4), 407 416.

Hachem, S., Duguay, C., & Allard, M. (2012). Comparison of MODIS-derived land
surface temperatures with ground surface and air temperature measurements in
continuous permafrost terrain. The Cryosphere, 6 (1), 51.

Hakkinen, S., Proshutinsky, A., & Ashik, I. (2008). Sea ice drift in the Arctic since
the 1950s. Geophysical Research Letters, 35 (19).

Hammerling, D. M., Kawa, S. R., Schaefer, K., Doney, S., & Michalak, A. M. (2015).
Detectability of CO2 flux signals by a space-based lidar mission. Journal of Geo-
physical Research: Atmospheres, 120 (5), 1794 1807.

Hao, J., Wu, T., Wu, X., Hu, G., Zou, D., Zhu, X., . . . others (2019). Investigation of
a small landslide in the Qinghai-Tibet Plateau by InSAR and absolute deformation
model. Remote Sensing, 11 (18), 2126.

Haq, M. A., & Baral, P. (2019). Study of permafrost distribution in Sikkim Himalayas
using Sentinel-2 satellite images and logistic regression modelling. Geomorphology,
333 , 123 136.

Hartley, I. P., Hill, T. C., Wade, T. J., Clement, R. J., Moncrieff, J. B., Prieto-Blanco,
A., . . . others (2015). Quantifying landscape-level methane fluxes in subarctic
Finland using a multiscale approach. Global change biology, 21 (10), 3712 3725.

Hayman, G., Bartsch, A., Prigent, C., Aires, F., Buchwitz, M., Burrows, J., . . .
others (2010). Wetland extent and methane dynamics: An overview of the ESA
ALANIS-methane project.

177



Bibliography

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the ieee conference on computer vision and pattern
recognition (pp. 770 778).

Heaton, J. (2016). An empirical analysis of feature engineering for predictive modeling.
In Southeastcon 2016 (pp. 1 6).

Heidler, K., Mou, L., Baumhoer, C., Dietz, A., & Zhu, X. X. (2021). HED-UNet:
Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline.
IEEE Transactions on Geoscience and Remote Sensing.

Heim, B., Abramova, E., Doerffer, R., Günther, F., Hölemann, J., Kraberg, A., . . .
others (2014). Ocean colour remote sensing in the southern Laptev Sea: evaluation
and applications. Biogeosciences, 11 (15), 4191 4210.

Heim, B., Bartsch, A., Elger, K., Lantuit, H., Boike, J., Muster, S., . . . others (2011).
ESA DUE Permafrost: An Earth observation (EO) permafrost monitoring system.
EARSeL eProceedings, 10 (2), 73 82.

Helbig, M., Wischnewski, K., Kljun, N., Chasmer, L. E., Quinton, W. L., Detto, M., &
Sonnentag, O. (2016). Regional atmospheric cooling and wetting effect of permafrost
thaw-induced boreal forest loss. Global Change Biology, 22 (12), 4048 4066.

Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda,
M., Blagotić, A., . . . others (2017). SoilGrids250m: Global gridded soil information
based on machine learning. PLoS one, 12 (2), e0169748.

Herzschuh, U., Pestryakova, L. A., Savelieva, L. A., Heinecke, L., Böhmer, T., Bisk-
aborn, B. K., . . . Birks, H. J. B. (2013). Siberian larch forests and the ion content
of thaw lakes form a geochemically functional entity. Nature Communications, 4 (1),
1 8.

Hinkel, K., Eisner, W., & Kim, C. (2017). Detection of tundra trail damage near
Barrow, Alaska using remote imagery. Geomorphology, 293 , 360 367.

Hinkel, K. M., Frohn, R., Nelson, F., Eisner, W., & Beck, R. (2005). Morphometric
and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic
Coastal Plain, Alaska. Permafrost and Periglacial Processes, 16 (4), 327 341.

Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurgerov, M. B., Fastie,
C. L., . . . others (2005). Evidence and implications of recent climate change in
northern Alaska and other arctic regions. Climatic change, 72 (3), 251 298.

Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E., Nelson,
F. E., . . . Luoto, M. (2018). Degrading permafrost puts Arctic infrastructure at
risk by mid-century. Nature communications, 9 (1), 1 9.

Högström, E., Heim, B., Bartsch, A., Bergstedt, H., & Pointner, G. (2018). Evaluation
of a MetOp ASCAT-Derived Surface Soil Moisture Product in Tundra Environments.
Journal of Geophysical Research: Earth Surface, 123 (12), 3190 3205.

Holloway, J. E., Lamoureux, S. F., Montross, S. N., & Lafrenière, M. J. (2016). Climate
and terrain characteristics linked to mud ejection occurrence in the Canadian High
Arctic. Permafrost and Periglacial Processes, 27 (2), 204 218.

178



Bibliography

Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., . . .
Hasekamp, O. (2018). Toward global mapping of methane with TROPOMI: First
results and intersatellite comparison to GOSAT. Geophysical Research Letters,
45 (8), 3682 3689.

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings
of the ieee conference on computer vision and pattern recognition (pp. 7132 7141).

Hu, J., Wang, Q., Li, Z., Zhao, R., & Sun, Q. (2016). Investigating the ground
deformation and source model of the Yangbajing geothermal field in Tibet, China
with the WLS InSAR technique. Remote Sensing, 8 (3), 191.

Hu, T., Zhao, T., Zhao, K., & Shi, J. (2019). A continuous global record of near-surface
soil freeze/thaw status from AMSR-E and AMSR2 data. International Journal of
Remote Sensing, 40 (18), 6993 7016.

Huang, C., Zan, X., Yang, X., & Zhang, S. (2016). Surface water change detection
using change vector analysis. In 2016 ieee international geoscience and remote
sensing symposium (igarss) (pp. 2834 2837).

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely
connected convolutional networks. In Proceedings of the ieee conference on computer
vision and pattern recognition (pp. 4700 4708).

Huang, L., Luo, J., Lin, Z., Niu, F., & Liu, L. (2020). Using deep learning to map
retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat
images. Remote Sensing of Environment, 237 , 111534.

Hugelius, G., Bockheim, J. G., Camill, P., Elberling, B., Grosse, G., Harden, J. W., . . .
others (2013). A new data set for estimating organic carbon storage to 3 m depth
in soils of the northern circumpolar permafrost region. Earth System Science Data
(Online), 5 (2).

Hugelius, G., Kuhry, P., Tarnocai, C., & Virtanen, T. (2010). Soil organic carbon
pools in a periglacial landscape: a case study from the central Canadian Arctic.
Permafrost and Periglacial Processes, 21 (1), 16 29.

Humlum, O., Instanes, A., & Sollid, J. L. (2003). Permafrost in Svalbard: a review of
research history, climatic background and engineering challenges. Polar research,
22 (2), 191 215.

International Permafrost Association. (n.d.-a). Circumpolar Active Layer Monitor-
ing Network (CALM). https://ipa.arcticportal.org/products/gtn-p/calm.
(Accessed: September 14th 2020)

International Permafrost Association. (n.d.-b). Thermal State of Permafrost (TSP).
https://ipa.arcticportal.org/products/gtn-p/tsp. (Accessed: November
16th 2020)

International Permafrost Association; Arctic Portal; Alfred-Wegener-Institut. (n.d.).
About GTN-P. https://gtnp.arcticportal.org/about-the-gtnp. (Accessed:
November 16th 2020)

179



Bibliography

Irrgang, A. M., Bendixen, M., Farquharson, L. M., Baranskaya, A. V., Erikson, L. H.,
Gibbs, A. E., . . . others (2022). Drivers, dynamics and impacts of changing Arctic
coasts. Nature Reviews Earth & Environment, 3 (1), 39 54.

Irrgang, A. M., Lantuit, H., Manson, G. K., Günther, F., Grosse, G., & Overduin,
P. P. (2018). Variability in rates of coastal change along the Yukon coast, 1951 to
2015. Journal of Geophysical Research: Earth Surface, 123 (4), 779 800.

Isaev, V., Koshurnikov, A., Pogorelov, A., Amangurov, R., Podchasov, O., Sergeev, D.,
. . . Kioka, A. (2019). Cliff retreat of permafrost coast in south-west Baydaratskaya
Bay, Kara Sea, during 2005 2016. Permafrost and Periglacial Processes, 30 (1),
35 47.

Iwahana, G., Harada, K., Uchida, M., Tsuyuzaki, S., Saito, K., Narita, K., . . . Hinzman,
L. D. (2016). Geomorphological and geochemistry changes in permafrost after the
2002 tundra wildfire in Kougarok, Seward Peninsula, Alaska. Journal of Geophysical
Research: Earth Surface, 121 (9), 1697 1715.

Iwahana, G., Uchida, M., Liu, L., Gong, W., Meyer, F. J., Guritz, R., . . . Hinzman, L.
(2016). InSAR detection and field evidence for thermokarst after a tundra wildfire,
using ALOS-PALSAR. Remote Sensing, 8 (3), 218.

Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B., Stavert, A. R.,
. . . Tsuruta, A. (2020). Increasing anthropogenic methane emissions arise equally
from agricultural and fossil fuel sources. Environmental Research Letters, 15 (7),
071002.

Jagdhuber, T., Stockamp, J., Hajnsek, I., & Ludwig, R. (2014). Identification of soil
freezing and thawing states using SAR polarimetry at C-band. Remote Sensing,
6 (3), 2008 2023.

Janke, J. R., Ng, S., & Bellisario, A. (2017). An inventory and estimate of water stored
in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua
River Basin, Chile. Geomorphology, 296 , 142 152.

Jepsen, S. M., Walvoord, M. A., Voss, C. I., & Rover, J. (2016). Effect of permafrost
thaw on the dynamics of lakes recharged by ice-jam floods: case study of Yukon
Flats, Alaska. Hydrological Processes, 30 (11), 1782 1795.

Jia, Y., Kim, J.-W., Shum, C., Lu, Z., Ding, X., Zhang, L., . . . others (2017).
Characterization of active layer thickening rate over the northern Qinghai-Tibetan
plateau permafrost region using ALOS interferometric synthetic aperture radar data,
2007 2009. Remote Sensing, 9 (1), 84.

Jones, A., Stolbovay, V., Tarnocai, C., Broll, G., Spaargaren, O., Montanarella, L., et
al. (2009). Soil atlas of the northern circumpolar region. European Commission.

Jones, B. M., Arp, C. D., Jorgenson, M. T., Hinkel, K. M., Schmutz, J. A., & Flint,
P. L. (2009). Increase in the rate and uniformity of coastline erosion in Arctic
Alaska. Geophysical Research Letters, 36 (3).

180



Bibliography

Jones, B. M., Baughman, C. A., Romanovsky, V. E., Parsekian, A. D., Babcock, E. L.,
Stephani, E., . . . Berg, E. E. (2016). Presence of rapidly degrading permafrost
plateaus in south-central Alaska. The Cryosphere, 10 (6), 2673 2692.

Jones, B. M., Farquharson, L. M., Baughman, C. A., Buzard, R. M., Arp, C. D., Grosse,
G., . . . others (2018). A decade of remotely sensed observations highlight complex
processes linked to coastal permafrost bluff erosion in the Arctic. Environmental
Research Letters, 13 (11), 115001.

Jones, B. M., Grosse, G., Arp, C., Jones, M., Anthony, K. W., & Romanovsky,
V. (2011). Modern thermokarst lake dynamics in the continuous permafrost zone,
northern Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences,
116 (G2).

Jones, B. M., Grosse, G., Arp, C. D., Miller, E., Liu, L., Hayes, D. J., & Larsen, C. F.
(2015). Recent Arctic tundra fire initiates widespread thermokarst development.
Scientific reports, 5 (1), 1 13.

Jones, B. M., Irrgang, A. M., Farquharson, L. M., Lantuit, H., Whalen, D., Ogorodov,
S., . . . others (2020). Coastal Permafrost Erosion. Arctic report card, 15 .

Jones, M. C., Grosse, G., Jones, B. M., & Walter Anthony, K. (2012). Peat ac-
cumulation in drained thermokarst lake basins in continuous, ice-rich permafrost,
northern Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences,
117 (G2).

Jones, M. K. W., Pollard, W. H., & Jones, B. M. (2019). Rapid initialization of
retrogressive thaw slumps in the Canadian high Arctic and their response to climate
and terrain factors. Environmental Research Letters, 14 (5), 055006.

Jørgensen, C. J., Johansen, K. M. L., Westergaard-Nielsen, A., & Elberling, B. (2015).
Net regional methane sink in High Arctic soils of northeast Greenland. Nature
Geoscience, 8 (1), 20 23.

Jorgenson, J. C., Jorgenson, M. T., Boldenow, M. L., & Orndahl, K. M. (2018).
Landscape change detected over a half century in the Arctic National Wildlife
Refuge using high-resolution aerial imagery. Remote Sensing, 10 (8), 1305.

Jorgenson, M., & Osterkamp, T. E. (2005). Response of boreal ecosystems to varying
modes of permafrost degradation. Canadian Journal of Forest Research, 35 (9),
2100 2111.

Jorgenson, M. T., Frost, G. V., & Dissing, D. (2018). Drivers of landscape changes in
coastal ecosystems on the Yukon-Kuskokwim Delta, Alaska. Remote Sensing, 10 (8),
1280.

Jorgenson, M. T., & Grosse, G. (2016). Remote sensing of landscape change in
permafrost regions. Permafrost and periglacial processes, 27 (4), 324 338.

Jorgenson, M. T., Harden, J., Kanevskiy, M., O’Donnell, J., Wickland, K., Ewing, S.,
. . . others (2013). Reorganization of vegetation, hydrology and soil carbon after
permafrost degradation across heterogeneous boreal landscapes. Environmental
Research Letters, 8 (3), 035017.

181



Bibliography

Juhls, B., Overduin, P. P., Hölemann, J., Hieronymi, M., Matsuoka, A., Heim, B.,
& Fischer, J. (2019). Dissolved organic matter at the fluvial marine transition in
the Laptev Sea using in situ data and ocean colour remote sensing. Biogeosciences,
16 (13), 2693 2713.

Jun, C., Ban, Y., & Li, S. (2014). Open access to Earth land-cover map. Nature,
514 (7523), 434 434.

Juszak, I., Erb, A. M., Maximov, T. C., & Schaepman-Strub, G. (2014). Arctic shrub
effects on NDVI, summer albedo and soil shading. Remote Sensing of Environment,
153 , 79 89.

Kääb, A. (2002). Monitoring high-mountain terrain deformation from repeated air-and
spaceborne optical data: examples using digital aerial imagery and ASTER data.
ISPRS Journal of Photogrammetry and remote sensing, 57 (1-2), 39 52.

Kääb, A. (2008). Remote sensing of permafrost-related problems and hazards.
Permafrost and periglacial processes, 19 (2), 107 136.

Kääb, A., Huggel, C., Fischer, L., Guex, S., Paul, F., Roer, I., . . . Weidmann,
Y. (2005). Remote sensing of glacier- and permafrost-related hazards in high
mountains: an overview. Natural Hazards and Earth System Sciences, 5 (4), 527 554.
Retrieved from https://nhess.copernicus.org/articles/5/527/2005/ doi:
10.5194/nhess-5-527-2005

Karlsson, J. M., Lyon, S. W., & Destouni, G. (2014). Temporal behavior of lake
size-distribution in a thawing permafrost landscape in northwestern Siberia. Remote
sensing, 6 (1), 621 636.

Kartoziia, A. (2019). Assessment of the ice wedge polygon current state by means of
UAV imagery analysis (Samoylov Island, the Lena Delta). Remote Sensing, 11 (13),
1627.

Kasprzak, M., Łopuch, M., Głowacki, T., & Milczarek, W. (2020). Evolution of
Near-Shore Outwash Fans and Permafrost Spreading Under Their Surface: A Case
Study from Svalbard. Remote Sensing, 12 (3), 482.

Kenyi, L. W., & Kaufmann, V. (2003). Estimation of rock glacier surface deformation
using SAR interferometry data. IEEE Transactions on Geoscience and Remote
Sensing, 41 (6), 1512 1515.

Kharuk, V. I., Ranson, K. J., Im, S. T., & Il’ya, A. P. (2015). Climate-induced
larch growth response within the central Siberian permafrost zone. Environmental
Research Letters, 10 (12), 125009.

Kharuk, V. I., Shushpanov, A. S., Im, S. T., & Ranson, K. J. (2016). Climate-
induced landsliding within the larch dominant permafrost zone of central Siberia.
Environmental research letters, 11 (4), 045004.

Kim, E., & England, A. (2003). A yearlong comparison of plot-scale and satellite
footprint-scale 19 and 37 GHz brightness of the Alaskan North Slope. Journal of
Geophysical Research: Atmospheres, 108 (D13).

182



Bibliography

Kim, Y., Kimball, J. S., Glassy, J. M., & Du, J. (2017). An extended global Earth
system data record on daily landscape freeze thaw status determined from satellite
passive microwave remote sensing. Earth System Science Data, 9 , 133 147.

Kim, Y., Kimball, J. S., Robinson, D., & Derksen, C. (2015). New satellite climate
data records indicate strong coupling between recent frozen season changes and
snow cover over high northern latitudes. Environmental Research Letters, 10 (8),
084004.

Kim, Y., Kimball, J. S., Zhang, K., & McDonald, K. C. (2012). Satellite detection of
increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications
for regional vegetation growth. Remote Sensing of Environment, 121 , 472 487.

Kizyakov, A., Khomutov, A., Zimin, M., Khairullin, R., Babkina, E., Dvornikov, Y.,
& Leibman, M. (2018). Microrelief associated with gas emission craters: Remote-
sensing and field-based study. Remote Sensing, 10 (5), 677.

Kizyakov, A., Zimin, M., Sonyushkin, A., Dvornikov, Y., Khomutov, A., & Leibman,
M. (2017). Comparison of gas emission crater geomorphodynamics on Yamal and
Gydan Peninsulas (Russia), based on repeat very-high-resolution stereopairs. Remote
Sensing, 9 (10), 1023.

Klein, B., & Rossin, D. (1999). Data quality in neural network models: effect of error
rate and magnitude of error on predictive accuracy. Omega, 27 (5), 569 582.

Klein, I., Gessner, U., Dietz, A. J., & Kuenzer, C. (2017). Global WaterPack A 250
m resolution dataset revealing the daily dynamics of global inland water bodies.
Remote sensing of environment, 198 , 345 362.

Klein, K. P., Lantuit, H., Heim, B., Fell, F., Doxaran, D., & Irrgang, A. M. (2019).
Long-term high-resolution sediment and sea surface temperature spatial patterns in
Arctic nearshore waters retrieved using 30-year landsat archive imagery. Remote
Sensing, 11 (23), 2791.

Kleinen, T., & Brovkin, V. (2018). Pathway-dependent fate of permafrost region
carbon. Environmental Research Letters, 13 (9), 094001.

Klinge, M., Dulamsuren, C., Erasmi, S., Karger, D. N., & Hauck, M. (2018). Cli-
mate effects on vegetation vitality at the treeline of boreal forests of Mongolia.
Biogeosciences, 15 (5), 1319 1333.

Kohnert, K., Juhls, B., Muster, S., Antonova, S., Serafimovich, A., Metzger, S., . . .
Sachs, T. (2018). Toward understanding the contribution of waterbodies to the
methane emissions of a permafrost landscape on a regional scale A case study from
the Mackenzie delta, Canada. Global change biology, 24 (9), 3976 3989.

Kokelj, S., Tunnicliffe, J., Lacelle, D., Lantz, T., Chin, K., & Fraser, R. (2015).
Increased precipitation drives mega slump development and destabilization of ice-
rich permafrost terrain, northwestern Canada. Global and Planetary Change, 129 ,
56 68.

Kokelj, S. V., & Jorgenson, M. (2013). Advances in thermokarst research. Permafrost
and Periglacial Processes, 24 (2), 108 119.

183



Bibliography

KoPf. (n.d.). KoPf Carbon in permafrost. http://www.kopf-permafrost.de/
index.php?id=36. (Accessed: February 26th 2021)

Koven, C. D., Lawrence, D. M., & Riley, W. J. (2015). Permafrost carbon- climate
feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen
dynamics. Proceedings of the National Academy of Sciences, 112 (12), 3752 3757.

Koven, C. D., Schuur, E., Schädel, C., Bohn, T., Burke, E., Chen, G., . . . others (2015).
A simplified, data-constrained approach to estimate the permafrost carbon climate
feedback. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 373 (2054), 20140423.

Kremer, M., Lewkowicz, A. G., Bonnaventure, P. P., & Sawada, M. C. (2011). Utility
of classification and regression tree analyses and vegetation in mountain permafrost
models, Yukon, Canada. Permafrost and Periglacial Processes, 22 (2), 163 178.

Kroisleitner, C., Bartsch, A., & Bergstedt, H. (2018). Circumpolar patterns of potential
mean annual ground temperature based on surface state obtained from microwave
satellite data. The Cryosphere, 12 (7), 2349 2370.

Kupilik, M., Witmer, F. D., MacLeod, E.-A., Wang, C., & Ravens, T. (2018). Gaussian
Process Regression for Arctic Coastal Erosion Forecasting. IEEE Transactions on
Geoscience and Remote Sensing, 57 (3), 1256 1264.

Landerer, F. W., Dickey, J. O., & Güntner, A. (2010). Terrestrial water budget of
the Eurasian pan-Arctic from GRACE satellite measurements during 2003 2009.
Journal of Geophysical Research: Atmospheres, 115 (D23).

Landmann, T., Schramm, M., Huettich, C., & Dech, S. (2013). MODIS-based change
vector analysis for assessing wetland dynamics in Southern Africa. Remote Sensing
Letters, 4 (2), 104 113.

Langaas, S. (1995). Completeness of the Digital Chart of the World (DCW) database.
UNEP/GRID-Arendal.

Langer, M., Westermann, S., & Boike, J. (2010). Spatial and temporal variations
of summer surface temperatures of wet polygonal tundra in Siberia-implications
for MODIS LST based permafrost monitoring. Remote Sensing of Environment,
114 (9), 2059 2069.

Langer, M., Westermann, S., Heikenfeld, M., Dorn, W., & Boike, J. (2013). Satellite-
based modeling of permafrost temperatures in a tundra lowland landscape. Remote
Sensing of Environment, 135 , 12 24.

Langford, Z. L., Kumar, J., Hoffman, F. M., Breen, A. L., & Iversen, C. M. (2019).
Arctic vegetation mapping using unsupervised training datasets and convolutional
neural networks. Remote Sensing, 11 (1), 69.

Lantuit, H. (2019, 09). Nunataryuk - Permafrost Thaw and the changing Arctic coast,
science for socioeconomic adaptation. In 5th yes congress.

Lantuit, H., Overduin, P. P., Couture, N., & Ødegård, R. (2008). Sensitivity of coastal
erosion to ground ice contents: an arctic-wide study based on the acd classification

184



Bibliography

of arctic coasts. In Proceedings of the 9 international conference on permafrostth
(pp. 1025 1029).

Lantuit, H., Overduin, P. P., Couture, N., Wetterich, S., Aré, F., Atkinson, D., . . .
others (2012). The Arctic coastal dynamics database: a new classification scheme
and statistics on Arctic permafrost coastlines. Estuaries and Coasts, 35 (2), 383 400.

Lantuit, H., & Pollard, W. (2008). Fifty years of coastal erosion and retrogressive
thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory,
Canada. Geomorphology, 95 (1-2), 84 102.

Lantz, T., & Turner, K. (2015). Changes in lake area in response to thermokarst
processes and climate in Old Crow Flats, Yukon. Journal of Geophysical Research:
Biogeosciences, 120 (3), 513 524.

Lara, M. J., Chipman, M. L., & Hu, F. S. (2019). Automated detection of thermoerosion
in permafrost ecosystems using temporally dense Landsat image stacks. Remote
Sensing of Environment, 221 , 462 473.

Lara, M. J., Genet, H., McGuire, A. D., Euskirchen, E. S., Zhang, Y., Brown, D. R.,
. . . Bolton, W. R. (2016). Thermokarst rates intensify due to climate change and
forest fragmentation in an Alaskan boreal forest lowland. Global Change Biology,
22 (2), 816 829.

Lara, M. J., Nitze, I., Grosse, G., Martin, P., & McGuire, A. D. (2018). Reduced
arctic tundra productivity linked with landform and climate change interactions.
Scientific Reports, 8 (1), 1 10.

Larue, F., Royer, A., De Sève, D., Langlois, A., Roy, A., & Brucker, L. (2017).
Validation of GlobSnow-2 snow water equivalent over Eastern Canada. Remote
Sensing of Environment, 194 , 264 277.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521 (7553),
436 444.

Li, C., Lu, H., Leung, L. R., Yang, K., Li, H., Wang, W., . . . Chen, Y. (2019).
Improving land surface temperature simulation in CoLM over the Tibetan Plateau
through fractional vegetation cover derived from a remotely sensed clumping index
and model-simulated leaf area index. Journal of Geophysical Research: Atmospheres,
124 (5), 2620 2642.

Li, R., Liu, W., Yang, L., Sun, S., Hu, W., Zhang, F., & Li, W. (2018). DeepUNet:
A deep fully convolutional network for pixel-level sea-land segmentation. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
11 (11), 3954 3962.

Li, X., Jin, H., He, R., Huang, Y., Wang, H., Luo, D., . . . others (2019). Effects of
forest fires on the permafrost environment in the northern Da Xing’anling (Hinggan)
mountains, Northeast China. Permafrost and Periglacial Processes, 30 (3), 163 177.

Li, X., Jin, R., Pan, X., Zhang, T., & Guo, J. (2012). Changes in the near-surface soil
freeze thaw cycle on the Qinghai-Tibetan Plateau. International Journal of Applied
Earth Observation and Geoinformation, 17 , 33 42.

185



Bibliography

Liang, L., Liu, Q., Liu, G., Li, H., & Huang, C. (2019). Accuracy Evaluation and
Consistency Analysis of Four Global Land Cover Products in the Arctic Region.
Remote Sensing, 11 (12), 1396.

Lighthill, M. J., & Lighthill, J. (2001). Waves in fluids. Cambridge university press.

Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V., Grosse, G.,
. . . others (2016). Pan-Arctic ice-wedge degradation in warming permafrost and its
influence on tundra hydrology. Nature Geoscience, 9 (4), 312 318.

Liu, J., Chen, J., & Cihlar, J. (2003). Mapping evapotranspiration based on remote
sensing: An application to Canada’s landmass. Water resources research, 39 (7).

Liu, J., Wang, S., Yu, S., Yang, D., & Zhang, L. (2009). Climate warming and growth
of high-elevation inland lakes on the Tibetan Plateau. Global and Planetary Change,
67 (3-4), 209 217.

Liu, L., Schaefer, K., Chen, A., Gusmeroli, A., Zebker, H., & Zhang, T. (2015).
Remote sensing measurements of thermokarst subsidence using InSAR. Journal of
Geophysical Research: Earth Surface, 120 (9), 1935 1948.

Liu, L., Schaefer, K., Gusmeroli, A., Grosse, G., Jones, B. M., Zhang, T., . . . Zebker,
H. A. (2014). Seasonal thaw settlement at drained thermokarst lake basins, Arctic
Alaska. Cryosphere, 8 , 815 826.

Liu, L., Zhang, T., & Wahr, J. (2010). InSAR measurements of surface deformation
over permafrost on the North Slope of Alaska. Journal of Geophysical Research:
Earth Surface, 115 (F3).

López-Martínez, J., Serrano, E., Schmid, T., Mink, S., & Linés, C. (2012). Periglacial
processes and landforms in the South Shetland Islands (northern Antarctic Peninsula
region). Geomorphology, 155 , 62 79.

Loranty, M. M., Natali, S. M., Berner, L. T., Goetz, S. J., Holmes, R. M., Davydov,
S. P., . . . Zimov, S. A. (2014). Siberian tundra ecosystem vegetation and carbon
stocks four decades after wildfire. Journal of Geophysical Research: Biogeosciences,
119 (11), 2144 2154.

Lorente, A., Borsdorff, T., Butz, A., Hasekamp, O., Schneider, A., Wu, L., . . . others
(2021). Methane retrieved from TROPOMI: improvement of the data product
and validation of the first 2 years of measurements. Atmospheric Measurement
Techniques, 14 (1), 665 684.

Lousada, M., Pina, P., Vieira, G., Bandeira, L., & Mora, C. (2018). Evaluation of the
use of very high resolution aerial imagery for accurate ice-wedge polygon mapping
(Adventdalen, Svalbard). Science of the Total Environment, 615 , 1574 1583.

Lu, X., & Zhuang, Q. (2011). Areal changes of land ecosystems in the Alaskan Yukon
River Basin from 1984 to 2008. Environmental Research Letters, 6 (3), 034012.

Luo, J., Niu, F., Lin, Z., Liu, M., & Yin, G. (2019). Recent acceleration of thaw
slumping in permafrost terrain of Qinghai-Tibet Plateau: An example from the
Beiluhe Region. Geomorphology, 341 , 79 85.

186



Bibliography

Luo, J., Yin, G., Niu, F., Lin, Z., & Liu, M. (2019). High spatial resolution modeling
of climate change impacts on permafrost thermal conditions for the Beiluhe Basin,
Qinghai-Tibet Plateau. Remote Sensing, 11 (11), 1294.

Lyons, E. A., Sheng, Y., Smith, L. C., Li, J., Hinkel, K. M., Lenters, J. D., & Wang,
J. (2013). Quantifying sources of error in multitemporal multisensor lake mapping.
International Journal of Remote Sensing, 34 (22), 7887 7905.

Lyu, Z., & Zhuang, Q. (2018). Quantifying the effects of snowpack on soil thermal
and carbon dynamics of the Arctic terrestrial ecosystems. Journal of Geophysical
Research: Biogeosciences, 123 (4), 1197 1212.

Mahoney, A. R., Eicken, H., Gaylord, A. G., & Gens, R. (2014). Landfast sea ice
extent in the Chukchi and Beaufort Seas: The annual cycle and decadal variability.
Cold Regions Science and Technology, 103 , 41 56.

Mair, V., Zischg, A. P., Lang, K., Tonidandel, D., Krainer, K., Kellerer-Pirklbauer,
A., . . . Böckli, L. (2011). PermaNET, Permafrost Long-term Monitoring Network.
International Research Society INTERPRAEVENT.

Malila, W. A. (1980). Change vector analysis: an approach for detecting forest changes
with Landsat. In Lars symposia (p. 385).

Mao, D., Wang, Z., Yang, H., Li, H., Thompson, J. R., Li, L., . . . Wu, J. (2018).
Impacts of climate change on Tibetan lakes: Patterns and processes. Remote Sensing,
10 (3), 358.

Marchand, N., Royer, A., Krinner, G., Roy, A., Langlois, A., & Vargel, C. (2018).
Snow-Covered Soil Temperature Retrieval in Canadian Arctic Permafrost Areas,
Using a Land Surface Scheme Informed with Satellite Remote Sensing Data. Remote
Sensing, 10 (11), 1703.

Marconcini, M., Fernandez-Prieto, D., Pinnock, S., Hayman, G., Helbert, J., & de
Leeuw, G. (2010). ALANIS: A Joint ESA-Ileaps Atmosphere-Land Interaction
Study over Boreal Eurasia. iLEAPS Newsletter , 10 , 28 33.

Meng, Y., Lan, H., Li, L., Wu, Y., & Li, Q. (2015). Characteristics of surface defor-
mation detected by X-band SAR Interferometry over Sichuan-Tibet grid connection
project area, China. Remote Sensing, 7 (9), 12265 12281.

Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed,
A., . . . others (2019). Chapter 3: Polar Regions. In Pörtner, H.O., Roberts, D.C.,
Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai,
M., Okem, A., Petzold, J., Rama, B., Weyer, N. (Eds.) IPCC Special Report on the
Ocean and Cryosphere in a Changing Climate. IPCC Intergovernmental Panel on
Climate Change (IPCC).

Mętrak, M., Szwarczewski, P., Bińka, K., Rojan, E., Karasiński, J., Górecki, G., &
Suska-Malawska, M. (2019). Late Holocene development of Lake Rangkul (Eastern
Pamir, Tajikistan) and its response to regional climatic changes. Palaeogeography,
Palaeoclimatology, Palaeoecology, 521 , 99 113.

187



Bibliography

Metsämäki, S., Pulliainen, J., Salminen, M., Luojus, K., Wiesmann, A., Solberg,
R., . . . Ripper, E. (2015). Introduction to GlobSnow Snow Extent products with
considerations for accuracy assessment. Remote Sensing of Environment, 156 ,
96 108.

Michaelides, R. J., Schaefer, K., Zebker, H. A., Parsekian, A., Liu, L., Chen, J.,
. . . Schaefer, S. R. (2019). Inference of the impact of wildfire on permafrost and
active layer thickness in a discontinuous permafrost region using the remotely sensed
active layer thickness (ReSALT) algorithm. Environmental Research Letters, 14 (3),
035007.

Mikola, J., Virtanen, T., Linkosalmi, M., Vähä, E., Nyman, J., Postanogova, O., . . .
others (2018). Spatial variation and linkages of soil and vegetation in the Siberian
Arctic tundra coupling field observations with remote sensing data. Biogeosciences,
15 (9), 2781 2801.

Miller, C., Griffith, P., Goetz, S., Hoy, E., Pinto, N., McCubbin, I., . . . others
(2019). An overview of ABoVE airborne campaign data acquisitions and science
opportunities. Environmental Research Letters, 14 (8), 080201.

Mink, S., López-Martínez, J., Maestro, A., Garrote, J., Ortega, J. A., Serrano, E., . . .
Schmid, T. (2014). Insights into deglaciation of the largest ice-free area in the South
Shetland Islands (Antarctica) from quantitative analysis of the drainage system.
Geomorphology, 225 , 4 24.

Miranda, V., Pina, P., Heleno, S., Vieira, G., Mora, C., & Schaefer, C. E. (2020).
Monitoring recent changes of vegetation in Fildes Peninsula (King George Island,
Antarctica) through satellite imagery guided by UAV surveys. Science of The Total
Environment, 704 , 135295.

Mohammadimanesh, F., Salehi, B., Mahdianpari, M., English, J., Chamberland, J.,
& Alasset, P.-J. (2019). Monitoring surface changes in discontinuous permafrost
terrain using small baseline SAR interferometry, object-based classification, and
geological features: a case study from Mayo, Yukon Territory, Canada. GIScience &
Remote Sensing, 56 (4), 485 510.

Monnier, S., Kinnard, C., Surazakov, A., & Bossy, W. (2014). Geomorphology, internal
structure, and successive development of a glacier foreland in the semiarid Chilean
Andes (Cerro Tapado, upper Elqui Valley, 30◦08’ S., 69◦55’ W.). Geomorphology,
207 , 126 140.

Mooney, P., Corcoran, P., & Winstanley, A. C. (2010). Towards quality metrics for
OpenStreetMap. In Proceedings of the 18th sigspatial international conference on
advances in geographic information systems (pp. 514 517).

Morgenstern, A., Grosse, G., Günther, F., Fedorova, I., & Schirrmeister, L. (2011).
Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena
Delta. The Cryosphere Discussions, 5 , 1495 1545.

Morgenstern, A., Ulrich, M., Günther, F., Roessler, S., Fedorova, I. V., Rudaya, N. A.,
. . . Schirrmeister, L. (2013). Evolution of thermokarst in East Siberian ice-rich
permafrost: A case study. Geomorphology, 201 , 363 379.

188



Bibliography

Morin, P., Porter, C., Cloutier, M., Howat, I., Noh, M.-J., Willis, M., . . . Peterman,
K. (2016). ArcticDEM; a publically available, high resolution elevation model of
the Arctic. EGUGA, EPSC2016 8396.

Morse, P., & Wolfe, S. (2015). Geological and meteorological controls on icing (aufeis)
dynamics (1985 to 2014) in subarctic Canada. Journal of Geophysical Research:
Earth Surface, 120 (9), 1670 1686.

Moura, P. A., Francelino, M. R., Schaefer, C. E. G., Simas, F. N., & de Mendonça,
B. A. (2012). Distribution and characterization of soils and landform relationships
in Byers Peninsula, Livingston Island, Maritime Antarctica. Geomorphology, 155 ,
45 54.

Muskett, R. R., & Romanovsky, V. E. (2009). Groundwater storage changes in arctic
permafrost watersheds from GRACE and in situ measurements. Environmental
Research Letters, 4 (4), 045009.

Muskett, R. R., & Romanovsky, V. E. (2011). Alaskan permafrost groundwater storage
changes derived from GRACE and ground measurements. Remote Sensing, 3 (2),
378 397.

Muster, S., Heim, B., Abnizova, A., & Boike, J. (2013). Water body distributions
across scales: A remote sensing based comparison of three arctic tundra wetlands.
Remote Sensing, 5 (4), 1498 1523.

Muster, S., Langer, M., Abnizova, A., Young, K. L., & Boike, J. (2015). Spatio-
temporal sensitivity of MODIS land surface temperature anomalies indicates high
potential for large-scale land cover change detection in Arctic permafrost landscapes.
Remote sensing of environment, 168 , 1 12.

Muster, S., Riley, W. J., Roth, K., Langer, M., Cresto Aleina, F., Koven, C. D., . . .
others (2019). Size distributions of Arctic waterbodies reveal consistent relations in
their statistical moments in space and time. Frontiers in Earth Science, 7 , 5.

Muster, S., Roth, K., Langer, M., Lange, S., Cresto Aleina, F., Bartsch, A., . . . others
(2017). PeRL: A circum-Arctic permafrost region pond and lake database. Earth
System Science Data, 9 (1), 317 348.

Mutlu, E. (2019). What is Robustness in Statistics? A Brief Intro to Robust Estima-
tors. https://towardsdatascience.com/what-is-robustness-in-statistics
-a-brief-intro-to-robust-estimators-e926d74d1609. (Accessed: April 11th

2021)

Myers-Smith, I. H., Kerby, J. T., Phoenix, G. K., Bjerke, J. W., Epstein, H. E.,
Assmann, J. J., . . . others (2020). Complexity revealed in the greening of the Arctic.
Nature Climate Change, 10 (2), 106 117.

Naeimi, V., Paulik, C., Bartsch, A., Wagner, W., Kidd, R., Park, S.-E., . . . Boike,
J. (2012). ASCAT Surface State Flag (SSF): Extracting information on surface
freeze/thaw conditions from backscatter data using an empirical threshold-analysis
algorithm. IEEE Transactions on Geoscience and Remote Sensing, 50 (7), 2566
2582.

189



Bibliography

Nagai, H., Fujita, K., Nuimura, T., & Sakai, A. (2013). Southwest-facing slopes control
the formation of debris-covered glaciers in the Bhutan Himalaya. The Cryosphere,
7 (4), 1303 1314.

Nagy, B., Ignéczi, Á., Kovács, J., Szalai, Z., & Mari, L. (2019). Shallow ground
temperature measurements on the highest volcano on Earth, Mt. Ojos del Salado,
Arid Andes, Chile. Permafrost and Periglacial Processes, 30 (1), 3 18.

Nassar, R., Sioris, C. E., Jones, D. B., & McConnell, J. C. (2014). Satellite observations
of CO2 from a highly elliptical orbit for studies of the Arctic and boreal carbon
cycle. Journal of Geophysical Research: Atmospheres, 119 (5), 2654 2673.

National Aeronautics and Space Administration (NASA). (n.d.). Earth Expeditions:
ABoVE. https://www.nasa.gov/content/earth-expeditions-above. (Accessed:
November 16th 2020)

National Oceanic and Atmospheric Administration (NOAA). (2022a). Tidal Da-
tums - NOAA Tides, and Currents. https://tidesandcurrents.noaa.gov/
datum_options.html. (Accessed on 14 October 2022)

National Oceanic and Atmospheric Administration (NOAA). (2022b). Water Levels
- NOAA Tides, and Currents. https://tidesandcurrents.noaa.gov/stations
.html?type=Water+Levels. (Accessed on 14 October 2022)

National Research Council. (2014). Opportunities to use remote sensing in understand-
ing permafrost and related ecological characteristics: Report of a workshop. National
Academies Press.

National Snow and Ice Data Center (NSIDC). (2020). National Snow and Ice Data
Center. https://nsidc.org/. (Accessed: September 25th 2020)

Natural Earth. (n.d.). Natural Earth I with Shaded Relief and Wa-
ter. https://www.naturalearthdata.com/downloads/10m-raster-data/10m
-natural-earth-1/. (Accessed: August 28th 2020)

Necsoiu, M., Dinwiddie, C. L., Walter, G. R., Larsen, A., & Stothoff, S. A. (2013). Multi-
temporal image analysis of historical aerial photographs and recent satellite imagery
reveals evolution of water body surface area and polygonal terrain morphology in
Kobuk Valley National Park, Alaska. Environmental Research Letters, 8 (2), 025007.

Necsoiu, M., Onaca, A., Wigginton, S., & Urdea, P. (2016). Rock glacier dynamics in
Southern Carpathian Mountains from high-resolution optical and multi-temporal
SAR satellite imagery. Remote sensing of environment, 177 , 21 36.

Nguyen, T.-N., Burn, C. R., King, D. J., & Smith, S. (2009). Estimating the
extent of near-surface permafrost using remote sensing, Mackenzie Delta, Northwest
Territories. Permafrost and Periglacial Processes, 20 (2), 141 153.

Nielsen, D. M., Pieper, P., Barkhordarian, A., Overduin, P., Ilyina, T., Brovkin, V.,
. . . Dobrynin, M. (2022). Increase in Arctic coastal erosion and its sensitivity to
warming in the twenty-first century. Nature Climate Change, 12 (3), 263 270.

Nill, L., Ullmann, T., Kneisel, C., Sobiech-Wolf, J., & Baumhauer, R. (2019). Assessing
Spatiotemporal Variations of Landsat Land Surface Temperature and Multispectral

190



Bibliography

Indices in the Arctic Mackenzie Delta Region between 1985 and 2018. Remote
Sensing, 11 (19), 2329.

Nitze, I., & Grosse, G. (2016). Detection of landscape dynamics in the Arctic
Lena Delta with temporally dense Landsat time-series stacks. Remote Sensing of
Environment, 181 , 27 41.

Nitze, I., Grosse, G., Jones, B. M., Arp, C. D., Ulrich, M., Fedorov, A., & Veremeeva,
A. (2017). Landsat-based trend analysis of lake dynamics across northern permafrost
regions. Remote Sensing, 9 (7), 640.

Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E., & Boike, J. (2018). Remote
sensing quantifies widespread abundance of permafrost region disturbances across
the Arctic and Subarctic. Nature communications, 9 (1), 1 11.

Niu, F., Yin, G., Luo, J., Lin, Z., & Liu, M. (2018). Permafrost distribution along the
Qinghai-Tibet Engineering Corridor, China using high-resolution statistical mapping
and modeling integrated with remote sensing and GIS. Remote Sensing, 10 (2), 215.

NOAA Earth System Research Laboratories. (n.d.-a). Cooperative Air Sampling Net-
work. https://www.esrl.noaa.gov/gmd/ccgg/flask.html. (Accessed: October
28th 2020)

NOAA Earth System Research Laboratories. (n.d.-b). NOAA Cooperative Global Air
Sampling Network - Greenhouse Gases. https://www.esrl.noaa.gov/gmd/obop/
mlo/programs/esrl/ccg/ccg.html. (Accessed: October 28th 2020)

Novikova, A., Belova, N., Baranskaya, A., Aleksyutina, D., Maslakov, A., Zelenin, E.,
. . . Ogorodov, S. (2018). Dynamics of permafrost coasts of Baydaratskaya Bay
(Kara Sea) based on multi-temporal remote sensing data. Remote Sensing, 10 (9),
1481.

NUNATARYUK. (n.d.). NUNATARYUK - The Project. https://nunataryuk.org/
about. (Accessed: November 16th 2020)

Nyland, K. E., Gunn, G. E., Shiklomanov, N. I., Engstrom, R. N., & Streletskiy, D. A.
(2018). Land cover change in the lower Yenisei River using dense stacking of landsat
imagery in Google Earth Engine. Remote Sensing, 10 (8), 1226.

Obu, J., Lantuit, H., Grosse, G., Günther, F., Sachs, T., Helm, V., & Fritz, M. (2017).
Coastal erosion and mass wasting along the Canadian Beaufort Sea based on annual
airborne LiDAR elevation data. Geomorphology, 293 , 331 346.

Obu, J., Lantuit, H., Myers-Smith, I., Heim, B., Wolter, J., & Fritz, M. (2017). Effect
of terrain characteristics on soil organic carbon and total nitrogen stocks in soils of
Herschel Island, Western Canadian Arctic. Permafrost and Periglacial Processes,
28 (1), 92 107.

Obu, J., Westermann, S., Barboux, C., Bartsch, A., Delaloye, R., Grosse, G., . . .
Wiesmann, A. (2021a). ESA Permafrost Climate Change Initiative (Permafrost_cci):
Permafrost active layer thickness for the Northern Hemisphere, v3.0. NERC EDS
Centre for Environmental Data Analysis. (Accessed: September 11th 2022) doi:
doi:10.5285/67a3f8c8dc914ef99f7f08eb0d997e23

191



Bibliography

Obu, J., Westermann, S., Barboux, C., Bartsch, A., Delaloye, R., Grosse, G., . . .
Wiesmann, A. (2021b). ESA Permafrost Climate Change Initiative (Permafrost_cci):
Permafrost extent for the Northern Hemisphere, v3.0. NERC EDS Centre for
Environmental Data Analysis. (Accessed: September 11th 2022) doi: doi:10.5285/
6e2091cb0c8b4106921b63cd5357c97c

Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren,
A., . . . others (2019). Northern Hemisphere permafrost map based on TTOP
modelling for 2000 2016 at 1 km2 scale. Earth-Science Reviews, 193 , 299 316.

Obu, J., Westermann, S., Vieira, G., Abramov, A., Balks, M. R., Bartsch, A., . . .
Ramos, M. (2020). Pan-Antarctic map of near-surface permafrost temperatures at
1 km 2 scale. The Cryosphere, 14 (2), 497 519.

Oelke, C., & Zhang, T. (2004). A model study of circum-Arctic soil temperatures.
Permafrost and Periglacial Processes, 15 (2), 103 121.

Oelke, C., Zhang, T., Serreze, M. C., & Armstrong, R. L. (2003). Regional-scale
modeling of soil freeze/thaw over the Arctic drainage basin. Journal of Geophysical
Research: Atmospheres, 108 (D10).

Olthof, I., Fraser, R. H., & Schmitt, C. (2015). Landsat-based mapping of thermokarst
lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada
since 1985. Remote Sensing of Environment, 168 , 194 204.

OpenStreetMap. (n.d.). Contributors. https://wiki.openstreetmap.org/wiki/
Contributors#Denmark. (Accessed on 22 January 2023)

OpenStreetMap contributors. (2017). Planet dump retrieved from https: / / planet
.osm .org . https://www.openstreetmap.org.

Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-
Elgawad, A., . . . others (2019). Sea level rise and implications for low lying islands,
coasts and communities. IPCC Special Report on the Ocean and Cryosphere in a
Changing Climate (in press).

Ou, C., LaRocque, A., Leblon, B., Zhang, Y., Webster, K., & McLaughlin, J. (2016).
Modelling and mapping permafrost at high spatial resolution using Landsat and
Radarsat-2 images in Northern Ontario, Canada: Part 2 regional mapping. Inter-
national Journal of Remote Sensing, 37 (12), 2751 2779.

Ou, C., Leblon, B., Zhang, Y., LaRocque, A., Webster, K., & McLaughlin, J. (2016).
Modelling and mapping permafrost at high spatial resolution using Landsat and
Radarsat images in northern Ontario, Canada: Part 1 model calibration. Interna-
tional Journal of Remote Sensing, 37 (12), 2727 2750.

Overduin, P. P., Strzelecki, M. C., Grigoriev, M. N., Couture, N., Lantuit, H., St-
Hilaire-Gravel, D., . . . Wetterich, S. (2014). Coastal changes in the Arctic. Geological
Society, London, Special Publications, 388 (1), 103 129.

PAGE21. (n.d.). PAGE21 - Changing Permafrost in the Arctic and its Global Effects
in the 21st Century. https://www.page21.eu/. (Accessed: October 28th 2020)

192



Bibliography

Paltan, H., Dash, J., & Edwards, M. (2015). A refined mapping of Arctic lakes using
Landsat imagery. International Journal of Remote Sensing, 36 (23), 5970 5982.

Panda, S., Prakash, A., Jorgenson, M., & Solie, D. (2012). Near-surface permafrost
distribution mapping using logistic regression and remote sensing in Interior Alaska.
GIScience & Remote Sensing, 49 (3), 346 363.

Panda, S. K., Prakash, A., Solie, D. N., Romanovsky, V. E., & Jorgenson, M. T.
(2010). Remote sensing and field-based mapping of permafrost distribution along
the Alaska Highway corridor, interior Alaska. Permafrost and Periglacial Processes,
21 (3), 271 281.

Park, H., Kim, Y., & Kimball, J. S. (2016). Widespread permafrost vulnerability and
soil active layer increases over the high northern latitudes inferred from satellite
remote sensing and process model assessments. Remote Sensing of Environment,
175 , 349 358.

Park, S.-E., Bartsch, A., Sabel, D., Wagner, W., Naeimi, V., & Yamaguchi, Y. (2011).
Monitoring freeze/thaw cycles using ENVISAT ASAR Global Mode. Remote Sensing
of Environment, 115 (12), 3457 3467.

Pastick, N. J., Jorgenson, M. T., Goetz, S. J., Jones, B. M., Wylie, B. K., Minsley,
B. J., . . . Jorgenson, J. C. (2019). Spatiotemporal remote sensing of ecosystem
change and causation across Alaska. Global change biology, 25 (3), 1171 1189.

Pastick, N. J., Jorgenson, M. T., Wylie, B. K., Minsley, B. J., Ji, L., Walvoord,
M. A., . . . Rose, J. R. (2013). Extending airborne electromagnetic surveys for
regional active layer and permafrost mapping with remote sensing and ancillary
data, Yukon Flats Ecoregion, Central Alaska. Permafrost and Periglacial Processes,
24 (3), 184 199.

Pastick, N. J., Jorgenson, M. T., Wylie, B. K., Nield, S. J., Johnson, K. D., & Finley,
A. O. (2015). Distribution of near-surface permafrost in Alaska: Estimates of
present and future conditions. Remote Sensing of Environment, 168 , 301 315.

Pastick, N. J., Jorgenson, M. T., Wylie, B. K., Rose, J. R., Rigge, M., & Walvoord, M. A.
(2014). Spatial variability and landscape controls of near-surface permafrost within
the Alaskan Yukon River basin. Journal of Geophysical Research: Biogeosciences,
119 (6), 1244 1265.

Pearson, R. G., Phillips, S. J., Loranty, M. M., Beck, P. S., Damoulas, T., Knight,
S. J., & Goetz, S. J. (2013). Shifts in Arctic vegetation and associated feedbacks
under climate change. Nature climate change, 3 (7), 673 677.

Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution
mapping of global surface water and its long-term changes. Nature, 540 (7633),
418 422.

Perbet, P., Fortin, M., Ville, A., & Béland, M. (2019). Near real-time deforestation
detection in Malaysia and Indonesia using change vector analysis with three sensors.
International Journal of Remote Sensing, 40 (19), 7439 7458.

193



Bibliography

Permafrost Carbon Network. (n.d.). Permafrost Carbon Network. http://www
.permafrostcarbon.org/index.html. (Accessed: October 28th 2020)

PermaNet Alpine Space. (n.d.). The PermaNET project. http://www.permanet
-alpinespace.eu/project.html. (Accessed: November 16th 2020)

PERMOS. (n.d.). PERMOS - Swiss Permafrost Monitoring Network. http://
www.permos.ch/. (Accessed: November 16th 2020)

Philipp, M., Dietz, A., Buchelt, S., & Kuenzer, C. (2021). Trends in satellite Earth
observation for permafrost related analyses A review. Remote Sensing, 13 (6),
1217.

Philipp, M., Dietz, A., Ullmann, T., & Kuenzer, C. (2022). Automated Extraction of
Annual Erosion Rates for Arctic Permafrost Coasts Using Sentinel-1, Deep Learning,
and Change Vector Analysis. Remote Sensing, 14 (15), 3656.

Philipp, M., Dietz, A., Ullmann, T., & Kuenzer, C. (2023). A Circum-Arctic Monitoring
Framework for Quantifying Annual Erosion Rates of Permafrost Coasts. Remote
Sensing, 15 (3), 818.

Pierangelo, C., Millet, B., Esteve, F., Alpers, M., Ehret, G., Flamant, P., . . . others
(2016). Merlin (methane remote sensing Lidar mission): An overview. In Epj web of
conferences (Vol. 119, p. 26001).

Piliouras, A., & Rowland, J. C. (2020). Arctic river delta morphologic variability and
implications for riverine fluxes to the coast. Journal of Geophysical Research: Earth
Surface, 125 (1), e2019JF005250.

Ping, C.-L., Michaelson, G. J., Guo, L., Jorgenson, M. T., Kanevskiy, M., Shur, Y., . . .
Liang, J. (2011). Soil carbon and material fluxes across the eroding Alaska Beaufort
Sea coastline. Journal of Geophysical Research: Biogeosciences, 116 (G2).

Plummer, S., Lecomte, P., & Doherty, M. (2017). The ESA climate change initiative
(CCI): A European contribution to the generation of the global climate observing
system. Remote Sensing of Environment, 203 , 2 8.

Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G., Kempen, B., Ribeiro, E., &
Rossiter, D. (2021). SoilGrids 2.0: producing soil information for the globe with
quantified spatial uncertainty. Soil, 7 (1), 217 240.

Poggio, L., & de Souse, L. (2020). SoilGrids250m 2.0 - Soil organic car-
bon stock. https://doi.org/10.17027/isric-soilgrids.713396f4-1687-11ea
-a7c0-a0481ca9e724. ISRIC - World Soil Information. (Accessed: November 14th

2022)

Polar Geospatial Center. (2023). ArcticDEM. https://www.pgc.umn.edu/data/
arcticdem/. (Accessed: January 14th 2023)

Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., . . . Bojesen, M.
(2018). ArcticDEM, Version 3. https://doi.org/10.7910/DVN/OHHUKH. Harvard
Dataverse, V1. (Accessed: September 11th 2022)

194



Bibliography

Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczan-
ska, E., . . . others (2019). IPCC special report on the ocean and cryosphere in a
changing climate. IPCC Intergovernmental Panel on Climate Change (IPCC).

Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. arXiv preprint arXiv:2010.16061 .

Qingbai, W., Yongzhi, L., Jianming, Z., & Changjiang, T. (2002). A review of recent
frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China.
Permafrost and Periglacial Processes, 13 (3), 199 205.

Quinton, W., Hayashi, M., & Chasmer, L. (2011). Permafrost-thaw-induced land-cover
change in the Canadian subarctic: implications for water resources. Hydrological
Processes, 25 (1), 152 158.

Quinton, W., Hayashi, M., & Pietroniro, A. (2003). Connectivity and storage functions
of channel fens and flat bogs in northern basins. Hydrological Processes, 17 (18),
3665 3684.

Rachold, V., Bolshiyanov, D. Y., Grigoriev, M. N., Hubberten, H.-W., Junker, R.,
Kunitsky, V. V., . . . Schneider, W. (2007). Nearshore Arctic subsea permafrost in
transition. Eos, Transactions American Geophysical Union, 88 (13), 149 150.

Radosavljevic, B., Lantuit, H., Pollard, W., Overduin, P., Couture, N., Sachs, T., . . .
Fritz, M. (2016). Erosion and flooding threats to coastal infrastructure in the
Arctic: a case study from Herschel Island, Yukon Territory, Canada. Estuaries and
Coasts, 39 (4), 900 915.

Ramage, J. L., Irrgang, A. M., Herzschuh, U., Morgenstern, A., Couture, N., & Lantuit,
H. (2017). Terrain controls on the occurrence of coastal retrogressive thaw slumps
along the Yukon Coast, Canada. Journal of Geophysical Research: Earth Surface,
122 (9), 1619 1634.

Ramage, J. L., Irrgang, A. M., Morgenstern, A., & Lantuit, H. (2018). Increasing
coastal slump activity impacts the release of sediment and organic carbon into the
Arctic Ocean. Biogeosciences, 15 (5), 1483 1495.

Ran, Y., Li, X., & Cheng, G. (2018). Climate warming over the past half century
has led to thermal degradation of permafrost on the Qinghai Tibet Plateau. The
Cryosphere, 12 (2), 595 608.

Raup, B., Racoviteanu, A., Khalsa, S. J. S., Helm, C., Armstrong, R., & Arnaud, Y.
(2007). The GLIMS geospatial glacier database: a new tool for studying glacier
change. Global and Planetary Change, 56 (1-2), 101 110.

Ravanel, L., Magnin, F., & Deline, P. (2017). Impacts of the 2003 and 2015 summer
heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. Science of
the Total Environment, 609 , 132 143.

Rawlins, M. A., Mcguire, A. D., Kimball, J. S., Dass, P., Lawrence, D., Burke, E., . . .
others (2015). Assessment of model estimates of land-atmosphere CO 2 exchange
across Northern Eurasia. Biogeosciences, 12 (14), 4385 4405.

195



Bibliography

Raynolds, M. K., & Walker, D. A. (2016). Increased wetness confounds Landsat-derived
NDVI trends in the central Alaska North Slope region, 1985 2011. Environmental
Research Letters, 11 (8), 085004.

Raynolds, M. K., Walker, D. A., Balser, A., Bay, C., Campbell, M., Cherosov, M. M.,
. . . others (2019). A raster version of the Circumpolar Arctic Vegetation Map
(CAVM). Remote Sensing of Environment, 232 , 111297.

Regmi, P., Grosse, G., Jones, M. C., Jones, B. M., & Anthony, K. W. (2012).
Characterizing post-drainage succession in thermokarst lake basins on the Seward
Peninsula, Alaska with TerraSAR-X backscatter and Landsat-based NDVI data.
Remote Sensing, 4 (12), 3741 3765.

Reschke, J., Bartsch, A., Schlaffer, S., & Schepaschenko, D. (2012). Capability of
C-band SAR for operational wetland monitoring at high latitudes. Remote Sensing,
4 (10), 2923 2943.

Rey, D. M., Walvoord, M., Minsley, B., Rover, J., & Singha, K. (2019). Inves-
tigating lake-area dynamics across a permafrost-thaw spectrum using airborne
electromagnetic surveys and remote sensing time-series data in Yukon Flats, Alaska.
Environmental Research Letters, 14 (2), 025001.

Richards, J. A., et al. (2009). Remote sensing with imaging radar (Vol. 1). Springer.

Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., & Marchenko, S. (2008).
Recent advances in permafrost modelling. Permafrost and Periglacial Processes,
19 (2), 137 156.

Rolph, R., Overduin, P. P., Ravens, T., Lantuit, H., & Langer, M. (2022). ArcticBeach
v1. 0: A physics-based parameterization of pan-Arctic coastline erosion. Frontiers
in Earth Science, 10 , 962208.

Romanovsky, V. E., Smith, S. L., & Christiansen, H. H. (2010). Permafrost thermal
state in the polar Northern Hemisphere during the international polar year 2007
2009: a synthesis. Permafrost and Periglacial processes, 21 (2), 106 116.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In International conference on medical image
computing and computer-assisted intervention (pp. 234 241).

Rouyet, L., Lauknes, T. R., Christiansen, H. H., Strand, S. M., & Larsen, Y. (2019).
Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated
by InSAR. Remote Sensing of Environment, 231 , 111236.

Roy, A., Royer, A., Derksen, C., Brucker, L., Langlois, A., Mialon, A., & Kerr, Y. H.
(2015). Evaluation of spaceborne L-band radiometer measurements for terrestrial
freeze/thaw retrievals in Canada. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 8 (9), 4442 4459.

Rozhnova, M. (2021). Impact of dataset errors on model accuracy.
https://medium.com/deelvin-machine-learning/impact-of-dataset-errors
-on-model-accuracy-723fef5e0b28. (Accessed on 28 November 2022)

196



Bibliography

Rudy, A. C., Lamoureux, S. F., Treitz, P., Short, N., & Brisco, B. (2018). Seasonal and
multi-year surface displacements measured by DInSAR in a High Arctic permafrost
environment. International journal of applied Earth observation and geoinformation,
64 , 51 61.

Runge, A., & Grosse, G. (2019). Comparing Spectral Characteristics of Landsat-8
and Sentinel-2 Same-Day Data for Arctic-Boreal Regions. Remote Sensing, 11 (14),
1730.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . others (2015).
Imagenet large scale visual recognition challenge. International journal of computer
vision, 115 (3), 211 252.

Sakai, T., Matsunaga, T., Maksyutov, S., Gotovtsev, S., Gagarin, L., Hiyama, T., &
Yamaguchi, Y. (2016). Climate-Induced Extreme Hydrologic Events in the Arctic.
Remote Sensing, 8 (11), 971.

Samsonov, S. V., Lantz, T. C., Kokelj, S. V., & Zhang, Y. (2016). Growth of a young
pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite
radar. The Cryosphere, 10 (2), 799 810.

Sannel, A., & Kuhry, P. (2011). Warming-induced destabilization of peat
plateau/thermokarst lake complexes. Journal of Geophysical Research: Biogeo-
sciences, 116 (G3).

Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A., & Witt, R. (2014).
The impact of the permafrost carbon feedback on global climate. Environmental
Research Letters, 9 (8), 085003.

Schaefer, K., Liu, L., Parsekian, A., Jafarov, E., Chen, A., Zhang, T., . . . Schaefer, T.
(2015). Remotely sensed active layer thickness (ReSALT) at Barrow, Alaska using
interferometric synthetic aperture radar. Remote Sensing, 7 (4), 3735 3759.

Schnabel, W. E., Goering, D. J., & Dotson, A. D. (2020). Permafrost Engineering on
Impermanent Frost. The Bridge, 50 (1), 16 23.

Schneider, J., Grosse, G., & Wagner, D. (2009). Land cover classification of tundra
environments in the Arctic Lena Delta based on Landsat 7 ETM+ data and its
application for upscaling of methane emissions. Remote Sensing of Environment,
113 (2), 380 391.

Schneising, O., Buchwitz, M., Reuter, M., Bovensmann, H., Burrows, J. P., Borsdorff,
T., . . . others (2019). A scientific algorithm to simultaneously retrieve carbon
monoxide and methane from TROPOMI onboard Sentinel-5 Precursor. Atmospheric
Measurement Techniques, 12 (12), 6771 6802.

Schubert, A., Miranda, N., Geudtner, D., & Small, D. (2017). Sentinel-1A/B combined
product geolocation accuracy. Remote sensing, 9 (6), 607.

Schubert, A., Small, D., Miranda, N., Geudtner, D., & Meier, E. (2015). Sentinel-1A
product geolocation accuracy: Commissioning phase results. Remote sensing, 7 (7),
9431 9449.

197



Bibliography

Schuur, E. A., McGuire, A. D., Schädel, C., Grosse, G., Harden, J., Hayes, D. J.,
. . . others (2015). Climate change and the permafrost carbon feedback. Nature,
520 (7546), 171 179.

Schwamborn, G., & Wetterich, S. (2015). Russian-German cooperation CARBOPERM:
field campaigns to Bol’shoy Lyakhovsky Island in 2014. Berichte zur Polar-und
Meeresforschung= Reports on polar and marine research, 686 .

SEARCH. (n.d.). SEARCH - Vision and Mission. https://www
.searcharcticscience.org/vision. (Accessed: November 16th 2020)

Segal, R. A., Lantz, T. C., & Kokelj, S. V. (2016). Acceleration of thaw slump activity
in glaciated landscapes of the Western Canadian Arctic. Environmental Research
Letters, 11 (3), 034025.

Séjourné, A., Costard, F., Fedorov, A., Gargani, J., Skorve, J., Massé, M., & Mège, D.
(2015). Evolution of the banks of thermokarst lakes in Central Yakutia (Central
Siberia) due to retrogressive thaw slump activity controlled by insolation. Geomor-
phology, 241 , 31 40.

Serreze, M. C., & Barry, R. G. (2011). Processes and impacts of Arctic amplification:
A research synthesis. Global and planetary change, 77 (1-2), 85 96.

Shadrick, J. R., Rood, D. H., Hurst, M. D., Piggott, M. D., Hebditch, B. G., Seal,
A. J., & Wilcken, K. M. (2022). Sea-level rise will likely accelerate rock coast cliff
retreat rates. Nature Communications, 13 (1), 1 12.

Shi, X., Liao, M., Wang, T., Zhang, L., Shan, W., & Wang, C. (2014). Expressway
deformation mapping using high-resolution TerraSAR-X images. Remote Sensing
Letters, 5 (2), 194 203.

Shi, Y., Niu, F., Yang, C., Che, T., Lin, Z., & Luo, J. (2018). Permafrost pres-
ence/absence mapping of the Qinghai-Tibet Plateau based on multi-source remote
sensing data. Remote Sensing, 10 (2), 309.

Shiklomanov, N., Nelson, F., Streletskiy, D., Hinkel, K., & Brown, J. (2008). The
circumpolar active layer monitoring (CALM) program: data collection, management,
and dissemination strategies. In Proceedings of the ninth international conference
on permafrost (Vol. 29, pp. 1647 1652).

Short, N., Brisco, B., Couture, N., Pollard, W., Murnaghan, K., & Budkewitsch,
P. (2011). A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR
interferometry for monitoring permafrost environments, case study from Herschel
Island, Canada. Remote Sensing of Environment, 115 (12), 3491 3506.

Short, N., LeBlanc, A.-M., Sladen, W., Oldenborger, G., Mathon-Dufour, V., &
Brisco, B. (2014). RADARSAT-2 D-InSAR for ground displacement in permafrost
terrain, validation from Iqaluit Airport, Baffin Island, Canada. Remote Sensing of
Environment, 141 , 40 51.

Siewert, M. B., Hanisch, J., Weiss, N., Kuhry, P., Maximov, T. C., & Hugelius, G.
(2015). Comparing carbon storage of Siberian tundra and taiga permafrost ecosys-

198



Bibliography

tems at very high spatial resolution. Journal of Geophysical Research: Biogeosciences,
120 (10), 1973 1994.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 .

Siwe, R. N., & Koch, B. (2008). Change vector analysis to categorise land cover
change processes using the tasselled cap as biophysical indicator. Environmental
monitoring and assessment, 145 (1), 227 235.

Sjöberg, Y., Hugelius, G., & Kuhry, P. (2013). Thermokarst lake morphometry and
erosion features in two peat plateau areas of northeast European Russia. Permafrost
and Periglacial Processes, 24 (1), 75 81.

Slater, A. G., & Lawrence, D. M. (2013). Diagnosing present and future permafrost
from climate models. Journal of Climate, 26 (15), 5608 5623.

Smith, M. W., & Riseborough, D. W. (1996). Permafrost monitoring and detection of
climate change. Permafrost and Periglacial Processes, 7 (4), 301 309.

Soliman, A., Duguay, C., Saunders, W., & Hachem, S. (2012). Pan-arctic land surface
temperature from MODIS and AATSR: Product development and intercomparison.
Remote Sensing, 4 (12), 3833 3856.

Song, C., Xu, X., Sun, X., Tian, H., Sun, L., Miao, Y., . . . Guo, Y. (2012). Large
methane emission upon spring thaw from natural wetlands in the northern permafrost
region. Environmental Research Letters, 7 (3), 034009.

Song, Y., Jin, L., & Wang, H. (2018). Vegetation changes along the Qinghai-Tibet
Plateau engineering corridor since 2000 induced by climate change and human
activities. Remote Sensing, 10 (1), 95.

Spreen, G., Kaleschke, L., & Heygster, G. (2008). Sea ice remote sensing using
AMSR-E 89-GHz channels. Journal of Geophysical Research: Oceans, 113 (C2).

Stephan, C., Alpers, M., Millet, B., Ehret, G., Flamant, P., & Deniel, C. (2011).
MERLIN: a space-based methane monitor. In Lidar remote sensing for environmental
monitoring xii (Vol. 8159, p. 815908).

Stephani, E., Drage, J., Miller, D., Jones, B. M., & Kanevskiy, M. (2020). Taliks,
cryopegs, and permafrost dynamics related to channel migration, Colville River
Delta, Alaska. Permafrost and Periglacial Processes, 31 (2), 239 254.

Stettner, S., Beamish, A. L., Bartsch, A., Heim, B., Grosse, G., Roth, A., & Lantuit, H.
(2018). Monitoring inter-and intra-seasonal dynamics of rapidly degrading ice-rich
permafrost riverbanks in the Lena Delta with TerraSAR-X time series. Remote
Sensing, 10 (1), 51.

Strozzi, T., Antonova, S., Günther, F., Mätzler, E., Vieira, G., Wegmüller, U., . . .
Bartsch, A. (2018). Sentinel-1 SAR interferometry for surface deformation monitoring
in low-land permafrost areas. Remote Sensing, 10 (9), 1360.

199



Bibliography

Strozzi, T., Caduff, R., Jones, N., Barboux, C., Delaloye, R., Bodin, X., . . . Schrott,
L. (2020). Monitoring Rock Glacier Kinematics with Satellite Synthetic Aperture
Radar. Remote Sensing, 12 (3), 559.

Strozzi, T., Delaloye, R., Kääb, A., Ambrosi, C., Perruchoud, E., & Wegmüller,
U. (2010). Combined observations of rock mass movements using satellite SAR
interferometry, differential GPS, airborne digital photogrammetry, and airborne pho-
tography interpretation. Journal of Geophysical Research: Earth Surface, 115 (F1).

Strozzi, T., Kääb, A., & Frauenfelder, R. (2004). Detecting and quantifying mountain
permafrost creep from in situ inventory, space-borne radar interferometry and
airborne digital photogrammetry. International Journal of Remote Sensing, 25 (15),
2919 2931.

Study of Environmental Change (SEARCH). (2005). Study of Environmental Arctic
Change: Plans for Implementation During the International Polar Year and Be-
yond. https://www.arcus.org/files/publication/23146/siw_report_final
.pdf. Arctic Research Consortium of the United States (ARCUS). (Accessed:
October 28th 2020)

Subcommittee, P. (1988). Glossary of permafrost and related ground-ice terms. Asso-
ciate Committee on Geotechnical Research, National Research Council of Canada,
Ottawa, 156 .

Sun, Z., Wang, Q., Xiao, Q., Batkhishig, O., & Watanabe, M. (2015). Diverse
responses of remotely sensed grassland phenology to interannual climate variability
over frozen ground regions in Mongolia. Remote Sensing, 7 (1), 360 377.

Surdu, C. M., Duguay, C. R., & Fernández Prieto, D. (2016). Evidence of recent
changes in the ice regime of lakes in the Canadian High Arctic from spaceborne
satellite observations. The Cryosphere, 10 (3), 941 960.

Suzuki, K., Matsuo, K., Yamazaki, D., Ichii, K., Iijima, Y., Papa, F., . . . Hiyama, T.
(2018). Hydrological variability and changes in the Arctic circumpolar tundra and
the three largest pan-Arctic river basins from 2002 to 2016. Remote Sensing, 10 (3),
402.

Swanson, D. K., & Nolan, M. (2018). Growth of retrogressive thaw slumps in the
Noatak Valley, Alaska, 2010 2016, measured by airborne photogrammetry. Remote
Sensing, 10 (7), 983.

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-
resnet and the impact of residual connections on learning. In Thirty-first aaai
conference on artificial intelligence.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the
inception architecture for computer vision. In Proceedings of the ieee conference on
computer vision and pattern recognition (pp. 2818 2826).

Taha, A. A., & Hanbury, A. (2015). Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool. BMC medical imaging, 15 (1), 1 28.

200



Bibliography

Takaku, J., Tadono, T., Tsutsui, K., & Ichikawa, M. (2016). Validation of" AW3D"
global DSM generated from Alos Prism. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 3 , 25.

Tang, C., Zhu, Q., Wu, W., Huang, W., Hong, C., & Niu, X. (2020). PLANET:
improved convolutional neural networks with image enhancement for image classifi-
cation. Mathematical Problems in Engineering, 2020 .

Tang, P., Zhou, W., Tian, B., Chen, F., Li, Z., & Li, G. (2017). Quantification of
Temporal Decorrelation in X-, C-, and L-Band Interferometry for the Permafrost
Region of the Qinghai Tibet Plateau. IEEE Geoscience and Remote Sensing Letters,
14 (12), 2285 2289.

Tanski, G., Wagner, D., Knoblauch, C., Fritz, M., Sachs, T., & Lantuit, H. (2019).
Rapid CO2 release from eroding permafrost in seawater. Geophysical Research
Letters, 46 (20), 11244 11252.

Tape, K. D., Jones, B. M., Arp, C. D., Nitze, I., & Grosse, G. (2018). Tundra
be dammed: Beaver colonization of the Arctic. Global change biology, 24 (10),
4478 4488.

Tape, K. D., Verbyla, D., & Welker, J. M. (2011). Twentieth century erosion in
Arctic Alaska foothills: the influence of shrubs, runoff, and permafrost. Journal of
Geophysical Research: Biogeosciences, 116 (G4).

Taylor, A. E. (1991). Marine transgression, shoreline emergence: Evidence in seabed
and terrestrial ground temperatures of changing relative sea levels, Arctic Canada.
Journal of Geophysical Research: Solid Earth, 96 (B4), 6893 6909.

Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N., & Bopp, L. (2021). Around one
third of current Arctic Ocean primary production sustained by rivers and coastal
erosion. Nature Communications, 12 (1), 1 10.

Tian, B., Li, Z., Tang, P., Zou, P., Zhang, M., & Niu, F. (2016). Use of intensity
and coherence of X-band SAR data to map thermokarst lakes on the Northern
Tibetan Plateau. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 9 (7), 3164 3176.

Tian, B., Li, Z., Zhang, M., Huang, L., Qiu, Y., Li, Z., & Tang, P. (2017). Mapping
thermokarst lakes on the Qinghai Tibet Plateau using nonlocal active contours
in Chinese GaoFen-2 multispectral imagery. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 10 (5), 1687 1700.

Torbick, N., Persson, A., Olefeldt, D., Frolking, S., Salas, W., Hagen, S., . . . Li, C.
(2012). High resolution mapping of peatland hydroperiod at a high-latitude Swedish
mire. Remote Sensing, 4 (7), 1974 1994.

Trofaier, A., Bartsch, A., Rees, W., & Leibman, M. (2013). Assessment of spring
floods and surface water extent over the Yamalo-Nenets Autonomous District.
Environmental Research Letters, 8 (4), 045026.

201



Bibliography

Trofaier, A. M., Westermann, S., & Bartsch, A. (2017). Progress in space-borne
studies of permafrost for climate science: Towards a multi-ECV approach. Remote
Sensing of Environment, 203 , 55 70.

Turner, K. W., Wolfe, B. B., Edwards, T. W., Lantz, T. C., Hall, R. I., & Larocque, G.
(2014). Controls on water balance of shallow thermokarst lakes and their relations
with catchment characteristics: a multi-year, landscape-scale assessment based on
water isotope tracers and remote sensing in Old Crow Flats, Yukon (Canada). Global
change biology, 20 (5), 1585 1603.

Ulaby, F. T., Moore, R. K., & Fung, A. K. (1982). Microwave Remote Sensing: Active
and Passive, Volume II: Radar Remote Sensing and Surface Scattering and Emission
Theory (Vol. 2). Artech House.

Ulrich, M., Grosse, G., Chabrillat, S., & Schirrmeister, L. (2009). Spectral charac-
terization of periglacial surfaces and geomorphological units in the Arctic Lena
Delta using field spectrometry and remote sensing. Remote Sensing of Environment,
113 (6), 1220 1235.

Ulrich, M., Grosse, G., Strauss, J., & Schirrmeister, L. (2014). Quantifying wedge-ice
volumes in Yedoma and thermokarst basin deposits. Permafrost and Periglacial
Processes, 25 (3), 151 161.

Ulrich, M., Matthes, H., Schirrmeister, L., Schütze, J., Park, H., Iijima, Y., & Fedorov,
A. N. (2017). Differences in behavior and distribution of permafrost-related lakes in
Central Yakutia and their response to climatic drivers. Water Resources Research,
53 (2), 1167 1188.

University of Maryland Center for Environmental Science. (n.d.). IAN Symbol Libraries.
https://ian.umces.edu/symbols/. (Accessed: September 1st 2020)

University of Oslo - Department of Geosciences. (n.d.). SatPerm - Satellite-based
Permafrost Modeling across a Range of Scales. https://www.mn.uio.no/geo/
english/research/projects/satperm/. (Accessed: October 28th 2020)

Van Everdingen, R. O., Association, I. P., et al. (2005). Multi-Language
Glossary of Permafrost and Related Ground-Ice Terms in Chinese, English,
French, German, Icelandic, Italian, Norwegian, Polish, Romanian, Russian,
Spanish, and Swedish. Arctic Inst. of North America University of Cal-
gary. (Available at: https://globalcryospherewatch.org/reference/glossary
_docs/Glossary_of_Permafrost_and_Ground-Ice_IPA_2005.pdf)

Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., . . . others (2011). The representative concentration pathways: an overview.
Climatic change, 109 (1), 5 31.

Varon, D., McKeever, J., Jervis, D., Maasakkers, J., Pandey, S., Houweling, S., . . .
Jacob, D. (2019). Satellite discovery of anomalously large methane point sources
from oil/gas production. Geophysical Research Letters, 46 (22), 13507 13516.

Veefkind, J., Aben, I., McMullan, K., Förster, H., De Vries, J., Otter, G., . . . others
(2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global

202



Bibliography

observations of the atmospheric composition for climate, air quality and ozone layer
applications. Remote sensing of environment, 120 , 70 83.

Veremeeva, A., & Gubin, S. (2009). Modern tundra landscapes of the Kolyma Lowland
and their evolution in the Holocene. Permafrost and periglacial processes, 20 (4),
399 406.

Vesakoski, J.-M., Nylén, T., Arheimer, B., Gustafsson, D., Isberg, K., Holopainen,
M., . . . Alho, P. (2017). Arctic Mackenzie Delta channel planform evolution during
1983 2013 utilising Landsat data and hydrological time series. Hydrological Processes,
31 (22), 3979 3995.

Vieira, G., Mora, C., Pina, P., & Schaefer, C. E. (2014). A proxy for snow cover and
winter ground surface cooling: mapping Usnea sp. communities using high resolution
remote sensing imagery (maritime Antarctica). Geomorphology, 225 , 69 75.

Villarroel, C. D., Tamburini Beliveau, G., Forte, A. P., Monserrat, O., & Morvillo, M.
(2018). DInSAR for a Regional inventory of active rock glaciers in the dry andes
mountains of argentina and chile with sentinel-1 data. Remote Sensing, 10 (10),
1588.

Voigt, C., Lamprecht, R. E., Marushchak, M. E., Lind, S. E., Novakovskiy, A., Aurela,
M., . . . Biasi, C. (2017). Warming of subarctic tundra increases emissions of all three
important greenhouse gases carbon dioxide, methane, and nitrous oxide. Global
Change Biology, 23 (8), 3121 3138.

Vonder Mühll, D., Noetzli, J., & Roer, I. (2008). PERMOS - A comprehensive
monitoring network of mountain permafrost in the Swiss Alps. In 9th international
conference on permafrost, fairbanks, alaska (pp. 1869 1874). University of Zurich.

Vonk, J. E., Sánchez-García, L., Van Dongen, B., Alling, V., Kosmach, D., Charkin,
A., . . . others (2012). Activation of old carbon by erosion of coastal and subsea
permafrost in Arctic Siberia. Nature, 489 (7414), 137 140.

Vorovencii, I. (2014). A change vector analysis technique for monitoring land cover
changes in Copsa Mica, Romania, in the period 1985 2011. Environmental monitor-
ing and assessment, 186 (9), 5951 5968.

Walker, D., Leibman, M., Epstein, H., Forbes, B., Bhatt, U., Raynolds, M., . . . others
(2009). Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia:
interactions of ecological and social factors affecting the Arctic normalized difference
vegetation index. Environmental Research Letters, 4 (4), 045004.

Walker, D. A., Raynolds, M. K., Daniëls, F. J., Einarsson, E., Elvebakk, A., Gould,
W. A., . . . others (2005). The circumpolar Arctic vegetation map. Journal of
Vegetation Science, 16 (3), 267 282.

Wanchang, Z., Ogawa, K., Besheng, Y., & Yamaguchi, Y. (2000). A monthly stream
flow model for estimating the potential changes of river runoff on the projected
global warming. Hydrological Processes, 14 (10), 1851 1868.

203



Bibliography

Wang, C., Zhang, Z., Paloscia, S., Zhang, H., Wu, F., & Wu, Q. (2018). Permafrost
Soil Moisture Monitoring Using Multi-Temporal TerraSAR-X Data in Beiluhe of
Northern Tibet, China. Remote Sensing, 10 (10), 1577.

Wang, C., Zhang, Z., Zhang, H., Wu, Q., Zhang, B., & Tang, Y. (2017). Seasonal
deformation features on Qinghai-Tibet railway observed using time-series InSAR
technique with high-resolution TerraSAR-X images. Remote sensing letters, 8 (1),
1 10.

Wang, C., Zhang, Z., Zhang, H., Zhang, B., Tang, Y., & Wu, Q. (2018). Active
layer thickness retrieval of Qinghai Tibet permafrost using the TerraSAR-X InSAR
technique. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 11 (11), 4403 4413.

Wang, J., Jiang, L., Cui, H., Wang, G., Yang, J., Liu, X., & Su, X. (2020). Evaluation
and analysis of SMAP, AMSR2 and MEaSUREs freeze/thaw products in China.
Remote Sensing of Environment, 242 , 111734.

Wang, J., Li, D., Cao, W., Lou, X., Shi, A., & Zhang, H. (2022). Remote Sensing
Analysis of Erosion in Arctic Coastal Areas of Alaska and Eastern Siberia. Remote
Sensing, 14 (3), 589.

Wang, L., Jolivel, M., Marzahn, P., Bernier, M., & Ludwig, R. (2018). Thermokarst
pond dynamics in subarctic environment monitoring with radar remote sensing.
Permafrost and Periglacial Processes, 29 (4), 231 245.

Wang, L., Marzahn, P., Bernier, M., Jacome, A., Poulin, J., & Ludwig, R. (2017).
Comparison of TerraSAR-X and ALOS PALSAR differential interferometry with
multisource DEMs for monitoring ground displacement in a discontinuous permafrost
region. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 10 (9), 4074 4093.

Wang, L., Marzahn, P., Bernier, M., & Ludwig, R. (2018). Mapping permafrost
landscape features using object-based image classification of multi-temporal SAR
images. ISPRS Journal of Photogrammetry and Remote Sensing, 141 , 10 29.

Wang, M., & Overland, J. E. (2009). A sea ice free summer Arctic within 30 years?
Geophysical research letters, 36 (7).

Wang, M., & Overland, J. E. (2012). A sea ice free summer Arctic within 30 years:
An update from CMIP5 models. Geophysical Research Letters, 39 (18).

Wang, X., Liu, L., Zhao, L., Wu, T., Li, Z., & Liu, G. (2017). Mapping and
inventorying active rock glaciers in the northern Tien Shan of China using satellite
SAR interferometry. The Cryosphere, 11 (2), 997 1014.

Watanabe, S., Laurion, I., Chokmani, K., Pienitz, R., & Vincent, W. F. (2011).
Optical diversity of thaw ponds in discontinuous permafrost: A model system for
water color analysis. Journal of Geophysical Research: Biogeosciences, 116 (G2).

Watts, J. D., Kimball, J. S., Bartsch, A., & McDonald, K. C. (2014). Surface water
inundation in the boreal-Arctic: potential impacts on regional methane emissions.
Environmental Research Letters, 9 (7), 075001.

204



Bibliography

Watts, J. D., Kimball, J. S., Jones, L. A., Schroeder, R., & McDonald, K. C. (2012).
Satellite Microwave remote sensing of contrasting surface water inundation changes
within the Arctic Boreal Region. Remote Sensing of Environment, 127 , 223 236.

Wegmann, M., Leutner, B., & Dech, S. (2016). Remote sensing and GIS for ecologists:
using open source software. Pelagic Publishing Ltd.

Wessel, P., & Smith, W. H. (1996). A global, self-consistent, hierarchical, high-
resolution shoreline database. Journal of Geophysical Research: Solid Earth, 101 (B4),
8741 8743.

Westergaard-Nielsen, A., Karami, M., Hansen, B. U., Westermann, S., & Elberling,
B. (2018). Contrasting temperature trends across the ice-free part of Greenland.
Scientific reports, 8 (1), 1 6.

Westermann, S., Duguay, C. R., Grosse, G., & Kääb, A. (2014). Remote sensing of
permafrost and frozen ground. In Remote sensing of the cryosphere (pp. 307 344).
John Wiley & Sons, Ltd. doi: 10.1002/9781118368909.ch13

Westermann, S., Elberling, B., Højlund Pedersen, S., Stendel, M., Hansen, B., &
Liston, G. (2015). Future permafrost conditions along environmental gradients in
Zackenberg, Greenland. The Cryosphere, 9 (2), 719 735.

Westermann, S., Langer, M., & Boike, J. (2011). Spatial and temporal variations
of summer surface temperatures of high-arctic tundra on Svalbard implications
for MODIS LST based permafrost monitoring. Remote Sensing of Environment,
115 (3), 908 922.

Westermann, S., Langer, M., & Boike, J. (2012). Systematic bias of average winter-time
land surface temperatures inferred from MODIS at a site on Svalbard, Norway.
Remote Sensing of Environment, 118 , 162 167.

Westermann, S., Østby, T., Gisnås, K., Schuler, T., & Etzelmüller, B. (2015). A
ground temperature map of the North Atlantic permafrost region based on remote
sensing and reanalysis data. The Cryosphere, 9 (3), 1303 1319.

Westermann, S., Peter, M., Langer, M., Schwamborn, G., Schirrmeister, L., Etzelmüller,
B., & Boike, J. (2017). Transient modeling of the ground thermal conditions using
satellite data in the Lena River delta, Siberia. The Cryosphere, 11 (3), 1441 1463.

Westermann, S., Strozzi, T., Wiesmann, A., Aalstad, K., Fiddes, J., Kääb, A., . . .
Bartsch, A. (2018, 12). Circumpolar mapping of permafrost temperature and thaw
depth in the ESA Permafrost CCI project. In Agu fall meeting 2018. Washington,
D.C., USA: AGU.

Whiteman, G., Hope, C., & Wadhams, P. (2013). Vast costs of Arctic change. Nature,
499 (7459), 401 403.

Whitley, M. A., Frost, G. V., Jorgenson, M. T., Macander, M. J., Maio, C. V., &
Winder, S. G. (2018). Assessment of LiDAR and spectral techniques for high-
resolution mapping of sporadic permafrost on the Yukon-Kuskokwim Delta, Alaska.
Remote Sensing, 10 (2), 258.

205



Bibliography

Widhalm, B., Bartsch, A., Leibman, M., & Khomutov, A. (2017). Active-layer
thickness estimation from X-band SAR backscatter intensity. The Cryosphere,
11 (1), 483 496.

Woelders, L., Lenaerts, J. T., Hagemans, K., Akkerman, K., van Hoof, T. B., &
Hoek, W. Z. (2018). Recent climate warming drives ecological change in a remote
high-Arctic lake. Scientific reports, 8 (1), 1 8.

Wullschleger, S., Hinzman, L., & Wilson, C. (2011, 04). Planning the Next Generation
of Arctic Ecosystem Experiments. Eos, Transactions American Geophysical Union,
90 . doi: 10.1029/2011EO170006

Wullschleger, S. D. (2019). Support for Next-Generation Ecosystem Experiments
(NGEE Arctic) Field Campaign Report (Tech. Rep.). Washington, D.C., USA: DOE
Office of Science Atmospheric Radiation Measurement (ARM) Program.

Xia, J., McGuire, A. D., Lawrence, D., Burke, E., Chen, G., Chen, X., . . . others
(2017). Terrestrial ecosystem model performance in simulating productivity and
its vulnerability to climate change in the northern permafrost region. Journal of
Geophysical Research: Biogeosciences, 122 (2), 430 446.

Xie, C., Li, Z., Xu, J., & Li, X. (2010). Analysis of deformation over permafrost regions
of Qinghai-Tibet plateau based on permanent scatterers. International Journal of
Remote Sensing, 31 (8), 1995 2008.

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual
transformations for deep neural networks. In Proceedings of the ieee conference on
computer vision and pattern recognition (pp. 1492 1500).

Xu, M., Kang, S., Chen, X., Wu, H., Wang, X., & Su, Z. (2018). Detection of
hydrological variations and their impacts on vegetation from multiple satellite
observations in the Three-River Source Region of the Tibetan Plateau. Science of
the total environment, 639 , 1220 1232.

Xu, M., Kang, S., Wang, X., Pepin, N., & Wu, H. (2019). Understanding changes in
the water budget driven by climate change in cryospheric-dominated watershed of
the northeast Tibetan Plateau, China. Hydrological Processes, 33 (7), 1040 1058.

Xue, X., Guo, J., Han, B., Sun, Q., & Liu, L. (2009). The effect of climate warming and
permafrost thaw on desertification in the Qinghai Tibetan Plateau. Geomorphology,
108 (3-4), 182 190.

Yamazaki, T., Ohta, T., Suzuki, R., & Ohata, T. (2007). Flux variation in a Siberian
taiga forest near Yakutsk estimated by a one-dimensional model with routine data,
1986 2000. Hydrological Processes: An International Journal, 21 (15), 2009 2015.

Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D., & Wan, G. (2010). Permafrost
degradation and its environmental effects on the Tibetan Plateau: A review of
recent research. Earth-Science Reviews, 103 (1-2), 31 44.

Yang, W., Wang, Y., Liu, X., Zhao, H., Shao, R., & Wang, G. (2020). Evaluation
of the rescaled complementary principle in the estimation of evaporation on the
Tibetan Plateau. Science of the Total Environment, 699 , 134367.

206



Bibliography

Yao, F., Wang, J., Yang, K., Wang, C., Walter, B. A., & Crétaux, J.-F. (2018). Lake
storage variation on the endorheic Tibetan Plateau and its attribution to climate
change since the new millennium. Environmental Research Letters, 13 (6), 064011.

Yi, S., Zhou, Z., Ren, S., Xu, M., Qin, Y., Chen, S., & Ye, B. (2011). Effects of
permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai
Tibetan Plateau. Environmental Research Letters, 6 (4), 045403.

Yi, Y., Kimball, J. S., Chen, R. H., Moghaddam, M., & Miller, C. E. (2019). Sensitivity
of active-layer freezing process to snow cover in Arctic Alaska. The Cryosphere,
13 (1), 197 218.

Yi, Y., Kimball, J. S., Chen, R. H., Moghaddam, M., Reichle, R. H., Mishra, U.,
. . . Oechel, W. C. (2018). Characterizing permafrost active layer dynamics and
sensitivity to landscape spatial heterogeneity in Alaska. The Cryosphere, 12 (1),
145 161.

Yi, Y., Kimball, J. S., Rawlins, M. A., Moghaddam, M., & Euskirchen, E. S. (2015).
The role of snow cover affecting boreal-arctic soil freeze thaw and carbon dynamics.
Biogeosciences, 12 (19), 5811 5829.

Yin, G., Niu, F., Lin, Z., Luo, J., & Liu, M. (2017). Effects of local factors and climate
on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau,
China. Science of the Total Environment, 581 , 472 485.

Yin, G., Zheng, H., Niu, F., Luo, J., Lin, Z., & Liu, M. (2018). Numerical mapping
and modeling permafrost thermal dynamics across the Qinghai-Tibet engineering
corridor, China integrated with remote sensing. Remote Sensing, 10 (12), 2069.

Yoshikawa, K., & Hinzman, L. D. (2003). Shrinking thermokarst ponds and ground-
water dynamics in discontinuous permafrost near Council, Alaska. Permafrost and
Periglacial Processes, 14 (2), 151 160.

Yu, L., & Gong, P. (2012). Google Earth as a virtual globe tool for Earth science
applications at the global scale: progress and perspectives. International Journal of
Remote Sensing, 33 (12), 3966 3986.

Yu, Q., Epstein, H. E., Engstrom, R., Shiklomanov, N., & Strelestskiy, D. (2015). Land
cover and land use changes in the oil and gas regions of Northwestern Siberia under
changing climatic conditions. Environmental Research Letters, 10 (12), 124020.

Zakharova, E. A., Kouraev, A. V., Stephane, G., Franck, G., Desyatkin, R. V., &
Desyatkin, A. R. (2018). Recent dynamics of hydro-ecosystems in thermokarst
depressions in Central Siberia from satellite and in situ observations: Importance
for agriculture and human life. Science of The Total Environment, 615 , 1290 1304.

Zhang, T., Armstrong, R., & Smith, J. (2003). Investigation of the near-surface soil
freeze-thaw cycle in the contiguous United States: Algorithm development and
validation. Journal of Geophysical Research: Atmospheres, 108 (D22).

Zhang, T., Barry, R. G., & Armstrong, R. L. (2004). Application of satellite remote
sensing techniques to frozen ground studies. Polar Geography, 28 (3), 163 196.

207



Bibliography

Zhang, W., Liljedahl, A. K., Kanevskiy, M., Epstein, H. E., Jones, B. M., Jorgenson,
M. T., & Kent, K. (2020). Transferability of the Deep Learning Mask R-CNN Model
for Automated Mapping of Ice-Wedge Polygons in High-Resolution Satellite and
UAV Images. Remote Sensing, 12 (7), 1085.

Zhang, W., Witharana, C., Liljedahl, A. K., & Kanevskiy, M. (2018). Deep convolu-
tional neural networks for automated characterization of arctic ice-wedge polygons
in very high spatial resolution aerial imagery. Remote Sensing, 10 (9), 1487.

Zhang, X., Zhang, H., Wang, C., Tang, Y., Zhang, B., Wu, F., . . . Zhang, Z. (2019).
Time-series InSAR monitoring of permafrost freeze-thaw seasonal displacement over
Qinghai Tibetan Plateau using Sentinel-1 data. Remote Sensing, 11 (9), 1000.

Zhang, Y., Olthof, I., Fraser, R., & Wolfe, S. A. (2014). A new approach to mapping
permafrost and change incorporating uncertainties in ground conditions and climate
projections. The Cryosphere, 8 (6), 2177 2194.

Zhang, Y., Touzi, R., Feng, W., Hong, G., Lantz, T. C., & Kokelj, S. V. (2021).
Landscape-scale variations in near-surface soil temperature and active-layer thickness:
Implications for high-resolution permafrost mapping. Permafrost and Periglacial
Processes, 32 (4), 627 640.

Zhang, Z., Wang, C., Zhang, H., Tang, Y., & Liu, X. (2018). Analysis of permafrost
region coherence variation in the Qinghai Tibet Plateau with a high-resolution
TerraSAR-X image. Remote Sensing, 10 (2), 298.

Zhang, Z., Wang, M., Liu, X., Wang, C., Zhang, H., Tang, Y., & Zhang, B. (2019).
Deformation Feature Analysis of Qinghai Tibet Railway Using TerraSAR-X and
Sentinel-1A Time-Series Interferometry. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 12 (12), 5199 5212.

Zhao, R., Li, Z.-w., Feng, G.-c., Wang, Q.-j., & Hu, J. (2016). Monitoring surface
deformation over permafrost with an improved SBAS-InSAR algorithm: With
emphasis on climatic factors modeling. Remote Sensing of Environment, 184 ,
276 287.

Zhao, S., Zhang, S., Cheng, W., & Zhou, C. (2019). Model simulation and prediction
of Decadal Mountain permafrost distribution based on remote sensing data in the
Qilian Mountains from the 1990s to the 2040s. Remote Sensing, 11 (2), 183.

Zheng, G., Yang, Y., Yang, D., Dafflon, B., Lei, H., & Yang, H. (2019). Satellite-based
simulation of soil freezing/thawing processes in the northeast Tibetan Plateau.
Remote Sensing of Environment, 231 , 111269.

Zhou, Z., Liu, L., Jiang, L., Feng, W., & Samsonov, S. V. (2019). Using long-term SAR
backscatter data to monitor post-fire vegetation recovery in tundra environment.
Remote Sensing, 11 (19), 2230.

Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2019). Unet++: Redesign-
ing skip connections to exploit multiscale features in image segmentation. IEEE
transactions on medical imaging, 39 (6), 1856 1867.

208



Bibliography

Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017).
Deep learning in remote sensing: A comprehensive review and list of resources.
IEEE Geoscience and Remote Sensing Magazine, 5 (4), 8 36.

Zou, D., Zhao, L., Wu, T., Wu, X., Pang, Q., & Wang, Z. (2014). Modeling ground
surface temperature by means of remote sensing data in high-altitude areas: test
in the central Tibetan Plateau with application of moderate-resolution imaging
spectroradiometer Terra/Aqua land surface temperature and ground-based infrared
radiometer. Journal of Applied Remote Sensing, 8 (1), 083516.

Zwieback, S., Kokelj, S. V., Günther, F., Boike, J., Grosse, G., & Hajnsek, I. (2018).
Sub-seasonal thaw slump mass wasting is not consistently energy limited at the
landscape scale. The Cryosphere, 12 (2), 549 564.

Zwieback, S., Liu, X., Antonova, S., Heim, B., Bartsch, A., Boike, J., & Hajnsek,
I. (2016). A statistical test of phase closure to detect influences on DInSAR
deformation estimates besides displacements and decorrelation noise: Two case
studies in high-latitude regions. IEEE Transactions on Geoscience and Remote
Sensing, 54 (9), 5588 5601.

Zwieback, S., Westermann, S., Langer, M., Boike, J., Marsh, P., & Berg, A. (2019).
Improving permafrost modeling by assimilating remotely sensed soil moisture. Water
Resources Research, 55 (3), 1814 1832.

209








