Aus der Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie

der Universität Würzburg

Direktor: Professor Dr. med. Rainer H. Meffert

Operative Stabilisierung der Avulsionsfraktur des Kalkaneus

Biomechanische Analyse verschiedener Osteosynthesetechniken

Inauguraldissertation

Zur Erlangung der Doktorwürde der

Medizinischen Fakultät

der

Julius-Maximilians-Universität Würzburg

vorgelegt von

Lukas Hufnagel

aus Ansbach

Würzburg, September 2022

Referent: Priv. -Doz. Dr. med. Martin Jordan

Korreferent: Prof. Dr. med. Armin Wiegering

Dekan: Prof. Dr. med. Matthias Frosch

Tag der mündlichen Prüfung:27.09.2023

Der Promovend ist Arzt

Meinen Eltern

Inhaltsverzeichnis

1	Ein	leitung1	
	1.1	Anatomie des Kalkaneus	. 1
	1.2	Funktionelle Anatomie	2
	1.3	Gelenke	3
	1.4	Mikroarchitektur	.4
	1.5	Muskulatur und Achillessehne	. 5
	1.6	Durchblutung	. 6
	1.7	Klassifikation	. 7
	1.8	Epidemiologie1	LO
	1.9	Frakturmechanismus und Pathogenese1	L1
	1.10	Diagnostik und Bildgebung1	L3
	1.11	Therapie1	۱5
	1.1	1.1 Konservative Therapie1	16
	1.1	1.2 Minimal-invasive Therapie 1	L7
	1.1	1.3 Offen-operative Therapie1	18
	1.12	Nachbehandlung2	22
	1.13	Komplikationen	23
	1.1	3.1 Osteosyntheseversagen2	23
	1.1	3.2 Weichteilschäden	24
	1.14	Forschungsfrage2	25
2	Ma	terial und Methoden26	
	2.1	Kalkaneus Modelle	26
	2.2	Implantate	26
	2.3	Maschinen und Werkzeuge	29

	2.	4	Prä	paration der Kunstknochen	. 30
		2.4	.1	Osteotomie	. 30
		2.4	.2	Osteosynthese	. 30
		2.4	.3	Befestigung des Zugbands	. 34
		2.4	.4	Befestigung der Kunstknochen in der Halterung	. 35
		2.4	.5	Referenzpunkte für das Optische System	. 35
	2.	5	Bio	mechanische Testung	. 35
		2.5	.1	Versuchsaufbau	. 35
		2.5	.2	Versuchsablauf	. 36
		2.5	.3	Messparameter	. 40
	2.	6	Stat	tistische Methoden	. 41
3	Ergebnisse		sse43		
	3.	1	Pea	k to Peak Displacement	. 43
		3.1	.1	Peak to Peak Displacement bei 100 N	. 43
		3.1	.2	Peak to Peak Displacement bei 200 N	. 46
		3.1	.3	Peak to Peak Displacement bei 300 N	. 50
	3.	2	Ma	ximales Displacement	. 54
	3.	3	Plas	stische Deformation	. 58
		3.3	.1	Plastische Deformation bei 100 N	. 58
		3.3	.2	Plastische Deformation bei 200 N	. 60
		3.3	.3	Plastische Deformation bei 300 N	. 61
	3.	4	Ma	ximalkraft	. 64
	3.	5	Stei	ifigkeit	. 65
		3.5	.1	Steifigkeit bei 100 N	. 65
		3.5	.2	Steifigkeit bei 200 N	. 67
		3.5	.3	Steifigkeit bei 300 N	. 68

	3.6	Vers	sagensmechanismus	72
	3.7	Zusa	ammenfassung der Ergebnisse	76
4	Di	skussi	ion77	
	4.1	Disk	kussion der Methoden	77
	4.:	1.1	Verwendung von Kunstknochen	77
	4.:	1.2	Frakturmodell	78
	4.:	1.3	Frakturversorgung	78
	4.:	1.4	Versuchsaufbau	80
	4.:	1.5	Biomechanische Testung	81
	4.:	1.6	Statistische Auswertung	82
	4.2	Disk	kussion der Ergebnisse	82
	4.	2.1	Zufriedenstellende Stabilität der Schraubenosteosynthese	82
	4.	2.2	Materialprüfmaschine vs. Optisches System	83
	4.2	2.3	Versenkbare, kanülierte Doppelgewinde Schrauben vs. kanülierte Schraube	en
	m	it Unto	erlegscheiben	84
	4.	2.4	Winkelstabile Plattenosteosynthese	85
	4.3	Aus	blick	87
5	Zusammenfassung			
6	Literatur90			
7	Ar	nhang	96	
	7.1	Stat	tistische Auswertung	96
	7.2	Mat	terialliste	. 118
8	Da	nksag	gung122	
9	C\	/		

Abkürzungsverzeichnis

Α.	Arteria
Aa.	Arteriae
AO	Arbeitsgruppe für Osteosynthesefragen
Art.	Articulatio
bzw.	beziehungsweise
ca.	circa
CCS	cannulated compression screw
cm	Zentimeter
CRIF	closed reduction, internal fixation
СТ	Computertomographie
db.	durchbohrt
g	Gramm
K-Draht	Kirschnerdraht
Lig.	Ligamentum
M.	Musculus
ml	Milliliter
Mm.	Musculi
mm	Millimeter
mm/min	Millimeter pro Minute
mmHg	Millimeter-Quecksilbersäule

Ν	Newton
N.	Nervus
N/mm	Newton pro Millimeter
ORIF	open reduction, internal fixation
р	p-Wert
pAVK	periphere arterielle Verschlusskrankheit
Proc.	Processus
Procc.	Processus (Plural)
PSTC	posterosuperiores Tuber calcanei
V.	Vena
v.a.	vor allem
vs.	versus
z.B.	zum Beispiel
2K-Kleber	2-Komponenten-Kleber
Ø	Durchmesser

1.1 Anatomie des Kalkaneus

Der knöcherne Fuß wird durch 26 Knochen gebildet, welche über 35 Gelenke miteinander verbunden sind. Er wird in drei Abschnitte unterteilt: den Tarsus (Fußwurzel), den Metatarsus (Mittelfuß) und den Antetarsus (Vorfuß). Je nach Art der Einteilung werden diesen Abschnitten unterschiedliche Knochen zugeordnet. (1, 2)

Anatomisch betrachtet besteht der Tarsus aus dem Talus, dem Kalkaneus, dem Os cuboideum, dem Os naviculare und den Ossa cuneiformia I-III. Der Metatarsus besteht aus den Ossa metatarsalia I-V und den Antetarsus bilden die Phalangen. (1-3)

Ebenso kann eine funktionelle Einteilung vorgenommen werden. Dabei bilden der Talus und der Kalkaneus den Rückfuß. Das Os naviculare, das Os cuboideum, die Ossa cuneiformia und die Ossa metatarsalia zählen zum Mittelfuß und die Phalangen bilden den Vorfuß. (2)

Der Kalkaneus ist der größte Fußknochen und dient als Überträger des Körpergewichts auf andere Fußknochen sowie den Boden. Außerdem ist er als Teil des sogenannten Fußhebels von Bedeutung für die Kraftübertragung des M. triceps surae über die Achillessehne. Somit ist der intakte Kalkaneus unabdingbar für die Lokomotion. (3) Er verfügt über eine quaderähnliche Form mit vier Gelenkflächen sowie vier knöchernen Fortsätzen. (3) So besitzt er drei kranial gelegene Gelenkflächen für die Artikulation mit dem Talus: Facies articularis talaris anterior, Facies articularis talaris media und Facies articularis talaris posterior. Über diese Gelenke bilden Kalkaneus und Talus das untere Sprunggelenk. Des Weiteren verfügt er über eine ventral gelegene Gelenkfläche für die Artikulation mit dem Os cuboideum: Facies articularis cuboidea. Im Knochen- und Weichteilverband zeigt die Längsachse des Kalkaneus nach dorsokaudal. (1, 2) Dort besteht mit dem Tuber calcanei, dem größten knöchernen Fortsatz, sowie den dorsoplantar gelegenen Procc. medialis et lateralis tuberis calcanei ein Auflagepunkt auf dem Boden. An der lateralen konvex geformten Seite befindet sich die Trochlea peronealis, welche die knöcherne Führung für die Sehnen der Mm. peronei brevis et

longus bildet. An der medialen konkav geformten Seite ist das Sustentaculum tali zu finden. Hierunter verläuft im Sulcus tendinis musculi flexoris hallucis longi die entsprechende Sehne. (1-3) Der ventral gelegene Proc. anterior calcanei dient als Ausgangspunkt der bandförmigen Verbindung mit dem Os naviculare und dem Os cuboideum. (3)

Abbildung 1: Anatomische Darstellung des Kalkaneus. Mit freundlicher Erlaubnis von Springer. (3)

1.2 Funktionelle Anatomie

Um den stabilen Stand zu ermöglichen, sind drei Auflagepunkte am Fuß vorhanden: das Tuber calcanei, das Caput des Os metatarsi I und das Caput des Os metatarsi V. Der Talus trägt das gesamte Körpergewicht. (3) Vom Talus ausgehend wird die Last über drei Stützstrahlen zu diesen Auflagepunkten geleitet. Der dorsale Stützstrahl besteht lediglich aus dem Kalkaneus. Der mediale Stützstrahl leitet die Last über das Os naviculare zum Os cuneiforme und von dort zum Os metatarsi I. Der laterale Stützstrahl gibt die Last über den Kalkaneus an das Os cuboideum und von dort an das Os metatarsi V weiter. (1) Dem Kalkaneus und insbesondere dem Tuber calcanei kommt also eine besondere Bedeutung für den Stand zu.

1.3 Gelenke

Die großen Gelenke von Unterschenkel und Fuß bilden die Sprunggelenke. Das obere Sprunggelenk, Art. talocruralis, wird durch die distalen Enden von Tibia und Fibula sowie den Talus gebildet und entspricht einem Scharniergelenk. Im unteren Sprunggelenk, Art. talotarsalis, artikulieren Talus, Os naviculare und Kalkaneus miteinander. (1, 2) Es handelt sich zwar um zwei getrennte Gelenke, aber da am Talus keine Muskeln ansetzen, müssen oberes und unteres Sprunggelenk vielmehr als funktionelle Einheit betrachtet werden. (1) Auf das obere Sprunggelenk soll im Folgenden nicht näher eingegangen werden.

Das untere Sprunggelenk setzt sich aus zwei separaten Teilgelenken zusammen. Im dorsalen Abschnitt befindet sich die hintere Gelenkkammer, Art. subtalaris, und im ventralen Abschnitt die vordere Gelenkkammer, Art. talocalcaneonavicularis. (1, 2) Morphologisch entspricht die Art. subtalaris einem Zapfengelenk und die Art. talocalcaneonavicularis einem Kugelgelenk. Funktionell bildet die Kombination dieser beiden Teilgelenke im unteren Sprunggelenk ein Scharniergelenk. (1)

Die Art. subtalaris bilden die Facies articularis talaris posterior des Kalkaneus und die Facies articularis calcanea posterior des Talus. Die Art. talocalcaneonavicularis bilden die Facies articularis talaris anterior et media des Kalkaneus, die Facies articularis calcanea anterior et media des Talus, das Caput tali, die Gelenkpfanne des Os naviculare sowie das überknorpelte Pfannenband, Lig. calcaneonaviculare plantare. (4)

Die Grenze zwischen den beiden Gelenkhöhlen bildet das Lig. talocalcaneum interosseum. Es verläuft im Canalis tarsi, welcher durch den ventral der Facies articularis talaris posterior gelegenen Sulcus calcanei sowie den auf gleicher Höhe gelegenen Sulcus tali gebildet wird. (1, 2, 4)

In der vorderen Gelenkkammer befindet sich plantarseitig eine Lücke zwischen Kalkaneus und Os naviculare. Diese wird durch das mit Knorpel überzogene Pfannenband geschlossen. Gleichzeitig verbinden das Pfannenband und das lateral verlaufende Lig. calcaneonaviculare des Lig. bifurcatum den Kalkaneus mit dem Os naviculare und formieren somit einen funktionellen distalen Gelenkkörper. (1)

Die Stabilisierung des unteren Sprunggelenks erfolgt zum Teil auch durch Bänder des oberen Sprunggelenks. Das Lig. deltoideum hemmt mit seiner Pars tibiocalcanea und Pars tibionavicularis die Pronation, das Lig. calcaneofibulare die Supination. Das Lig. talocalcaneum interosseum, welches im Sinus tarsi gelegen ist, wirkt ausschließlich auf das untere Sprunggelenk und begrenzt dort mit seinen medialen Fasern die Pronation, mit seinen lateralen Fasern die Supination. Ebenso hemmt das Lig. talocalcaneum laterale die Supination. (1)

Die Bewegungsachse des unteren Sprunggelenks verläuft von dorsolateral unten nach ventromedial oben. Sie bildet dabei einen Winkel mit der Horizontalen von 30° bis 40° und einen Winkel mit der Sagittalachse von 20°. Im unteren Sprunggelenk, und damit im Wesentlichen zwischen Kalkaneus und Talus, kann eine Eversions- und Inversionsbewegung durchgeführt werden. Der Bewegungsumfang beträgt nach Neutral-Null-Methode 10°/0°/20°. Spricht man hingegen von Pronation und Supination, so beschreibt man die Bewegung des gesamten Vorfußes gegen Talus und Unterschenkel. Hierbei gilt ein Bewegungsumfang von 20°/0°/40° als physiologisch. (1, 2)

1.4 Mikroarchitektur

Der Aufbau des Kalkaneus kann, wie bei den meisten Knochen des Körpers, in drei Zonen unterteilt werden. Außen befindet sich die Knochenhaut, das Periost, darauf folgt die Kortikalis, Substantia compacta, und innen liegt die Spongiosa, Substantia spongiosa. (5) Die Kortikalis ist dicht und stabil. An Stellen mit besonderer Belastung ist sie außerdem verstärkt; so auch am Ansatz der Achillessehne. Die Spongiosa wird durchzogen von verschiedenen Trabekeln. Diese sind nach der auf den Knochen wirkenden Belastung ausgerichtet. Athavale et al. identifizierten in einer Kadaverstudie sechs Gruppen von Trabekeln. Eine Gruppe zieht dabei vom Ansatz der Achillessehne zu den beiden plantar gelegenen Processus. (6) Über diese Trabekel wird die Kraft von der Achillessehne über den Knochen bis zur Plantarfaszie geleitet. (7)

1.5 Muskulatur und Achillessehne

Der M. triceps surae bildet die oberflächliche Beugemuskulatur des Fußes. Er besteht aus den Mm. gastrocnemii medialis et lateralis, die proximal des Kniegelenks entspringen, sowie dem M. soleus, der dorsal am Unterschenkel entspringt. Der Muskel ist mit 90 % der Beugeleistung im oberen Sprunggelenk der stärkste Beuger. Er kann eine maximale Zugkraft von 300 kg entfalten und ist auch der stärkste Supinator im unteren Sprunggelenk. Er ist von immenser Bedeutung für die Lokomotion und den aufrechten Stand des Menschen. Beim Gehen bewirkt die Kontraktion des M. triceps surae, dass der Rückfuß des Standbeins gegen das Körpergewicht vom Boden abgehoben werden kann. Im Stand verhindert sie ein Vornüberkippen im oberen Sprunggelenk. (1)

Die Kraft wird über die Achillessehne auf den Kalkaneus übertragen. Die Achillessehne ist die längste und stärkste Sehne des Körpers. Sie ist im Durchschnitt 15 cm lang und 6 mm dick. (8, 9) Sie inseriert auf mittlerer Höhe des Tuber calcanei im Bereich der Crista tuberis. (3) Dort besitzt sie eine Breite von 1,2 cm bis 2,5 cm. Direkt proximal des Ansatzes befindet sich eine retrokalkaneale Bursa. Die Sehne bildet hierbei selbst eine Wand der Bursa. (8, 9) Die Achillessehne muss großen Belastungen Stand halten, um Bewegung zu ermöglichen. Die aufgebrachten Kräfte reichen hierbei vom 2,5-fachen des Körpergewichts während des Gehens bis zum 6- bis 12,5-fachen beim Rennen. (8, 9) Wie bereits erwähnt ist sie die stärkste Sehne im menschlichen Körper und hält mit einer Querschnittsfläche von bis zu 1 cm² Belastungen über 500 kg stand. (1) Kongsgaard et al. ermittelten in einer in vivo Studie beim Menschen eine Maximalkraft der Achillessehne von knapp 2000 N. (10)

Einige Menschen besitzen einen ausgedehnten Ansatz der Achillessehne am Kalkaneus. Dieser ist nicht nur auf das mittlere Drittel begrenzt, sondern reicht weiter nach proximal. (11) Dadurch soll der Vektor der Kraft bei dem im Knochenverbund leicht schräg liegenden Kalkaneus in einem steileren Winkel nahezu senkrecht nach kranial verlaufen und nicht wie im Normalfall nach kraniodorsal. Außerdem soll durch den größeren Ansatz am Knochen die einwirkende Kraft größer sein. Dies soll die Avulsion des posterosuperioren Tuber calcanei, PSTC, erleichtern. (12, 13) Die Prävalenz dieser anatomischen Variante ist nicht bekannt, jedoch fand Lowy sie bei Sektionen bei zwei

von zehn Körpern vor. (11) Lee et al. stellten in ihrer Studie bei 75 % der untersuchten Avulsionsfrakturen einen ausgedehnten Ansatz der Achillessehne fest. (13)

Erlaubnis von SAGE. (12)

1.6 Durchblutung

Andermahr et al. fanden in einer Kadaverstudie heraus, dass je 45 % des Kalkaneus durch die medial und lateral verlaufenden Aa. calcaneae medialis et lateralis versorgt werden. Die übrigen 10 % werden durch die A. sinus tarsi versorgt. (14)

Sowohl die medialen als auch die lateralen Äste gehen meist von der A. tibialis posterior aus. Nur bei zwei von 13 Objekten erfolgte die Blutversorgung des lateralen Asts über die A. fibularis. Andermahr et al. stellten daher die Vermutung auf, dass eine Unterbrechung der Blutversorgung durch einen operativen, lateralen Zugang zu einer Knochennekrose führen könne. Zumindest ist eine Verletzung der A. calcanea lateralis

mit einem erhöhten Risiko von Wundrandnekrosen assoziiert. (15) Des Weiteren wird postuliert, dass diese laterale Arterie für einen mikrovaskulären Lappen zur Deckung von Weichteildefekten der Ferse genutzt werden könnte. (14)

Abbildung 3: Schematische Darstellung der Blutversorgung des Kalkaneus. Mit freundlicher Erlaubnis von Springer. (3)

1.7 Klassifikation

Böhler präsentierte in den Dreißigerjahren eine erste Klassifikation von Kalkaneusfrakturen basierend auf der damaligen radiologischen Bildgebung. Er unterschied dabei acht Gruppen. Vier Gruppen bildeten die extraartikulären Frakturen ab und vier Gruppen die intraartikulären. Avulsionsfrakturen des PSTC wurden dabei in Gruppe 1 eingeordnet. (3)

Essex-Lopresti trug im Jahr 1952 entscheidend zum Verständnis der Frakturmechanismen des Kalkaneus bei. Er berichtete von einer "Joint-Depression" und von einer "Tongue-Type" Fraktur. Bei letzterer führt die von kranial wirkende Kraft dazu, dass der Talus in den Kalkaneus gepresst wird. Dies führt zur Entstehung einer Frakturlinie, welche von der lateralen Seite des Kalkaneus nach plantar verläuft. Außerdem entsteht eine Frakturlinie vom Gissane-Winkel nach dorsal durch das Tuber

calcanei. Im Folgenden kann es zu einer Dislokation des Tubers nach dorsal und kranial kommen. (16) Diese Frakturform ähnelt daher morphologisch den nachfolgend beschriebenen Avulsionsfrakturen und kann ähnliche Komplikationen verursachen, unterscheidet sich jedoch im Frakturmechanismus grundlegend davon.

Extraartikuläre Frakturen wurden bei darauffolgend entwickelten Klassifikationen wie z.B. durch Sanders jedoch häufig vernachlässigt. (3) Beavis et al. entwarfen erst im Jahr 2008 eine Klassifikation der extraartikulären Avulsionsfrakturen des Kalkaneus beruhend auf drei Typen. Während die Typen 1 (11, 17) und 2 (18, 19) bereits zuvor beschrieben wurden, gelten Beavis et al. als Erstbeschreiber des dritten Typs. Typ 1 stellt die sogenannte "sleeve" Fraktur dar. Hierbei wird eine Knochenschuppe von der Tuberositas posterior am superioren Ende des Tuber calcanei abgesprengt. Bei Typ 2 handelt es sich um die "beak" Fraktur. Es entsteht eine Frakturlinie, die hinter dem Böhler- Winkel schräg oder horizontal nach dorsal verläuft. Das seitliche Röntgenbild erinnert an einen Schnabel, was die Namensgebung erklärt. Typ 3 ist die "infrabursal avulsion" Fraktur, also eine Fraktur durch Absprengung unterhalb der Bursa. Das Knochenfragment reist dabei vom mittleren Drittel des PSTC aus. (12) Die unterschiedliche Frakturmorphologie ist entscheidend für die Wahl des operativen Procedere (siehe Therapie).

Abbildung 4: Klassifikation der Avulsionsfraktur des Kalkaneus von Beavis et al. Mit freundlicher Erlaubnis von SAGE. (12)

Lee et al. modifizierten diese Klassifikation. Sie ergänzten sie um einen vierten Typ. Dieser kann in gewisser Weise der "beak" Fraktur ähneln, jedoch handelt es sich um ein viel kleineres dreieckiges Fragment, welches vom kranialen Ende des PSTC abgetrennt wird. (13)

Mit ihren MRT-Untersuchungen sowie durch intraoperative Befunde konnten die Forscher außerdem feststellen, dass bei den vier Typen eine unterschiedliche Beteiligung der Achillessehne vorliegt. So sind bei Typ 1 und 2 Frakturen alle Sehnenanteile involviert. Bei Typ 3 jedoch sind nur die oberflächlichen Anteile der Achillessehne beteiligt, während es die tiefen Anteile bei Typ 4 sind. (13)

Weiterhin existiert eine AO-Klassifikation der Kalkaneusfrakturen. Diese unterscheidet zwischen drei Frakturgruppen. Bei der Gruppe A handelt es sich um extraartikuläre Frakturen und bei der Gruppe B um intraartikuläre Frakturen. Luxationsfrakturen bilden die Gruppe C. Die einzelnen Gruppen können weiter unterteilt werden, um eine möglichst genaue Beschreibung der Frakturmorphologie zu ermöglichen. Diese Klassifikation hat ihre Bedeutung daher heute vor allem in der Wissenschaft. (3)

1.8 Epidemiologie

Avulsionsfrakturen des PSTC sind seltene Verletzungen. Court-Brown et al. untersuchten in einer Studie 5953 Frakturen, wovon 1,2 % Frakturen des Kalkaneus waren. Extraartikuläre Frakturen waren gehäuft bei jungen Männern anzutreffen. (20) Dabei sind nur 25 % bis 40 % der Kalkaneusfrakturen extraartikulär. (21) Unter den Kalkaneusfrakturen ereignen sich Avulsionsfrakturen des PSTC mit einer Häufigkeit von 1,3 % bis 3,4 % (13, 21-24). Bei einer Untersuchung von Böhler 1931 betrug die Häufigkeit noch unter 1 %. (25) Bei Kindern und Jugendlichen kommen Avulsionsfrakturen des PSTC aufgrund der noch vorhandenen elastischen Verformbarkeit des Kalkaneus relativ betrachtet häufiger vor. (3, 21)

Verlässliche Daten zur Häufigkeitsverteilung der einzelnen Frakturtypen sind aufgrund der Seltenheit dieser Fraktur nicht vorhanden. Lee et al. konnten in einem Beobachtungszeitraum von sechs Jahren gerade einmal 20 Avulsionsfrakturen des PSTC in ihre Studie einschließen. Allerdings zeigte sich hier, dass "sleeve" Frakturen vom Typ I mit 40 % am häufigsten vorkamen. (13) In einer Studie von Lui et al. handelte es sich im gesamten Patientenkollektiv von 13 Patienten lediglich um Typ II Frakturen. (26) Auch

eine retrospektive Studie von Yu et al. mit 15 Patienten zeigte eine Häufung der Typ II Fraktur, welche bei zwölf Verunfallten vorlag. (27)

Generell wird in der Literatur berichtet, dass sich Avulsionsfrakturen des PSTC in einem alten Patientenkollektiv ereignen und dass Frauen häufiger betroffen sind. Der Häufigkeitsgipfel wird bei Frauen in der siebten Lebensdekade gesehen. (21, 28-31) Ein Grund hierfür ist die beim weiblichen Geschlecht in hohem Alter häufiger vorkommende Osteoporose. (18, 21, 30-32) So konnten Wren et al. zeigen, dass es bei schlechter Knochenqualität häufiger zu einer Avulsionsfraktur als zur Ruptur der Achillessehne kommt. (32) Auch Beavis und Lee sahen diese Häufung bei alten Frauen mit Osteoporose besonders für den Typ I. (12, 13) Im von Lee et al. untersuchten Kollektiv liegt das mittlere Alter für Frakturen vom Typ I bei 63 Jahren. Allerdings ereigneten sich die Frakturen vom Typ II, III und IV überwiegend bei jungen Männern mit einem mittleren Alter von 37, 40 und 32 Jahren. (13) Das mittlere Alter für die Frakturen vom Typ II wird von Lui et al. mit 52 Jahren angegeben. Auch hier handelte es sich um mehrheitlich männliche Patienten. (26) Yu et al. stellten in ihrer Studie bezogen auf alle Typen ein mittleres Alter von 51 Jahren fest. (27) In einer Studie mit dem bislang wohl größten Patientenkollektiv über einen Zeitraum von 17 Jahren konnten Mitchell et al. ein mittleres Alter von 49 Jahren ermitteln. (24)

1.9 Frakturmechanismus und Pathogenese

Der typische Mechanismus der Avulsionsfraktur des PSTC ist eine plötzliche Kontraktion des M. triceps surae bei am Boden fixierten Fuß. Häufig passiert dies beim Stolpern oder beim Sturz aus bereits geringer Höhe. (13, 21, 28) Es wirkt dann beim Aufkommen eine starke Dorsalflexionskraft gegen den maximal plantar flektierten Fuß. (33, 34) Durch die sich plötzlich ergebende enorme Kraft auf den Kalkaneus kommt es darauf zur Avulsion eines Knochenfragments variabler Größe. Da die einwirkende Kraft in Intensität und Zugrichtung interindividuell sehr unterschiedlich ist, ebenso wie der Ansatz und die Beschaffenheit der Achillessehne, kann es zu den unterschiedlichen Typen der Avulsionsfraktur kommen. (13) Eine weitere Situation, in der es durch die starke

Kontraktion des M. triceps surae zur Avulsion kommen kann, findet sich bei Sportlern. Hier kann sich die Fraktur beim Ansatz zum Sprint aufgrund der isolierten Muskelkontraktion bei gleichzeitiger Extension des Kniegelenks ereignen. Ein direktes Trauma während dieses Vorgangs bei Kontaktsportarten wie z.B. Fußball kann die Wahrscheinlichkeit einer Fraktur noch erhöhen. (33) Außerdem kann auch ein direkt von außen gegen den Knochen gerichtetes Trauma allein wie z.B. bei einem Autounfall zu einer Avulsionsfraktur des PSTC führen. (24, 27) In diesem Zusammenhang wurden auch sehr seltene Mechanismen wie eine Schusswunde (35) oder die Verletzung durch ein Fleischerbeil (36) beschrieben.

Lee et al. untersuchten in ihrer retrospektiven Studie 20 Avulsionsfrakturen des PSTC und verglichen die Frakturmechanismen zwischen den vier verschiedenen Frakturtypen. Sie wiesen dabei dem Typ I ein leichtes und den restlichen Typen ein stärkeres Trauma zu. So entstanden Typ I Frakturen bereits durch ein gering einwirkendes Trauma wie es beispielsweise beim Stolpern vorkommt. Frakturen vom Typ II, also "beak" Frakturen, traten v.a. bei einem direkt auf den Knochen gerichteten Trauma bei gleichzeitiger Muskelkontraktion auf. Der häufigste Unfallmechanismus bei Typ III und IV Frakturen war wiederum ein Sturz. (13)

Viele Erkrankungen und Lebensumstände sind mit dem Auftreten der Fraktur assoziiert: hohes Alter, Osteoporose oder Osteopenie, Diabetes mellitus, Niereninsuffizienz, langjährige Einnahme von Steroidhormonen, langjährige Immunsuppression, chronischer Nikotinkonsum und periphere Neuropathie. (12, 13, 24, 28, 30, 37, 38) So haben insbesondere Patienten mit Diabetes mellitus ein höheres Risiko, Avulsionsfrakturen des PSTC zu erleiden; auch spontan ohne suffizientes Trauma. (37-42) Gründe hierfür sind die abnorme Knochenmineralisation, die pathologische metabolische Stoffwechsellage, Bandinstabilitäten, reduzierte Reflexe und die periphere Neuropathie. (38, 41) Die periphere Neuropathie macht die Patienten aufgrund der eingeschränkten Schmerzwahrnehmung und Propriozeption anfälliger für rezidivierende Mikrotraumata. (37) Zudem kann sie dazu führen, dass die Patienten ihre

Verletzung nicht bzw. verspätet bemerken. Dies führt wiederum zu einer verspäteten Versorgung und den damit verbundenen Komplikationen wie nachfolgend beschrieben. (38, 43, 44) Avulsionsfrakturen bei diesem Patientenkollektiv werden aus den oben genannten Gründen auch als Insuffizienzfrakturen bezeichnet. (39) Außerdem weisen neuropathische Frakturen eine höhere Rate an Infektionen, Pseudarthrosen, Ausheilung in Fehlstellung und Versagen der Osteosynthese auf. Die Nachbehandlungsphase kann sehr viel länger dauern als bei Patienten ohne diese Grunderkrankung. Daher sollten die Behandler bei diesen Frakturen in Bezug auf Therapie und Nachsorge besonders sorgsam sein. (37, 45)

Die verstärkte Grundspannung des M. gastrocnemius wird als weiterer Faktor bei der Entstehung von Avulsionsfrakturen des PSTC diskutiert. (46) Manche Autoren empfehlen daher, bei der operativen Therapie diesen Umstand zu bedenken und noch vor Reposition der Fraktur mit einem "Gastrocnemius Release" zu adressieren. (28, 47, 48) In der Mehrheit der Fallberichte wird dieses Verfahren allerdings nicht angewandt.

1.10 Diagnostik und Bildgebung

Zu Beginn der Untersuchung sollte eine ausführliche Anamnese erfolgen. Diese liefert Hinweise auf den Verletzungsmechanismus, Vorerkrankungen wie Diabetes mellitus und Nikotinkonsum. Dies ist wichtig, um das Risiko für Komplikationen einschätzen zu können. Anschließend sollte die Inspektion erfolgen. Offene Verletzungen können dabei leicht erkannt werden. Hinweise für eine geschlossene Fraktur sind unter anderem eine Weichteilschwellung, ein Bluterguss unterhalb der Knöchel und eine Fehlstellung des Rückfußes. (3) Besondere Beachtung muss der Haut dorsal des Kalkaneus gelten, um eine Kompromittierung der Weichteile durch die Fraktur schnell zu erkennen. Zeichen hierfür sind Spannung und Blässe der Haut sowie eine eingeschränkte Rekapillarisierung. (44) In diesem Fall muss eine zeitnahe Versorgung erfolgen. Finden sich keine Anzeichen für Weichteilschäden, so sollte dennoch ein sorgsames Weichteilmonitoring mit regelmäßigen Kontrollen erfolgen, um im Zweifelsfall schnell handeln zu können. Hierfür eignet sich z.B. die Ruhigstellung in einer abnehmbaren, gepolsterten Schiene oder in

einer Schiene mit Aussparung an der Ferse. (49) Es folgt die klinische Untersuchung des Patienten. Dieser kann sich beispielsweise mit Schmerzen und eingeschränkter Funktion des Gastrocnemius-Soleus-Komplexes präsentieren. Der Thompson-Test kann positiv sein (34, 43, 50) Der periphere Pulsstatus, die Motorik und die Sensibilität sollten untersucht werden. (51) Die Diagnostik mittels Ultraschalls kann die vollständige oder teilweise Ablösung der Achillessehne von ihrer Insertion zeigen. (12) In aller Regel sollten konventionelle Röntgenaufnahmen durchgeführt werden, um die knöcherne Verletzung zu bestätigen und darzustellen. Hierbei sollten mindestens eine streng seitliche und eine anteroposteriore Aufnahme des Oberen Sprunggelenks und Rückfußes erfolgen. (51, 52) Ergänzend können axiale und dorsoplantare Aufnahmen angefertigt werden, insbesondere um weitere knöcherne Traumafolgen auszuschließen. (3) Im seitlichen Röntgenbild ist die Avulsionsfraktur des PSTC allerdings am besten zu erkennen.

Abbildung 5:Seitliches Röntgenbild einer "beak" Fraktur. Mit freundlicher Erlaubnis von SAGE. (12)

1.11 Therapie

Prinzipiell stehen zur Therapie von Kalkaneusfrakturen zwei grundlegende Möglichkeiten zur Verfügung: die konservative und die operative Behandlung. Bei der operativen Behandlung kann weiter eine minimal-invasive von einer offenen Therapie unterschieden werden. (3) Die Entscheidung für ein Therapiekonzept sollte dabei immer anhand der individuellen Situation des Patienten mit Begleitverletzungen, Vorerkrankungen und Funktionsanspruch, der Frakturmorphologie und insbesondere des Weichteilstatus getroffen werden. (3, 28) Derzeit gibt es keinen Konsens darüber, mit welcher Osteosynthesetechnik Avulsionsfrakturen des PSTC versorgt werden sollen.

Allerdings werden derartige Verletzungen in der Mehrheit der Fälle chirurgisch therapiert, insbesondere bei Dislokation. (12, 21, 24) Dass eine operative Versorgung der konservativen sowohl bezüglich Outcome als auch Rekonvaleszenz überlegen ist, zeigt eine von Schepers et al. durchgeführte Literaturrecherche. (21)

1.11.1 Konservative Therapie

Die konservative Therapie bietet eine Option insbesondere bei nicht dislozierten Kalkaneusfrakturen sowie bei gering dislozierten extraartikulären Frakturen ohne relevante Rückfußfehlstellung von weniger als 5° Varus und weniger als 10° Valgus. Aber auch intraartikuläre Frakturen mit einer Gelenkstufe von maximal 2 mm können konservativ behandelt werden. Manche Avulsionsfrakturen des PSTC vom Typ III und IV können gut konservativ therapiert werden. (13) Allerdings ist eine konservative Therapie nur durchführbar, wenn auch die Weichteilsituation dies zulässt. (3, 28, 37) Robb und Davies berichten über zufriedenstellende Ergebnisse im Zuge einer konservativen Therapie bei Dislokation von weniger als 1 mm. (31) Des Weiteren kann es notwendig sein, von einem primär-operativen Vorgehen abzuweichen, auch wenn die Indikation hierfür anhand der Frakturmorphologie gestellt werden kann, um drohende Komplikationen zu vermeiden. Häufig muss dann ein minimal-invasives oder gar konservatives Vorgehen gewählt werden. Auf diese Entscheidungsfindung Einfluss nehmende Umstände sind meist Vorerkrankungen oder Lebensgewohnheiten wie schwere Allgemeinerkrankungen, ein schlecht eingestellter Diabetes mellitus, eine relevante Immundefizienz, eine relevante periphere arterielle Verschlusskrankheit und ein chronischer Nikotin- oder Drogenabusus. Außerdem sollte bei einer sekundär superinfizierten Weichteilsituation eine konservative Therapie erfolgen. (3)

Konservativ behandelte Patienten müssen im Verlauf in kurzen Zeitintervallen klinischradiologisch kontrolliert werden, um sicherzugehen, dass sekundär keine größere Dislokation durch den Zug der Achillessehne eintritt. Im Zuge des konservativen Therapieregimes wird der Fuß im Unterschenkelgips in Spitzfußstellung unter Entlastung

ruhiggestellt. Nach allmählicher Neutralisation der Spitzfußstellung kann der Gips nach 6 bis 8 Wochen entfernt werden und die Physiotherapie begonnen werden. (27, 28, 37)

1.11.2 Minimal-invasive Therapie

Wenige Fallberichte beschreiben die perkutane Schraubenosteosynthese von Avulsionsfrakturen des PSTC. (26, 53) Blum et al. berichten über die erfolgreiche perkutane Fixation und das Erzielen eines guten Ergebnisses in mehreren Fällen. (53) Lui et al. konnten bei ihren Patienten keinen Unterschied im Outcome zwischen ORIF und CRIF feststellen. (26) Auch in einer Studie von Mitchell et al. ergab sich kein Unterschied zwischen offener und perkutaner Therapie. (24)

Andere Autoren wie Banerjee et al. lehnen den minimalinvasiven Zugang bei derartigen Verletzungen überwiegend ab, da sie der Meinung sind, dass die anatomisch korrekte Reposition unerlässlich zur Wiederherstellung des Gastrocnemius-Soleus-Komplexes ist. (28) Auch nach unserer klinischen Erfahrung ist die offen-operative Herangehensweise der minimal-invasiven in Bezug auf eine korrekte anatomische Fixation überlegen.

Über eine kleine longitudinale Inzision lateral der Achillessehne wird mit einer spitzen Repositionszange die Adaptation der Frakturfragmente erreicht. Hierbei ist eine Plantarflexion des Fußes hilfreich. Es muss Acht gegeben werden, den N. suralis nicht zu verletzen. Es folgt eine weitere kleine Inzision medial der Achillessehne zur oben beschriebenen Sicherung der Reposition. Eine Durchleuchtung zur Sicherstellung der anatomisch korrekten Reposition ist notwendig. Mit Führungsdrähten wird dann die Lage der Schrauben vorgegeben. Diese sollten senkrecht durch den Frakturspalt verlaufen. Anschließend werden über die Führungsdrähte die kanülierten Schrauben eingebracht. Repositionszangen und K-Drähte werden entfernt und die Lage der Schrauben mit einem Bildwandler kontrolliert. Zuletzt werden die Wunden verschlossen. (53)

Diese Osteosyntheseform bietet aufgrund des niedrigen operativ zugeführten Weichteiltraumas Vorteile insbesondere bei Patienten mit präoperativ starker

Kompromittierung der Weichteile im Bereich der Ferse sowie bei Diabetikern und chronischen Rauchern. (53)

1.11.3 Offen-operative Therapie

Die offen-operative Therapie wird bei Kalkaneusfrakturen mit einer Gelenkstufe von mehr als 2 mm, bei Frakturen mit Rückfußfehlstellung von mehr als 5° Varus und mehr als 10° Valgus sowie bei biomechanisch ungünstigen extraartikulären Frakturen wie der Avulsionsfraktur des PSTC empfohlen. (3) Bei der Versorgung letzterer stehen viele verschiedene Optionen zur Verfügung. In der Literatur finden sich klinische Berichte über Osteosynthesen mit Schrauben (26, 27, 34, 52-54) und oder Platten (27, 55), über Knochenanker (12, 29, 31, 33, 48, 56-58), "Tension band wiring" (18, 27, 55, 59-63) und Fixateur externe (64, 65).

1.11.3.1 Osteosynthese mit Schrauben

Bei einem ausreichend großen Knochenfragment, wie es bei der "beak" Fraktur vorkommt, bietet sich die Durchführung einer Osteosynthese mit Schrauben an. (12, 13) Die Schraubenosteosynthese ist zudem die häufigsten am angewandte Versorgungsform. Hierfür sind mehrere Zugänge möglich und werden in Fallberichten beschrieben. Die Auswahl des Zugangs hängt zum einen ab von der Präferenz des Operateurs, zum anderen von der Form und Größe des Frakturfragments und von der Richtung der Dislokation. (27) Oft empfohlen wird ein kleiner posterolateraler Zugang. (3, 18, 27, 31, 52, 53, 61) Lakstein et al. konnten in einer retrospektiven Studie bezüglich der Versorgung intraartikulärer Kalkaneusfrakturen weniger Wundkomplikationen feststellen als im Vergleich zum ausgedehnt lateralen Zugang. (66) Der posterolaterale Zugang wurde im Jahr 1943 von Gallie für die subtalare Arthrodese beschrieben. (67) Letournel erweiterte ihn nach ventral, um somit auch die offene Reposition und Plattenosteosynthese dislozierter Kalkaneusfrakturen durchführen zu können. (68) Der Patient wird in Bauchlage (26, 28, 31, 47, 48, 53, 56-58, 62, 63, 69, 70) oder Seitenlage (18, 26, 27, 52, 61) auf einem OP-Tisch, der Durchleuchtung erlaubt, gelagert. (3) In der

Regel wird eine Oberschenkelblutdruckmanschette verwendet, um eine Operation in Blutleere zu gewährleisten. Der Fuß wird ausgewickelt und eine Blutsperre mit 100 bis 150 mmHg über dem systolischen Blutdruck wird angelegt. (3)

Abbildung 6: Schematische (a) und intraoperative (b) Darstellung des ausgedehnt lateralen Zugangs zum Kalkaneus. Zur Versorgung von Avulsionsfrakturen des PSTC wird häufig eine Schnittführung gewählt, welche dem vertikal verlaufenden Anteil dieses Zugangs ähnelt. Mit freundlicher Erlaubnis von Springer. (3)

Es wird ein lateraler (18, 27, 31, 52, 53, 61) oder medialer (26, 27, 57, 60, 62, 69) paraachillärer Zugang etabliert. Manche Autoren wählen auch eine Schnittführung in der Mittellinie der Ferse. (27, 28, 47, 48, 56, 58, 63, 70) Eren et al. favorisieren dagegen eine transversale Inzision, bei der die Narbe parallel zu den Hautspannungslinien platziert wird und die Zielstrukturen laut Autoren ebenso gut dargestellt werden können. Hierdurch soll die Narbenbildung verringert werden. (71) Diese Technik wird in Fallberichten allerdings kaum beschrieben. Der Schnitt beim lateralen Zugang ist vergleichbar mit dem vertikalen Anteil des ausgedehnt lateralen Zugangs. Dieser beginnt etwa drei Querfinger oberhalb des Außenknöchels im Bereich des lateralen

Achillessehnenrandes. (3) Hierbei muss besonders Acht gegeben werden, den N. suralis nicht zu verletzen. (31) Je nach gewählter Lagerung findet eine Flexion in Hüft- und Kniegelenk statt. Außerdem ist eine maximale Plantarflexion des Fußes anzustreben. Dadurch nähern sich die Knochenfragmente bereits einander an. Nun kann beispielsweise mit einem Raspatorium oder Elevatorium die Reposition unternommen werden. Die Retention kann beispielsweise unter Verwendung einer Repositionszange erreicht werden. Bei schlechter Knochenqualität ist es sinnvoll, ein Exemplar zu wählen, dessen Spitzen durch eine Kugel verbreitert sind. (3) Alternativ oder auch ergänzend kann die Reposition durch K-Drähte gesichert werden. (27, 62) Die Verwendung von K-Drähten bietet sich außerdem an, da diese als Leitstrukturen für die kanülierten Schrauben dienen. Vor finaler Osteosynthese sollte stets eine Kontrolle der anatomischen Reposition mit dem Bildwandler erfolgen. (27) Anschließend werden in der Regel zwei Schrauben von kranial möglichst senkrecht durch den Frakturspalt in den distalen Anteil des Tuber calcanei eingebracht. (3, 29, 53) Yu et al. empfehlen wiederum, den Verlauf der einen Schraube rechtwinklig zum Frakturspalt und der anderen Schraube rechtwinklig zur Achillessehne zu wählen, um der Zugkraft der Achillessehne zu begegnen. (27) Der Durchmesser der Schrauben sollte laut Literaturrecherche mindestens 4 mm betragen, aber selbst der Einsatz von 7,3 mm großen Schrauben wird berichtet. (26-28, 52-54) Die Verwendung von Unterlegscheiben unterliegt der Einschätzung des Operateurs. Vor allem bei besonders weichem Knochen können diese eine sinnvolle Augmentation darstellen. (3) Zuletzt werden die Repositionsinstrumente und Führungsdrähte entfernt und es folgt der Wundverschluss.

Abbildung 7: Versorgung einer Avulsionsfraktur des PSTCmittels zweier Schrauben mit Unterlegscheiben. Mit freundlicher Erlaubnis von Elsevier. (29)

1.11.3.2 Osteosynthese mit Knochenankern und "Tension band wiring"

Da es sich bei Avulsionsfrakturen vom Typ I und III nach Beavis um kleine Knochenfragmente handelt, ist eine Osteosynthese unter Verwendung von Schrauben in der Regel nicht durchführbar. (12) In diesen Fällen hat sich die Verwendung von Knochenankern (12, 29, 31, 33, 48, 56-58) oder auch "Tension band wiring" (18, 27, 55, 59-63) etabliert.

Viele verschiedene Nahttechniken in Verbindung mit Knochenankern können in der Literatur gefunden werden. Die Knochenanker können beispielsweise distal oder proximal der Fraktur inseriert werden und mit der Achillessehne verknotet werden. (29, 31, 33, 48, 56-58, 72) Eine weitere Möglichkeit stellt die Befestigung durch die Führung von Fiberwire, welcher an der Achillessehne fixiert ist, durch präformierte Knochentunnel dar. (47, 69, 70) Auch die Kombination von kanülierten Schrauben mit Draht- oder Fiberwirecerclagen durch die Schrauben wird beschrieben. (61-63) Zuletzt

gibt es auch die Möglichkeit, eine Zuggurtung mit einem oder mehreren quer durch den Kalkaneus eingebrachten K-Drähten zu etablieren. (18, 59, 60) Allerdings wird hierfür ein größerer Zugang benötigt, welcher das Risiko für Wundkomplikationen immens erhöht. (30)

Bei Lui et al. werden beispielsweise zwei Knochenanker, einer medial und einer lateral, in die Frakturzone des Kalkaneus eingebracht. Die Fäden werden dann sowohl durch den proximalen Anteil des Knochenfragments als auch durch den distalen Anteil geführt und zum Teil miteinander verknotet. (57) Zuletzt erfolgt eine Befestigung an der Achillessehne mit den übrigen Fäden beispielsweise mittels der Krackow- und oder Kessler-Technik. (29, 31, 57)

1.11.3.3 Osteosynthese mit Platten

Die Versorgung von Avulsionsfrakturen des PSTC mit Platten wurde in klinischen Berichten nicht sehr oft beschrieben. Bei intraartikulären Kalkaneusfrakturen finden sie jedoch regelmäßig Verwendung und werden dann lateral am Kalkaneus befestigt. (3) Jedoch werden solche Verfahren durchaus auch bei Avulsionsfrakturen angewendet, besonders wenn es sich um sehr große Fragmente handelt und wenn die Fraktur die subtalare Oberfläche mitbetrifft. Häufig werden die Plattensysteme dann lateral am Kalkaneus angebracht und durch eine oder zwei von dorsal eingebrachte Zugschrauben augmentiert. (27) Eine recht neue und bisher nur einmal von Xu et al. beschriebene Methode verwendet eine in U-Form gefertigte Platte, welche von oben auf das Frakturstück aufgesetzt wird. (55)

1.12 Nachbehandlung

Die Nachbehandlung von Avulsionsfrakturen des PSTC variiert sowohl aufgrund der verschiedenen Osteosynthesetechniken sowie aufgrund der Präferenz der Operateure. In der Regel wird postoperativ ein Unterschenkelgips in Spitzfußstellung angelegt. Ein Gips wird über 2 (47, 53, 63), 3 (26, 27, 60), 4 (31, 54, 56) oder 6 Wochen (52) getragen. Währenddessen muss eine strikte Entlastung der Extremität erfolgen. Im Verlauf wird

eine konsekutive Reduzierung der Spitzfußstellung im angepassten Gips (26, 31, 52, 54, 60) oder im Funktionsschuh (47, 53) erreicht. Die Extremität darf nun häufig bereits teilbelastet werden. (47, 56, 57, 62, 63) Spätestens nach 6 Wochen kann normalerweise eine Teilbelastung stattfinden. (26, 28, 53, 60) Eine Vollbelastung der Extremität kann innerhalb mancher Therapieregime nach 6 (57, 62, 63) bzw. 8 Wochen (56) erfolgen. In einigen Fällen beträgt die Zeit bis zur Vollbelastung jedoch 12 Wochen (28, 54) und es bedarf einer Röntgenkontrolle mit Nachweis der Knochenheilung (27, 47, 52).

1.13 Komplikationen

Die Therapie von Avulsionsfrakturen des PSTC gestaltet sich schwierig und ist mit einer hohen Rate an Reoperationen verbunden. In der Literatur wird sie mit 20 % bis 54 % angegeben. Reoperationen sind zum einen aufgrund von Weichteilkomplikationen nötig, zum anderen aufgrund von sekundärer Dislokation des Frakturfragments. (26, 27, 30, 73)

1.13.1 Osteosyntheseversagen

Das Versagen der Osteosynthese im Verlauf ist eine bekannte Komplikation bei der Versorgung von Avulsionsfrakturen des PSTC. Gitajn et al. fanden in einer retrospektiven Studie heraus, dass 27 % der operativ versorgten Patienten aus diesem Grund erneut operiert werden mussten. In der Subgruppe, bei der die Osteosynthese mit kanülierten Schrauben erfolgte, waren es sogar 38,5 %. Allerdings gab es keinen statistisch signifikanten Zusammenhang zwischen der Häufigkeit des Versagens und der Art der Osteosynthese. (30) In einer Studie von Carnero et al. fand sich bei 29,4% der operativ versorgten Patienten ein Versagen der Osteosynthese. (73) Mitchell et al. fanden in 28 % der Fälle ein Osteosyntheseversagen vor. (24) Der häufigste Grund für erneute chirurgische Interventionen sind laut Gitajn et al. allerdings Wundkomplikationen. (30)

1.13.2 Weichteilschäden

Besonders Frakturen vom Typ 2 nach Beavis beinhalten ein großes Risiko für Weichteilschäden. Bis zu 21 % der Tongue-Type Frakturen, welche auf eine ähnliche Art und Weise wie die Avulsionsfrakturen des PSTC zu einer Weichteilschädigung führen, gehen mit einer Gefährdung der dorsalen Weichteilgewebe einher. (49) Bei Gitajn et al. wird diese Häufigkeit für Avulsionsfrakturen mit 36,4 % angegeben. (30) Bei Mitchell et al. liegt die Rate für Weichteilbeteiligung bei Vorstellung des Patienten sogar bei 45 %. (24) Durch den Zug der Achillessehne wird das Frakturfragment nach kranial verschoben und das scharfe Knochenstück kann gegen die dünne Haut an der dorsalen Seite des Kalkaneus pressen. Dieser erhöhte Druck kann zu dekubitalen Wunden und Nekrosen führen, wenn die Fraktur nicht zeitgerecht versorgt wird und keine Entlastung der Weichteile stattfindet. (17, 43, 44, 49)

Hohes Alter, Diabetes mellitus, pAVK, Hypothyreoidismus und Multimorbidität führen zu einer größeren Rate an Wundheilungsstörungen. Einen negativen Einfluss hierauf nimmt ebenfalls die bereits bei Vorstellung des Patienten kompromittierte Weichteilsituation. Diese Patienten weisen außerdem eine höhere Wahrscheinlichkeit eines Osteosyntheseversagens auf als Patienten mit intaktem Weichteilmantel. (30)

Kam es zu dekubitalen Wunden oder gar Nekrosen, so birgt dies bei einer anschließenden ORIF ein höheres Infektionsrisiko sowohl für die Weichteile als auch für das Osteosynthesematerial, sodass dann die Durchführung einer CRIF in Erwägung gezogen werden sollte. Außerdem kann es bei einem starken Weichteilschaden nötig sein, die Wunde zunächst partial zu verschließen und mit einer Vakuumtherapie zu behandeln. In ausgeprägten Fällen kann eine sekundäre plastische Deckung der Wunde notwendig werden. (27, 44) Nach solch einem komplikativen Wundmanagement kann eine Bewegungseinschränkung in der Plantar- und Dorsalflexion resultieren. (43)

Die verspätete Therapie einer Avulsionsfraktur mit gefährdeten Weichteilverhältnissen, welche nachfolgend in einem Weichteilschaden und Wundkomplikationen mündet, kann in verlängerter Immobilisation, dem vermehrten Einsatz von Antibiotika und der operativen Sanierung der Achillessehne resultieren. (44, 74) Es ist daher unverzichtbar,

eine solche Fraktur mit klinisch erkennbarem Stress für die Weichteile an der Ferse noch am selben Tag zu versorgen; besonders bei älteren Patienten, bei denen das Risiko für Weichteilschäden noch größer ist. (30, 43, 44, 49, 75)

1.14 Forschungsfrage

Noch immer gibt es keinen Konsens darüber, welche die beste Art ist, eine Avulsionsfraktur des PSTC operativ zu versorgen. Auch wenn diese Fraktur selten vorkommt (13, 21-24), zeigt doch die große Rate an Komplikationen und damit verbundenen Reoperationen (26, 27, 30, 73), dass es hierzu noch weiterer Forschung bedarf. Während es viele klinische Fallberichte gibt, die von individuellen Patienten und deren operativer Versorgung berichten, fehlt es an systematisch durchgeführten Studien, die die unterschiedlichen Osteosyntheseformen direkt vergleichen. In den vergangenen Jahren entstand eine zunehmende Bandbreite neuer Schrauben und Plattenosteosynthesen, die sich für den Einsatz am Kalkaneus eignen.

Das Ziel dieser Arbeit ist es daher, im biomechanischen Versuch die Versorgung unterschiedlicher und neuer Osteosynthesetechniken zu untersuchen. Hierfür wurden versenkbare, kanülierte Doppelgewinde Schrauben und winkelstabile Plattenosteosynthesen mit den üblicherweise verwendeten kanülierten Schrauben mit Unterlegscheiben verglichen.

Die Nullhypothese dieser Arbeit ist, dass alle Osteosynthesetechniken die gleiche biomechanische Stabilität besitzen.

Die Gegenhypothese dieser Arbeit ist, dass eine oder mehrere der Osteosynthesetechniken eine überlegene biomechanische Stabilität aufweisen.

2 Material und Methoden

2.1 Kalkaneus Modelle

In dieser Arbeit wurden Kalkaneus-Modelle aus Kunststoff der Firma Synbone (LD 9118; Synbone, Malans, Schweiz) verwendet. Bei den synthetischen Knochen handelt es sich jeweils um rechte Kalkaneus-Modelle mit einer Größe von 80 mm x 40 mm x 42mm. Ihr Aufbau ähnelt dem von humanen, eher osteoporotischen Knochen: Sie besitzen eine Kortikalis sowie eine Spongiosa. (76, 77) Für diese Arbeit wurden insgesamt 50 Kalkaneus-Kunstknochen verwendet.

2.2 Implantate

In dieser Arbeit wurden fünf verschiedene Implantate zur Frakturversorgung untersucht. Pro Gruppe wurden zehn Kunstknochen osteosynthetisch versorgt.

Bei dem Implantat "Db. Schraube 6.5 mm" handelt es sich um kanülierte Teilgewindeschrauben der Firma DePuySynthes aus Titan. In unserem Versuchsaufbau wurden pro Versuchsobjekt zwei Schrauben verwendet. Insgesamt wurden also 20 Schrauben verwendet. Sie besitzen eine Länge von 45 mm und einen Durchmesser von 6,5 mm und verfügen über ein Teilgewinde. Sie wurden zusammen mit Unterlegscheiben mit einem Durchmesser von 13 mm verwendet. Im Folgenden wird das Implantat "Db. Schraube 6.5 mm" als Gruppe A bezeichnet.

Bei dem Implantat "Db. Schraube 4.0 mm" handelt es sich um kanülierte Teilgewindeschrauben der Firma DePuySynthes aus Titan. In unserem Versuchsaufbau wurden pro Versuchsobjekt zwei Schrauben verwendet. Insgesamt wurden also 20 Schrauben verwendet. Sie besitzen eine Länge von 44 mm und einen Durchmesser von 4 mm und verfügen über ein Teilgewinde. Sie wurden zusammen mit Unterlegscheiben mit einem Durchmesser von 7 mm verwendet. Auf den nachfolgenden Seiten wird das Implantat "Db. Schraube 4.0 mm" als Gruppe B bezeichnet.

Bei dem Implantat "5.0 CCS Schraube" handelt es sich um versenkbare, kanülierte Doppelgewinde Schrauben der Firma Medartis aus Titan. In unserem Versuchsaufbau wurden pro Versuchsobjekt zwei Schrauben verwendet. Insgesamt wurden also 20 Schrauben verwendet. Sie besitzen eine Länge von 45 mm und einen Durchmesser von 5 mm. Sie besitzen ein distales Teilgewinde sowie ein Gewinde im Schraubenkopf. In dieser Arbeit wird das Implantat "5.0 CCS Schraube" von hier an als Gruppe C bezeichnet.

Bei dem Implantat "2.0/2.3 TriLock Grid PI 3+3 Loch" der Firma Medartis handelt es sich um ein winkelstabiles Plattensystem aus Titan. Es besitzt eine Länge von 37 mm, eine Breite von 10 mm und eine Dicke von 1,3 mm. Die Platte besitzt sechs Löcher, in welche Schrauben mit einem Durchmesser von 2,0 mm und 2,3 mm eingebracht werden können. Sie ist im Werkszustand plan und muss mithilfe zweier Biegezangen anatomisch an den Kalkaneus angepasst werden. Die in dieser Arbeit verwendeten Schrauben besitzen alle einen Durchmesser von 2 mm und einen Schraubenkopf mit einem Gewinde, welches eine winkelstabile Verschraubung mit der Platte erlaubt. Im Folgenden wird das Implantat "2.0/2.3 TriLock Grid PI 3+3 Loch" als Gruppe D bezeichnet.

Bei dem Implantat "2.8 TriLock Grid PI 3+3 Loch" der Firma Medartis handelt es sich um ein winkelstabiles Plattensystem aus Titan einer anderen Größe. Es besitzt eine Länge von 43 mm, eine Breite von 12 mm und eine Dicke von 1,6 mm. Die Platte besitzt sechs Löcher, in die Schrauben mit einem Durchmesser von 2,8 mm eingebracht werden können. Sie ist im Werkszustand plan und muss mithilfe von zwei Zangen anatomisch an den Kalkaneus angepasst werden. Die in unserem Versuchsaufbau verwendeten Schrauben besitzen alle einen Durchmesser von 2,8 mm und einen Kopf mit einem Gewinde zum winkelstabilen Einbringen der Schrauben. Im Folgenden wird das Implantat "2.8 TriLock Grid PI 3+3 Loch" als Gruppe E bezeichnet.

Gruppe	Art der Fixation	Implantateigenschaften
Α	2 kanülierte Schrauben 6,5 mm mit Unterlegscheiben	 Schrauben: L45/32mm, LOT L443153, REF 408.431, DePuySynthes Unterlegscheiben: Ø 13,0/6,6mm, LOT 67P8477, REF 419.990, DePuySynthes
В	2 kanülierte Schrauben 4,0 mm mit Unterlegscheiben	 Schrauben: L44/14mm, LOT 71P1287, REF 407.644, DePuySynthes Unterlegscheiben: Ø 7.0/3.6mm, LOT 66P2163, REF 419.980, DePuySynthes
С	2 versenkbare, kanülierte Doppelgewinde Schrauben 5,0 mm	 L45mm, HD 15, LOT 18176818, Materialnummer A-8211.45X, Medartis
D	Plattenosteosynthese 2,0 mm Schrauben	 Platte: 2.0/2.3 TriLock GridPI 3+3 Loch, 37mm, t1.3, APTUS, LOT 20216583, REF A-4655.69, Medartis Winkelstabile Schrauben: 2x 20 mm, 2x 18 mm, 2x 16 mm
E	Plattenosteosynthese 2,8 mm Schrauben	 Platte: 2.8 TriLock Grid PI 3+3 Loch, 43mm, t1.6, APTUS, LOT 20224721, REF A-4850.69, Medartis Winkelstabile Schrauben: 2x 20 mm, 2x 16 mm, 2x 14 mm

Tabelle 1: Übersicht der verwendeten Implantate in den fünf Gruppen A bis E.

Abbildung 8: Schematische Darstellung der fünf Gruppen. In grau ist der Ansatz der Achillessehne dargestellt. Gruppe A: zwei kanülierte Schrauben mit einem Durchmesser von 6,5 cm und Unterlegscheiben. Gruppe B: zwei kanülierte Schrauben mit einem Durchmesser von 4,0 mm und Unterlegscheiben. Gruppe C: zwei versenkbare, kanülierte Doppelgewinde Schrauben mit einem Durchmesser von 5,0 mm. Gruppe D: Winkelstabile Plattenosteosynthese mit Schrauben mit Durchmesser von 2,0 mm. Gruppe E: Winkelstabile Plattenosteosynthese mit Schrauben mit Durchmesser von 2,8 mm.

2.3 Maschinen und Werkzeuge

Die Testungen fanden im unfallchirurgischen Labor des Zentrums für Operative Medizin der Universitätsklinik Würzburg statt. Die biomechanischen Testungen wurden mit der Materialprüfmaschine der Firma Zwick Roell (Z020, Zwick GmbH & Co., Ulm, Germany) durchgeführt. Mittels der Test-Xpert-II Software (Zwick Roell) wurden die Materialprüfmaschine programmiert und die Ergebnisse der Versuchsreihen ausgewertet. Zur optischen Kontrolle wurde eine 3D-Kamera der Firma GOM (Aramis 3D Camera 12M, GOM GmbH, Braunschweig, Germany) mit der Materialprüfmaschine verbunden. Das Optische System wurde mit dem Programm GOM Aramis Professional 2018 programmiert.

2.4 Präparation der Kunstknochen

2.4.1 Osteotomie

Als erstes wurde für die Präparation der Kunstknochen die Hinterkante des Kalkaneus mit einer handelsüblichen Feile angeraut. Dieser Schritt ist wichtig, um eine gute Funktion des 2K-Klebers zu gewährleisten und ein Ausreißen des Bands während der Testung zu verhindern. Danach wurde die Osteotomie durchgeführt. Hierfür wurde eine oszillierende Säge (Parkside PMFW, 310B1) verwendet. Es wurde mit einer Schnittführung von 3 cm kaudal des kranialen Endes des PSTC nach 2 cm ventral des PSTC gesägt. Es entstand ein in der seitlichen Ansicht dreieckiges Frakturfragment. Die Seitenkanten waren ca. 2,0 mm, 3,2 mm und 4,2 mm lang. Die so erzeugte Fraktur simuliert eine Avulsionsfraktur vom Typ II nach Beavis. Im Anschluss wurden die Frakturfragmente vermessen, um die Vergleichbarkeit der Osteotomie kontrollieren zu können.

2.4.2 Osteosynthese

2.4.2.1 Gruppe A

Für die Osteosynthese mit kanülierten Schrauben vom Durchmesser 6,5 mm wurde die Fraktur zunächst manuell reponiert. Die Reposition wurde durch zwei von dorsal eingebrachte K-Drähte gesichert. Die K-Drähte wurden hierbei an der Stelle eingebracht, wo später die Schrauben positioniert werden sollten. Sie wurden dabei von dorsal kranial nach ventral kaudal eingebracht, sodass sie annähernd senkrecht durch den Frakturspalt verliefen. Um eine vergleichbare Position der Schrauben innerhalb Gruppe A zu erreichen, wurde zuvor eine Markierung am Frakturfragment angebracht: Die beiden Punkte, durch die später die Schrauben eingebracht werden sollten, wurden zentral mit jeweils 10 mm Abstand nach lateral und medial markiert. In vertikaler Richtung wurde die erste Markierung bei 8 mm kaudal des kranialen Endes des PSTC gesetzt und die zweite Markierung 14 mm kaudal der ersten. Anschließend wurden die Führungsdrähte mit einem Durchmesser von 2,8 mm möglichst parallel zueinander eingebracht. Nach optischer Kontrolle erfolgte die Bohrung der Löcher mit einem Spiralbohrer mit 5 mm Durchmesser. Anschließend wurden die Schrauben mit Unterlegscheiben mit einem Durchmesser von 13 mm eingebracht. Zunächst wurde eine der beiden Schrauben bis kurz vor den Schraubenkopf eingebracht; dann die zweite Schraube ebenfalls bis vor den Kopf. Daraufhin wurden die Schrauben abwechselnd festgezogen. Zuletzt wurden die Führungsdrähte entfernt.

2.4.2.2 Gruppe B

Wie zuvor wurde die Fraktur händisch reponiert. Es folgte die Sicherung der Reposition durch zwei Führungsdrähte mit einem Durchmesser von 1,25 mm. Diese Führungsdrähte gaben erneut die Richtung der Schrauben vor und wurden nahezu parallel zueinander durch den Frakturspalt in den Knochen eingebracht. Die Markierungen am Frakturstück erfolgten in Gruppe B wiederum zentral mit 10 mm Abstand zu den Seiten. In vertikaler Orientierung wurde die erste Markierung 10 mm kaudal des kranialen Endes des PSTC und die zweite 10 mm kaudal der ersten gesetzt. Nach optischer Kontrolle wurden die Bohrlöcher gebohrt. Hierbei wurde ein Spiralbohrer mit einem Durchmesser von 2,7 mm verwendet. Dann wurden die beiden Schrauben zusammen mit den Unterlegscheiben mit einem Durchmesser von 7 mm eingebracht. Wieder wurde zunächst eine Schraube bis kurz vor den Kopf der Schraube alternierend festgezogen. Zuletzt wurden die Führungsdrähte entfernt.

2.4.2.3 Gruppe C

Für die Osteosynthese mit CCS Schrauben wurde die Fraktur erneut mit den Händen anatomisch reponiert. Die Reposition wurde mit zwei K-Drähten mit 1,5 mm Durchmesser gesichert. Die Markierungen für die K-Drähte wurden in Gruppe C genau wie für Gruppe B beschrieben platziert. Nach optischer Kontrolle der Lage der Führungsdrähte wurden die beiden Bohrkanäle gebohrt. Es wurde ein Spiralbohrer mit einem Durchmesser von 3,1 mm verwendet. Anschließend wurden die beiden CCS Schrauben über die K-Drähte eingebracht. Zunächst wurde die erste Schraube bis kurz

vor das Gewinde im Schraubenkopf eingedreht, anschließend folgte die zweite Schraube. Dann wurden die beiden Schrauben abwechselnd mit dem Kopfgewinde in den Kunstknochen eingedreht. So wurde ein gleichmäßiger Kompressionsdruck durch die Schrauben erreicht. Die Schrauben wurden so weit eingebracht, dass sie mit dem Schraubenkopf annähernd eben an der Knochenoberfläche abschlossen. Anschließend wurden die K-Drähte entfernt.

2.4.2.4 Gruppe D

Für die Osteosynthese in Gruppe D wurde die Fraktur manuell reponiert und durch einen von dorsal eingebrachten K-Draht sowie eine Repositionszange gesichert. Die Platte wurde mithilfe zweier Biegezangen so angepasst, dass sie sich gut an den Kalkaneus anlegen ließ. Hierzu wurde v.a. das kraniale Ende flektiert, damit es sich an den oberen Aspekt des Kalkaneus anpasste. Die Platte wurde anschließend so angelegt, dass sie in etwa vertikal an der lateralen Seite des Kalkaneus zum Liegen kam. Es wurde zunächst das kranialste Bohrloch vorgebohrt. Hierfür sowie für alle folgenden Bohrlöcher wurde ein Spiralbohrer mit einem Durchmesser von 1,6 mm verwendet. In dieses Bohrloch wurde eine nicht-winkelstabile Schraube eingebracht, um die Platte zu fixieren und noch weiter an den Knochen zu drücken. Anschließend wurde das kaudalste Bohrloch gebohrt und hier ebenfalls eine nicht-winkelstabile Schraube eingebracht, um denselben Effekt zu erzielen. Daraufhin wurden die restlichen Löcher gebohrt. Danach wurden die winkelstabilen Schrauben mit 2,0 mm Durchmesser eingebracht: Am kranialen Ende der Platte wurden von dorsal nach ventral gesehen Schrauben der Länge 16 mm, 18 mm und 16 mm eingebracht. Am kaudalen Ende wurden von dorsal nach ventral betrachtet Schrauben der Länge 18 mm, 20 mm und 20 mm eingebracht. Es wurden hierbei zunächst die winkelstabilen Schrauben in die noch freien Löcher eingebracht. Zuletzt wurden die beiden nicht-winkelstabilen Schrauben wieder entfernt und durch winkelstabile Schrauben ersetzt. Anschließend wurden der K-Draht und die Repositionszange entfernt. Es wurden insgesamt sechs winkelstabile Schrauben pro Platte verwendet mit einer Länge von 16 mm bis 20 mm.

2.4.2.5 Gruppe E

Auch bei den Objekten in Gruppe E erfolgte zunächst die manuelle Reposition der beiden Frakturstücke. Durch einen von dorsal eingebrachten K-Draht sowie eine Repositionszange wurde die Reposition gesichert. Erneut wurde die Platte mithilfe zweier Biegezangen an den Kalkaneus angepasst. Die Platte wurde in gleicher Weise wie oben beschrieben an den Kunstknochen angelegt. Zum Bohren der Löcher wurde ein Spiralbohrer mit einem Durchmesser von 2,35 mm verwendet. Es wurde wie oben beschrieben zunächst eine nicht-winkelstabile Schraube in das kranialste und kaudalste Bohrloch eingebracht. Anschließend wurden die winkelstabilen Schrauben mit 2,8 mm eingebracht: Am kranialen Ende der Platte wurden von dorsal nach ventral betrachtet Schrauben der Länge 14 mm, 20mm und 16mm eingebracht. Am kaudalen Ende wurden ebenfalls von dorsal nach ventral gesehen Schrauben der Länge 14 mm, 20mm und 16 mm eingebracht. Auch hier wurden zunächst die übrigen Löcher mit den winkelstabilen Schrauben besetzt, ehe dann die beiden nicht-winkelstabilen Schrauben gegen winkelstabile Schrauben ausgetauscht wurden. Anschließend wurden der K-Draht und die Repositionszange wieder entfernt. Es wurden insgesamt sechs winkelstabile Schrauben pro Platte verwendet mit einer Länge von 14 mm bis 20 mm.

Bei der Versorgung von Versuchsobjekt E6 kam es beim Biegen der winkelstabilen Plattenosteosynthese zum Abbruch des kranialsten Schraubenlochs. Die Platte wurde daher um 180° gedreht und erneut gebogen. Außerdem wurden die beiden anderen Schraubenlöcher in oben beschriebener Weise besetzt und eine nicht-winkelstabile Schraube mit einem Durchmesser von 2 mm und einer Länge von 18 mm in das benachbarte Langloch eingebracht.

Nachdem die Knochenmodelle versorgt waren, wurde von jedem eine Röntgenaufnahme in drei Ebenen angefertigt. Diese Bildaufnahmen dienten zur Dokumentation sowie zur Lagekontrolle der Implantate. Darüber hinaus wurden Fotos mit einer Spiegelreflexkamera aus Dokumentationsgründen gemacht.

Abbildung 9: Übersicht der verschiedenen Osteosynthesetechniken mit Bildern der Implantate, der stabilisierten Kunstknochen sowie der Röntgenkontrollen.

2.4.3 Befestigung des Zugbands

Zur Übertragung der Zugkraft auf den Kunstknochen wurde ein 17 cm langes und 27 mm breites Stück eines handelsüblichen Spanngurts verwendet, welches mit einem handelsüblichen 2K-Kleber am Knochenfragment befestigt wurde. Hierfür wurden 2 g des 2K-Klebers auf das Band sowie das Knochenfragment aufgetragen und anschließend über fünf Minuten eine manuelle Kompression gehalten. Der überschüssige Klebstoff wurde an den Seiten abgetragen, damit es nicht zu einer Verbindung im Frakturspalt kam. Der 2K-Kleber härtete anschließend mindestens 24 Stunden aus. Die Unterkante des Bands befand sich in etwa am Übergang des mittleren in das untere Drittel des Kalkaneus. Das Band wurde zusätzlich durch Tackerklammern und -nägel fixiert. Diese wurden mit einer Handtackermaschine der Firma Preciva von dorsal durch das aufgeklebte Band in das Frakturfragment eingebracht.

2.4.4 Befestigung der Kunstknochen in der Halterung

Um die Kunstknochen in der Materialprüfmaschine befestigen zu können, wurde eine Vorrichtung aus Metall angefertigt. Sie besteht aus einer Bodenplatte und einem abschraubbaren U-förmigen Käfig mit Hinterwand. Hierin wurden die fertig präparierten Kunstknochen waagerecht bis kurz vor das obere Ende des Frakturspalts zu ca. zwei Dritteln eingegipst. Hierfür wurde handelsüblicher Elektrikergips (Calciumsulfat Halbhydrat) verwendet. Dabei wurden 250 g Gips mit 125 ml Wasser vermengt. Der Gips härtete anschließend mindestens 24 Stunden aus, bevor eine Testung an dem Objekt vorgenommen wurde.

2.4.5 Referenzpunkte für das Optische System

Um eine Analyse mithilfe des Optischen Systems durchführen zu können, mussten die Kalkaneus-Modelle mit Referenzpunkten versehen werden. Diese Punkte wurden auf die Knochen in einem festgelegten Schema aufgeklebt. Kleine interindividuelle Abweichungen der Lage der einzelnen Punkte waren hierbei nicht zu vermeiden, da der Frakturspalt bei jedem Versuchsobjekt minimal anders verlief, die Platzierung des Bands sich minimal unterschied und die Referenzpunkte nicht an jeder Stelle am Knochenmodell gleich gut hafteten. Je sechs Punkte befanden sich jenseits des Frakturspalts. Ein Referenzpunkt wurde so kaudal wie möglich auf der Seite des Frakturfragments angebracht. Dieser wurde für die Auswertung der Verschiebung des Knochenfragments, im Folgenden als Displacement bezeichnet, durch das Optische System herangezogen.

2.5 Biomechanische Testung

2.5.1 Versuchsaufbau

Die Bodenplatte der Halterung wurde am Boden der Materialprüfmaschine festgeschraubt. Anschließend wurde das obere Ende des Zugbands am Kraftaufnehmer der Materialprüfmaschine befestigt. Es wurde dabei zwischen einem Schraubblock fixiert. Zuletzt wurde die Position des Objekts mit einem Zugwinkel senkrecht nach oben

eingestellt. Zu Beginn der Testung stand das Zugband nicht unter Spannung. Während des Versuchs bewegte sich die Testkammer der Maschine, an der das Zugband befestigt war, senkrecht nach oben und übte somit den Zug aus. Dieser wurde über das Zugband als Simulator der Achillessehne auf das Frakturfragment übertragen.

Das Optische System wurde in einer Entfernung von ca. 55 cm auf gleicher Höhe mit dem zu untersuchenden Knochenmodell aufgebaut. Die Kamera befand sich in einer Ausrichtung von 0° in der Horizontalen. Die Position der Kamera wurde während der Vorversuche festgelegt. Vor jedem Versuch fanden allerdings Feinjustierungen statt, damit das Optische System alle Referenzpunkte erkannte.

Abbildung 10: Versuchsaufbau und Fixierung in der Materialprüfmaschine. a) Verankerung der Halterung mit einem eingebetteten Kunstknochen am Boden der Materialprüfmaschine. Der rote Pfeil verdeutlicht die Zugrichtung nach oben. b) Positionierung des Optischen Systems. c) Darstellung des Zugbands, welches die Achillessehne nachahmt.

2.5.2 Versuchsablauf

2.5.2.1 Vorversuche

Vor Durchführung der eigentlichen Versuchsreihe wurden Vortests durchgeführt. Dies diente dem Erproben des Versuchsaufbaus und dem Festlegen verschiedener Parameter wie Vorkraft, Kraftniveaus, Geschwindigkeit, Zyklenanzahl und Zugrichtung. Die Vorversuche wurden unter Verwendung einer Osteosynthese mit zwei

Kleinfragmentschrauben mit einem Durchmesser von 4 mm und einer Länge von 45 mm durchgeführt. Hier zeigte sich, dass bei einer Vorkraft von 10 N das Zugband leicht gespannt ist, wodurch ein abrupter Zug der Maschine verhindert wird und es zu einem kontrollierten Start der Testung kommt. Bei dieser Vorkraft kam es noch nicht zu einem messbaren Displacement. Aus diesen Gründen wurde die Vorkraft bei 10 N festgesetzt. Bei zyklischen Testreihen zeigte sich ab einer Belastung von 400 N ein sehr großes Displacement und es kam nach nur wenigen Zyklen zum Versagen. Des Weiteren fand bei diesem Kraftniveau bereits eine Lockerung des Versuchsobjekts im Gips statt. Aus diesen Gründen wurden die Kraftniveaus der folgenden Testungen auf 100 N, 200 N und 300 N festgelegt, bei denen es zu keiner signifikanten Lockerung kam und welche die physiologischen Kräfte unter Teilbelastung gut widerspiegeln. In den Vorversuchen wurden zudem verschiedene Geschwindigkeiten der Belastung und Entlastung untersucht. Bei einer Geschwindigkeit von 50 mm/min konnte ein reproduzierbarer Ablauf der zyklischen Testung festgestellt werden und die Testzeit befand sich in einem realisierbaren Rahmen. Zur Ermittlung der Zyklenanzahl wurden in einem Belastungsversuch bei 200 N 8000 Zyklen durchgeführt. Hierbei zeigte sich, dass sich nach 1000 Zyklen bereits mehr als 70 % des maximalen Displacements vollzogen hatten und nach 3000 Zyklen mehr als 83 %. Weitere 2000 Zyklen erbrachten nur noch eine Vergrößerung des Displacements um ca. 6 %. Dies unterstützt die Ergebnisse unserer Arbeitsgruppe, welche im biomechanischen Versuch bei Tibiakopffrakturen zeigen konnte, dass es nach 3000 Zyklen zu keiner signifikanten Erhöhung des Displacements kommt. (76, 78) Daher wurde eine Anzahl von insgesamt 3000 Zyklen gewählt. Bei Testungen mit verschiedenen Längen des Zugbands ergaben sich keine relevanten Unterschiede bezüglich der Messparameter, so dass eine Länge von 17 cm in Anlehnung an die anatomischen Verhältnisse gewählt wurde. Ein senkrechter Zug erbrachte die besten Ergebnisse bezüglich der Fixierung des Bands am Kunstknochen.

2.5.2.2 Versuchsreihe

Die Versuche wurden mit dem Programm Test-Xpert-II durchgeführt. Insgesamt erfolgten 3000 Messzyklen: 1000 Zyklen bei einer Belastung bis 100 N, 1000 Zyklen bei

einer Belastung bis 200 N und 1000 Zyklen bei einer Belastung bis 300 N. Bei allen Kraftniveaus fand eine Entlastung auf 10 N statt. Belastungs- und Entlastungsphasen erfolgten stets bei einer Geschwindigkeit von 50 mm/min. Vor jedem Messzyklus erfolgten zunächst 10 Setzzyklen bis 40 N bei einer Geschwindigkeit von 25 mm/min. Dadurch sollte gewährleistet werden, dass die Zugrichtung optimal eingestellt wurde. Von der Maschine wurde jeder Zyklus erfasst, der somit Aufschluss über das Displacement sowie die Steifigkeit der Osteosynthese geben kann.

Abbildung 11: Kraft-Weg Diagramm eines zyklischen Testprotokolls mit 1000 Zyklen bei 300 N sowie zehn Setzzyklen bei 40 N. Mit Pfeilen eingezeichnet sind das Peak to Peak Displacement bei 300 N sowie das maximale Displacement. Die rote Linie stellt die Tangente dar, deren Steigung die Steifigkeit in N/mm beschreibt.

Gleichzeitig erfolgte eine exakte Bestimmung der Verschiebung mithilfe des Testprogramms des Optischen Systems GOM Aramis Professional 2018. Das Programm wurde so eingestellt, dass die Verschiebung des Frakturfragments im Verhältnis zur Verschiebung der eingegipsten Knochenbasis erfasst wurde. Somit konnte die minimale Bewegung der Knochenbasis im Gips herausgerechnet werden und es fand nur die Entfernung des Referenzpunktes von der Knochenbasis Beachtung. Bei Erreichen jedes zehnten Maximums in der Belastungsphase erfolgte eine Bildaufnahme. In einem Zyklus von 1000 Belastungsphasen wurden somit 100 Momentaufnahmen erzeugt. Somit konnte eine genaue Bestimmung der Verschiebung des Knochenfragments über die Zeit erfolgen. Zur folgenden Analyse der Verschiebung in y-Richtung wurden die Werte des kaudalsten Referenzpunktes, welcher dem Frakturspalt am nächsten gelegen war, ausgewertet.

Abbildung 12: Datenerhebung durch das Optische System. In grün dargestellt sind die von der Kamera erfassten Referenzpunkte. Die Pfeile stellen das Displacement der einzelnen Referenzpunkte auf dem Frakturfragment dar. Der genaue Wert ist farblich durch die rechtsstehende Legende kodiert. Das kleine, orange Kästchen gibt zusätzlich das Displacement des zur Auswertung genutzten Referenzpunktes an. Links unten befindet sich das Koordinatensystem.

Anschließend an die Messzyklen erfolgte eine Load to Failure Testung mit einer Geschwindigkeit von 50 mm/min. Das bedeutet, dass nach dem 3000. Zyklus der axiale Kraftbetrag von der Vorkraft 10 N ausgehend durch die Maschine so lange erhöht wurde, bis es zum Versagen der Osteosynthese kam. Dabei kommt es zunächst zu einer elastischen Verformung des Knochens. Das bedeutet, dass die Deformation, welche sich während der einwirkenden Kraft ergab, vollständig reversibel ist, sobald die Kraft nicht mehr wirkt. Trägt man die Kraft gegen die Deformation in einem Diagramm auf, so ergibt sich eine Gerade, die Hooksche Gerade. Der Zusammenhang ist proportional und kann mithilfe des Hookschen Gesetzes beschrieben werden: $E = \frac{\sigma}{s}$ oder Elastizitätsmodul =

<u>Spannung</u>. Das Elastizitätsmodul ist für jeden Werkstoff verschieden. In unserem Versuch entspricht das Elastizitätsmodul der Steifigkeit. Übersteigt die wirkende Kraft einen bestimmten Betrag, kommt es zur plastischen Deformation. Diese ist irreversibel und entspricht z.B. einem Riss in der Kortikalis. Wird die Kraft anschließend weiter gesteigert, kommt es schließlich zum Bruch der Probe. (79) Die Maximalkraft bei Bruch der stabilisierten Fraktur wurde von der Maschine aufgezeichnet und die Testung mit einer Kraftabschaltschwelle von 90 % der Maximalkraft selbstständig beendet.

Abbildung 13: Kraft-Weg Diagramm einer Load to Failure Testung. Der schwarze Pfeil markiert die Stelle der Maximalkraft. Der rote Pfeil zeigt den Punkt, an dem die elastische in eine plastische Deformation übergeht.

2.5.3 Messparameter

In dieser Arbeit wurden verschiedene Messparameter ausgewertet. Aus den vom Optischen System aufgezeichneten Bildern konnte die Verschiebung der Messzyklen für jeden zehnten Zyklus im Verhältnis zur Ausgangssituation nachverfolgt werden. Die Verschiebung beim letzten aufgezeichneten Zyklus des jeweiligen Kraftniveaus entspricht der Verschiebung nach 1000 Zyklen. Aus der Differenz des Displacements an der Spitze der Belastung während des 1000. Zyklus und des Displacements an der Spitze der Belastung des ersten Zyklus konnte das Peak to Peak Displacement des Optischen Systems in Millimeter errechnet werden. Diese Berechnung erfolgte für die Kraftniveaus bei 100 N, 200 N und 300 N. Analog hierzu erfolgte auch eine Berechnung des Peak to Peak Displacements mit den Werten der Materialprüfmaschine. Die Verschiebung nach 3000 Messzyklen ging als Maximales Displacement in Millimeter ebenfalls in die Auswertung ein. Nach Durchführung der zyklischen Testung wurde bei jedem Kraftniveau nach Entlastung des Versuchsobjekts eine Bildaufnahme mit dem Optischen System durchgeführt. Der dadurch gewonnene Wert entspricht der plastischen Deformation nach Durchführung der 1000 Zyklen bei 100 N, 200 N und 300 N. Aus der Load to Failure Testung konnte die Maximalkraft in Newton entnommen werden. Für jedes Kraftniveau wurde außerdem die Steifigkeit berechnet. Hierfür wurde die Steigung einer angelegten Tangente mittels einer Differentialgleichung ermittelt. Als letzter Parameter wurde die Art und Weise des Versagens der Osteosynthese dokumentiert und verglichen.

2.6 Statistische Methoden

Die in den Programmen Test-Xpert-II und GOM Aramis Professional 2018 erhobenen Daten wurden zunächst in das Datenverarbeitungsprogramm Microsoft Excel 2010 übertragen. Dabei wurden die Werte für die Größe des Frakturfragments, für das Peak to Peak Displacement bei den Setzzyklen, bei 100 N, bei 200 N und bei 300 N, für die Steifigkeit bei 100 N, bei 200 N und bei 300 N, für das maximale Displacement, für die Maximalkraft, für die Art des Versagens und für die Anzahl der Ablösungen des Zugbands ermittelt. Diese Daten wurden anschließend in das Programm IBM SPSS 27/28 zur statistischen Analyse übertragen.

Für die statistische Auswertung der verschiedenen Messparameter wurden die Mittelwerte der Gruppen zunächst auf Normalverteilung untersucht. Hierfür wurde der Shapiro-Wilk Test verwendet.

Lag eine Normalverteilung in allen zu vergleichenden Gruppen vor, so wurde anschließend ein Test auf Homogenität der Varianzen nach Levene durchgeführt. Bei

gegebener Homogenität der Varianzen erfolgte eine One-Way ANOVA. War keine Varianzhomogenität gegeben, erfolgte eine Welch-ANOVA. Zeigte die ANOVA signifikante Unterschiede zwischen den Gruppen, erfolgten zuletzt mithilfe der Bonferroni- und Scheffé-Tests Mehrfachvergleiche unterhalb der Gruppen.

Lag keine Normalverteilung vor, so wurde ein Kruskal-Wallis-Test durchgeführt. Bei signifikanten Unterschieden zwischen den Gruppen wurden anschließend als Post-hoc-Tests Dunn-Bonferroni-Tests durchgeführt.

Zuletzt wurde für die statistisch signifikanten Unterschiede zwischen einzelnen Gruppen die Effektstärke berechnet. Die Berechnung und die Einordnung in einen schwachen, mittleren oder starken Effekt erfolgten nach Cohen. (80)

Für alle Tests wurde ein Signifikanzniveau < 0,05 gewählt.

3 Ergebnisse

In Gruppe D durchliefen nur drei Versuchsobjekte die volle Anzahl an Zyklen unter der Belastung bis 100 N. In Gruppe E durchlief nur ein Objekt die volle Anzahl an Zyklen unter der Belastung bis 100 N. Die übrigen Versuchsobjekte aus beiden Gruppen zeigten ein vorzeitiges Versagen der Osteosynthese. Daher konnten das Peak to Peak Displacement, das maximale Displacement, die plastische Deformation und die Maximalkraft betreffend nicht genügend Werte für eine statistische Auswertung generiert werden. Eine statistische Auswertung dieser Messparameter erfolgte also nur für die Gruppen A, B und C.

In Gruppe A haben neun von zehn Versuchsobjekten die gesamten 3000 Testzyklen und die anschließende Load to Failure Testung durchlaufen. Ein Exemplar versagte während der zyklischen Testung bei 300 N. In Gruppe B haben drei Versuchsobjekte während der zyklischen Testung bei 300 N versagt. In Gruppe C schied wiederum nur ein Objekt während der zyklischen Testung bei 300 N aus.

Für einige Messparameter erfolgte die Auswertung sowohl durch das Optische System als auch durch die Materialprüfmaschine. In diesen Fällen werden im Folgenden zuerst die Werte, die vom Optischen System erhoben wurden, und danach die Werte, die von der Materialprüfmaschine erhoben wurden, dargestellt. In der Zusammenfassung der Ergebnisse wird insbesondere Bezug auf die Werte genommen, die durch das Optische System erhoben wurden. Der Grund hierfür wird in der Diskussion erklärt.

3.1 Peak to Peak Displacement

3.1.1 Peak to Peak Displacement bei 100 N

Optisches System

Die Mittelwerte betragen bei der Gruppe A 0,10 mm \pm 0,13 mm, bei der Gruppe B 0,27 mm \pm 0,26 mm und bei der Gruppe C 0,23 mm \pm 0,13 mm. Die genauen Daten sind im Anhang zu finden. Die Werte sind bis auf Gruppe A normalverteilt.

Im Kruskal-Wallis-Test konnten keine signifikanten Unterschiede nachgewiesen werden.

Tabelle 2: Zusammenfassung des Kruskal-Wallis-Tests bei unabhängigen Stichproben des Peak to Peak Displacements bei 100 N (Optisches System). Der Wert der Signifikanz ist in fetter Schrift markiert.

Gesamtzahl	30
Teststatistik	5,517
Freiheitsgrad	2
Asymptotische Sig. (zweiseitiger Test)	,063

Materialprüfmaschine

Die Mittelwerte betragen bei der Gruppe A 0,53 mm \pm 0,28 mm, bei der Gruppe B 0,76 mm \pm 0,37 mm und bei der Gruppe C 0,39 mm \pm 0,20 mm. Die genauen Daten sind im Anhang zu finden. Alle Werte sind normalverteilt.

Im durchgeführten Levene-Test auf Varianzhomogenität konnte keine Homogenität gezeigt werden, so dass eine Welch-ANOVA durchgeführt wurde. Hier konnten signifikante Unterschiede zwischen den Gruppen nachgewiesen werden.

Tabelle 3: Welch-ANOVA beim Peak to Peak Displacement bei 100 N (Materialprüfmaschine). Der Wert der Signifikanz ist in fetter Schrift markiert.

	Statistik	df1	df2	Sig.
Welch	4,033	2	16,963	,037

Aufgrund der signifikanten Werte wurden anschließend Mehrfachvergleiche durch die Scheffé- und Bonferroni-Tests durchgeführt. Diese zeigten, dass sich die Gruppen C und B mit p = 0,023 (Bonferroni) bzw. p = 0,026 (Scheffé) signifikant voneinander unterscheiden. Hierbei handelt es sich mit f = 0,25 um einen mittelstarken Effekt.

Tabelle 4: Mehrfachvergleiche durch Scheffé- und Bonferroni-Tests der Werte des Peak to Peak Displacements bei 100 N (Materialprüfmaschine). Die statistisch signifikanten Werte sind in fetter Schrift hervorgehoben und mit einem Stern markiert.

			Mittelwert		
			Differenz		
	(I) Gruppe	(J) Gruppe	(I-J)	StdFehler	Sig.
Scheffé	Gruppe A	Gruppe B	-,230300	,129183	,223
		Gruppe C	,142900	,129183	,550
	Gruppe B	Gruppe A	,230300	,129183	,223
		Gruppe C	,373200	,129183	,026*
	Gruppe C	Gruppe A	-,142900	,129183	,550
		Gruppe B	-,373200	,129183	,026*
Bonferroni	Gruppe A	Gruppe B	-,230300	,129183	,258
		Gruppe C	,142900	,129183	,835
	Gruppe B	Gruppe A	,230300	,129183	,258
		Gruppe C	,373200	,129183	,023*
	Gruppe C	Gruppe A	-,142900	,129183	,835
		Gruppe B	-,373200	,129183	,023*

Abbildung 14: Messparameter Peak to Peak Displacement bei 100 N. Dünn schraffiert dargestellt sind die Werte, die mithilfe der Materialprüfmaschine erhoben wurden. Dick schraffiert dargestellt sind die Werte, die mithilfe des Optischen Systems erhoben wurden. Die Klammer markiert die Gruppen, zwischen denen signifikante Unterschiede festgestellt wurden. Der p-Wert ist ebenfalls eingezeichnet.

3.1.2 Peak to Peak Displacement bei 200 N

Optisches System

Die Mittelwerte betragen bei der Gruppe A 0,30 mm \pm 0,27 mm, bei der Gruppe B 2,00 mm \pm 1,67 mm und bei der Gruppe C 0,38 mm \pm 0,15 mm. Die genauen Daten sind im Anhang zu finden. Mit Ausnahme von Gruppe B sind die Werte normalverteilt.

Mithilfe eines Kruskal-Wallis-Tests konnte gezeigt werden, dass signifikante Unterschiede zwischen den Gruppen bestehen.

Tabelle 5: Zusammenfassung des Kruskal-Wallis-Tests bei unabhängigen Stichproben des Peak to Peak Displacements bei 200 N (Optisches System). Der Wert der Signifikanz ist in fetter Schrift markiert.

Gesamtzahl	30
Teststatistik	16,856
Freiheitsgrad	2
Asymptotische Sig. (zweiseitiger Test)	,000

Anschließend durchgeführte Post-hoc-Tests, Dunn-Bonferroni-Tests, zeigten, dass signifikante Unterschiede zwischen den Gruppen A und B sowie zwischen den Gruppen C und B bestehen. So unterscheidet sich Gruppe A mit p = 0,001 von Gruppe B. Es handelt sich um einen starken Effekt mit r = 0,86. Außerdem unterscheidet sich die Gruppe C mit p = 0,016 von Gruppe B. Auch hier handelt es sich um einen starken Effekt mit r = 0,71.

Tabelle 6: Paarweise Vergleiche der Gruppen im Zuge des Kruskal-Wallis-Tests beim Peak to Peak Displacement bei 200 N (Optisches System). Die statistisch signifikanten Werte der angepassten Signifikanz nach der Bonferroni-Korrektur sind in fetter Schrift hervorgehoben und mit einem Stern markiert.

		Standard	Standardtest		
Sample 1-Sample 2	Teststatistik	fehler	statistik	Sig.	Anp. Sig.
Gruppe A-Gruppe C	-2,700	3,937	-,686	,493	1,000
Gruppe A-Gruppe B	-15,150	3,937	-3,849	,000	,001*
Gruppe C-Gruppe B	12,450	3,937	3,163	,002	,016*

Materialprüfmaschine

Die Mittelwerte betragen bei der Gruppe A 1,09 mm \pm 0,56 mm, bei der Gruppe B 2,99 mm \pm 1,84 mm und bei der Gruppe C 0,66 mm \pm 0,12 mm. Die genauen Daten sind im Anhang zu finden. Alle Werte sind normalverteilt.

Ein Levene-Test zeigte keine Homogenität der Varianzen. In der Welch-ANOVA konnten signifikante Unterschiede zwischen den Gruppen nachgewiesen werden.

Tabelle 7: Welch-ANOVA beim Peak to Peak Displacement bei 200 N (Materialprüfmaschine). Der Wert der Signifikanz ist in fetter Schrift markiert

	Statistik	df1	df2	Sig.
Welch	10,033	2	12,537	,003

Bei signifikanten Werten wurden anschließend Mehrfachvergleiche mithilfe der Schefféund Bonferroni-Tests durchgeführt. Hier zeigten sich signifikante Unterschiede zwischen den Gruppen A und B mit p = 0,002 (Bonferroni) bzw. p = 0,003 (Scheffé) sowie zwischen den Gruppen C und B mit p < 0,001 (Bonferroni- und Scheffé-Tests). Die Effektstärke ist mit f = 0,54 groß.

Tabelle 8: Mehrfachvergleiche durch Scheffé- und Bonferroni-Tests der Werte des Peak to Peak Displacements bei 200 N (Materialprüfmaschine). Die statistisch signifikanten Werte sind in fetter Schrift hervorgehoben und mit einem Stern markiert.

			Mittelwert		
			differenz		
	(I) Gruppe	(J) Gruppe	(I-J)	StdFehler	Sig.
Scheffé	Gruppe A	Gruppe B	-1,899000	,497565	,003*
		Gruppe C	,423900	,497565	,699
	Gruppe B	Gruppe A	1,899000	,497565	,003*
		Gruppe C	2,322900	,497565	,000*
	Gruppe C	Gruppe A	-,423900	,497565	,699
		Gruppe B	-2,322900	,497565	,000*
Bonferroni	Gruppe A	Gruppe B	-1,899000	,497565	,002*
		Gruppe C	,423900	,497565	1,000
	Gruppe B	Gruppe A	1,899000	,497565	,002*
		Gruppe C	2,322900	,497565	,000*
	Gruppe C	Gruppe A	-,423900	,497565	1,000
		Gruppe B	-2,322900	,497565	,000*

Abbildung 15: Messparameter Peak to Peak Displacement bei 200 N. Dünn schraffiert dargestellt sind die Werte, die mithilfe der Materialprüfmaschine erhoben wurden. Dick schraffiert dargestellt sind die Werte, die mithilfe des Optischen Systems erhoben wurden. Die Klammer markiert die Gruppen, zwischen denen signifikante Unterschiede festgestellt wurden. Der p-Wert ist ebenfalls eingezeichnet.

3.1.3 Peak to Peak Displacement bei 300 N

Optisches System

Für die Gruppe A beträgt der Mittelwert 0,56 mm \pm 0,46 mm, für die Gruppe B 2,95 mm \pm 1,73 mm und für die Gruppe C 1,35 mm \pm 1,06 mm. Die genauen Daten sind im Anhang zu finden. Die Werte für die Gruppen B und C sind normalverteilt.

Es wurde ein Kruskal-Wallis-Test durchgeführt, welcher zeigen konnte, dass signifikante Unterschiede zwischen den Gruppen bestehen.

Tabelle 9: Zusammenfassung des Kruskal-Wallis-Tests bei unabhängigen Stichproben des Peak to Peak Displacements bei 300 N (Optisches System). Der Wert der Signifikanz ist in fetter Schrift markiert.

Gesamtzahl	25
Teststatistik	11,213
Freiheitsgrad	2
Asymptotische Sig. (zweiseitiger Test)	,004

In den anschließend durchgeführten Dunn-Bonferroni-Tests ergab sich ein Unterschied zwischen Gruppe A und Gruppe B mit p = 0,008. Hierbei handelt es sich um einen starken Effekt mit r = 0,84.

Tabelle 10: Paarweise Vergleiche der Gruppen im Zuge des Kruskal-Wallis-Tests beim Peak to Peak Displacement bei 300 N (Optisches System). Die statistisch signifikanten Werte der angepassten Signifikanz nach der Bonferroni-Korrektur sind in fetter Schrift hervorgehoben und mit einem Stern markiert.

Sample 1-Sample 2	Teststatistik	Standard fehler	Standardtest statistik	Sig.	Anp. Sig.
Gruppe A-Gruppe C	-5,778	3,469	-1,665	,096	,958
Gruppe A-Gruppe B	-12,413	3,709	-3,347	,001	,008*
Gruppe C-Gruppe B	6,635	3,709	1,789	,074	,736

Materialprüfmaschine

In der Gruppe A liegt der Mittelwert bei 1,88 mm \pm 1,23 mm, in der Gruppe B bei 3,30 mm \pm 1,57 mm und in der Gruppe C bei 1,62 mm \pm 1,05 mm. Die genauen Daten sind im Anhang zu finden. Alle Werte sind normalverteilt.

Ein Levene-Test bewies die Homogenität der Varianzen, sodass eine One-Way ANOVA durchgeführt werden konnte. Diese zeigte signifikante Unterschiede zwischen den Gruppen.

	Quadratsumme	df	Mittel der Quadrate	F	Sig.
Zwischen den Gruppen	12,347	2	6,173	3,807	,038
Innerhalb der Gruppen	35,678	22	1,622		
Gesamt	48,025	24			

Tabelle 11: Einfaktorielle ANOVA beim Peak to Peak Displacement bei 300 N (Materialprüfmaschine). Der Wert der Signifikanz ist in fetter Schrift markiert. df= Freiheitsgrade. F= Teststatistik.

Bei signifikanten Werten wurden anschließend Mehrfachvergleiche mithilfe der Schefféund Bonferroni-Tests angewandt. Hier zeigte sich im Bonferroni-Test ein signifikanter Unterschied zwischen Gruppe C und B mit p = 0,048 bei einer mittleren Effektstärke mit f = 0,27.

Tabelle 12: Mehrfachvergleiche durch Scheffé- und Bonferroni-Tests der Werte des Peak to Peak Displacements bei 300 N (Materialprüfmaschine). Die statistisch signifikanten Werte sind in fetter Schrift hervorgehoben und mit einem Stern markiert.

			Mittelwert		
			differenz		
	(I) Gruppe	(J) Gruppe	(I-J)	StdFehler	Sig.
Scheffé	Gruppe A	Gruppe B	-1,415349	,641770	,111
		Gruppe C	,260667	,600321	,910
	Gruppe B	Gruppe A	1,415349	,641770	,111
		Gruppe C	1,676016	,641770	,051
	Gruppe C	Gruppe A	-,260667	,600321	,910
		Gruppe B	-1,676016	,641770	,051
Bonferroni	Gruppe A	Gruppe B	-1,415349	,641770	,115
		Gruppe C	,260667	,600321	1,000
	Gruppe B	Gruppe A	1,415349	,641770	,115
		Gruppe C	1,676016	,641770	,048*
	Gruppe C	Gruppe A	-,260667	,600321	1,000
		Gruppe B	-1,676016	,641770	,048*

Abbildung 16: Messparameter Peak to Peak Displacement bei 300 N. Dünn schraffiert dargestellt sind die Werte, die mithilfe der Materialprüfmaschine erhoben wurden. Dick schraffiert dargestellt sind die Werte, die mithilfe des Optischen Systems erhoben wurden. Die Klammer markiert die Gruppen, zwischen denen signifikante Unterschiede festgestellt wurden. Der p-Wert ist ebenfalls eingezeichnet.

3.2 Maximales Displacement

Optisches System

Die Mittelwerte betragen in der Gruppe A 1,11 mm \pm 0,73 mm, in der Gruppe B 5,31 mm \pm 2,94 mm und in der Gruppe C 3,05 mm \pm 1,45 mm. Die genauen Daten sind im Anhang zu finden. Die Werte sind mit Ausnahme von Gruppe A normalverteilt.

Es konnten im Kruskal-Wallis-Test signifikante Unterschiede zwischen den Gruppen nachgewiesen werden.

Tabelle 13: Zusammenfassung des Kruskal-Wallis-Tests bei unabhängigen Stichproben des Maximalen Displacements (Optisches System). Der Wert der Signifikanz ist in fetter Schrift markiert.

Gesamtzahl	25
Teststatistik	14,173
Freiheitsgrad	2
Asymptotische Sig. (zweiseitiger Test)	,001

Die anschließend durchgeführten Post-hoc-Tests zeigten, dass Gruppe A sich mit p = 0,002 von Gruppe B unterscheidet. Es handelt sich um einen starken Effekt mit r = 0,92.

Tabelle 14: Paarweise Vergleiche der Gruppen im Zuge des Kruskal-Wallis-Tests beim Maximalen Displacement (Optisches System). Die statistisch signifikanten Werte der angepassten Signifikanz nach der Bonferroni-Korrektur sind in fetter Schrift hervorgehoben und mit einem Stern markiert.

Sample 1-Sample 2	Teststatistik	Standard fehler	Standardtest statistik	Sia	Anp. Sig.
				e.g.	,p. 0.9.
Gruppe A-Gruppe C	-8,556	3,469	-2,466	,014	,137
Gruppe A-Gruppe B	-13,603	3,709	-3,668	,000	,002*
Gruppe C-Gruppe B	5,048	3,709	1,361	,174	1,000

Materialprüfmaschine

In der Gruppe A beträgt der Mittelwert 3,96 mm \pm 1,39 mm, in der Gruppe B 6,77 mm \pm 1,55 mm und in der Gruppe C 4,41 mm \pm 1,18 mm. Die genauen Daten sind im Anhang zu finden. Alle Werte sind normalverteilt.

Ein Test auf Homogenität der Varianzen nach Levene war nicht signifikant, sodass eine One-Way ANOVA durchgeführt wurde. In dieser konnten signifikante Unterschiede zwischen den Gruppen nachgewiesen werden.

	Quadratsumme	df	Mittel der Quadrate	F	Sig.
Zwischen den Gruppen	34,623	2	17,312	9,297	,001
Innerhalb der Gruppen	40,967	22	1,862		
Gesamt	75,591	24			

Tabelle 15: Einfaktorielle ANOVA beim Maximalen Displacement (Materialprüfmaschine). Der Wert der Signifikanz ist in fetter Schrift markiert. df= Freiheitsgrade. F= Teststatistik.

Bei signifikanten Werten wurden Mehrfachvergleiche durch die Scheffé- und Bonferroni-Tests durchgeführt. Hierbei zeigten sich signifikante Unterschiede zwischen den Gruppen A und B mit p = 0,001 (Bonferroni) bzw. 0,002 (Scheffé) sowie den Gruppen C und B mit p = 0,007 (Bonferroni) bzw. 0,009 (Scheffé). Es handelt sich um Unterschiede mit einer großen Effektstärke mit f = 0,52.

Tabelle 16: Mehrfachvergleiche durch Scheffé- und Bonferroni-Tests der Werte des Maximalen Displacements (Materialprüfmaschine). Die statistisch signifikanten Werte sind in fetter Schrift hervorgehoben und mit einem Stern markiert.

			Mittelwert		
			differenz		
	(I) Gruppe	(J) Gruppe	(I-J)	StdFehler	Sig.
Scheffé	Gruppe A	Gruppe B	-2,813540	,687697	,002*
		Gruppe C	-,456556	,643282	,780
	Gruppe B	Gruppe A	2,813540	,687697	,002*
		Gruppe C	2,356984	,687697	,009*
	Gruppe C	Gruppe A	,456556	,643282	,780
		Gruppe B	-2,356984	,687697	,009*
Bonferroni	Gruppe A	Gruppe B	-2,813540	,687697	,001*
		Gruppe C	-,456556	,643282	1,000
	Gruppe B	Gruppe A	2,813540	,687697	,001*
		Gruppe C	2,356984	,687697	,007*
	Gruppe C	Gruppe A	,456556	,643282	1,000
		Gruppe B	-2,356984	,687697	,007*

Abbildung 17: Messparameter Maximales Displacement. Dünn schraffiert dargestellt sind die Werte, die mithilfe der Materialprüfmaschine erhoben wurden. Dick schraffiert dargestellt sind die Werte, die mithilfe des Optischen Systems erhoben wurden. Die Klammer markiert die Gruppen, zwischen denen signifikante Unterschiede festgestellt wurden. Der p-Wert ist ebenfalls eingezeichnet.

3.3 Plastische Deformation

3.3.1 Plastische Deformation bei 100 N

Der Mittelwert beträgt in Gruppe A 0,10 mm \pm 0,13 mm, in Gruppe B 0,28 mm \pm 0,25 mm und in Gruppe C 0,23 mm \pm 0,10 mm. Die genauen Daten sind im Anhang zu finden. Lediglich die Werte in Gruppe C sind normalverteilt.

Es wurde ein Kruskal-Wallis-Test durchgeführt, in dem signifikante Unterschiede zwischen den Gruppen gezeigt werden konnten.

Tabelle 17: Zusammenfassung des Kruskal-Wallis-Tests bei unabhängigen Stichproben der plastischen Deformation bei 100 N. Der Wert der Signifikanz ist in fetter Schrift markiert.

Gesamtzahl	30
Teststatistik	6,219
Freiheitsgrad	2
Asymptotische Sig. (zweiseitiger Test)	,045

In den anschließend durchgeführten Post-hoc-Tests konnten keine signifikanten Unterschiede zwischen den Gruppen beobachtet werden.

Tabelle 18: Paarweise Vergleiche der Gruppen im Zuge des Kruskal-Wallis-Tests bei der plastischen Deformation bei 100 N. Hier ergaben sich keine statistisch signifikanten Werte der angepassten Signifikanz nach der Bonferroni-Korrektur.

Sample 1-Sample 2	Teststatistik	Standard fehler	Standardtest statistik	Sig.	Anp. Sig.
Gruppe A-Gruppe B	-8,100	3,936	-2,058	,040	,119
Gruppe A-Gruppe C	-8,850	3,936	-2,249	,025	,074
Gruppe B-Gruppe C	-,750	3,936	-,191	,849	1,000

Abbildung 18: Messparameter Plastische Deformation bei 100 N. Es konnten keine signifikanten Unterschiede zwischen den Gruppen gezeigt werden.

3.3.2 Plastische Deformation bei 200 N

Die Mittelwerte betragen in Gruppe A 0,36 mm \pm 0,35 mm, in Gruppe B 2,07 mm \pm 2,13 mm und in Gruppe C 0,49 mm \pm 0,21 mm. Die genauen Daten sind im Anhang zu finden. Die Werte für die Gruppen A und B sind nicht normalverteilt.

Der Kruskal-Wallis-Test zeigte, dass signifikante Unterschiede zwischen den Gruppen bestehen.

Tabelle 19: Zusammenfassung des Kruskal-Wallis-Tests bei unabhängigen Stichproben der plastischen Deformation bei 200 N. Der Wert der Signifikanz ist in fetter Schrift markiert.

Gesamtzahl	29
Teststatistik	8,215
Freiheitsgrad	2
Asymptotische Sig. (zweiseitiger Test)	,016

Die angeschlossenen Dunn-Bonferroni-Tests zeigten einen signifikanten Unterschied zwischen Gruppe A und B mit p = 0,013. Hierbei handelt es sich um einen starken Effekt mit r = 0,64.

Tabelle 20: Paarweise Vergleiche der Gruppen im Zuge des Kruskal-Wallis-Tests bei der plastischen Deformation bei 200 N. Die statistisch signifikanten Werte der angepassten Signifikanz nach der Bonferroni-Korrektur sind in fetter Schrift hervorgehoben und mit einem Stern markiert.

Sample 1-Sample 2	Teststatistik	Standard fehler	Standardtest statistik	Sig.	Anp. Sig.
Gruppe A-Gruppe C	-4,378	3,912	-1,119	,263	,789
Gruppe A-Gruppe B	-10,850	3,807	-2,850	,004	,013*
Gruppe C-Gruppe B	6,472	3,912	1,655	,098	,294

Abbildung 19: Messparameter Plastische Deformation bei 200 N. Die Klammer markiert die Gruppen, zwischen denen signifikante Unterschiede festgestellt wurden. Der p-Wert ist ebenfalls eingezeichnet.

3.3.3 Plastische Deformation bei 300 N

In Gruppe A beträgt der Mittelwert 0,68 mm \pm 0,62 mm, in Gruppe B 3,17 mm \pm 2,34 mm und in Gruppe C 1,39 mm \pm 1,09 mm. Die genauen Daten sind im Anhang zu finden. Die Werte in Gruppe A sind nicht normalverteilt.

Es wurde ein Kruskal-Wallis-Test durchgeführt, welcher signifikante Unterschiede zwischen den Gruppen nachweisen konnte.

Tabelle 21: Zusammenfassung des Kruskal-Wallis-Tests bei unabhängigen Stichproben der plastischen Deformation bei 300 N. Der Wert der Signifikanz ist in fetter Schrift markiert.

Gesamtzahl	25
Teststatistik	9,656
Freiheitsgrad	2
Asymptotische Sig. (zweiseitiger Test)	,008

Hierauf durchgeführte Post-hoc-Tests zeigten einen signifikanten Unterschied zwischen

Gruppe A und B mit p = 0,006. Es liegt ein starker Effekt mit r = 0,78 vor.

Tabelle 22: Paarweise Vergleiche der Gruppen im Zuge des Kruskal-Wallis-Tests bei der plastischen Deformation bei 300 N. Die statistisch signifikanten Werte der angepassten Signifikanz nach der Bonferroni-Korrektur sind in fetter Schrift hervorgehoben und mit einem Stern markiert.

Sample 1-Sample 2	Teststatistik	Standard fehler	Standardtest statistik	Sig.	Anp. Sig.
Gruppe A-Gruppe C	-5,556	3,469	-1,601	,109	,328
Gruppe A-Gruppe B	-11,508	3,709	-3,103	,002	,006*
Gruppe C-Gruppe B	5,952	3,709	1,605	,109	,326

Abbildung 20: Messparameter Plastische Deformation bei 300 N. Die Klammer markiert die Gruppen, zwischen denen signifikante Unterschiede festgestellt wurden. Der p-Wert ist ebenfalls eingezeichnet.

Abbildung 21: Übersicht der Messparameter Plastische Deformation bei 100 N, 200 N und 300 N. Dünn schraffiert dargestellt sind die Werte bei 200 N. Dick schraffiert dargestellt sind die Werte bei 300 N. Dick schraffiert dargestellt sind die Werte bei 300 N. Die Klammer markiert die Gruppen, zwischen denen signifikante Unterschiede festgestellt wurden. Der p-Wert ist ebenfalls eingezeichnet.

3.4 Maximalkraft

Der Mittelwert liegt in der Gruppe A bei 787,56 N \pm 184,33 N, in der Gruppe B bei 638,29 N \pm 147,28 N und in der Gruppe C bei 650,78 N \pm 113,46 N. Die genauen Daten sind im Anhang zu finden. Alle Werte sind normalverteilt.

Mithilfe eines Levene-Tests konnte die Homogenität der Varianzen nachgewiesen werden, so dass eine One-Way ANOVA durchgeführt wurde. Hier zeigten sich keine signifikanten Unterschiede zwischen den Gruppen.

Tabelle 23: Einfaktorielle ANOVA bei der Maximalkraft. Der Wert der Signifikanz ist in fetter Schrift markiert. df= Freiheitsgrade. F= Teststatistik.

	Quadratsumme	df	Mittel der Quadrate	F	Sig.
Zwischen den Gruppen	117157,034	2	58578,517	2,552	,101
Innerhalb der Gruppen	504941,206	22	22951,873		
Gesamt	622098,240	24			

Abbildung 22: Messparameter Maximalkraft. Es konnten keine signifikanten Unterschiede festgestellt werden.
3.5 Steifigkeit

3.5.1 Steifigkeit bei 100 N

Die Mittelwerte betragen bei der Gruppe A 185,14 N/mm ± 42,09 N/mm, bei der Gruppe B 124,33 N/mm ± 28,76 N/mm, bei der Gruppe C 148,01 N/mm ± 31,37 N/mm, bei der Gruppe D 44,66 N/mm ± 23,41 N/mm und bei der Gruppe E 37,24 N/mm ± 7,78 N/mm. Die genauen Daten sind im Anhang zu finden. Die Werte für die Gruppen B und D sind nicht normalverteilt.

Es wurde ein Kruskal-Wallis-Test durchgeführt, welcher signifikante Unterschiede zwischen den Gruppen aufzeigte.

Tabelle 24: Zusammenfassung des Kruskal-Wallis-Tests bei unabhängigen Stichproben der Steifigkeit bei 100 N. Der Wert der Signifikanz ist in fetter Schrift markiert.

Gesamtzahl	44
Teststatistik	31,266
Freiheitsgrad	4
Asymptotische Sig. (zweiseitiger Test)	,000

So konnte in den Post-hoc-Tests gezeigt werden, dass sich die Gruppen A und C von den Gruppen D und E unterscheiden. Dabei unterscheiden sich Gruppe E mit p = 0,006 und einem starken Effekt mit r = 0,86 von Gruppe C, Gruppe E mit p < 0,001 und einem starken Effekt mit r = 1,07 von Gruppe A, Gruppe D mit p = 0,006 und einem starken Effekt mit r = 0,81 von Gruppe C und Gruppe D mit p < 0,001 und einem starken Effekt mit r = 1,03 von Gruppe A.

		Standard	Standardtest		
Sample 1-Sample 2	Teststatistik	fehler	statistik	Sig.	Anp. Sig.
Gruppe E-Gruppe D	1,792	6,937	,258	,796	1,000
Gruppe E-Gruppe B	16,267	6,633	2,452	,014	,142
Gruppe E-Gruppe C	22,767	6,633	3,432	,001	,006*
Gruppe E-Gruppe A	28,467	6,633	4,292	,000	,000*
Gruppe D-Gruppe B	14,475	6,093	2,376	,018	,175
Gruppe D-Gruppe C	20,975	6,093	3,442	,001	,006*
Gruppe D-Gruppe A	26,675	6,093	4,378	,000	,000*
Gruppe B-Gruppe C	-6,500	5,745	-1,132	,258	1,000
Gruppe B-Gruppe A	12,200	5,745	2,124	,034	,337
Gruppe C-Gruppe A	5,700	5,745	,992	,321	1,000

Tabelle 25: Paarweise Vergleiche der Gruppen im Zuge des Kruskal-Wallis-Tests bei der Steifigkeit bei 100 N. Die statistisch signifikanten Werte der angepassten Signifikanz nach der Bonferroni-Korrektur sind in fetter Schrift hervorgehoben und mit einem Stern markiert.

Abbildung 23: Messparameter Steifigkeit bei 100 N. Die Klammer markiert die Gruppen, zwischen denen signifikante Unterschiede festgestellt wurden. Der p-Wert ist ebenfalls eingezeichnet.

3.5.2 Steifigkeit bei 200 N

In der Gruppe A beträgt der Mittelwert 206,22 N/mm \pm 48,43 N/mm, in der Gruppe B 121,59 N/mm \pm 26,50 N/mm und in der Gruppe C 151,71 N/mm \pm 29,21 N/mm. Die genauen Daten sind im Anhang zu finden. Die Werte sind, ausgenommen Gruppe A, normalverteilt.

Im Kruskal-Wallis-Test ergab sich ein signifikanter Unterschied zwischen den Gruppen.

Tabelle 26: Zusammenfassung des Kruskal-Wallis-Tests bei unabhängigen Stichproben der Steifigkeit bei 200 N. Der Wert der Signifikanz ist in fetter Schrift markiert.

Gesamtzahl	30
Teststatistik	13,959
Freiheitsgrad	2
Asymptotische Sig. (zweiseitiger Test)	,001

Die anschließend durchgeführten Post-hoc-Tests, Dunn-Bonferroni-Tests, ergaben, dass sich Gruppe B mit p = 0,002 von Gruppe A unterscheidet. Hierbei handelt es sich um einen starken Effekt mit r = 0,84.

Tabelle 27: Paarweise Vergleiche der Gruppen im Zuge des Kruskal-Wallis-Tests bei der Steifigkeit bei 200N. Die statistisch signifikanten Werte der angepassten Signifikanz nach der Bonferroni-Korrektur sind in fetter Schrift hervorgehoben und mit einem Stern markiert.

Sample 1-Sample 2	Teststatistik	Standard fehler	Standardtest statistik	Sig.	Anp. Sig.
Gruppe B-Gruppe C	-6,900	3,937	-1,753	,080,	,797
Gruppe B-Gruppe A	14,700	3,937	3,734	,000	,002*
Gruppe C-Gruppe A	7,800	3,937	1,981	,048	,476

Abbildung 24: Messparameter Steifigkeit bei 200 N. Die Klammer markiert die Gruppen, zwischen denen signifikante Unterschiede festgestellt wurden. Der p-Wert ist ebenfalls eingezeichnet.

3.5.3 Steifigkeit bei 300 N

Die Mittelwerte betragen für die Gruppe A 202,05 N/mm ± 25,36 N/mm, für die Gruppe B 114,86 N/mm ± 15,97 N/mm und für die Gruppe C 134,36 N/mm ± 22,68 N/mm. Die genauen Daten sind im Anhang zu finden. Alle Werte sind normalverteilt.

Ein Levene-Test zeigte Homogenität der Varianzen, sodass eine One-Way ANOVA durchgeführt wurde. In der One-Way ANOVA konnten signifikante Unterschiede zwischen den Gruppen nachgewiesen werden.

	Quadratsumme	df	Mittel der Quadrate	F	Sig.
Zwischen den Gruppen	41884,998	2	20942,499	44,487	,000
Innerhalb der Gruppen	12710,501	27	470,759		
Gesamt	54595,499	29			

Tabelle 28: Einfaktorielle ANOVA bei der Steifigkeit bei 300 N. Der Wert der Signifikanz ist in fetter Schrift markiert. df= Freiheitsgrade. F= Teststatistik.

Bei signifikanten Werten wurden anschließend Mehrfachvergleiche mithilfe der Schefféund Bonferroni-Tests durchgeführt. Hier zeigten sich signifikante Unterschiede zwischen den Gruppen A und B sowie zwischen den Gruppen A und C mit p < 0,001. Hier liegt eine große Effektstärke mit f = 1,20 vor.

			Mittelwert		
			differenz		
	(I) Gruppe	(J) Gruppe	(I-J)	StdFehler	Sig.
Scheffé	Gruppe A	Gruppe B	87,195463	9,703188	,000*
		Gruppe C	67,690533	9,703188	,000*
	Gruppe B	Gruppe A	-87,195463	9,703188	,000*
		Gruppe C	-19,504929	9,703188	,152
	Gruppe C	Gruppe A	-67,690533	9,703188	,000*
		Gruppe B	19,504929	9,703188	,152
Bonferroni	Gruppe A	Gruppe B	87,195463	9,703188	,000*
		Gruppe C	67,690533	9,703188	,000*
	Gruppe B	Gruppe A	-87,195463	9,703188	,000*
		Gruppe C	-19,504929	9,703188	,164
	Gruppe C	Gruppe A	-67,690533	9,703188	,000*
		Gruppe B	19,504929	9,703188	,164

Tabelle 29: Mehrfachvergleiche durch Scheffé- und Bonferroni-Tests der Werte der Steifigkeit bei 300 N. Die statistisch signifikanten Werte sind in fetter Schrift hervorgehoben und mit einem Stern markiert.

Abbildung 25: Messparameter Steifigkeit bei 300 N. Die Klammer markiert die Gruppen, zwischen denen signifikante Unterschiede festgestellt wurden. Der p-Wert ist ebenfalls eingezeichnet.

Abbildung 26: Übersicht der Messparameter Steifigkeit bei 100 N, 200 N und 300 N. Dünn schraffiert dargestellt sind die Werte bei 100 N. Dick schraffiert dargestellt sind die Werte bei 200 N. Kariert dargestellt sind die Werte bei 300 N. Die Klammer markiert die Gruppen, zwischen denen signifikante Unterschiede festgestellt wurden. Der p-Wert ist ebenfalls eingezeichnet.

3.6 Versagensmechanismus

In Gruppe A wurden vier verschiedene Arten des Osteosyntheseversagens gesehen: Bei vier Kalkaneus-Modellen kam es durch Auftreten einer anterioren Zweitfraktur zum Ende des Versuchs. In diesen Fällen fand ein geringes Displacement zwischen Frakturfragment und Knochenbasis statt. Es ereignete sich eine Fraktur der Knochenbasis im Gips am Ende der Schrauben. Bei drei Versuchsmodellen kam es zum Osteosyntheseversagen mit kaudalem Schrauben cut-out und kranialem Schrauben pull-out. Hierbei kam es zunächst zum Durchschneiden der kaudalen Schraube durch das Frakturfragment, welches sich dadurch nach kranial verschob. Im Anschluss kam es durch den weiteren Zug am Fragment zum Herausziehen der Schraube aus der Knochenbasis. Bei zwei Objekten ereignete sich ebenfalls ein cut-out der kaudalen Schraube. Allerdings kam es hier nicht zum pull-out der kranialem Schrauben pull-out; beide Schrauben wurden also im Verbund mit dem Frakturfragment aus der Knochenbasis herausgezogen.

Abbildung 27: Gezeigt werden die vier verschiedenen Versagensmechanismen in Gruppe A. n = Anzahl.

In Gruppe B fanden zwei verschiedene Versagensformen statt: Bei sechs Versuchsmodellen kam es zum Osteosyntheseversagen mit kaudalem und kranialem Schrauben pull-out. Dieser Mechanismus entspricht dem in Gruppe A für ein Objekt beschriebenen Mechanismus. Bei vier Kalkaneus-Modellen fand ein Osteosyntheseversagen mit kaudalem Schrauben cut-out und kranialem Schrauben pull-out statt, vergleichbar dem Versagen bei drei Versuchsobjekten in Gruppe A.

Abbildung 28: Gezeigt werden die beiden verschiedenen Versagensmechanismen in Gruppe B. n = Anzahl.

In Gruppe C ereigneten sich drei unterschiedliche Formen des Osteosyntheseversagens: In fünf Fällen kam es zum pull-out des Knochenfragments aus der kaudalen Schraube. Anders als in den Gruppen A und B gesehen, erfolgte hier ein Durschneiden des Kopfgewindes durch das Frakturfragment, so dass dieses aus der Schraube herausgezogen wurde. Die kraniale Schraube blieb dabei im Frakturfragment fest verankert und wurde noch leicht aus der Knochenbasis herausgezogen. Bei vier Versuchsobjekten fand ein Osteosyntheseversagen mit pull-out des Knochenfragments aus beiden Schrauben statt. Dabei schnitt das Gewinde im Kopf beider Schrauben durch das Frakturfragment, so dass dieses aus den Schrauben herausgezogen wurde. Bei einem Versuchsmodell ereignete sich ein Bruch des Frakturfragments auf Höhe der kaudalen Schraube.

Abbildung 29: Gezeigt werden die drei verschiedenen Versagensmechanismen in Gruppe C. n = Anzahl.

In Gruppe D wurden zwei Versagensmechanismen dokumentiert: Bei neun Versuchsobjekten kam es zum Ausbruch des Knochenfragments im Bereich der kranialen Schrauben. Hierbei fand eine Verschiebung des dorsalen Bereichs des Frakturfragments um den ventralen, durch die Plattenosteosynthese fixierten Bereich herum statt, bis es zum Bruch des Kunststoff-Knochens an der Stelle der Schraubeninsertion kam. In einem Fall war die plastische Verformung des winkelstabilen Plattensystems so groß, dass nach dem Belastungszyklus keine Entlastung mehr durch die Maschine erfolgen konnte und der Versuch beendet werden musste.

Abbildung 30: Gezeigt werden die beiden verschiedenen Versagensmechanismen in Gruppe D. n = Anzahl.

In Gruppe E kam es nur zu einer Art des Osteosyntheseversagens: Genau wie bei der Mehrheit der Objekte in Gruppe D ereignete sich bei allen zehn Versuchsmodellen der Gruppe E ein Ausbruch des Knochenfragments im Bereich der kranialen Schrauben.

Abbildung 31: Gezeigt wird der Versagensmechanismus in Gruppe E. n= Anzahl.

3.7 Zusammenfassung der Ergebnisse

In dieser Arbeit konnte gezeigt werden, dass versenkbare, kanülierte Doppelgewinde Schrauben mit 5,0 mm Durchmesser eine vergleichbare biomechanische Stabilität besitzen wie kanülierte Schrauben mit 6,5 mm Durchmesser und Unterlegscheiben. Ebenso zeigen die Ergebnisse, dass ein größerer Schraubendurchmesser mit einer größeren biomechanischen Stabilität einhergeht. Des Weiteren konnte gezeigt werden, dass die winkelstabile Plattenosteosynthese, wie sie in diesem Versuchsmodell verwendet wurde, Stabilitätsdefizite aufweist.

Bezüglich des Peak to Peak Displacements, des maximalen Displacements und der plastischen Deformation zeigten die Gruppen A und C die geringste Verschiebung und sind somit in diesen Parametern am stabilsten. Für die Maximalkraft ergaben sich keine signifikanten Unterschiede; alle Schraubenosteosynthesen wiesen eine hohe Maximalkraft auf. Gruppe A demonstrierte bei 300 N die höchste Steifigkeit und schnitt in diesem Parameter am besten ab.

Somit konnte die Gegenhypothese angenommen und die Nullhypothese verworfen werden.

4.1 Diskussion der Methoden

4.1.1 Verwendung von Kunstknochen

In dieser Arbeit wurden insgesamt 50 Kunststoff-Kalkaneus-Modelle verwendet. Eine derart große Menge an humanen Knochen zu akquirieren, stellt eine Herausforderung dar. Außerdem wären humane Knochen bezüglich ihrer Größe und Knochendichte interindividuell sehr unterschiedlich. (81) Man hätte also Knochenpaare mit ähnlichen CT-Knochendichtemesswerten auf die Gruppen aufteilen müssen und selbst dann ist eine Vergleichbarkeit der Präparate fraglich.

Allerdings besitzen Kunststoff-Modelle im Vergleich zu einbalsamierten und frisch eingefrorenen Präparaten laut einer Studie von Zech et al. eine stärkere Variation bezüglich des maximalen Displacements unter Maximalbelastung, was bei deren Verwendung berücksichtigt werden muss. (82) Auch die mikroarchitektonische Binnenstruktur eines humanen Kalkaneus kann nicht exakt nachgeahmt werden. (83) Es bleibt ungewiss, ob die Häufigkeit von pull-out und cut-out der Schrauben bei humanen Präparaten identisch wäre.

Des Weiteren ist anzunehmen, dass humane Knochen von älteren Spendern stammen würden. Diese Präparate besäßen eine geringe Knochendichte. Osteoporose ist zwar ein bedeutender Risikofaktor für Avulsionsfrakturen des PSTC (12, 13, 24, 28, 30, 37, 38), jedoch betreffen insbesondere "beak" Frakturen mit einem mittleren Alter von 37 bis 52 Jahren (13, 24, 26, 27) kein nur altes Patientenkollektiv. Diese Unstimmigkeit könnte die Aussagekraft der Ergebnisse beeinflussen.

Die Verwendung von Kunstknochen bringt jedoch auch Vorteile mit sich: Anders als bei der Verwendung biologischer Knochen ergeben sich bei der Arbeit mit Kunstknochen keine ethischen Bedenken. Mit dem Kunstknochen-Modell ist es außerdem möglich eine große Anzahl an Modellen mit gleichen Eigenschaften zu untersuchen. (84-86) Durch die geringen interindividuellen Unterschiede der Kunststoffknochen kann eine sehr gute Vergleichbarkeit der verschiedenen Versuchsobjekte gewährleistet werden und somit

mögliche Störfaktoren wie Osteoporose, pAVK und Konservierungsprobleme vermieden werden. Auch im Hinblick auf weiterführende Testungen besteht die Möglichkeit, Kunststoff-Modelle mit gleichen Eigenschaften nachzubestellen.

4.1.2 Frakturmodell

In der vorliegenden Arbeit wurde ein Osteotomie-Modell verwendet. Dieses simuliert eine Beavis Typ II Fraktur. Ein Vorteil des Modells besteht in der guten Reproduzierbarkeit der Fraktur. Allerdings sind bei diesem Modell, anders als bei in vivo Frakturen mit unregelmäßigen Frakturoberflächen, die Oberflächen glatt. Während diese unregelmäßigen Oberflächen der Frakturstücke in vivo nach anatomischer Reposition und Osteosynthese zu einer Stabilität gegenüber Scherkräften führen, kann dieses Phänomen bei den synthetischen Knochen nicht beobachtet werden. (87)

Mit dieser Arbeit kann lediglich die Stabilität der Osteosynthesemethoden bei genau diesem Frakturmodell nachgewiesen werden. Eine Aussage über das Verhalten der Implantate bei abweichenden Frakturverläufen bleibt anderen Studien vorbehalten. Die Vorteile dieses Modells sind allerdings die gute Reproduzierbarkeit und die Vergleichbarkeit der unterschiedlichen Implantate.

4.1.3 Frakturversorgung

Die Versorgung der Frakturen fand unter Laborbedingungen statt. Da die Kunstknochen jeweils einzeln versorgt wurden, war eine optische Kontrolle des Repositionsergebnisses möglich. In dieser Studie können also keine Aussagen über etwaige Schwierigkeiten der intraoperativen Schrauben- und Implantatplatzierung unter Bildwandlerkontrolle bei umliegendem Weichteilmantel getroffen werden.

Während es in vivo nach Frakturversorgung in der Heilungsphase zu einer Konsolidierung der Frakturfragmente und damit zu einer Erhöhung der Stabilität kommt, ist dies bei einem Kunstknochen-Modell selbstverständlich nicht der Fall. In dieser Studie wurde also eine Belastung direkt postoperativ simuliert. In der Regel muss dann

eine strikte Entlastung der Extremität erfolgen. Allerdings kann es vorkommen, dass Patienten beim Gehen trotzdem ihr Bein gering belasten. Die Kraftniveaus der zyklischen Testungen von 100 N, 200 N und 300 N spiegeln diese Situationen wider.

Die Art der Schraubenplatzierung in den Gruppen A, B und C ist gleich. Sie wurden so eingebracht, dass sie möglichst senkrecht durch den Frakturspalt verlaufen. In unserem Versuchsaufbau wurden pro Gruppe jeweils Schrauben der gleichen Länge verwendet. Eine optimale bikortikale Platzierung war daher nicht möglich. Die Plattenosteosynthese wurde dagegen in den Gruppen D und E "off-label" verwendet. Eine Positionierung wie in unserem Versuchsaufbau wurde zuvor nicht beschrieben. Die Plattenosteosynthese wurde im kranialen Anteil umgebogen und dem Kunstknochen angeglichen, um die Kompression auf das Frakturfragment zu erhöhen. Wie die Ergebnisse gezeigt haben, konnte dieses Vorgehen allerdings nicht zu einer ausreichenden Stabilität der Osteosynthese führen.

Bezüglich der Wahl der Schraubengröße zeigten unsere Ergebnisse, dass die Stabilität mit ansteigender Größe zunimmt. Allerdings wird die Größe der Schrauben durch die Größe des Frakturfragments limitiert. Ein häufiger Versagensmechanismus war das cutout der kaudalen Schraube. Um eine Berstung des Frakturfragments beim Einbringen der Schrauben zu verhindern, sowie keine Sollbruchstelle zu generieren, sollte die Größe der Schrauben im Verhältnis zur Größe des Frakturfragments adäquat gewählt werden. Ein Verhältnis von Schrauben zum Knochen größer 1:2 halten wir für ungeeignet.

Abbildung 32: Verhältnis der Schrauben- zur Knochengröße. Eine Berstung des Frakturfragments kann sich ereignen, wenn die Größe der Schrauben nicht adäquat gewählt wird. Die weißen Pfeile markieren die Fraktur.

4.1.4 Versuchsaufbau

Der Versuchsaufbau soll eine vereinfachte Simulation der reellen Verhältnisse darstellen. Anders als in vivo, wo der Kalkaneus leicht schräg im ossären und ligamentären Verbund fixiert ist, wurde er in diesem Modell waagerecht eingebettet. Die Bettung in Gips stellt eine zuverlässige und stabile Art der Verankerung dar.

Die Zugrichtung am Frakturfragment wurde senkrecht nach oben festgelegt. In den Vorversuchen zeigte sich bei diesem Winkel die stabilste Fixierung des Zugbands. In der Literatur werden verschiedene Kraftvektoren der Achillessehne beschrieben. Diese zeigen mehrheitlich nach kraniodorsal. Allerdings ist bei einem ausgedehnten Ansatz der

Achillessehne, wie er häufig bei Patienten mit Avulsionsfrakturen des Kalkaneus vorkommt, ein Vektor nach kranioventral beschrieben. (12) Die Verankerung des Zugbands am Kunststoff-Kalkaneus erfolgte vom oberen Ende des PSTC durchgehend bis zum Übergang des mittleren in das untere Drittel der Kalkaneusrückfläche und entspricht damit einem ausgedehnten Ansatz der Achillessehne. Unser Versuchsaufbau stellt also einen Kompromiss in Bezug auf die anatomischen Varianten dar.

Die Simulation der Zugkraft durch die Achillessehne stellte eine Herausforderung für den Versuchsaufbau dar. Durch die Ergänzung des 2K-Klebers durch Tackerklammern und nägel konnte die Haftung des Zugbands am Knochen zwar gesteigert werden, dennoch kam es bei zehn Kalkaneus-Modellen zum Abriss des Bands im Verlauf der Testung. War dies der Fall, so wurde ein neues Zugband am Kunststoff-Knochen fixiert und der Testzyklus wurde wiederholt.

Bei der Verwendung des Optischen Systems wurde stets auf die gleiche Positionierung der 3D-Kamera und der Referenzpunkte geachtet. Dennoch musste die Stellung der 3D-Kamera für jeden Versuch geringfügig optimiert werden, damit alle Referenzpunkte vom System erfasst wurden. Dies sollte allerdings keinen Einfluss auf die Messung haben. Die Referenzpunkte wurden in festem Schema per Hand aufgeklebt. Somit ließ sich eine minimale Abweichung der Position der einzelnen Punkte nicht verhindern. Diese Unterschiede sind jedoch sehr gering und sollten keine großen Auswirkungen nach sich ziehen.

Als Displacement wurde die Entfernung des Referenzpunktes, welcher möglichst kaudal, dorsal und nah am Frakturspalt angebracht war, von der Kalkaneusbasis erfasst. Dabei fand ein Vergleich nach bestimmter Zyklenanzahl zum Ausgangszustand statt. Dies ähnelt der Erfassung des Frakturspalts bei einem lateralen Röntgenbild, wie es beispielsweise bei Gitajn et al. geschieht. (30)

4.1.5 Biomechanische Testung

Biomechanische Versuche zu Avulsionsfrakturen des Kalkaneus gibt es nach unserem Wissen bisher nicht. Khazen et al. untersuchten als Einzige zuvor in ihrem

Versuchsaufbau den Unterschied in der Versorgung mit einer Schraubenosteosynthese und der Versorgung mit einer Schraubenosteosynthese plus Augmentation durch einen Fadenanker. Sie führten eine Testung mit gleichmäßig zunehmender Zugkraft bei einer Geschwindigkeit von 25 mm/min bis zum Versagen durch. (72) Eine solche Load to Failure Testung fand in unserem Versuchsaufbau mit einer Geschwindigkeit von 50 mm/min statt.

4.1.6 Statistische Auswertung

Die statistische Auswertung erfolgte in Rücksprache mit dem Institut für Epidemiologie der Universität Würzburg. In vielen biomechanischen Studien unseres Instituts wurde ein vergleichbares Vorgehen gewählt, welches sich somit erfolgreich etabliert hat. (76, 78, 88-91)

4.2 Diskussion der Ergebnisse

Wir konnten in unserem Modell zeigen, dass versenkbare, kanülierte Doppelgewinde Schrauben eine vergleichbare biomechanische Stabilität wie kanülierte Schrauben mit Unterlegscheiben besitzen. Es konnte außerdem gezeigt werden, dass die alleinige Verwendung eines winkelstabilen Plattensystems Stabilitätsdefizite aufweist.

4.2.1 Zufriedenstellende Stabilität der Schraubenosteosynthese

Auch wenn die Verwendung von Schrauben die etablierteste Form der Versorgung von "beak" Frakturen darstellt, so kommt es dennoch häufig zum Osteosyntheseversagen und manche Autoren halten sie nicht für geeignet, um ausreichend Stabilität zu erreichen. Rauer et al. berichten z.B. von einem ungenügenden Ergebnis der Fixation durch zwei Schrauben. Allerdings verwendeten die Autoren Schrauben mit nur 3,5 mm Durchmesser und Unterlegscheiben. (29)

Banerjee et al. empfehlen wiederum die Verwendung von Schrauben mit 4,5 oder 6,5 mm Durchmesser. Die Autoren sprechen sich außerdem für den Einsatz von

Unterlegscheiben aus. (28) Auch Yu et al. favorisieren Schrauben mit mehr als 4,5 mm Durchmesser und berichten von einem Fall, bei dem es nach Osteosyntheseversagen der 4,5 mm Schrauben unter Verwendung von zwei Schrauben mit 6,5 mm zur Ausheilung kam. (27)

Unsere Ergebnisse bestätigen die sichere Verwendung von zwei kanülierten Schrauben mit einem Durchmesser von 6,5 mm und Unterlegscheiben. Allerdings halten wir die Verwendung von Schrauben mit 4 mm Durchmesser für eine gute Alternative, insbesondere wenn die Größe des Frakturfragments den Einsatz größerer Schrauben nicht erlaubt.

Einige Autoren empfehlen die zusätzliche Verwendung von Knochenankern. (29, 58, 72) Khazen et al. konnten in ihrer Kadaverstudie eine beinahe Verdopplung der Maximalkraft von 251 N auf 441 N feststellen. (72) Der zusätzliche Einsatz von Knochenankern ist mit allen in dieser Studie getesteten Schrauben möglich; allerdings wurde dies nicht untersucht.

Eine groß angelegte Studie von Mitchell et al. über 17 Jahre ergab keinen Hinweis auf einen Zusammenhang von Implantatversagen oder Sekundärdislokation bezüglich der Nutzung von Unterlegscheiben, von mehr als 2 Schrauben, von Schrauben mit einem Durchmesser größer 4 mm, von Weichteil-Augmentation mit Knochenankern und "Tension band wiring". (24)

Diese Unstimmigkeiten zeigen den Bedarf an weiterer Forschung zur Optimierung der operativen Therapie auf.

4.2.2 Materialprüfmaschine vs. Optisches System

Der Unterschied in den Werten, die von der Materialprüfmaschine und dem Optischen System erhoben wurden, lässt sich unter anderem folgendermaßen erklären: Bei der Materialprüfmaschine erfasst die sich bewegende Traverse die Verschiebung, welche unter Krafteinwirkung nach oben generiert werden kann. Dabei wird die Verschiebung des gesamten vorgeschalteten Versuchsaufbaus erfasst. Hier gibt es einige Faktoren, die

einen größeren Wert des Displacements bedingen können: Zum einen kommt es in manchen Fällen zu einer geringen Lockerung der Knochenbasis im Gips, sodass die gesamte Basis und nicht nur das Frakturstück sich nach oben bewegen können. Dies fiel insbesondere bei Gruppe A auf. Eine Erklärung hierfür kann die große Steifigkeit in Gruppe A sein, die dazu führt, dass die Kraft durch die Osteosynthese stärker auf die Knochenbasis übertragen wird und so zu einer Hebelwirkung im Gips führt. Zum anderen kommt es im Versuchsaufbau zu einem partiellen Ablösen des Zugbands im Bereich der kranialen Fixierung am Kalkaneus. Das Band löst sich an dieser Stelle ein wenig ab, wobei der Rest weiterhin fest am Kunststoff-Knochen fixiert bleibt. Dies führt dazu, dass von der Materialprüfmaschine eine größere Verschiebung registriert wird.

Das Optische System im Gegenzug erfasst lediglich die Verschiebung des Frakturstücks in Bezug zur Knochenbasis. Somit können die Störfaktoren des Versuchsaufbaus ausgeschlossen werden und eine exakte Bestimmung des Displacements stattfinden. Die Verwendung eines solchen Systems ist also von Vorteil, da es verlässlich und sehr genau die Verschiebung am Frakturfragment erfassen kann. Gleichzeitig können durch den Vergleich der Werte beider Systeme Rückschlüsse über den Versuchsaufbau gezogen werden.

4.2.3 Versenkbare, kanülierte Doppelgewinde Schrauben vs. kanülierte Schrauben mit Unterlegscheiben

Beim Peak to Peak Displacement konnte bei keinem der Kraftniveaus ein signifikanter Unterschied zwischen Gruppe A und Gruppe C ermittelt werden. Beim Peak to Peak Displacement bei 200 N wurde ein signifikanter Unterschied zwischen Gruppe C und Gruppe B gesehen. In dieser Studie konnte somit gezeigt werden, dass die kanülierten Doppelgewinde Schrauben mit 5,0 mm Durchmesser aus Gruppe C den größeren kanülierten Schrauben mit 6,5 mm Durchmesser und Unterlegscheiben aus Gruppe A statistisch nicht unterlegen sind. Im Vergleich zu den kleineren kanülierten Schrauben mit 4 mm Durchmesser und Unterlegscheiben der Gruppe B weisen sie für den oben genannten Parameter sogar eine höhere Stabilität auf.

Bezüglich der Maximalkraft konnte kein statistisch signifikanter Unterschied zwischen den Gruppen A, B und C festgestellt werden. Dennoch weist Gruppe A deutlich die größte Maximalkraft auf. Daraus ist abzuleiten, dass die Stabilität der Osteosynthese zunimmt, je größer der Durchmesser der verwendeten Schrauben ist. Die Ergebnisse des Peak to Peak Displacements sowie der Maximalkraft legen nahe, dass alle untersuchten Schrauben eine Dislokation bei versehentlichem Auftreten verhindern könnten.

In Hinblick auf das maximale Displacement ergab sich ein statistisch signifikanter Unterschied zwischen Gruppe A und Gruppe B. Auch dieses Ergebnis bestätigt die Erkenntnis der zunehmenden Stabilität mit zunehmendem Schraubendurchmesser. Im Vergleich mit den Doppelgewinde Schrauben ergab sich jedoch kein signifikanter Unterschied.

Bezüglich der Steifigkeit wurde nur beim Kraftniveau von 300 N ein Unterschied zwischen Gruppe A und Gruppe C erkannt. Dies allein kann jedoch nicht als Beweis für eine Überlegenheit von Gruppe A betrachtet werden.

Zusammenfassend lässt sich sagen, dass in unserem Versuchsaufbau versenkbare, kanülierte Doppelgewinde Schrauben eine Alternative zu kanülierten Schrauben mit Unterlegscheiben für die Versorgung von Beavis Typ II Kalkaneus-Avulsionsfrakturen darstellen. Diese Erkenntnis ist insofern interessant, da sich hieraus eine Möglichkeit zur Verringerung von postoperativ auftretenden Wundheilungsstörungen sowie Irritationen der Weichteile ergeben könnte. Die Doppelgewinde Schrauben lassen sich mit ihrem Schraubenkopf im Knochen versenken, während die großen Schraubenköpfe der kanülierten Schrauben mit Unterlegscheiben prominent aus dem Knochen herausstehen und somit zu einer Verschlechterung der bei dieser Frakturform ohnehin oft kompromittierten Weichteilverhältnisse führen könnten. (26, 57) Um diese Vermutung weiter abzuklären, sind jedoch klinische Studien notwendig.

4.2.4 Winkelstabile Plattenosteosynthese

Die winkelstabile Plattenosteosynthese wies in unserem Versuch Stabilitätsdefizite auf. Die Positionierung an der lateralen Seite des Kalkaneus konnte zu keiner ausreichenden

Fixierung des Frakturfragments führen. Auch die Erhöhung der Implantatdicke von 1,3 mm in Gruppe D auf 1,6 mm in Gruppe E konnte in den Testungen keine Erhöhung der Steifigkeit der Osteosynthese erzielen. Mit Blick auf den Versagensmechanismus scheint es, als würde die Fixierung des Frakturfragments im ventralen Anteil dazu führen, dass hier ein Drehpunkt entsteht. Durch die Kraftübertragung des Zugbands an der Hinterkante des Frakturfragments findet eine Hebelwirkung um diesen Drehpunkt statt, bis es zum Bruch des Frakturfragments an der Stelle der Schraubeninsertion kommt.

Abbildung 33: An der Stelle der Fixierung der Plattenosteosynthese im ventralen Anteil des Knochenfragments entsteht ein Drehpunkt. Gegen diesen wird der dorsale Anteil des Knochenfragments durch den Zug nach oben so lange verschoben, bis es zum Bruch an der Stelle der Schraubeninsertion kommt. Der rote Punkt stellt den fixierten Drehpunkt dar.

Diese Erkenntnis lässt die Positionierung der winkelstabilen Platte für diese Frakturform weniger geeignet erscheinen. Eine Möglichkeit, diesem Mechanismus entgegenzuwirken und die Stabilität zu erhöhen, könnte eine Augmentation durch eine oder zwei von dorsal eingebrachte Schrauben sein. Ein Nachteil, den diese Art der

Frakturversorgung mit sich bringt, ist der notwendige große laterale Zugang. Diese zusätzliche Schädigung der Weichteile sollte deshalb sorgsam abgewogen werden.

Zusammenfassend könnte die Versorgung mit einer winkelstabilen Plattenosteosynthese von lateral nicht als Primärtherapie, sondern eher bei sekundärer Dislokation im Rahmen einer "salvage procedure" eine Möglichkeit darstellen. Dann sollte jedoch eine restriktive Nachbehandlung erfolgen.

4.3 Ausblick

In zukünftigen Projekten möchte unsere Arbeitsgruppe Testungen an Kadaverknochen durchführen. Hierbei sollen die versenkbaren, kanülierten Doppelgewinde Schrauben mit kanülierten Schrauben mit Unterlegscheiben verglichen werden. Wir gehen davon aus, dass auch in diesem Modell eine vergleichbare biomechanische Stabilität durch die beiden Osteosynthesetechniken erreicht wird.

Ebenfalls anzustreben wäre eine klinische Studie zum Vergleich der beiden Schraubenarten unter anderem im Hinblick auf Weichteilkomplikationen. Allerdings handelt es sich bei der untersuchten Frakturform um ein sehr seltenes Ereignis, was die Durchführung einer klinischen Studie in einem monozentrischen Setting erschwert.

5 Zusammenfassung

Avulsionsfrakturen des PSTC sind seltene Verletzungen und machen mit 0,03 % bis 0,1 % einen sehr kleinen Anteil aller Frakturen aus. (13, 20-23, 25) Allerdings sind sie mit einer hohen Rate an Komplikationen verbunden. (27, 30, 73) Neben der prekären Weichteilsituation (17, 24, 30, 43, 44, 49) stellt vor allem eine ausreichende Stabilität der osteosynthetischen Versorgung eine Herausforderung dar. (30, 73)

Studie wurden In dieser biomechanischen drei verschiedene kanülierte Schraubentypen, sowie zwei winkelstabile Plattenosteosynthesen zur Versorgung von Kalkaneusfrakturen bezüglich ihrer biomechanischen Stabilität in einer Materialprüfmaschine unter optischem Tracking mithilfe einer 3D-Kamera getestet und verglichen. Dazu wurden für jede der fünf Gruppen Avulsionsfrakturen vom Typ II nach Beavis an je zehn Kalkaneusmodellen aus Kunststoff erzeugt und diese anschließend unter Verwendung der jeweiligen Osteosynthese versorgt.

Unter den drei Schraubentypen gab es zwei kanülierte Schrauben unterschiedlicher Größe mit Unterlegscheiben, die auch in der klinischen Praxis bereits Verwendung finden. Außerdem wurden versenkbare, kanülierte Doppelgewinde Schrauben verwendet, deren Einsatz bei dieser Verletzung nach unserem Wissen bisher nicht in der Literatur beschrieben ist. Das winkelstabile Plattensystem wurde bis jetzt nach eigener Literaturrecherche ebenfalls nicht in der hier angewandten Art und Weise zur Versorgung derartiger Frakturen verwendet.

Alle Versuchsmodelle wurden, sofern es nicht während der Testung zum Versagen kam, auf drei verschiedenen Kraftniveaus (100 N, 200 N, 300 N) zyklisch und anschließend mit einer Maximalkrafttestung getestet. Dabei wurden das Peak to Peak Displacement bei 100 N, 200 N und 300 N, das maximale Displacement, die plastische Deformation bei 100 N, 200 N und 300 N, die Maximalkraft, die Steifigkeit bei 100 N, 200 N und 300 N und die Art des Fixationsversagens erfasst. Ziel der Studie war es, Unterschiede zwischen den Versorgungsformen aufzudecken.

Zusammenfassung

Die Ergebnisse zeigen, dass die winkelstabile Plattenosteosynthese Stabilitätsdefizite bei der Versorgung von "beak" Frakturen aufweist. Außerdem konnte gezeigt werden, dass beim Vergleich der versenkbaren, kanülierten Doppelgewinde Schrauben mit 5,0 mm Durchmesser mit den kanülierten Schrauben mit 6,5 mm Durchmesser und Unterlegscheiben keine statistisch signifikanten Unterschiede bestehen, außer bezüglich der Steifigkeit bei 300 N. Somit ist eine vergleichbare biomechanische Stabilität wahrscheinlich.

Die versenkbaren, kanülierten Doppelgewinde Schrauben besitzen eine hohe biomechanische Stabilität und bieten die Möglichkeit, den Schraubenkopf im Knochenniveau zu versenken, wodurch weniger Weichteilirritationen und Wundheilungsstörungen zu vermuten sind. Sie scheinen deshalb eine attraktive Alternative zu kanülierten Schrauben mit Unterlegscheiben zu sein.

Ob versenkbare, kanülierte Doppelgewinde Schrauben z.B. auch im Kadaverversuch eine ausreichende biomechanische Stabilität zeigen, bleibt allerdings nachfolgenden biomechanischen Studien vorbehalten. Ebenso muss der mögliche postoperative Vorteil hinsichtlich der Schonung der Weichteile in klinischen Studien untersucht werden.

6 Literatur

- Wurzinger LJ. Unterschenkel und Fuß. In: Aumüller G, Aust G, Conrad A, Engele J, Kirsch J, Maio G, et al., editors. Duale Reihe Anatomie. 5. Stuttgart: Thieme-Verlag; 2020. p. 396-433.
- 2. Schünke M, Schulte E, Schumacher U, Voll M, Wesker KH. Prometheus LernAtlas der Anatomie. Stuttgart: Thieme-Verlag; 2018. 410-79 p.
- 3. Zwipp H, Rammelt S. Tscherne Unfallchirurgie: Fuß. Heidelberg: Springer-Verlag; 2014. 390-468 p.
- 4. Tillmann BN. Atlas der Anatomie des Menschen: Springer-Verlag; 2016. 463-554 p.
- 5. Ulfig N. Kurzlehrbuch Histologie. Stuttgart: Thieme-Verlag; 2015. 56 p.
- Athavale SA, Joshi SD, Joshi SS. Internal architecture of calcaneus: correlations with mechanics and pathoanatomy of calcaneal fractures. Surg Radiol Anat. 2010;32(2):115-22.
- Milz S, Rufai A, Buettner A, Putz R, Ralphs JR, Benjamin M. Three-dimensional reconstructions of the Achilles tendon insertion in man. J Anat. 2002;200(Pt 2):145-52.
- 8. Pierre-Jerome C, Moncayo V, Terk MR. MRI of the achilles tendon: A comprehensive review of the anatomy, biomechanics, and imaging of overuse tendinopathies. Acta Radiol. 2010;51(4):438-54.
- 9. Calleja M, Connell DA. The Achilles tendon. Semin Musculoskelet Radiol. 2010;14(3):307-22.
- Kongsgaard M, Nielsen CH, Hegnsvad S, Aagaard P, Magnusson SP. Mechanical properties of the human Achilles tendon, in vivo. Clin Biomech (Bristol, Avon). 2011;26(7):772-7.
- 11. Lowy M. Avulsion fractures of the calcaneus. J Bone Joint Surg Br. 1969;51(3):494-7.
- Beavis RC, Rourke K, Court-Brown C. Avulsion Fracture of the Calcaneal Tuberosity: A Case Report and Literature Review. Foot Ankle Int. 2008;29(8):863-6.
- Lee SM, Huh SW, Chung JW, Kim DW, Kim YJ, Rhee SK. Avulsion fracture of the calcaneal tuberosity: classification and its characteristics. Clin Orthop Surg. 2012;4(2):134-8.
- Andermahr J, Helling HJ, Rehm KE, Koebke Z. The vascularization of the os calcaneum and the clinical consequences. Clin Orthop Relat Res. 1999(363):212-8.
- 15. Bibbo C, Ehrlich DA, Nguyen HM, Levin LS, Kovach SJ. Low Wound Complication Rates for the Lateral Extensile Approach for Calcaneal ORIF When the Lateral Calcaneal Artery Is Patent. Foot Ankle Int. 2014;35(7):650-6.
- 16. Essex-Lopresti P. The mechanism, reduction technique, and results in fractures of the OS calcis. Br J Surg. 1952;39(157):395-419.
- 17. Protheroe K. Avulsion fractures of the calcaneus. J Bone Joint Surg Br. 1969;51(1):118-22.

Literatur

- 18. Squires B, Allen PE, Livingstone J, Atkins RM. Fractures of the tuberosity of the calcaneus. J Bone Joint Surg Br. 2001;83(1):55-61.
- 19. Sutro CJ. The os calcis, the tendo-achilles and the local bursae. Bull Hosp Joint Dis. 1966;27(2):76-89.
- 20. Court-Brown CM, Caesar B. Epidemiology of adult fractures: A review. Injury. 2006;37(8):691-7.
- 21. Schepers T, Ginai AZ, Van Lieshout EM, Patka P. Demographics of extra-articular calcaneal fractures: including a review of the literature on treatment and outcome. Arch Orthop Trauma Surg. 2008;128(10):1099-106.
- 22. Warrick CK, Bremner AE. Fractures of the calcaneum, with an atlas illustrating the various types of fracture. J Bone Joint Surg Br. 1953;35-b(1):33-45.
- 23. Rowe CR, Sakellarides HT, Freeman PA, Sorbie C. Fractures of the Os Calcis: A Long-Term Follow-up Study of 146 Patients. JAMA. 1963;184(12):920-3.
- 24. Mitchell PM, O'Neill DE, Branch E, Mir HR, Sanders RW, Collinge CA. Calcaneal Avulsion Fractures. J Orthop Trauma. 2019;33(11):e422-e6.
- 25. Böhler L. Diagnosis, pathology, and treatment of fractures of the os calcis. JBJS. 1931;13(1):75-89.
- 26. Lui TH. Avulsion fracture of the posterosuperior tuberosity of the calcaneus managed with lag screw fixation. Foot Ankle Surg. 2018;24(1):45-8.
- 27. Yu G-R, Pang Q-J, Yu X, Chen D-W, Yang Y-F, Li B, et al. Surgical Management for Avulsion Fracture of the Calcaneal Tuberosity. Orthop Surg. 2013;5(3):196-202.
- 28. Banerjee R, Chao JC, Taylor R, Siddiqui A. Management of Calcaneal Tuberosity Fractures. J Am Acad Orthop Surg. 2012;20(4):253-8.
- 29. Rauer T, Twerenbold R, Flückiger R, Neuhaus V. Avulsion Fracture of the Calcaneal Tuberosity: Case Report and Literature Review. The Journal of Foot and Ankle Surgery. 2018;57(1):191-5.
- 30. Gitajn IL, Abousayed M, Toussaint RJ, Vrahas M, Kwon JY. Calcaneal Avulsion Fractures. Foot & Ankle Specialist. 2015;8(1):10-7.
- 31. Robb C, Davies M. A new technique for fixation of calcaneal tuberosity avulsion fractures. Foot Ankle Surg. 2003;9(4):221-4.
- 32. Wren TA, Yerby SA, Beaupré GS, Carter DR. Influence of bone mineral density, age, and strain rate on the failure mode of human Achilles tendons. Clin Biomech (Bristol, Avon). 2001;16(6):529-34.
- 33. Glanzmann M, Vereb L, Habegger R. Avulsion fracture of the calcaneal tuberosity in athletes. Unfallchirurg. 2005;108(4):325-6.
- Berringer R. Avulsion fracture of the calcaneus. Can Med Assoc J. 2018;190(45):E1337-E.
- 35. Cooper DE, Heckman JD. The heel of achilles: calcaneal avulsion fracture from a gunshot wound. Foot Ankle. 1989;9(4):204-6.
- Tuna S, Duymus TM, Mutlu S, Ketenci IE. Open tuber calcaneus fracture caused by a meat cleaver: A case report. Annals of Medicine and Surgery. 2015;4(3):221-4.
- 37. Biehl WC, 3rd, Morgan JM, Wagner FW, Jr., Gabriel R. Neuropathic calcaneal tuberosity avulsion fractures. Clin Orthop Relat Res. 1993(296):8-13.

Literatur

- 38. Hedlund LJ, Maki DD, Griffiths HJ. Calcaneal fractures in diabetic patients. J Diabetes Complications. 1998;12(2):81-7.
- 39. Kathol MH, El-Khoury GY, Moore TE, Marsh JL. Calcaneal insufficiency avulsion fractures in patients with diabetes mellitus. Radiology. 1991;180(3):725-9.
- 40. Coventry MB, Rothacker GW, Jr. Bilateral calcaneal fracture in a diabetic patient. A case report. J Bone Joint Surg Am. 1979;61(3):462-4.
- 41. Clohisy DR, Thompson RC. Fractures associated with neuropathic arthropathy in adults who have juvenile-onset diabetes. The Journal of Bone & Joint Surgery. 1988;70(8):1192-200.
- 42. Matsumura H, Jimbo Y, Kato T, Imai S. Spontaneous calcaneal fracture after deep heel burns with diabetes. Burns. 1998;24(7):683-6.
- 43. Bosman W-M, Leijnen M, Van Den Bremer J, Ritchie ED. An avulsion fracture of the calcaneal tuberosity: delay of treatment causes the 'Achilles heel' of optimal recovery. BMJ Case Rep. 2016:bcr2015211581.
- 44. Hess M, Booth B, Laughlin RT. Calcaneal avulsion fractures: complications from delayed treatment. Am J Emerg Med. 2008;26(2):254.e1-4.
- 45. Yu SM, Yu JS. Calcaneal Avulsion Fractures: An Often Forgotten Diagnosis. AJR Am J Roentgenol. 2015;205(5):1061-7.
- 46. DiGiovanni CW, Kuo R, Tejwani N, Price R, Hansen Jr ST, Cziernecki J, et al. Isolated gastrocnemius tightness. JBJS. 2002;84(6):962-70.
- Banerjee R, Chao J, Sadeghi C, Taylor R, Nickisch F. Fractures of the calcaneal tuberosity treated with suture fixation through bone tunnels. J Orthop Trauma. 2011;25(11):685-90.
- 48. Greenhagen RM, Highlander PD, Burns PR. Double Row Anchor Fixation: A Novel Technique for a Diabetic Calanceal Insufficiency Avulsion Fracture. 2012;51(1):123-7.
- Gardner MJ, Nork SE, Barei DP, Kramer PA, Sangeorzan BJ, Benirschke SK. Secondary Soft Tissue Compromise in Tongue-type Calcaneus Fractures. J Orthop Trauma. 2008;22(7):439-45.
- 50. Thompson TC. A Test for Rupture of the Tendo Achillis. Acta Orthop Scand. 1962;32(1-4):461-5.
- 51. Rammelt S, Ahrberg-Spiegl A. Frakturen des Kalkaneus und des Talus. Springer Berlin Heidelberg; 2018. p. 159-90.
- 52. Rijal L, Sagar G, Adhikari D, Joshi KN. Calcaneal tuberosity avulsion fracture: an unusual variant. J Foot Ankle Surg. 2012;51(5):666-8.
- 53. Blum LE, Hundal R, Walton D, Hake ME. Percutaneous Fixation of Calcaneal Tuberosity Avulsion Fracture. J Orthop Trauma. 2019;33 Suppl 1:S44-s5.
- 54. Kabenla A, Alhomsi H. Avulsion fracture of the calcaneal tuberosity: diagnosis and treatment. Emerg Nurse. 2013;20(10):25-7.
- 55. Xu D, Lou W, Li M, Chen J. The Treatment of Avulsion Fracture of the Calcaneal Tuberosity: A New Technique of 180-Degree Annular Internal Fixation. Clin Interv Aging. 2021;Volume 16:275-80.
- 56. Cho B-K, Park J-K, Choi S-M. Reattachment using the suture bridge augmentation for Achilles tendon avulsion fracture with osteoporotic bony fragment. The Foot. 2017;31:35-9.

- 57. Lui TH. Fixation of tendo Achilles avulsion fracture. Foot Ankle Surg. 2009;15(2):58-61.
- 58. Yoshida K, Kasama K, Akahane T. Avulsion Fracture of the Calcaneus Treated With a Soft Anchor Bridge and Lag Screw Technique: A Report of Two Cases. J Foot Ankle Surg. 2016;55(2):310-3.
- 59. Levi N, Garde L, Kofoed H. Avulsion fracture of the calcaneus: report of a case using a new tension band technique. J Orthop Trauma. 1997;11(1):61-2.
- 60. Nagura I, Fujioka H, Kurosaka M, Mori H, Mitani M, Ozaki A, et al. Modified Tension Band Wiring Fixation for Avulsion Fractures of the Calcaneus in Osteoporotic Bone: A Review of Three Patients. The Journal of Foot and Ankle Surgery. 2012;51(3):330-3.
- 61. Giordano V, Godoy-Santos AL, De Souza FS, Koch HA, De Cesar Netto C, Rammelt S. Combined Lag Screw and Cerclage Wire Fixation for Calcaneal Tuberosity Avulsion Fractures. Case Reports in Orthopedics. 2018;2018:1-6.
- 62. Miyamoto W, Takao M, Matsui K, Matsushita T. Fixation for avulsion fracture of the calcaneal tuberosity using a side-locking loop suture technique and anti-slip knot. Foot Ankle Int. 2015;36(5):603-7.
- Miyamura S, Ota H, Okamoto M, Namba J, Yamamoto K. Surgical Treatment of Calcaneal Avulsion Fracture in Elderly Patients Using Cannulated Cancellous Screws and Titanium Wire. The Journal of Foot and Ankle Surgery. 2016;55(1):157-60.
- 64. Ramanujam CL, Capobianco CM, Zgonis T. Ilizarov External Fixation Technique for Repair of a Calcaneal Avulsion Fracture and Achilles Tendon Rupture. Foot & Ankle Specialist. 2009;2(6):306-8.
- 65. Takahashi M, Noda M, Saegusa Y. A new treatment for avulsion fracture of the calcaneus using an Ilizarov external fixator. Injury. 2013;44(11):1640-3.
- 66. Lakstein D, Bermant A, Shoihetman E, Hendel D, Feldbrin Z. The Posterolateral Approach for Calcaneal Fractures. Indian J Orthop. 2018;52(3):239-43.
- 67. Gallie WE. SUBASTRAGALAR ARTHRODESIS IN FRACTURES OF THE OS CALCIS. JBJS. 1943;25(4):731-6.
- 68. Letournel E. Open reduction and internal fixation of calcaneal fractures. Topics in Orthopedic Surgery Baltimore, MD: Aspen Publishers. 1984:173-92.
- 69. Harb Z, Dachepalli S, Mani G. An Alternative Method of Fixation of Calcaneal Tuberosity Fractures Using the Tightrope[®] Technique. The Journal of Foot and Ankle Surgery. 2013;52(6):762-5.
- 70. Wakatsuki T, Imade S, Uchio Y. Avulsion fracture of the calcaneal tuberosity treated using a side-locking loop suture (SLLS) technique through bone tunnels. J Orthop Sci. 2016;21(5):690-3.
- 71. Eren A, Cift H, Özkan K, Söylemez S. Transverse Incision for Calcaneal Tuberosity Avulsion Fractures. The Journal of Foot and Ankle Surgery. 2012;51(1):133-4.
- 72. Khazen GE, Wilson AN, Ashfaq S, Parks BG, Schon LC. Fixation of Calcaneal Avulsion Fractures Using Screws With and Without Suture Anchors: A Biomechanical Investigation. Foot Ankle Int. 2007;28(11):1183-6.
- 73. Carnero-Martín De Soto P, Bautista-Enrique D, Gómez-Cáceres A, Rodríguez-León A, Bravo-Zurita MJ, Santos-Maraver MT. Avulsion Fractures of Posterior

Calcaneal Tuberosity: Identification of Prognostic Factors and Classification. The Journal of Foot and Ankle Surgery. 2019;58(3):423-6.

- Radzilani M, D'Alton E, Golele R. Avulsion fracture of the calcaneal tuberosity: a soft tissue complication from delayed treatment. Foot Ankle Online J. 2010;3(6):1.
- 75. Swords MP, Penny P. Early Fixation of Calcaneus Fractures. Foot Ankle Clin. 2017;22(1):93-104.
- Hoelscher-Doht S, Jordan MC, Bonhoff C, Frey S, Blunk T, Meffert RH. Bone substitute first or screws first? A biomechanical comparison of two operative techniques for tibial-head depression fractures. J Orthop Sci. 2014;19(6):978-83.
- 77. Fuchs KF, Heilig P, McDonogh M, Boelch S, Gbureck U, Meffert RH, et al. Cement-augmented screw fixation for calcaneal fracture treatment: a biomechanical study comparing two injectable bone substitutes. J Orthop Surg Res. 2020;15(1).
- 78. Doht S, Lehnert T, Frey S, Fehske K, Jansen H, Blunk T, et al. Effective combination of bone substitute and screws in the jail technique: a biomechanical study of tibial depression fractures. Int Orthop. 2012;36(10):2121-5.
- Bargel H-J. Werkstoffprüfung. In: Bargel H-J, Schulze G, editors.
 Werkstoffkunde. Berlin, Heidelberg: Springer Berlin Heidelberg; 2018. p. 117-73.
- 80. Cohen J. Statistical power analysis for the behavioral sciences New York. NY: Academic. 1988:54.
- Lin PP, Roe S, Kay M, Abrams CF, Jones A. Placement of screws in the sustentaculum tali. A calcaneal fracture model. Clin Orthop Relat Res. 1998(352):194-201.
- Zech S, Goesling T, Hankemeier S, Knobloch K, Geerling J, Schultz-Brunn K, et al. Differences in the Mechanical Properties of Calcaneal Artificial Specimens, Fresh Frozen Specimens, and Embalmed Specimens in Experimental Testing. Foot Ankle Int. 2006;27(12):1126-36.
- 83. Gefen A, Seliktar R. Comparison of the trabecular architecture and the isostatic stress flow in the human calcaneus. Med Eng Phys. 2004;26(2):119-29.
- Kinner B, Kerschbaum M, Bley C, Spiegel A, Roll C. Bionic plate design for calcaneal fracture treatment. A biomechanical analysis and first clinical results. Int Orthop. 2015;39(1):111-7.
- 85. Richter M, Droste P, Goesling T, Zech S, Krettek C. Polyaxially-locked plate screws increase stability of fracture fixation in an experimental model of calcaneal fracture. J Bone Joint Surg Br. 2006;88(9):1257-63.
- 86. Richter M, Gosling T, Zech S, Allami M, Geerling J, Droste P, et al. A Comparison of Plates With and Without Locking Screws in a Calcaneal Fracture Model. Foot Ankle Int. 2005;26(4):309-19.
- 87. Bailey EJ, Waggoner SM, Albert MJ, Hutton WC. Intraarticular calcaneus fractures: a biomechanical comparison or two fixation methods. J Orthop Trauma. 1997;11(1):34-7.

- Doht S, Jansen H, Meffert R, Frey S. Higher stability with locking plates in hand surgery? Biomechanical investigation of the TriLock system in a fracture model. Int Orthop. 2012;36(8):1641-6.
- 89. Doht S, Meffert RH, Raschke MJ, Blunk T, Ochman S. Biomechanical analysis of the efficacy of locking plates during cyclic loading in metacarpal fractures. ScientificWorldJournal. 2014;2014:648787.
- Jordan MC, Fuchs K, Heintel TM, Jansen H, Hoelscher-Doht S, Meffert RH. Are Variable-Angle Locking Screws Stable Enough to Prevent Calcaneal Articular Surface Collapse? A Biomechanical Study. J Orthop Trauma. 2018;32(6):e204e9.
- Jordan MC, Zimmermann C, Gho SA, Frey SP, Blunk T, Meffert RH, et al. Biomechanical analysis of different osteosyntheses and the combination with bone substitute in tibial head depression fractures. BMC Musculoskelet Disord. 2016;17(1).

7 Anhang

7.1 Statistische Auswertung

Tabelle 30: Deskriptive Statistik zum Peak to Peak Displacement bei 100 N mit den Werten des Optischen Systems. Die fehlenden Objekte zur Gruppengröße von 10 ergeben sich daraus, dass nicht alle Objekte die vollständige Messreihe durchlaufen haben. Da in Gruppe E nur ein Testobjekt für die Auswertung zur Verfügung steht, kann hier keine deskriptive Statistik errechnet werden. n= Anzahl.

				Standard
Gruppe A , n=10			Statistik	Fehler
Peak to Peak	Mittelwert		,09900	,040059
Displacement bei	95%	Untergrenze	,00838	
100N Optisches	Konfidenzintervall	Obergrenze	,18962	
System (mm)	des Mittelwerts			
	5% getrimmtes Mittel		,09222	
	Median		,01050	
	Varianz		,016	
	Standard Abweichung	9	,126677	
	Minimum		,000	
	Maximum		,320	
	Spannweite		,320	
	Interquartilbereich		,223	
	Schiefe		,793	,687
	Kurtosis	-1,230	1,334	
				Standard
Gruppe B , n=10	1		Statistik	Standard Fehler
Gruppe B , n=10 Peak to Peak	Mittelwert		Statistik ,26730	Standard Fehler ,080651
Gruppe B , n=10 Peak to Peak Displacement bei	Mittelwert 95%	Untergrenze	Statistik ,26730 ,08485	Standard Fehler ,080651
Gruppe B , n=10 Peak to Peak Displacement bei 100N Optisches	Mittelwert 95% Konfidenzintervall	Untergrenze Obergrenze	Statistik ,26730 ,08485 ,44975	Standard Fehler ,080651
Gruppe B , n=10 Peak to Peak Displacement bei 100N Optisches System (mm)	Mittelwert 95% Konfidenzintervall des Mittelwerts	Untergrenze Obergrenze	Statistik ,26730 ,08485 ,44975	Standard Fehler ,080651
Gruppe B , n=10 Peak to Peak Displacement bei 100N Optisches System (mm)	Mittelwert 95% Konfidenzintervall des Mittelwerts 5% getrimmtes Mittel	Untergrenze Obergrenze	Statistik ,26730 ,08485 ,44975 ,25761	Standard Fehler ,080651
Gruppe B , n=10 Peak to Peak Displacement bei 100N Optisches System (mm)	Mittelwert 95% Konfidenzintervall des Mittelwerts 5% getrimmtes Mittel Median	Untergrenze Obergrenze	Statistik ,26730 ,08485 ,44975 ,25761 ,13450	Standard Fehler ,080651
Gruppe B , n=10 Peak to Peak Displacement bei 100N Optisches System (mm)	Mittelwert 95% Konfidenzintervall des Mittelwerts 5% getrimmtes Mittel Median Varianz	Untergrenze Obergrenze	Statistik ,26730 ,08485 ,44975 ,25761 ,13450 ,065	Standard Fehler ,080651
Gruppe B , n=10 Peak to Peak Displacement bei 100N Optisches System (mm)	Mittelwert 95% Konfidenzintervall des Mittelwerts 5% getrimmtes Mittel Median Varianz Standard Abweichung	Untergrenze Obergrenze	Statistik ,26730 ,08485 ,44975 ,25761 ,13450 ,065 ,255041	Standard Fehler ,080651
Gruppe B , n=10 Peak to Peak Displacement bei 100N Optisches System (mm)	Mittelwert 95% Konfidenzintervall des Mittelwerts 5% getrimmtes Mittel Median Varianz Standard Abweichung Minimum	Untergrenze Obergrenze	Statistik ,26730 ,08485 ,44975 ,25761 ,13450 ,065 ,255041 ,012	Standard Fehler ,080651
Gruppe B , n=10 Peak to Peak Displacement bei 100N Optisches System (mm)	Mittelwert 95% Konfidenzintervall des Mittelwerts 5% getrimmtes Mittel Median Varianz Standard Abweichung Minimum Maximum	Untergrenze Obergrenze	Statistik ,26730 ,08485 ,44975 ,25761 ,13450 ,065 ,255041 ,012 ,697	Standard Fehler ,080651
Gruppe B , n=10 Peak to Peak Displacement bei 100N Optisches System (mm)	Mittelwert 95% Konfidenzintervall des Mittelwerts 5% getrimmtes Mittel Median Varianz Standard Abweichung Minimum Maximum Spannweite	Untergrenze Obergrenze	Statistik ,26730 ,08485 ,44975 ,25761 ,13450 ,065 ,255041 ,012 ,697 ,685	Standard Fehler ,080651
Gruppe B , n=10 Peak to Peak Displacement bei 100N Optisches System (mm)	Mittelwert 95% Konfidenzintervall des Mittelwerts 5% getrimmtes Mittel Median Varianz Standard Abweichung Minimum Maximum Spannweite Interquartilbereich	Untergrenze Obergrenze	Statistik ,26730 ,08485 ,44975 ,25761 ,13450 ,065 ,255041 ,012 ,697 ,685 ,453	Standard Fehler ,080651
Gruppe B , n=10 Peak to Peak Displacement bei 100N Optisches System (mm)	Mittelwert95%Konfidenzintervalldes Mittelwerts5% getrimmtes MittelMedianVarianzStandard AbweichungMinimumMaximumSpannweiteInterquartilbereichSchiefe	Untergrenze Obergrenze	Statistik ,26730 ,08485 ,44975 ,25761 ,13450 ,065 ,255041 ,012 ,697 ,685 ,453 ,661	Standard Fehler ,080651

				Standard
Gruppe C, n=10			Statistik	Fehler
Peak to Peak	Mittelwert	Mittelwert		
Displacement bei	95%	Untergrenze	,13175	
100N Optisches	Konfidenzintervall	Obergrenze	,32305	
System (mm)	des Mittelwerts			
	5% getrimmtes Mitte		,22150	
	Median		,19750	
	Varianz		,018	
	Standard Abweichur	ng	,133709	
	Minimum		,073	
	Maximum	Maximum		
	Spannweite		,415	
	Interquartilbereich		,186	
	Schiefe	Schiefe		,687
	Kurtosis			1,334
				Standard
Gruppe D, n=3			Statistik	Fehler
Peak to Peak	Mittelwert		8,37500	1,928249
Displacement bei	95%	Untergrenze	,07841	
100N Optisches	Konfidenzintervall	Obergrenze	16,67159	
System (mm)	des Mittelwerts			
	5% getrimmtes Mitte	I		
	Median		6,99900	
	Varianz		11,154	
	Standard Abweichur	g	3,339825	
	Minimum		5,943	
	Maximum		12,183	
	Spannweite		6,240	
	Interquartilbereich			
	Schiefe		1,539	1,225
	Kurtosis	Kurtosis		· · ·

Tabelle 31: Deskriptive Statistik zum Peak to Peak Displacement bei 100 N mit den Werten der

Materialprüfmaschine. Die fehlenden Objekte zur Gruppengröße von 10 ergeben sich daraus, dass nicht alle Objekte die vollständige Messreihe durchlaufen haben. Da in Gruppe E nur ein Testobjekt für die Auswertung zur Verfügung steht, kann hier keine deskriptive Statistik errechnet werden. n= Anzahl.

		Standard
Gruppe A, n=10	Statistik	Fehler

Peak to Peak	Mittelwert		,53300	,088142
Displacement bei	95%	Untergrenze	,33361	
100N	Konfidenzintervall	Obergrenze	,73239	
Materialprüfmaschine	des Mittelwerts			
(mm)	5% getrimmtes Mittel		,53461	
	Median		,53050	
	Varianz		,078	
	Standard Abweichung	g	,278728	
	Minimum		,123	
	Maximum		,914	
	Spannweite		,791	
	Interquartilbereich		,513	
	Schiefe		,003	,687
	Kurtosis		-1,575	1,334
				Standard
Gruppe B , n=10			Statistik	Fehler
Peak to Peak	Mittelwert		,76330	,115538
Displacement bei	95%	Untergrenze	,50194	
100N	Konfidenzintervall	Obergrenze	1,02466	
Materialprüfmaschine	des Mittelwerts			
(mm)	5% getrimmtes Mittel		,75883	
	Median		,73500	
	Varianz		,133	
	Standard Abweichung	g	,365362	
	Minimum		,321	
	Maximum		1,286	
	Spannweite		,965	
	Interquartilbereich		,695	
	Schiefe		,222	,687
	Kurtosis		-1,651	1,334
				Standard
Gruppe C , n=10			Statistik	Fehler
Peak to Peak	Mittelwert		,39010	,062565
Displacement bei	95%	Untergrenze	,24857	
100N	Konfidenzintervall	Obergrenze	,53163	
Materialprüfmaschine	des Mittelwerts			
(mm)	5% getrimmtes Mittel		,38317	
	Median		,31350	
	Varianz		,039	

	Standard Abweichur	,197849		
	Minimum		,167	
	Maximum		,738	
	Spannweite Interquartilbereich Schiefe		,571	
			,369	
			,822	,687
	Kurtosis		-,865	1,334
			Standard	
Gruppe D, n=3			Statistik	Fehler
Peak to Peak	Mittelwert		5,11800	,909193
Displacement bei	95%	Untergrenze	1,20606	
100N	Konfidenzintervall	Obergrenze	9,02994	
Materialprüfmaschine	des Mittelwerts			
(mm)	5% getrimmtes Mitte	el		
	Median		4,63000	
	Varianz		2,480	
	Standard Abweichur	ng	1,574769	
	Minimum		3,845	
	Maximum		6,879	
	Spannweite		3,034	
	Interquartilbereich			
	Schiefe		1,261	1,225
	Kurtosis			

Tabelle 32: Deskriptive Statistik zum Peak to Peak Displacement bei 200 N mit den Werten des Optischen Systems. n= Anzahl.

				Standard
Gruppe A , n=10	Statistik	Fehler		
Peak to Peak	Mittelwert		,29950	,084186
Displacement bei	95%	Untergrenze	,10906	
200N Optisches	Konfidenzintervall	Obergrenze	,48994	
System (mm)	des Mittelwerts			
	5% getrimmtes Mittel		,28283	
	Median		,24950	
	Varianz		,071	
	Standard Abweichung]	,266219	
	Minimum		,048	
	Maximum		,851	
	Spannweite		,803	

	Interquartilbereich		,429	
	Schiefe		1,052	,687
	Kurtosis		,556	1,334
				Standard
Gruppe B, n=10			Statistik	Fehler
Peak to Peak	o Peak Mittelwert		1,99620	,526502
Displacement bei	95%	Untergrenze	,80517	
200N Optisches	Konfidenzintervall	Obergrenze	3,18723	
System (mm)	des Mittelwerts			
	5% getrimmtes Mittel		1,90189	
	Median		,95950	
	Varianz		2,772	
	Standard Abweichung		1,664946	
	Minimum		,477	
	Maximum		5,213	
	Spannweite		4,736	
	Interquartilbereich		2,563	
	Schiefe		,907	,687
	Kurtosis		-,546	1,334
				Standard
Gruppe C, n=10			Statistik	Fehler
Peak to Peak	Mittelwert		,38040	,047851
Displacement bei	95%	Untergrenze	,27215	
200N Optisches System (mm)	Konfidenzintervall des Mittelwerts	Obergrenze	,48865	
	5% getrimmtes Mittel		,37078	
	Median		,34500	
	Varianz		,023	
	Standard Abweichung		,151317	
	Minimum		,207	
	Maximum		,727	
	Spannweite		,520	
	Interquartilbereich		,166	
	Schiefe		1,349	,687
	Kurtosis		2,458	1,334
Anhang

				Standard
Gruppe A, n=10			Statistik	Fehler
Peak to Peak	Mittelwert		1,08770	,177014
Displacement bei	95%	Untergrenze	,68727	
200N	Konfidenzintervall	Obergrenze	1,48813	
Materialprüfmaschine	des Mittelwerts			
(mm)	5% getrimmtes Mittel		1,06822	
	Median		,99800	
	Varianz		,313	
	Standard Abweichun	g	,559769	
	Minimum		,305	
	Maximum		2,221	
	Spannweite		1,916	
	Interquartilbereich		,810	
	Schiefe		,723	,687
	Kurtosis		,476	1,334
				Standard
Gruppe B, n=10			Statistik	Fehler
Peak to Peak	Mittelwert		2,98670	,581963
Displacement bei	95%	Untergrenze	1,67021	
200N	Konfidenzintervall	Obergrenze	4,30319	
Materialprüfmaschine	des Mittelwerts	-		
(mm)	5% getrimmtes Mittel		2,97644	
	Median		2,83050	
	Varianz		3,387	
	Standard Abweichun	g	1,840328	
	Minimum		,746	
	Maximum		5,412	
	Spannweite		4,666	
	Interquartilbereich		3,722	
	Schiefe		,167	,687
	Kurtosis		-1,844	1,334
				Standard
Gruppe C , n=10		Statistik	Fehler	
Peak to Peak	Mittelwert		,66380	,036634
Displacement bei	95%	Untergrenze	,58093	
200N	Konfidenzintervall	Obergrenze	,74667	
Materialprüfmaschine	des Mittelwerts			

Tabelle 33: Deskriptive Statistik zum Peak to Peak Displacement bei 200 N mit den Werten der Materialprüfmaschine. n= Anzahl.

(mm)	5% getrimmtes Mittel	,66328	
	Median	,69300	
	Varianz	,013	
	Standard Abweichung	,115847	
	Minimum	,477	
	Maximum	,860	
	Spannweite	,383	
	Interquartilbereich	,177	
	Schiefe	-,083	,687
	Kurtosis	-,411	1,334

Tabelle 34: Deskriptive Statistik zum Peak to Peak Displacement bei 300 N mit den Werten des Optischen Systems. Die fehlenden Objekte zur Gruppengröße von 10 ergeben sich daraus, dass nicht alle Objekte die vollständige Messreihe durchlaufen haben. n= Anzahl.

				Standard
Gruppe A, n=9			Statistik	Fehler
Peak to Peak	Mittelwert		,56100	,152603
Displacement bei	95%	Untergrenze	,20910	
300N Optisches	Konfidenzintervall	Obergrenze	,91290	
System (mm)	des Mittelwerts			
	5% getrimmtes Mitte		,53722	
	Median		,36500	
	Varianz		,210	
	Standard Abweichun	g	,457808	
	Minimum		,198	
	Maximum		1,352	
	Spannweite		1,154	
	Interquartilbereich		,703	
	Schiefe		1,294	,717
	Kurtosis		,116	1,400
				Standard
Gruppe B, n=7			Statistik	Fehler
Peak to Peak	Mittelwert		2,94500	,654545
Displacement bei	95%	Untergrenze	1,34339	
300N Optisches	Konfidenzintervall	Obergrenze	4,54661	
System (mm)	des Mittelwerts			
	5% getrimmtes Mittel		2,92633	
	Median		3,53200	
	Varianz		2,999	

	Standard Abweichung		1,731764	
	Minimum		,683	
	Maximum	Maximum		
	Spannweite		4,860	
	Interquartilbereich		3,028	
	Schiefe		,022	,794
	Kurtosis		-,884	1,587
Gruppe C, n=9	·		Statistik	Standard Fehler
Peak to Peak	Mittelwert		1,34744	,354633
Displacement bei	95%	Untergrenze	,52966	
300N Optisches System (mm)	Konfidenzintervall des Mittelwerts	Obergrenze	2,16523	
	5% getrimmtes Mitte	I	1,29077	
	Median	Median		
	Varianz	Varianz		
	Standard Abweichur	Standard Abweichung		
	Minimum		,246	
	Maximum		3,469	
	Spannweite		3,223	
	Interquartilbereich		1,535	
	Schiefe		,890	,717
	Kurtosis		,461	1,400

Tabelle 35: Deskriptive Statistik zum Peak to Peak Displacement bei 300 N mit den Werten der Materialprüfmaschine. Die fehlenden Objekte zur Gruppengröße von 10 ergeben sich daraus, dass nicht alle Objekte die vollständige Messreihe durchlaufen haben. n= Anzahl.

				Standard
Gruppe A, n=9			Statistik	Fehler
Peak to Peak	Mittelwert		1,88222	,409470
Displacement bei	95%	Untergrenze	,93798	
300N	Konfidenzintervall	Obergrenze	2,82646	
Materialprüfmaschine	des Mittelwerts			
(mm)	5% getrimmtes Mitte		1,85314	
	Median		1,27800	
	Varianz		1,509	
	Standard Abweichur	ng	1,228411	
	Minimum		,488	
	Maximum		3,800	

	Spannweite		3,312	
	Interquartilbereich		2,307	
	Schiefe		,612	,717
	Kurtosis		-1,388	1,400
				Standard
Gruppe B, n=7			Statistik	Fehler
Peak to Peak	Mittelwert		3,29757	,594990
Displacement bei	95%	Untergrenze	1,84168	
300N	Konfidenzintervall	Obergrenze	4,75346	
Materialprüfmaschine	des Mittelwerts			
(mm)	5% getrimmtes Mitte		3,28125	
	Median		3,80200	
	Varianz		2,478	
	Standard Abweichur	ng	1,574194	
	Minimum		1,385	
	Maximum		5,504	
	Spannweite		4,119	
	Interquartilbereich		3,065	
	Schiefe		-,089	,794
	Kurtosis		-1,401	1,587
				Standard
Gruppe C, n=9			Statistik	Fehler
Peak to Peak	Mittelwert		1,62156	,348363
Displacement bei	95%	Untergrenze	,81823	
300N	Konfidenzintervall	Obergrenze	2,42488	
Materialprüfmaschine	des Mittelwerts			
(mm)	5% getrimmtes Mitte		1,57151	
	Median		1,52900	
	Varianz		1,092	
	Standard Abweichung Minimum Maximum		1,045089	
			,564	
			3,580	
	Spannweite		3,016	
	Interquartilbereich		1,680	
	Schiefe		,765	,717
	Kurtosis		-,266	1,400

Anhang

			Statiatik	Standard
Maximales	Mittelwort			243548
Displacement	95%	Lintergranza	55282	,243340
Optisches System	8078 Konfidenzintervall	Obergrenze	,55262	
(mm)	des Mittelwerts	Obergrenze	1,07007	
	5% getrimmtes Mittel	·	1,05116	
	Median		,75400	
	Varianz		,534	
	Standard Abweichung	g	,730645	
	Minimum		,589	
	Maximum		2,779	
	Spannweite		2,190	
	Interquartilbereich		,795	
	Schiefe		1,864	,717
	Kurtosis		3,061	1,400
				Standard
Gruppe B, n=7			Statistik	Fehler
Maximales	Mittelwert		5,31229	1,111026
Displacement	95%	Untergrenze	2,59370	
Optisches System	Konfidenzintervall	Obergrenze	8,03087	
	5% gotrimmtos Mittol		5 15782	
	Median		5,15702	
	Varianz		8 641	
	Standard Abweichung	Y	2 939498	
	Minimum	2	2 315	
	Maximum		11,090	
	Spannweite		8,775	
	Interguartilbereich		3.274	
	Schiefe		1.345	.794
	Kurtosis		2.366	1.587
			,	Standard
Gruppe C, n=9		Statistik	Fehler	
Maximales	Mittelwert		3,04667	,482472
Displacement	95%	Untergrenze	1,93408	

Tabelle 36: Deskriptive Statistik zum maximalen Displacement mit den Werten des Optischen Systems. Die fehlenden Objekte zur Gruppengröße von 10 ergeben sich daraus, dass nicht alle Objekte die vollständige Messreihe durchlaufen haben. n= Anzahl.

Optisches System (mm)	Konfidenzintervall des Mittelwerts	Obergrenze	4,15925	
	5% getrimmtes Mittel	• •	2,97441	
	Median		2,64200	
	Varianz		2,095	
	Standard Abweichung)	1,447416	
	Minimum		1,457	
	Maximum		5,937	
	Spannweite		4,480	
	Interquartilbereich		2,189	
	Schiefe		,883	,717
	Kurtosis		,574	1,400

Tabelle 37: Deskriptive Statistik zum maximalen Displacement mit den Werten der Materialprüfmaschine. Die fehlenden Objekte zur Gruppengröße von 10 ergeben sich daraus, dass nicht alle Objekte die vollständige Messreihe durchlaufen haben. n= Anzahl.

				Standard
Gruppe A, n=9			Statistik	Fehler
Maximales	Mittelwert		3,95589	,463871
Displacement	95%	Untergrenze	2,88620	
Materialprüfmaschine	Konfidenzintervall	Obergrenze	5,02558	
(mm)	des Mittelwerts			
	5% getrimmtes Mitte	I	3,91810	
	Median		3,94500	
	Varianz		1,937	
	Standard Abweichur	ig	1,391613	
	Minimum		2,348	
	Maximum		6,244	
	Spannweite		3,896	
	Interquartilbereich		2,582	
	Schiefe		,401	,717
	Kurtosis		-1,217	1,400
				Standard
Gruppe B, n=7			Statistik	Fehler
Maximales	Mittelwert		6,76943	,585081
Displacement	95%	Untergrenze	5,33779	
Materialprüfmaschine	Konfidenzintervall	Obergrenze	8,20107	
(mm)	des Mittelwerts	_		
	5% getrimmtes Mitte	I	6,73831	

	Median		7,02800	
	Varianz		2,396	
	Standard Abweichur	ng	1,547978	
	Minimum Maximum		4,890	
			9,209	
	Spannweite		4,319	
	Interquartilbereich		2,798	
	Schiefe		,282	,794
	Kurtosis		-,726	1,587
				Standard
Gruppe C, n=9		Statistik	Fehler	
Maximales	Mittelwert		4,41244	,392592
Displacement	95%	Untergrenze	3,50713	
Materialprüfmaschine	Konfidenzintervall	Obergrenze	5,31776	
(mm)	des Mittelwerts			
	5% getrimmtes Mitte		4,38927	
	Median		4,54800	
	Varianz		1,387	
	Standard Abweichur	ng	1,177776	
	Minimum		2,768	
	Maximum		6,474	
	Spannweite		3,706	
	Interquartilbereich		1,693	
	Schiefe		,084	,717
	Kurtosis		-,048	1,400

Tabelle 38: Deskriptive Statistik zur plastischen Deformation bei 100 N. Die fehlenden Objekte zur Gruppengröße von 10 ergeben sich daraus, dass nicht alle Objekte die vollständige Messreihe durchlaufen haben. Da in Gruppe E nur ein Testobjekt für die Auswertung zur Verfügung steht, kann hier keine deskriptive Statistik errechnet werden. n= Anzahl.

Gruppe A , n=10			Statistik	Standard Fehler
Plastische	Mittelwert		,10140	,040891
Deformation bei	95%	Untergrenze	,00890	
100N (mm)	Konfidenzintervall	Obergrenze	,19390	
	des Mittelwerts			
	5% getrimmtes Mittel		,09650	
	Median		,00950	
	Varianz		,017	

	Standard Abweichung	3	,129309	
	Minimum		,000	
	Maximum		,291	
	Spannweite	Spannweite		
	Interquartilbereich		,256	
	Schiefe		,743	,687
	Kurtosis	Kurtosis		1,334
			Standard	
Gruppe B , n=10			Statistik	Fehler
Plastische	Mittelwert		,27520	,079348
Deformation bei	95%	Untergrenze	,09570	
100N (mm)	Konfidenzintervall des Mittelwerts	Obergrenze	,45470	
	5% getrimmtes Mittel		,26178	
	Median		,13900	
	Varianz		,063	
	Standard Abweichung	a	,250922	
	Minimum		,060	
	Maximum		.732	
	Spannweite		,672	
	Interquartilbereich		,434	
	Schiefe		,774	,687
	Kurtosis		-1,019	1,334
				Standard
Gruppe C , n=10			Statistik	Fehler
Plastische	Mittelwert		,22740	,031987
Deformation bei	95%	Untergrenze	,15504	
100N (mm)	Konfidenzintervall	Obergrenze	,29976	
	des Mittelwerts			
	5% getrimmtes Mittel		,22800	
	Median		,25400	
	Varianz		,010	
	Standard Abweichung	9	,101151	
	Minimum		,071	
	Maximum		,373	
	Spannweite		,302	
	Interquartilbereich		,165	
	Schiefe		-,242	,687
	Kurtosis		-1,067	1,334

				Standard
Gruppe D, n=3			Statistik	Fehler
Plastische	Mittelwert		7,21667	1,935833
Deformation bei	95%	Untergrenze	-1,11255	
100N (mm)	Konfidenzintervall	Obergrenze	15,54589	
	des Mittelwerts			
	5% getrimmtes Mittel			
	Median		5,96700	
	Varianz		11,242	
	Standard Abweichung		3,352962	
	Minimum		4,668	
	Maximum		11,015	
	Spannweite		6,347	
	Interguartilbereich			
	Schiefe		1,444	1,225
	Kurtosis			

Tabelle 39: Deskriptive Statistik zur plastischen Deformation bei 200 N. Die fehlenden Objekte zur Gruppengröße von 10 ergeben sich daraus, dass es bei Gruppe C bei einem Objekt zu technischen Problemen bei der Aufzeichnung kam. n= Anzahl.

				Standard
Gruppe A , n=10			Statistik	Fehler
Plastische	Mittelwert		,36400	,109594
Deformation bei	95%	Untergrenze	,11608	
200N (mm)	Konfidenzintervall des Mittelwerts	Obergrenze	,61192	
	5% getrimmtes Mittel		,34761	
	Median		,24300	
	Varianz		,120	
	Standard Abweichung	g	,346567	
	Minimum		,044	
	Maximum		,979	
	Spannweite		,935	
	Interquartilbereich		,590	
	Schiefe		1,056	,687
	Kurtosis		-,346	1,334
				Standard
Gruppe B , n=10		Statistik	Fehler	
	Mittelwert		2,07280	,672813

Plastische	95%	Untergrenze	,55079	
Deformation bei	Konfidenzintervall	Obergrenze	3,59481	
200N (mm)	des Mittelwerts			
	5% getrimmtes Mitte	I	1,93189	
	Median		,69250	
	Varianz		4,527	
	Standard Abweichun	g	2,127620	
	Minimum		,446	
	Maximum		6,236	
	Spannweite		5,790	
	Interquartilbereich		3,559	
	Schiefe		,979	,687
	Kurtosis		-,397	1,334
				Standard
Gruppe C, n=9			Statistik	Fehler
Plastische	Mittelwert		,48967	,070460
Deformation bei	95%	Untergrenze	,32718	
200N (mm)	Konfidenzintervall	Obergrenze	,65215	
	des Mittelwerts			
	5% getrimmtes Mitte	5% getrimmtes Mittel		
	Median		,45300	
	Varianz		,045	
	Standard Abweichur	ng	,211381	
	Minimum		,205	
	Maximum		,924	
	Spannweite		,719	
	Interquartilbereich		,269	
	Schiefe		,863	,717
	Kurtosis		1 1 1 9	1 400

Tabelle 40: Deskriptive Statistik zur plastischen Deformation bei 300 N. Die fehlenden Objekte zur Gruppengröße von 10 ergeben sich daraus, dass nicht alle Objekte die vollständige Messreihe durchlaufen haben. n= Anzahl.

				Standard
Gruppe A, n=9	Statistik	Fehler		
Plastische	Mittelwert		,67900	,207260
Deformation bei	95%	Untergrenze	,20106	
300N (mm)	Konfidenzintervall	Obergrenze	1,15694	
	des Mittelwerts			
	5% getrimmtes Mittel		,62567	

	Median		,42100	
	Varianz		,387	
	Standard Abweichun	g	,621781	
	Minimum	,176		
	Maximum		2,142	
	Spannweite		1,966	
	Interquartilbereich		,631	
	Schiefe		1,972	,717
	Kurtosis		3,952	1,400
				Standard
Gruppe B, n=7			Statistik	Fehler
Plastische	Mittelwert		3,17200	,884852
Deformation bei	95%	Untergrenze	1,00685	
300N (mm)	Konfidenzintervall	Obergrenze	5,33715	
	des Mittelwerts			
	5% getrimmtes Mittel		3,06333	
	Median		3,03900	
	Varianz		5,481	
	Standard Abweichun	g	2,341098	
	Minimum	-	,598	
	Maximum		7,702	
	Spannweite		7,104	
	Interguartilbereich		2,634	
	Schiefe		1,239	,794
	Kurtosis		2,054	1,587
				Standard
Gruppe C, n=9			Statistik	Fehler
Plastische	Mittelwert		1,39089	,362489
Deformation bei	95%	Untergrenze	,55499	
300N (mm)	Konfidenzintervall	Obergrenze	2,22679	
	des Mittelwerts			
	5% getrimmtes Mittel		1,31965	
	Median Varianz Standard Abweichung		,96300	
			1,183	
			1,087468	
	Minimum		,182	
	Maximum		3,882	
	Spannweite		3,700	
	Interquartilbereich		1,082	

Anhang

Schiefe	1,614	,717
Kurtosis	3,342	1,400

Tabelle 41: Deskriptive Statistik zur Maximalkraft. Die fehlenden Objekte zur Gruppengröße von 10 ergeben sich
daraus, dass nicht alle Objekte die vollständige Messreihe durchlaufen haben. n= Anzahl.

				Standard
Gruppe A, n=9		Statistik	Fehler	
Maximalkraft (N)	Mittelwert		787,56	61,443
	95%	Untergrenze	645,87	
	Konfidenzintervall	Obergrenze	929,24	
	des Mittelwerts			
	5% getrimmtes Mittel		784,90	
	Median		776,00	
	Varianz		33977,528	
	Standard Abweichung		184,330	
	Minimum		543	
	Maximum		1080	
	Spannweite		537	
	Interquartilbereich		316	
	Schiefe		,145	,717
	Kurtosis		-,755	1,400
				Standard
Gruppe B, n=7			Statistik	Fehler
Maximalkraft (N)	Mittelwert		638,29	55,666
	95%	Untergrenze	502,08	
	Konfidenzintervall	Obergrenze	774,50	
	des Mittelwerts			
	5% getrimmtes Mittel		635,37	
	Median		622,00	
	Varianz		21690,905	
	Standard Abweichung		147,278	
	Minimum		464	
	Maximum		865	
	Spannweite		401	
	Interquartilbereich		258	
	Schiefe		,419	,794
	Kurtosis		-1,181	1,587
				Standard
Gruppo C n=0			Statistik	Fehler

Maximalkraft (N)	Mittelwert		650,78	37,818
	95%	Untergrenze	563,57	
	Konfidenzintervall	Obergrenze	737,99	
	des Mittelwerts			
	5% getrimmtes Mittel		651,31	
	Median		613,00	
	Varianz		12871,944	
	Standard Abweichung		113,455	
	Minimum		477	
	Maximum		815	
	Spannweite		338	
	Interquartilbereich		196	
	Schiefe		,097	,717
	Kurtosis		-,965	1,400

Tabelle 42: Deskriptive Statistik zur Steifigkeit bei 100 N. Die fehlenden Objekte zur Gruppengröße von 10 ergeben sich daraus, dass nicht alle Objekte ausreichend viele Zyklen zur Erfassung durchlaufen haben. n= Anzahl.

				Standard
Gruppe A , n=10	Gruppe A, n=10			Fehler
Steifigkeit bei 100N	Mittelwert		185,13774	13,309662
(N/mm)	95%	Untergrenze	155,02919	
	Konfidenzintervall	Obergrenze	215,24628	
	des Mittelwerts			
	5% getrimmtes Mittel		185,18253	
	Median		190,75837	
	Varianz		1771,471	
	Standard Abweichung Minimum		42,088845	
			127,121	
	Maximum		242,348	
	Spannweite		115,226	
	Interquartilbereich		77,763	
	Schiefe		-,058	,687
	Kurtosis		-1,553	1,334
				Standard
Gruppe B, n=10		Statistik	Fehler	
Steifigkeit bei 100N	Mittelwert		124,33286	9,094316
(N/mm)	95%	Untergrenze	103,76009	
	Konfidenzintervall	Obergrenze	144,90563	
	des Mittelwerts	-		

	5% getrimmtes Mittel		124,06641	
	Median		118,42087	
	Varianz		827,066	
	Standard Abweichung	g	28,758751	
	Minimum		92,494	
	Maximum		160,968	
	Spannweite		68,473	
	Interquartilbereich		53,896	
	Schiefe		,167	,687
	Kurtosis		-2,187	1,334
	-			Standard
Gruppe C , n=10			Statistik	Fehler
Steifigkeit bei 100N	Mittelwert		148,01127	9,921440
(N/mm)	95%	Untergrenze	125,56741	
	Konfidenzintervall	Obergrenze	170,45513	
	des Mittelwerts			
	5% getrimmtes Mittel		147,16845	
	Median		148,99630	
	Varianz		984,350	
	Standard Abweichung	g	31,374350	
	Minimum		103,636	
	Maximum		207,557	
	Spannweite		103,921	
	Interquartilbereich		49,872	
	Schiefe		,355	,687
	Kurtosis		-,013	1,334
				Standard
Gruppe D, n=8			Statistik	Fehler
Steifigkeit bei 100N	Mittelwert		44,65695	8,275709
(N/mm)	95%	Untergrenze	25,08801	
	Konfidenzintervall	Obergrenze	64,22589	
	des Mittelwerts			
	5% getrimmtes Mittel		42,51142	
	Median		38,40651	
	Varianz		547,899	
	Standard Abweichung	g	23,407240	
	Minimum		26,882	
	Maximum		101,051	
	Spannweite		74,169	

	Interquartilbereich		8,668	
	Schiefe		2,531	,752
	Kurtosis		6,805	1,481
				Standard
Gruppe E, n=6			Statistik	Fehler
Steifigkeit bei 100N	Mittelwert		37,23673	3,177798
(N/mm)	95%	Untergrenze	29,06794	
	Konfidenzintervall	Obergrenze	45,40552	
	des Mittelwerts			
	5% getrimmtes Mittel		37,19240	
	Median		35,73268	
	Varianz		60,590	
	Standard Abweichung	g	7,783985	
	Minimum		26,624	
	Maximum		48,647	
	Spannweite		22,024	
	Interquartilbereich		12,679	
	Schiefe		,257	,845
	Kurtosis		-,308	1,741

Tabelle 43: Deskriptive Statistik zur Steifigkeit bei 200 N. n= Anzahl.

				Standard
Gruppe A, n=10			Statistik	Fehler
Steifigkeit bei 200N	Mittelwert	Mittelwert		15,315622
(N/mm)	95%	Untergrenze	171,57648	
	Konfidenzintervall	Obergrenze	240,86917	
	des Mittelwerts			
	5% getrimmtes Mittel		205,80021	
	Median		230,37067	
	Varianz		2345,683	
	Standard Abweichung		48,432248	
	Minimum		146,592	
	Maximum		273,460	
	Spannweite		126,868	
	Interquartilbereich		89,578	
	Schiefe		-,252	,687
	Kurtosis		-1,878	1,334

				Standard
Gruppe B, n=10			Statistik	Fehler
Steifigkeit bei 200N	Mittelwert		121,58652	8,380919
(N/mm)	95%	Untergrenze	102,62757	
	Konfidenzintervall	Obergrenze	140,54548	
	des Mittelwerts			
	5% getrimmtes Mitte	l	121,42375	
	Median		115,28777	
	Varianz	Varianz		
	Standard Abweichun	g	26,502793	
	Minimum		90,004	
	Maximum		156,098	
	Spannweite		66,094	
	Interquartilbereich		52,953	
	Schiefe		,194	,687
	Kurtosis		-2,071	1,334
				Standard
Gruppe C , n=10			Statistik	Fehler
Steifigkeit bei 200N	Mittelwert		151,71254	9,236696
(N/mm)	95%	Untergrenze	130,81768	
	Konfidenzintervall	Obergrenze	172,60740	
	des Mittelwerts			
	5% getrimmtes Mittel		149,93498	
	Median		148,50736	
	Varianz		853,166	
	Standard Abweichung		29,208998	
	Minimum		117,221	
	Maximum		218,200	
	Spannweite		100,979	
	Interquartilbereich		34,892	
	Schiefe		1,194	,687
	Kurtosis		2,377	1,334

Tabelle 44: Deskriptive Statistik zur Steifigkeit bei 300 N. n= Anzahl.

				Standard
Gruppe A , n=10			Statistik	Fehler
Steifigkeit bei 300N	Mittelwert		202,05321	8,019126
(N/mm)	95%	Untergrenze	183,91269	

· · · · · · · · · · · · · · · · · · ·	1			
	Konfidenzintervall	Obergrenze	220,19374	
	des Mittelwerts			
	5% getrimmtes Mittel Median Varianz		202,49536	
			207,79628	
			643,064	
	Standard Abweichun	g	25,358702	
	Minimum		157,795	
	Maximum		238,353	
	Spannweite		80,558	
	Interquartilbereich		45,246	
	Schiefe		-,316	,687
	Kurtosis		-,708	1,334
				Standard
Gruppe B , n=10			Statistik	Fehler
Steifigkeit bei 300N	Mittelwert		114,85775	5,049346
(N/mm)	95%	Untergrenze	103,43534	
	Konfidenzintervall	Obergrenze	126,28017	
	des Mittelwerts			
	5% getrimmtes Mittel		114,02192	
	Median		110,69717	
	Varianz		254,959	
	Standard Abweichun	g	15,967434	
	Minimum		96,577	
	Maximum		148,184	
	Spannweite		51,607	
	Interquartilbereich		23,634	
	Schiefe		,991	,687
	Kurtosis		,608	1,334
				Standard
Gruppe C , n=10			Statistik	Fehler
Steifigkeit bei 300N	Mittelwert		134,36268	7,171159
(N/mm)	95%	Untergrenze	118,14039	
	Konfidenzintervall	Obergrenze	150,58497	
	des Mittelwerts			
	5% getrimmtes Mittel		132,84648	
	Median		131,32369	
	Varianz		514,255	
	Standard Abweichung		22,677195	
	Minimum		112,065	

Maxim	um	183,952	
Spann	weite	71,887	
Interqu	artilbereich	31,046	
Schief	9	1,178	,687
Kurtos	S	1,324	1,334

7.2 Materialliste

Tabelle 45: Auflistung der verwendeten Materialien unter Angabe des Verwendungszwecks.

Verwendungszweck	Material
Gruppe A	Db. Schraube Ø 6.5mm, selbstbohr., L45/32mm, LOT
	L443153, REF 408.431, Material: Ti Al6 Nb7, DePuySynthes
	Sechskantschraubenzieher, durchbohrt
	Führungsdraht Ø 2.8mm, w/threaded tip w/trocar,
	L300mm, LOT 60P5300, REF 292.680, Material: Stainless
	Steel, DePuySynthes
	Spiralbohrer Ø 5.0mm, durchbohrt, L300/250mm, 3-flute,
	f/Quick-Coupl., LOT PE04157, REF 310.630, Material:
	Stainless Steel, DePuySynthes
	Unterlagscheibe Ø 13.0/6.6mm, f/Schr. Ø 4.5-7.3mm, LOT
	67P8477, REF 419.990, Material: TiCP, DePuySynthes
Gruppe B	Db. Schraube Ø 4.0mm, selbstbohr., L44/14mm, LOT
	71P1287, REF 407.644, Material: Ti Al6 Nb7, DePuySynthes

	Sechskantschraubenzieher, durchbohrt, f/Db. Schr. Ø 3.5-
	4.0mm, LOT 48P4200, REF 314.290, Material: SST/Silicone
	Rubber, DePuySynthes
	Führungsdraht Ø 1.25mm, L150mm, w/threaded tip
	w/trocar, LOT 64P3991, REF 292.620, Material: Stainless
	Steel, DePuySynthes
	Spiralbohrer Ø 2.7/1.35mm, durchbohrt, L160/130mm, 4-
	flute, f/Quick Coupl., LOT F-30519, REF 310.670, Material:
	Stainless Steel, DePuySynthes
	Unterlagscheibe Ø 7.0/3.6mm, f/Schr. Ø 2.7-4.0mm, LOT
	66P2163, REF 419.980, Material: TiCP, DePuySynthes
Gruppe C	5.0 CCS Schraube 45mm, HD 15, LOT 18176818,
	Materialnummer A-8211.45X, Medartis
	Handgriff kanüliert mit Schnellkuppl., AO, APTUS, LOT
	Handgriff kanüliert mit Schnellkuppl., AO, APTUS, LOT 19204232, REF A-8000.20, Medartis
	Handgriff kanüliert mit Schnellkuppl., AO, APTUS, LOT 19204232, REF A-8000.20, Medartis
	Handgriff kanüliert mit Schnellkuppl., AO, APTUS, LOT 19204232, REF A-8000.20, Medartis 5.0 CCS Spiralbohrer Ø 3.1mm, L177mm, AO, APTUS, LOT
	Handgriff kanüliert mit Schnellkuppl., AO, APTUS, LOT 19204232, REF A-8000.20, Medartis 5.0 CCS Spiralbohrer Ø 3.1mm, L177mm, AO, APTUS, LOT 19199623, REF A-8000.03, Medartis
	Handgriff kanüliert mit Schnellkuppl., AO, APTUS, LOT 19204232, REF A-8000.20, Medartis 5.0 CCS Spiralbohrer Ø 3.1mm, L177mm, AO, APTUS, LOT 19199623, REF A-8000.03, Medartis
	Handgriff kanüliert mit Schnellkuppl., AO, APTUS, LOT 19204232, REF A-8000.20, Medartis 5.0 CCS Spiralbohrer Ø 3.1mm, L177mm, AO, APTUS, LOT 19199623, REF A-8000.03, Medartis 5.0 Kanül. Schraubendreherkl., HD15, AO, APTUS, LOT
	 Handgriff kanüliert mit Schnellkuppl., AO, APTUS, LOT 19204232, REF A-8000.20, Medartis 5.0 CCS Spiralbohrer Ø 3.1mm, L177mm, AO, APTUS, LOT 19199623, REF A-8000.03, Medartis 5.0 Kanül. Schraubendreherkl., HD15, AO, APTUS, LOT 19207015, REF A-8000.21, Medartis
	 Handgriff kanüliert mit Schnellkuppl., AO, APTUS, LOT 19204232, REF A-8000.20, Medartis 5.0 CCS Spiralbohrer Ø 3.1mm, L177mm, AO, APTUS, LOT 19199623, REF A-8000.03, Medartis 5.0 Kanül. Schraubendreherkl., HD15, AO, APTUS, LOT 19207015, REF A-8000.21, Medartis
	 Handgriff kanüliert mit Schnellkuppl., AO, APTUS, LOT 19204232, REF A-8000.20, Medartis 5.0 CCS Spiralbohrer Ø 3.1mm, L177mm, AO, APTUS, LOT 19199623, REF A-8000.03, Medartis 5.0 Kanül. Schraubendreherkl., HD15, AO, APTUS, LOT 19207015, REF A-8000.21, Medartis Führungsdraht Ø 1.5mm, L 150mm
	 Handgriff kanüliert mit Schnellkuppl., AO, APTUS, LOT 19204232, REF A-8000.20, Medartis 5.0 CCS Spiralbohrer Ø 3.1mm, L177mm, AO, APTUS, LOT 19199623, REF A-8000.03, Medartis 5.0 Kanül. Schraubendreherkl., HD15, AO, APTUS, LOT 19207015, REF A-8000.21, Medartis Führungsdraht Ø 1.5mm, L 150mm

Gruppe D	2.0/2.3 TriLock GridPI 3+3 Loch, 37mm, t1.3, APTUS, LOT
	20216583, REF A-4655.69, Material: TiCp, Medartis
	2.0 TriLock Schraube 20mm, HD6, 5/Pkg, APTUS, LOT
	20221351, REF A-5450.20, Material: TiAlloy, Medartis
	2.0 TriLock Schraube 18mm, HD6, 5/Pkg, APTUS, LOT
	20221444, REF A-5450.18, Material: TiAlloy, Medartis
	2.0TriLock Schraube 16mm, HD6, 5/Pkg, APTUS, LOT
	20224445, REF A-5450.16, Material: TiAlloy, Medartis
	Spiralbohrer Ø 1.6mm x 30mm, L86mm, AO, APTUS, LOT
	20215887, REF A-3434, Medartis
	Führungsdraht Ø 1.5mm, L 150mm
Gruppe E	2.8 TriLock Grid PI 3+3 Loch, 43mm, t1.6, APTUS, LOT
	20224721, REF A-4850.69, Material: TiCp, Medartis
	2.8 TriLock Schraube, 20mm, HD7, 5/Pkg, APTUS, LOT
	20224048, REF A-5850.20, Material: TiAlloy, Medartis
	2.8 TriLock Schraube, 16mm, HD7, 5/Pkg, APTUS, LOT
	20225571, REF A-5850.16, Material: TiAlloy, Medartis
	2.8 TriLock Schraube, 14mm, HD7, 5/Pkg, APTUS, LOT
	20226131, REF A-5850.14, Material: TiAlloy, Medartis

	Spiralbohrer Ø 2.35mm x 50mm, L101mm, AO, APTUS,
	LOT 19197673, REF A-3832, Medartis
	Führungsdraht Ø 1.5mm, L 150mm
Präparation der	Kunstknochen, LD 9118, Synbone, Malans, Schweiz
Kunstknochen	
	Oszillierende Säge, Parkside PMFW, 310B1
	2-Komponenten-Kleber, Roxolid, EPO-X-Y, Bisphenol-A/F-
	diglycidylether (MW <- 700) [CAS: 1675-54-3 / 9003-36-5],
	Pentaerythritol-PO-mercaptoglycerol [CAS: 72244-98-5];
	N-(3-Aminopropyl-N,N-dimethyl-1,3-propan(e)diamin(e)
	[CAS:10563-29-8]
	Spanngurt, kwb Germany GMBH, LC 1500 daN, ArtNr.
	772395
	Handtacker, Preciva
	Elektrikergips, MODULAN, Lieferantenartikelnummer:
	7050304439000005000, EAN: 4306517223328

8 Danksagung

Bei Herrn Prof. Dr. med. R. H. Meffert möchte ich mich für die Promotionsarbeit in seiner Abteilung bedanken.

Mein besonderer Dank gilt meinem Betreuer, Herrn Priv. Doz. Dr. med. M. C. Jordan, für die freundschaftliche und zugleich fachlich kompetente Betreuung sowie für die wissenschaftliche Förderung während der letzten drei Jahre. Die Zusammenarbeit auf Augenhöhe war von enormem Wert für diese Arbeit. Vielen Dank.

Dem Team des Labors für Biomechanik, insbesondere Frau Prof. Dr. med. S. Hoelscher-Doht, möchte ich danken für die materielle und ideelle Unterstützung meiner Arbeit.

Für die beratende Unterstützung bei der statistischen Auswertung der erhobenen Daten bedanke ich mich bei den Mitarbeitern des Instituts für klinische Epidemiologie und Biometrie der Universität Würzburg.

Ein Dank gilt weiterhin dem Team der Klinik und Poliklinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie Würzburg, welches mir während meiner Promotion stets freundschaftlich zur Seite stand.

Außerdem möchte ich mich besonders bei meinen Eltern Margarete und Michael sowie bei meinen Brüdern Jonathan und Thomas bedanken, deren ständige, größtmögliche Unterstützung ein starker Rückhalt für mich war.