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Abstract

Strong correlations caused by interaction in systems of electrons can bring about un-
usual physical phenomena due to many-body quantum effects that cannot properly be
captured by standard electronic structure methods like density functional theory. In
this thesis, we apply the state-of-the-art continuous-time quantum Monte Carlo algo-
rithm in hybridization expansion (CT-HYB) for the strongly correlated multi-orbital
Anderson impurity model (AIM) to the solution of models of magnetic impurities on
metallic surfaces and, via dynamical mean-field theory (DMFT), to the solution of a
lattice model, the multi-orbital Hubbard model with Hund’s coupling.

A concise introduction to the theoretical background focuses on information directly
relevant to the understanding of applied models, methods, and the interpretation of
results. It starts with a discussion of the AIMwith its parameters and its solution in the
path integral formalism, the basis of the CT-HYB algorithm. We consider its derivation
and implementation in some detail before reviewing the DMFT approach to correlated
lattice models and the interpretation of the single-particle Green’s function.

We review two algorithmic developments for the CT-HYB algorithm that help to in-
crease the performance of calculations especially in case of a complex structure of the
interaction matrix and allow the precise calculation of self-energies and vertex func-
tions also at intermediate and higher frequencies.

Our comparative analysis of Kondo screening in the cobalt on copper impurity sys-
tem points out the importance of an accurate interactionmatrix for qualitatively correct
Kondo temperatures and the relevance of all 𝑑-orbitals in that case. Theoretical model-
ing of cobalt impurities in copper “atomic wires” fails to reproduce variations and par-
tial absence of Kondo resonances depending on the wire size. We analyze the depen-
dence of results on parameters and consider possible reasons for the discrepancy. Dif-
ferent Kondo temperatures of iron adatoms adsorbed on clean or oxygen-reconstructed
niobium in the normal state are qualitatively reproduced, with the adsorption distance
identified as major factor and implications for the superconducting state pointed out.

Moving on to lattice problems, we demonstrate the connection betweenHund’s cou-
pling, shown to cause first-order character of the interaction-driven Mott transition at
half-filling in the two-orbital Hubbard model, and a phase separation zone ending in a
quantum critical point at finite doping. We touch on similarities in realistic models of
iron-pnictide superconductors. We analyze themanifestation of the compressibility di-
vergence at the finite-temperature critical points away fromhalf-filling in the eigenbasis
of the two-particle generalized susceptibility. A threshold for impurity susceptibility
eigenvalues that indicates divergence of the DMFT lattice compressibility and distin-
guishes thermodynamic stability and instability of DMFT solutions is determined.
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Deutsche Zusammenfassung

Wechselwirkungsbedingt stark korrelierte Elektronensysteme könnenwegenMehrteil-
cheneffekten ungewöhnliche Physik aufweisen, die Standardmethoden für elektroni-
sche Struktur wie die Dichtefunktionaltheorie nicht erfassen. Diese Dissertation han-
delt von der Anwendung des Quanten-Monte Carlo Algorithmus in kontinuierlicher
Zeit mit Reihenentwicklung in der Hybridisierung (CT-HYB), aktuellster Stand der
Technik für das stark korrelierte Anderson-Modell für Störstellen (AIM), auf magne-
tische Adatome auf Metalloberflächen und, im Rahmen der dynamischen Molekular-
feldtheorie (DMFT), auf das Mehrorbital-Hubbard-Modell mit Hundscher Kopplung.

Eine kurze Einführung fokussiert den für das Verständnis der Modelle, Methoden,
und Interpretationen relevanten theoretischenHintergrund. Sie beginntmit demAIM,
seinen Parametern, und seiner Lösung imPfadintegralformalismus, welcheGrundlage
des CT-HYB Algorithmus ist. Wir betrachten dessen Herleitung und Implementation
im Detail, bevor wir einen Überblick über den DMFT-Zugang zu korrelierten Gitter-
modellen und die Interpretation der Einteilchen-Greenschen Funktion geben.

Wir berichten von zwei algorithmischen Entwicklungen für CT-HYB, die helfen, die
Geschwindigkeit der Rechnungen besonders in Fällen einer lokalen Wechselwirkung
komplexer Form zu erhöhen und die präzise Berechnung von Selbstenergien und Ver-
texfunktionen auch bei mittleren und höheren Frequenzen erlauben.

Unsere Analyse der Kondo-Abschirmung in Kobalt-Adatomen auf Kupfer weist auf
die Bedeutung einer akkuraten Wechselwirkungsmatrix für korrekte Kondo-Tempe-
raturen und die Relevanz aller 𝑑-Orbitale hin. Die Variation der Kondo-Resonanz von
Kobalt in “atomarenDrähten” aus Kupfermit der Anzahl der Atome kann unsere theo-
retische Modellierung nicht nachvollziehen. Wir untersuchen die Abhängigkeit der
Ergebnisse von Parametern und diskutieren mögliche Ursachen. Kondo-Temperaturen
vonEisen-Adatomen auf sauberer oder Sauerstoff-rekonstruierterNiob-Oberflächewer-
den im Normalzustand qualitativ reproduziert, der Adsorptionsabstand als wichtiger
Faktor identifiziert, und auf die Folgen für den supraleitenden Zustand hingewiesen.

Wir wenden uns demHubbard-Modell eines Gitters mit zwei Orbitalen pro Platz zu
und zeigen den Zusammenhang zwischenHundscher Kopplung, Ursache der Diskon-
tinuität des Mott-Übergangs bei halber Füllung, und einer Phasenseparationszone en-
dend in einem quantenkritischen Punkt bei endlicher Dotierung. Wir reißen Parallelen
in realistischeren Eisenpniktid-Modellen an. Zuletzt sehen wir, wie sich die Kompres-
sibilitätsdivergenz an den kritischen Punkten bei endlicher Temperatur abseits halber
Füllung in denEigenwertender verallgemeinerten lokalen Suszeptibilität ausprägt und
bestimmen für sie eine Schwelle, an der die DMFT-Gitterkompressibilität divergiert
und deren Unterschreitung eine thermodynamisch instabile DMFT-Lösung anzeigt.
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1 Introduction

The quantum mechanical laws that govern the behavior of atoms and electrons in a
solid and give rise to the properties of materials have essentially been known for al-
most a century. As Dirac already noted in 1929 [1], what is left to do as far as their
theoretical description is concerned is rather the development of methods that allow
some amount of abstract insight into the behavior of macroscopically large systems.
The exact solutions of the equations describing such amounts of particles may forever
remain out of reach, leaving aside the question how well such results would even be
interpretable in terms of measurable quantities. Direct numerical exact diagonalization
of the Hamiltonian suffers from exponential scaling of the Hilbert space and conse-
quently resource usage with the system size. The enormous increase of computational
performance [2] in the last half-century has actually enabled the productive use of even
this method for small models. In the context of the many-body problem in condensed
matter physics [3, 4], this however restricts its applicability tomodel Hamiltonians that
only try reproduce interesting features rather than the full complexity of real systems
[5].

In contrast, a numerical method that has become extremely successful for calcula-
tions in solid state physics, materials science, and even chemistry is the density func-
tional theory (DFT) [6, 7]. Already in the year after Diracmade his famous remark cited
above [8], he described the Thomas-Fermi [9, 10]model as a practical approximation for
the solution of the many-electron problem. It is formulated in terms of just the electron
density, one scalar function of position in three-dimensional space, rather than amany-
body wave function. Without additional potentially inaccurate approximations as e.g.
in the Hartree-Fock approach [11–14] the full many-body wave function is in general a
function of a position in a spacewhose dimension scaleswith the particle number. DFT
is based on the Hohenberg-Kohn theorem [15] proving the existence of a functional of
the electron density of a system of electrons in an external potential whose minimum
is the correct ground state energy, and the ground state density for which that min-
imum is attained also determines the ground state wave functions [6]. The density
functional can be decomposed into terms one of which is the exchange-correlation en-
ergy [16]. It cannot be evaluated exactly, but commonly used approximations are suffi-
ciently good to make DFT the standard method for electronic structure calculations in
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periodic solids [17]. There are however also various cases where these approximations
fail, and one of them are correlated systems and their interesting quantum many-body
physics that they cannot describe even qualitatively [7].

Strongly correlated electron systems include particularly materials with partially
filled 𝑑- or 𝑓 -shells hosting well localized electrons, such as compounds of transition
metal, rare-earth and actinide elements [18–20]. These systems exhibit a wide range
of partially unusual behaviors such as ferro- and antiferromagnetism, metal-insulator
transitions [21–23], high-temperature unconventional superconductivity [23–27], the
Kondo effect [28], large effective electron masses in “heavy-fermion” systems [29], and
colossal magnetoresistance [23, 30] to name a few. In this thesis, we investigate the
behavior of strongly correlated systems in the form of both realistic transition metal
impurities as well as the multi-orbital Hubbard model [31]. The multi-orbital Ander-
son impurity model (AIM) [32] is directly able to represent transition metal impurities,
which we do in a first-principles way by using DFT to set its parameters. In order to
deal with a multi-orbital model of interacting electrons on a lattice instead, we make
use of dynamical mean-field theory (DMFT) [33]. This method describes the lattice
model in terms of an auxiliary AIM for a single site embedded in a self-consistently
determined bath. We use the continuous-time quantum Monte Carlo algorithm in hy-
bridization expansion (CT-HYB) [34] to perform calculations for the Anderson impu-
rity model and also present algorithmic improvements that increase performance and
allow the calculation of quantities with lower high-frequency errors.

In Chapter 2, we introduce the theoretical framework and algorithms that we use
for our investigations. We discuss the multi-orbital Anderson impurity model, includ-
ing the choice of parameters and its solution in the coherent state path integral for-
malism. Building on this, we thoroughly describe the evaluation of the solution in
the continuous-time quantum Monte Carlo algorithm in hybridization expansion and
continue with the dynamical mean-field theory and the iterative solution procedure
yielding its self-consistent result. We finish with a discussion of the interpretation of
single-particle Green’s functions particularly in the case of correlated systems, as they
are one of the main result quantities that we obtain in our calculations.

In Chapter 3, we discuss algorithmic improvements to the continuous-time quantum
Monte Carlo algorithm in hybridization expansion. In Section 3.1, we present the state
and superstate sampling algorithms, which enable calculations of approximately the
same statistical qualitywith ameasured performance increase in our best test casewith
a full spherical Coulomb interaction for five orbitals at moderately high temperatures
by a factor of almost one thousand. As an application example, we revisit a three-orbital
modelwith a suspected quantumphase transition to a “frozenmoment” phase [35] and
demonstrate the restoration of Fermi-liquid behavior at sufficiently low temperatures.
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In Section 3.2, we introduce symmetric improved estimators that allow self-energies
and vertex functions to be obtained from CT-HYB with constant rather than diverging
error at highMatsubara frequencies. We derive the equations of motion expressing the
one- and two-particle Green’s function in terms of higher-order correlation functions
and discuss the measurement of these higher order correlation functions in CT-HYB
using worm sampling.

In Chapter 4, we consider the Kondo effect in three cases of transition metal impu-
rities on metallic surfaces by solving multi-orbital AIMs we construct for them using
parameters from first-principles DFT calculations. In Section 4.1, we show that the ac-
curacy of the parameterization of the local interaction has a significant influence on
the estimated Kondo temperature in the prototypical case of a cobalt adatom on a cop-
per Cu(001) surface by calculating spin susceptibilities and moments, charge and spin
fluctuations, and spectra. We reveal that an approximation of the local interaction of
the impurity 3𝑑-shell orbitals beyond the full (spherically symmetric) Coulomb inter-
action leads to qualitatively incorrect results, and that a two-orbital description as it is
occasionally found in the literature is at most appropriate with approximate interac-
tions, as all five orbitals are relevant with the full Coulomb interaction. In Section 4.2,
we report experiments of our collaborators with cobalt adatoms on copper surfaces
surrounded by linear “atomic wire” clusters of a varying number of further copper
atoms, where a variation of the Kondo temperature as a function of the cluster length
and in two cases a total absence of the Kondo resonance are found. We attempt to
reproduce the variations by running CT-HYB calculations for the cobalt impurities pa-
rameterized by DFT results for such atomic wires, but find that our results are at most
qualitatively right. Since quantitative variations–and most importantly the absence of
the Kondo effect in two cases–are not captured correctly, we analyze the dependence of
the results on structural and interaction parameters in search of possible reasons for the
discrepancies between experiment and the solution of a first-principles description in
terms of an AIM. In Section 4.3, we report experiments of our collaborators finding dif-
ferent normal-state Kondo temperatures and superconducting-state Yu-Shiba-Rusinov
resonance positions in iron adatoms deposited on a niobium surface depending on
the adsorption site. DFT reveals that the adatoms on the clean surface are more dis-
tant than those adsorbed on patches with oxygen impurities, which causes a stronger
hybridization with the substrate. This is shown to be one of the main causes of the dif-
ferent temperature scales of spin screening in CT-HYB calculations that qualitatively
reproduce the Kondo temperatures.

In Chapter 5, our focus moves from atomic impurities to lattice models of correlated
electrons. We investigate the Mott metal-insulator transition and its continuation as
metal-metal transition and crossover in the doped two-orbital Hubbard model with
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Hund’s coupling using DMFT. In Section 5.1, we present our CT-HYB results at finite
temperatures and NRG results of our collaborators that demonstrate the existence of a
phase separation region in the phase diagram extending from half-filling to finite dop-
ing and down to zero temperature. The main finding is that the phase separation zone
terminates in a line of critical points at finite temperature ending at a finite-doping
quantum critical point at zero temperature. The presence of the phase separation zone
and quantum critical point is connected to the first-order character of the transition at
half-filling, whose causewe identify in the excitation structure of the single-site Hamil-
tonian using a perturbative analysis. In Section 5.2, we calculate generalized suscepti-
bilities of the auxiliary AIM in the region of parameter space around the critical point
we found in the previous section. The compressibility divergence at the critical point
originates from the contribution of a single diverging eigenvalue in the eigenbasis of
the DMFT generalized lattice susceptibility, whose eigenbasis representation can be di-
rectly related to that of the generalized impurity susceptibility. Thus we determine a
threshold that an eigenvalue of the generalized local susceptibility needs to reach to
cause that divergence of the uniform lattice charge response. The approach of that
eigenvalue to the threshold is identified as the cause of the compressibility enhance-
ment in the crossover region and it is found to fall below the threshold for unstable
solutions in the phase separation region. We discuss the relation of the eigenvalues
to thermodynamic derivatives and empirically find the eigenvalue threshold to distin-
guish stable solutions with no eigenvalue below it from unstable ones where an eigen-
value has crossed it.

We summarize our main conclusions in Sec. 6 and have a more detailed look at the
Fourier transform to the Matsubara axis in Appendix A and the equations of motion
of the AIM Green’s function in Appendix B.
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2 Background

2.1 The Anderson impurity model

The physical systems considered in this thesis are magnetic impurity atoms and the
Hubbardmodel, which was introduced to describe systems with narrow energy bands
[31]. Both of these types of systems share the property that a treatment in terms of
quasi-free electrons is insufficient due to strong correlation of the well localized elec-
trons on partially filled 𝑑-shells [31, 32]. For the case of magnetic impurities, P. W. An-
derson introduced a model that includes a continuum of free electronic states repre-
senting mostly 𝑠- and 𝑝-shell states of the host metal as well as a localized state repre-
senting a 𝑑-state of the transition metal or rare-earth impurity atom, where the Hamil-
tonian contains a correlation term for the repulsion between two electrons of opposite
spin on the same orbital as well as a hybridization or hopping term connecting the
localized state to the free states [32].

A generalized multi-orbital version of this “Anderson impurity model” (AIM) not
only directly serves as the description for the magnetic impurities we consider as well,
but is also the auxiliary model employed in the dynamical mean-field theory (DMFT)
approximation (see Sec. 2.3) for the solution of the Hubbard model [33]. As such, the
computation of numerical solutions for the AIM is the basis for most of the results we
present in the following, and we present a short review of the model as well as the
method we use to solve it.

The Hamiltonian of the generalized AIM in the notation of second quantization is

𝐻 =
∑︂
𝛼,𝛽

𝐸𝛼𝛽𝑐
†
𝛼𝑐𝛽⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

𝐻loc,0

+
∑︂

𝛼,𝛽,𝛾,𝛿

𝑈𝛼𝛽𝛾𝛿

2 𝑐†𝛼𝑐
†
𝛽𝑐𝛿𝑐𝛾⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

𝐻loc,int

+
∑︂
k,𝜌

𝜀k𝜌𝑎
†
k𝜌𝑎k𝜌⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

𝐻bath

+
∑︂
k,𝛼,𝜌

𝑉k𝜌,𝛼𝑎
†
k𝜌𝑐𝛼 +𝑉∗

k𝜌,𝛼𝑐
†
𝛼𝑎k𝜌⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

𝐻hyb

,

(2.1)
cf. Ref. [36], where we identify the distinct terms as the level structure of the non-
interacting bath𝐻bath, the level structure of the impurity𝐻loc,0, the interaction between
impurity electrons 𝐻loc,int and the hybridization term 𝐻hyb between the bath states and
the impurity states. We write 𝑎†k,𝛼 and 𝑎k,𝛼 for the operators creating and annihilat-
ing, respectively, an electron in the bath state with momentum k and other degrees of
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freedom 𝛼 and 𝑐†𝛼 and 𝑐𝛼 for the operators creating and annihilating, respectively, an
electron in the impurity state with degrees of freedom 𝛼. The matrix 𝐸𝛼𝛽 describes the
(single-particle) level structure of the impurity, 𝑈𝛼𝛽𝛾𝛿 the interactions between elec-
trons on the impurity, 𝑉𝑎𝛽 the hopping amplitudes between bath and impurity states,
and the vector 𝜀k,𝜌 the level structure of the bath. We shall in general try to use Greek
indices for combined indices or spin indices and Latin indices for orbital indices in the
following unless clarity requires otherwise.

In an orbital basis whose representations as wave functions in real space are known,
it is in principle possible for us to calculate the matrix elements

𝑈𝑖 𝑗𝑘𝑙 =

∫
𝜙∗
𝑖 (r)𝜙

∗
𝑗(r

′) 𝑒2

|r − r′|𝜙𝑘(r)𝜙𝑙(r
′) dr dr′ (2.2)

of the Coulomb interaction between the orbitals. In practice our orbital basis must be
small enough to be suitable for actual numerical calculations, at most five in the cal-
culations we shall consider in this thesis, and is therefore usually chosen as the subset
of well localized orbitals with strongly correlated electrons. Due to screening by other
electrons, we can not use the bare Coulomb interaction since the effective Coulomb in-
teraction differs considerably [37, 38]. The constrained random phase approximation
(cRPA) employed in these comparisons [37, 38] is a first-principles method that can be
used to calculate the effective Coulomb interaction 𝑈𝑖 𝑗𝑘𝑙 , but we use simpler forms of
the interaction matrix.

Themost complex formof the interactionmatrixweuse for our calculations is the full
spherically symmetric Coulomb interaction, whose calculation and matrix elements
are discussed in Sec. 4.1.7. The simplest formon the other hand is the “density-density”
interaction [39, 40]

𝐻int,d-d =
1
2

∑︂
𝑖 , 𝑗 ,𝜎

𝑈𝑖 𝑗𝑛𝑖𝜎𝑛 𝑗�̄� +
1
2

∑︂
𝑖≠𝑗 ,𝜎

(︁
𝑈𝑖 𝑗 − 𝐽𝑖 𝑗

)︁
𝑛𝑖𝜎𝑛 𝑗𝜎 , (2.3)

where �̄� stands for the spin index opposite to 𝜎, 𝑛𝑖𝜎 = 𝑐†
𝑖𝜎𝑐𝑖𝜎 are densities, and the ma-

trices𝑈𝑖 𝑗 = 𝑈𝑖 𝑗𝑖 𝑗 of direct integrals and 𝐽𝑖 𝑗 = 𝑈𝑖 𝑗 𝑗𝑖 of exchange integrals together account
for the largest elements of the Coulomb matrix [39]. Because this form of the interac-
tion contains only densities, it does not change states it is applied to, which makes its
use advantageous or mandatory for some numerical algorithms. Even if 𝑈𝑖 𝑗 and 𝐽𝑖 𝑗

are constructed under the assumption of spherical symmetry, this form consisting of
densities can however not be invariant under arbitrary rotations in space. The addi-
tion of “spin flip” and “pair hopping” is necessary to restore spin-𝑆𝑈(2) symmetry for
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instance and arrive at the Kanamori form [20, 39–41]

𝐻int,Kanamori = 𝐻int,d-d + 1
2

∑︂
𝑖≠𝑗 ,𝜎

𝐽𝑖 𝑗

(︂
𝑐†𝑖𝜎𝑐

†
𝑗�̄�𝑐𝑖�̄�𝑐 𝑗𝜎 − 𝑐

†
𝑖𝜎𝑐

†
𝑖�̄�𝑐 𝑗𝜎𝑐 𝑗�̄�

)︂
. (2.4)

This interaction contains e.g. already all possible terms for the 𝑡2𝑔 triplet of 𝑑-shell or-
bitals [20], but that is not the case in general and using it for the full 𝑑-shell can signif-
icantly affect results, cf. Sec. 4.1. When we use the density-density or Kanamori form
of the interaction, we may use the full 𝑈𝑖 𝑗 and 𝐽𝑖 𝑗 matrices such that the interaction
matrices only differ from that of the full spherically symmetric Coulomb interaction by
lacking some elements, or we may use orbitally uniform matrices like in (5.2). In the
latter case, we need to specify only the intraorbital repulsion 𝑈 (also “Hubbard-𝑈”)
for the diagonals 𝑈𝑖𝑖 , interorbital repulsion 𝑈′ for the offdiagonals 𝑈𝑖 𝑗 , and the spin-
aligning [42] Hund’s coupling 𝐽 for the (exclusively relevant) offdiagonal elements 𝐽𝑖 𝑗
[20, 39], where we choose 𝑈′ = 𝑈 − 2𝐽 which makes the Kanamori interaction fully
(spin and orbital) rotationally invariant in the case of 𝑡2𝑔 orbitals [20].

In our calculations, the impurity level matrix 𝐸𝛼𝛽 is usually diagonal, i.e. there is no
on-site hopping, and consists of the chemical potential 𝜇 and the crystal field, which
e.g. comes from density functional theory (DFT) results for the impurity systems con-
sidered in Sec. 4. The information corresponding to the bath levels 𝜀k,𝜌 and the hopping
𝑉𝑎𝛽 between bath and impurity is usually given in the form of a hybridization func-
tion Δ𝛼𝛽, introduced below and defined in (2.10). This also comes from DFT for the
real physical impurity systems considered in Sec. 4 and is self-consistently determined
during the calculation to describe the effect of the rest of the lattice for the auxiliary
impurity model used in DMFT.

While the AIM Hamiltonian (2.1) completely defines the model in a form that al-
lows us to solve it when numerical values for the parameters are also specified, e.g. by
means of exact diagonalization [4] if the dimensions permit, we shall proceed toward
an expression that is amenable to treatment using continuous-time quantum Monte
Carlo methods [36]. Using the formalism of imaginary-time coherent state path in-
tegrals as presented e.g. in Ref. [43], we write the thermodynamic partition function
𝑍 = Tr(exp(−𝛽(𝐻 − 𝜇𝑁))) of the AIM at inverse temperature 𝛽 and chemical potential
𝜇 as

𝑍 =

∫
𝒟(𝑎†, 𝑎, 𝑐†, 𝑐) exp(−𝑆AIM) (2.5)

with the action

𝑆AIM =

∫ 𝛽

0
d𝜏

∑︂
𝛼,𝛽,𝛾,𝛿,𝜌,k

𝑐†𝛼(𝜏)𝛿𝛼𝛽(𝜕𝜏 − 𝜇)𝑐𝛽(𝜏) + 𝑎†k𝜌(𝜏)(𝜕𝜏 − 𝜇)𝑎k𝜌(𝜏) (2.6)
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+ 𝐻(𝑎†k𝜌(𝜏), 𝑎k𝜌(𝜏), 𝑐†𝛼(𝜏), 𝑐𝛽(𝜏))

=

∫ 𝛽

0
d𝜏

∑︂
𝛼,𝛽,𝛾,𝛿,𝜌,k

𝑐†𝛼(𝜏)(𝛿𝛼𝛽𝜕𝜏 − 𝛿𝛼𝛽𝜇 + 𝐸𝛼𝛽)𝑐𝛽(𝜏) (2.7)

+
𝑈𝛼𝛽𝛾𝛿

2 𝑐†𝛼(𝜏)𝑐†𝛽(𝜏)𝑐𝛿(𝜏)𝑐𝛾(𝜏)

+ 𝑎†k𝜌(𝜏)(𝜕𝜏 − 𝜇 + 𝜀k𝜌)𝑎k𝜌(𝜏)

+𝑉k𝜌,𝛼𝑎
†
k𝜌(𝜏)𝑐𝛼(𝜏) +𝑉

∗
k𝜌,𝛼𝑐

†
𝛼(𝜏)𝑎k𝜌(𝜏),

where 𝑎†, 𝑎, 𝑐†, and 𝑐 in the context of a path integral are to be understood as Grass-
mann variables rather than operators in second quantization. For the bath degrees
of freedom, the path integral contains the local level term quadratic in the bath vari-
ables and the hybridization terms (“source terms”) linear in the bath variables (and
the impurity variables), so the path integral is of Gaussian form and can be performed
explicitly using∫

𝒟(𝑎†, 𝑎) exp⎛⎜⎝−
∑︂
𝜌,𝜃

𝑎†𝜌𝐵𝜌𝜃𝑎𝜃 +
∑︂
𝜌

𝑐†𝜌𝑎𝜌 + 𝑎†𝜌𝑐𝜌
⎞⎟⎠ = det(𝐵) exp⎛⎜⎝

∑︂
𝜌,𝜃

𝑐†𝜌𝐵
−1
𝜌𝜃𝑐𝜃

⎞⎟⎠ (2.8)

as given in Ref. [43], where all degrees of freedom including imaginary times are com-
bined into a single index each and the individual impurity operators have to be iden-
tified with the summation over hybridization matrix elements and impurity operators
in our action (2.7). Here, only the new term for the impurity action is relevant, as the
factor det(𝐵)multiplying the partition function cancels in the calculation of any observ-
ables. We thus obtain the effective action

𝑆AIM =

∫ 𝛽

0
d𝜏 d𝜏′

∑︂
𝛼,𝛽,𝛾,𝛿

𝑐†𝛼(𝜏)(𝛿(𝜏 − 𝜏′)(𝛿𝛼𝛽𝜕𝜏 − 𝛿𝛼𝛽𝜇 + 𝐸𝛼𝛽) + Δ𝛼𝛽(𝜏 − 𝜏′))𝑐𝛽(𝜏′) (2.9)

+
𝑈𝛼𝛽𝛾𝛿

2 𝑐†𝛼(𝜏)𝑐†𝛽(𝜏)𝑐𝛿(𝜏)𝑐𝛾(𝜏).

where 𝐵−1 = (𝜕𝜏 − 𝜇 + 𝜀)−1 is calculated in frequency representation as (−𝑖𝜈𝑛 − 𝜇 + 𝜀)−1,
which together with the source terms and absorbing 𝜇 in the levels 𝜀 results in the hy-
bridization function

Δ𝛼𝛽(𝑖𝜈) =
∑︂
𝜌,k

𝑉∗
k𝜌𝛼𝑉k𝜌𝛽

𝑖𝜈 − 𝜀k𝜌
(2.10)

on fermionic Matsubara frequencies 𝜈𝑛 =
(2𝑛+1)𝜋

𝛽 , 𝑛 ∈ Z [44–47] and can be Fourier
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transformed to obtain the 𝛽-antiperiodic hybridization function on imaginary time [36]

Δ𝛼𝛽(𝜏) =
∑︂
𝜌,k

𝑉∗
k𝜌𝛼𝑉k𝜌𝛽

exp
(︁
𝜀k𝜌𝛽

)︁
+ 1

×
{︄
− exp

(︁
−𝜀k𝜌(𝜏 − 𝛽)

)︁
0 < 𝜏 < 𝛽

exp
(︁
−𝜀k𝜌𝜏

)︁
−𝛽 < 𝜏 < 0

. (2.11)

Under the “solution” of the AIM as specified by its Hamiltonian (2.1) or effective ac-
tion (2.9) we understand the calculation of primarily the one-particle Green’s function
for the impurity states [36, 47]

𝐺𝛼𝛽(𝜏) = −
⟨︂
T𝜏 𝑐𝛼(𝜏)𝑐†𝛽(0)

⟩︂
, (2.12)

where T𝜏 is the time-ordering symbol [48] on imaginary time, and occasionally also
higher-order correlation functions such as the double occupancies

⟨︁
𝑛𝛼(0)𝑛𝛽(0)

⟩︁
and

others that we will define before their use. From the one-particle Green’s function, we
in particular also get orbital occupations as the special case 𝜏 = 0, and from its imag-
inary part on the real axis, proportional to the spectral function, information on the
one-particle excitations of the system [47]. Without interaction between electrons on
the impurity, the one-particle Green’s function for the AIM can simply be calculated as
G0(𝑖𝜈) = (𝑖𝜈−E−𝚫(𝑖𝜈))−1 [36], and to capture the change introduced by the interaction,
we define the self-energy [36, 47]

𝚺 = 𝑮0
−1 − 𝑮−1 (2.13)

such that G(𝑖𝜈) = (𝑮0
−1(𝑖𝜈) − 𝚺(𝑖𝜈)) = (𝑖𝜈 − E − 𝚫(𝑖𝜈) − 𝚺(𝑖𝜈))−1, where we have used

matrix-valued quantities indicated by bold letters for clarity rather thanwriting indices
explicitly as before.

The calculation of the correlation functions of the AIM can be done using a variety
of algorithms and approximations. We shall consider the continuous-time quantum
Monte Carlo (CT-QMC) algorithm in hybridization expansion (CT-HYB) [34], which
was used to obtain the majority of the results presented in this thesis, in more detail
in Sec. 2.2. It uses Monte Carlo integration to sum up diagrammatic contributions to
the relevant path integral expressions after expansion of the exponential of the hy-
bridization part of the action into a power series. Other CT-QMC algorithms [36] such
as CT-INT [49] and CT-AUX [50] differ in the term of the action whose exponential is
expanded into a power series, which allows calculations with more orbitals but can be
problematic depending on the strength and form of the interaction. As far as QMC
is concerned, there is also the older Hirsch-Fye QMC algorithm [51], which requires
discretization of imaginary time into slices and discrete Hubbard-Stratonovich trans-
formations [52, 53] to deal with the interaction.
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Other algorithms apart from QMC that are commonly used to solve the AIM in-
clude the aforementioned exact diagonalization (ED) [4], which however requires a
bath consisting of a discrete number of states and therefore suffers from discretiza-
tion errors when fitting hybridization functions that are not representable in this way,
as they may e.g. occur in DMFT in general. ED results are used as reference val-
ues free from statistical error in Sec. 3.2. Further, there are the density matrix renor-
malization group (DMRG) [54–56] and numerical renormalization group (NRG) [57,
58] algorithms, which are methods based on truncation and iterative diagonalization.
Zero-temperature results in Sec. 5.1 were obtained using NRG and complemented by
ED results. Several methods of a more approximative nature have also been in use,
cf. Refs. [36, 59], such as e.g. perturbative expansions [60–64] the “Hubbard-I” [31, 65]
and “Hubbard-III” approximations [66], and the non- (NCA) and one-crossing approx-
imation (OCA) [67–69], to name a few. In the context of DMFT, solution by second-
order perturbation theory [60–62] has been significant, which is known in that combi-
nation as “iterated perturbation theory” (IPT) [70].

2.2 Continuous-time quantum Monte Carlo in
hybridization expansion

Continuous-time quantum Monte Carlo in hybridization expansion (CT-HYB) was in-
troduced in Ref. [34], with the generalizations and optimizations of Refs. [71–74] also
relevant for our introductory discussion here. It is a diagrammatic Monte Carlo algo-
rithm based on the idea of a technique introduced earlier for bosonic systems [75, 76],
the Monte Carlo integration of a formal perturbation expansion of the path integral
expression for the partition function, and is particularly similar to the method now
called CT-INT that was previously developed for the AIM [49, 77] and differs only in
expanding the interaction term instead.

Path integral expansion

Using the path integral expression (2.5) for the partition function of the AIM with the
effective action (2.9), we obtain the perturbation expansion by expanding the exponen-
tial in 𝑆hyb = 𝑐†𝛼(𝜏)Δ𝛼𝛽(𝜏 − 𝜏′)𝑐𝛽(𝜏′), with the remaining part of the action being the
local terms for levels and interaction 𝑆loc,

𝑍 =

∞∑︂
𝑘=0

∫
𝒟(𝑐†, 𝑐)𝑒−𝑆loc (−1)𝑘

𝑘!

∫ 𝛽

0
d𝜏𝑖 d𝜏′𝑖

∑︂
𝛼𝑖 ,𝛽𝑖

𝑘∏︂
𝑖=1

𝑐†𝛼𝑖 (𝜏𝑖)Δ𝛼𝑖𝛽𝑖 (𝜏𝑖 − 𝜏′𝑖)𝑐𝛽𝑖 (𝜏
′
𝑖) (2.14)
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=

∞∑︂
𝑘=0

∫
𝒟(𝑐†, 𝑐)𝑒−𝑆loc

∫ 𝛽

𝜏𝑖−1

d𝜏𝑖
∫ 𝛽

𝜏′
𝑖−1

d𝜏′𝑖
∑︂
𝛼𝑖 ,𝛽𝑖

det
(︂
(Δ𝛼𝑖𝛽 𝑗 (𝜏𝑖 − 𝜏′𝑗))𝑖 𝑗

)︂ 𝑘∏︂
𝑖=1

𝑐𝛽𝑖 (𝜏′𝑖)𝑐
†
𝛼𝑖 (𝜏𝑖)

=

∞∑︂
𝑘=0

∫ 𝛽

𝜏𝑖−1

d𝜏𝑖
∫ 𝛽

𝜏′
𝑖−1

d𝜏′𝑖
∑︂
𝛼𝑖 ,𝛽𝑖

Tr

(︄
T𝜏 𝑒

−𝛽𝐻loc

𝑘∏︂
𝑖=1

𝑐𝛽𝑖 (𝜏′𝑖)𝑐
†
𝛼𝑖 (𝜏𝑖)

)︄
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

=:𝑤loc

det
(︂
(Δ𝛼𝑖𝛽 𝑗 (𝜏𝑖 − 𝜏′𝑗))𝑖 𝑗

)︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

=:𝑤bath

,

(2.15)

where sums over the 2𝑘 creator indices 𝛼𝑖∈{0,...,𝑘} and annihilator indices 𝛽𝑖∈{0,...,𝑘} run
over all possible operator “flavors”, i.e. in our case orbitals and spins, integrals over the
2𝑘 creator times 𝜏𝑖∈{0,...,𝑘} and annihilator times 𝜏′

𝑖∈{0,...,𝑘} run from 0 to 𝛽 in the first line
and from the time of the previous creator resp. annihilator to 𝛽 in the second and third
lines, and we separate the integrand into the local weight 𝑤loc and bath weight 𝑤bath.

From the second to the third line, we change back from path integral to operator
formalism as that lends itself more obviously to implementation because matrices can
be used to represent operators with occupation number states as basis and allow prod-
ucts, exponential functions and traces to be performed numerically as matrix opera-
tions. The details of the step from the first to the second line are more involved. Due to
the expansion of 𝑒−𝑆hyb , we have a factor of (−1)𝑘/𝑘! in the first line from the coefficients
of the exponential series. Because each factor of the hybridization term that we get by
expanding is independent, we also have 𝑘! duplicates of every possible contribution
that differ only by permutations of the indices 𝑖. Imposing the time order 𝜏1 < · · · < 𝜏𝑘
and 𝜏′1 < · · · < 𝜏′

𝑘
in the second line removes these 𝑘! duplicates, because permuting

the indices 𝑖 would violate this ordering, allowing us to remove the factor 1/𝑘!.
However, this change alone would also remove all contributions that we get by per-

muting either only the creators’ or only the annihilators’ indices, such that e.g. the con-
tribution where the first creator is paired with the last annihilator is missing. Because
we still have contributions with all different possible choices of times and flavors and
the path integral results in a time-ordered expectation value anyway, the only part of
the expression that actually meaningfully “pairs” the creators with the annihilators are
the hybridization function factors. We can therefore compensate for the “overzealous”
removal of the unordered pairs by replacing the single hybridization function product

in each contributionwith the determinant det
(︃
(Δ𝛼𝑖𝛽 𝑗 (𝜏𝑖 − 𝜏′

𝑗
))
𝑖 𝑗

)︃
of a “hybridizationma-

trix” 𝚫, where each row 𝑖 is associated with a specific creator and each column 𝑗 with
a specific annihilator as far as the arguments of the hybridization function entries are
concerned. This matrix contains hybridization function values for every possible pair-
ing of a creator with an annihilator and the determinant ensures that each product
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corresponds to pairing each creator with exactly one annihilator while also taking care
of the negative signs brought about by the commutation of Grassmann variables, as
each exchange of two creators or two annihilators requires an odd number of commu-
tations.

Finally, since we get 𝑘 pairs of creators and annihilators from the expansion of the
exponential, we exchange the “formal” order of the creator and the annihilator in all
the 𝑘 factors of −𝑆hyb, which removes the factor (−1)𝑘 due to the total anticommuta-
tion of Grassmann variables and brings us to the final expression (2.15). Note that the
time-ordering symbol is defined to include a sign factor due to the necessary commu-
tation of fermionic operators from this original formal ordering of operators to the time
order used for actual calculation. Since this can meaningfully change the sign of the
contribution, it must be taken into account by the implementation.

In Refs. [34, 71], a hybridization function 𝐹(𝜏) defined differently from ours was in-
troduced, to which our definition (2.10) is related by Δ𝛼𝛽(𝜏) = −𝐹𝛽𝛼(𝛽 − 𝜏) [78], or,
equivalently, Δ𝛼𝛽(𝑖𝜈) = 𝐹𝛽𝛼(−𝑖𝜈). From the structure of the definition of the hybridiza-
tion function 𝐹(𝜏 − 𝜏′) as

⟨︁
T𝜏 𝑎

†(𝜏)𝑎(𝜏′)
⟩︁
in Ref. [71], where the bath is not integrated

out using the path integral formalism, we can see that for 𝜏 > 0 it is a Green’s func-
tion describing the propagation of a hole through the bath [47] and associated with an
impurity operator pair 𝑐(𝜏)𝑐†(𝜏′) describing propagation of electron on the impurity.
Our definition Δ(𝜏) on the other hand is associated with the propagation of a hole on
the impurity, as recognizable in (2.14), and thus the propagation of an electron through
the bath, which allows us to give an illustrative interpretation to its contribution to the
effective action (2.9): it is that term of the action associated with the electrons that leave
the impurity at some point and return after time 𝜏.

The Monte Carlo method

The expression (2.15) is now in a form that can be evaluated by using the Monte Carlo
method to perform the summations and integrations over the expansion order, flavor
indices, and times, one specific choice of which we collectively call the (Monte Carlo)
configuration. The Monte Carlo method, covered e.g. in textbooks and review articles
such as Refs. [79–81], is a stochastic method that allows integrations (and simulations)
to be performed through calculations involving a sample of random numbers, in prac-
tice usually pseudorandom numbers generated by deterministic algorithms, from a
suitable probability distribution. In the simplest case, we may imagine e.g. taking a
sample of pairs of random coordinates uniformly distributed between zero and one
that we interpret as points inside a square of unit area. We expect the square of unit
area to be covered uniformly by the points in the limit of an infinitely large sample and
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every part of it to eventually contain a number of points proportional to its area. If we
take the ratio of points with a distance of less than one from the origin to the size of the
entire sample, we therefore get an estimate of the ratio of the area of a quarter of the
circle of unit radius around the origin to the area of the unit square, or in other words
𝜋/4 by definition [80]. This is a very simple example of integration by direct sampling
from a probability distribution, more formally and in one dimension the law of large
numbers states that the average of function values 𝑓 (𝑥𝑖) evaluated at 𝑁 discrete ran-
domnumbers 𝑥𝑖 uniformly distributed on an interval [𝑎, 𝑏]will converge to the average
calculated as the normalized value of the integral of the function in the limit of a large
number 𝑁 of random numbers [79],

1
𝑁

𝑁∑︂
𝑖=1

𝑓 (𝑥𝑖) →
1

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 , (2.16)

where we can recognize that the sum to the left would just correspond to the rectangle
rule or a Riemann sum for perfectly equidistant numbers 𝑥𝑖 .

An important practical improvement over such a Monte Carlo integration by di-
rect sampling is the use of importance sampling. If the value of the integrand varies
strongly over the domain of integration, the Monte Carlo estimate will suffer from a
larger uncertainty than in the optimal case that each random point contributes equally
[79]. Sampling points from a probability distribution close to the integrand rather than
uniformly can improve the uncertainty in such cases, formally this corresponds to a
change of integration variables [79] or a reweighing [36, 80]. Taking the example of the
expectation value of a physical quantity 𝐴 [36],

⟨𝐴⟩𝑝 := 1
𝑍

∫
𝒞
𝐴(𝑥)𝑝(𝑥) d𝑥 , with 𝑍 =

∫
𝒞
𝑝(𝑥) d𝑥 , (2.17)

where 𝑥 ∈ 𝒞 are states in the physical configuration space 𝒞, 𝑝(𝑥) the probability distri-
bution of states, and 𝐴(𝑥) a suitable function representing 𝐴, we can calculate a Monte
Carlo estimate as

⟨𝐴⟩MC =
1
𝑁

𝑁∑︂
𝑖=1

𝐴(𝑥𝑖) (2.18)

where 𝑥𝑖 are𝑁 random states sampled according to the probability distribution 𝑝(𝑥)/𝑍
[36].

In the case that we need to sample states with a different probability distribution
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𝑞(𝑥), it is necessary to reweigh the expectation value according to [36]

⟨𝐴⟩𝑝 =
1
𝑍

∫
𝒞
𝐴(𝑥)𝑝(𝑥) d𝑥 =

∫
𝒞 𝐴(𝑥)

𝑝(𝑥)
𝑞(𝑥) 𝑞(𝑥) d𝑥∫

𝒞
𝑝(𝑥)
𝑞(𝑥) 𝑞(𝑥) d𝑥

=
⟨𝐴𝑝/𝑞⟩𝑞
⟨𝑝/𝑞⟩𝑞

. (2.19)

Looking at the “weight” proportional to our “ideal” probability distribution,

𝑤(𝑥) = Tr

(︄
T𝜏 𝑒

−𝛽𝐻loc

𝑘∏︂
𝑖=1

𝑐𝛽𝑖 (𝜏′𝑖)𝑐
†
𝛼𝑖 (𝜏𝑖)

)︄
det

(︂
(Δ𝛼𝑖𝛽 𝑗 (𝜏𝑖 − 𝜏′𝑗))𝑖 𝑗

)︂
= 𝑤loc𝑤bath, (2.20)

which is the integrand of (2.15) with states 𝑥 = {𝑘, 𝛼𝑖 , 𝛽𝑖 , 𝜏𝑖 , 𝜏′𝑖}𝑖∈1,...,𝑘 ∈ 𝒞, we note
the problem that the weight is not necessarily positive and thus 𝑤(𝑥) not actually an
admissible probability distribution even if we could normalize it. We will therefore
have to use its absolute value |𝑤(𝑥)| instead and reweigh according to (2.19) with 𝑝 =

𝑤, 𝑞 = |𝑤 |, 𝑝/𝑞 = sign(𝑤), which shall be implied in all expressions for Monte Carlo
estimates of expectation values given below. Due to the indefinite sign of the weight
from which a necessity for reweighing follows, calculations for fermionic systems may
suffer from a “sign problem” as the relative error of the sign in general grows exponen-
tiallywith decreasing temperature and increasing system size [36], but our calculations
are only significantly affected in cases where we use the full Coulomb interaction on
the impurity.

It is further entirely impractical in our case to directly sample states even with prob-
ability density |𝑤 | from our configuration space of in general high and varying num-
ber of dimensions. This problem can be overcome by sampling states along a Markov
chain [82, 83] whose stationary probability distribution 𝑝 corresponds to the one of
our states. Instead of absolute probabilities, we then only need to provide transition
probabilities 𝑤𝑥𝑦 from one state 𝑥 to another state 𝑦 that fulfill the balance or stationar-
ity condition

∫
𝒞 𝑝𝑥𝑤𝑥𝑦 d𝑥 = 𝑝𝑦 and the ergodicity or irreducibility condition that every

state is reachable from all the other ones in a finite amount of steps [36, 84]. Due to the
correlation of subsequent states (“autocorrelation”), sampling along a Markov chain
does however change the statistical errors of observables compared to direct sampling
unless only states separated by sufficiently many steps are used [84]. Further, a certain
amount of “warm-up” states sampled from the first Markov chain iterations of a calcu-
lation before it reaches equilibrium may be overly influenced by the initial probability
distribution and should not be used either [84].

We generate the transition probabilities by using the Metropolis-Hastings algorithm
[82, 83], a two-step algorithm which requires us to randomly choose a transition from
the current configuration 𝑥 to another one 𝑦 from all the possible transition processes
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we have “designed” (constrained only by the need for ergodicity and practicality) and
prescribes the rule that we should take the target state as next state, i.e. actually “accept
the proposed transition”, only with the acceptance probability

𝑤acc
𝑥𝑦 = min

(︄
1,
𝑝𝑦𝑤

prop
𝑦𝑥

𝑝𝑥𝑤
prop
𝑥𝑦

)︄
, (2.21)

and otherwise “reject the transition” and take the current state as next state again,
with 𝑤prop

𝑥𝑦 being the probability for the choice of the specific random transition pro-
posal, 𝑤prop

𝑦𝑥 the probability for the proposal of the reverse transition, and 𝑝𝑥 and 𝑝𝑦

the probabilities of the states according to the desired stationary probability distri-
bution, of which we only ever need the ratio. The total transition probability is just
𝑤𝑥𝑦 = 𝑤

prop
𝑥𝑦 𝑤acc

𝑥𝑦 , and this rule satisfies not only the balance condition but even the
sufficient but unnecessary detailed balance or reversibility condition 𝑝𝑥𝑤𝑥𝑦 = 𝑝𝑦𝑤𝑦𝑥 , i.e.
equality of the probability flows in both directions between any two configurations
[83]. In fact, avoiding detailed balance can lead to more efficient algorithms [85] such
as the class of event-chain Monte Carlo algorithms [86, 87].

Let us also note that the stochastic nature of Monte Carlo methods makes an esti-
mate of the statistical error possible by running multiple calculations with different se-
quences of pseudorandom numbers. Using resampling methods such as the jackknife
[88] or bootstrap [89, 90] method, the errors of arbitrary quantities calculated from the
QMC results can be estimated.

Updates in CT-HYB

In the w2dynamics implementation of CT-HYB [40], we propose several different kinds
of transitions between configurations, also “updates”, “steps” or “moves”. All updates
not individually discussed in Sec. 3.1 or 3.2 are listed in Tab. 2.1 with symbolic repre-
sentations of exemplary configurations connected by them and proposal probability
ratios 𝑅prop

𝑥𝑦 = 𝑤
prop
𝑦𝑥 /𝑤prop

𝑥𝑦 for the general case of nonzero flavor-offdiagonal entries of
the hybridization function and without considering window sampling [73] discussed
below.

Let us first consider the insertions and removals of impurity operators with accom-
panying entries in the hybridization matrix into (2.15), which change the expansion
order 𝑘. Insertions and removals of one pair are always necessary for ergodicity [34]
and insertions and removals of four impurity operators are necessary for ergodicity
in some cases [92, 93]. In general, the proposal probability density for the insertion
carries a factor of d𝜏𝑖 /𝛽 per operator for its uniformly distributed random imaginary
time argument and a factor of 1/𝑁fl per operator for its uniformly distributed random
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name
(down)

𝑅prop

(down) symbolic representation 𝑅prop

(up)
name
(up)

pair
insertion

𝑁2
fl𝛽

2

(𝑘+1)2
𝑘2

𝑁2
fl𝛽

2
pair
removal

quadruplet
insertion

4𝑁4
fl𝛽

4

(𝑘+2)2(𝑘+1)2
𝑘2(𝑘−1)2
4𝑁4

fl𝛽
4

quadruplet
removal

flavor
permutation

2𝑁fl!
2𝑁fl!

2𝑁fl!
2𝑁fl!

flavor
permutation

worm
insertion 𝜂𝛽𝑁op 1

𝜂𝛽𝑁op
worm
removal

worm
replacement

𝑁op𝑘fl
𝑁op𝑘fl

𝑁op𝑘fl
𝑁op𝑘fl

worm
replacement

Table 2.1: Transitions between CT-HYB configurations implemented in w2dynamics ex-
cluding changes discussed in Sec. 3.1 and Sec. 3.2. For each transition, the
name, the proposal probability ratio 𝑅prop

𝑥𝑦 = 𝑤
prop
𝑦𝑥 /𝑤prop

𝑥𝑦 assuming no win-
dow sampling and a nonzero flavor-offdiagonal hybridization function, and
a symbolic representation are given. 𝑁fl is the number of flavors equal to two
times the number of orbitals, 𝑘 the expansion order of the source configura-
tion, 𝛽 the inverse temperature, 𝜂 a factor added to balance the amount of par-
tition function and worm configurations, 𝑁op the number of extra operators
in worm space, and 𝑘fl the number of operators associated with hybridiza-
tion of the same flavor and type as the selected worm operator . In the sym-
bolic representation, impurity operators are depicted as filled (creators) and
empty (annihilators) diamonds with orbitals and spins written below them
and vertical line segments indicating associated entries in the hybridization
matrix on a horizontal line representing the imaginary time axis from 0 to
𝛽. Every transition (left half) can also be performed in reverse (right half),
which are not equivalent in those cases where the number of operators is
changed. Changed and added parts of the configuration and the time seg-
ment needing recalculation in a matrix-vector implementation for the down
direction are colored green. The dotted line separates partition function con-
figurations above and worm configurations below, here specifically from the
space of diagonal single-particle Green’s function configurations for orbital
2 and spin up. Adapted from Tab. 2.4 of Ref. [91], cf. Tab. 2 of Ref. [40].

flavor argument. For the case of flavor-diagonal hybridization functions, which we
usually consider, the weight is zero if creators and annihilators of same flavor cannot
be paired up, so only one factor of 1/𝑁fl per pair of inserted operators is necessary if
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we avoid unacceptable proposals. If we enable window sampling, the factors of 1/𝛽
require modification because we restrict the first time argument of an operator pair to
a subinterval of 𝛽 and impose a maximum pair distance that restricts the second time
argument even further, see Ref. [73]. The proposal probability for the removal of opera-
tors is

(︁𝑘
𝑖

)︁−2
with the expansion order 𝑘 and number of removed pairs 𝑖. Let us note that

time evolution on the AIM does not connect states with different numbers of electrons,
so the number of creators and annihilators must always be the same and therefore in-
sertions and removals must always remove the same number of each of them. The
binomial coefficient takes into account that the removal move does not distinguish by
“order” of operator selection, and it is squared because the choice of the removed an-
nihilators and removed creators is independent. If however the hybridization function
is flavor-diagonal and unacceptable selections are avoided or the selection is restricted
due to window sampling, this factor is in general the number of distinct permissible
choices of operators [73]. Taking into account that the expansion order of the source
configuration is relevant for the removals, leading to 𝑘 + 1 etc. instead of 𝑘, we arrive
at the ratios 𝑅prop

𝑥𝑦 given in Tab. 2.1.
The next type of moves are global permutations of the flavors (orbitals and spins) of

all operators [94], including possibly an exchange of creators and annihilators. These
moves are supposed to connect regions of configuration space that are hard to reach
through sequences of individual insertions and removals of operators that are local
in imaginary time, such as e.g. configurations with opposite spins or orbital occupa-
tions in calculations that are strongly polarized in this respect. Using only standard
CT-HYB [71] without such techniques as Wang-Landau sampling [50, 95–97], expan-
sion order zero is unlikely to be revisited at sufficiently low temperatures on practical
timescales and the weight of intermediate configurations with mixed flavors may be
low enough to be practically unreachable as well [98]. The proposal probability for
a uniformly random permutation is 2𝑁fl!, twice the factorial of the number of flavors
𝑁fl = 2𝑁orb to account for all possible mappings from one flavor to another and the
possibility of swapping creators for annihilators and vice versa. As the proposal of the
reverse is equally likely, 𝑅prop

𝑥𝑦 is one. In practice, w2dynamics divides the total proposal
probability of global moves into a part for totally random permutations and parts for
permutations more likely to be accepted in usual cases, such as flips of all spins. The
division of the total proposal probability among “classes” of moves requires no further
modifications of the probability ratios if all these classes contain the inverse of every
move they contain, which e.g. also applies to the user-configurable probabilities of the
proposal classes (i.e. per line of Tab. 2.1).

Finally, two further types of moves are used in the context of a technique known as
worm sampling [74, 76, 99, 100]. Using the weight (2.20), we are actually performing
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importance sampling with respect to the magnitude of diagrammatic contributions
to the partition function, while the quantity we are most interested in is the Green’s
function. We will see the expression for the Green’s function estimator based on parti-
tion function configurations below, but it may be unacceptably inefficient or even give
wrong results [101, 102] in some limiting cases such as the atomic limit, i.e. high tem-
perature and interaction strength leading to low expansion order, or for certain hy-
bridization functions corresponding to discrete baths. Beyond the one-particle Green’s
function, higher-order correlation functions may not have usable estimators based on
partition function configurations at all [74]. In that case, we can directly sample con-
figurations that represent diagrammatic contributions to the quantities of interest, and
from the expression [74]

⟨︁
𝑂𝛾1...𝛾𝑛 (𝜏𝑜,1 . . . 𝜏𝑜,𝑛)

⟩︁
= 𝑍−1

∞∑︂
𝑘=0

∫ 𝛽

𝜏𝑖−1

d𝜏𝑖
∫ 𝛽

𝜏′
𝑖−1

d𝜏′𝑖
∑︂
𝛼𝑖 ,𝛽𝑖

Tr

(︄
T𝜏 𝑒

−𝛽𝐻loc𝑂𝛾1...𝛾𝑛 (𝜏𝑜,1 . . . 𝜏𝑜,𝑛)
𝑘∏︂
𝑖=1

𝑐𝛽𝑖 (𝜏′𝑖)𝑐
†
𝛼𝑖 (𝜏𝑖)

)︄
det

(︂
(Δ𝛼𝑖𝛽 𝑗 (𝜏𝑖 − 𝜏′𝑗))𝑖 𝑗

)︂
, (2.22)

for the expectation value of some 𝑛-point correlation function 𝑂𝛾1...𝛾𝑛 (𝜏𝑜,1 . . . 𝜏𝑜,𝑛) we
see that they differ frompartition function configurations (2.15) by including additional
impurity operators in the trace over impurity states 𝑤loc that have no corresponding
entries in the hybridization matrix and so no influence on the bath weight 𝑤bath.

In order to transition between such configurations and partition space configura-
tions, which we continue to sample for normalization [74], we need moves that insert
and remove the additional impurity operators. In current versions of w2dynamics, we
sample configurations for different components of correlation functions separately, so
in the simple cases assumed for the ratios given in Tab. 2.1, we have𝑁op extra operators
with a different uniformly random imaginary time argument each and externally fixed
flavors, such that the proposal weight for an insertion consists of 𝑁op factors of 𝛽 and
a factor 𝜂 used to balance the number of configurations sampled from worm config-
uration space 𝒞𝑂𝛾𝑖

and partition function configuration space 𝒞𝑍 (previously just 𝒞).
In case of multiple operators at equal time, the number of factors of 𝛽 may differ from
𝑁op and in case of summations over internal flavor indices that are performed stochas-
tically, additional factors of 𝑁fl and coefficients may enter, cf. Sec. 3.2. The proposal
probability for a worm removal is just 𝜂−1 because every worm configuration contains
exactly one set of worm operators. Since performing calculations with just insertion
and removal moves suffers from practical ergodicity problems [74], as insertions of im-
purity operator pairs with imaginary time distances around 𝛽/2 are unlikely [72–74,
103], we additionally perform replacement moves that exchange the roles of a worm
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operator and an operator that differs from it only in its imaginary time argument and
associated hybridization. These moves change only the bath weight by replacing the
time of the latter operator in the hybridization matrix entries with that of the former,
such that the former worm operator becomes the one associated with hybridization
instead, making larger distances of the worm operators in imaginary time more likely
[74].

Estimators in worm and partition function sampling

In order to obtain an estimate for e.g. the one-particle Green’s function fromworm sam-
pling, it is only necessary to take the normalized time difference of the worm operators
[74],

𝐺𝛾1𝛾2(𝜏) =
𝑁𝐺𝛾1𝛾2

𝜂𝐺𝛾1𝛾2
𝑁𝑍

⟨𝛿(𝜏, 𝜏𝑜,1 − 𝜏𝑜,2)⟩MC , (2.23)

where 𝑁𝐺𝛾1𝛾2
is the number of configurations sampled from the worm space of 𝐺𝛾1𝛾2 ,

𝑁𝑍 is the number of configurations sampled from the partition function configuration
space, and 𝜂𝐺𝛾1𝛾2

the balancing factor for the worm space. The relevant weight 𝑤 is the
worm space configurationweight found in the second line of (2.22) including theminus
sign found in the definition (2.12) of 𝐺 and contributions for negative 𝜏 are instead
counted for 𝜏 + 𝛽 with opposite sign due to antiperiodicity. This can be binned as
desired or alternatively

𝐺𝛾1𝛾2(𝑖𝜈) =
𝑁𝐺𝛾1𝛾2

𝜂𝐺𝛾1𝛾2
𝑁𝑍

⟨exp(𝑖𝜈(𝜏𝑜,1 − 𝜏𝑜,2))⟩MC , (2.24)

can be used instead to directly collect the contributions perMatsubara frequency with-
out any systematic errors from binning [74]. For more efficiency, values of a window
function centered on the time differences at a small number of the nearest points on
an equispaced oversampled grid can be collected instead to perform the adjoint non-
equispaced discrete Fourier transform to Matsubara frequencies by using an FFT algo-
rithm at the end of the calculation [104–106]. The worm sampling estimators for other
quantities are entirely analogous, with the only difference being the different expres-
sions for 𝑤loc and possibly multiple imaginary time arguments requiring multidimen-
sional binning or a multidimensional NFFT.

The one-particle Green’s function estimator in partition function sampling is by com-
parison more involved. As we have just seen, in worm sampling, where the configura-
tions are distributed according to their contributions to the Green’s function, we essen-
tially just need to count them. If we sample according to contributions to the partition
function instead, we need to make sure to generate all possible Green’s function con-
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𝒞𝑍

𝒞𝐺

∝ 𝜂∝ 𝜂−1

𝒞𝑍

𝒞𝐺
∝

det
(︂
𝚫(𝑖2 , 𝑗1)

)︂
det(𝚫)

Figure 2.1: Illustration of the difference between worm sampling (left panel) and par-
tition function sampling (right panel). Black dots represent configurations
in the partition function (𝑍) space 𝒞𝑍 and the Green’s function (𝐺) worm
space 𝒞𝐺. The Markov chain follows the solid line, i.e. the weights of the
configurations represented by these dots is the probability density used for
importance sampling. In worm sampling, the proposal probability of tran-
sitions from and into worm space carries a factor of 𝜂 to balance sampling
as different average weights might otherwise lead to unbalanced sampling
and increase the statistical error, but the𝐺 estimator effectively just “counts”
worm configurations grouped by distance in 𝜏. In partition function sam-
pling, theMarkov chain does not visit𝐺 configurations, but for every 𝑍 con-
figuration the 𝐺 estimator collects contributions from all 𝐺 configurations
reachable by “cutting a hybridization line”, which are those at the ends of
the dashed lines, weighted by the ratio of bath weights, where det

(︂
𝚫(𝑖2 , 𝑗1)

)︂
is the determinant of the hybridization matrix with row 𝑖2 and column 𝑗1
removed. Inspired by Fig. 1 of Ref. [74].

tributions in some way and take the different weights into account. The difference in
sampling and estimators is symbolically represented in Fig. 2.1. In the standard pro-
cedure [34, 36, 71, 72], contributions from all Green’s function configurations that can
be generated from the current partition function configuration by selecting a pair of a
creator and an annihilator and disassociating them from hybridization with the bath
are collected. Except for unusual models [102], every Green’s functions configuration
can be reached, as the associated partition function configuration differs from it only
by having a hybridization matrix with one row and column more. Rather than just
counting it, we also need to take the weight ratio of the Green’s function configuration
and the actually sampled partition function configuration into account. Since the local
weight does not change, this is just the ratio det

(︂
𝚫(𝑖2 , 𝑗1)

)︂
/det(𝚫) of the two hybridiza-

tion matrices where 𝚫(𝑖2 , 𝑗𝑖) denotes the hybridization matrix obtained by removing the
column 𝑗1 associated with the annihilator of flavor 𝛾1 at time 𝜏𝑜,1 and the row 𝑖2 associ-
ated with the creator of flavor 𝛾2 at time 𝜏𝑜,2. This ratio is equal to the element (𝚫−1)𝑖2 𝑗1
of the inverse of the hybridization matrix [36, 91, 107, 108], resulting in the expression

𝐺𝛾1𝛾2(𝜏) = −1
𝛽

⟨︄
𝑘∑︂

𝑖 , 𝑗=1
(𝚫−1)𝑖 𝑗𝛿(𝜏, 𝜏′𝑗 − 𝜏𝑖)𝛿𝛾1𝛽 𝑗𝛿𝛾2𝛼𝑖

⟩︄
MC

, (2.25)
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with further processing the same as for the worm estimator.
Substituting the inverse hybridization matrix elements for the ratio of determinants

differing by single rows and columns, many of which are used not only for the Green’s
function estimator but also to calculate the bath part of the weight ratio 𝑝𝑥/𝑝𝑦 entering
the acceptance probability (2.21) for pair insertions and removals, actually comes with
a performance advantage. Using the Sherman-Morrison formula [109], a special case
of the Woodbury identity [110, 111], the change of the inverse of a matrix due to a
change of one row and column of the matrix can be calculated with complexity 𝑂(𝑘2),
while the direct calculation of a determinant or inverse is asymptotically slower with
𝑂(𝑘3) [36]. Since the calculation of such determinant ratios is such a central part of
the continuous-time quantum Monte Carlo algorithms [36] and it is only those ratios
we need, keeping the inverse hybridization matrix in memory and updating it is the
primary way in which these values are calculated, although e.g. global moves may
necessitate full recomputation.

Details of the local trace calculation

With this algorithm providing the bath weight ratios and the known proposal ratios as
given in Tab. 2.1, we further only require the calculation of ratios of traces 𝑤loc of prod-
ucts of impurity creators, annihilators, and time evolution. A numerical evaluation is
obviously possible using matrices in a basis of many-body occupation number states,
but given that this part of the calculation effectively corresponds to an exact diago-
nalization of the local part of the impurity problem and therefore scales exponentially
with the number of orbitals, it is usually the computationally most expensive part of a
CT-HYB calculation [36, 71, 72] and should accordingly be optimized. If the interaction
involves only terms of density-density form, the sampling and trace calculation can be
performed very efficiently using a “segment” representation [34, 71], though this is
not necessarily faster than an optimized general implementation [91] and we will not
consider it here.

A considerable optimization is possible by reducing the size of thematrices that need
to be considered at a time, i.e. splitting an operation on large matrices into multiple
operations on smaller matrices, since the computational effort of the matrix product
scales with the third power of the matrix dimension [36]. This can be achieved by
block-diagonalizing the Hamiltonian employing either conserved quantum numbers
[72, 112], since blocks with different values of them are by definition not mixed by time
evolution and that is the exponential of the Hamiltonian, or an automatic partition-
ing algorithm [93, 113, 114]. Depending on the exact form of the Hamiltonian useful
quantum numbers [72] may be the total occupation 𝑁 , the spin 𝑧-component 𝑆𝑧 (w. l.
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Figure 2.2: The ”switchboard” picture illustrates howblock-diagonalizing theHamilto-
nian using superstates found by employing quantumnumbers or automatic
partitioning reduces the dimensions of the involved matrices and allows
quick checks to be performed. Below the symbolic representation of the
configuration we can see how the states at the ends, which are all put into
different superstates according to occupation 𝑁 and spin 𝑆𝑧 , are mapped to
other superstates by the application of operators along the imaginary time
axis. At the red crosses, application of the operator results in zero, which
happens to two of our superstates when we try to remove an up-spin elec-
tron that is not there and means that no explicit calculation is necessary in
those cases. Inspired by Fig. 2.5 of Ref. [91]

o. g.), the occupation 𝑛𝛼 per flavor 𝛼 for density-density interaction, or the pattern of
singly occupied orbitals for an interaction of Kanamori form [115]. We further require
the blocks that block-diagonalize the Hamiltonian to be chosen such that a creator or
annihilator connects each block with at most one other one and merge blocks that do
not fulfill this condition [93, 114], obtaining the “superstates” of Ref. [72]. Otherwise,
we would not be able to perform all matrix products using just one block of each ma-
trix, but might have a situation where a state from one block is taken to two different
ones along the trace, complicating the implementation [114].

Considering the concrete evaluation of the local weight as found in (2.15),

𝑤loc = Tr
(︂
ℒ̂

)︂
with ℒ̂ = T𝜏 𝑒

−𝛽𝐻loc

𝑘∏︂
𝑖=1

𝑐𝛽𝑖 (𝜏′𝑖)𝑐
†
𝛼𝑖 (𝜏𝑖)

=
∑︂
𝑠

⟨𝑠 |ℒ̂ |𝑠⟩

=
∑︂
𝒮

∑︂
𝑠∈𝒮

⟨𝑠 |ℒ̂ |𝑠⟩ , (2.26)

where 𝒮 runs over all superstates and 𝑠 in the second line runs over all many-body
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basis states, breaking up the sum into a sum over superstates not only allows us to use
matrices of reduced size to calculate ℒ̂, but also allows us to perform a quick check first
to see whether the calculation is even necessary in the first place [72]. The application
of a creator or annihilator to a state in one specific superstatemay not only take it to one
specific other superstate, but also result in zero, e.g. when an annihilator is applied to a
state with 𝑁 = 0. With block connections for each operator stored, we can see whether
a state in 𝒮𝑖 ends up back in 𝒮𝑖 after applying all the operators in ℒ̂ without actually
performing the matrix product, which is faster but can still tell us that the contribution
of a superstate to the trace is zero if an operator application results in zero along the
way or the state ends up in a different superstate 𝒮𝑗 at the end. A simple switchboard-
like diagram can illustrate the principle of this “quantum number checking” [91]: In
Fig. 2.2, we split the four-dimensional space of possible states for one orbital into four
one-dimensional superstates using the quantum numbers 𝑁 and 𝑆𝑧 , turning a product
of 4 × 4 matrices into four products of scalars, two of which we do not even need to
perform if we follow the connections mediated by the operators, where red crosses
mean that the application results in zero.

Sliding window sampling [73] further allows us to skip both calculation and quan-
tum number checking in large parts of imaginary time if 𝛽 is large by limiting the po-
sitions where pair insertions and removals can be done to a small window that only
slowly moves from 𝜏 = 0 to 𝜏 = 𝛽. Since w2dynamics is a “matrix-vector” [36, 91, 116]
implementation, calculating the trace contributions by taking each state 𝑠 in (2.26) and
applying the matrices to it rather than multiplying the matrices themselves, we can
start calculations from both 𝜏 = 0 and 𝜏 = 𝛽 [72] and perform the scalar product some-
where in between. If we cache the states resulting from operator applications along the
way, thewindowwill ensure thatmost of the time, cached states outside of thewindow
stay usable [73] and only a part of the trace inside the window needs to be recalculated.
On the other hand, storing intermediate matrix products in a tree [50] or skip list [103],
which cuts the number of products that need to be performed on an update from linear
in the expansion order down to the logarithm of the expansion order, is not possible
with a matrix-vector implementation.

Concluding the discussion of the trace calculation, let us also note that we com-
pute time evolution and operator products in the eigenbasis of the Hamiltonian, which
makes time evolution diagonal and creator and annihilator matrices dense. There are
faster options for the trace calculation for large numbers of orbitals [73, 116] that we
do not currently employ, as well as other optimizations of it like lazy trace calculation
[103], which we do not implement either, but assume to be partially redundant with
our state and superstate sampling technique [117] discussed in Sec. 3.1.
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2.3 Dynamical mean-field theory

Apart from magnetic impurities, the other physical system we consider in this thesis
is the multi-orbital Hubbard model, a model for narrow electron bands in a lattice,
such as those arising from the 𝑑- and 𝑓 -orbitals of transition metals in particular [31,
41, 118, 119]. The model describes electrons in a lattice that are able to hop between
sites, but that are subject to strong correlations and thus not adequately described by
an approximation in terms of independent electrons [23, 120]. Its Hamiltonian is of the
form [20, 119]

𝐻 = −
∑︂

⟨𝑖 , 𝑗⟩,𝑚,𝜎
𝑡𝑚𝑖𝑗 𝑐

†
𝑖𝑚𝜎𝑐 𝑗𝑚𝜎 +

∑︂
𝑖𝛼𝛽𝛾𝛿

𝑈𝛼𝛽𝛾𝛿

2 𝑐†𝑖𝛼𝑐
†
𝑖𝛽𝑐𝑖𝛿𝑐𝑖𝛾 (2.27)

with site index 𝑖, site index 𝑗 of nearest neighbors of site 𝑖, orbital index𝑚, spin index 𝜎,
and combined orbital and spin indices 𝛼, 𝛽, 𝛾, and 𝛿, where 𝑡𝑚

𝑖𝑗
is the hopping matrix

between sites and 𝑈𝛼𝛽𝛾𝛿 a matrix describing electron interactions on a site of a form
that we leave unspecified for now for simplicity.

In the limit 𝑈 → 0, only the hopping term survives and we have a tight-binding
Hamiltonian resulting in a dispersion relation 𝜀(k) consisting of sums of cosines [121,
122]. It is in particular metallic at half-filling, where the Fermi level lies in the middle
of a band and excitations of infinitesimal energy are possible. Considering the “oppo-
site” limit 𝑡 → 0, we are left with the interaction only. With a simple density-density
interaction

∑︁
𝑖𝑚𝑈𝑛𝑖𝑚↑𝑛𝑖𝑚↓ [31] the ground state has one electron on each site at half-

filling and the lowest excited state has one double occupation of a site costing a finite
energy of𝑈 , so the system is insulating.

For intermediate 𝑡/𝑈 , where neither of the terms may be disregarded, an exact solu-
tion is not possible in general and only the development of the dynamical mean-field
theory (DMFT) method, also known as local impurity self-consistent approximation
(LISA), made it possible to capture the behavior of a lattice model while treating both
of these terms on an equal footing [33]. The development of this method was preceded
by the discovery that an infinite-dimensional limit of the Hubbard model exists that
describes a non-trivial system of correlated electrons, which retains the competition
between hopping and on-site interaction but admits a drastically simplified diagram-
matic treatment due to the suppression of non-local contributions to the self-energy [33,
122–125]. Considerable interest into investigations of infinite-dimensional fermionic
lattices was raised by these results, leading first to the solution of the simpler Falicov-
Kimball model [126] by mapping to an atomic model in a time-dependent field [127–
129], which is equivalent to a kind of mean-field solution that becomes exact in infi-
nite dimensions [130, 131]. Subsequently, a mean-field approximation of the Hubbard
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Start with guess 𝚺

Gloc(𝑖𝜈) = 1
𝑁𝑘

∑︁𝑁𝑘

𝑘=1 ((𝑖𝜈 + 𝜇)1 − H(𝑘) − 𝚺(𝑖𝜈) − 𝚺DC)−1

Adjust 𝜇

CT-HYB
↓

𝐺imp , . . .

if target filling set

project Gloc
to 𝑁imp impurities

𝒢−1
0,imp,𝑖 = (𝐷𝑖Gloc𝐷

𝑇
𝑖
)−1 + Σ𝑖

compose 𝚺
from 𝑁imp impurities

Σ𝑖 = 𝒢−1
0,imp,𝑖 − 𝐺

−1
imp,𝑖

Figure 2.3: DMFT cycle implemented byw2dynamics in its general form: At the start, we
guess a trial self-energy 𝚺, e.g. 0 or the Hartree self-energy. Using the self-
energy, we calculate the local lattice Green’s function. If a target filling is set,
we try to use that chemical potential in the expression for the local lattice
Green’s function that allows us to achieve that filling. For each of the 𝑁imp
impurities, we project the local lattice Green’s function onto the space of
the interacting orbitals assigned to the impurity, obtain the non-interacting
impurity Green’s function through Dyson’s equation, run the CT-HYB im-
purity solver to obtain the full impurity Green’s function and calculate the
new impurity self-energy using Dyson’s equation. We compose all impu-
rity self-energies into the new lattice self-energy, using zero or the Hartree
self-energy for “non-interacting” orbitals, and repeat the process by using
the mixed new self-energy to calculate the new local Green’s function.

model that becomes exact in infinite dimensions¹was shown to be based on the solution
of an auxiliary Anderson impurity model [70, 132, 133] with Georges and Kotliar for-
mulating the self-consistency equations of DMFT in Ref. [70]. While the solution of the
Hubbardmodel bymeans of the DMFT self-consistency equations treats non-local cor-
relations on amean-field level and is thus only an approximation for finite-dimensional
systems, it treats all local correlations exactly and non-perturbatively.

DMFT has e.g. been used to quantitatively study the Hubbard model in infinite di-
mensions [33, 134–138] and in particular to demonstrate the existence of a Mott tran-
sition [21] in the infinite-dimensional case [33, 135, 139]. Apart from such analyses of

¹as opposed to the Hartree-Fock mean-field theory, which does not become exact even in the limit of
infinite dimensions
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model Hamiltonians, DMFT has however also been used as an approximation for the
finite-dimensional case with considerable success, e.g. in combinationwith Hamiltoni-
ans derived from density functional theory (DFT) [6, 15, 16] in suitable localized bases
[140] as a method for first-principles (“ab initio”) electronic structure calculations for
strongly correlated materials [19, 59, 65, 141–144].

For our DMFT calculations, we employ the very comprehensive numerical imple-
mentation in w2dynamics [40], which includes a CT-HYB solver for the impurity model.
The full self-consistency equations [40, 59] applied in the iteration process we discuss
in the next paragraph are

Gloc(𝑖𝜈) =
1
𝑁𝑘

𝑁𝑘∑︂
𝑗=1

Glatt(k𝑗 , 𝑖𝜈) =
1
𝑁𝑘

𝑁𝑘∑︂
𝑗=1

(︁
(𝑖𝜈 + 𝜇)1 − H(k𝑗) − 𝚺(𝑖𝜈) − 𝚺DC

)︁−1 (2.28a)

𝒢0,imp,𝑖(𝑖𝜈) =
(︂
𝐷𝑖Gloc(𝑖𝜈)𝐷𝑇

𝑖

)︂−1
+ 𝚺𝑖(𝑖𝜈) (2.28b)

𝚺(𝑖𝜈) =
𝑁imp∑︂
𝑖=1

⎛⎜⎜⎜⎜⎜⎝
𝐷𝑇
𝑖

(︂
𝒢−1

0,imp,𝑖(𝑖𝜈) − G−1
imp,𝑖(𝑖𝜈)

)︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

=𝚺𝑖(𝑖𝜈)

𝐷𝑖

⎞⎟⎟⎟⎟⎟⎠
, (2.28c)

where Gloc is the full local lattice Green’s function, Glatt the full momentum-dependent
lattice Green’s function, k a lattice momentum argument, 𝑖𝜈 a fermionicMatsubara fre-
quency argument, 𝑁𝑘 the number of points inmomentum space, 𝜇 the chemical poten-
tial, H(k) the quadratic part of the lattice Hamiltonian in momentum space, 𝚺 the full
self-energy of the lattice, which is local in DMFT, 𝚺DC the double-counting correction,
𝑁imp the number of impurities, 𝒢0,imp,𝑖 the non-interactingGreen’s function of the AIM
for impurity 𝑖 (also called “Weiss function” as dynamical analogon of the Weiss mean
field), G0,imp,𝑖 the full Green’s function of the AIM with interaction for impurity 𝑖 ob-
tained from the impurity solver separately for each impurity, 𝚺𝑖 the self-energy of the
AIM for impurity 𝑖, and 𝐷𝑖 the 𝑁orb,imp,𝑖 × 𝑁orb,total matrix that projects from the local
Green’s function in the basis of all 𝑁orb,total orbitals to the 𝑁orb,imp,𝑖 interacting orbitals
belonging to impurity 𝑖, used together with its transpose 𝐷𝑇

𝑖
to take the block for im-

purity 𝑖 out of the full Gloc in (2.28b) and put the self-energy block 𝚺𝑖(𝑖𝜈) in the space
of interacting orbitals of impurity 𝑖 at its right place in an otherwise empty self-energy
matrix 𝐷𝑇

𝑖
𝚺𝑖𝐷𝑖 in the space of all orbitals in (2.28c). This admits e.g. the inclusion of

multiple impurities, “non-interacting” orbitals², and a double-counting correction.

²in the sense that they are not treated by the CT-HYB impurity solver and therefore assigned a simpler
self-energy of either zero or their Hartree self-energy, but if the quadratic Hamiltonian originates
from DFT, it partially incorporates the interaction of these orbitals
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Let us summarize the calculation cycle performed by the implementation to reach
the self-consistent solution of (2.28), which is depicted in Fig. 2.3 and described in
Ref. [40]. We start by initializing the self-energy with zero, the Hartree self-energy, or a
self-energy from a similar previous calculation. Using the initial self-energy or in sub-
sequent iterations one mixed from the results of the preceding iterations, cf. Ref. [145],
we calculate the local Green’s function of the lattice. For a Hamiltonian given in mo-
mentum space, e.g. one obtained from a DFT calculation, this is done by summing the
momentum-dependent lattice Green’s function over all momenta in the Brillouin zone,
but for e.g. the Bethe lattice in the limit of infinite coordination, an analytic formula ex-
ists. If we want to target a specific total filling 𝑛 rather than set a fixed chemical poten-
tial 𝜇, we determine our best estimate of 𝜇 to reach that filling. This is usually done by
numerically solving the filling 𝑛 = 𝛽−1 ∑︁

𝑚 𝑒
−𝑖𝜈𝑚0− Tr(Gloc(𝑖𝜈𝑚)) evaluated as the sum

over fermionicMatsubara frequencies 𝜈𝑚 of the trace of the local Green’s function for 𝜇,
which occurs in Gloc(𝑖𝜈). Alternatively, the root solver based on Broyden’s method po-
tentially used for mixing self-energies by solving the DMFT fixed-point problem [145]
can additionally simultaneously solve for the value of 𝜇 necessary to get a difference
of zero between target filling and actual filling using values of 𝜇 and 𝑛 from preceding
iterations [146]. Next, for each of the 𝑁imp impurities we consider, we project the full
local Green’s function to the subset of that impurities’ interacting orbitals. We can solve
the impurity Dyson equation for the non-interacting Green’s function of the auxiliary
AIM, i.e. the mean field, in terms of the projection of the local Green’s function and the
self-energy, which is local in DMFT. In the form of the corresponding hybridization
function and local levels, the mean field enters into a CT-HYB calculation for the impu-
rity together with the local interaction. From the resulting full Green’s function of the
impurity, we can calculate the impurity self-energy using the impurity Dyson equation
again. The self-energies obtained in this way for each impurity in the basis of the inter-
acting orbitals of that impurity are composed into a total self-energy in the basis of all
orbitals, which is then used as the self-energy of the lattice in the next iteration for the
calculation of the local lattice Green’s function, closing the cycle. The approximation of
DMFT in finite dimensions consists in using the local self-energy as self-energy of the
lattice, while the true self-energy of the lattice would depend on momentum in finite
dimensions.

2.4 Interpretation of Green’s functions

In Sec. 2.1, wementioned that whenwe “solve” the Anderson impuritymodel, it is par-
ticularly the computation of the one-particle Green’s function (2.12) that we are inter-
ested in and inDMFTwemay equivalently be particularly interested in themomentum-
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dependent lattice Green’s function or the local Green’s function as found in (2.28a). In
addition to giving access to all single-particle observables such as occupations (since
the corresponding single-particle operators are bilinear in creators and annihilators),
the full single-particle Green’s function also contains information about the ground-
state energy, cf. Ref. [147] or Ref. [148] and appendix B, and importantly the spectrum
of single-particle excitations as well, cf. Refs. [148, 149] and textbooks such as Refs. [43,
46, 47, 147, 150].

In order to see how, let us followRef. [47] in considering a retarded fermionic Green’s
function on the real time and frequency axis defined as

𝐺𝑅𝛼 (𝑡) = −𝑖𝜃(𝑡)
⟨︁
{𝑐𝛼(𝑡), 𝑐†𝛼(0)}

⟩︁
, (2.29)

where {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴 is the anticommutator and 𝜃(𝑡) the Heaviside step func-
tion, which is one for 𝑡 > 0 and zero for 𝑡 < 0. By inserting representations of unity∑︁
𝑛 |𝑛⟩⟨𝑛 |, where 𝑛 runs over all eigenstates |𝑛⟩ with eigenenergies 𝐸𝑛 of the full in-

teracting Hamiltonian 𝐻 invariant under translations in time, the thermal expecta-
tion value ⟨𝐴⟩ = 𝑍−1 Tr

(︁
𝑒−𝛽𝐻𝐴

)︁
with inverse temperature 𝛽 and partition function

𝑍 = Tr
(︁
𝑒−𝛽𝐻

)︁
in (2.29) can be evaluated to obtain the spectral or Lehmann [149] repre-

sentation of the Green’s function

𝐺𝑅𝛼 (𝑡) = −𝑖𝜃(𝑡)𝑍−1
∑︂
𝑛𝑚

𝑒−𝛽𝐸𝑛
(︂
⟨𝑛 |𝑐𝛼 |𝑚⟩⟨𝑚 |𝑐†𝛼 |𝑛⟩ 𝑒 𝑖(𝐸𝑛−𝐸𝑚)𝑡

+ ⟨𝑛 |𝑐†𝛼 |𝑚⟩⟨𝑚 |𝑐𝛼 |𝑛⟩ 𝑒−𝑖(𝐸𝑛−𝐸𝑚)𝑡
)︂
. (2.30)

By Fourier transforming this to real frequencies 𝜔 + 𝑖𝜂 with an infinitesimal factor
𝜂 → 0+, which is necessary to ensure convergence of the integral because the retarded
Green’s function does in general not decay to zero at large times, we obtain

𝐺𝑅𝛼 (𝜔) =
∫ +∞

0
exp(𝑖(𝜔 + 𝑖𝜂)𝑡)𝐺𝑅𝛼 (𝑡) d𝑡

= 𝑍−1
∑︂
𝑛𝑚

𝑒−𝛽𝐸𝑛
(︃
⟨𝑛 |𝑐𝛼 |𝑚⟩⟨𝑚 |𝑐†𝛼 |𝑛⟩
𝜔 + 𝐸𝑛 − 𝐸𝑚 + 𝑖𝜂 + ⟨𝑛 |𝑐†𝛼 |𝑚⟩⟨𝑚 |𝑐𝛼 |𝑛⟩

𝜔 − 𝐸𝑛 + 𝐸𝑚 + 𝑖𝜂

)︃
= 𝑍−1

∑︂
𝑛𝑚

⟨𝑛 |𝑐𝛼 |𝑚⟩⟨𝑚 |𝑐†𝛼 |𝑛⟩
𝜔 + 𝐸𝑛 − 𝐸𝑚 + 𝑖𝜂

(︂
𝑒−𝛽𝐸𝑛 + 𝑒−𝛽𝐸𝑚

)︂
. (2.31)

This expression shows that the retarded Green’s function has a pole infinitesimally
below each real frequency 𝜔 equal to the energy difference between a many-body state
|𝑛⟩ and another many-body state |𝑚⟩ with exactly one particle more [43]. These fre-
quencies therefore correspond to the excitation energies of the system [147]. Using the
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identity
lim
𝜂→0+

1
𝜔 ± 𝑖𝜂 = 𝒫 1

𝜔
∓ 𝑖𝜋𝛿(𝜔) (2.32)

(also known as Sokhotski-Plemelj theorem [151] and related to the Kramers-Kronig re-
lations and the Hilbert transform) that holds in a distributional sense [47, 147, 148],
where 𝛿(𝜔) is the Dirac delta distribution and integrals of the 𝒫-term are to be evalu-
ated in terms of their Cauchy principal value, we can define and evaluate the spectral
function

𝐴𝛼(𝜔) := − 1
𝜋

Im(𝐺𝑅𝛼 (𝜔))

= 𝑍−1
∑︂
𝑛𝑚

⟨𝑛 |𝑐𝛼 |𝑚⟩⟨𝑚 |𝑐†𝛼 |𝑛⟩
(︂
𝑒−𝛽𝐸𝑛 + 𝑒−𝛽𝐸𝑚

)︂
𝛿(𝜔 + 𝐸𝑛 − 𝐸𝑚), (2.33)

which consists of delta contributions at the excitation energies of the system. For this
reason the spectral function can be seen as the extension of the density of states to
interacting systems [47]. For a non-interacting system, it can easily be seen that the two
functions coincide. The local Green’s function of a lattice system without interaction
with a density of states𝐷(𝜀) = ∑︁

k 𝛿(𝜀−𝜀k), where 𝜀k is the dispersion, can be calculated
asHilbert transformof the density of states𝐺𝑅(𝜔) =

∫ +∞
−∞

𝐷(𝜀)
𝜔−𝜀+𝑖𝜂 d𝜀, cf. Ref. [33]. Taking

the imaginary part to get the spectral function returns exactly the density of states as
inserting (2.32) shows explicitly. This follows since for a function analytic on the upper
complex half-plane, the Hilbert transform takes real and imaginary parts evaluated for
arguments slightly above the real axis into each other.

If we integrate the spectral function 𝐴𝛼(𝜔) as defined in (2.33) over the entire real
frequency axis,

∫ +∞
−∞ 𝐴𝛼(𝜔) d𝜔, we are left with the sum in (2.33) without delta dis-

tribution factors in its terms. By reidentifying this sum as thermal expectation value⟨︁
{𝑐𝛼 , 𝑐†𝛼}

⟩︁
, which is exactly one due to the fermionic anticommutation relations, we

obtain the sum rule ∫ +∞

−∞
𝐴𝛼(𝜔) d𝜔 = 1 (2.34)

for the spectral function [47].
Due to the addition of interactions to a non-interacting problem, the Green’s func-

tion changes in a way that is entirely captured by the self-energy Σ as given for a local
problem in (2.13), which is the Dyson equation solved for the self-energy. For a lat-
tice problem, the Green’s functions and self-energies in (2.13) should additionally be
evaluated at the samemomentum, which they take as additional argument in that con-
text. Let us consider how the low-energy effect of interactions can be characterized by
closely following a derivation detailed in Ref. [47], cf. also Refs. [147, 152]. We start
with the general form of the retarded Green’s function for a lattice system on the real
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axis
𝐺𝑅𝛼 (k, 𝜔) =

(︂
𝜔 − 𝜀k − Σ𝑅𝛼 (k, 𝜔)

)︂−1
, (2.35)

where 𝜀k = k2

2𝑚 −𝜇 is the energy of free electrons with momentum k and (free) electron
mass 𝑚 relative to the Fermi level or chemical potential 𝜇 and Σ𝑅𝛼 (k, 𝜔) the retarded
self-energy on the real frequency axis. For the low-energy behavior of a system, which
includes in particular the existence or absence of excitations at arbitrarily low energy
that makes the system conducting or insulating, it is primarily wave vectors at the edge
of the Fermi see that interest us, as states sufficiently far away from it are essentially
always full or empty. Therefore, we expand most of the inverse of the full Green’s
function only up to first order in 𝜔 and 𝑘 − �̃�𝐹 (neglecting the possibility of anisotropy)
where �̃�𝐹 corresponds to the Fermi wave vector or radius of the Fermi surface after the
introduction of interactions given by the implicit equation 𝜀�̃�𝐹 +Re(Σ𝑅𝛼 (�̃�𝐹 , 𝜔 = 0))) = 0.
Going beyond the zeroth order for the imaginary part of the self-energy is not necessary
for this consideration, so we do not do that but separate the real and imaginary part of
the self-energy to get the expression

𝐺𝑅𝛼 (k, 𝜔) =
(︂
𝜔 −

(︂
𝜀k + Re

(︂
Σ𝑅𝛼 (k, 𝜔)

)︂)︂
− 𝑖 Im

(︂
Σ𝑅𝛼 (k, 𝜔)

)︂)︂−1
(2.36)

in which we expand the first two terms and just take the contribution of order zero in
the last one. This results in

𝐺𝑅𝛼 (k, 𝜔) =
(︂
𝜔 − 𝜔𝜕𝜔Re

(︂
Σ𝑅𝛼

(︂
�̃�𝐹 , 𝜔

)︂)︂
−

(︂
𝑘 − �̃�𝐹

)︂
𝜕𝑘

(︂
𝜀k + Re

(︂
Σ𝑅𝛼 (k, 0)

)︂)︂
− 𝑖 Im

(︂
Σ𝑅𝛼 (�̃�𝐹 , 𝜔 = 0)

)︂ )︂−1
, (2.37)

where the first two terms are of first order in 𝜔, the second term is of first order in 𝑘− �̃�𝐹,
and the last term is the only one of order zero due to the definition of �̃�𝐹. We clearly
bring out the 𝜔-dependence equal to that of the free Green’s function by factoring out
the quasiparticle weight (not to be confused with the partition function)

𝑍𝛼 :=
(︂
1 − 𝜕𝜔 Re

(︂
Σ𝛼

(︂
�̃�𝐹 , 𝜔

)︂)︂|︁|︁|︁
𝜔=0

)︂−1
(2.38)

to get

𝐺𝑅𝛼 (k, 𝜔) = 𝑍𝛼

(︂
𝜔 −

(︂
𝑘 − �̃�𝐹

)︂
𝑍𝛼𝜕𝑘

(︂
𝜀k + Re

(︂
Σ𝑅𝛼 (k, 0)

)︂)︂
− 𝑖𝑍𝛼 Im

(︂
Σ𝑅𝛼 (�̃�𝐹 , 0)

)︂)︂−1
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=
𝑍𝛼

𝜔 − �̃�𝛼(𝑘) + 𝑖Γ𝛼
=
𝑍𝛼(𝜔 − �̃�𝛼(𝑘)) − 𝑖𝑍𝛼Γ𝛼

(𝜔 − �̃�𝛼(𝑘))2 + Γ2
𝛼

(2.39)

where we cast the second term in the form of a first-order approximation of the free
dispersion around �̃�𝐹 but with an effective mass 𝑚∗

𝛼 collecting the remaining factors of
the second term to result in the effective energy �̃�𝛼(𝑘) := 1

𝑚∗
𝛼
(𝑘 − �̃�𝐹)�̃�𝐹 and identify the

imaginary part of the self-energy as the inverse of the quasiparticle lifetime �̃�𝛼(k, 𝜔),
the scattering rate Γ𝛼. Explicitly we define

�̃�𝛼(𝑘) := (𝑘 − �̃�𝐹)�̃�𝐹
𝑚∗

𝛼
, (2.40)

𝑚∗
𝛼 := 𝑚

𝑍𝛼

(︃
1 + 𝑚

�̃�𝐹
𝜕𝑘 Re

(︂
Σ𝑅𝛼 (𝑘, 0)

)︂|︁|︁|︁
𝑘=�̃�𝐹

)︃−1
, (2.41)

Γ𝛼 := −𝑍𝛼 Im
(︂
Σ𝑅𝛼 (�̃�𝐹 , 0)

)︂
, (2.42)

where the first term in the parenthesis in the definition of the effective mass originates
from the derivative of 𝜀k and we should note that the value of Γ𝛼 with this explicit sign
is positive such that the pole of the retarded Green’s function (2.39) correctly lies in
the lower complex half-plane. The connection between Γ𝛼 and a lifetime can be rec-
ognized by considering how it changes the time-dependent retarded Green’s function
(2.30). Since it appears in the same position as the infinitesimal factor 𝜂 introduced in
(2.31) to make the integral converge, we can infer that it represents an additional fac-
tor 𝑒−Γ𝛼𝑡 in the time-dependent retarded Green’s function 𝐺𝑅𝛼 (𝑡) and causes it to decay
exponentially for large times [148] in contrast to the Green’s function of a free particle.

From (2.39), the spectral function

𝐴𝛼(k, 𝜔) =
𝑍𝛼Γ𝛼

(𝜔 − �̃�𝛼(𝑘))2 + Γ2
𝛼

(2.43)

follows. In contrast to the non-interacting spectral function we have seen before, it
does not consist of delta peaks any more, but of Lorentzian distribution functions cen-
tered around the effective energies �̃�𝛼(𝑘). This results from the presence of a non-
infinitesimal Γ𝛼 that shifts the poles significantly away from the real axis. Another
change in the interacting case can be seen if we assume for a moment that Γ𝛼 is in-
finitesimal, which would give the spectral function

𝐴𝛼(k, 𝜔) = 𝑍𝛼𝛿(𝜔 − �̃�𝛼(𝑘)) (2.44)

instead [47]. Due to the presence of the quasiparticle weight 𝑍𝛼 with a value between
zero and one this spectral function does not fulfill the sum rule (2.34) and we must
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assume that apart from this peaked and therefore particle-like quasiparticle contribution
a total spectral weight of (1−𝑍) originates from some incoherent, not quasiparticle-like
contribution.

Low-energy excitations inmetallic systems of interacting electrons can often be satis-
factorily represented by effectively free renormalized quasiparticles [47, 150, 153, 154],
whose physical behavior can be described by the Fermi liquid theory developed by
Landau and others [154–158]. This theory applies when a perturbative description
of electronic interaction is possible, but this is not a necessary condition. In partic-
ular, it also applies to the non-perturbative low-temperature behavior of the Kondo
problem [159], although not necessarily in the multi-orbital case [160–162]. There-
fore, the Anderson impurity models considered in this thesis, including the auxil-
iary models describing metallic solutions of DMFT, usually exhibit Fermi-liquid-like
low-temperature behavior. In the low-energy and low-temperature case, the imagi-
nary part of the retarded self-energy of a Fermi liquid near the Fermi level scales as
Im(Σ𝑅(𝜔, 𝑇)) ∝ 𝜔2 + 𝜋2𝑇2 [47, 163, 164], i.e. the scattering rate goes quadratically to
zero and the quasiparticle lifetime diverges.

In quantum Monte Carlo calculations, we obtain time-ordered Matsubara Green’s
functions 𝐺𝛼(𝑖𝜔𝑛) rather than the retarded Green’s functions on the real frequency
axis 𝐺𝑅𝛼 (𝜔) we have considered in this section so far. Some properties characterizing
an interacting system can still be obtained relatively easily, the quasiparticle weight
(2.38) for example can be written as the derivative

𝑍𝛼 = (1 − 𝜕𝜔 Im (Σ𝛼 (𝑖𝜔))|𝜔=0)−1 (2.45)

of an imaginary frequency function by application of the Cauchy-Riemann equations
for derivatives of complex differentiable functions, although the accuracy with which
we can compute this is limited by the discrete set of Matsubara frequencies depending
on the temperature of the system. This factor limiting how close we can get to zero
with positive fermionic Matsubara frequencies also means that our data does not “au-
tomatically” give us Im(Σ𝛼(𝑖𝜔 = 0)), which is together with the quasiparticle weight
necessary for the computation of the scattering rate Γ𝛼. We can however extrapolate
the imaginary part of the Matsubara self-energy from the lowest fermionic Matsubara
frequencies to zero frequency to do that. While a value at zero Matsubara frequency
does exist and is physically distinguished as static response for bosonic functions, for
fermionic functions this is not the case and so this extrapolation to zero can be done
without issue.

Behavior of the Green’s or spectral function on the real frequency axis off zero fre-
quency can be determined from the Matsubara frequency data using analytic continu-
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ation. While quite accurate results are possible for sufficiently precise Matsubara fre-
quency data [165, 166], the problem of analytically continuing Green’s functions is in
general ill conditioned [167, 168] because the integral kernel 𝐾(𝜏, 𝜔) = 𝑒−𝜏𝜔/(1 + 𝑒−𝛽𝜔)
for the expression 𝐺(𝜏) =

∫ +∞
−∞ 𝐾(𝜏, 𝜔)𝐴(𝜔) d𝜔 of the imaginary-time Green’s function

in terms of the spectral function exponentially suppresses the influence of the spectral
function at high frequencies. There are therefore many different spectral functions that
would agree with the calculated imaginary-time Green’s function within its statistical
error, and additional criteria must be applied to select the best estimate [168].

A standard method currently used for analytic continuation of CT-QMC Green’s
functions [36] is the maximum entropy method (also MEM or MaxEnt) [168–171]. It
replaces the normal objective function to be minimized for a least-squares fit, 𝜒2/2 =∑︁
𝑗 ,𝑘(𝐺 𝑗−𝐾 𝑗𝑘𝐴𝑘)2/(2𝜎2

𝑗
)with discretized versions of the kernel𝐾 𝑗𝑘 , real-frequency spec-

trum𝐴𝑘 , imaginary-timeGreen’s function𝐺 𝑗 , and statisticalMonte Carlo error 𝜎𝑗 of the
Green’s function in the case of diagonal covariance [168, 170], by the objective function
𝜒2/2 − 𝛼𝑆 [168, 170]. Here, 𝑆 = −

∫
𝐴(𝜔) log(𝐴(𝜔)/𝑚(𝜔)) is the information entropy

[172] of the spectrum 𝐴 relative to a featureless default model 𝑚 and 𝛼 a hyperparam-
eter to be set in an appropriate way [168, 170]. When we show real-frequency spectra
obtained by analytical continuation, we use Bryan’s method [173], which averages over
𝛼 by its probability, as implemented in Ref. [174]. We also compared some of the results
to continuations obtained with 𝛼 selected at the crossover between the information-
and noise-fitting regime [175] using the implementation described by Refs. [151, 176]
and using the reference implementation of the SpM-Padé method [177, 178], a combi-
nation of the sparse modeling approach [179] with Padé approximants [180], without
noticing qualitative differences from the original MaxEnt results in either case.
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3 Algorithmic developments

3.1 Superstate and state sampling

In this section, we consider an optimization of the trace calculation that splits the en-
tire calculation into parts that are sampled individually using theMonte Carlomethod.
The strong concentration of the local weight of the standard configurations onto few
outer superstates and states allows us to sample according to the largest contributions
while mostly avoiding to calculate the smaller ones at all. We describe the improved
sampling procedure in detail, measure the performance improvements that we find to
be particularly large in the case of many orbitals with general interactions like the full
Coulomb interaction, and consider DMFT calculations for the bad metallic state in a
degenerate three-orbital Hubbard model with Hund’s coupling as an example appli-
cation.

The results presented in this section were previously partially covered in my Master’s thesis,
Ref. [181], and the following published article, Ref. [117], which is also the source of the figures

A. Kowalski, A. Hausoel, M. Wallerberger, P. Gunacker, and G. Sangiovanni,
“State and Superstate Sampling in Hybridization-Expansion Continuous-Time Quantum

Monte Carlo,”
Phys. Rev. B 99, 155112 (2019)

3.1.1 Local weight calculation

Let us take another look at one of the trace calculation optimizations we covered at the
end of our introduction to CT-HYB presented in Sec. 2.2. In (2.26), we manipulate the
trace of the impurity operator product ℒ̂. The trace of amatrix is the sumof its diagonal
elements, which we get by first multiplying it with the same basis state from the right
and the left to take out one diagonal element and then summing over the outer basis
states. This turns it into an explicit sum over all many-body basis states 𝑠, which can be
grouped together into superstates𝒮, diagonal blocks of theHamiltonianmapped to (at
most) one other superstate each by the application of a creator or annihilator and thus
the smallest “convenient” blocks into which the product of the original larger matrices
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in the full many-body basis can be decomposed. If we insert that expression for 𝑤loc

back into the expression for the partition function (2.15), we get

∞∑︂
𝑘=0

∫ 𝛽

𝜏𝑖−1

d𝜏𝑖
∫ 𝛽

𝜏′
𝑖−1

d𝜏′𝑖
∑︂
𝛼𝑖 ,𝛽𝑖

∑︂
𝒮

∑︂
𝑠∈𝒮

⟨𝑠 |ℒ̂ |𝑠⟩ det(𝚫). (3.1)

The integrals and sums here are partially performed stochastically using Monte Carlo
integration, summing the significantly contributing parts with importance sampling,
and partially by exact summation. We might wonder whether it is actually necessary
to perform any of these summations exactly, or whether we can instead use importance
sampling for all of them to gain performance benefits [91].

superstate state

Figure 3.1: Left panel: Average relative contributions of outer superstates to the total
local weight per configuration ordered by contribution per configuration.
Since the order of contributions depends on the configuration, the super-
state index on the 𝑥-axis does not refer to one specific superstate, but to one
specific position in the contribution list per configuration. Right panel: Av-
erage relative contribution of outer states to the contribution of their outer
superstate to the local weight of a configuration, ordered by the contribu-
tion. Obtained using the conventional sampling procedure for a five-orbital
model (for Co/Cu(001), cf. Refs. [182, 183] and Sec. 4.1) with interaction of
Kanamori form.

We found that this is in fact possible and can be used to accelerate the trace com-
putation even further with usually at most minor deterioration of the mean sign and
the autocorrelation time. This seems reasonable when we consider the relative aver-
age contributions per outer superstate and per individual outer state to the full local
weight in the conventional CT-HYB sampling, shown in Fig. 3.1 for an exemplary five-
orbital model (for a cobalt impurity on copper, Co/Cu(001), cf. Refs. [182, 183] and
Sec. 4.1 for details) with a non-uniform interaction of Kanamori form¹ with average

¹obtained by removing elements not included in the Kanamori form from the full Coulomb interaction
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intraorbital repulsion 𝑈 = 5.03 eV, average Hund’s coupling 𝐽 = 0.64 eV, average in-
terorbital repulsion 𝑈′ = 𝑈 − 2𝐽, inverse temperature 𝛽 = 30 eV−1, a target filling of 8,
and a hybridization function obtained from DFT. There is on average one superstate
that contributes an overwhelming amount of the local weight per configuration and
one outer state per superstate that is responsible for a still considerable majority of that
contribution, and that already at a relatively high temperature. Heuristically, we can
argue that as the inverse temperature 𝛽 increases and the average expansion order with
it [72], the higher number of operators and thus of occasions for sending a superstate
to zero gradually reduces the number of outer superstates that “survive” quantum
number checking until there is only one left at sufficiently low temperature. We there-
fore expect the small relative contributions to only shrink with decreasing temperature
and the sum over all states to be better approximated by its largest contribution. If we
manage to mostly sample “extended” configurations containing the outer superstate
and outer state responsible for these largest contributions, the only significant change
should be less computational effort because we can avoid the matrix products or at
least quantum number checking for the other superstates and states. This should work
particularly well at low temperatures, but the heuristic argument also implies that it
will be mostly quantum checking that we avoid in that case rather than the usually
much more calculation-intensive matrix products.

Depending on whether just the outer superstates or the individual outer states are
summed stochastically, we call our technique superstate or resp. state sampling. In
superstate sampling, the Monte Carlo configurations are extended by a stochastically
sampled outer superstate 𝒮𝑜 to {𝒮𝑜 , 𝑘, 𝛼𝑖 , 𝛽𝑖 , 𝜏𝑖 , 𝜏′𝑖}𝑖=1,...,𝑘 ∈ 𝒞sst, and the local weight
of the configuration is just

𝑤loc,sst =
∑︂
𝑠∈𝒮𝑜

⟨𝑠 |ℒ̂ |𝑠⟩ (3.2)

instead of (2.26), while in state sampling we have configurations with an additional
stochastically sampled outer state 𝑠𝑜 ∈ 𝒮𝑜 , i.e. of the form {𝒮𝑜 , 𝑠𝑜 , 𝑘, 𝛼𝑖 , 𝛽𝑖 , 𝜏𝑖 , 𝜏′𝑖}𝑖=1,...,𝑘 ∈
𝒞st, and the local weight

𝑤loc,st = ⟨𝑠𝑜 |ℒ̂ |𝑠𝑜⟩ . (3.3)

3.1.2 CT-HYB updates

In order to sample the outer superstate and outer state ergodically, we need to change
the usual CT-HYB updates, cf. Tab. 2.1, or add new ones. Let us first consider only
the case of superstate sampling, as we modify all the updates for state sampling in
the same simple way. Note also that we choose the initial outer superstate and state

tensor
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randomly weighted by the full local time evolution from 0 to 𝛽, which avoids possibly
long thermalization if we picked one of the many highly excited ones with local weight
close to zero.
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ℰ
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“inner” pair insertion

“outer” pair insertion

“inner” pair removal

“outer” pair removal

Figure 3.2: Symbolic representation of configurations connected by a global 𝜏-shift
move by a random distanceΔ𝜏 (left panel) or by the two types of pair moves
we define for use with superstate sampling (right panel). The outer super-
state that is part of the configuration is indicated by the calligraphic letters
at 𝜏 = 0 and 𝜏 = 𝛽, and the other calligraphic letters over segments of imagi-
nary time indicate the superstate that the state at this time belongs to. This is
not explicitly part of the configuration, but the superstate after application
of any sequence of impurity operators follows directly from the outer super-
state by the definition of superstates. Changed operators and the changed
part of the “superstate sequence” are indicated in green; in the case of the
tau-shift move, we do not consider the sequence as fundamentally changed
as it is only cyclically shifted.

The primarymethodwe use for changing the outer superstate is a new global 𝜏-shift
move that shifts all operators by one fixed uniformly random imaginary time distance
Δ𝜏 along the imaginary time axis with periodic boundary conditions, i.e. with new
times positive modulo 𝛽. Equivalently, we can consider this as a cyclical shift of the
imaginary time axis itself. The outer superstate, which is part of the configuration,
by the definition of superstates also uniquely determines the superstate at any point in
imaginary time including atΔ𝜏, which is the one that we propose as outer superstate of
the new configuration. If we only allowmoves in one directionw. l. o. g. due to cyclicity,
the reverse of a move by Δ𝜏 is another 𝜏-shift move by 𝛽 − Δ𝜏, which has the same
proposal probability and so the proposal ratio is one. A symbolical representation is
shown in the left panel of Fig. 3.2. In conventional sampling, such amovewould change
the local weight by at most a minus sign from time order since the trace is cyclical. In
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fact, the same is also true in superstate sampling, and the total weight does not change
at all in both techniques; the acceptance probability is therefore one.

Let’s sketch the proof for the local weight. The local weight in superstate sampling
has only one contribution to the trace, that of the outer superstate. We can also consider
it as the trace with projection operators projecting to the outer superstate inserted as
first and last operators. The projection operators commute with arbitrary time evolu-
tion operators because superstates are blocks that diagonalize the Hamiltonian. The
other property of superstates, which is that creators and annihilators send states from
one superstate to at most one specific other superstate, presents us with a way to ex-
change a projection operator with a creator or annihilator. If we do that, we just also
need to change the target superstate of the projection operator to the one the original
target superstate would get sent to by the creator or annihilator. The projection op-
erators can thus be moved to an arbitrary point Δ𝜏 in imaginary time as long as we
change them to project to the one unique superstate at that point compatible with the
current outer superstate. Bringing the projection operators back to the ends by using
the cyclicity of the trace shows that this is the local weight of the configuration after
𝜏-shift by Δ𝜏 with the exception of possibly a minus sign due to time ordering, which
we save for the bath weight.

Proceeding with the bath weight, let us note that equal time shifts applied to cre-
ator and annihilator times cancel. Due to periodic boundary conditions, one time may
however be shifted by an additional amount of 𝛽, which results in a minus sign for
all elements in one row or column of the hybridization matrix due to 𝛽-antiperiodicity
of the hybridization function, giving one minus sign for its determinant per affected
operator. The reordering of the hybridization matrix rows and columns into the time
order of the corresponding annihilators and creators possibly also results in an addi-
tional minus sign in total. Careful accounting of the minus signs due to changes in the
hybridization matrix and the one we might have kept from the time ordering of local
operators would show that no total minus sign remains, which is explained in slightly
more detail in an appendix of Ref. [117].

We may also wonder about the utility of the 𝜏-shift move, since it basically only
changes the outer superstate by moving a different point of time “outside” and does
nothing else, which is also the reason for the acceptance probability of one. The former
is however precisely what it is useful for, since we primarily propose pair insertions
and removals highly local in time, which therefore at most change “inner” superstates.
Combining them with the 𝜏-shift move allows us to use them to change the superstate
at any point in time, including the outer superstate.

This covers the only significant new move we introduce. In case the current expan-
sion order is zero, which could occur often for certain choices of parameters, we do
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not perform meaningless 𝜏-shift moves but propose a transition to a randomly cho-
sen outer superstate with normalized full local time evolution as proposal probability.
Apart from these, all other moves are just extensions of the standard moves in Tab. 2.1
with regard to how the outer superstate of the proposed configuration is to be deter-
mined. For the global flavor permutation, we propose one of the outer superstates that
pass quantumnumber checkingwith uniformproposal probability. In some cases, par-
ticularly ones close to the atomic limit, it might also be necessary to use such a choice
with worm insertions and removals in order to avoid systematic errors in the worm
estimators. For all other moves, we usually propose no change in the outer superstate,
i.e. only the part of the superstate sequence between the changed operators can change
(which might however be moved “outside” by some subsequent 𝜏-shift move). Since
insertion and removal moves are particularly likely to be accepted for short time dis-
tances of the involved operators [73], which cause a smaller change of the contributions
to the full local trace than long time distances, the outer superstate with the largest
contribution before the move will usually also be the one with the largest contribution
after the move and our choice of usually not proposing a change should therefore be
relatively efficient.

For pair moves, we also tried a different prescription, which fixes the part of the
superstate sequence between the operators instead. By continuing the superstate se-
quence from there to the outside, we get a unique new outer superstate for the pro-
posal. We call this an “outer” pair insertion or removal since it changes the outer part
of the superstate sequence, in contrast to our preferred prescription to keep the old
outer superstate and thus change the inner part of the superstate sequence, giving the
corresponding “inner” moves. A symbolic representation of both types of moves is
shown in Fig. 3.2, which also illustrates the difference as the depicted moves are equal
in all other respects.

The same configuration transition caused by an outer move can also be realized
through a combination of a 𝜏-shift move, inner move, and another 𝜏-shift move in-
verse to the first one. Since pair moves with short time distances are exponentially
more likely to be accepted and actually the only ones proposed if sliding window sam-
pling [73] is used, putting a window partially “around 𝜏 = 0 and 𝜏 = 𝛽” (covering time
segments at both ends) would be important to get an acceptable acceptance probabil-
ity for outer moves. This would complicate the implementation and not lead to any
significant improvements as we have just seen that a simulation with inner moves and
𝜏-shift moves can reach all the same configurations. We therefore do not use outer pair
moves by default in w2dynamics, although they can be enabled using a configuration
parameter by a user with the caveat that they will usually suffer from bad acceptance
probabilities due to our implementation of window sampling. A proof sketch demon-
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strating ergodicity when inner pair moves and either outer pair moves or 𝜏-shift moves
are available is given in an appendix of Ref. [117].

When we perform state sampling rather than superstate sampling, we additionally
also need to consider how to select and change the outer state, the one specific state
in the outer superstate that is used for the local weight calculation. Since even single
outer states can turn into states withmultiple nonzero components at some other point
in imaginary time, there is no equivalent of the superstate sequence determined by the
outer superstate for single states, and e.g. a 𝜏-shift move can not really “naturally” pick
any specific one of the states at the chosen Δ𝜏. We therefore use a simple procedure for
the next proposed outer state: In all cases where we keep the outer superstate fixed, we
keep the outer state fixed for the same reason thatmostmoves are local and only change
contributions slightly. In all other cases, we propose a random outer state. Since we
have seen that even in a single superstate, the contribution to the local weight is usually
dominated by a single state, proposing them uniformly would however be inefficient.

Our technique therefore uses a part of the localweight as proposal probability, specif-
ically the part that is easiest to calculate: As we use a single eigenstate as outer state in
state sampling, time evolution from 𝜏 = 0 to the first operator and from 𝜏 = 𝛽 to the
last operator is just one exponential, and this is what we use as proposal probability.
Whenever it is possible without disproportional increase of computational effort, this
strategy of “moving” factors of the weight into the proposal probability can be helpful,
as terms present in both the proposal probability and weight cancel in the Metropolis-
Hastings acceptance probability (2.21). The concrete normalized proposal probability
for the outer state 𝑠𝑜 is

𝑝prop(𝑠𝑜) =
exp

(︁
−(𝐸𝑠𝑜 − 𝐸0) · (𝜏 𝑓 + 𝛽 − 𝜏𝑙)

)︁∑︁
𝑘∈𝒯 exp

(︁
−(𝐸𝑠 − 𝐸0) · (𝜏 𝑓 + 𝛽 − 𝜏𝑙)

)︁ , (3.4)

where 𝐸𝑠𝑜 is its eigenenergy, 𝐸0 that of the ground state, 𝐸𝑠 that of state 𝑘 which is
summed over, 𝜏 𝑓 the imaginary time variable of the first impurity operator, 𝜏𝑙 the imag-
inary time variable of the last impurity operator, and 𝒯 the set of all possible target
outer states, i.e. all states from all possible target outer superstates.

3.1.3 Results and performance

With the description of superstate sampling and state sampling concluded, let us have
a look at the performance improvements achieved by their use. For this purpose, we
implement them in w2dynamics and compare with an older version that only imple-
ments the conventional sampling. The Co/Cu(001) five-orbital model (cf. Refs. [182,
183] and Sec. 4.1) we have previously considered serves as our example again, and this
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Figure 3.3: Left panel: Sampling speed-up due to superstate sampling or state sam-
pling as a function of inverse temperature for the case of Coulomb inter-
action (larger superstates) and Kanamori interaction (smaller superstates).
Right panel: Mean sign as a function of the inverse temperature for conven-
tional, superstate and state sampling for both Coulomb interaction, which
suffers from the sign problem, and Kanamori interaction, for which usually
no noticeable deterioration of the sign with decreasing temperature can be
observed. Curves in both panels are monotonicity-preserving cubic spline
interpolations.

time we use full Coulomb interaction in addition to the non-uniform Kanamori inter-
action at various different temperatures. The two different interactions are supposed
to show the dependence of performance improvements on the size of superstates, as
the blocks obtained for the full Coulomb interaction using automatic partitioning are
not as small as those that can be obtained for an interaction of Kanamori form using
appropriate quantum numbers. The results are shown in the left panel of Fig. 3.3. We
observe significant speed-up factors from slightly below 10 up to almost 1000 when su-
perstate or state sampling are used compared to the conventionalmethod. As expected,
with decreasing temperature the speed-up shrinks as higher expansion orders cause
quantum number checking to fail for more superstates, so the matrix products are not
necessary anyway and we can only avoid less costly quantum number checking. The
effect of improvements to the local weight calculation is further necessarily expected to
decrease for sufficiently low temperature due to the worse computational complexity
of the bath weight, which scales like 𝛽3, while that of the local weight only scales like
𝛽2 [36]. The additional speed-up due to the switch from superstate to state sampling
is also significantly smaller for Kanamori interaction with smaller superstates than for
Coulomb interaction with larger superstates. We find a larger speed-up for Coulomb
interaction in general than for Kanamori interaction, suggesting that although the total
number of superstates is smaller, usually a larger number of superstates would pass
quantum number checking and require calculation for Coulomb interaction than for
Kanamori interaction.
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We do not detect any deterioration in the quality of the results, and for a simpler
two-orbital model we find agreement with exact diagonalization. The absolute mean
sign for the previously considered model is shown in the right panel of Fig. 3.3. While
no significant deterioration can be found for superstate sampling, consistent with our
prior observation that contributions due to a single outer superstate were found to be
overwhelming, a slight decreasewith state sampling is visible. We find that the relative
deterioration decreases slightly at lower temperatures in the case of Coulomb interac-
tion, where a sign problem is found, which is consistent with the expected stronger
concentration of contributions at lower temperatures. As far as the autocorrelation
time of the Green’s function is concerned, we find an increase of about 10% for super-
state sampling and about 3% for state sampling compared to the conventional method,
which we expect to partially result from the now necessary use of 𝜏-shift moves, which
leave the value of the estimator unchanged.

3.1.4 Application to a Hund’s metal with low coherence temperature

Finally, let us consider a system whose low-temperature behavior is numerically hard
to access as an application of superstate sampling in conjunction with sliding window
sampling [73], which was introduced simultaneously in w2dynamics [40] since super-
state sampling slightly simplifies its implementation. We shall perform DMFT calcula-
tions for a degenerate three-orbital Hubbard model on a Bethe lattice first investigated
using DMFT with a CT-HYB solver in Ref. [35], using an interaction of Kanamori form
[20] with Hund’s coupling 𝐽 = 𝑈/6 and interorbital interaction 𝑈′ = 𝑈 − 2𝐽 fixed
relative to the intraorbital Hubbard-𝑈 . In Ref. [35], an incoherent metallic state with
frozen moments was found that persisted down to the lowest temperature reachable
in the calculations. While similar models were later shown to merely have a very low
but non-zero coherence temperature as discussed below, it was therefore concluded in
Ref. [35] that themodel undergoes a quantum (i.e.𝑇 = 0) phase transition termed “spin
freezing” between a paramagnetic Fermi liquid state and that incoherent metallic state.
This was based on an insufficiently fast decay of the imaginary time spin-spin corre-
lation function at 𝜏 = 𝛽/2 and a non-zero intercept and non-Fermi-liquid exponent of
the imaginary part of the self-energy on the Matsubara axis.

In the meantime, the bad metal state termed “frozen moment phase” there has be-
come known as the “Hund’s metal” state [20, 184–188]. This strongly correlated metal-
lic state that is found in multi-orbital models with Hund’s coupling in the vicinity of
the Mott transition at half-filling is reached via a crossover across a roughly parabolic
curve in the phase diagram (cf. Fig. 3.4) emanating from the Mott transition point at
half-filling. In Ref. [35] for example, primarily the crossover at constantly high Hub-
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bard interaction strength parameter 𝑈 = 8𝑡 relative to hopping 𝑡 from a weakly corre-
lated good metal at high doping 𝑛 ⪅ 2 to a strongly correlated metallic state closer to
half-filling 𝑛 = 3 is considered. As observed in Ref. [35], while screening of the orbital
degrees of freedom still happens at higher temperatures in that state, it is characterized
by local moments and non-Fermi-liquid behavior down to much lower temperatures
than were reached there; screening of the spin degrees of freedom and Fermi liquid
behavior do however in fact set in at a very low coherence temperature before reaching
zero temperature [187, 189, 190], and this difference by orders of magnitude between
the scales of spin and orbital screening is also known as “spin-orbital separation” [190–
192]. We review this in slightly more detail in Sec. 5.1.1, the introduction to the first
section in which we ourselves take a close look at that same region in the parameter
space of a two-orbital Hubbard model with Hund’s coupling [193, 194].
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Figure 3.4: Left panels: Static local spin susceptibilities as functions of temperature for
a series of points going across the bad metal or “spin freezing” crossover,
which are also marked in the same colors in the inset showing the phase
diagram adapted from Ref. [35]. For the two bad metal cases, a Curie-like
behavior ∝ 𝑇−1 approximately persists down to the lowest temperatures,
while a Pauli-like constant behavior clearly eventually sets in for the other
ones at low 𝑇. Right panels: Local spin susceptibility in imaginary time at
𝜏 = 𝛽/2 as a function of temperature for the same points, where it is clearly
recognizable that even in all the bad metallic cases, the value sharply drops
for sufficiently low temperatures.

For now, let us follow Ref. [35], but to considerably lower temperatures with the
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Figure 3.5: Left panel: Imaginary part of the self-energy on the Matsubara axis with
curves obtained at three different temperatures overlaid for three fillings,
the higher two ones of which are in the “frozen moment” / bad metal
regime. In the bad metal cases the curves come close to Fermi liquid be-
havior only for the lowest temperatures and rather abruptly at the lowest
Matsubara frequencies. Right panel: Local spin susceptibility in imaginary
time (only one of symmetric halves shown) for the same three temperatures
and fillings as the self-energy. At higher temperature, the high plateau at
𝜏 = 𝛽/2 in the bad metal cases points to unscreened local moments, but
for sufficiently low temperatures the susceptibility drops significantly even
there.

help of the current version of w2dynamics. The local moment physics is clearly visi-
ble in our results for the static local spin susceptibility 𝜒𝜔=0

loc (𝑇) =
∫ 𝛽

0 d𝜏 𝜒loc(𝜏) with

𝜒loc(𝜏) = 𝑔2 ∑︁
𝑖 𝑗

⟨︂
𝑆𝑖𝑧(𝜏)𝑆

𝑗
𝑧(0)

⟩︂
shown in the left panels of Fig. 3.4. The parameters of

our calculations are for orientation marked in an inset containing the phase diagram
of Ref. [35] with the transition curves that mark the position of the “good metal” to
“bad metal” crossover. For the two points in the “frozen moment” regime closest to
half-filling we observe Curie behavior ∝ 𝑇−1 down to low temperatures as typical for
Hund’s metals [192] with no clear crossover to constant Pauli behavior recognizable
yet. In contrast to that, we already reach Pauli behavior for our next value of doping
𝑛 = 1.8 just across the crossover line as well as for all other fillings below that at con-
stant interaction. We reach a minimum temperature of 𝛽𝐷 = 1600 for the three points
closer to half-filling, one eighth of 𝛽𝐷 = 2𝛽𝑡 = 200, which is the lowest temperature
reached in Ref. [35] with the Bethe lattice half-bandwidth 𝐷 or hopping 𝑡 = 𝐷/2 as
reference energy scale.

Let us compare the local spin susceptibilities at imaginary time 𝜏 = 𝛽/2 shown in
the right panels of Fig. 3.4 next, which are expected to drop as 𝑇2 in a Fermi liquid
and were found to be constant in the “frozen moment” regime by Ref. [35]. We instead
find that they actually do drop considerably even there as the temperature is lowered,
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though at much lower temperatures than for higher doping and with the scaling at
our lowest temperatures still quantitatively different from exact Fermi liquid behavior.
If we e.g. take the inflection point as an indicator of the coherence temperature, since
𝑇2 curves upward with increasing 𝑇 while the curves in the “frozen moment” curve
downward for most of the temperature range, we were just about able to reach the
coherence temperature for 𝑛 = 2.35 while we are not quite there yet for 𝑛 = 2.63.

Looking at the imaginary time dependence of the local spin susceptibilities in the
upper right panel of Fig. 3.5, we observe that the 𝜏 = 0 susceptibility rises upon ap-
proaching half-filling, but the 𝜏 = 𝛽/2 value does markedly decrease with temperature
in all cases. This is required to eventually reach the constant Pauli behavior, in which
case the total integral over imaginary time yielding the static local susceptibility re-
mains constant as 𝛽 is increased. This only happensmuch slower for the higher fillings,
pointing to the lower coherence temperatures in these cases, cf. also Refs. [195, 196].

Correspondingly, the imaginary part of the self-energy on the Matsubara frequency
axis shown in the left panels of Fig. 3.5 that seems to clearly target a non-zero inter-
cept at higher temperatures in the “frozen moment” regime also takes a sharp turn at
the lowest frequencies as the temperature is reduced considerably below 𝛽𝐷 = 200 to
abruptly come much closer to the expected behavior for a Fermi liquid [195, 197]. For
the doping of 𝑛 = 1.8 on the other hand, the behavior at low Matsubara frequencies
does not significantly change in the considered temperature range, the data just be-
comes denser on the Matsubara axis according to 𝜔𝑛 = (2𝑛 + 1)𝜋𝑇 as the temperature
is reduced. Considering just the change of the value at the first Matsubara frequency
Im(Σ(𝑖𝜔0))(𝑇), we can easily observe scaling linear in 𝑇 in that case as described by the
“first-Matsubara-frequency rule” for Fermi liquids following from the proportionality
of the scattering rate to 𝑇2 [164], which is only restored at lower temperatures in the
“frozen moment” cases.

All the quantities we have looked at serve as clear indicators of a surprisingly sharp
drop of the coherence temperature as the line found in Ref. [35] is crossed, which was
later quantitatively clearly identified as such in e.g. high-precision calculations using
the numerical renormalization group [189, 191].

3.1.5 Conclusions

In conclusion, we find that the strong concentration of contributions to the full local
weight in CT-HYB on few outer superstates and outer states due to the exponential
damping of contributions of excited states by imaginary time evolution allows the sum
over outer superstates and states to be efficiently performed stochastically. This leads
to considerable increases in sampling performance without a significant negative im-
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pact on the results, especially in calculations with large numbers of orbitals and few
good quantum numbers such as realistic calculations for transition metal impurities
treating five orbitals with full Coulomb interaction. As an example, we consider how
optimization techniques like superstate and state sampling can contribute to our ability
to reach lower temperatures in CT-HYB calculations as it is e.g. necessary to get closer
to the Fermi liquid state in Hund’s metals.
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3.2 Symmetric improved estimators

In this section, we derive generalized equations of motion for the one- and two-particle
Green’s function of the Anderson impurity model. Rather than just computing the
derivative with respect to one time argument, we differentiate them “symmetrically”
with respect to all of their time arguments and obtain expressions for the one-particle
Green’s function in terms of up to a three-particle Green’s function and for the two-
particle Green’s function in terms of up to a six-particle Green’s function with partially
contracted time arguments. We show that using these expressions and CT-HYB mea-
surements of the higher-order correlation functions, whose efficient sampling we dis-
cuss, in order to calculate one- and two-particle Green’s function yields results with
asymptotically lower errors than their standard estimators in CT-HYB.When these im-
proved estimators are used to obtain the self-energy and higher-order vertex functions,
their errors do not diverge with increasing Matsubara frequency but remain constant.

This section covers results previously published in the following article, Ref. [198], which is
also the source of the figures, and also discussed in Ref. [176]

J. Kaufmann, P. Gunacker, A. Kowalski, G. Sangiovanni, and K. Held,
“Symmetric Improved Estimators for Continuous-Time Quantum Monte Carlo,”

Phys. Rev. B 100, 075119 (2019)

3.2.1 Self-energies in CT-HYB

Self-energies calculated from CT-HYB results for Green’s functions using the Dyson
equation show a level of noise that rapidly increases with the Matsubara frequency to
such an extent that it is hard to capture the high frequency behavior accurately [199].
This is in stark contrast to the so-called weak coupling methods CT-INT and CT-AUX,
inwhich theGreen’s function ismeasured as a correction to the non-interactingGreen’s
function that rapidly decreases for high frequencies, giving the right asymptotic behav-
ior [36, 199]. Efforts have been directed at working around this problem since CT-HYB
is the QMC solver of choice for impurities with strong interactions of a complicated
form and a small to moderate number of orbitals, which includes such physically rele-
vant cases as transitionmetal impurities, DMFT for strongly interactingHubbardmod-
els with multiple orbitals or in small clusters, and especially “ab initio” calculations for
correlated materials like transition metal compounds [36, 200].

While the convergence of DMFT itself for example is not particularly sensitive to
noise at high frequencies², quantities evaluated by performing numerical summations

²although we have observed that difficult cases, such as convergence to unstable solutions using im-
proved non-linear mixing [145] with a phase space extension [146] that we performed in Sec. 5.1
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overMatsubara frequencies such as energies could be severely affected [201]. Proposed
countermeasures include the use of orthogonal polynomial expansions, in which sta-
tistical error and actual information are more clearly separated to high and low co-
efficients respectively than on Matsubara frequencies [201], the use of more precisely
determinable moments and asymptotic behaviors at high frequencies [36, 202–206],
causal optimization [207], and the use of improved estimators [200, 208, 209] based on
equations of motion, cf. e.g. Ref. [47].

The improved estimators used in CT-HYB so far were based on equations of mo-
tions obtained by differentiating the one- or two-particle Green’s function with respect
to only one of their two or four time arguments, which results in expressions relating
them to higher-order correlation functions [200, 208, 209]. We carry the procedure fur-
ther here by differentiating them with respect to their other time arguments as well
[210], deriving “symmetric improved estimators” for the self-energy and four-leg ver-
tex function in terms of correlation functions of even higher order. Using these estima-
tors ameliorates the asymptotic scaling of the statistical error of the results sufficiently
tomake it constant with increasingMatsubara frequency, whichwe derive and demon-
strate using exemplary CT-HYB calculation results.

3.2.2 Definitions

For the definition of the Hamiltonian (2.1) of the Anderson impurity model and the
hybridization function (2.10) in the context of the derivations in this section, we refer
back to Sec. 2.1. Let us however explicitly repeat the formof the non-interactingGreen’s
function

𝒢𝜈
0,𝛼𝛽 =

1
𝑖𝜈𝛿𝛼𝛽 − 𝐸𝛼𝛽 − Δ𝛼𝛽(𝑖𝜈)

(3.5)

and of the general full one-particle Green’s function with two time arguments

𝐺𝛼𝛽(𝜏1, 𝜏2) = −
⟨︂
T𝜏 𝑐𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
(3.6)

and introduce the two-particle Green’s function with four time arguments

𝐺𝛼𝛽𝛾𝛿(𝜏1, 𝜏2, 𝜏3, 𝜏4) =
⟨︂
T𝜏 𝑐𝛼(𝜏1)𝑐†𝛽(𝜏2)𝑐𝛾(𝜏3)𝑐†𝛿(𝜏4)

⟩︂
, (3.7)

whose properties are considered in some more detail in Sec. 5.2.2. Due to the invari-
ance of the AIM Hamiltonian under time translations, it is in principle possible to re-
move one time argument from each of the Green’s functions by specifying only time

and Sec. 5.2, may be impacted by the diverging noise and require working around it by e.g. mixing
another quantity than the self-energy on Matsubara frequencies
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differences. We also define the Fourier transforms to fermionic Matsubara frequencies
𝜈𝑚 = (2𝑚 + 1)𝜋𝛽−1, 𝑚 ∈ Z of the Green’s functions as

𝐺𝜈1𝜈2
𝛼𝛽 = 𝛽−1

∫ 𝛽

0
𝑒 𝑖(𝜈1𝜏1−𝜈2𝜏2)𝐺𝛼𝛽(𝜏1, 𝜏2) d𝜏1 d𝜏2 (3.8)

and

𝐺𝜈1𝜈2𝜈3𝜈4
𝛼𝛽𝛾𝛿 = 𝛽−2

∫ 𝛽

0
𝑒 𝑖(𝜈1𝜏1−𝜈2𝜏2+𝜈3𝜏3−𝜈4𝜏4)𝐺𝛼𝛽𝛾𝛿(𝜏1, 𝜏2, 𝜏3, 𝜏4) d𝜏1 d𝜏2 d𝜏3 d𝜏4 , (3.9)

where the time-translational invariance is reflected in energy conservation in the form
thatwe can use a single frequency 𝜈1 = 𝜈2 =: 𝜈 for the one-particle Green’s function and
have the relation 𝜈1+ 𝜈3 = 𝜈2+ 𝜈4 for the two-particle Green’s function that in principle
allows us to remove one of its frequency arguments as well. Details on the Matsubara
frequency transforms and the removal of one of the redundant frequency arguments
can be found in Appendix A, which however uses slightly different definitions.

3.2.3 One-particle symmetric improved estimators

U

0

000 00

0

Figure 3.6: Diagrammatic representation of the evaluation of the full one-particle
Green’s function 𝐺 drawn as solid line using improved estimators, where
sections of the diagrams marked in green are multi-operator correlation
functions individually measured in CT-HYB, interaction factors are repre-
sented by thick dots, and the non-interacting Green’s function by dashed
lines. Top panel: Diagram using the ”normal” improved estimator 𝐺 =

𝒢0 + 𝒢0𝜉 with four-operator correlation function 𝜉 with three equal times
[200]. Bottom panel: Diagram using the symmetric improved estimator,
which represents the equation𝐺 = 𝒢0+𝒢0𝑈𝑛𝒢0+𝒢0𝜗𝒢0 with a six-operator
correlation function 𝜗 with twice three equal times.

Let us start by reviewing the result for the simple improved estimator for the single-
particle Green’s function [200, 208, 209, 211], whichwe encounter during the derivation
of the symmetric improved estimator anyway. The improved estimator equation for the
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single-particle Green’s function obtained by differentiating (3.6) with respect to 𝜏1 is

𝐺𝜈
𝛼𝛽 =

∑︂
𝛾

𝒢𝜈
0,𝛼𝛾(𝛿𝛾𝛽 + 𝜉𝜈𝛾𝛽), (3.10)

where

𝜉𝜈𝛼𝛽 = 𝛽−1
∫ 𝛽

0
𝑒 𝑖𝜈(𝜏1−𝜏2)

⟨︂
−T𝜏 𝑞𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
d𝜏1 d𝜏2 (3.11)

is a four-operator correlation function with three operators at equal times, expressed
using the operators

𝑞𝛼 :=
∑︂
𝛽𝛾𝛿

𝑈[𝛼𝛽]𝛾𝛿𝑐
†
𝛽𝑐𝛿𝑐𝛾 (3.12a)

𝑞†𝛼 :=
∑︂
𝛽𝛾𝛿

𝑈∗
𝛾𝛿[𝛼𝛽]𝑐

†
𝛾𝑐

†
𝛿𝑐𝛽 , (3.12b)

where we employ a commutator-like bracket notation in the indices of the interaction
matrix to abbreviate

𝑈[𝛼𝛽]𝛾𝛿 := 1
2(𝑈𝛼𝛽𝛾𝛿 −𝑈𝛽𝛼𝛾𝛿) (3.13a)

𝑈𝛼𝛽[𝛾𝛿] := 1
2(𝑈𝛼𝛽𝛾𝛿 −𝑈𝛼𝛽𝛿𝛾). (3.13b)

The full derivation can be found in Appendix B, and a representation of the improved
estimator equation (3.10) in terms of Feynman diagrams [212] is shown in the top panel
of Fig. 3.6. By comparing (3.10) to the Dyson equation 𝐺𝜈

𝛼𝛽 = 𝒢𝜈
0,𝛼𝛽 + 𝒢𝜈

0,𝛼𝛾Σ
𝜈
𝛾𝜂𝐺

𝜈
𝜂𝛽,

obtained from (2.13) by multiplying with 𝒢0 from the left and 𝐺 from the right, we
can identify 𝜉 with the product Σ𝐺, which leads to the notations Σ𝐺 and 𝐺Σ for this
quantity in the literature [200, 209]. In the general case, we can measure the quantity
𝜉 as well as all further correlation functions we define in this chapter in CT-HYB using
worm sampling [209].

Since the non-interacting Green’s function is free of error as far as only CT-HYB is
concerned (and not e.g. DMFT convergence) and assuming an error for all measured
quantities that is approximately constant as a function of the Matsubara frequency
particularly in the high-frequency limit [91], we can use formal error propagation to
compute the asymptotic scaling of the error of the self-energy. We use the expression
Σ = 𝜉/𝐺 for that purpose but consider only the error in 𝜉 because it is clear that when
we insert (3.10) into the Dyson equation (2.13) for the actual calculation, 𝜉 is the only
quantity with statistical error. For the error of the self-energy, the error propagation
formula thus yields 𝜎Σ =

√︂
|𝐺 |−2𝜎2

𝜉, which we can further evaluate using the high-
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frequency asymptotic behavior |𝐺 | ∝ 𝜈−1 of the Green’s function to get 𝜎Σ ∝ 𝜈𝜎𝜉.
Therefore, the error of the self-energy calculated by means of the improved estima-
tor grows linearly with the Matsubara frequency. Using the improved estimator thus
indeed constitutes an improvement over the direct insertion of a Green’s function ob-
tained using the standard estimator into the Dyson equation, which results in a self-
energy with an error of 𝜎Σ ∝ 𝜈2𝜎𝐺 that instead scales quadratically with the frequency.
This is the disadvantage of having to compute differences involving quantities subject
to numerical error rather than ratios, as in the former case absolute errors propagate
while it is only relative errors in the latter case. Particularly if the result of the differ-
ence is small, the relative error may increase considerably, as it has already been noted
for the case of the self-energy calculated using the Dyson equation by Refs. [200, 211].

Let us proceed to the symmetric improved estimator for the single-particle Green’s
function. We nowdifferentiate 𝜉(𝜏1, 𝜏2) in (3.10)with respect to the time argument 𝜏2 of
the single fermionic creator as shown in Appendix B to obtain the symmetric improved
estimator equation

𝐺𝜈
𝛼𝛽 =

∑︂
𝛾

𝒢𝜈
0,𝛼𝛾

(︄
𝛿𝛾𝛽 +

∑︂
𝛿

(︄
2
∑︂
𝜇𝜌

𝑈[𝛾𝜇][𝛿𝜌]
⟨︂
𝑐†𝜇𝑐𝜌

⟩︂
+ 𝜗𝜈

𝛾𝛿

)︄
𝒢𝜈

0,𝛿𝛽

)︄
, (3.14)

where

𝜗𝜈
𝛼𝛽 = −𝛽−1

∫ 𝛽

0
𝑒 𝑖𝜈(𝜏1−𝜏2)

⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑞†𝛽(𝜏2)

⟩︂
d𝜏1 d𝜏2 (3.15)

is a six-operator correlation function with twice three operators at equal times and⟨︂
𝑐†𝜇𝑐𝜌

⟩︂
is a density 𝑛𝜇𝛿𝜇𝜌 if the hybridization function is diagonal. In the symmetric

improved estimator equation, we have not only the contribution of the non-interacting
Green’s function and that including the six-operator correlator, but now also such a
density-dependent contribution to the full Green’s function. It can be diagrammatically
represented by a single interaction vertex with a loop, which is known as the Hartree
self-energy [47]. While this diagram is included in contributions of 𝜉 to the improved
estimator, it is not included in those of 𝜗 to the symmetric improved estimator. The
diagrammatic representation of the symmetric improved estimator equation is found
in the bottompanel of Fig. 3.6. A similar relation has previously been found in a slightly
different context [213].

We repeat our calculation of the asymptotic error of the self-energy for the symmetric
improved estimator. After inserting (3.14) into (2.13) and some elementary arithmetic,
we arrive at the expression Σ = (2𝑈𝑛 + 𝜗)/(1 + 𝒢0(2𝑈𝑛 + 𝜗)) for the self-energy in
terms of the quantities 𝜗 and 𝑛 carrying statistical error. We focus on only that of the
six-operator correlator 𝜗 since a static quantity like the density can be measured with
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very high precision by comparison. The derivative of the self-energy with respect to
𝜗 is (1 + 𝒢0(2𝑈𝑛 + 𝜗))−2, which is equal to one in the high-frequency limit due to the
high-frequency asymptotic behavior of 𝒢0. The error of the self-energy calculated by
means of the symmetric improved estimator therefore scales with the frequency like
the error of 𝜗, which is approximately independent of the frequency. This constitutes
an improvement over even the conventional improved estimator with its linear scaling
of the error.

3.2.4 Two-particle symmetric improved estimators

( ) ))( (
Figure 3.7: Diagrammatic representation of the evaluation of the connected part 𝐺conn

of the two-particle Green’s function, which is a full vertex 𝐹 with full one-
particle Green’s functions 𝐺 drawn as solid lines at its legs, using the sym-
metric improved estimator. In the diagrams connected sections marked
in green are multi-operator correlation functions measured individually in
CT-HYB, dashed lines represent the non-interacting Green’s function and
thick dots factors of the interaction. The first line of the equation con-
tains terms with insertions of the correlation functions from single-particle
improved estimators, the second those representing essential two-particle
terms with terms reducible in the same channel grouped in parentheses.
Terms with Hartree-like factors (∝ 𝑛 in the equation) are not depicted.

With the presentation of one-particle improved estimators concluded, we proceed to
the two-particle Green’s function, where we need to perform derivatives with respect
to all four time arguments. Since there are both far more terms originating from the
derivatives of the theta functions than in the case of the single-particle Green’s func-
tions and they actually also involve some rather “non-standard” correlation functions
themselves, this leads to considerably more unwieldy expressions than we have seen
so far. We limit ourselves to the results and only a short summary of the derivation,
while the full derivation can be found inAppendix B of Ref. [198]. Further we assume a
diagonal hybridization and thus diagonal single-particle Green’s function as it is done
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there from here on. By abstracting slightly over the details of the derivation we can
collect terms in the expression for the two-particle Green’s function

𝐺𝜈1𝜈2𝜈3𝜈4
𝛼𝛽𝛾𝛿 =𝒢𝜈1

0,𝛼(−𝑅
𝜈1𝜈2𝜈3𝜈4
1,𝛼𝛽𝛾𝛿 +𝒢𝜈2

0,𝛽(𝑅
𝜈1𝜈2𝜈3𝜈4
2,𝛼𝛽𝛾𝛿 +𝒢𝜈3

0,𝛾(−𝑅
𝜈1𝜈2𝜈3𝜈4
3,𝛼𝛽𝛾𝛿 +𝒢𝜈4

0,𝛿(𝑅
𝜈1𝜈2𝜈3𝜈4
4,𝛼𝛽𝛾𝛿 +

ℎ𝜈1𝜈2𝜈3𝜈4
𝛼𝛽𝛾𝛿

𝛽
)))).

(3.16)
Here we see the general structure of the expansion that we obtain whenwe in each step
explicitly perform the time derivative of a single creator or annihilator in the term that
collected an extra factor of 𝑞 or 𝑞† in the previous step (and thus is the term with the
most of these factors at that point) and just name the other term with a delta function
and anticommutator 𝑅𝜈1𝜈2𝜈3𝜈4

𝑖 ,𝛼𝛽𝛾𝛿 . With 𝑆...𝜈𝑖𝜏𝑖+1...
𝑖 ,𝛼1𝛼2𝛼3𝛼4

the term with the most factors of 𝑞 and
𝑞† at step 𝑖, which is exactly 𝑖 factors such that 𝑆𝜏1𝜏2𝜏3𝜏4

0,𝛼1𝛼2𝛼3𝛼4
= 𝐺𝜏1𝜏2𝜏3𝜏4

𝛼1𝛼2𝛼3𝛼4 , we can express
this as 𝑆...𝜈𝑖𝜏𝑖+1...

𝑖 ,𝛼1𝛼2𝛼3𝛼4
= 𝒢𝜈𝑖

0,𝛼𝑖 ((−1)𝑖+1𝑅...𝜈𝑖+1𝜏𝑖+2...
𝑖+1,𝛼1𝛼2𝛼3𝛼4

+ 𝑆
...𝜈𝑖+1𝜏𝑖+2...
𝑖+1,𝛼1𝛼2𝛼3𝛼4

), where the alternating
minus sign in front of 𝑅𝑖+1 is caused by the alternation of annihilators and creators in
the two-particle Green’s function andwe also performed additional Fourier transforms
for all remaining time arguments that we had not already needed to Fourier transform
during the derivation before.

After four steps, we end upwith the twelve-operator correlation function ℎwith four
times three operators at equal times defined in (3.18e), as well as several other terms
in 𝑅𝑖 of a less regular form. In general, we need to evaluate (anti-)commutators by
applying the fermionic anticommutation relations, removing two operators each, and
differentiate with respect to time arguments of remaining sole creators and annihila-
tors, giving additional factors of 𝑞 and 𝑞†. As previously mentioned, a more detailed
summary of the derivation can be found in Appendix B of Ref. [198], which gives us to
the expressions

𝑅𝜈1𝜈2𝜈3𝜈4
1,𝛼𝛽𝛾𝛿 = − 𝛿12𝐺

𝜈4
𝛿 + 𝛿14𝐺

𝜈2
𝛽 , (3.17a)

𝑅𝜈1𝜈2𝜈3𝜈4
2,𝛼𝛽𝛾𝛿 = − 𝛿12𝒢𝜈3

0,𝛾2
∑︂
𝜌

𝑈[𝛼𝜌][𝛼𝜌]𝑛𝜌 − 𝛿14𝜉
𝜈4
𝛿 , (3.17b)

− 2
𝛽
𝒢𝜈3

0,𝛾𝒢
𝜈4
0,𝛿

(︄
−𝑈[𝛼𝛾][𝛽𝛿] +

∑︂
𝜌

(︂
𝑈[𝛼𝜌][𝛽𝛿]𝜉

𝜈3
𝛾𝜌 +𝑈[𝛼𝛾][𝛽𝜌]𝜉

𝜈4
𝛿𝜌

)︂
− 2𝜙𝜈4−𝜈3

𝛼𝛽𝛾𝛿 + 𝑓
𝜈3 ,(𝜈3−𝜈4)
𝛾𝛿𝛼𝛽

)︄
,

𝑅𝜈1𝜈2𝜈3𝜈4
3,𝛼𝛽𝛾𝛿 = 𝛿12𝜗

𝜈1
𝛼 (3.17c)

+ 𝛽−1𝒢𝜈4
0,𝛿

(︄
2
∑︂
𝜌

(︂
𝑈[𝜌𝛾][𝛽𝛿]𝜉

𝜈1
𝛼𝜌 +𝑈[𝛼𝛾][𝜌𝛿]𝜉

𝜈2
𝛽𝜌

)︂
(3.17d)
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− 𝜓𝜈1+𝜈3
𝛼𝛽𝛾𝛿 + 4𝜙𝜈1−𝜈4

𝛼𝛿𝛾𝛽 + 2 𝑓 𝜈1 ,(𝜈1−𝜈4)
𝛼𝛿𝛾𝛽 − 𝑔𝜈4𝜈2

𝛿𝛾𝛽𝛼

)︄
,

𝑅𝜈1𝜈2𝜈3𝜈4
4,𝛼𝛽𝛾𝛿 = 𝛽−1

(︂
2 𝑓 𝜈3 ,(𝜈4−𝜈1)

𝛾𝛽𝛼𝛿 + 𝑔𝜈1𝜈3
𝛼𝛽𝛾𝛿 − 2 𝑓 𝜈1 ,(𝜈1−𝜈2)

𝛼𝛽𝛾𝛿

)︂
, (3.17e)

where 𝛿12 = 𝛿𝛼𝛽𝛿𝛾𝛿𝛿𝜈1𝜈2𝛿𝜈3𝜈4 , 𝛿34 = 𝛿𝛼𝛿𝛿𝛽𝛾𝛿𝜈1𝜈4𝛿𝜈2𝜈3 , single indices for quantities that
should carrymultiple ones refer to diagonal elements, 𝜉 and 𝜗 are the correlation func-
tions we have already encountered in the improved estimators for the single-particle
Green’s function given in (3.11) and (3.15), full single-particle Green’s functions 𝐺 in 𝑅1

are to be evaluated bymeans of the symmetric improved estimator equation (3.14), and
we defined some additional correlation functions appearing on the right-hand sides,

𝜙𝜔
𝛼𝛽𝛾𝛿 = 𝛽−1

∫ 𝛽

0
𝑒 𝑖𝜔(𝜏1−𝜏2) ⟨︁T𝜏(𝑈𝑛)𝛼𝛽(𝜏1)(𝑈𝑛)𝛾𝛿(𝜏2)

⟩︁
d𝜏1 d𝜏2 , (3.18a)

𝜓𝜔
𝛼𝛽𝛾𝛿 = 𝛽−1

∫ 𝛽

0
𝑒 𝑖𝜔(𝜏1−𝜏2) ⟨︁T𝜏(𝑈𝑐𝑐)𝛼𝛾(𝜏1)(𝑈𝑐†𝑐†)𝛽𝛿(𝜏2)

⟩︁
d𝜏1 d𝜏2 , (3.18b)

𝑓 𝜈𝜔𝛼𝛽𝛾𝛿 = 𝛽−1
∫ 𝛽

0
𝑒 𝑖𝜈(𝜏1−𝜏2)+𝑖𝜔(𝜏2−𝜏3)

⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑞†𝛽(𝜏2)(𝑈𝑛)𝛾𝛿(𝜏3)

⟩︂
d𝜏1 d𝜏2 d𝜏3 , (3.18c)

𝑔𝜈𝜈
′

𝛼𝛽𝛾𝛿 = 𝛽−1
∫ 𝛽

0
𝑒 𝑖𝜈(𝜏1−𝜏3)+𝑖𝜈′(𝜏2−𝜏3) ⟨︁T𝜏 𝑞𝛼(𝜏1)𝑞𝛾(𝜏2)(𝑈𝑐†𝑐†)𝛽𝛿(𝜏3)

⟩︁
d𝜏1 d𝜏2 d𝜏3 ,

(3.18d)

ℎ𝜈1𝜈2𝜈3𝜈4
𝛼𝛽𝛾𝛿 = 𝛽−1

∫ 𝛽

0
𝑒 𝑖(𝜈1𝜏1−𝜈2𝜏2+𝜈3𝜏3−𝜈4𝜏4)

⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑞†𝛽(𝜏2)𝑞𝛾(𝜏3)𝑞†𝛿(𝜏4)

⟩︂
d𝜏1 d𝜏2 d𝜏3 d𝜏4 ,

(3.18e)

with fermionic Matsubara frequencies 𝜈 = (2𝑛 + 1)𝜋𝛽−1, 𝑛 ∈ Z, bosonic Matsubara
frequencies 𝜔 = 2𝑛𝜋𝛽−1, 𝑛 ∈ Z, and abbreviations

(𝑈𝑛)𝛼𝛽 :=
∑︂
𝜌𝜇

𝑈[𝛼𝜌][𝛽𝜇]𝑐
†
𝜌𝑐𝜇, (3.19a)

(𝑈𝑐†𝑐†)𝛼𝛽 :=
∑︂
𝜌𝜇

𝑈𝜌𝜇[𝛼𝛽]𝑐
†
𝜌𝑐

†
𝜇, (3.19b)

(𝑈𝑐𝑐)𝛼𝛽 :=
∑︂
𝜌𝜇

𝑈[𝛼𝛽]𝜌𝜇𝑐𝜇𝑐𝜌. (3.19c)

By inserting the evaluated 𝑅𝑖 given in (3.18) into the symmetric improved estimator
equation for the two-particle Green’s function (3.16), we can collect similar terms to
obtain

𝐺𝜈1𝜈2𝜈3𝜈4
𝛼𝛽𝛾𝛿 = (𝛿12 − 𝛿14)𝐺𝜈1

𝛼 𝐺
𝜈3
𝛾 −

𝐺conn⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟
𝛽−1𝒢𝜈1

0,𝛼𝒢
𝜈2
0,𝛽𝒢

𝜈3
0,𝛾𝒢

𝜈4
0,𝛿ℱ

𝜈1𝜈2𝜈3𝜈4
𝛼𝛽𝛾𝛿 . (3.20)
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Here we separate the contributions due to disconnected propagation of two particles
in the first term and the connected contribution 𝐺conn in the second term with four
non-interacting legs attached to a sum of correlation functions similar to a full vertex,
cf. [214],

ℱ 𝜈1𝜈2𝜈3𝜈4
𝛼𝛽𝛾𝛿 = 𝛽(𝛿12 − 𝛿14)

(︄
2
∑︂
𝜌

𝑈[𝛼𝜌][𝛼𝜌]𝑛𝜌 + 𝜗𝜈1
𝛼

)︄ (︄
2
∑︂
𝜌

𝑈[𝛾𝜌][𝛾𝜌]𝑛𝜌 + 𝜗𝜈3
𝛾

)︄
(3.21)

+2𝑈[𝛼𝛾][𝛽𝛿] +2
∑︂
𝜌

(︂
𝑈[𝜌𝛾][𝛽𝛿]𝜉

𝜈1
𝛼𝜌 +𝑈[𝛼𝛾][𝜌𝛿]𝜉

𝜈2
𝛽𝜌 +𝑈[𝛼𝜌][𝛽𝛿]𝜉

𝜈3
𝛾𝜌 +𝑈[𝛼𝛾][𝛽𝜌]𝜉

𝜈4
𝛿𝜌

)︂
+ 4𝜙𝜈4−𝜈3

𝛼𝛽𝛾𝛿 + 2 𝑓 𝜈1 ,(𝜈1−𝜈2)
𝛼𝛽𝛾𝛿 + 2 𝑓 𝜈3 ,(𝜈2−𝜈1)

𝛾𝛿𝛼𝛽⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
ℱ2,𝑝ℎ

+ 4𝜙𝜈1−𝜈4
𝛼𝛿𝛾𝛽 − 2 𝑓 𝜈1 ,(𝜈1−𝜈4)

𝛼𝛿𝛾𝛽 − 2 𝑓 𝜈3 ,(𝜈4−𝜈1)
𝛾𝛽𝛼𝛿⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

ℱ2,𝑝ℎ

+ −𝜓𝜈1+𝜈3
𝛼𝛽𝛾𝛿 − 𝑔𝜈1𝜈3

𝛼𝛽𝛾𝛿 − 𝑔𝜈4𝜈2
𝛼𝛽𝛾𝛿⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

ℱ2,𝑝𝑝

+ ℎ𝜈1𝜈2𝜈3𝜈4
𝛼𝛽𝛾𝛿⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
ℱ2,irred.

,

where the underbraced terms can be identified as essential two-particle contributions
that can be decomposed into ℱ2,𝑝ℎ reducible in the particle-hole channel, ℱ2,𝑝ℎ re-
ducible in the transverse particle-hole channel, ℱ2,𝑝𝑝 reducible in the particle-particle
channel, and fully irreducible ℱ2,irred., cf. [214]. A diagrammatic representation of the
symmetric improved estimator decomposition (3.20) of the connected part 𝐺conn of the
two-particle Green’s function is shown in Fig. 3.7, with contributions with insertions of
correlation functions of the one-particle symmetric improved estimator in the first line
and the essential two-particle contributions in the second line, grouped by parentheses
according to reducibility as just discussed.

For the scaling of the error in two-particle quantities, we want to consider a quan-
tity similar to the one-particle self-energy that suffers from statistical error diverging at
high frequencies using standard CT-HYB estimators [36, 200, 204] for the two-particle
Green’s function. In a certain sense, the closest two-particle analogon to the self-energy
are the irreducible vertex functions, cf. Sec. 5.2.2. Since they are related to the two-
particle Green’s function³ by the Bethe-Salpeter equation, which is analogous to the
Dyson equation in form and function, it follows that these quantities have diverging
statistical error from error propagation just as it did for the self-energy calculated using

³actually to generalized susceptibilities, which differ from the two-particle Green’s function by sub-
traction of a disconnected contribution of a product of single-particle Green’s functions, cf. Sec. 5.2.2
and Ref. [214]
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the Dyson equation. We have explicitly considered that case before and data confirm-
ing the scaling of the error of the irreducible vertex functions can be found in Refs. [91,
209]. We will for simplicity consider the full vertex 𝐹 defined by

𝐺𝜈1𝜈2𝜈3𝜈4
𝛼𝛽𝛾𝛿 = (𝛿12 − 𝛿14)𝐺𝜈1

𝛼 𝐺
𝜈3
𝛾 − 𝛽−1𝐺𝜈1

0,𝛼𝐺
𝜈2
0,𝛽𝐺

𝜈3
0,𝛾𝐺

𝜈4
0,𝛿𝐹

𝜈1𝜈2𝜈3𝜈4
𝛼𝛽𝛾𝛿 (3.22)

instead. Assuming that the error of the two-particle Green’s function is independent
of the Matsubara frequency in the limit of high frequencies and considering just its
error for error propagation, the error of the vertex scales with the fourth power of the
frequency because we need to divide four times by the one-particle Green’s function
that is inversely proportional to the frequency in the high-frequency limit. Numeri-
cal CT-HYB results demonstrate this bad scaling of the error of the full vertex [206].
The full vertex can be decomposed into fully irreducible contributions and contribu-
tions reducible in one of the three channels according to the parquet equation [214],
and differs from a vertex that is irreducible in one of the channels by just the contribu-
tions reducible in that channel. It plays a role e.g. in certain diagrammatic techniques
[215] and extensions toDMFT [216] and the Bethe-Salpeter equations for the irreducible
vertices can also be formulated in terms of the full vertex rather than the generalized
susceptibilities [214].

From the expression (3.22) for the full vertex 𝐹 in terms of full one- and two-particle
Green’s functions we recognize by comparison to the symmetric improved estimator
equation (3.20) that the full vertex can be expressed in terms of the vertex-like combi-
nation of correlation functions ℱ given in (3.21) as

𝐹𝜈1𝜈2𝜈3𝜈4
𝛼𝛽𝛾𝛿 =

𝒢𝜈1
0,𝛼𝒢

𝜈2
0,𝛽𝒢

𝜈3
0,𝛾𝒢

𝜈4
0,𝛿

𝐺𝜈1
0,𝛼𝐺

𝜈2
0,𝛽𝐺

𝜈3
0,𝛾𝐺

𝜈4
0,𝛿

ℱ 𝜈1𝜈2𝜈3𝜈4
𝛼𝛽𝛾𝛿 . (3.23)

In the high-frequency limit, the asymptotic behavior of full and non-interactingGreen’s
functions in the error propagation cancels, so the error of the vertex computed from
symmetric improved estimators scales like that of ℱ , which is composed of correlation
functions measured directly in Monte Carlo only whose error is independent of the
frequency.

3.2.5 CT-HYB replacement moves for equal-time worm operators

As we have previously mentioned, all correlation functions can in principle be mea-
sured using worm sampling. In contrast to that, measuring correlation functions with
multiple operators at equal time in partition function sampling is in general not pos-
sible as the insertion of local operators is not ergodic in CT-HYB [36]. For the case of
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the conventional improved estimator [200], the worm sampling procedure has previ-
ously been discussed in Ref. [209], where it was implemented in w2dynamics [40] and
shown to indeed reduce the asymptotic error in the resulting self-energies and vertex
functions in numerical tests. For the practical use of symmetric improved estimators,
it is important to be able to measure the necessary multi-operator correlation functions
found in (3.11), (3.15), and (3.18) efficiently in CT-HYB.

We first need to add additional worm spaces for each component 𝑘𝛼1...𝛼𝑛 of each
correlation function 𝑘 and have to perform sampling runs in the combined spaces
𝒞𝑍 ⊕ 𝒞𝑘𝛼1 ...𝛼𝑛

for all 𝑘𝛼1...𝛼𝑛 that are necessary to evaluate the symmetric improved es-
timator equations, which are the components of 𝜗 in the case of the symmetric im-
proved estimator for the one-particle Green’s function and additionally those of the
correlation functions in (3.11) and (3.18) for the two-particle Green’s function. The lo-
cal weight in worm space is calculated as the trace in (2.22) with 𝑂𝛾1...𝛾𝑛 representing
the relevant correlation function, andmeasurement is then performed by simply count-
ing configurations in analogy to (2.23). As usual the sampling steps in 𝒞𝑍 are used for
normalization, which requires an appropriate relative weight factor 𝜂𝑘𝛼1 ...𝛼𝑛

between
the configurations of partition function and worm space to achieve a low relative error,
conventionally chosen such that the amount of steps is balanced.

In principle, the “granularity” of worm space can be chosen in different ways too.
We could e.g. have allowed worm insertions of arbitrary flavors to sample all com-
ponents 𝑘𝛼1...𝛼𝑛 of a correlation function 𝑘 at once. Using the example of 𝜗𝜏1𝜏2

𝛼𝜌 =∑︁
𝛽𝛾𝛿𝜇𝜋𝜁𝑈[𝛼𝛽]𝛾𝛿𝑈𝜋𝜁[𝜌𝜇]

⟨︂
T𝜏 𝑐

†
𝛽𝑐𝛿𝑐𝛾𝑐

†
𝜋𝑐

†
𝜁𝑐𝜇

⟩︂
, where we have inserted the definitions of

the operators 𝑞 and 𝑞† from (3.12), we currently restrict sampling to single choices of
𝛼 and 𝜌 per sampling run. This is not necessary, but considering an increase rather
than decrease of granularity, it is not necessary to perform the sum

∑︁
𝛽𝛾𝛿𝜇𝜋𝜁 over in-

ternal indices stochastically either. While this at least has the advantage of integrating
the prefactors of 𝑈 directly in the weight, preferring configurations with larger con-
tributions over those with lower ones, we could also do a separate sampling run for
each choice of these internal indices instead and perform the linear combination with
coefficients of the interaction afterward. The advantage of a high granularity is that
different components do not necessarily have the same value and so the number of
configurations for which the estimator is evaluated (𝑁meas in w2dynamics) that is re-
quired to e.g. get a uniform relative error for the entire quantity might be different
for each component. Choosing different values is only possible if the sampling is per-
formed separately because the relative amount of configurations per component will
otherwise be stochastically chosen roughly according to their relative weights.

An important matter to consider is however that of which moves to perform to en-
sure ergodic sampling. For a correlation function like 𝜙, which consists of two density
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operators at two different times and is therefore easy to insert in all positions that lead
to non-zero weight, worm insertions and worm removals in addition to the standard
moves in partition function sampling (cf. Tab. 2.1) may be sufficient for ergodic sam-
pling. For general correlation functions such as even already a one-particle Green’s
function itself, it was however shown that using only worm insertions and removals
but no replacements leads to ergodicity problems in practice [74]. The reason is the
acceptance probability of pair insertion and removal moves, which exponentially de-
creases with the distance of the operator pair in imaginary time due to quantum num-
ber violations [72–74, 103]. The same is also necessarily the case for a function like 𝜗,
which also inserts operators at two different times in such a way that the superstate
sequence is changed, which happens for all operators that are not of the form of a den-
sity. The replacement moves described in Tab. 2.1 that fix the ergodicity problems for
Green’s functions are not directly applicable to worm configurations with multiple op-
erators at equal imaginary time, as replacing one of them with an operator associated
with hybridization would change the number of worm operators at equal time and
thus not lead to a configuration corresponding to a valid contribution to the measured
correlation function.

⇄
0 0β β
Figure 3.8: Symbolic representation of a replacement move for worm spaces with oper-

ators at equal times in the style of the diagrams in Tab. 2.1 with the changed
operators marked in green. The three partially overlapping symbols rep-
resent a combination of three operators at equal time and different shapes
of the operator symbols indicate potentially different flavors. The new re-
placement move not only exchanges the “worm status” (indicated by short
segments at the top and bottom of the symbols representing connection to
hybridization events) of the two operators represented by diamonds, but
also moves the two other operators at equal time from the former worm op-
erator to the proposed new worm operator.

We therefore introduce new moves analogous to worm replacements that can be
used for worm configurations with operators at equal times. Rather than just propos-
ing an exchange of the “worm status” between a randomly chosen worm operator and
a randomly chosen operator with hybridization [74], we propose a new configuration
by proposing this exchange combined with a shift of all the other worm operators at
equal time to the time of the chosen operatorwith hybridization, symbolically depicted
in Fig. 3.8. This effectively swaps the position of the chosen operator with hybridiza-
tion with the entire combination of operators at equal time by reconstructing the latter
at the position of the former. While the change of the bath weight is the same as for a
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conventional worm replacement move because none of the worm operators contribute
to it and so the combination with a worm shift does not change it, now the local weight
changes as well. This could cause a lower acceptance of these moves compared to the
conventional worm replacements, but particularly in cases where the other operators
may be density-like, such as a replacement of 𝑞 = 𝑐†𝑐𝑐 where one of the annihilators
is chosen for the exchange of worm status as in Fig. 3.8, the acceptance rate may be ac-
ceptable. In practice, we find that the moves alleviate ergodicity problems in the cases
we tested.

3.2.6 Results

In order to demonstrate the correctness and asymptotically smaller statistical error at
high frequencies of our implementation of symmetric improved estimators compared
to other estimators, we perform calculations for a small system with a discrete bath.
This allows us to show the correctness of our results by comparison to those from exact
diagonalization, where the Lehmann representations of the correlation functions can
be directly evaluated. The statistical error can be determined as the difference of our
results for the self-energies and vertex functions to the more precise results from exact
diagonalization, which we do for self-energy and full vertex function obtained using
the Dyson equation from the one- and two-particle Green’s functions determined by
means of the naive worm estimator (2.24) and its two-particle equivalent, for the self-
energy obtained using the improved estimator (3.10), and for the self-energy and vertex
function obtained using the symmetric improved estimators (3.14) and (3.20).

The small system under consideration is an Anderson impurity model with one im-
purity orbital with zero eigenenergy, a repulsive local intra-orbital interaction of𝑈 = 2,
and a hybridization amplitude 𝑉 = 0.3 with one bath orbital with eigenenergy 𝜀 = 0.5
at a chemical potential of 𝜇 = −0.1 and inverse temperature of 𝛽 = 10, all given in arbi-
trary internally consistent units. The resulting occupation of the impurity orbital per
spin is approximately 𝑛 = 0.307.

For the calculation of the self-energy, we use CT-HYB worm sampling implemented
in w2dynamics to get the Green’s function 𝐺 and the improved estimator correlation
functions 𝜉 and 𝜗 by measuring 1.44× 109 configurations each. The results for the self-
energy are shown in the left panel of Fig. 3.9 and the difference between each of these
results and the exact diagonalization result as a measure of statistical error in the right
panel. Note that the statistical error of the QMC results could also be estimated by e.g.
calculating the standard error for a number of uncorrelated results, e.g. from multi-
ple runs using different seeds for the random number generator. We can observe that
the result obtained using symmetric improved estimators indeed has a statistical error
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Figure 3.9: Left panel: Self-energy (top: real part, bottom: imaginary part) on the
Matsubara frequency axis of the one-orbital Anderson impurity model de-
scribed in the text calculated using a Green’s function obtained from CT-
HYB worm sampling of the standard Green’s function estimator (“direct”),
the improved estimator (“impr.”), and the symmetric improved estimator
(“sym. impr.”). Right panel: Absolute difference between the self-energies
Σ(𝑖𝜈) from CT-HYB and the self-energy ΣED(𝑖𝜈) calculated using exact di-
agonalization on a logarithmic axis as a measure of the statistical error. In
the left panel only the result from direct measurement clearly has an error
increasing with the frequency and those from improved and symmetric im-
proved estimators appear visually almost identical on the range of frequen-
cies shown, but the error shown in the right panel clearly increases for the
improved estimator and even faster for the standard estimator and is larger
than the approximately constant one for the symmetric improved estimator
except at a few of the lowest frequencies.

that is approximately independent of the frequency in the high-frequency limit, while
those of the conventional improved estimator and standard estimator results increase
with the frequency as our scaling analysis using error propagation would suggest. Ad-
ditionally, for the same number of measurements the error of the symmetric improved
estimator result is also smaller by orders of magnitude than either of the other ones ex-
cept for a small number of the lowest frequencies. There we find instead that the stan-
dard estimator result has a smaller error than either of the improved estimator results
for the same number of measured configurations. While often just the very first Mat-
subara frequency is affected and the error of the improved estimator results are also not
extraordinarily large, results from the standard worm or even partition function sam-
pling estimator could be used in combinationwith improved estimators to improve the
results, e.g. by replacing the first few frequencies or performing a weighted average.
Sincewe sample in combinedworm and partition function configuration space anyway
for normalization, the standard partition function sampling estimator for the Green’s
function can even be evaluated in the same sampling run.

We further measure the two-particle Green’s function 𝐺 and the seven correlation
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Figure 3.10: Real parts with symmetric improved estimators (left panels), absolute dif-
ferences between symmetric improved estimator results and exact diago-
nalization results (middle panels), and absolute differences between stan-
dard estimator results and exact diagonalization results of the full vertex
function 𝐹𝜈𝜈′𝜔↑↑↓↓ = 𝐹

𝜈,(𝜈−𝜔),(𝜈′−𝜔),𝜔
↑↑↓↓ fromCT-HYBmeasurement as a color grid

plot ofmatrix valueswith the fermionicMatsubara frequency arguments 𝜈
and 𝜈′ as axes for bosonic Matsubara frequency argument 𝜔 = 0 (top pan-
els) and the tenth positive bosonic Matsubara frequency 𝜔 = 20𝜋/𝛽 (bot-
tom panels). In the vertex function obtained using symmetric improved
estimators, there is no visually recognizable noise and its statistical error,
i.e. the absolute difference from the exact result, is approximately constant
for high Matsubara frequencies. The error of the vertex function obtained
using the standard two-particle Green’s function estimator increases with
the frequency instead. The error of the symmetric improved estimator re-
sult seems to have systematic features that are likely caused by different
statistical errors of the contributions to the estimator depending on which
of the seven measured correlation functions they originate from.

functions 𝜉, 𝜗, 𝜙,𝜓, 𝑓 , 𝑔, ℎ entering into the symmetric improved estimator expression
(3.20) to get the full vertex according to (3.22). Results and their statistical errors are
shown in Fig. 3.10, where we consider the full vertex 𝐹𝜈𝜈′𝜔↑↑↓↓ as a function of three fre-
quency arguments, related to the vertex as a function of four frequency arguments by
𝐹𝜈𝜈

′𝜔
↑↑↓↓ = 𝐹

𝜈,(𝜈−𝜔),(𝜈′−𝜔),𝜔
↑↑↓↓ , at two fixed bosonic frequencies and show the matrix elements

of the real part of the symmetric improved estimator result as well as of its statistical
error and of the statistical error of the result obtained using the standard estimator
as color-coded image with the two Matsubara frequencies as axes. As expected from
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our scaling considerations, the statistical error of the result obtained using the stan-
dard estimator quickly diverges for higher Matsubara frequencies while the error of
the symmetric improved estimator result does not increase for higher frequencies. The
error with symmetric improved estimators seems to be slightly higher for the lowest
frequencies just like for the self-energy and additionally, there seem to be systematic
patterns in the error related to prominent features of the vertex function. The cause
of this is likely a significantly different statistical error for different contributions to
the vertex, as the prominent features at positions distinguished by symmetry are more
likely to come from the reducible contributions that are calculated from several of the
various measured correlation functions.

3.2.7 Conclusions

In conclusion, we found that the bad scaling of CT-HYB self-energy and vertex results
in the high-frequency limit can be corrected by the use of symmetric improved estima-
tors. We calculated equations of motions for the one- and two-particle Green’s function
by differentiating with respect to all time arguments to derive the symmetric improved
estimator equations and showed how to perform efficient worm sampling for the oc-
curring correlation functions in CT-HYB.We find a frequency-independent andmostly
significantly reduced error, but standard estimators seem to converge slightly faster
than improved estimators for a small number of the lowest frequencies.
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4 Magnetic impurities on metallic
surfaces

4.1 Analysis of the influence of the interaction
parameterization on Kondo screening in cobalt
adatoms

In this section, we analyze a prototypical example of a system exhibiting the Kondo
effect: cobalt impurities on a copper surface. Using density functional theory we pa-
rameterize anAnderson impuritymodel thatwe solve using continuous-time quantum
Monte Carlo as a first-principles approach to the problem. We perform calculations us-
ing multiple parameterizations of the local interaction in a temperature range around
the experimentally determinedKondo temperature and find a remarkably strong influ-
ence of the form of the interaction on the screening. Depending on the used interaction,
the Kondo temperatures range from values in the right order of magnitude in the case
of the most realistic full spherical Coulomb interaction to values at least two orders be-
low it. In the most realistic case, we find that the picture of just two 𝑑-orbitals aligned
by Hund’s coupling forming a local spin-1 moment often assumed in the literature is
inaccurate and instead, the contribution of other orbitals is significantly enhanced by
the inclusion of more interaction terms.

This section is based on the following article, Ref. [183], which is also the source of the figures

A. Valli, M. P. Bahlke, A. Kowalski, M. Karolak, C. Herrmann, and G. Sangiovanni,
“Kondo screening in Co adatoms with full Coulomb interaction,”

Phys. Rev. Res. 2, 033432 (2020)

4.1.1 Kondo effect in cobalt impurities on copper surfaces

The Kondo effect was first observed in the 1930s as an increase of the resistivity of
metals toward zero temperature [217] and later explained by Kondo in 1964 [28]. It oc-
curs in metals hosting magnetic impurities due to enhanced scattering of conduction
electrons off the impurities below aKondo temperature𝑇𝐾 , with a scattering amplitude
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that diverges to leading order of perturbation theory as the temperature is reduced [28].
The many-body ground state at low temperatures is a collective bound state in which
the local spin of the impurity is coupled with opposite conduction electron spins to a
singlet [218–221], which effectively screens the magnetic moment of the impurity. In
the microscopic physics of an impurity, the Kondo effect manifests itself in the appear-
ance of the Abrikosov-Suhl (or Kondo) resonance [222–224], a spectral feature pinned
to the Fermi level that originates from the renormalization of the level on the impurity
through quantum many-body effects [225]. In an effort to improve upon perturbative
descriptions of the Kondo problem, renormalization-based techniques such as Ander-
son’s “poorman’s” scaling theory [226] andWilson’s numerical renormalization group
[57] were later applied to the problem. Particularly the latter is able to provide a precise
solution including e.g. the functional form of the susceptibility. Due to the local mag-
netic moment, it is a Curie-Weiss susceptibility at high temperatures that crosses over
to a constant Pauli susceptibility as the moment is screened and effectively disappears
around the Kondo temperature. Changes in the magnetic response and spectrum of
the impurity are therefore indicators of the Kondo effect, which wewill consider in our
investigation. Due to its nature as a low-temperature quantum many-body effect with
strong electron correlation, the theoretical treatment of realistic Kondo systems such as
transition metal impurities with electrons in the localized 3𝑑-shell carrying a moment
is numerically difficult [36].

Among the most investigated cases of the Kondo effect believed to be both experi-
mentally and theoretically relatively well understood are single cobalt impurity atoms
on metallic surfaces. Using scanning tunneling microscopy (STM), studies of cobalt
impurities on surfaces such as copper [227–230], gold [231], and silver [232] have been
performed. With this kind of experimental setup, it has become possible to detect the
resonance at the Fermi level directly by tunneling into it rather than inferring its exis-
tence from the decrease in the conductance of a metallic sample with impurities due to
enhanced scattering [231, 233, 234]. TheKondo resonance is generally expected toman-
ifest itself in a spectrum measured with an STM in the form of a Fano line shape [235,
236] in the differential conductance at zero bias [227–232, 237–239], although there are
indications that a recent alternative interpretation of this feature in terms of spin exci-
tations and proposed “spinaron” quasiparticles resulting from their interactions with
electrons, strongly affected by spin-orbit coupling, may bemore appropriate [240–242].

For the case of a cobalt impurity adsorbed on a Cu(001) copper surface (a cobalt
adatom) that we consider here, previous theoretical studies have demonstrated a partic-
ular importance of two of the five cobalt 3𝑑-orbitals [243–245]. These so-called Kondo-
active orbitals 𝑑𝑥𝑦 and 𝑑𝑧2 are close to half-filling and therefore most responsible for
the magnetic moment of the impurity, while the other orbitals are full and so relatively
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inert at a total filling of eight electrons in the 3𝑑-shell. The observed STM line shapes
and Kondo temperatures do however have a strong dependence on various factors,
from the environment of the impurity [246, 247] dependent e.g. on the type of surface,
exemplified by the differences between the Cu(001) and the Cu(111) surfaces [230, 243,
245], to the occupation of the 3𝑑-shell [228, 230, 232, 239, 244], which is connected to
material and setup properties like the adatom adsorption distance and STM tip dis-
tance [182, 229, 230, 239, 245]. Such influences on the Kondo temperature can make
its theoretical prediction difficult since it depends on system parameters exponentially
[248].

Theoretical calculations for cobalt impurities have so far indicated a 𝑆 = 1 high-
spin state on both the Cu(001) and the Cu(111) surface [244, 245], which was actually
shown in a scaling calculation by Nevidomskyy and Coleman [249] to be associated
with a reduction of the Kondo temperature by orders of magnitude compared to the
𝑆 = 1/2 case in agreement with the experimentally known relation between impurity
spin andKondo temperature [250]. Some of the recent calculations do however indicate
different Kondo temperatures for each of the two involved orbitals [244, 245], pointing
to an underscreened Kondo effect instead [244], with estimated Kondo temperatures
that are in rough qualitative agreement with experimental ones [244, 245], found to be
88 K for the system on the Cu(001) surface with the STM tip distance in the tunneling
regime specifically [228].

There are indications that actually the entire 3𝑑-shell may be important for Kondo
screening in cobalt on copper [251] and that a simplified parameterization of the local
interaction may be insufficient [252], but these results originate from calculations per-
formed for temperatures considerably above the Kondo temperature. We are not aware
of any more careful analysis of such effects since then, and in fact many of the theoreti-
cal studies of the system since then would not have been suitable anyway because they
e.g. focused on the two “Kondo-active” orbitals only [245], used an approximative so-
lution of the Anderson impurity model (AIM) [244], or were performed for lower but
possibly still insufficient temperatures [239]. Our interest in this investigation is to fol-
low up on the earlier indications with a comprehensive account of Kondo screening in
a cobalt impurity on a Cu(001) surface that treats the entire local 3𝑑-shell using numeri-
cally exact continuous-time quantumMonte Carlo calculations for temperatures at and
below the experimentally determined Kondo temperature. We compare the influence
of different interaction parameterizations on the contribution of the whole 3𝑑-shell to
the spin moment, its screening, and on the spin and charge correlations between the
orbitals and discuss the consequences for the description of the Kondo effect in this
system.
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4.1.2 First principles DFT+AIM approach

For our calculations, we employ a first-principles approach that uses density func-
tional theory (DFT) in the local density approximation (LDA) to provide a realistic
parametrization of an Anderson impurity model [253] describing the cobalt adatom
as impurity coupled to the surface via the hybridization term. Local correlations on
the impurity atom, which DFT alone cannot capture, are treated numerically exactly
using CT-HYB as implemented in w2dynamics. This DFT+AIM approach [182], cf. also
the procedures used in e.g. Refs. [239, 251, 254, 255] and others, may be considered as
similar in spirit to other methods called DFT++ in the literature [65], but we should
carefully note that it is distinct from and not to be confused with DFT+DMFT in partic-
ular. This approach, more traditionally associatedwith the termDFT++, has a different
goal, namely to improve the DFT lattice solution by including the effect of strong corre-
lations. This may also involve the CT-HYB solution of an AIM, but that model is just an
iteratively updated auxiliary model onto which the lattice is mapped, turning one site
of the lattice into a correlated impurity coupled to the rest of the lattice sites as bath.
As discussed in Sec. 2.3, such an application of DMFT to a finite-dimensional lattice is
only an approximation.

For the numerically exact solution of the cobalt adatom system, we instead extract
parameters for an AIM modeling an actual impurity problem, where the impurity and
bath are physically different parts of a real system instead of an auxiliary division. CT-
HYB performs the solution of correlation effects on just the part selected as impurity,
which is also fixed instead of self-consistently updated and does not have any feedback
into the lattice model.
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0

-8 -4 0 4 8

Figure 4.1: Left panels: Unit cell used for DFT calculations with the Cu(001) surface
(orange) with the Co adatom (blue) viewed from the top (a) and the side (b).
Right panel: Imaginary part of the orbital-resolved (diagonal) hybridization
function on real frequencies extracted fromDFT calculation as input for the
CT-HYB impurity solver.

VASP [256, 257] with the projector-augmented plane wave (PAW) [257, 258] basis set
was used to performDFT calculations for a supercell of 4×4×1 unit cells of five surface
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orbital crystal field 𝜖𝑖 + Re(Δ𝑖(∞))(eV) Γ𝑖(eV)
𝑑𝑥𝑦 −0.226 0.196
𝑑𝑥𝑧 −0.403 0.244
𝑑𝑧2 −0.295 0.180
𝑑𝑦𝑧 −0.403 0.244
𝑑𝑥2−𝑦2 −0.221 0.128

Table 4.1: Effective crystal field and coupling to the substrate (Fermi level value of the
full hybridization shown in Fig. 4.1) determined for the localized 3𝑑-orbitals
included in the AIM for the Co impurity using DFT.

layers of Cu atoms and a Co impurity in the fourfold-hollow position, shown in the left
panel of Fig. 4.1. The experimentally determined [259] lattice constant of 3.615Å was
used for copper and an adsorption distance optimized in a previous DFT++ study [182]
of 1.52Å consistent with other ab initio determinations [243] was used for the distance
of the cobalt impurity to the topmost layer of the Cu(001) surface. A dense 𝑘-mesh of
100 × 100 × 1 points around the zone center was used because a closer examination
showed slow convergence of the resulting hybridization functions with the size and
qualitative differences in CT-HYB self-energies at low temperatures for a too sparse
mesh, cf. Appendix A of Ref. [183]. The hybridization function on real frequencies and
the quadratic part of the impurity Hamiltonian, i.e. effectively something like crystal
field splitting, are determined from 𝑔𝑖 𝑗(𝜔), the projection of the DFT real-frequency
Green’s function onto the subspace of localized orbitals of the impurity, according to
𝑔𝑖 𝑗(𝜔) = ((𝜔 + 𝑖0+)𝛿𝑖 𝑗 − 𝜖𝑖 𝑗 − Δ𝑖 𝑗(𝜔))−1 [182, 260, 261]. The energy levels from the crys-
tal field are given in Tab. 4.1 and the imaginary parts of the hybridization function are
shown in the right panel of Fig. 4.1 and agree with previously used ones [244].

With the hybridization function transformed to Matsubara frequencies and the local
levels, the only remaining part of the AIM to be specified is the local electron-electron
interaction of the cobalt 3𝑑 orbitals. We employ three different levels of complexity
(and thus accuracy, but also numerical effort) of the interaction in order to investigate
the impact of an approximated interaction on the physical results. The form of the in-
teraction has already been shown to be quantitatively important in a study of a similar
system, but calculationswere performed far above the Kondo temperature [252] in con-
trast to the low temperatures we are able to reach. The three forms of the interaction
we use are the density-density interaction consisting of density operators only, an in-
teraction of Kanamori form [41] that additionally includes spin-flip and pair-hopping
terms, and the full spherically symmetric Coulomb interaction without any further ap-
proximation. These were previously discussed in Sec. 2.1, and their matrix elements
and the processes associated with them are more closely considered later in Sec. 4.1.7.
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The former two interactions are specified by the intraorbital repulsion𝑈𝑖𝑖 , opposite-
spin interorbital repulsion𝑈𝑖 𝑗 and Hund’s coupling 𝐽𝑖 𝑗 . Since we assume a spherically
symmetric interaction for the orbitals of the cobalt impurity atom, which excludes po-
tential further effects specific to the copper substrate, the full Coulomb interaction for
the 𝑑-shell can be specified in terms of the first three Slater radial integrals 𝐹0, 𝐹2 and
𝐹4 [262, 263]. Additionally, we use 𝐹4/𝐹2 ≈ 5/8 as a good approximation for 3𝑑 orbitals,
cf. Refs. [39, 264–267], such that we have a total of two parameters for our full Coulomb
interaction,𝑈𝑆 = 𝐹0 and 𝐽𝑆 = 1

14(𝐹2+𝐹4), cf. Refs. [39, 268]. These are not to be confused
with other𝑈 and 𝐽 (or𝑈𝐾 and 𝐽𝐾) parameters occasionally used, cf. Refs. [39, 268]. We
generate our interaction matrix using values of𝑈𝑆 = 4.0 eV and 𝐽𝑆 = 0.9 eV, cf. e.g. [38,
269] and in agreement with the elements for this specific system computed within the
ab initio constrained random phase approximation (cRPA) [37] in Ref. [244]. Matrices
for the less complex Kanamori and density-density interactions are obtained by not
including matrix elements of the full Coulomb interaction matrix associated with pro-
cesses not contained in the simpler interactions, cf. Sec. 4.1.7. Since the form of the
double counting correction, which takes into account the correlation energy that was
already included in the DFT calculation, is not known, we usually choose to apply a
chemical potential of 𝜇DC = 28.0 eV to fix the occupation of the cobalt 3𝑑-orbitals [260]
to 𝑛𝑑 = 8.0. This was determined by first-principles calculations [243] and is connected
to a 𝑆 = 1 spin state of the impurity [244, 245, 270], but we also discuss the influence of
slight deviations from this filling on the screening properties [244].

4.1.3 Outline of the resulting picture

Since high-spin configurations of the impurity dominate, Hund’s coupling 𝐽 is ex-
pected to have a significant influence on the behavior of the system. As the effect of
Hund’s coupling depends particularly on the form of the interaction, cf. e.g. [271, 272],
we are led to a systematic analysis of the differences in the Kondo screening mecha-
nism due to the interaction parameterization. Our core results, which we later present
in detail, are collected in the schema shown in Fig. 4.2 with complexity and accuracy of
the interaction parameterization increasing from top to bottom in the entire diagram.

Focusing first on the left panel, we consider the occupation of the 3𝑑-shell. In the
density-density interaction, a strong effect of Hund’s coupling maximizes the spin and
polarizes the orbital occupation. This results in half-filling of the Kondo-active orbitals
𝑑𝑥𝑦 and 𝑑𝑧2 (cf. Ref. [244, 245], but with a relative 45° rotation of the 𝑥 − 𝑦 coordi-
nate plane) while the others are full and not contributing to the Kondo physics. More
complex interactions introduce additional matrix elements associated with processes
that allow the electrons to hop, cf. Sec. 4.1.7, and lead to a more even spread of the

78



Kondo-active

subspace

inert

subspace
S=1 high-spin state

(Hund)

Nevidomskyy-Coleman

S=1 Kondo

underscreened (two-stage) Kondo

Co/Cu(001) 3d shell cofiguration

S=1/2 replicas
entangled orbitals

Kondo scale [K] 110100(a) (b) (c)

whole Co 3d shell

whole Co 3d shell active

entangled spins

two-orbital modelfive-orbital model

closest to half-filling

d
e
n
s
it
y
-d

e
n
s
it
y

K
a

n
a

m
o

ri

d
e
n
s
it
y
-d

e
n
s
it
y

K
a
n
a
m

o
ri

fu
ll 

C
o
u
lo

m
b

0

Coulomb tensor

complexity

Cu

Co

Cu

Kanamori

full Coulomb

densi
ty

-d
ensi

ty

Co

Cu
Co

Cu
Co

Cu
Co

Co

Cu

inter-orbital fluctuations

Figure 4.2: A schematic summary of our analysis of the influence of the interaction pa-
rameterization on the calculation results for the Co/Cu(001) impurity sys-
tem, with complexity and accuracy of the interaction parameterization in-
creasing from top to bottom. Left panel: For density-density interaction,
the 3𝑑-shell can relatively cleanly be separated into the Kondo-active half-
filled 𝑑𝑥𝑦 and 𝑑𝑧2 orbitals and the other full orbitals. When more complex
parameterizations are used, the exchange of electrons between orbitals in-
creases and consequently the orbitals become less independent and the oc-
cupations less polarized. Middle panel: With density-density interaction,
Hund’s coupling maximizes the interorbital spin fluctuations 𝒮𝑖≠𝑗 , while
the additional interaction matrix elements of the more complex interaction
parameterizations favor interorbital charge fluctuations 𝒞𝑖≠𝑗 . Right panel:
Kondo screening processes with different interactions leading to screening
in different temperature regimes. With density-density interaction, Hund’s
coupling locks the two spins of the Kondo-active orbitals into a high spin
state pushing the Kondo screened regime (colored background) down to
very low temperatures as the Nevidomskyy-Coleman scaling theory for
high spin explains [249]. As charge fluctuations increase with more com-
plex interactions, we may have a description in terms of an underscreened
or two-stage Kondo effect with higher 𝑇𝐾 or a more complex Kondo effect
due to the charge redistribution across the entire 3𝑑-shell with concomitant
enhancement of 𝑇𝐾 in general. For a two-orbital model (that is not consid-
ered here), the upper limit of 𝑇𝐾 is reached in the case of two independent
replicas of the 𝑆 = 1/2 Kondo effect.

occupation across the shell. In short, as symbolized by the middle panel, the simpler
parameterization favors spin fluctuations and the more complex exchange terms favor
charge fluctuations.

For the simple density-density interaction, the promotion of the high-spin 𝑆 = 1 state
by Hund’s coupling pushes the Kondo temperature 𝑇𝐾 down to very low temperatures
as explained by the scaling theory of Nevidomskyy andColeman [249], consistent with
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the relationship between high spin and exponential reduction of the Kondo scale dis-
covered earlier in experiments [250]. Consequently, the breakdown of the high-spin
state induced by the enhancement of charge fluctuations and concomitant suppression
of spin fluctuations (due to the introduction of further interaction matrix elements) en-
hances 𝑇𝐾 . For more complex interactions, the Kondo effect must be explained by an
alternative scenario and we might envisage several possibilities with the intention of
identifying their signatures in the numerical results. A first observation is that Hund’s
coupling no longer locks the spins of the active orbitals, sowemight instead have a two-
stage Kondo effect with an underscreened regime [273] at intermediate temperatures,
or the two orbitals might behave as two independent spin-1/2 replicas. Moreover, the
previously inert orbitals are now also available, so we are no longer limited to just the
two ones active in the density-density case. This could lead to a spin-orbital Kondo
effect [274–276] with 𝑆𝑈(𝑁) symmetry for some 𝑁 depending on orbital degeneracy,
which should result in a single and enhanced 𝑇𝐾 [277]. All these proposed variants are
in principle consistent with high 𝑇𝐾 = 70–100 K determined in transport experiments
using scanning tunneling microscopy [228, 229, 232].

4.1.4 Spin susceptibility and moment

As direct indicators of the Kondo screening, we shall consider quantities such as the
imaginary time spin-spin correlation function thatwe can directlymeasure for theAIM
in CT-HYB,

𝜒𝑖 𝑗(𝜏) = 𝑔2 ⟨︁
𝑆𝑧,𝑖(𝜏)𝑆𝑧,𝑗(0)

⟩︁
, (4.1)

with the electron 𝑔- or spin gyromagnetic factor 𝑔 and 𝑆𝑧,𝑖(𝜏) the spin 𝑧-component
operator for impurity orbital 𝑖 at imaginary time 𝜏. We can integrate this quantity over
imaginary time to get the orbital-resolved static spin susceptibility

𝜒𝜔=0
𝑖𝑖 (𝑇) =

∫ 𝛽

0
𝜒𝑖𝑖(𝜏) (4.2)

that we previously considered in the exemplary application in Sec. 3.1, where 𝑇 = 𝛽−1

is the temperature.
We show the orbital-resolved static spin susceptibilities 𝜒𝜔=0

𝑖
(𝑇) of the orbitals 𝑑𝑥𝑦

and 𝑑𝑧2 closest to half-filling for all parameterizations of the interaction in Fig. 4.3 to-
gether with an inset showing 𝑇𝜒𝜔=0

𝑖
(𝑇). This quantity is linear for the constant Pauli

susceptibility [278] in the screened regime and approximately constant for Curie-Weiss
[279] behavior ∝ (𝑇+𝑇𝐾)−1 of unscreened local moments above the Kondo temperature
𝑇𝐾 [192, 280–282]. It is easily recognizable in the figure and its inset that the suscep-
tibility in the case of density-density interaction is by far the closest to ∝ 1/𝑇 for both
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Figure 4.3: Diagonal orbital-resolved static spin susceptibility 𝜒𝜔=0
𝑖𝑖

(𝑇) of the 𝑑𝑥𝑦 (left
panel) and 𝑑𝑧2 (right panel) orbitals closest to half-filling. Calculated data
for all parameterizations of the interaction are shown in addition to a Curie
law curve ∝ 1/𝑇 for comparison. The inset shows 𝑇𝜒𝜔=0

𝑖𝑖
(𝑇), which allows

easy visual differentiation between Pauli (𝑇𝜒𝜔=0
𝑖𝑖

(𝑇) ∝ 𝑇) and Curie-Weiss
scaling (𝑇𝜒𝜔=0

𝑖𝑖
(𝑇) ∼ const.).

orbitals and thus the Kondo scale the lowest, which is also reflected in onlyminimal de-
viations of 𝑇𝜒 from constant behavior down to even the lowest temperatures we reach,
about 𝑇 = 30 K. From this we conclude that the Kondo temperature is considerably
lower than 30 K in this case. As the accuracy of the interaction parameterization is in-
creased, the local susceptibility is reduced considerably and Kondo screening becomes
recognizable in the range of temperature we consider by the curvature of 𝑇𝜒 toward
the origin, i.e. crossover to Pauli susceptibility. For full Coulomb interaction, the scal-
ing at the lowest temperatures is still clearly more linear than for Kanamori interaction,
so the Kondo scale with full Coulomb interaction is the highest. As far as orbital de-
pendence is concerned, we can observe that 𝑇 = 0 extrapolations are closer to zero for
the 𝑑𝑧2 orbital than for the 𝑑𝑥𝑦 orbital for all interactions, so the Kondo scale is lower
for the latter.

With full Coulomb interaction, the 𝑑𝑧2 orbital even seems to have approximately
reached Pauli behavior at the lowest temperatures indicating a Kondo temperature
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around 30 K. We try to make a quantitative estimate of the Kondo temperatures by
fitting the diagonal orbital-resolved static spin susceptibilities using Wilson’s numer-
ical renormalization group result for the one-channel spin-1/2 Kondo problem in the
intermediate temperature range around the Kondo temperature 𝑇𝐾 [57, 268],

𝜒(𝑇) = 𝜇2

3𝑘𝐵(𝑇 + 2𝑇𝐾)
, (4.3)

where 𝜇 is considered as the effective impurity spin of approximately the order of the
Bohr magneton 𝜇𝐵 and we extract both 𝜇 and 𝑇𝐾 from the fit. We separate out a factor
of three in the denominator because we consider the correlation function of the spin
𝑧-component only [192], cf. our discussion of the moment below in this section. The
fit results in Kondo temperatures below 1 K for the density-density interaction, Kondo
temperatures of 𝑇𝑑𝑥𝑦

𝐾
= 8.5 K and 𝑇𝑑𝑧2

𝐾
= 14 K for Kanamori interaction, and 𝑇𝑑𝑥𝑦

𝐾
=

18 K and 𝑇𝑑𝑧2
𝐾

= 40 K for full Coulomb interaction. With the value for the 𝑑𝑧2 orbital
obtained using the full interaction, we finally reach about the order of magnitude of
the experimental value of 𝑇𝐾 = 70–100 K [229].

A more differentiated analysis of the moment screening can be performed by con-
sidering the local spin susceptibility 𝜒𝑖 𝑗(𝜏) in imaginary time. While its value at 𝜏 = 0
indicates the instantaneous magnetic moment, its value at its minimum at 𝜏 = 𝛽/2
gives us information of the moment dynamically screened over long time scales [195,
196], which e.g. decays quickly to 0 for a Fermi liquid as 𝑇 goes to zero and should
remain high in the case of unscreened moments [283].

Apart from helping us to visualize the screening in a similar way to 𝑇𝜒(𝑇), the indi-
vidual elements of this matrix in orbital space also tell us to what extent the individ-
ual orbitals of the strongly correlated 3𝑑-shell are contributing to the moment and its
screening. We prepare this data in the form of (the square of) the magnetic moment
with contributions from all orbitals and broken down into diagonal and offdiagonal
contributions in the Kondo-active subspace only as well as an “effective spin” 𝑆eff(𝜏)
computed from the all-orbital magnetic moment, to be interpreted like a spin quantum
number but not necessarily integer and including screening for 𝜏 = 𝛽/2.

Importantly, it also makes the moments computed with the different interaction pa-
rameterizations comparable by factoring in the nature of the spin for density-density
interaction as an “Ising spin” with Z2 symmetry in contrast to the “Heisenberg spins”
with full 𝑆𝑈(2) rotational invariance for Kanamori and Coulomb interaction. Con-
cretely, this means that while there is no distinguished direction for the latter and so
the square of the magnetic moment is

𝑚2
Heisenberg = 𝑔2

(︂⟨︂
𝑆2
𝑥

⟩︂
+

⟨︂
𝑆2
𝑦

⟩︂
+

⟨︂
𝑆2
𝑧

⟩︂)︂
= 3𝑔2 ⟨︁

𝑆2
𝑧

⟩︁
, (4.4)
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Figure 4.4: Unscreened instantaneous (𝜏 = 0) and dynamically screened (𝜏 = 𝛽/2) effec-
tive spin (top panels) and screened squared magnetic moment 𝑚2(𝜏 = 𝛽/2)
(bottom panels) for density-density (left panels), Kanamori (middle pan-
els) and full Coulomb (right panels) interaction parameterizations. Note
the smaller moment but still comparable effective spin for density-density
due to different Ising spin relations (4.5) and (4.7). The difference between
𝜏 = 0 and 𝜏 = 𝛽/2 values represents the dynamical screening of themoment
by quantum fluctuations over long time scales, while the reduction of the
screenedmoment with decreasing temperature is its Kondo screening, both
of which are more effective with more accurate interactions. Symbols mark
values obtained from all contributions of the entire 3𝑑-shell. In the lower
panels, the dashed lines give just the diagonal (intraorbital) contributions
from the {𝑑𝑧2 , 𝑑𝑥𝑦} subspace and the solid lines without symbols all contri-
butions from that subspace including offdiagonal (interorbital) ones.

for the Ising spin only the component in 𝑧-direction is relevant, giving us

𝑚2
Ising = 𝑔2 ⟨︁

𝑆2
𝑧

⟩︁
(4.5)

83



with a difference by a factor of three. For the analysis of screening, we define a gener-
alization of the square of the magnetic moment to arbitrary imaginary time differences
as

𝑚2(𝜏) = 𝜉
∑︂
𝑖 𝑗

𝜒𝑖 𝑗(𝜏), (4.6)

where 𝜉 = 1 for density-density interaction, 𝜉 = 3 for rotationally invariant interac-
tion, and the indices 𝑖 and 𝑗 run in general over all orbitals and for the contribution
analysis just over the Kondo-active subspace {𝑑𝑧2 , 𝑑𝑥𝑦} (for which we will occasionally
still use that name even though its dominant role is significantly reducedwith complex
parameterizations of the interaction). Using either the equation

𝑚2(𝜏) = 𝑔2𝑆2
eff(𝜏) (4.7)

in the case of the Ising spin for density-density interaction or the usual equation for a
quantum mechanical spin

𝑚2(𝜏) = 𝑔2𝑆eff(𝜏)(𝑆eff(𝜏) + 1) (4.8)

in the other cases, we define the effective spin 𝑆eff(𝜏) (as its positive solution) [283].
Values of the unscreened or instantaneous (𝜏 = 0) and screened (𝜏 = 𝛽/2) effective

spin as well as the screened squared magnetic moment 𝑚2(𝜏 = 𝛽/2) are shown for all
three interactions in the upper and, respectively, lower panels of Fig. 4.4. We find that
the unscreened effective spin is just slightly above 0.9 as expected if the high-spin 𝑆 = 1
configuration dominates [244] and independent of the temperature and interaction as
we should reasonably expect due to the absence of screening. The agreement between
the interaction parameterizations demonstrates the necessity of the different treatment
of Ising and Heisenberg spins for comparability: although it can be inferred from the
values of the dynamically screened moment 𝑚2(𝜏 = 𝛽/2) shown in Fig. 4.4 that the
instantaneous moment 𝑚2(𝜏 = 0) is smaller for density-density interaction than for the
others, the combination of the different formulas (4.4) and (4.5) for the moment and
its different relations (4.8) and (4.7) to 𝑆eff still results in the same unscreened effective
spin.

Dynamical screening due to quantum fluctuations over long time scales reduces the
effective spin drastically differently depending on the interaction parameterization. For
density-density interaction, the screened effective spin remains at slightly more than
0.8, relatively close to the unscreened value, over the entire temperature range we con-
sider. This is consistent with our observation of no Kondo screening at these tempera-
ture if density-density interaction is used. For the other interaction parameterizations
on the other hand, we observe considerable dynamical screening compared to the in-

84



stantaneous effective spin even at our highest temperature around room temperature
by about a third for Kanamori interaction and about half for Coulomb interaction. Fur-
thermore, we observe a significant additional reduction as we go to lower tempera-
tures, i.e. the effect of Kondo screening. Thus, while all cases exhibit an unscreened
spin around one, only with the density-density interaction the strong suppression of
𝑇𝐾 with spin as explained byNevidomskyy andColeman [249] actually sets inwhile the
additional interaction matrix elements destabilize the high-spin state earlier. In agree-
ment with our analysis of the static local susceptibility, the Kondo screening with full
Coulomb interaction is more effective at higher temperatures than that with Kanamori
interaction.

In the lower panels of Fig. 4.4 with the squared magnetic moment, we also show its
decomposition into orbitally diagonal (intraorbital) and orbitally offdiagonal (interor-
bital) contributions in the Kondo-active {𝑑𝑧2 , 𝑑𝑥𝑦} subspace and the rest. For density-
density and only slightly less for Kanamori interaction, we find that themoment almost
exclusively originates from the Kondo-active subspace with similar intra- and interor-
bital contributions. For the full Coulomb interaction, the contributions due to the two-
orbital subspace only account for about two thirds of the total moment any more with
the rest involving the other orbitals as well. In this case, the whole 3𝑑-shell must be
considered for an accurate description of the Kondo screening. We further find the
interorbital contributions slightly reduced compared to the intraorbital ones. These
effects of the full Coulomb interactions are explained by the tendency of its matrix el-
ements to favor charge fluctuations and to suppress the spin-aligning effect of Hund’s
coupling, which we consider next.

4.1.5 Charge and spin fluctuations

In order to quantify the influence of the interactionparameterization on spin and charge
fluctuations, we consider generalized double occupations of the form

⟨︁
𝑛𝑖𝜎𝑛 𝑗𝜎

⟩︁
for par-

allel and
⟨︁
𝑛𝑖𝜎𝑛 𝑗𝜎

⟩︁
for antiparallel spins of orbitals 𝑖 and 𝑗, symmetrized over spins and

under exchange of orbitals 𝑖 ↔ 𝑗. The diagonal elements for parallel spins further in-
dicate the orbital-resolved occupations (since 𝑛2

𝑖𝜎 = 𝑛𝑖𝜎) and the diagonal elements for
antiparallel spins the tendency toward double occupation of an orbital. A plot of the
5 × 5 matrix elements per interaction and relative orientation are shown in the form
of heat maps in Fig. 4.5 for our lowest temperature data at approximately 33 K. We
found no significant change with temperature over the entire range we considered.
Our analysis should therefore hold for a considerable temperature range of at least
about 30–300 K if not more.

Considering first the occupations, we find in the case of density-density interaction
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Figure 4.5: Double occupations
⟨︁
𝑛𝑖𝜎𝑛 𝑗𝜎

⟩︁
for parallel spins (upper panels) and

⟨︁
𝑛𝑖𝜎𝑛 𝑗𝜎

⟩︁
for antiparallel spins (lower panels) between all orbitals of the Co 3𝑑-shell,
symmetrized over spins and under exchange of orbitals, for density-density
(left panels), Kanamori (middle panels), and Coulomb (right panels) inter-
action at our lowest temperature of 33 K and approximately valid over our
entire range of temperatures.

that the two Kondo-active orbitals are approximately half-filled and the others approx-
imately full, confirming that it could be reasonable to consider the {𝑑𝑧2 , 𝑑𝑥𝑦} subspace
only [243, 245]. However, the occupations even out for Kanamori interaction, with
those of the {𝑑𝑧2 , 𝑑𝑥𝑦} subspace changing from 𝑛𝑑𝑧2 = 0.60, 𝑛𝑑𝑥𝑦 = 0.57 with density-
density interaction to 𝑛𝑑𝑧2 = 0.65, 𝑛𝑑𝑥𝑦 = 0.59, and evenmore significantly for the spher-
ical Coulomb interaction, reaching occupations of 𝑛𝑑𝑧2 = 0.77, 𝑛𝑑𝑥𝑦 = 0.64. The 𝑑𝑥𝑦
orbital remains significantly closer to half-filling than 𝑑𝑧2 , consistent with their previ-
ously determined hierarchy of Kondo temperature scales, and both of them still remain
closer to half-filling than the previously inert other three orbitals, in agreement with
their large contributions to the magnetic moment.

Considering the diagonal and offdiagonal elements in the {𝑑𝑧2 , 𝑑𝑥𝑦} subspace, we
find a confirmation of the tendency for spin alignment associated with the high-spin
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Figure 4.6: Purely correlated parts of the spin (𝒮𝑖 𝑗 =
⟨︁
𝜎𝑖𝜎𝑗

⟩︁
−⟨𝜎𝑖⟩

⟨︁
𝜎𝑗

⟩︁
) correlation func-

tion (upper panels) and charge (𝒞𝑖 𝑗 =
⟨︁
𝑛𝑖𝑛 𝑗

⟩︁
− ⟨𝑛𝑖⟩

⟨︁
𝑛 𝑗

⟩︁
) correlation func-

tion (lower panels), whose off-diagonal elements indicate spin and charge
fluctuations respectively, between all orbitals of the Co 3𝑑-shell for density-
density (left panels), Kanamori (middle panels), and Coulomb (right pan-
els) interaction computed from single and double occupations at our lowest
temperature of 33 K and approximately valid over our entire range of tem-
peratures.

state 𝑆 = 1 for density-density interaction in themuch larger offdiagonals
⟨︁
𝑛𝑑𝑧2 ,𝜎𝑛𝑑𝑥𝑦 ,𝜎

⟩︁
for parallel spins compared to the suppressed values of

⟨︂
𝑛𝑑𝑧2 ,𝜎𝑛𝑑𝑥𝑦 ,𝜎

⟩︂
for antiparallel

spins. This tendency is considerably reduced for Kanamori interaction and Coulomb
interaction, consistent with the reduction of the effective spin moment with the change
of the parameterization. This change becomes even clearer when we do not consider
the double occupations directly but the correlated part only of the spin correlation
function, as we shall see in the following.

As indicators of spin and charge correlations and fluctuations, we define the corre-
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lation functions

𝒮𝑖 𝑗 =
⟨︁
𝜎𝑖𝜎𝑗

⟩︁
− ⟨𝜎𝑖⟩

⟨︁
𝜎𝑗

⟩︁
, (4.9)

𝒞𝑖 𝑗 =
⟨︁
𝑛𝑖𝑛 𝑗

⟩︁
− ⟨𝑛𝑖⟩

⟨︁
𝑛 𝑗

⟩︁
, (4.10)

where 𝜎𝑖 = 𝑛𝑖↑−𝑛𝑖↓ (without factor of 1/2) and 𝑛𝑖 = 𝑛𝑖↑+𝑛𝑖↓, which wemay imagine as
a sort of rotation into a basis that lends itself to a more straight-forward interpretation.
Since we subtract the factorized expectation values, a result of zero for the correla-
tion functions indicates no correlation. The diagonal elements of 𝒮𝑖 𝑗 indicate the spin
moment. The values of the correlation functions are displayed in Fig. 4.6 in a similar
manner as the double occupations in Fig. 4.5. We use data from our lowest tempera-
ture again, but there are only minimal quantitative changes over the entire range we
consider.

Looking at the spin correlation function, we can read off the change with the inter-
action parameterization in a more simple way than from the double occupations. We
see that the offdiagonal elements in the {𝑑𝑧2 , 𝑑𝑥𝑦} subspace that indicate alignment of
the spins decrease with more complex interaction parameterization, pointing to the
vanishing of the high-spin state. The diagonal elements in the subspace, which over-
whelmingly dominate for density-density interaction, decrease as well with a more
complex interaction and that of the 𝑑𝑧2 orbital does so faster, in agreement with its
higher Kondo temperature scale. Concurrently, the other diagonal elements increase,
indicating their higher contribution to the spin moment that becomes possible due to
the redistribution of charge away from them and is a relevant contribution as we move
away from the density-density interaction.

This is reflected in a significant increase of charge fluctuations, which e.g. particularly
increase between the 𝑑𝑧2 and the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals that belong to the inert subspace
with density-density interaction and instead have a relevant contribution to the mo-
ment with the full Coulomb interaction. Within the density-density approximation,
the spin alignment enforced by the strong influence of Hund’s coupling decouples the
orbitals [284, 285], but as we proceed to themore complex interactions, the suppression
of the high-spin state makes charge fluctuations possible. Terms associated with the
spin-flip processes in the Kanamori form of the interaction already contribute to that
suppression, and further processes involving three or four different orbitals only occur-
ring in the full spherical Coulomb interaction effectively counteract a strongly orbitally
polarized occupation of the 𝑑-shell orbitals, such that neither the 𝑆 = 1 Nevidomskyy-
Coleman screening scenario [249] nor that of two independent 𝑆 = 1/2 spins [244, 245]
on just the {𝑑𝑧2 , 𝑑𝑥𝑦} subspace can yield an accurate description of the real situation.
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4.1.6 Spectral function and self-energy

Figure 4.7: Left panel: Spectral functions calculated by maximum entropy analytic
continuation for the orbitals of the Kondo-active {𝑑𝑧2 , 𝑑𝑥𝑦} subspace with
density-density interaction at a temperature of 58 K for total fillings of the
cobalt 3𝑑-shell of 𝑛𝑑 = 8.0 (dashed curves) and 𝑛𝑑 = 8.2 (solid curves). For
our usual filling of 𝑛𝑑 = 8.0, no Kondo resonance at the Fermi level is found
at such a high temperature. Resonances do however develop as the filling
is increased, indicating an enhancement of the Kondo temperature in that
case. Right panel: Double occupations

⟨︁
𝑛𝑖𝜎𝑛 𝑗𝜎

⟩︁
for parallel spins (upper

half) and
⟨︁
𝑛𝑖𝜎𝑛 𝑗𝜎

⟩︁
for antiparallel spins (lower part) with density-density

interaction at 𝑛𝑑 = 8.0 (left half) and with an additional increase of filling
by Δ𝑛𝑑 = 0.2 (right half). The difference of the connected squares indicates
spin alignment in the subspace caused by Hund’s coupling. When the fill-
ing is increased, a transfer of charge from the other orbitals of the 3𝑑-shell,
whose average is given by the “rest” square, to the orbitals in the subspace
moves them away from half-filling and reduces the spin alignment, leading
to a higher Kondo temperature like a more complex interaction would.

Finally we also consider indications of screening encoded in the Green’s function on
the Matsubara axis computed by CT-HYB, first by looking at orbital-resolved spectral
functions for the cobalt 3𝑑-shell that we extract by numerical analytic continuation us-
ing the maximum entropy method [168, 170, 173, 174]. While it is in principle possible
to estimate at least an apparent Kondo temperature from the width of the Kondo reso-
nance [244, 245], we therefore restrict ourselves to qualitative observations in order not
to depend on the quantitative accuracy of the continuation.

Spectral functions for the Kondo-active subspace with density-density interaction at
a temperature of 58 K are shown in the left panel of Fig. 4.7. As expected from our
previous results indicating no Kondo screening at this temperature for this interaction
parameterization, we find no resonant features in the spectral functions at the Fermi
energy at our usual filling of 𝑛𝑑 = 8.0. We look at results for a slightly larger fill-
ing of 𝑛𝑑 = 8.2 for comparison to investigate the effect of filling deviations, which the
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Kondo temperatures were found to be quite sensitive to in Ref. [244]. Looking at the
spectra shown in the same figure, we find that this change indeed causes the appear-
ance of resonant features at the Fermi level, indicating a considerable increase of the
Kondo temperature, which we previously estimated as below 1 K. This enhancement
of the Kondo screening scale is mediated in the sameway as whenwe change to amore
complex interaction parameterization, which we can show with the aid of the double
occupancies. In the right panel of Fig. 4.7, we visualize the double occupancies for both
fillings in the sameway as before in Fig. 4.5 with the exception that we replace the rows
and columns associated with the orbitals {𝑑𝑥𝑧 , 𝑑𝑦𝑧 , 𝑑𝑥2−𝑦2} with just a single square for
their average occupation for compactness. We find that the change in total filling of
Δ𝑛𝑑 = 0.2 causes an even larger increase in the filling of just the {𝑑𝑧2 , 𝑑𝑥𝑦} subspace
from 𝑛𝑑𝑧2 = 0.60, 𝑛𝑑𝑥𝑦 = 0.57 per spin with density-density interaction and usual filling
𝑛𝑑 = 8.0 to 𝑛𝑑𝑧2 = 0.71, 𝑛𝑑𝑥𝑦 = 0.63 with a total filling of 𝑛𝑑 = 8.2, which is transferred
from the other 3𝑑-shell orbitals as it obviously must be. This shifts the filling of the
subspace farther away from half-filling than a change to the more complex Kanamori
parameterization of the interaction, though not quite as far as the full Coulomb one.
If we look at the differences of parallel and antiparallel offdiagonal occupations in the
subspace, which quantifies the spin alignment caused byHund’s coupling, we observe
a significant reduction. Therefore the added total filling destabilizes the 𝑆 = 1 state just
as the more complex interactions do, leading to a larger 𝑇𝐾 for the reasons previously
discussed.

In the spectral functions calculatedwith themore complex full Coulomb interaction,
shown in the left panel Fig. 4.8, we instead find resonances at the Fermi level clearly
indicating the Kondo effect for both 𝑑𝑧2 and 𝑑𝑥𝑦 already at the usual filling of 𝑛𝑑 = 8.0
at a temperature of 𝑇 = 36 K as our other results would suggest. In fact, we even find
small peaks at the Fermi energy in the spectra for the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals, consistent
with the significant contribution of other orbitals to the dynamical screening in the case
of full Coulomb interaction. In the right panels of Fig. 4.8, spectral functions of 𝑑𝑧2 and
𝑑𝑥𝑦 at two different temperatures are overlaid for comparison. We find that resonances
close to the Fermi level can already be found at temperatures as high as 93 K, but they
become narrower, higher, and move closer to the Fermi level for lower temperature.

Apart from spectral functions, the self-energy on imaginary time calculated as dif-
ference of the inverses of non-interacting and interacting impurity Green’s function can
also tell us about the Kondo temperature, as the low-temperature state of a system ex-
hibiting the Kondo effect is a Fermi liquid [159]. For a Fermi liquid, the self-energy
at the lowest Matsubara frequency Im(Σ(𝑖𝜔0)) must be proportional to the tempera-
ture, which is the so-called “first-Matsubara-frequency rule” [164]. If that is not the
case at our lowest temperatures, we cannot have reached the Fermi-liquid state, so the
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Figure 4.8: Left panel: Spectral functions calculated bymaximum entropy analytic con-
tinuation for the orbitals of the cobalt 3𝑑-shell with full Coulomb interaction
at a temperature of 36 K for a total filling of the 3𝑑-shell of 𝑛𝑑 = 8.0. In the
spectra of the orbitals 𝑑𝑧2 and 𝑑𝑥𝑦 , we can clearly recognize resonances at
the Fermi level that point to the Kondo effect. We can even recognize reso-
nances of a much lower height in the spectra of 𝑑𝑥𝑧 and 𝑑𝑦𝑧 suggesting the
contribution of the entire 3𝑑-shell to the Kondo effect for this parameteri-
zation of the interaction like our other results do. Right panels: Spectral
functions for just the 𝑑𝑧2 (top) and 𝑑𝑥𝑦 (bottom) orbitals as shown in the
left panel with additional data calculated for a higher temperature of 93 K
(dashed lines) added for comparison. We can observe that the resonances
near the Fermi level are already present at higher temperatures, but they
become narrower, higher, and move closer as the temperature is lowered.

Kondo temperature must be below our temperature range. We show Im(Σ(𝑖𝜔0)) as a
function of temperature for the orbitals 𝑑𝑧2 and 𝑑𝑥𝑦 in Fig. 4.9, comparing all interac-
tion parameterizations. As all other quantities also indicated, the 𝑑𝑧2 orbital with full
Coulomb interaction seems to have the highest Kondo temperature since it follows the
rule in our temperature range quite well already. For the other orbital and less com-
plex interaction parameterizations, the curves still clearly extrapolate toward nonzero
values of Im(Σ(𝑖𝜔0 → 0)) and are thus not Fermi-liquid states according to the first-
Matsubara-frequency rule, which points to a Kondo scale below the temperature range
we considered. In four of the other cases, the data curves toward the origin with lower
temperature, but for the 𝑑𝑧2 orbital in the density-density approximation it even curves
away from the origin instead, serving as a clear indication of amuch lower Kondo scale.
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Figure 4.9: Imaginary part of the self-energy at the first Matsubara frequency 𝜔0 as a
function of temperature for the 𝑑𝑧2 (right panel) and 𝑑𝑥𝑦 (left panel) orbital
and all used parameterizations of the interaction. According to the “first-
Matsubara-frequency” rule, this quantity is proportional to temperature in
a Fermi liquid, which is the low-temperature state of a system exhibiting the
Kondo effect. Since most curves still clearly extrapolate toward a nonzero
value for𝑇 → 0, we can conclude that the Kondo temperature in these cases
is below our temperature range. The only curve with no recognizable devi-
ation from the rule is that for the 𝑑𝑧2 orbital with full Coulomb interaction,
which our previous observations indicate to be the one with the highest
Kondo temperature.

4.1.7 Interaction terms

As we have seen, terms included in the more complex interaction parameterizations
disrupt the strong orbital polarization of the occupation and spin alignment that result
from just the density-density terms. Let us consider the individual interaction terms
and the processes they represent to gain some insight into this effect.

We derive all forms of interaction that we use from the full spherical Coulomb inter-
action for the 3𝑑-shell, which is given by

𝐻int =
1
2

∑︂
𝑚𝑚′𝑚′′𝑚′′′𝜎𝜎′

𝑈𝑚𝑚′𝑚′′𝑚′′′𝑐†𝑚𝜎𝑐
†
𝑚′𝜎′𝑐𝑚′′′𝜎′𝑐𝑚′′𝜎 (4.11)

with orbital magnetic quantum numbers 𝑚, . . . , 𝑚′′′ ∈ −2,−1, . . . , 2 and spins 𝜎, 𝜎′. In
the spherically symmetric case, the matrix elements in the basis of spherical harmonics
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are known to have the form [39, 262, 263]

𝑈𝑚𝑚′𝑚′′𝑚′′′ =

2𝑙∑︂
𝑘=0

𝑎𝑘(𝑚, 𝑚′;𝑚′′, 𝑚′′′)𝐹𝑘 , (4.12)

with the Slater radial integrals 𝐹𝑘 over the radial part of the atomic wave functions and
angular integrals 𝑎𝑘 over the spherical harmonics, expressible in terms of Wigner 3− 𝑗
symbols [39]. In this form, the interaction separately conserves total spin, which the
only two independent spin indices in (4.11) ensure, and total angularmomentum [263],
which is equivalent to the condition 𝑚 + 𝑚′ = 𝑚′′ + 𝑚′′′ for nonzero matrix elements.

In practice, we change our basis into the cubic harmonics 𝐾𝑚
𝑙

however, expressed as
[39]

𝐾𝑚
𝑙
=

1√
2

(︁
(−1)𝑚𝑌𝑚

𝑙
+ 𝑌−𝑚

𝑙

)︁
, (4.13)

𝐾0
𝑙 = 𝑌

0
𝑙 , (4.14)

𝐾−𝑚
𝑙

=
−𝑖
√

2
(︁
(−1)𝑚𝑌𝑚

𝑙
− 𝑌−𝑚

𝑙

)︁
, (4.15)

for orbital quantum number 𝑙 = 2 for 𝑑-orbitals, positive magnetic quantum numbers
𝑚 and spherical harmonics 𝑌𝑚

𝑙
. The 𝑑-shell orbitals in terms of cubic harmonics 𝐾𝑚2

are named 𝑑𝑥𝑦 , 𝑑𝑦𝑧𝑑𝑧2 , 𝑑𝑥𝑧 , and 𝑑𝑥2−𝑦2 for increasing 𝑚 from −2 to 2 [39].
Let us now have a look at the matrix elements in this basis and the processes they

represent, for whichwe shall refer to their schematic depictions in Fig. 4.10which show
electrons as spin arrows in orbital boxes in black in their final states after the applica-
tion of the corresponding term of 𝐻int and in white in their initial states (if they differ).
Considering the terms with the fewest different indices first, we start with the intraor-
bital repulsion element 𝑈𝑖𝑖𝑖𝑖 for double occupation of a single orbital shown in panel
(a), whichwe can show to be a density-density term by commuting operators. Next, we
have four different types of elements with two orbital indices. For opposite spins, we
have an interorbital repulsion of density-density form shown in panel (b) with matrix
element 𝑈𝑖 𝑗𝑖 𝑗 = (𝑈𝑖𝑖𝑖𝑖 +𝑈 𝑗 𝑗 𝑗 𝑗)/2 − 2𝑈𝑖 𝑗 𝑗𝑖 related to the intraorbital average and Hund’s
coupling 𝑈𝑖 𝑗 𝑗𝑖 [244]. The interorbital repulsion for parallel spins shown in panel (c)
has an additional density-density term with Hund’s coupling 𝑈𝑖 𝑗 𝑗𝑖 as matrix element.
These three terms are the only ones that we preserve in the density-density form of
the interaction (2.3). Notably, a Hamiltonian containing only these terms is diagonal
in the basis of many-body states as it only counts occupations and time evolution with
this interaction does therefore not mix states. In CT-HYB this has the advantage that
the occupation per orbital and spin is a good quantum number and we can choose

93



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

Figure 4.10: Diagrams representing one exemplary process for each type of interaction
term included in the full spherical Coulomb interaction for the 3𝑑-shell in
the basis of cubic harmonics. Electrons are represented by spin arrows in
boxes representing the individual orbitals, with black arrows indicating
final states after the application of the interaction term and white arrows
indicating different initial states. Arrows outside the boxes indicate which
electron moves where in that case. The terms are the density-density (a)
intraorbital interaction, (b) interorbital interaction for opposite spins, and
(c) interorbital interaction for parallel spins with exchange term, followed
by (d) spin flip and (e) pair hopping terms additionally included in the
Kanamori form, followed by four three-orbital terms and two four-orbital
terms included in the full Coulomb interaction only, (f) and (g) “correct-
ing” the interorbital terms including a simultaneous interorbital hopping,
(h) and (i) as creation and annihilation of an intraorbital pair (by hopping
from or to two different other orbitals), and (j) and (k) for two simultane-
ous hopping events involving four different orbitals.

superstates of size one (or use the original “segment” representation of the algorithm
[34]).

The term with matrix element𝑈𝑖 𝑗 𝑗𝑖 but opposite spins is the “spin flip” term, shown
in panel (d), and the final term with at most two different orbital indices is the “pair
hopping” shown in panel (e) with matrix element 𝑈𝑖𝑖 𝑗 𝑗 . Adding these two terms to
density-density interaction, we obtain the Kanamori form of the interaction (2.4). Time
evolution under this interaction is able to flip spins and change the occupation of or-
bitals. As we have seen, it does however not redistribute charge in the entire shell quite
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as effectively as the full Coulomb interaction, since that would lead to more signifi-
cant contributions from the 𝑑𝑥𝑧 , 𝑑𝑦𝑧 and 𝑑𝑥2−𝑦2 orbitals, cf. Figs. 4.4 and 4.5. We might
suspect that the reason for this is that the pair hopping processes need one full and
one empty orbital to move charge and none of the orbitals are preferentially empty,
whereas the full interaction includes terms for processes in which orbitals gain or lose
a single electron only. In CT-HYB we can in general not choose superstates of size one,
but assuming no mixing by the quadratic part of the Hamiltonian, we can use the total
occupation, a component of the total spin and the pattern of singly-occupied orbitals
[115] as good quantum numbers.

For a 𝑑-shell, spherical symmetry, and assuming a fixed ratio between 𝐹2 and 𝐹4,
such as 𝐹4/𝐹2 = 5/8 that we use as a good approximation for 3𝑑 orbitals [39, 264–267],
the full spherical interaction can be specified in terms of two parameters 𝑈𝑆 and 𝐽𝑆.
With𝑈𝑆 = 𝐹0 and 𝐽𝑆 = 1

14(𝐹2 + 𝐹4), cf. [39], the density-density and Kanamori forms of
the interaction can be composed in terms of

𝑈0 = 𝐹0 + 8
7

1
14(𝐹

2 + 𝐹4), (4.16)

𝐽1 =
1
49

(︂
3𝐹2 + 20

9 𝐹
4
)︂
, (4.17)

𝐽2 = −25
7

1
14(𝐹

2 + 𝐹4) + 3𝐽1, (4.18)

𝐽3 = 65
7

1
14(𝐹

2 + 𝐹4) − 5𝐽1, (4.19)

𝐽4 = 45
7

1
14(𝐹

2 + 𝐹4) − 3𝐽1. (4.20)

The matrices 𝑈𝑖 𝑗 and 𝐽𝑖 𝑗 used in the expression (2.3) and (2.4) for these forms of the
interaction are then

𝐽𝑖 𝑗 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑈0 𝐽1 𝐽2 𝐽1 𝐽3

𝐽1 𝑈0 𝐽4 𝐽1 𝐽1

𝐽2 𝐽4 𝑈0 𝐽4 𝐽2

𝐽1 𝐽1 𝐽4 𝑈0 𝐽1

𝐽3 𝐽1 𝐽2 𝐽1 𝑈0

⎞⎟⎟⎟⎟⎟⎟⎠
, (4.21)

𝑈𝑖 𝑗 = 𝑈0 − (1 − 𝛿𝑖 𝑗)2𝐽𝑖 𝑗 . (4.22)

Using our values of 𝑈𝑆 = 4.0 eV and 𝐽𝑆 = 0.9 eV, we obtain Slater radial integrals of
𝐹0 = 4.0 eV, 𝐹2 = 7.75 eV, and 𝐹4 = 4.85 eV, and as entries of the interaction matrices
𝑈0 = 5.02 eV, 𝐽1 = 0.69 eV, 𝐽2 = 0.80 eV, 𝐽3 = 0.39 eV, and 𝐽4 = 0.49 eV. Compared with
the interaction matrix elements calculated using first-principles cRPA in Ref. [244], we
find that all of our values are slightly smaller to an extent that is unlikely to significantly
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affect results and that the values calculated using cRPA partially break the spherical
symmetry we assume for our interaction.

While the Kanamori interaction already restores the spin-𝑆𝑈(2) symmetry of the in-
teraction that is not present in the density-density form, the full interaction can contain
further additional terms that are not included in the Kanamori interaction. Let us first
consider matrix elements𝑈𝑚𝑚𝑚′𝑚′′ and𝑈𝑚′𝑚′′𝑚𝑚 with three different orbital indices in
the basis of spherical harmonics, with conservation of angular momentum allowing
nonzero elements for 2𝑚 = 𝑚′ + 𝑚′′. Either exactly the first two or exactly the last two
indices must be the same to get matrix elements with three different indices. In the
other cases, we could subtract the equal momenta from both sides of the conservation
equation, which would imply that actually only two indices are different, and those
elements are already included in the Kanamori interaction.

Matrix elements with three different indices belong to processes which fill an en-
tirely empty or empty an entirely full orbital in the basis of spherical harmonics, which
we could call the creation or annihilation of an (intraorbital) pair, shown in panels (h)
and (i) in Fig. 4.10. Transformed into the basis of cubic harmonics, we additionally get
three-orbital termswith the index combinations not allowed in the spherical harmonics
due to angular momentum conservation, i.e.𝑈 𝑗𝑖𝑘 𝑗 and𝑈 𝑗𝑖 𝑗𝑘 , which are associated with
processes which involve one hopping and one resting electron that might e.g. be inter-
preted as a sort or generalization of the density-density interorbital repulsion, shown
in panels (f) and (g).

If we instead require that none of the orbital indices be equal, we can also solve
𝑚 + 𝑚′ = 𝑚′′ + 𝑚′′′. These processes are simultaneous hopping processes of two
electrons with all involved orbitals different and represented in panels (j) and (k) of
Fig. 4.10. In CT-HYB the pattern of singly-occupied orbitals is not a good quantum
number either any more with this interaction and we generally use automatic parti-
tioning of the Hamiltonian on top of total occupation and a component of total spin to
reduce superstate sizes further.

4.1.8 Conclusions

Our solution of an AIM at low temperatures reveals the importance of a realistic local
interaction and inclusion of all five 3𝑑-shell orbitals for an accurate description of the
Kondo screening in the prototypical Co/Cu(001) system. The density-density approx-
imation leads to a near-perfect realization of the 𝑆 = 1 Kondo effect as explained by
Nevidomskyy and Coleman [249] with an estimated Kondo temperature on the order
of 1 K or below, no screening discernible even at half the experimental temperature, and
only the two Kondo-active orbitals 𝑑𝑧2 and 𝑑𝑥𝑦 relevant as the others are always full. If
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we switch to the full spherical Coulomb interaction instead, the filling of the 3𝑑-shell
is noticeably shifted from the full to the less full orbitals, leading to strong correlations
between all of them in the process. The local moment has significant contributions
from the entire 3𝑑-shell then and the increase of charge fluctuations disrupts the 𝑆 = 1
spin alignment tendency caused byHund’s coupling. The system exhibits considerable
dynamically screening of still approximately the same instantaneous moment even at
room temperature, and the Kondo temperatures approaches the experimental value
with resonances in the spectra of primarily the “Kondo-active” orbitals at the Fermi
energy that are already clearly visible there. Although even in this realistic model it
is thus these two orbitals that are the most significant, this demonstrates that due to
the entanglement of the entire shell a separate treatment of the two orbitals or approx-
imative treatment of the interaction cannot possibly be accurate and would likely lead
us to characterize the Kondo screening process incorrectly. While our analysis of this
Kondo impurity system is on a slightly more abstract level than many references that
e.g. directly consider specific STM setups or other details that we could have included
in our DFT step, our conclusions are a direct consequence of the local interaction on
the impurity site and possibly relevant to even many other systems of cobalt and other
transition metal impurities.
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4.2 Kondo effect of a cobalt atom embedded into linear
clusters of copper atoms on a Cu(111) surface

In this section, we report and try to interpret experimental results for the spectroscopy
of one-dimensional atomic “wires” Cu𝑚CoCu𝑛 made up of up to several non-magnetic
copper atoms and one magnetic cobalt atom on a copper Cu(111) surface using a scan-
ning tunneling microscope. From the line shapes of the Abrikosov-Suhl Kondo reso-
nance, a significant dependence of the Kondo temperature on the amount of copper
atoms can be inferred, including a total absence of the resonance at the experimental
temperature of 5 K in two cases. We perform first-principles calculations combining
the density-functional theory (DFT) with the continuous-time quantum Monte Carlo
solution of a DFT-parameterized Anderson impurity model (AIM) in an attempt to
explain the variance in Kondo temperatures, but only qualitative agreement with the
nonzeroKondo temperatures is foundwith calculated quantitative differences between
the clusters not following the experimentally determined ones and no quenching of the
Kondo effect in any of the calculations.

This section is based on the following article, Ref. [286], which is also the source of the figures

N. Néel, J. Kröger, M. Schüler, B. Shao, T. O. Wehling, A. Kowalski, and G. Sangiovanni,
“Single-Co Kondo effect in atomic Cu wires on Cu(111),”

Phys. Rev. Res. 2, 023309 (2020)

4.2.1 Introduction

Since we revisit Kondo systems [28] similar to the one we have considered previously
in Sec. 4.1, the context outlined in Sec. 4.1.1 applies. The experimental results¹ we re-
port involve the spectroscopic detection of the Abrikosov-Suhl Kondo (ASK) resonance
[222–224] due to the appearance of a low-energy many-body state at the Fermi surface.
Photoemission and inverse photoemission experiments were able to demonstrate the
existence of spectral features matching the expected ASK resonances before [287–293],
but here the assembly and spectroscopy of the atomic wires was performed using a
scanning tunneling microscope (STM). In the last three decades [231, 233, 234], STM
spectroscopy (STS) has contributed considerably to the experimental investigation of
magnetic impurities on metallic surfaces and the characterization of the Kondo effect
in these systems reviewed e.g. in Refs. [294–296].

In STS, the ASK resonance is reflected in a feature near zero bias [231] in the differ-
ential conductance d𝐼/d𝑉 with current 𝐼 and sample bias voltage 𝑉 . This is generally

¹by our collaborators Nicolas Néel and Jörg Kröger at TU Ilmenau

98



expected to appear as a Fano line shape [235, 236] that takes the interference between
electrons tunneling directly into the conduction bands and indirectly through the ASK
resonance state into account [231, 233, 297], which is however not a requirement for the
line to take this shape [227, 237]. The resonance width at zero temperature is related
to the Kondo temperature, and variations of the resonance line shape are used as ex-
perimental probes of the system properties, cf. e.g. Refs. [229, 247, 298–306] and many
more. Of particular relevance for the present investigation is Ref. [307], in which the
local electronic structure of the impurity wasmodified by embedding it in compact flat
clusters of a varying number of additional Cu atoms and a nonmonotonic dependence
of the Kondo temperature on the cluster size was found.

The experiment performed here deviates from that in Ref. [307] in the geometry of
the surface Cu clusters in which the Co atom is embedded, which was a compact clus-
ter of neighboring atoms there and is a linear wire here, with additional Cu atoms
extending ever further away from the impurity the more are added. We apply the
first-principles combination of density functional theory (DFT) with the solution of an
Anderson impurity model derived for the impurity using numerically exact CT-HYB
as previously discussed in Sec. 4.1.2 in an attempt to reproduce the results. This allows
the incorporation of the DFT electronic structure that changes in response to the addi-
tion of atoms into the in principle unapproximated solution of themany-body problem
of the correlated electrons in the impurity orbitals.

4.2.2 Experimental results

Single Co atoms were deposited on a cleaned Cu(111) surface with an electron beam
evaporator and a STM in ultrahigh vacuum at a temperature of 5 K was used to transfer
single Cu atoms onto the surface [308], assemble the linear Cu𝑚CoCu𝑛 clusters [309,
310], record surface images at constant current, and measure differential conductance
spectra as the current response to a sinusoidally varied bias voltage determined with
a lock-in amplifier when the tip centers on the Co atom.

Recorded imaged of the linear clusters are shown as height profile heatmaps in the
panels in the left half of Fig. 4.11. It is recognizable that the apparent height of the Co
impurity increases as up to two Cu atoms are added to the atomic wire and that the Co
atoms in a wire appear higher that any of the Cu atoms in the wire in all cases.

Differential conductance spectra are shown in the right panels of Fig. 4.11 and fitted
using a linear background and a Fano line shape 𝑓 (𝑉) = 𝑎(𝑞 + 𝜀)2/(1+ 𝜀2) with ampli-
tude 𝑎, Fano asymmetry parameter 𝑞, and energy difference from the resonance energy
𝜖0 relative to its width 𝜀 = (𝑒𝑉−𝜀0)/(𝑘𝐵𝑇𝐾)with electron charge 𝑒, bias voltage𝑉 , Boltz-
mann constant 𝑘𝐵 and Kondo temperature 𝑇𝐾 . Kondo temperatures determined from
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Figure 4.11: Left half: Height profiles of theCu𝑚CoCu𝑛 atomic clusters in top view onto
the Cu(111) surface measured by STM as a heat map, with the cluster size
(𝑚, 𝑛) given in each panel. In the single atom image (a), a crystallographic
⟨110⟩ direction is indicated, the field of view for the clusters shows an area
of 2.6×4 nm2, and the scale goes from an apparent height of 0 pm to 120 pm.
Right half: Differential conductance spectra d𝐼/d𝑉 around zero bias volt-
age for a single atom and chains extended in only one direction in panel
(a) and chains extended in both directions in panel (b). Spectra are shifted
in vertical direction for clarity, labeled with (𝑚, 𝑛) again, and fitted with
Fano line shapes drawn as red solid lines in cases where an ASK resonance
was recognizable, which are all except for (2, 1) and (2, 2)

these fits are given in Tab. 4.2.
TheKondo temperature, determined as𝑇𝐾 = (51±2)K for a single Co atom, varies be-

tween (38±3)K and (112±7)K as a function of the cluster size, but no Kondo resonance
at all is found at the experimental temperature of 5 K for Cu2CoCu1 and Cu2CoCu2. The
Kondo temperatures for a singleCo atomagreewith previously foundvalues [228, 307].
Addition of Cu in only one direction almost doubles the Kondo temperature with the
first atom, in qualitative agreement with Ref. [307], which drops back to roughly con-
stant values about one and a half times the single-Co value with the addition of any
further atoms in that direction. The rest of the results are mostly in about that same
region as well, except for maxima in the Kondo temperatures for a symmetric amount
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𝑚

𝑛 0 1 2 3 4 5

0 51 ± 2 112 ± 7 82 ± 2 77 ± 2 77 ± 2 75 ± 2
1 112 ± 7 71 ± 2 no resonance 80 ± 7 38 ± 3
2 82 ± 2 no resonance no resonance 79 ± 7 39 ± 5
3 77 ± 2 80 ± 7 79 ± 7 110 ± 8 74 ± 5
4 77 ± 2 38 ± 3 39 ± 5 74 ± 5 96 ± 10 77 ± 6
5 75 ± 2 77 ± 6 76 ± 5

Table 4.2: Kondo temperature𝑇𝐾[𝐾] ofCu𝑚CoCu𝑛 determined from the Fano line shape
fit parameters of the differential conductance spectra shown in the right half
of Fig. 4.11.

of atoms on both sides for 𝑚 = 3, 4 but not 𝑚 = 5 and unusually low ones for a long
chain𝑚 = 4 on one side and a short chain 𝑛 = 1, 2 on the other. The Kondo temperature
for the linear CuCoCu cluster measured here is less than a third of that of the compact
CoCu2 cluster measured in Ref. [307], demonstrating an importance of geometry rather
than just size.

4.2.3 Density functional theory

VASP [256, 257] with the projector-augmented plane wave (PAW) [257, 258] basis set
and the PBE [311] generalized gradient approximation as exchange-correlation func-
tional was used to perform DFT calculations for a supercell of 3× 13× 1 unit cells with
three surface layers of Cu atoms for structural relaxation and five surface layers for
hybridization function calculations.

Both spin-polarized and non-spin-polarized calculations were performed and the
spin-polarized solutions were found to be energetically favorable for each cluster in-
dependently of whether the relaxed adsorption distances of the Co atom per calcula-
tion or fixed equal adsorption distances in the range between the polarized and non-
polarized solution were used. With spin polarization, a local magnetic moment of
slightly less than 2𝜇𝐵 in units of the Bohr magneton 𝜇𝐵 tends to form at the Co sites
of all clusters and the relaxed adsorption distances of the Co atoms of about 185 pm
are about 10 pm higher than without spin-polarization in all clusters. Local moments,
adsorption distances, and total energy differences due to spin-polarization of the clus-
ters without experimentally observed ASK resonance are not systematically lower or
otherwise different from those of clusters with observed resonance.

As a consistency check of relaxed DFT geometries against experimental cluster ge-
ometries, the dependence of the resonance energy of an unoccupied 𝑝𝑧 orbital signif-
icantly above the Fermi energy on the cluster size was calculated and found to agree
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Figure 4.12: Panel (a): Relaxed structures from spin-polarized DFT calculations of lin-
ear Cu𝑚CoCu𝑛 clusters on a Cu(111) surface shown in side view (left) and
top view (right) with the Co atom in red and (𝑚, 𝑛) per row given in the
middle. Panel (b): Real and imaginary parts of the orbital-averaged hy-
bridization functions on the real frequency axis for the AIMs modeling
the Co impurity atoms in all clusters, with the legend in Panel (c) giving
(𝑚, 𝑛). Panel (c): Zoom on the imaginary parts shown in panel (b) close to
the Fermi energy.

with the dependence of the peak position in the STM spectrum. The relaxed structures
of the linear Cu𝑚CoCu𝑛 clusters on the surface are shown in panel (a) of Fig. 4.12.

Hybridization functions and local levels for the Anderson impurity models (AIMs)
describing the Co impurity atoms in all clusters are extracted from theDFT calculations
as described in Sec. 4.1.2 and Refs. [182, 260, 261]. Hybridization functions averaged
over orbitals for all cases with a broadening of 0.31 eV are shown in panel (b) and a
closer zoom of their imaginary parts around the Fermi energy in panel (c) of Fig. 4.12.
The broadening was chosen high enough to smoothen peaks in the function and make
it comparable between the different clusters. We find that the hybridization functions
are overall rather similar in shape and magnitude for the different clusters and also
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roughly agree with hybridization functions previously used for cobalt impurities on
copper surfaces, cf. Refs. [244, 251]. As expected, the magnitude of the hybridization
function of the cobalt impurity also roughly increases with the number of neighboring
atoms, for whichwe can again consider panels (b) and (c) of Fig. 4.12. There black color
indicates the single Co impurity, blue clusters with Cu atoms on one side of the cobalt
atom only, yellow those with at least one Cu atom on each side, and red those with at
least two Cu atoms on each side.

As a rough relation between Kondo temperature and the hybridization function at
the Fermi energy 𝐸𝐹 we can use

𝑇𝐾 ∝ exp
(︃
− 𝜋𝑈

𝑀 |Im(Δ(𝐸𝐹 + 𝑖0+))|

)︃
(4.23)

with local interaction𝑈 and a factor𝑀 depending on the number of orbitals following
from a scaling analysis for the multi-orbital Kondo problem [225, 273]. We can read
off the relevant values of the hybridization function from panel (c) of Fig. 4.12 and
compare the experimental Kondo temperatures given in Tab. 4.2. While we would
expect 𝑇𝐾 to rise strongly for increasing |Im(Δ(𝐸𝐹))|, no such trend is recognizable. In
fact, judging from the hybridization function only, we should expect the two systems
without ASK resonance in experiment to have the largest Kondo temperatures. This
formula is obviously a bit simplistic in its treatment of hybridization and interaction,
for which we moreover use orbitally averaged values. Even just the form of the local
interaction for otherwise unchanged magnitude can have a dramatic effect on local
spin and charge fluctuations and the screening of the local moment [183, 252], so let us
proceed to see whether the numerically exact treatment of correlations on the impurity
can elucidate the situation.

4.2.4 Continuous-time quantum Monte Carlo simulations

We perform calculations using the continuous-time quantum Monte Carlo method in
hybridization expansion (CT-HYB) as implemented in w2dynamics [40] to solve Ander-
son impurity models parameterized based on the DFT results of the previous section
numerically exactly. The input quantities extracted from DFT results are the energies
of the impurity levels and the diagonals of the hybridization function, while we ig-
nore the offdiagonal elements of the hybridization function because they are of small
magnitude but would increase the necessary numerical effort considerably. As double
counting correction we set the chemical potential to the value that allows us to reach a
total occupation of 𝑛𝑑 = 8.0 of the cobalt 3𝑑-shell [260].

For the local interaction, we choose the full spherically symmetric Coulomb interac-
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tion because simplified forms of the local interaction can cause significant deviations
in Kondo temperatures and spectra [183, 252]. Our interaction parameters are usually
𝑈𝑆 = 4.0 eV and 𝐽𝑆 = 0.9 eV, which were determined for cobalt atoms in the bulk in
Ref. [38] and shown to be approximately equal to the parameters for cobalt atoms on
a surface in Ref. [269]. These values of the parameters 𝑈𝑆 and 𝐽𝑆, whose definitions
can be found in Sec. 4.1.7, correspond to approximately 𝑈𝐾 = 5.0 eV and 𝐽𝐾 = 0.64 eV
with alternative parameters 𝑈𝐾 and 𝐽𝐾 defined as orbital averages of the intraorbital
repulsion and Hund’s coupling, cf. Ref. [39, 268]. When we later consider the effect
of changes of 𝑈 and 𝐽 on the Kondo temperature, we will give numerical values of
these averages 𝑈𝐾 and 𝐽𝐾 rather than 𝑈𝑆 and 𝐽𝑆. We neglect deviations from spherical
symmetry since they were shown to have minor effects on 3𝑑 orbitals [312].

Our investigation of the Kondo effect in the Cu𝑚CoCu𝑛 clusters is based on quanti-
ties evaluated from CT-HYB results for the Matsubara Green’s function as we previ-
ously did in Sec. 4.1.6, without calculating spin-correlation functions, and we focus on
trying to compare the clusters with and without experimentally observed ASK reso-
nance. Distinguishing the clusters without observed ASK resonance by checking for
the absence of a Fermi liquid state using the “first-Matsubara-rule” [164] for the low-
temperature evolution of the low-frequency behavior of the imaginary part of the self-
energy of a Fermi liquid on the Matsubara axis was unsuccessful.

Therefore we proceed with a quantitative analysis of the Kondo temperature scale,
using the equation

𝑇𝐾,𝑚 = −𝜋
4 𝑍𝑚 Im(Δ𝑚(0)) (4.24)

for the Kondo temperature from renormalized perturbation theory [251, 313, 314],
where 𝑍𝑚 is the quasiparticle weight of orbital𝑚, a quantity that measures the amount
of spectral weight contributing to the coherent quasiparticle peak compared to the to-
tal spectral weight, cf. Sec. 2.4, and Δ𝑚 the hybridization function for orbital 𝑚. Since
this directly gives us theoretical estimates for the Kondo temperature, it seems like an
obvious choice for comparison with the experimental Kondo temperature. The latter
is however one single temperature for the entire multi-orbital system determined ex-
perimentally from theASK resonancewidthwhile our estimates are orbital-dependent
andwould rather correspond to thewidths of the individualASK resonances in orbital-
resolved spectra.

We calculate estimates for the orbital-dependent quasiparticle weights as difference
quotients of the imaginary part of the CT-HYB Matsubara Green’s function,

𝑍𝑚 =
Im(Σ𝑚(𝑖𝜔1)) − Im(Σ𝑚(𝑖𝜔0))

𝜔1 − 𝜔0
, 𝜔𝑛 =

(2𝑛 + 1)𝜋
𝛽

, (4.25)
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Figure 4.13: Left panel: Comparison of theoretical 𝑇𝐾,𝑚 estimates from CT-HYB results
for quasiparticle weights 𝑍𝑚 per orbital of the cobalt 3𝑑-shell and orbital-
averaged (Avg.) with experimentally determined Kondo temperature 𝑇𝐾
of the system (Exp.) determined from the width of the ASK resonance or
zero in the cases where no resonance was observed. Data is shown for all
clusters with both experimental and theoretical results and the x-axis label
(𝑚, 𝑛) indicates cluster Cu𝑚CoCu𝑛 . Right panel: Orbital-resolved spectral
functions𝐴(𝜔) obtained bymaximum entropy analytic continuation of the
Matsubara Green’s function from CT-HYB calculated for a temperature of
𝑇 = 46 K for the cluster Cu0CoCu2 with Kondo temperature 𝑇𝐾 = 82 K
(top panel) and the two clusters Cu0CoCu2 (middle panel) and Cu0CoCu2
(bottom panel) without experimentally observable ASK resonance.

for all clusters for which CT-HYB calculations were done and show the resulting tem-
peratures per orbital as well as the orbital average and the experimental value deter-
mined from the ASK resonance width in the left panel of Fig. 4.13. In the cases where
an experimental Kondo temperature could be determined, the average of the theoret-
ical values does not quantitatively match, but gives the right idea qualitatively and is
never off by more than a factor of two. In the cases where no ASK resonance could be
observed in experiment, indicated in the figure with an experimental Kondo tempera-
ture of zero, the theoretical result is qualitatively incorrect. The theoretically estimated
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Figure 4.14: Theoretical 𝑇𝐾,𝑚 estimates from CT-HYB results for quasiparticle weights
𝑍𝑚 per orbital of the cobalt 3𝑑-shell (dots), orbital-averaged (diamonds),
and experimentally determined Kondo temperatures 𝑇𝐾 (squares) deter-
mined from the width of the ASK resonance or zero in the cases where
no resonance was observed. The assignments of colors to orbitals can be
found in the legend of the left panel of Fig. 4.13. Titles (𝑚, 𝑛) above the
panels indicate that the data of the panel applies to cluster Cu𝑚CoCu𝑛 .
In the three panels on the left the intraorbital repulsion 𝑈 and the aver-
age Hund’s coupling 𝐽 are individually varied from their default values of
𝑈 = 5.0 eV and 𝐽 = 0.64 eV, based on first-principles calculations [38, 269],
to investigate the dependence of the Kondo temperature on the strength
of the interaction. In the four panels on the right, the adsorption height
of the cobalt atom in the DFT calculations is changed by 𝛿 = 10 pm from
the value 𝑧0 obtained by structural relaxation in DFT of around 185 pm
(slightly dependent on the cluster) and CT-HYB calculations are repeated
with the new local levels and hybridization functions to investigate the de-
pendence of the Kondo temperature on the adsorption height.

Kondo temperatures for the two clusters without observed ASK resonance are qualita-
tively the same as for the other clusters with observed ASK resonance and in fact even
the largest of all Kondo temperature estimates, in agreement with the observation that
the hybridization functions of these two clusters calculated using DFT were those of
the largest magnitude near the Fermi energy, cf. Fig. 4.12. Since we used the same local

106



interaction and same target filling for all clusters and they consequently differed in the
local levels and hybridization functions fromDFT only, this was to be expected because
there were no significant qualitative differences of the DFT results depending on the
cluster.

Let us further have a look at the corresponding spectral functions 𝐴(𝜔) = − Im(𝐺𝑅(𝜔))
𝜋

that tell us the single-particle excitations of the correlated many-body system, where
we obtain the retarded Green’s function 𝐺𝑅(𝜔) from the CT-HYB result for the inter-
acting impurity Green’s function 𝐺(𝑖𝜔𝑛) on fermionic Matsubara frequencies 𝜔𝑛 . We
analytically continue the Green’s function from 𝑖𝜔𝑛 to 𝜔+ 𝑖0+ using the maximum en-
tropy method [168, 170, 173, 174], which is able to give qualitatively accurate results in
a limited frequency range around the Fermi energy. We show the spectral functions of
the two clusters (1, 2) and (2, 2)without experimentally observed ASK resonances and
of the cluster (0, 2) with experimentally determined Kondo temperature 𝑇𝐾 = 82 K in
the right panels of Fig. 4.13, calculated at a temperature of 𝑇 = 46 K. We find again that
there are no systematic differences between the clusters, with peaks around the Fermi
energy of similar size and similar orbital structure in all three cases consistent with the
DFT input but not with experiment.

In order to explore possible reasons for this failure of the theoretical estimates to re-
produce the absence of the ASK resonance in two of the clusters, we check the depen-
dence of estimated Kondo temperatures on parameters of the interaction and struc-
ture. We start by individually increasing one of the local interaction parameters, i.e.
the average intraorbital repulsion𝑈 or Hund’s coupling 𝐽, by a quarter of their default
values 𝑈 = 5.0 eV and 𝐽 = 0.64 eV and recomputing the Kondo temperature estimates,
shown in Fig. 4.14. Since no considerable change due to this increase of 𝐽 was recogniz-
able in the Kondo temperature estimates for the cluster Cu2CoCu2, we further checked
whether increasing 𝐽 by three quarters or decreasing it by one quarter cause a more
pronounced effect, but the dependence of the Kondo temperature on Hund’s coupling
𝐽 is rather weak and not noticeably systematic in the entire range of values we con-
sidered, with the orbital-averaged Kondo temperature estimate varying between 178 K
and 211 K. An increase of 𝑈 from 5.0 eV to 6.25 eV instead significantly reduces the
orbital-averaged Kondo temperature estimate to 95 K for the cluster Cu2CoCu2, about
half of its original value 191 K. We also verify the generalizability of the effect of 𝑈 by
performing the same test for the cluster Cu1CoCu0, where we find a similar reduction
in the Kondo temperature estimate from 97 K to 54 K.

Another possible cause of the discrepancy could be inaccuracies already on the level
of the DFT structure. To examine the dependence of the results on the structure, we
recompute results for the two clusters without observed resonance, Cu2CoCu1 and
Cu2CoCu2, as well as the clusters Cu2CoCu0 and Cu2CoCu3 with experimentally de-
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termined Kondo temperatures of 𝑇𝐾 = 82 K and 𝑇𝐾 = 79 K after changing the adsorp-
tion height of the cobalt atom from its value after structural relaxation 𝑧0 by a distance
of 𝛿 = 10 pm. The results shown in the right half of Fig. 4.14 demonstrate a consid-
erable increase of Kondo temperature estimates for lower distances and decrease of
Kondo temperature estimates for higher distances, with about a factor of two between
the lowest and highest adsorption heights differing by 20 pm. Different quantitative
responses of the estimates per orbital also point to a dependence on the cluster of the
variation of the orbital-resolved contributions to the spectra as the adsorption distance
is changed, but the dependence of their average is similar for the considered clusters.

4.2.5 Conclusions

Surrounding a cobalt impurity atom on a Cu(111) surface by additional copper atoms
to form a linear “atomic wire” cluster Cu𝑚CoCu𝑛 was shown by scanning tunneling
spectroscopy to cause significant changes to the line shape of the ASK resonance, lead-
ing to variations of the Kondo temperatures between about 40 K and 110 K for cluster
sizes 𝑚, 𝑛 ≤ 5 and most interestingly the apparent suppression of the Kondo effect in
the clusters Cu2CoCu1 and Cu2CoCu2.

CT-HYB calculations for impurity models of the cobalt adatoms with full spherical
Coulomb interaction based on parameters from first-principles calculations and with
local levels and hybridization functions extracted from DFT-GGA calculations for re-
laxed structures of the clusters lead to estimates for Kondo temperatures between about
100 K and 200 K. Agreement with the theoretical estimates is thus at most qualitative,
with the calculations failing to reproduce the experimental values by up to about fac-
tors of two, failing to reproduce the quantitative differences between clusters correctly,
and describing the clusters without experimentally observable ASK resonances as sys-
tems with Kondo temperatures around 200 K similar to the other clusters and in con-
tradiction to the spectroscopic results.

Variations of the system parameters with the intention of revealing possible causes
of this discrepancy indicate only minor effects of even large changes of the average
Hund’s coupling 𝐽 on theKondo temperature estimates, but a significant systematic de-
pendence on the average intraorbital repulsion𝑈 and adsorption heights of the cobalt
adatom. Slight tuning of these parameters was shown to be able to easily halve or dou-
ble the resulting Kondo temperature for some exemplary clusters. While slight devia-
tions of these parameters may be responsible for some of the quantitative differences
between experimental results and theoretical estimates, unrealistically large changes
would be needed to explain the complete absence of the ASK resonance in two of the
clusters. Apart from changes in such parameters, there may be other inaccuracies in
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the simulations responsible for the qualitative mismatch with experiments, such as
insufficient momentum grids or supercell sizes in DFT, the transmission function or
structural influence of the STM tip, an insufficient basis set of orbitals included in the
impurity model, substantial deviations of the interaction parameters or symmetry in
such linear clusters, assumption of an incorrect filling of the cobalt 3𝑑-shell, and the
disregard of spin-orbit interaction and other relativistic effects, particularly if e.g. the
observed spectral anomaly at zero bias turns out to be caused by spin excitations rather
than the Kondo effect as recently proposed [240–242].

The surprisingly strong dependence of the electronic structure of magnetic adatoms
on the exact size of the linear cluster, where apparently even the existence of resonance
at zero bias effectively depends on the presence or absence of an atom several sites
down the atomic wire, shows a considerable complexity that poses a significant chal-
lenge to theoretical descriptions. While our state-of-the-art combination of DFT with
CT-HYB for the accurate capture of the behavior of correlated electrons on an impurity
was mostly able to describe the clusters qualitatively correctly, the fact that it failed for
the two clusters without observed ASK resonance and quantitative deviations show a
potential of the systems to serve as quantitative benchmarks for future improvements,
although their exact modeling may depend on experimental details such as the STM
tips [239, 315] that may be insufficiently precisely characterized here.
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4.3 Dependence of spin screening on the adsorption site
in iron impurities on partially oxygen-reconstructed
niobium surfaces

In this section, we report the detection of Yu-Shiba-Rusinov bound states in iron adatom
impurity systems on a superconducting Nb(110) surface by scanning tunneling spec-
troscopy and the characterization of their energies as strongly dependent on the specific
adsorption site of the considered adatomon the partially oxygen-reconstructed (NbO𝑥)
surface. We use the combination of density functional theory with continuous-time
quantum Monte Carlo to model these systems in the normal state with their different
adsorption sites leadingmost notably to different adsorption distances. The hybridiza-
tion with the substrate and the magnetic moment in DFT are found to be influenced by
the oxygen impurities as well. Results for the spin screening in the Anderson impurity
model allow us to both identify considerably different Kondo scales depending on the
site as found in experiment as well as to establish the reduced adsorption distance on
NbO𝑥 as the main cause of an increased Kondo scale.

This section is based on the following article, Ref. [316], which is also the source of the figures

A. Odobesko, D. Di Sante, A. Kowalski, S. Wilfert,
F. Friedrich, R. Thomale, G. Sangiovanni, and M. Bode,

“Observation of tunable single-atom Yu-Shiba-Rusinov states,”
Phys. Rev. B 102, 174504 (2020)

4.3.1 Introduction

For our final investigation of the screening of impurity atom spins in this thesis we con-
sider iron on niobium, a less conventional system than the cobalt adatoms on copper of
the previous sections. The physical context outlined in their introductions in Sec. 4.1.1
and Sec. 4.2.1 is however highly relevant for this adatom system as well. With niobium
as surface material instead of copper, superconductivity sets in around 𝑇𝑐 = 9.2 K, a
relatively high temperature for an elemental metallic surface. In a superconductor the
spins of magnetic impurities lead to the formation of Yu-Shiba-Rusinov (YSR) bound
states inside the superconducting energy gap [317–320], reminiscent of the Kondo reso-
nance [28, 223, 224, 321] of a normalmetal. Systems consisting of short atomic chains of
such magnetic impurities have recently been proposed to host topologically protected
Majorana fermion quasiparticle states localized at the wire edges [322–327], exemplary
experimental realizations of which have also been reported soon thereafter [328–330].
These quasiparticle states have attracted considerable theoretical and experimental in-
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terest due to their potential to serve as the base for “fault-tolerant” topological quantum
computing [331, 332].

The resonances due to YSR bound states can manifest themselves in different ways.
In the strong coupling limit of a Kondo scale 𝑘𝐵𝑇𝐾 much larger than the superconduct-
ing gap Δ, Cooper pairs are broken to contribute to energetically preferable Kondo
screening and singlet formation [333, 334]. In the opposite case of weak coupling, the
impurity moment cannot be fully screened instead and can be described like a classi-
cal spin as the Kondo temperature becomes negligibly small [335, 336]. A quantum
phase transition between zero and nonzero spin ground states is expected to occur for
comparable values of 𝑘𝐵𝑇𝐾 and Δ when the energies of the two YSR states cross [337–
339]. Using scanning tunneling spectroscopy (STS), not only the regular Kondo effect
but also the behavior of magnetic impurity systems in cases of superconducting host
material has been investigated, which has provided experimental confirmation of the
quantum phase transition and allowed the characterization and manipulation of YSR
states including particularly their energy levels [330, 336, 340–343].

The presented experiments² measure the YSR state energies for various Fe adatoms
deposited on the Nb(110) surface of niobium, partially oxygen-reconstructed due to
impurities [344]. The positions of the YSR resonances vary depending on the indi-
vidual adatom, with adatoms on the clean Nb(110) surface clearly belonging to the
weakly coupled regime and adatoms on the oxygen-reconstructedNbO𝑥 patches being
closer to strong coupling. These two regimes are separated by a quantum phase tran-
sition. We perform calculations using first-principles density functional theory (DFT)
to model the surface-adatom system and extract parameters for the construction of
an Anderson impurity model (AIM) describing the many-body physics of the strongly
correlated electrons of the iron 3𝑑-shell, solved using continuous-time quantumMonte
Carlo in hybridization expansion (CT-HYB). This allows us to identify causes of the
surface-dependent differences in Kondo temperatures measured in the experiment in
the normal state, which is known as discussed above and here also explicitly experi-
mentally shown to be correlated to the YSR state energies in the superconducting state.

4.3.2 Experimental results

Fe atoms were evaporated onto a cleaned [344] Nb(110) surface. Measurements with a
scanning tunneling microscope were performed at a temperature of 𝑇 = 1.17 K below
the superconducting transition temperature, with a substrate-coated superconducting
tip used formeasurements of the YSR resonances for improved energy resolution [340].

²by our collaborators Artem Odobesko, Stefan Wilfert, Felix Friedrich, and Matthias Bode, also in
Würzburg
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Figure 4.15: Panel (a): STM image of the Nb(110) surface with oxygen-reconstructed
patches (dark patterns) and Fe impurities (bright spots) recognizable.
Measurements shown in the other panels refer to the circled and labeled
Fe adatoms, 1 and 2 on clean surface (Fe/Nb) and 3 and 4 on or near oxy-
gen impurities (Fe/NbO𝑥). Panel (b): Apparent height profiles across the
adatom positions along arrow directions. Panel (c): Differential conduc-
tances measured by the STM with superconducting tip (tip gap indicated
by dashed lines) at the adatom positions. Panel (d): Spectra of the sample
at the atom positions obtained by deconvolution of differential conduc-
tanceswith cleanNb(110) spectrum for comparison of gap position dashed
in red.

This necessitates a deconvolution of obtained differential conductance spectra to obtain
the pure spectra of the samples, see panels (c) and (d) of Fig. 4.15 for the difference, with
details given in the supplemental material of Ref. [316], cf. Refs. [340, 345–347].

A STM image of theNb(110) surfacewith oxygen-reconstructedpatches recognizable
by a darkened pattern and the deposited Fe adatoms visible as bright spots is shown
in panel (a) of Fig. 4.15. Exemplary apparent height profiles (in STM constant current
mode along arrow directions in panel (a)), measured differential conductance spectra,
and sample energy spectra deconvolved from these measurements are shown in the
remaining panels of Fig. 4.15 for four adatoms indicated by colored circles and labeled
in panel (a). Atoms 1 and 2 (Fe/Nb) are adsorbed to clean Nb(110), 3 and 4 to or near
the oxygen-reconstructed surface (Fe/NbO𝑥). While the bright Fe impurities inhibit
experimental determination of the adsorption site, we will later compare the possible
geometries using DFT. Apart from atom 1 with a maximum apparent height of only
about 100 pm above the top niobium layer, the three other atoms appear at a height of
about 150 pm.
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Figure 4.16: Panel (a): Differential conductance spectrum (black) of an Fe adatom at
𝑇 = 1.5 Kwith superconductivity suppressed by an externalmagnetic field
of 𝜇0𝐻 = 0.6 T showing a Kondo resonance. The sum of two Fano line
shapes (blue) is fit to the curve, one with Kondo temperature 𝑇𝐾1 = 10 K
(red dashed) and one with Kondo temperature 𝑇𝐾2 = 80 K (green dashed).
Panel (b): Differential conductance spectrum (black) of the same Fe atom
as in (a) at the same temperature without field suppressing superconduc-
tivity, showing peaks in the gap due to Yu-Shiba-Rusinov (YSR) bound
states (vertical dashed black positions near zero 𝑈), with clean Nb(110)
spectrum (red dashed) for comparison of gap position. Panel (c): YSR en-
ergies (triangles) for five different Fe adatoms as a function of their Kondo
temperatures (when superconductivity suppressed), with evaluation for
the example data of the adatom considered in (a) and (b) (two triangles in
black dashed ellipse) indicated with arrows. The quantum phase transi-
tion where the two YSR states energies (fit with gray dashed curves) cross
is indicated by a dashed line and different background coloring of the sep-
arated weak and strong coupling regimes.

All four examples are adsorbed on sufficiently different sites to result in qualitatively
distinguishable spectra. Looking at the deconvolved spectra in panel (d) of Fig. 4.15
with the clean Nb(110) spectrum for comparison, we see that the YSR resonances for
atom 1 are found so close to the gap edges as to be indistinguishable from them, while
in-gap peaks are visible for the other atoms. According to the discussion in the in-
troduction, partially visualized by the diagram in panel (c) of Fig. 4.16, this puts the
atom apparently closest to the surface into the weakly coupled limit. Atom 2, a rarer
case adsorbed to the clean surface, shows 𝛼± peaks still quite close to the gap edge
but clearly distinguishable from it. We should note that much smaller 𝛽± peaks are
visible in the spectra as well, but for the moment we do not include them in our anal-
ysis. Proceeding to the Fe/NbO𝑥 examples corresponds to a much larger shift in the
spectrum. In the spectrum of atom 3, the YSR states have both moved near the Fermi
energy and sufficiently close to be hardly distinguishable. This situation is close to the

113



quantum phase transition between weak and strong coupling (as a function of ratio
𝑘𝐵𝑇𝐾/Δ between Kondo temperature 𝑇𝐾 and superconducting gap Δ) where a clear-cut
distinction from zero modes (MZM) of Majorana bound states that could appear at the
edges of chains of such atoms would be challenging. In the spectrum of atom 4, we
actually find the strong coupling case as we can imagine the YSR states to have crossed
and separated again, i.e. in our order of cases we figuratively move along 𝑘𝐵𝑇𝐾/Δ, cf.
panel (c) of Fig. 4.16. The different height of the two peaks caused by the effect of the
local crystal field on the Fe 3𝑑-shell lets us clearly identify this case as opposed to the
different order in a weak coupling case [335, 340, 348–350].

To quantify the shift fromweak to strong coupling, the measurement of normal state
Kondo temperatures 𝑇𝐾 is necessary. This can be done with the same experimental
setup by suppressing superconductivity with an applied external magnetic field. At
the atom positions, differential conductance spectra like the example shown in panel
(a) of Fig. 4.16 are measured, which in the case of our Fe impurities can be fit with
two Fano line shapes [236] each to determine the Kondo temperatures from the opti-
mal fit parameters, cf. Sec. 4.2.2. We shall see that the lower one is clearly the relevant
one for our purposes, cf. also the values for both given in the supplemental material of
Ref. [316] where the lower one also does vary with the Fe impurity in a similar manner
as the YSR state energies as expected while the higher one is approximately indepen-
dent of the specific impurity. Using the positions of the YSR resonances in spectra
measured in the superconducting state like the ones we previously considered and the
example in panel (b) of Fig. 4.16, we can determine the YSR state energies as shown in
panels (b) and (c) of that figure and plot the energies of both states against the lower of
the two Kondo temperatures per Fe impurity to create panel (c).

In this resulting panel (c) of Fig. 4.16, we can remarkably fit the two times five data
points obtained from five different Fe impurities reasonably well using the weak cou-
pling YSR state energy formula

𝜀±
Δ

= ±1 − 𝑎2

1 + 𝑎2 , (4.26)

derived under the assumption of a classical spin [318, 319]. Ordinarily, here 𝑎 = 𝐽𝑚𝜋𝜌0

with the exchange coupling 𝐽, impurity magnetic moment 𝑚 and the density of states
𝜌0 at the Fermi energy in the normal state. For the fit, 𝑎 = 𝑘𝐵𝑇𝐾/(0.72Δ) is used³, where
the numerical factor 0.72 best approximates the data points and gives a position of
the YSR state crossing and quantum phase transition between the weak and strong
coupling regimes at 𝑘𝐵𝑇𝐾 = 0.72Δ, only slightly below the value experimentally found

³Considering e.g. Wilson’s NRG result for spin-1/2 [57], we actually have 𝑇𝐾 ∝
√︁
𝐽𝜌0 exp(−1/(2𝐽𝜌0)),

which is not proportional to 𝑎 ∝ 𝐽𝜌0. Apart from a temperature rescaling, which would be compen-
sated anyway by a change in the fit parameter 0.72, solving Wilson’s 𝑇𝐾 for 𝐽𝜌0 and inserting that as
𝑎 into (4.26) however results in a curve of almost the same shape as simply using 𝑎 ∝ 𝑇𝐾 .
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for the transition in Mn-phthalocyanine on Pb(111) [340, 351], and the general form of
the dependence is in qualitative agreementwith theoretical numerical results [337–339,
352, 353].

Since the largest effect on the peak positions seems to be caused by the vicinity of
adatoms to oxygen-reconstructed patches, an experimental attempt to exclude other
possible causes is done. An iron atom on the oxygen-reconstructed patch with YSR
states significantly inside the gap is moved onto a clean spot on the Nb(110) surface us-
ing the STM tip [354], allowing both the confirmation of the presence of oxygen as well
as YSR energies often barely distinguishable from the gap edges for atoms on the clean
surface. Conversely, another atom at first on the clear surface with just such a spectrum
is then moved next to the oxygen-reconstructed patch resulting in the appearance of
YSR resonances in the gap and then brought to its center, which shifts the resonances
closer to 𝐸𝐹.

In light of theYSR state energy formula (4.26) in theweak coupling limit [318, 319] the
experimentally found connection between the presence of oxygen and YSR resonances
deeper inside the gap seems contrary to expectation. Oxygen adsorption to the surface
is known to have an influence that rather hampers the surface magnetization [355–
357]. Further we would rather expect the interaction 𝐽 to be lower as the Fe adsorption
distance increases, which the higher apparent height of Fe/NbO𝑥 measured with the
STM would suggest. Both of these points should favor a smaller value of 𝑎 and hence
result in YSR resonances closer to the gap edge, contrary to the observed behavior.
For a theoretical analysis beyond the classical spin result that clears up this apparent
inconsistency, we turn to the first-principles calculations that combine DFT with the
exact solution of the strongly correlated many-body system of the quantum impurity
with local moment from the 3𝑑 electrons. We benefit from the established connection
between YSR state energies and normal state Kondo temperatures, cf. Fig. 4.16, which
allows us to perform calculations without explicit consideration of superconductivity.

4.3.3 Density functional theory

VASP [256, 257] with the projector-augmented plane wave (PAW) [257, 258] basis set
and the PBE [311] generalized gradient approximation as exchange-correlation func-
tional was used to perform DFT calculations for the unit cells shown viewed from the
top in panel (a) and viewed from the side in panel (c) of Fig. 4.17, where the case
of the pure surface Fe/Nb(110) is shown in the top panels and that of the oxygen-
reconstructed one Fe/NbO𝑥 in the bottom panels. The positions of the golden balls in
the unit cell are the lowest energy equilibrium adsorption sites of Fe adatoms, with
adsorption distances relative to the top surface layer of 170 pm for Fe/Nb(110) and
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Figure 4.17: Panel (a): Unit cells used in DFT calculations for Fe (golden) adatoms
on clean (top) and oxygen-reconstructed (bottom) Nb(110) surface viewed
from the top. The corresponding side view is found in insets of Panel (c).
Panel (b): Contour plot of the charge density profiles viewed from the
side. The global maxima in the plots center on the Fe adatoms. In spite
of the shorter adsorption distance (vertical position of the center of the
density maximum relative to the top layer) in the oxygen-reconstructed
case (bottom), the charge density above the adatom at equal surface dis-
tance is higher than in the case of a clean surface (top), leading to higher
apparent heights in the STM images, cf. Fig. 4.15. Panel (c): Imaginary
parts of the real-frequency hybridization functions for the impurity 3𝑑-
shell summed over orbitals, for energetically preferred equilibrium ad-
sorption sites (green), secondary sites (blue, dashed sites in (a)), and sen-
sitivity check (red dashed). Panel (d): Spin-polarized (majority spin posi-
tive, minority spin negative) DFT density of states resolving contributions
by Fe adatom 3𝑑-shell (golden) and Nb surface 4𝑑-shell (gray) states.

134 pm for Fe/NbO𝑥 . In both cases one of the less favorable other sites is shown as
a blue dashed circle in panel (a). We assume that the difference between the two atoms
adsorbed on clean Nb(110) that showed different spectroscopic results in experiment,
atoms 1 and 2 in Fig. 4.15, is caused by atom 1 being adsorbed at the most favorable
fourfold hollow site 𝐻4 and atom 2 being adsorbed in a threefold hollow site 𝐻4𝑑 in-
stead.

The Fe atom on NbO𝑥 is adsorbed closer to the surface than in the case of a Nb(110)
surface, which suggests a larger charge density at the impurity on the oxygen-recon-
structed surface than that of an impurity on the clean surface. The data shown in con-
tour plots of a vertical section through the impurity of the DFT charge density in panel
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(b) of Fig. 4.17 confirms this. Comparing the two cases, we find that although the center
of the charge density is at a lower height for the impurity on the oxygen-reconstructed
surface, the charge density at the same distance from the surface is actually greater
above an impurity on NbO𝑥 than above an impurity on Nb(110) because of its greater
value at the impurity in the former case. This means that an impurity at the favorable
site on NbO𝑥 appears higher in the constant current STM profiles than an impurity at
the favorable site on Nb(110) although its actual adsorption distance is lower, just as it
was shown in panel (b) of Fig. 4.15.

The adatom distance to the surface has a considerable influence on the electronic
structure including the Kondo scale of the impurity, which is e.g. reflected in the hy-
bridization function. Using the procedure summarized in Sec. 4.1.2, cf. Refs. [182, 260,
261], the hybridization function can be calculated from DFT, and the imaginary part of
the hybridization function summed over all Fe 3𝑑-orbitals is shown in Fig. 4.17, where
the functions for the favorable adsorption sites are shown in green. Around the Fermi
level, its value is higher and also its shape generally different for the impurity on the
oxygen-reconstructed surface with the lower surface distance than for the impurity on
clean Nb(110). This by itself suggests a higher Kondo temperature according to the
crude estimate of 𝑇𝐾 (4.23) from DFT quantities only we have considered previously
in Sec. 4.2.3, although a many-body method for strongly correlated electrons like CT-
HYB should be for a proper investigation of many-body effects like the Kondo effect
since DFT is not able to capture strong correlation correctly. There, we represent the
five orbitals of the strongly correlated 3𝑑-shell of the Fe adatoms as Anderson impurity
models including a orbitally uniform interaction of Kanamori form with screened in-
teraction parameters, with the impurity single-particle energy levels and hybridization
function taken from DFT. The hybridization function describes hopping processes of
electrons from the impurity orbitals (the Fe 3𝑑-shell) to a bath (the electronic environ-
ment of the impurity, i.e. the substrate bands). While the bath is non-interacting in the
Anderson impurity model, this refers to just the sort of interaction that we use for the
strongly correlated impurity orbitals, as the interaction treated by DFT is still included
via its effect on the bands.

On the other hand, when we consider the spin-resolved DOS of the iron 3𝑑-shell,
shown in panel (d) of Fig. 4.17, we find a much smaller imbalance below the Fermi en-
ergy in the case of the oxygen-reconstructed surface than for the clean surface. This re-
sults in amuch smallermagneticmoment𝑚 = 0.9𝜇𝐵 for Fe/NbO𝑥 than for Fe/Nb(110),
𝑚 = 2.2𝜇𝐵. Considering the previously found connection between Kondo tempera-
tures and YSR state energies and the energy formula (4.26), we would expect a reduc-
tion of the Kondo temperature for a decreased moment.

Compared to the clean surface, we have in total an increase of the hybridization
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function due to the closer adsorption distance but a reduced magnetic moment on the
oxygen-reconstructed surface. These changes have an opposite effect on the Kondo
screening scale; considering (4.26) as proxy, the magnitude of the hybridization func-
tion is directly correlated to the exchange coupling 𝐽 between conduction bands and
impurity, which is multiplied with the moment 𝑚. In order to determine the resulting
effect of these opposite influences, we proceed by performing the exact solution of the
strongly correlated problem for the impurity orbitals using the DFT local levels and
hybridization function as input.

4.3.4 Continuous-time quantum Monte Carlo simulation
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Figure 4.18: Left panel: Total static (𝜔 = 0) local spin susceptibility 𝜒loc,𝜔=0(𝑇) as a
function of temperature of the impurity 3𝑑-shell of Fe adatoms adsorbed
in equilibrium positions with relaxed distances 𝑧 = 1.70Å on a clean (solid
black) and 𝑧 = 1.34Åon an oxygen-reconstructed (solid blue) Nb(110) sur-
face, and additionally for an “intermediate case” of adsorption on a clean
surfacewith fictitiously reduced adsorption distance of 𝑧 = 1.34Å (dashed
blue). Curves are fits to the Curie-Weiss behavior of Wilson’s intermediate
temperature NRG fit function 𝜇2

fit/3(𝑇 + 2𝑇𝐾)with moment 𝜇fit and Kondo
temperature 𝑇𝐾 . Right panel: Effective spin of the impurity dynamically
screened at long imaginary times, with total instantaneous (unscreened)
moments given next to the curves and a dashed red 𝑇2 curve for com-
parison (fit to lowest temperatures of oxygen-reconstructed case). For the
more relevant out-of-plane orbitals 𝑑𝑦𝑧 , 𝑑𝑧2 , and 𝑑𝑥𝑧 , the numerical values
of moment fit parameters and effective spin contributions in the equilib-
rium bare surface case at two different temperatures are given in the inset
table (all values in units of the Bohr magneton 𝜇𝐵).
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We use the CT-HYB implementation of w2dynamics [40] to solve the impurity prob-
lem for the iron 3𝑑-shell, with its local single-particle energy levels and the orbital di-
agonals of the hybridization function as input from DFT, neglecting the offdiagonal
elements of small magnitude. Additionally, parameters for the orbitally uniform in-
teraction of Kanamori form 𝑈𝐾 = 3.85 eV and 𝐽𝐾 = 0.72 eV, are taken from Ref. [268]
where they were calculated for bulk iron using cRPA [37, 38, 269]. As double-counting
correction, we fix the chemical potential such that the resulting total occupation of the
3𝑑-shell is the same as in DFT [260].

In order to determine the total effect of the different adsorption surfaces on theKondo
screening of the impurity spin, we calculate the imaginary-time spin-spin correlation
function 𝜒𝑖 𝑗(𝜏) = 𝑔2 ⟨︁

𝑆𝑧,𝑖(𝜏)𝑆𝑧,𝑗(0)
⟩︁
between impurity orbitals 𝑖 and 𝑗 in CT-HYB calcu-

lations for several temperatures and perform an evaluation like in Sec. 4.1.4. To sum-
marize, we compute the static impurity spin susceptibility 𝜒loc,𝜔=0(𝑇) =

∑︁
𝑖 𝑗

∫ 𝛽

0 𝜒𝑖 𝑗(𝜏)
and dynamically screened and unscreened effective spins 𝑆scr

eff = 𝑆eff(𝜏 = 𝛽/2) and
𝑆uns
eff = 𝑆eff(𝜏 = 0), for which we solve 𝑚2(𝜏) = 3

∑︁
𝑖 𝑗 𝜒𝑖 𝑗(𝜏) = 𝑔2𝑆eff(𝜏) (𝑆eff(𝜏) + 1) for

the positive solution of 𝑆eff(𝜏), cf. equation (4.6) and the paragraph around it for amore
detailed explanation.

The static local spin susceptibility and screened effective spin as functions of temper-
ature are shown in Fig. 4.18. We show values for the Fe impurity on a clean Nb(110)
surface (Fe/Nb) at equilibrium adsorption distance 𝑧 = 1.70Å, the impurity Fe/NbO𝑥

on the oxygen-reconstructed surface at its equilibriumadsorption distance (𝑧 = 1.34Å),
and a Fe impurity on a clean Nb(110) surface at the adsorption distance 𝑧 = 1.34Å that
is intended to separate out the change between the other two that originates purely
from the adsorption distance difference. Comparing the susceptibilities, we find a
weak low-temperature dependence approaching the constant Pauli susceptibility for
Fe/NbO𝑥 and Fe/Nb at 𝑧 = 1.34Å, which indicates that screening of the impurity
moments sets in inside of the temperature range where we performed calculations for
these systems. For the Fe/Nb impurity at its equilibrium distance a clear Curie-Weiss
behavior (∝ 𝑇−1) indicating an unscreened moment can instead be recognized over the
entire temperature range of our calculations, which go down to 𝑇 = 14.5 K in that case.
This is confirmed by the screened effective spin, which has an inflection point⁴ around
40 K that can serve as a proxy for the Kondo temperature and reaches Fermi-liquid-
like behavior [35] proportional to 𝑇2 at lower temperatures in the case of Fe/NbO𝑥 .
For Fe/Nb, no inflection point is recognizable and at 14.5 K a screened effective spin of
more than a fifth of the instantaneous spin still remains, while it is only less than 1% for
Fe/NbO𝑥 . Qualitatively, Fe/Nb with reduced adsorption distance behaves more like
Fe/NbO𝑥 , which identifies the distance as an important part of the mechanism leading

⁴Note that the change in curvature is not visible in Fig. 4.18 due to its logarithmic scale.
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to different Kondo scales, but we can also recognize from the differences in spin sus-
ceptibilities and effective spins plotted logarithmically in Fig. 4.18 that it quantitatively
accounts only for about half the difference in magnitudes. We also find an unscreened
moment of 1.42𝜇B for Fe/NbO𝑥 , slightly smaller than the moment 1.49𝜇𝐵 of Fe/Nb
at the same distance, which together with the quantitative differences in magnitudes
points out the expected reduction of the moment because of the oxygen impurities.

UsingWilson’s formula [57] for the susceptibility at intermediate temperatures in the
Kondo problem, 𝜇2

fit/3(𝑇 +2𝑇𝐾), we fit both the total static local susceptibility of Fe/Nb
at its equilibrium distance resulting in the black fit curve shown in Fig. 4.18 and the
diagonal susceptibility components of that impurity for the out-of-plane orbitals 𝑑𝑦𝑧 ,
𝑑𝑧2 , and 𝑑𝑥𝑧 that aremost relevant for tunneling from the STM tip in order to determine
the fit parameters. The fitted moments for these diagonal susceptibility components as
well as the orbital-resolved diagonal contributions to the screened effective spin for
the same orbitals of the Fe/Nb (𝑧 = 1.70Å) impurity at two different temperatures are
given in the inset table of Fig. 4.18. The higher values of the fitted moment and higher
contributions to the screened effective spin of the Fe 𝑑𝑧2 orbital compared to the other
out-of-plane orbitals indicate that the 𝑑𝑧2 is in a sense the “most correlated” with most
contribution to the moment, which is also confirmed by its occupation that is closer to
half-filling than that of the other two, cf. our discussion in 4.1.5.

From the fit ofWilson’s formula, we obtain a Kondo temperature estimate of roughly
10 K for Fe/Nb (𝑧 = 1.70Å), compared to the four times higher estimate for Fe/NbO𝑥

from the inflection point of the screened effective spin. This qualitatively confirms
the experimental observation of higher Kondo temperatures for iron impurities on the
oxygen-reconstructed surface, cf. Fig. 4.16 and identifies the adsorption distance, which
is actually smaller in the case of Fe/NbO𝑥 in spite of the greater apparent height in
constant current STM profiles as seen in Fig. 4.15, and the increase of hybridization
with the substrate caused by it as the driving mechanism behind this difference.

While the strong correlations of the iron 3𝑑-shell lead to many-body entanglement
and forbid a simple interpretation of the Kondo effect (or YSR resonances) separately
for individual orbitals in realistic situations, cf. Sec. 4.1, we may expect that the 𝑑𝑧2

orbital that we identified as the largest contributor to the moment and that also points
straight in the direction of substrate and STM tip is most responsible for the change
of YSR peak positions with the change in adsorption height between Fe/Nb(110) and
Fe/NbO𝑥 and that therefore the large 𝛼± resonances (cf. Fig. 4.15) are related to it. This
is reminiscent of the typically high sensitivity of strongly correlated electron systems to
small changes of system parameters [23, 358, 359]. The smaller 𝛽± resonances, whose
positions also do not systematically depend on the surface and thus the adsorption
height, may be related to tunneling processes involving other orbitals, most likely the
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𝑑𝑥𝑧,𝑦𝑧 ones that are not in-plane either, and are likely also connected to the second Fano
line shape with considerably higher Kondo temperature necessary to fit the normal
state differential conductance spectra, cf. Fig. 4.16. Multiple Kondo screening channels
with different Kondo scales are consistent with previous results for Fe impurities [341].

4.3.5 Conclusions

In systems of iron impurities on a niobium Nb(110) surface a strong dependence of
the positions of the YSR resonances in the superconducting state and Kondo tempera-
tures in the normal state on the concrete adsorption site is found in STM spectroscopy.
Adsorption on clean Nb(110) leads to a small Kondo temperature and YSR resonances
overlapping with the gap edges, corresponding to the weakly coupled regime where
the impurity moment can be described as a classical spin, while adsorption near and
ideally on oxygen-reconstructed patches of the surface leads to an increased Kondo
temperature and YSR resonances in the middle of the gap, corresponding to the strong
coupling regime. This characterization may contribute to the directing of efforts to as-
semble nanostructures hostingMajorana bound states that are candidates for topologi-
cal quantum computation [322, 328], where the comparatively high critical temperature
of niobium for an 𝑠-wave superconductor could be an advantage.

The observation that Fe/NbO𝑥 impurities are in the strong coupling regime while
Fe/Nb(110) impurities are not is contrary to the normally expected influence of oxy-
gen impurities. Calculations with DFT followed by CT-HYB solutions of the strongly
correlated behavior of the iron 3𝑑-shell are performed to elucidate this. DFT results
indicate that the actual equilibrium adsorption distance on the oxygen-reconstructed
surface is significantly smaller than on the clean surface, leading to stronger hybridiza-
tion with the substrate. The magnetic moment on the oxygen-reconstructed surface
resulting from spin-polarized DFT is however reduced considerably compared to that
on the clean surface.

In total, it is found that the reduced adsorption distance contributes considerably to
a higher Kondo temperature in CT-HYB results, both in results for the actual Fe/NbO𝑥

impurity as well as for a comparison system consisting of an impurity on the clean sur-
face with the adsorption distance of Fe/NbO𝑥 rather than the energetically preferred
one. The unscreened spin moments of the 3𝑑-shell in CT-HYB only differ slightly, but
the moment of the impurity on the oxygen-reconstructed surface is screened at qual-
itatively higher temperatures of around 40 K in comparison to a much lower Kondo
temperature for the clean surface of around 10 K, which confirms the experimental re-
sults and allows us to attribute this effect primarily to the reduced adsorption distance
that increases hybridization with the substrate.
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5 DMFT analysis of the doped
two-orbital Hubbard model with
Hund’s coupling

5.1 Mott quantum critical point at finite doping

In this section, we investigate the phase diagram of a two-orbital Hubbard model with
Hund’s coupling by application of dynamical mean-field theory (DMFT), a numerical
method that allows access to the non-perturbative behavior of lattice models. The first-
order interaction-driven Mott transition and its phase separation zone present at all
sufficiently low temperatures are found to extend into the finite doping region, where
the transition turns into one between a weakly and a strongly correlated metal. At con-
stant temperature, the multi-valued solution with meta- and unstable branches that
describes the system in the coexistence region unfolds with increasing chemical po-
tential and becomes single-valued at finite doping. Due to continuity, the first order
of the transition at half-filling implies the existence of a line of critical points ending
in a quantum critical point at zero temperature. Splitting of the on-site ground state
multiplet by a small term is identified as the cause of the transition being of first order
at half filling through the physical interpretation of our results with the aid of a per-
turbative expansion. This suggests a generalization of the results to cases with a small
parameter other than Hund’s coupling.

This section covers mostly results previously published in the following article and its supple-
mental material, Ref. [193], which are also the source of some of the figures, and also discussed
in Ref. [360]

M. Chatzieleftheriou, A. Kowalski, M. Berović, A. Amaricci, M. Capone, L. De Leo,
G. Sangiovanni, and L. de’Medici,

“Mott Quantum Critical Points at Finite Doping,”
Phys. Rev. Lett. 130, 066401 (2023)
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5.1.1 Mott transition in the Hubbard model: background and
methods

The Hubbard model that we consider in this chapter is one of the prototypical mod-
els in the physics of strongly correlated systems. First introduced and approximately
solved by Hubbard [31, 66, 119], it consists of a lattice of sites with one orbital each
that in addition to the usual inter-site hopping term also incorporates a local on-site
interaction term. The kinetic energy of the electrons is lowered by their delocalization
thanks to the hopping term, which gives rise to energy bands describing the behav-
ior of weakly correlated electrons. However, the additional on-site repulsion penalizes
this delocalization with an increase of potential energy for doubly-occupied sites. At
half-filling, the competition between these two terms taken together is already suffi-
cient to obtain a transition between a conducting and an insulating state as the ratio of
their coefficients is varied, while a partially filled band should always be conducting
according to band theory. Materials with partially filled bands that still fail to conduct
due to strong correlations are calledMott insulators, named after Nevill Mott who had
previously proposed that mechanism [361] as well as considered the possibility of a so-
called Mott transition between this insulating state and a metallic state due to changes
in material parameters [21].

In spite of its relative simplicity, the Hubbard model whose Hamiltonian consists
of only two terms that are easily solvable individually is in general not analytically
tractable. Great progress was achieved through the mapping to an impurity model
with self-consistently determined bath [33, 70, 135], which is exact in the limit of infi-
nite coordination and serves as a “dynamical mean-field theory” (DMFT, see Sec.2.3)
approximation for finite dimensions. In contrast to standard mean-field theory [47],
DMFT includes temporal fluctuations and allowed for the first time numerical treat-
ment of the Hubbardmodel in a non-perturbative way that captures both quasiparticle
as well as incoherent excitations.

When we consider the Hubbard model on a bipartite lattice it is possible for antifer-
romagnetic order to arise as well. This requires a description with a magnetic unit cell
of doubled dimensions and correspondingly a Brillouin zone of half the size. In the
case of a half-filled band, this can cause an insulating state due to the creation of a gap
in the middle of the original bands at the new Brillouin zone edges. This alternative
mechanism, which does not identify local on-site repulsion as the cause in contrast to
the one proposed by Mott, was proposed by Slater as the cause of insulating behavior
at half-filling [364]. Solving the Hubbard model in the case of a bipartite lattice us-
ing DMFT reproduces such a transition to an antiferromagnetic insulator [134] with a
transition temperature usually well above the critical temperature of the Mott transi-
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Figure 5.1: Left panel: DMFT phase diagram of the half-filled single-band paramag-
neticHubbardmodelwith semicircular density of states in the plane of tem-
perature 𝑇 and interaction strength parameter 𝑈 using a quantum Monte
Carlo impurity solver. The critical point with a second order transition at
non-zero temperature is marked as “critical end point” and the thinner blue
lines going down toward zero temperature from the critical end point and
their gray extrapolations delimit the coexistence region, where solutions for
both phases can be found but one is only metastable rather than stable. The
line of the first-order transition between the metal and insulator (thickest
blue line, partially dashed) runs through the coexistence region relatively
close to its upper end 𝑈𝑐2 with which it coincides at the critical end point
and at zero temperature, where the transition is of second order again as
well. Taken from Fig. 3.50 of Ref. [362]. Middle panel: Zones of instabil-
ity against phase separation in the phase diagram of multiorbital Hubbard
models with Hund’s coupling in the plane of interaction strength 𝑈 and
doping from half-filling calculated using the not numerically exact slave-
spin mean field theory. Right panels: Sketch of the spectral functions as
schematic explanation of the instability. The doping is increased going from
the upper panel to the lower panel, but an increase in the doping also in-
creases orbital fluctuations that are quenched at half-filling by Hund’s cou-
pling, which widens the Hubbard bands. This counteracts the effect of the
increased occupation sufficiently to give a lower chemical potential in total
contrary to the typical case. Middle and right panel taken from Fig. 2 of
Ref. [363]¹.

tion that would take place in case of a paramagnetic or magnetically frustrated model
[136, 365]. In the case of an unfrustrated bipartite lattice, the low-temperature region is
thus entirely “covered” by the antiferromagnetic phase with no Mott metal-insulator
transition but only a smooth crossover in dependence of the interaction strength.

When we perform a (dynamical) mean-field solution of the Hubbard model, how-
ever, nothing forces us to allow the solution to become spin-dependent and thus e.g.
antiferromagnetic. We are free to ignore the energetically favorablemagnetic order and

¹Reprinted figure with permission from L. de’Medici, “Hund’s Induced Fermi-Liquid Instabilities and
Enhanced Quasiparticle Interactions,” Phys. Rev. Lett. 118, 167003 (2017). Copyright 2017 by the
American Physical Society.
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use the self-consistency equations for the paramagnetic case anyway, which allows us
to investigate theMottmetal-insulator transition that happens in this case down to zero
temperature [135]. In this way, at half-filling a phase diagram as shown in Fig. 5.1 can
be obtained, with a metallic phase at small interaction strength 𝑈 turning into a Mott
insulating phase for large 𝑈 , which happens as a continuous crossover above the crit-
ical temperature and as a first-order phase transition across the bold line for non-zero
temperatures below it [136, 365]. At the phase transition line, the phase with the lowest
free energy changes, but around it there is a coexistence region (with dotted lines as
boundaries) where both phases are at least metastable. With DMFT, both solutions can
be calculated by startingwith the right initial conditions, analogous to the hysteretic be-
havior known e.g. from ferromagnetism [366]. Critical points with second-order tran-
sitions are found at both the non-zero (filled square) and the zero temperature end of
the first-order transition line [367–369].

Let us now consider a simple multiorbital extension with degenerate orbitals. If
we do not include Hund’s coupling, i.e. the reduction of the Coulomb repulsion be-
tween electrons with parallel spin [42], the continuous transition at zero temperature
persists [370]. If Hund’s coupling is included in the multiorbital case however, this
“bandwidth-” or “interaction-controlled” transition due to a change in 𝑈 relative to
the bandwidth at constant half-filling can become discontinuous at 𝑇 = 0 [271, 371,
372]. As a consequence, one can expect that the doping-controlled transition turns into
a first-order transition as well, and a phase separation region extends off half-filling to
finite doping [373]. Such charge instabilities have been studied before in the context of
models for cuprate superconductivity [374–378], which usually occurs in compounds
that can be characterized as dopedMott insulators of the charge-transfer type [23]. For
these systems, it is one single 𝑑-orbital that is primarily relevant for the low-energy de-
scription [23] and so an effective single-orbital description [379, 380] is often considered
enough, but even in a one-orbital Hubbardmodel finite-doping charge instabilities can
appear due to the inclusion of next-nearest neighbor hopping [381].

Contrary to the cuprate superconductors, in the so-called “Hund’s metals” [20, 382,
383], which include other transition metal oxides [20, 384] and among them in partic-
ular the iron-based superconductors [27, 382], multiple bands derived from transition
metal 𝑑-orbitals are relevant to the low-energy electronic structure around the Fermi
level [20]. In their metallic states, strong electronic correlations are induced by Hund’s
coupling (occasionally termed “Hundness”) even far away from the Mott-insulating
state [187], while in the cuprates for example it is specifically the proximity to the Mott
insulator (“Mottness”) that is regarded as the only source of correlations. Metallic
states with strong correlations due to Hund’s coupling are characterized by a num-
ber of unusual properties, such as large effective masses indicating a low quasiparticle
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weight in the low-temperature Fermi-liquid state [184, 186, 188] and particularly also
a strongly decreased quasiparticle coherence temperature which limits the applicabil-
ity of the Fermi-liquid description [35, 184, 186, 188]. Above this temperature, this
manifests itself in features like the broadening of spectral quasiparticle peaks [186]
and strong deviations from the typical Fermi-liquid temperature scaling of quantities
such as the self-energy or scattering rate [35, 186], resistivity [184, 188] and suscepti-
bility or spin-spin correlation function [35, 184, 186, 188]. Further, the behavior of the
spin-spin correlation function and magnetic susceptibility implies the presence of un-
screened local moments down to the coherence temperature [35, 184, 385, 386]. This
behavior of the spin degree of freedom stands in contrast to the concurrent quench-
ing of orbital fluctuations and increase of orbitally differentiated correlations [284, 285,
387–389], such as orbital-selective Mott phases, provided that the orbital degeneracy is
lifted; these dramatically different energy scales for spin and orbital screening due to
Hundness and their effects are also termed “spin-orbital separation (SOS)” [190–192].

This strongly correlated badmetallic behavior is particularly prominent around inte-
ger fillings that are neither half- nor single-filling (by a single electron or hole), as there
Hund’s coupling can both increase correlations with its spin-aligning effect while dis-
favoring the Mott transition at the same time [187, 390]. Minimal models therefore
tend to have at least three orbitals, which is also the size of the 𝑡2𝑔 shell relevant for the
transition metal oxides with cubic symmetry [20]. However, the strong multiorbital
correlations due to Hund’s coupling were also discovered to cause a region of instabil-
ity towards phase separation with a divergence of the compressibility, surrounded by
a zone with enhanced compressibility in the stable phases [363, 391, 392]. The phase
separation region is situated at finite doping adjacent to the Mott transition at half-
filling, illustrated using the results of slave-spin mean-field theory [363] in the middle
panel of Fig. 5.1, roughly where the crossover between the strongly correlated Hund’s
metal phase and aweakly correlated (“good”) metallic phase coming from higher dop-
ing would otherwise continue toward half-filling [35, 285, 385]. Schematically, one can
explain the possibility for a charge instability due to the resurgence of charge fluctua-
tions away from half-filling, which can widen the Hubbard bands sufficiently quickly
to bring down the niveau of the highest filled level even as the filling itself is increased
[363], see the right panels of Fig. 5.1. Qualitatively, these features do not even require
the three orbitals originally considered in this context, but can already be investigated
in two-orbital models, which we will consider here. There are indications of such be-
havior in iron-based superconductors [393] and in particular also that trends in the
superconductivity might be related to their vicinity to the zone of compressibility en-
hancement and divergence in the parameter space of the Hubbard model [394, 395].
The connection to superconductivity is speculated [363] to be explained by the relation
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of the same Landau parameter in Fermi-liquid theory to both compressibility enhance-
ment and effectively attractive interactions between quasiparticles.

Previous investigations of this instability [363, 391, 392, 394, 395] were primarily
based on the use of slave-spin mean field theory (SSMF) [396, 397], a computation-
ally much less demanding technique than DMFT which, however, is only capable of
describing the interacting metallic states as Fermi liquid states [398]. As we have al-
ready noted, the literature points to an unusually low coherence temperature in the
Hund’smetal phase [35, 184, 186, 188], andwhile in fact a Fermi liquid descriptionmay
be sufficient for the parameter region most relevant for iron-based superconductivity
[20, 399–402], we can obviously not expect this mean-field technique to be numerically
exact either. Here, we perform DMFT calculations in the relevant parameter regions
at zero and non-zero temperatures to confirm the presence of the instability and fur-
ther demonstrate the presence of a quantum critical point at the boundary of the zero
temperature phase separation region at finite doping.

A quantum critical point (QCP) as we find here is definition-wise a transition point
of a continuous phase transition at zero temperature [403]. There, the system passes
fromone phase to another as one of its control parameters other than the temperature is
tuned through its critical value [403, 404]. Since the temperature thus remains at zero,
the states on either side of the QCP, whose properties are strikingly different, are still
both ground states. Therefore, quantum fluctuations rather than thermal fluctuations
are responsible for the critical behavior, unlike at a classical critical point [403]. As the
behavior at the critical value of the control parameter up to relatively high tempera-
tures is dictated by the thermal excitations of the quantum critical ground state [403],
which cannot be described in terms of quasiparticles, the presence of a QCP can how-
ever cause unusual behavior in a relatively large part of the phase diagram [403, 404],
which is a feature that makes their presence particularly interesting. Quantum criti-
cal behavior, e.g. critical scaling of observables, is known to be relevant for the Mott
metal-insulator transition [197, 405–410] and has also received considerable interest in
the particular context of cuprate superconductors and models for them [23, 411–425].

We consider the paramagnetic degenerate two-orbital Hubbard model described by
the Hamiltonian

𝐻 =
∑︂

⟨𝑖 , 𝑗⟩,𝑚,𝜎
𝑡𝑖 𝑗𝑐

†
𝑖𝑚𝜎𝑐 𝑗𝑚𝜎 (5.1)

+𝑈
∑︂
𝑖𝑚

𝑛𝑖𝑚↑𝑛𝑖𝑚↓ + (𝑈 − 2𝐽)
∑︂

𝑖𝑚,𝑚′≠𝑚

𝑛𝑖𝑚↑𝑛𝑖𝑚′↓ + (𝑈 − 3𝐽)
∑︂

𝑖,𝑚<𝑚′,𝜎

𝑛𝑖𝑚𝜎𝑛𝑖𝑚′𝜎 (5.2)

− 𝐽
∑︂

𝑖 ,𝑚′≠𝑚

𝑐†
𝑖𝑚↑𝑐𝑖𝑚↓𝑐

†
𝑖𝑚′↓𝑐𝑖𝑚′↑ + 𝐽

∑︂
𝑖 ,𝑚′≠𝑚

𝑐†
𝑖𝑚↑𝑐

†
𝑖𝑚↓𝑐𝑖𝑚′↓𝑐𝑖𝑚′↑ (5.3)
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with creation and annihilation operators 𝑐†
𝑖𝑚𝜎 and 𝑐𝑖𝑚𝜎 for electrons on lattice site 𝑖with

orbital 𝑚 ∈ {1, 2} and spin 𝜎, density operators 𝑛𝑖𝑚𝜎 = 𝑐†
𝑖𝑚𝜎𝑐𝑖𝑚𝜎, hopping amplitudes

𝑡𝑖 𝑗 and as interaction parameters the on-site intra-orbital repulsion 𝑈 and Hund ex-
change coupling 𝐽. For most calculations, we use only the density-density parts (5.2) of
the interaction and neglect the spin-flip and pair-hopping terms (5.3). With any change
in𝑈 , we perform a proportional change in 𝐽 to keep the ratio𝑈/𝐽 fixed to 0.25 for cal-
culations with density-density interaction. We choose a semi-circular density of states

(DOS) 𝐷(𝜖) = 2
𝜋𝐷

√︂
1 −

(︁ 𝜖
𝐷

)︁2 with half-bandwidth 𝐷 = 1 unless explicitly specified oth-
erwise. This DOS corresponds to a Bethe lattice in the limit of infinite coordination
number, but the choice of lattice plays only a minor role as our phenomena of interest
are caused by the electronic many-body interaction.

For the numerical solution of this latticemodel, we performDMFT calculations using
a numerical renormalization group (NRG) [58, 211, 426] implementation based on NRG
Ljubljana [427] and the exact diagonalization (ED) [4] implementation EDIpack [428] as
impurity solvers at zero temperature² and the continuous-time quantum Monte Carlo
in hybridization expansion (CT-HYB) [34, 36] (see Sec. 2.2) implementation of w2dy-
namics [40] at other temperatures.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
( hf)/D

2.000

2.025

2.050

2.075

2.100

2.125

2.150

2.175

n

co
e
x
is

te
n
ce

re
g
io

n

Mott insulator and
Hund's metal region

Good
metal
region

= 100D

U/D= 1.52

a

0.00 0.05 0.10 0.15 0.20
( hf)/D

2.00

2.02

2.04

2.06

2.08

2.10

2.12

n

co
e
x
is

te
n
ce

re
g
io

n

Mott insulator and
Hund's metal region

Good
metal
region

= 50D

U/D= 1.46

Figure 5.2: Order in which points on the ⟨𝑛⟩(𝜇)-curves are calculated, indicated by ar-
rows labeled alphabetically in order of calculated sections, with chemical
potential relative to the chemical potential 𝜇hf at half-filling ⟨𝑛⟩ = 2.0. Left
panel: Curve at 𝛽𝐷 = 100 without calculation of unstable branch. Right
panel: Curve at 𝛽𝐷 = 50 with calculation of unstable branch.

This way, we can e.g. trace the ⟨𝑛⟩(𝜇)-curves we are particularly interested in by
performing DMFT calculations for all the sets of system parameters, i.e. 𝜇, 𝑈 and the

²NRG and ED calculations were performed by our collaborators Maria Chatzieleftheriou and Luca de’
Medici

129



temperature 𝑇 =: 1/𝛽, in our region of interest. Outside of the coexistence region, the
specification of the model and one of these parameter sets maps to one unique correct
result, but in the coexistence region and its vicinity, we can obtain multiple results due
to the coexistence of phases [366], see Fig. 5.2. Even though only one of the phases in the
coexistence region is stable in the thermodynamic sense [429], given appropriate initial
conditions, i.e. starting from the self-energy of the previous point along the arrows in
Fig. 5.2, the DMFT iteration converges to themetastable continuation of the other stable
branch just as easily. Metastable sections are situated close to the tips of the arrows
labeled a and c in Fig. 5.2. The equilibrium solution would instead follow a curve that
is single-valued everywhere except at one chemical potential in the coexistence region,
where the two stable branches are connected by a vertical line segment, the Maxwell
construction [430] (see e.g. the red segment in the upper right panel of Fig. 5.13), along
which phase separated solutions exist.

Our procedure per 𝛽 and𝑈 is therefore the following, where we refer to the Fig. 5.2
illustrating the procedure in the text. We begin calculations with 𝜇 = 𝜇hf to obtain the
point at half-filling ⟨𝑛⟩ = 2.0. The starting self-energy is taken from a half-filling solu-
tion at smaller interaction strength 𝑈 in order to favor the metallic solution if it exists,
such that recognize early whenwe are in or below the coexistence region at half-filling,
which is likely at lower interaction strength than the critical point we are interested in,
cf. the right panel of Fig. 5.11. We then obtain additional data points at the same 𝑈
and 𝛽 following the branch of the phase at half-filling by repeatedly increasing 𝜇 and
starting each subsequent calculation from a reasonably well converged self-energy for
the previous 𝜇 as initial guess, i.e. we calculate the points along the arrows labeled
a using the self-energy of the previous point as input. If 𝑈 is small enough that the
solution at half-filling is metallic or larger than that of the critical point at the current
temperature, i.e. if we do not enter a coexistence region at 𝜇 > 𝜇hf, this already traces
out the entire ⟨𝑛⟩(𝜇)-curve. These cases e.g. occur at temperature 𝛽 = 50 for 𝑈 ⪅ 1.44
and𝑈 ⪆ 1.4920, cf. the left panel of Fig. 5.12.

Otherwise, we get the unique section of the curve to the left of the coexistence region
and the insulating, i.e. lowest, branch inside of it, whose end at the right end of the
coexistence region we recognize by a discontinuous jump in ⟨𝑛⟩(𝜇). From the point
right after the jump, we can just continue increasing the chemical potential to trace
out the unique section to the right of the coexistence region by following the arrow
labeled b. Additionally, we can also trace out the stable metallic branch inside of the
coexistence region from there by following arrow c instead, where we instead decrease
𝜇 until we find the jump at the left end of the coexistence region. This is enough to give
us all points on sections corresponding to stable and metastable phases, which results
in a “hysteresis curve” in the cases with coexistence regions displayed in the left panel
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of Fig. 5.2, where the dash-dotted line that serves as a guide to the eye connects points
across the jumps.

We may finally choose to also calculate the points on the unstable metallic middle
branch in the coexistence region, which are solutions that are unstable both thermo-
dynamically and as fixed points of DMFT. It is therefore necessary to take care to use
a fixed-point solution algorithm (also called “mixing” as it computes new trial inputs
from previous results) that converges for unstable fixed points as well as a phase-space
extension that allows us to force converge to the solution that is not on one of the other
two branches, as described in Ref. [146]. Here we use a modified version of Broyden’s
method described in Refs. [145] and [431] as fixed-point solver and consider the quan-
tity Im{Σ(𝑖𝜔0)}

𝜔0
for the phase-space extension, which can be considered as an estimate of

the quasiparticle weight 𝑍 using only the first Matsubara frequency (cf. Sec. 2.4). This
quantity changes monotonically along the complete continuous multi-valued curve in
all cases where we have calculated unstable fixed points and it therefore suitable for
targeting unique points. Having followed the sections along the arrows a and c to their
ends before, we can take the values of 𝑍 at those ends as lower and upper bounds for
the values on the unstable branch, which allows us to set well-spaced target values and
follow the unstable branch along the arrow labeled d, with an example shown in the
right panel of Fig. 5.2.

In the next section, which first revisits the half-filling case and therefore fixes the
chemical potential to 𝜇hf, we perform an analogous procedure varying 𝑈 instead of
𝜇. The description of the procedure assumes filling greater than half-filling, but could
be performed analogously for fillings less than half-filling. Except for the examples
mentioned in the outlook section, we only consider filling greater than half-filling and
additionally the results for the simple degenerate two-orbital Bethe lattice system we
consider are symmetric around 𝜇hf.

5.1.2 Half-filling case

Let us first revisit the case of half-filling and its properties known from the literature
since we shall later demonstrate the connection between the order of the Mott transi-
tion at half-filling and the presence of a quantum critical point at finite doping. To do
that, we performDMFT calculations at various temperatures 𝑇 for increasing values of
the interaction parameter𝑈 with concomitant adjustment of the chemical potential to
keep the resulting occupation per site fixed to half-filling. For symmetric densities of
state such as the semicircular one and an interaction of density-density or Kanamori
form, we can rewrite the Hamiltonian in a particle-hole symmetric form to find the ap-
propriate value of the chemical potential for half-filling 𝜇HF = (2𝑁orb−1)𝑈2 −(𝑁orb−1)5𝐽

2
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Figure 5.3: Quasiparticle weight 𝑍 as a function of the relative interaction parameter
𝑈/𝐷 for the model with density-density interaction at 𝛽𝐷 = 100. Solutions
were calculated both by using self-energies from lower 𝑈 results as initial
guess (“up” in 𝑈) as well as by using self-energies from higher 𝑈 results
(“down” in𝑈), with a wider range shown in the inset.

as a function of the interaction parameters 𝑈 and 𝐽 and the number of orbitals 𝑁orb,
which is explicitly shown in Sec. 5.1.4 for the density-density case.

As primary indicator of the system state we use the quasiparticle weight 𝑍 intro-
duced in Sec. 2.4, a measure of the correlation strength going from 1 for uncorrelated
electrons to 0 in the Mott insulating state, estimated from a linear fit of the Matsubara
axis self-energy Σ𝑚(𝑖𝜔) for orbital 𝑚 at the two lowest positive Matsubara frequencies

𝑍𝑚 =
Im(Σ𝑚(𝑖𝜔1)) − Im(Σ𝑚(𝑖𝜔0))

𝜔1 − 𝜔0
, 𝜔𝑛 =

(2𝑛 + 1)𝜋
𝛽

. (5.4)

Due to the orbital symmetry of our system, we obtain only one unique value of 𝑍. At
temperature 𝛽𝐷 = 100 for the case with density-density interaction, we perform cal-
culations both using converged self-energies from both lower and higher interaction
strength results as initial guesses, i.e. we go both upward anddownward in𝑈-direction
in order to obtain both of the two different branches of 𝑍(𝑈) shown in Fig. 5.3. This
confirms that there is a coexistence region with lower and upper bounds𝑈𝑐1 and𝑈𝑐2,
as already in the one-band case [33], in which both a metallic and an insulating solu-
tion can be stabilized. The quasiparticle weight in the metallic state decreases mono-
tonically with increasing interaction strength, and as 𝑍 does not vanish continuously
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but abruptly jumps to zero at the end of the coexistence region, we conclude that the
interaction-driven Mott transition is of first order.
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Figure 5.4: Quasiparticle weight 𝑍 as a function of the relative interaction parameter
𝑈/𝐷 for the model with density-density interaction at various tempera-
tures.
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Figure 5.5: Quasiparticle scattering rate Γ as a function of the relative interaction pa-
rameter𝑈/𝐷 for themodel with density-density interaction at various tem-
peratures.
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Figure 5.6: Quasiparticle weight 𝑍 as a function of the relative interaction parameter
𝑈/𝐷 for the model with Kanamori interaction at various temperatures.
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Figure 5.7: Quasiparticle scattering rate Γ as a function of the relative interaction pa-
rameter𝑈/𝐷 for the model with Kanamori interaction at various tempera-
tures.

Results for other temperatures and Kanamori interaction, shown in Figs. 5.4 and 5.6,
are similar: 𝑍(𝑈) decreases monotonically with 𝑈 up to an abrupt jump to zero at
𝑈𝑐2, which gets more pronounced with decreasing temperature. The difference in𝑈𝑐2

between density-density and Kanamori interaction originates at least partially from
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the difference in the used Hund’s couplings 𝐽/𝑈 = 1/4 and 𝐽/𝑈 = 0.15, as a higher
Hund’s coupling is known to decrease 𝑈𝑐 at half-filling independently of the form of
the interaction [187, 433]. We can further consider the quasiparticle scattering rate
Γ𝑚 ∝ −𝑍𝑚 Im(Σ𝑚(𝑖𝜔 → 0)) [47], whose due to orbital symmetry also single unique
value is shown in Figs. 5.5 and 5.7 for the same cases. It monotonically increases with
𝑈 up to a comparatively sharper peak just before the Mott transition in spite of the
opposite change of 𝑍, and also indicates a strengthening of correlations. Reducing
the temperature at constant 𝑈 on the other hand, 𝑍 and Γ both decrease indicating a
less metallic state in spite of lower scattering rate, which seems to roughly follow its
expected low-temperature scaling in a Fermi liquid.
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Figure 5.8: Estimation of the relative upper interaction strength bound of the phase co-
existence region at half-filling𝑈𝑐2/𝐷 as function of relative temperature, fit-
ted linearly. Left panel: density-density interaction, right panel: Kanamori
interaction.

While the abruptness of the jump of 𝑍 to zero at all non-zero temperatures sug-
gests that the metal-insulator transition is of first order below its critical temperature
as usual, at zero temperature the transition has been shown to remain a first-order
transition within DMFT in models with non-zero Hund’s coupling only [271, 372]. In
the one-orbital model and degenerate multiorbital models without Hund’s coupling
it becomes a second-order transition instead [33, 370]. Zero temperature is not di-
rectly accessible to DMFT calculations using a CTQMC solver, but we can extrapo-
late low-temperature data to try to access the zero-temperature properties. In Figs. 5.8
and 5.9, we show the extrapolations of both the upper bound of the coexistence region
𝑈𝑐2(𝑇) and the quasiparticle weight 𝑍(𝑇) as functions of temperature to 𝑇 = 𝛽−1 = 0
for both forms of the interaction term. For the upper bound, we obtain values of ap-

135



0.000 0.002 0.004 0.006 0.008 0.010
T/D

0.0

0.1

0.2

0.3

0.4

Z

Low-T linear fit for density-density interaction
Low-T linear fit for Kanamori interaction
Data for density-density interaction
Data for Kanamori interaction

Figure 5.9: Quasiparticle weights at the highest relative interaction strength 𝑈/𝐷 ≈
𝑈𝑐2/𝐷 resulting in a metallic solution as function of temperature, for both
density-density as well as Kanamori interaction, fitted linearly through the
three data points at lowest relative temperature 𝑇/𝐷 each.

proximately𝑈𝑐2(𝑇 = 0)/𝐷 = 1.535 for density-density interaction (with 𝐽/𝑈 = 1/4) and
𝑈𝑐2(𝑇 = 0)/𝐷 = 2.016 for Kanamori interaction (with 𝐽/𝑈 = 0.15), and for the quasipar-
ticle weight at the transition extrapolated to zero temperature 𝑍𝑇=0(𝑈𝑐2) almost equal
values of approximately 𝑍𝑇=0(𝑈𝑐2) = 0.039 for density-density and 𝑍𝑇=0(𝑈𝑐2) = 0.038
for Kanamori interaction. These are in particular different from zero, i.e. we confirm
the first-order nature of the transition even at zero temperature for non-zero Hund’s
coupling.

For this analysis, the middle point between the highest 𝑈 with nonzero 𝑍 and the
lowest 𝑈 with zero 𝑍 was used as 𝑈𝑐2 estimate and the range as uncertainty interval.
An error for 𝑍 at fixed 𝑈 can be calculated from its variation over DMFT iterations or
the QMC error giving an estimate slightly below the difference of subsequent 𝑍 val-
ues, but it should be noted that any 𝑍(𝑈) > 0 must tend to slightly overestimate 𝑍(𝑈𝑐2)
because the precision with which we can determine 𝑈𝑐2 is limited, and even though
the uncertainties for 𝑈𝑐2 are approximately equal for the low temperature points, the
size of the overestimation could still vary slightly depending on the actual value of𝑈𝑐2.
Therefore we did not take uncertainties into account in the extrapolation, and in order
to prevent a possible systematic overestimation due to the high-temperature points that
appear not to follow the low-temperature linear relationship well, cf. Fig. 5.9, we lin-
early fitted only the three points at the lowest temperatures for each type of interaction.
Based on QMC or even DMFT errors for 𝑍(𝑈𝑐2), the temperature dependence of 𝑍 is
still clearly not linear at the lowest temperatures we were able to reach, but even if we
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assume errors on 𝑍(𝑈𝑐2) scaled up sufficiently to make a linear fit appropriate, a value
of zero for 𝑍𝑇=0(𝑈𝑐2) remains far outside of the error range of the intercept of then
about 0.005 for Kanamori interaction. Given this rather high robustness of the extrapo-
lation result and the small variation of the points around the line of best fit we assume
that the qualitative characterization of the zero temperature transition as of first order
is reasonably reliable.
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Figure 5.10: Quasiparticle weight 𝑍 as a function of the interaction parameter 𝑈 for
the model with density-density interaction at zero temperature calculated
using NRG as impurity solver. The stable metallic solution is the upper
dark blue part of the curve and the stable insulating solution the lower red
part. An unstable metallic solution (dashed part in the middle) connects
their ends across the coexistence zone. Spectral functions from the stable
metallic branch just below its end𝑈𝑐2 and the insulating point just after it
shown in the inset still differ drastically showing a clear zero temperature
peak and gap respectively.

The first-order nature of this transition for density-density interaction is also con-
firmed by data obtained using NRG and ED impurity solvers to perform DMFT di-
rectly at zero temperature. The zero temperature 𝑍(𝑈) curve resulting from calcula-
tions using NRG is shown in Fig. 5.10 together with the change of the spectral function
as the metallic branch is followed upward across 𝑈𝑐2. Just below the transition, we
find a strong quasiparticle peak at the Fermi energy (𝜔 = 0) as expected for a metallic
density of states, but the entire spectral weight of the peak is abruptly moved to the
Hubbard bands as the transition is crossed, leaving a gap at the Fermi energy. Being
the prefactor of the coherent particle-like part of the Green’s and thus spectral func-
tion, the quasiparticle weight 𝑍 accordingly abruptly jumps from 𝑍 ≈ 0.05 to 𝑍 = 0
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too as 𝑈𝑐2/𝐷 = 1.5 is crossed coming from the metallic solution. Due to the inaccura-
cies affecting the necessary extrapolation of the CTQMC results, but also inaccuracies
affecting the NRG results, a perfect quantitative agreement can not be expected. How-
ever, our results for both 𝑍 and 𝑈𝑐2 are close enough to assume agreement between
CTQMC and NRG.

In the curve resulting fromNRGDMFT calculations shown in Fig. 5.10, a third branch
of 𝑍(𝑈) only present in the coexistence region between𝑈𝑐1 and𝑈𝑐2 can be seen. As we
alreadymentioned in ourmethod discussion, this branch can ordinarily not be reached
by simply following one of the solutions from outside of the coexistence region, it is
however continuously connected to both of the other branches at their end points such
that all three branches together form one continuous curve or “multi-valued function”
𝑍(𝑈). This branch is also metallic as 𝑍 is non-zero, but it consists of solutions that
are thermodynamically unstable and also unstable fixed points of DMFT, which are
connected properties [434]. Unstable branches in the coexistence region of the Mott
transition for single-orbital models have already been found using DMFT previously
[146, 371, 429]. When the Mott metal-insulator transition is considered by analogy to a
liquid-gas transition [435, 436], with the interaction strength 𝑈 playing the role of the
pressure 𝑝 and the double occupancy 𝑑 =

⟨︁
𝑛↑𝑛↓

⟩︁
playing the role of the volume 𝑉 in

the one-band case, the unstable metallic branch recalls e.g. the unstable branch of the
van der Waals gas [429]. The conjugate variable of 𝑈 playing the role of the volume is
in general ⟨𝐻int⟩ /𝑈 , which is a linear combination of multiple double occupancies in
the multiorbital case..

5.1.3 Doped case

Our central result follows from the presence of a first-order transition at half-filling: At
half-filling we find a coexistence region, i.e. a multi-valued S-shaped solution curve for
the equation of state if non-stable (meta- and unstable) parts are included, even at zero
temperature, schematically depicted in the zero chemical potential plane of the upper
left panel of Fig. 5.11. Since we also know that for sufficiently high doping (cf. maxi-
mum chemical potential plane in the same figure) there is at most a smooth crossover
as a function of the interaction strength𝑈 rather than a phase transition in this system,
the solution curve of the equation of state has to unfold as the chemical potential 𝜇 is
moved away from half-filling. We can alternatively consider the equation of state as
a function of the chemical potential, i.e. in terms of the schematic depiction in the left
panel of Fig. 5.11 cuts of the surface representing the solutions at constant 𝑈 rather
than at constant 𝜇. For small 𝑈 below the half-filling value of 𝑈𝑐1 marked on the axis,
there are onlymetallic solutions, for intermediate𝑈 up to that of the red solution curve,
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Figure 5.11: Left panel: Schematic solution surfaces of the equation of state for the
quasiparticle weight 𝑍 (top) or doping (bottom) as functions of interac-
tion strength 𝑈 and chemical potential 𝜇 − 𝜇hf with stable single-phase
solutions (purple) and a Maxwell construction in case of phase separa-
tion (light greenish blue). Orange lines are constant 𝜇 solutions, with
non-stable sections dotted, while lines of other colors are constant 𝑈 so-
lutions (corr. to equally colored NRG-DMFT results in Fig. 5.12). Right
panel: Zero temperature phase diagram from NRG-DMFT results in the
doping-𝑈 plane, indicating both metallic phases and the phase separa-
tion region (dotted boundary) or crossover line (dotted line) between them.
Where the crossover linemeets the phase separation boundary, a quantum
critical point (QCP, red dot) is found at zero temperature. In the phase sep-
aration region, areaswheremultiple or no𝜇 giving a (meta-)stable solution
with given doping exist are marked in color. Phase diagrams for tempera-
tures above zero but below the critical onewould only differ quantitatively.

there is a phase transitionwith coexistence region between theMott insulator /Hund’s
metal at low chemical potential and the weakly correlated metal at high chemical po-
tential, and for high 𝑈 above that of the red solution curve, there is only a crossover
instead of the phase transition. In total, considering the two-dimensional solution sur-
face of the equation of state as a function of 𝑈 and 𝜇, we have a reasonably smooth
sheet at high 𝜇 that folds back up on itself as the Mott insulator transition at half-filling
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is approached, i.e. as we go from the back right to the front left of the figure. The so-
lutions stable without phase separation are shown as a darker purple surface, while
a lighter greenish blue surface, extending straight in doping or quasiparticle weight
direction, represents the stable solutions in thermodynamic equilibrium with phase
separation obtained in the manner of the Maxwell construction. A series of orange
lines, intersections of the surface representing the solution with surfaces of constant
chemical potential, however, follows the non-stable solutions instead and can be used
to visualize the aforementioned folding of the solution.
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Figure 5.12: Dependence of the total occupation ⟨𝑛⟩ or doping (⟨𝑛⟩−2) on the chemical
potential relative to half-filling 𝜇−𝜇hf for various values of the interaction
strength 𝑈 . Left panel: QMC-DMFT results for temperature 𝛽𝐷 = 50.
Right panel: NRG-DMFT results for zero temperature (unstable branches
sketched following ED results).

We examine the continuous folding of the solution surface of the equation of state
more closely by considering cuts along one of the two input dimensions. In Fig. 5.12, we
show the partiallymulti-valued dependence of the total occupation ⟨𝑛⟩ on the chemical
potential relative to half-filling 𝜇 − 𝜇hf, both using zero temperature NRG data as well
as QMC data, which looks very similar at sufficiently low temperature. As we can see,
for fixed𝑈 the coexistence interval must actually be considered as a chemical potential
interval [𝜇𝑐1(𝑈,𝑇), 𝜇𝑐2(𝑈,𝑇)] whose boundaries depend on the other parameters. For
𝑈 < 𝑈𝑐1(𝜇hf), only the weakly correlated (“good”) metallic solution would exist, with
an almost linear dependence of the filling on 𝜇. As long as 𝑈𝑐1(𝜇hf) < 𝑈 < 𝑈𝑐2(𝜇hf),
the good metallic solution also exists at half-filling but might be metastable, as for
𝑈/𝐷 = 1.45 in the NRG data (part of yellow curve) or 𝑈/𝐷 = 1.44 in the QMC data
(blue curve, insulating solution not shown). For 𝑈 > 𝑈𝑐2(𝜇hf) on the other hand, the
weakly correlated metallic solution, represented by points on the nearly linear parts of
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the curves in Fig. 5.12, only begins existing at sufficiently high 𝜇. Below that 𝜇, only
the other stable solution exists. This solution starts out as the Mott insulator pinned
to half-filling for a finite interval of 𝜇, visible in form of the zero-doping Mott plateaus
particularly at 𝑇 = 0, but then lifts off and continues at finite doping as strongly cor-
related metallic solution (“Hund’s metal”), represented by the points on the upward
curving parts in Fig. 5.12. In the caseswhere theweakly correlatedmetallic branch only
starts at higher chemical potential (e.g. the green curve corresponding to 𝑈/𝐷 = 1.46
for 𝛽𝐷 = 50 and the lighter blue curve corresponding to𝑈/𝐷 = 1.55 for 𝑇 = 0) we can
clearly recognize that a Hund’s metal solution, represented by the points on the lower
branches at non-zero doping, can also be the single stable solution of the system for
the right choice of parameters and must not necessarily be metastable.
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Figure 5.13: Left panel: Grand potential Ω(𝑇, 𝜇, 𝑈) as a function of 𝜇 calculated by in-
tegration of an interpolating polynomial of ⟨𝑛⟩ (𝜇) from QMC for constant
𝛽 = 50 and 𝑈 = 1.46, with a linear function of 𝜇 subtracted that allows
for easier visual interpretation without changing the curvature or differ-
ences between phases at fixed 𝜇. The chemical potential at which the phase
transition happens, i.e. where the grand potentials of the two stable phases
cross, ismarked using a red dotted vertical line. The grandpotential for the
stable phases is always concave, while that for the unstable phase is convex,
although only partially in this case. Upper right panel: ⟨𝑛⟩ (𝜇) data from
QMC connected using the piecewise cubic monotonicity-preserving Her-
mite interpolating polynomial fit that was integrated to obtain the grand
potential. The two cross-hatched areas are those enclosed by the full in-
terpolating polynomial fit and the phase transition line, which should be
chosen such that the areas are equal according to the Maxwell construc-
tion. Lower right panel: Grand potential Ω(𝑇, 𝜇, 𝑈) without subtraction
of a linear function of 𝜇 for reference.
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In the coexistence region [𝜇𝑐1(𝑈,𝑇), 𝜇𝑐2(𝑈,𝑇)], both the weakly correlated and the
strongly correlated phase exist, and as we can see in Fig. 5.12, an unstable metallic
phase connects their ends across the coexistence region (middle branches in the figure,
dashed in the right panel), leading to the S-shape or folding of the total solution curves.
Unlike the stable phases, this unstable phase does not necessarily always have positive
electronic compressibility 1/𝑛2𝜕𝑛/𝜕𝜇. If we only want to consider stable equilibrium
states of the system, we would instead have to connect both stable phases using the
Maxwell construction at one 𝜇transition(𝑈,𝑇), where phase separation into a mixture
of both stable phases according to the actually realized doping would occur. For this
construction, the constant 𝜇 at which the connecting vertical line segment is places
must be chosen such that the two areas enclosed by the line and the full solution curve
including meta- and unstable states are equal, cf. the red line given as example in the
upper right panel of Fig. 5.13.

This condition is equivalent to choosing the𝜇where the relevant thermodynamic po-
tentials as a function of 𝜇 for the two stable phases cross. In Fig. 5.13, we show both the
grand potential Ω(𝑇, 𝜇, 𝑈), calculated by integrating a piecewise cubic monotonicity-
preserving interpolating Hermite polynomial fit [437, 438] of the QMC-DMFT ⟨𝑛⟩ (𝜇)
curve for 𝛽 = 50 and 𝑈 = 1.46 and the corresponding Maxwell construction. The for-
mulation of the potential Ω as integral follows from its differential as function of the
differentials of its natural variables

dΩ = −𝑆 d𝑇 − 𝑛 d𝜇 + ⟨𝐻int⟩
𝑈

d𝑈 , Ω(𝜇) = Ω(𝜇0) −
∫ 𝜇

𝜇0

𝑛(𝜇′) d𝜇′ , (5.5)

and if we integrate along the total solution curve properly taking account of all signs
due to directions, we can see that the potential crossing condition is exactly equal to
the Maxwell construction. In the figure we can further see that while the potential for
the stable phases is always concave, as a thermodynamic potential for a stable phase as
a function of an intensive variable should be [439], the potential for the unstable phase
changes its curvature just as its compressibility changes its sign. While the local cur-
vature of the grand potential as function of 𝜇 does therefore not indicate the instability
of the unstable phase at these points with positive compressibility, we checked for one
of them that the analogous derivative of potential energy ⟨𝐻int⟩ /𝑈 with respect to 𝑈
does.

As indicated by the progression from the dark blue to the green and then red curve
in Fig. 5.11, which qualitatively represent the zero temperature results of Fig. 5.12 with
the same colors, the coexistence region and equivalently the extent of the phase sep-
arated solutions in doping continuously shrinks with increasing interaction strength
𝑈 as successive solution curves are folded less tightly. Just where it vanishes, which
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the red curves in Fig. 5.12 try to approximate, we reach the zero temperature quantum
critical point. Here the two stable phases are connected via a continuous second-order
phase transition, where the compressibility at a single point diverges to infinity coming
from the crossover (unlike the formally also infinite but discontinuous compressibility
along a vertical line segment corresponding to the Maxwell construction in the phase
separation region). Due to the continuity of the solution as a function of 𝑈 and 𝜇, the
existence of a first-order transition at half-filling and zero temperature necessarily im-
plies that the continuous transition at the quantum critical point must occur at the end
of the phase separation zone, which extends to finite doping in such a case. If we con-
tinue to even higher values of the interaction strength, no phase transition occurs any
more, but a crossover with enhanced though not diverging compressibility between
the weakly correlated and a more strongly correlated or Hund’s metal state remains.

The zero-temperature DMFT calculations performed using NRG as impurity solver
result in the phase diagram in the right panel of Fig. 5.11, shown in the plane of inter-
action strength 𝑈 and doping (⟨𝑛⟩ − 2) now, which qualitatively also holds at higher
temperatures. As we have seen previously, the region where a phase transition oc-
curs extends out from the Mott transition at half-filling not only in chemical potential,
but also significantly to non-zero doping, where it is a transition between a weakly
correlated metal and a strongly correlated metal instead. In the phase-separation re-
gion, shown with a dotted boundary, the chemical potential is constant and colored
highlighting further indicates what the solution curve ⟨𝑛⟩ (𝜇) for constant𝑈 looks like
assuming only (possibly meta-stable) single-phase states instead of phase separation:
there is not necessarily exactly one 𝜇 on the solution curve for a given 𝑈 and ⟨𝑛⟩, one
may also find two or none at all instead, if the line representing the requested doping
intersects both stable branches or only the unstable branch of the solution curve (cf.
𝑈/𝐷 = 1.45, 1.51 below and resp. slightly above a doping of 0.05 for the first case and
𝑈/𝐷 = 1.55, 1.6 at doping slightly below and resp. around 0.1 in the zero-temperature
data shown in Fig. 5.12).

As far as the transition between two metals is concerned, a comparison of spectra
(Fig. 5.14) produced using maximum entropy analytic continuation [168, 174] of QMC
results for one metastable point per phase at 𝛽𝐷 = 100 shows us that these phases are
indeed quite different even when their doping is similar: the spectrum in the good
metallic phase has a strong peak at the Fermi energy (𝜔 = 0), while the spectrum for
the strongly correlated metallic phase features a kind of pseudogap instead.

Let us also quickly note the changes with temperature. For this, we use the zero-
temperature NRG- and 𝛽𝐷 = 50 QMC-DMFT results shown in Fig. 5.12 and QMC-
DMFT results for some more temperatures shown in Fig. 5.15. By comparing the data
for all temperatures except 𝛽𝐷 = 25, we can note some general trends below the critical
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Figure 5.14: Left panel: Solution curve ⟨𝑛⟩ (𝜇 − 𝜇hf) for the total occupation as func-
tion of the chemical potential relative to half-filling for interaction strength
𝑈/𝐷 = 1.50 at temperature 𝛽𝐷 = 100 using QMC-DMFT with only points
that correspond to phases that are at least metastable. The two points for
which spectra are shown in the right panel are highlighted. Right panel:
Comparison of the spectra calculated using themaximum entropymethod
fromQMC results for the weakly and strongly correlated phases at similar
doping using two meta-stable points close to the ends of the two solution
branches shown in the left panel.

temperature: the lower coexistence region boundary at half-filling 𝑈𝑐1(𝜇hf) increases
with decreasing temperature at least down to 𝛽𝐷 = 200, but is lower again for 𝑇 = 0,
while the upper boundary 𝑈𝑐2(𝜇hf) increases with decreasing temperature down to
𝑇 = 0. In total, the extent of the coexistence region in 𝑈 at half-filling grows with de-
creasing temperature, even for the higher temperatures 𝛽𝐷 < 200. With decreasing
temperature, the Mott plateaus of ⟨𝑛⟩ (𝜇) = 2 around 𝜇hf become much more pro-
nounced, starting out with no visible plateau at 𝛽 = 35 and reaching an extent of occu-
pations not visibly different from half-filling at 𝛽 = 200 that is about as wide in 𝜇 as for
the zero temperature results. Further, the ranges in doping for which the equilibrium
solution is phase separated grows and the doping and chemical potential of the criti-
cal point increase as temperature decreases, with the critical point reaching about the
same position in the 𝑛(𝜇 − 𝜇hf) graph, and for about the same value of 𝑈 , for 𝛽 = 200
as the quantum critical point at zero temperature.

At our highest temperature 𝛽𝐷 = 25, the compressibility 𝜕 ⟨𝑛⟩ /𝜕𝜇 for small 𝜇 − 𝜇hf

still decreases with increasing interaction strength𝑈 , but we can not observe any sign
of a phase transition or compressibility maximum for the available data. Given that
we should have expected to see them even earlier than at 𝛽𝐷 = 35 if they were present
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Figure 5.15: Total occupation ⟨𝑛⟩ for the model with density-density interaction at var-
ious interaction strengths 𝑈 and temperatures as a function of the chemi-
cal potential 𝜇 − 𝜇hf. For the temperatures lower than 𝛽𝐷 = 25, a doping-
driven transition can be observed for sufficient𝑈 that eventually turns into
a crossover. For 𝛽𝐷 = 35 and 𝛽𝐷 = 50, unstable branches were calculated
with CT-HYBDMFT by employing a phase-space extension. At other tem-
peratures, only (meta)stable branches are shown.

based on the temperature trends, we determine the critical temperature of the Mott
transition for this model to lie between 𝛽𝐷 = 25 and 𝛽𝐷 = 35. Insofar as we have used
equivalent parameters and interaction type and the differing bandwidths are taken
into account, this as well as all of our other results agrees with the data presented in
Ref. [386] to the extent that our parameter ranges overlap.

Just as we can consider the solution at constant 𝑈 , we can consider the solution at
constant 𝜇. In Fig. 5.16, the graphs of both ⟨𝑛⟩ (𝑈) and ⟨𝐻int⟩

𝑈 (𝑈) obtained from QMC-
DMFT at temperature 𝛽𝐷 = 50, are shown at two fixed values of 𝜇, once deep in the co-
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Figure 5.16: Dependence of the total occupation ⟨𝑛⟩ (left panel) or potential energy di-
vided by 𝑈 , ⟨𝐻int⟩ /𝑈 , (right panel) on the interaction strength 𝑈 for dif-
ferent values of the chemical potential 𝜇, calculated using QMC-DMFT at
temperature 𝛽𝐷 = 50.

existence region and once close to the critical point. The latter quantity is more closely
analogous to ⟨𝑛⟩ (𝜇) as it can be considered the conjugate variable of𝑈 in the thermo-
dynamic sense, just as 𝜇 and ⟨𝑛⟩ are, i.e. its product with 𝑈 is a contribution to the
internal energy. As we already recalled in our discussion of the half-filling case, the
role of interaction strength 𝑈 and double occupancy 𝑑 =

⟨︁
𝑛↑𝑛↓

⟩︁
for the Mott transi-

tion in the single-orbital Hubbard model has previously been considered in analogy
to pressure and volume in the liquid-gas transition of a van der Waals gas [435, 436],
but in the multiorbital case the general equivalent of volume is ⟨𝐻int⟩ /𝑈 . This is not
just one single double occupancy but a linear combination of all possible ones with co-
efficients dependent on the relative Hund’s coupling 𝐽/𝑈 . This graph lets us confirm
the continuous folding of the solution surface of the equation of state by following the
solution in the other direction of the parameter space, approximately that indicated
by the orange lines in Fig. 5.11 (where the chemical potential 𝜇 is taken relative to 𝜇hf

however, which is not constant but a linear function of𝑈).
We can further observe that the critical point scenario of a continuous transition

with a single point of infinite derivative, here with respect to𝑈 , is approached by both
⟨𝑛⟩ (𝑈) and ⟨𝐻int⟩

𝑈 (𝑈) at the same point in parameter space, and that themiddle sections
of both curves with positive derivative also have the same boundaries in𝑈 . The coex-
istence region between the weakly correlated metallic solution at lower𝑈 , the strongly
correlated metallic or Mott insulating solution at higher 𝑈 and the unstable metallic
solution in between is thus reflected in the same way in the multivaluedness of both of
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these relations as expected. However, we also find that the derivatives of the unstable
branches of both relations have constant sign opposite to that of their stable branches
(or in otherwords, their inverse is single-valued) judging by the limited amount of data
we have for constant 𝜇, while all three of the unstable branches of ⟨𝑛⟩ (𝜇) at constant
𝑈 we have calculated have derivatives which change sign and therefore partially have
the same sign as the derivatives of their stable branches (cf. Figs. 5.12 and 5.15).

To conclude, the various properties we have analyzed here using DMFT at zero and
nonzero temperatures indicate enhanced compressibilities and the presence of a region
of phase separation ending in a quantum critical point at low doping between aweakly
correlatedmetallic phase at low interaction strength and a strongly correlated “Hund’s
metal” phase continuously connected to theMott insulator at higher strength. We have
thus extended and confirmed the previous results for the two-orbital Hubbard model
with Hund’s coupling around half-filling [363, 386, 391, 392, 394, 395].

5.1.4 Physical origin of the first-order transition at half-filling

In the previous subsections we have seen numerical DMFT results that show the first-
order character of theMott transition even at zero temperature in themultiorbital Hub-
bard model with Hund’s coupling and how this feature is directly connected to the
presence of a quantum critical point at finite doping. In order to get some physical
insight into the relation between Hund’s coupling and the order of the transition be-
yond numerics, let us now instead of DMFT consider an approximation that is simple
enough to be amenable to a perturbative analytical treatment around the Mott transi-
tion that can be interpreted in the framework of Landau’s theory of phase transitions
[440].

We will use the slave-spin mean-field theory (SSMF) for this analysis [396, 397] and
start with a short introduction closely following that in Ref. [398], but focus on the spe-
cific case of a half-filled model with two degenerate orbitals and density-density inter-
action leaving aside complications that would only be necessary for the general case.
Conceptually, the SSMF is based on the introduction of auxiliary particles whose states
live in a Hilbert space that embeds a description of the original system, but which also
contains states that do not correspond to any of the original physical system. As long
as the necessary constraints restricting the system to physical states are satisfied, this
is just an exact reformulation that does not simplify the problem, so the productive ap-
plication of this method to strongly correlated electron systems involves a mean-field
treatment of the constraint, which is then only satisfied on average instead of exactly.
In SSMF, one spin-1/2 per fermionic single-particle state of the original model are in-
troduced as auxiliary particles, but as there is considerable freedom in the choice of

147



auxiliary particles [441], other methods based on the same idea are also in use, such as
the more popular older slave boson [442, 443] and the slave rotor [444] mean-field the-
ories. SSMF introduces comparatively few auxiliary particles while still being able to
describe a general multiorbital system, and it has previously been used to numerically
investigatemodels similar to ourswith the same resulting physics of a phase-separation
region and enhanced compressibilities [363, 392].

We begin by rewriting our Hubbard model Hamiltonian with density-density inter-
action

𝐻 =
∑︂

⟨𝑖 , 𝑗⟩,𝑚,𝜎
𝑡𝑚𝑖𝑗 𝑐

†
𝑖𝑚𝜎𝑐 𝑗𝑚𝜎 (5.6)

+𝑈
∑︂
𝑖𝑚

𝑛𝑖𝑚↑𝑛𝑖𝑚↓ + (𝑈 − 2𝐽)
∑︂

𝑖𝑚,𝑚′≠𝑚

𝑛𝑖𝑚↑𝑛𝑖𝑚′↓ + (𝑈 − 3𝐽)
∑︂

𝑖,𝑚<𝑚′,𝜎

𝑛𝑖𝑚𝜎𝑛𝑖𝑚′𝜎 (5.7)

in a form manifestly invariant under a particle-hole transformation, as it should be at
half-filling considering the symmetries of our system. It can be shown that the hop-
ping term (5.6) is invariant apart from a gauge transformation for a bipartite lattice
[398], which a Bethe lattice of any coordination number obviously is due to its tree-
like structure with hopping from a node at even depth only to one at odd depth and
vice versa. The interaction term (5.7) is clearly not invariant under the transformation
𝑛𝛼 → (1 − 𝑛𝛼). We therefore replace all occupation operators with a “symmetrized”
form, 𝑛𝛼 → �̄�𝛼 = 𝑛𝛼 − 1

2 which is exactly negated under a particle-hole transforma-
tion so that the interaction term, which contains only terms quadratic in occupation
operators, remains invariant. In this way, we obtain a symmetrized Hamiltonian 𝐻𝑠

invariant under particle-hole transformation from the original Hamiltonian 𝐻 =: 𝐻𝑎 .
However, by doing the replacement of occupation operators we have also changed 𝐻𝑠

compared to 𝐻𝑎 by terms at most linear in the original occupations, as we could see
by multiplying out the symmetrized operators. This is not problematic as the linear
terms only correspond to a shift in the chemical potential and the constant terms to
a total energy shift. A chemical potential term −𝜇𝑁 is not invariant, so to get half-
filling we must not add any additional non-zero chemical potential term to 𝐻𝑠 . By
demanding that 𝐻𝑎 − 𝜇HF𝑁 be equal to 𝐻𝑠 up to constant terms, we can additionally
determine the value of the chemical potential 𝜇HF needed for half-filling when we use
the asymmetric form of the Hamiltonian as we did in our QMC-DMFT calculations.
The coefficient of the total occupation 𝑁 that we get by multiplying out the interaction
term is 𝜇HF = (2𝑁orb − 1)𝑈2 − (𝑁orb − 1)5𝐽

2 , and this also remains the correct value if the
pair hopping and spin-flip terms of Kanamori interaction are included [398].

Starting from the symmetrized Hamiltonian, we first just introduce one auxiliary
𝑆𝑖𝑚𝜎 per fermionic single-particle state 𝑛𝑖𝑚𝜎, demand that the relationship 𝑆𝑧

𝑖𝑚𝜎 = 𝑛𝑖𝑚𝜎−
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1
2 be fulfilled exactly and rewrite our Hamiltonian exactly in terms of operators for this
enlarged system. Labeling the operators and quantum numbers related to the orig-
inal fermions with 𝑐 and those related to the fermions for use in SSMF with 𝑓 , this
corresponds to a mapping|︁|︁. . . , 𝑛𝑐𝑖𝑚𝜎 = 0, . . .

⟩︁
→

|︁|︁|︁. . . , 𝑛 𝑓𝑖𝑚𝜎 = 0, 𝑆𝑧𝑖𝑚𝜎 = −1
2 . . .

⟩︂
(5.8)|︁|︁. . . , 𝑛𝑐𝑖𝑚𝜎 = 1, . . .

⟩︁
→

|︁|︁|︁. . . , 𝑛 𝑓𝑖𝑚𝜎 = 1, 𝑆𝑧𝑖𝑚𝜎 =
1
2 . . .

⟩︂
(5.9)

from original occupation number basis states to new states in mixed occupation num-
ber and auxiliary spin 𝑧-component basis. The operators for the combined basis must
act on the basis states on the right-hand side as the 𝑐-fermion operators act on those
on the left-hand side, but the additional “unphysical” states in the new basis that do
not fulfill the condition and do not correspond to any states of the original system, like
the ones with 𝑛 𝑓

𝑖𝑚𝜎 = 0 but the corresponding spin 𝑆𝑧
𝑖𝑚𝜎 = 1

2 , do not further restrict
the choice of the new operators. Since a change in the occupation number requires
a corresponding spin change in the new description, we need a combination of an 𝑓 -
fermion creation or annihilation operator and a spin operator 𝑂𝑖𝑚𝜎 to replace one sin-
gle 𝑐-fermion operator: 𝑐𝑖𝑚𝜎 → 𝑓𝑖𝑚𝜎𝑂𝑖𝑚𝜎. When 𝑂𝑖𝑚𝜎 or its adjoint are applied to a
physical basis state, the spin state must change to the orthogonal basis state just as the
occupation number changes on the application of a fermionic creator or annihilator that
does not result in zero. The diagonals of 𝑂𝑖𝑚𝜎 are therefore zero and, with

|︁|︁𝑆𝑧
𝑖𝑚𝜎 = +1

2
⟩︁

as first basis state, (𝑂𝑖𝑚𝜎)21 = (𝑂†
𝑖𝑚𝜎)

∗
12 = 1preserves unit length for transitions between

non-zero state vectors. The other off-diagonal value, which corresponds to raising the
spin on annihilation or lowering it on creation, must be fixed in another way because
applied to physical states, the fermionic anticommutation relations of the 𝑓 -fermion
operators already ensure a zero result. As we consider a system with particle-hole
symmetry, invariance of the kinetic term under an exchange of creators and annihila-
tors requires the 𝑂𝑖𝑚𝜎 operators to be Hermitian and so the other diagonal to be one
as well, giving in total 𝑂𝑖𝑚𝜎 = 𝑆+

𝑖𝑚𝜎 + 𝑆−
𝑖𝑚𝜎 = 2𝑆𝑥

𝑖𝑚𝜎. In general, the value of the ele-
ment would be fixed by demanding that the resulting quasiparticle weight 𝑍 without
interaction be exactly one, which would give the same result in our case [398].

In the kinetic term of the Hubbard Hamiltonian, we perform this replacement of the
original creators and annihilators, but for the interaction term we choose another way:
comparing the condition connecting occupation numbers and spins, we see that 𝑆𝑧

𝑖𝑚𝜎

can directly be substituted for the symmetrized occupation number operators �̄� 𝑖𝑚𝜎.
This gives us an interaction purely in terms of spin operators not involving any 𝑓 -
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fermion operators at all. The Hubbard Hamiltonian then takes the form

𝐻 =
∑︂

⟨𝑖 , 𝑗⟩,𝑚,𝜎
𝑡𝑚𝑖𝑗 4𝑆

𝑥
𝑖𝑚𝜎𝑆

𝑥
𝑗𝑚𝜎 𝑓

†
𝑖𝑚𝜎 𝑓𝑗𝑚𝜎 (5.10)

+𝑈
∑︂
𝑖𝑚

𝑆𝑧
𝑖𝑚↑𝑆

𝑧
𝑖𝑚↓ + (𝑈 − 2𝐽)

∑︂
𝑖𝑚,𝑚′≠𝑚

𝑆𝑧
𝑖𝑚↑𝑆

𝑧
𝑖𝑚′↓ + (𝑈 − 3𝐽)

∑︂
𝑖 ,𝑚<𝑚′,𝜎

𝑆𝑧𝑖𝑚𝜎𝑆
𝑧
𝑖𝑚′𝜎 (5.11)

and the condition 𝑆𝑧
𝑖𝑚𝜎 = 𝑛

𝑓

𝑖𝑚𝜎 −
1
2 must be enforced exactly for the 𝑓 -fermions to be an

exact description of the original fermions.
A standard mean-field approximation (cf. e.g. Ref. [47])∑︂

⟨𝑖 , 𝑗⟩,𝑚,𝜎
𝑡𝑚𝑖𝑗 4𝑆

𝑥
𝑖𝑚𝜎𝑆

𝑥
𝑗𝑚𝜎 𝑓

†
𝑖𝑚𝜎 𝑓𝑗𝑚𝜎 (5.12)

→
∑︂

⟨𝑖 , 𝑗⟩,𝑚,𝜎
𝑡𝑚𝑖𝑗 4

(︂⟨︂
𝑆𝑥𝑖𝑚𝜎𝑆

𝑥
𝑗𝑚𝜎

⟩︂
𝑓 †𝑖𝑚𝜎 𝑓𝑗𝑚𝜎 + 𝑆𝑥𝑖𝑚𝜎𝑆

𝑥
𝑗𝑚𝜎

⟨︁
𝑓 †𝑖𝑚𝜎 𝑓𝑗𝑚𝜎

⟩︁
−

⟨︂
𝑆𝑥𝑖𝑚𝜎𝑆

𝑥
𝑗𝑚𝜎

⟩︂ ⟨︁
𝑓 †𝑖𝑚𝜎 𝑓𝑗𝑚𝜎

⟩︁)︂
(5.13)

can be performed for the four-operator kinetic term in order to split the Hamiltonian
into separate purely fermionic and purely spin parts, with the last term being just a
number, i.e. an absolute shift of the entire energy scale that can be ignored. In the
particle-hole symmetric case, the first term constitutes the entire fermionic Hamilto-
nian, an interaction-free tight-binding Hamiltonian where a static renormalization of
the hopping is the only influence of the auxiliary spins, and the second term is the
kinetic part of the spin Hamiltonian which includes the influence of the fermions in
the same way. For a direct solution of such a mean-field approximated system, self-
consistent values of

⟨︂
𝑆𝑥
𝑖𝑚𝜎𝑆

𝑥
𝑗𝑚𝜎

⟩︂
and

⟨︁
𝑓 †
𝑖𝑚𝜎 𝑓𝑗𝑚𝜎

⟩︁
would have to be found.

We proceed with further approximation by relaxing the condition 𝑆𝑧
𝑖𝑚𝜎 = �̄� 𝑖𝑚𝜎 to

be only fulfilled on average using a method similar to Lagrange multipliers. If we
add chemical potential-like terms −𝜆𝑖𝑚𝜎 𝑓

†
𝑖𝑚𝜎 𝑓𝑖𝑚𝜎 to the fermionic Hamiltonian and

𝜆𝑖𝑚𝜎(𝑆𝑧𝑖𝑚𝜎 + 1/2) to the spin Hamiltonian, the average fulfillment of the condition is
now ensured by finding 𝜆𝑖𝑚𝜎 for which the thermodynamic potential Ω = −𝛽−1 log𝑍
has an extremum:

𝜕Ω

𝜕𝜆 𝑗𝑛𝜎′
= −𝜕𝜆𝑗𝑛𝜎′𝛽−1 log𝑍 = −𝛽−1𝑍−1𝜕𝜆𝑗𝑛𝜎′ Tr

(︂
𝑒(−𝛽𝐻−𝛽∑︁

𝑖𝑚𝜎 𝜆𝑖𝑚𝜎(𝑆𝑧𝑖𝑚𝜎+
1
2− 𝑓 †𝑖𝑚𝜎 𝑓𝑖𝑚𝜎))

)︂
(5.14)

= 𝑍−1 Tr
(︂
𝑒(−𝛽𝐻−𝛽∑︁

𝑖𝑚𝜎 𝜆𝑖𝑚𝜎(𝑆𝑧𝑖𝑚𝜎+
1
2− 𝑓 †𝑖𝑚𝜎 𝑓𝑖𝑚𝜎))(𝑆𝑧𝑗𝑛𝜎′ +

1
2 − 𝑓 †𝑗𝑛𝜎′ 𝑓𝑗𝑛𝜎′)

)︂
=

⟨︂
𝑆𝑧𝑗𝑛𝜎′ +

1
2 − 𝑓 †𝑗𝑛𝜎′ 𝑓𝑗𝑛𝜎′

⟩︂
!
= 0.

Since we consider only the particle-hole symmetric situation at half-filling here, we can
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demand that quantities like 𝐻, Ω and 𝑍 be invariant under a particle-hole transforma-
tion. The terms with the multiplicator variables 𝜆 are not invariant, so the solution in
this case is 𝜆 = 0. In general, the solutions of all 𝜆 variables remaining after taking
into account all symmetries that are present or imposed as approximations must be
determined numerically during the self-consistent solution of this model.

Finally, we treat the spin part of the model itself in single-site mean-field approxi-
mation as well, i.e. we perform an additional decoupling and also impose translational
invariance:

𝑆𝑥𝑖𝑚𝜎𝑆
𝑥
𝑗𝑚𝜎 →

⟨︁
𝑆𝑥𝑖𝑚𝜎

⟩︁
𝑆𝑥𝑗𝑚𝜎 + 𝑆

𝑥
𝑖𝑚𝜎

⟨︂
𝑆𝑥𝑗𝑚𝜎

⟩︂
(5.15)

→ ⟨𝑆𝑥𝑚𝜎⟩ 𝑆𝑥𝑚𝜎 + 𝑆𝑥𝑚𝜎 ⟨𝑆𝑥𝑚𝜎⟩ − ⟨𝑆𝑥𝑚𝜎⟩ ⟨𝑆𝑥𝑚𝜎⟩ . (5.16)

We can apply this to both the expectation value in the fermionic Hamiltonian and
the operator product in the kinetic part of the spin Hamiltonian, but in the former
all terms multiply the fermionic operators and must so be retained to get effectively⟨︂
𝑆𝑥
𝑖𝑚𝜎𝑆

𝑥
𝑗𝑚𝜎

⟩︂
→ ⟨𝑆𝑥𝑚𝜎⟩2. In the latter, however, the last term results again in a pure num-

ber that can be ignored, and we proceed by simplifying it with a Fourier transform to
get

𝐻spin, kin. =
∑︂

⟨𝑖 , 𝑗⟩,𝑚,𝜎
𝑡𝑚𝑖𝑗 8 ⟨𝑆𝑥𝑚𝜎⟩ 𝑆𝑥𝑚𝜎

⟨︁
𝑓 †𝑖𝑚𝜎 𝑓𝑗𝑚𝜎

⟩︁
(5.17)

= 8
∑︂
𝑚𝜎

⟨𝑆𝑥𝑚𝜎⟩ 𝑆𝑥𝑚𝜎

∑︂
⟨𝑖 , 𝑗⟩

𝑡𝑚𝑖𝑗
⟨︁
𝑓 †𝑖𝑚𝜎 𝑓𝑗𝑚𝜎

⟩︁
(5.18)

= 8
∑︂
𝑚𝜎

⟨𝑆𝑥𝑚𝜎⟩ 𝑆𝑥𝑚𝜎

∑︂
𝑘

𝜖𝑚
𝑘 ⟨𝑛𝑘𝑚𝜎⟩ (5.19)

= 8�̄�
∑︂
𝑚𝜎

⟨𝑆𝑥𝑚𝜎⟩ 𝑆𝑥𝑚𝜎 , (5.20)

where �̄� is the average energy per free 𝑓 -fermion. This energy can be calculated as

�̄� =

∫ 𝜇

−∞
𝐸𝐷(𝐸) d𝐸 (5.21)

in terms of the fermionic single-particle density of states 𝐷(𝐸), which is the same for
𝑓 - and 𝑑-fermions and so semicircular in our case.
After all these approximations, the fermionic and spin parts of the Hamiltonian,

which together make up that of the entire system, take the form

𝐻ferm. = 4
∑︂
𝑚𝜎

⟨𝑆𝑥𝑚𝜎⟩2
∑︂
𝑘

𝜖𝑚
𝑘
𝑛𝑘𝑚𝜎 (5.22)
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𝐻spin = 8�̄�
∑︂
𝑚𝜎

⟨𝑆𝑥𝑚𝜎⟩ 𝑆𝑥𝑚𝜎 (5.23)

+𝑈
∑︂
𝑚

𝑆𝑧
𝑚↑𝑆

𝑧
𝑚↓ + (𝑈 − 2𝐽)

∑︂
𝑚,𝑚′≠𝑚

𝑆𝑧
𝑚↑𝑆

𝑧
𝑚′↓ + (𝑈 − 3𝐽)

∑︂
𝑚<𝑚′,𝜎

𝑆𝑧𝑚𝜎𝑆
𝑧
𝑚′𝜎⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

𝐻spin, int.

,

where we may further define the auxiliary spin magnetization 𝑚𝑥 = 2𝑁orb ⟨𝑆𝑥𝑚𝜎⟩ =

4 ⟨𝑆𝑥𝑚𝜎⟩ and can also identify the fermionic quasiparticle weight 𝑍𝑚 = 4 ⟨𝑆𝑥𝑚𝜎⟩2, which
can e.g. be shownusing its definition in terms of the coherent part of the spectralweight
[398].

Since the quasiparticle weight 𝑍 can be considered as an order parameter for the
Mott transition and its square root is proportional to the auxiliary spin magnetization
𝑚𝑥 , getting the self-consistent solution for𝑚𝑥 is enough for our purposes, and since the
constant non-interacting kinetic energy �̄� is the only information about the fermionic
system entering into the spin Hamiltonian, the fermionic part (5.22) is no longer rele-
vant from here on. The Mott transition corresponds to the ferromagnetic transition of
the auxiliary spin system, and at zero temperature the ground state energy of the spin
Hamiltonian (5.23) is the only ingredient we need to consider for the thermodynamic
potential.

Using Landau’s theory of phase transitions [440] we can determine which of the
phases is stable in the vicinity of the critical point and whether the transition is contin-
uous. Considering the Landau function, which is similar to a thermodynamic poten-
tial, as a function of the order parameter, the global minimum corresponds to the stable
phase of the system. In addition to the self-consistent field ℎsc := 8�̄� ⟨𝑆𝑥𝑚𝜎⟩, we addi-
tionally introduce a hypothetical external field ℎext, such that the energy and thus zero-
temperature free energy of the spin system is 𝐸(ℎext) =

⟨︁
𝐻spin + ℎext

∑︁
𝑚𝜎 𝑆

𝑥
𝑚𝜎

⟩︁
and we

obtain its Gibbs free energy as Legendre transform Γ(𝑚𝑥) = 𝐸(ℎext(𝑚𝑥)) − ℎext(𝑚𝑥)𝑚𝑥 .
Because this thermodynamic potential is based on a mean-field approximated Hamil-
tonian and so cannot include influence from states in which the system as a whole has
a different magnetization, it is directly suitable for use as Landau function [43, 445].

Our model is entirely symmetric under a sign change of the magnetization 𝑚𝑥 in
𝑥-direction and we naturally care about the case of zero “external field” only, so the
series expansion of the Landau function contains only even powers of 𝑚𝑥 . In order to
show the discontinuity of the Mott transition in our case, we need to explicitly include
at least the second and fourth order terms in our expansion: a discontinuous transition
happens when the value of Γ at the central (𝑚𝑥 = 0) local minimum, caused by a pos-
itive second order term, equals its value at the local minimum at non-zero 𝑚𝑥 , caused
by a negative fourth order term. The two phases differ in which of the local minima is
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Figure 5.17: Gibbs free energy Γ(𝑚𝑥) calculated numerically using SSMF as function of
the auxiliary spin magnetization 𝑚𝑥 , equal to the square root of the quasi-
particle weight

√
𝑍. This function serves as Landau function and is sym-

metric around 𝑚𝑥 = 0. For interaction strengths 𝑈 < 𝑈𝑐1 or 𝑈 > 𝑈𝑐2
outside of the coexistence region, the global and only minimum is the sta-
ble metallic (𝑍 > 0) or insulating (𝑍 = 0) solution. In the coexistence
region (𝑈𝑐1 < 𝑈 < 𝑈𝑐2), both solutions are local minima and so at least
metastable, with an additional unstable solution at the local maximum in
between. At the phase transition, the global minimum changes between
the two local minimawhile their positions remainwell separated through-
out, indicating a transition of first order. This form of the Landau function
with three local extrema (at nonnegative 𝑚𝑥) around the transition is real-
ized for a positive second order and negative fourth order coefficient.

the global minimum. Before we show how to determine the coefficients using a pertur-
bative expansion of the ground state energy, we can already use the numerical results
from full SSMF to visualize the expected behavior. In Fig. 5.17, the blue curve for 𝑈
in the coexistence region is a Landau function with three local minima (at 𝑚𝑥 = 0 and
𝑚𝑥 ≈ ±0.8) as it is realized at the transition if the fourth order coefficient is negative
while those of the second and all higher orders are positive: For 𝑚 close enough to
zero, the second order always dominates and causes a local minimum if its coefficient
is positive, and having at least one negative coefficient is a necessary condition to have
any further local minima. Whether there actually are more depends on the coefficient
ratios, but this must be necessarily the case at the phase transition as there would not
be another phase otherwise.

Our Ansatz for the expansion of Γ around the Mott transition at
√
𝑍 ∝ 𝑚𝑥 = 0 is

therefore
Γ(𝑚𝑥) = 𝛾2𝑚

2
𝑥 + 𝛾4𝑚

4
𝑥 + 𝑂(𝑚6

𝑥), (5.24)
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which gives us the field in terms of the magnetization as

ℎext(𝑚𝑥) = − 𝜕Γ

𝜕𝑚𝑥
= −2𝛾2𝑚𝑥 − 4𝛾4𝑚

3
𝑥 + 𝑂(𝑚5

𝑥). (5.25)

With the spin Hamiltonian (5.23) and the external field term, we can explicitly ex-
press the total ground state energy as

𝐸 =

⟨︄
(ℎsc + ℎext)⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞

ℎ

∑︂
𝑚𝜎

𝑆𝑥𝑚𝜎⏞ˉ̄⏟⏟ˉ̄⏞
𝑚𝑥

+𝐻spin,int.

⟩︄
, (5.26)

for which a perturbative series expansion of the form

𝐸(ℎ) = 𝑒2ℎ
2 + 𝑒4ℎ4 + 𝑂(ℎ6) (5.27)

can be done. In terms of these coefficients the magnetization in terms of the total field
can now be calculated as well,

𝑚𝑥(ℎ) =
𝜕𝐸

𝜕ℎ
= 2𝑒2ℎ + 4𝑒4ℎ3 + 𝑂(ℎ5), (5.28)

which can be inverted up to fourth order to get

ℎ(𝑚𝑥) =
1

2𝑒2
𝑚𝑥 −

4𝑒4
(2𝑒2)4

𝑚3
𝑥 + 𝑂(𝑚5

𝑥). (5.29)

After subtracting the self-consistent fieldwe have another expression for the expansion
of the external field,

ℎext(𝑚𝑥) =
(︃

1
2𝑒2

− 4�̄�
𝑀

)︃
𝑚𝑥 −

4𝑒4
(2𝑒2)4

𝑚3
𝑥 + 𝑂(𝑚5

𝑥), (5.30)

which can be compared term by term with (5.25) to get the relations between the coef-
ficients of the perturbative series for the ground state energy and those of the Landau
function,

𝛾2 = − 1
4𝑒2

+ 2�̄�
𝑀
, 𝛾4 =

𝑒4

(2𝑒2)4
. (5.31)

We can therefore determine the coefficients of the Landau function and so gain in-
sight into the stability of the competing solutions and the order of the transition by cal-
culating the perturbative corrections to the ground state energy of 𝐻spin,int.. Because
this spin interaction Hamiltonian is equivalent to the interacting part of our original
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𝐸

𝑁 0 1 2 3 4

2𝑈 − 2𝐽 |0, 0⟩ |↑↓, ↑↓⟩

3𝐽 |↑↓, 0⟩ , |0, ↑↓⟩

𝑈/2 + 𝐽/2 |↑, 0⟩ , |↓, 0⟩ , |↑↓, ↑⟩ , |↑↓, ↓⟩ ,
|0, ↑⟩ , |0, ↓⟩ |↑, ↑↓⟩ , |↓, ↑↓⟩

𝐽 |↑, ↓⟩ , |↓, ↑⟩

0 |↑, ↑⟩ , |↓, ↓⟩

Table 5.1: Many-body states of a single-site Hubbardmodel arranged horizontallywith
respect to occupation number 𝑁 and vertically with respect to eigenenergies
𝐸 relative to the ground state energy (ordered assuming 𝐽 = 𝑈/4). The en-
ergy of themany-body states includes both interaction aswell as the chemical
potential for half-filling.

Hubbard model Hamiltonian, which corresponds to the entirety of a single site Hub-
bard model or “Hubbard atom”, we will denote the states in terms of the equivalent
single-site many-body states (see Tab. 5.1) rather than the auxiliary spin basis states,
e.g. the ground states as |↑, ↑⟩ and |↓, ↓⟩ rather than |↑↓↑↓⟩ and |↓↑↓↑⟩ for clarity. The
full operator of the perturbation is the kinetic term 𝑉 = (ℎsc + ℎext) (

∑︁
𝑚𝜎 𝑆

𝑥
𝑚𝜎), where

we may set the hypothetical external field to zero again and the remaining coefficient
ℎsc ∝ 𝑚𝑥 ∝

√
𝑍 is indeed small around the Mott transition, where 𝑍 = 0 on the insulat-

ing side.
Due to the double degeneracy of the ground state, the spin-aligned half-filled states

|↑, ↑⟩ and |↓, ↓⟩ favored by Hund’s coupling in absence of the perturbation, we need to
proceed with degenerate perturbation theory [446]. This procedure deals with the for-
mally diverging terms that the version for non-degenerate cases would produce due to
contributions from the same degenerate subspace the considered state belongs to and
requires the diagonalization of the perturbation in that subspace to find the appropri-
ate basis.

Ordinarily, it is directly𝑉 that must be diagonalized, but in our case the odd powers
of 𝑉 are zero in the ground state subspace because the application of 𝑉 changes the
occupation by exactly one, so they are diagonal in any basis. Additionally, in the case
𝐽 ≠ 0 two allowed hopping processes in sequence connect each of the occupation basis
ground states just to itself with the exactly same coefficient due to spin symmetry, so
𝑉2 is proportional to a unit matrix and also has equal eigenvalues and no preferred
basis. The terms proportional to 𝑉4 are the first ones not diagonal in the degenerate
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subspace, and those that revisit the ground state subspace already after the second
application of 𝑉 do not need to be considered for the diagonalization as they corre-
spond to (𝑉2)2, proportional to a unit matrix, which shifts both eigenvalues equally.
All the other terms reach intermediate states at energies 𝐽, 3𝐽 or 2𝑈 − 2𝐽, which are all
equally connected to either of the two ground states by the perturbation, and so we

have to diagonalize a matrix proportional to

(︄
1 1
1 1

)︄
. Its eigenvalues are 0 and 2, with

the latter belonging to the ground state (|↑, ↑⟩ + |↓, ↓⟩)/
√

2 due to the overall negative
sign of the fourth order terms. Therefore the total effect of the degeneracy compared
to non-degenerate perturbation theory to fourth order is an additional factor of 2 for
fourth-order processes which do not have the ground state as intermediate state.

In total, the non-zero corrections to the unperturbed ground state energy 𝐸(0)
𝑛 in sec-

ond and fourth order of perturbation theory are

𝐸
(2)
n =

∑︂
𝑚

|𝑉𝑛𝑚 |2
𝐸𝑛𝑚

, (5.32)

𝐸
(4)
n =

∑︂
𝑚𝑝𝑞

𝑉𝑛𝑚𝑉𝑚𝑝𝑉𝑝𝑞𝑉𝑞𝑛

𝐸𝑛𝑚𝐸𝑛𝑝𝐸𝑛𝑞
− 𝐸(2)

n

∑︂
𝑚

|𝑉𝑛𝑚 |2

𝐸2
𝑛𝑚

, (5.33)

where 𝑉𝑛𝑚 are the matrix elements of the perturbation operator, 𝐸𝑛𝑚 := 𝐸
(0)
𝑛 − 𝐸(0)

𝑚 is
used as abbreviation in the denominators andwith all summations over all states not in
the degenerate ground state subspace. It is clear that the odd order terms must vanish
because the operator𝑉 flips one auxiliary spin per application: recall that 𝑆𝑥 ∝ 𝑆++𝑆−,
and in each term of the sum

∑︁
𝑚𝜎 𝑆

𝑥
𝑚𝜎, identity operators implicitly act on the three

other auxiliary spins. This corresponds to a change of the occupation of the single-site
Hubbard model by exactly one, and so the matrix elements of all odd powers of 𝑉 are
exactly 0 between two states with the same occupation number.

The total ground state energy correction is

𝐸(ℎ) = − 2
𝑈(1 + 𝑗)⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞

𝑒2

ℎ2 − 2(7𝑗2 − 9𝑗 + 8)
𝑈3(1 + 𝑗)3(1 − 𝑗)3𝑗⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

𝑒4

ℎ4, (5.34)

where 𝑗 = 𝐽/𝑈 . For 0 < 𝐽 < 𝑈 , which includes the realistic values of 𝐽/𝑈 , the denomi-
nator of 𝑒4 is positive and so 𝑒4 itself as well as 𝛾4 are negative, as it is required to have
a first-order transition.

We can additionally analyze which hopping processes favor a first-order transition
by looking at their individual contributions to 𝑒4. They can be categorized by the sub-
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space to which their intermediate states after the second hop belong, which is either
that of the ground state for the, diagrammatically speaking, disconnected process de-
scribed by the second term in (5.33) or the oneswith energies 𝐽, 3𝐽 or 2𝑈−2𝐽 for the first
term. In this order, their numerator contributions are 24𝑗2 − 24𝑗, −12𝑗2 + 12, −4𝑗2 + 4,
and 6𝑗2 + 6𝑗 respectively. In the range 0 < 𝐽 < 𝑈 , only the first contribution due to
the disconnected process composed from two separate two-stage hopping processes is
negative and so disfavors the first-order transition, particularly at relatively high values
of 𝐽 around 𝐽 = 𝑈/2, while all the contributions by connected processes are positive
and so favor the first-order transition, with those visiting the 𝐽 and after it the 3𝐽 levels
being the larger contributions for low 𝐽.

This qualitatively explains why no first-order transition is observed for 𝐽 = 0, as the
𝐽 and 3𝐽 levels belong to the ground state subspace in that case and must be treated
during the diagonalization step of degenerate perturbation theory instead, and why
the range of 𝐽 with a first-order transition is smaller for Kanamori interaction, because
the levels there are 2𝐽 and 4𝐽 instead. Data for the latter aswell as a detailed treatment of
both of these other cases can be found in Ref. [360], and similar behavior has previously
been described in Ref. [447] using the rotationally invariant slave-bosonmethod (RISB),
where the empirical rule of thumb is suggested that a first-order transition should be
expected if the lowest-lying excitations of the single-site Hamiltonian have the same
occupation as its ground state. This reasoning is in principle not limited to a splitting
of the ground statemultiplet byHund’s coupling either: as long aswe get excited states
with the same occupation number, ideally lying as low as possible, we can expect the
same effect on the order of the transition. e.g. also due to a Jahn-Teller distortion [448]
or crystal field [360, 392].

Regarding our DMFT calculations, we can employ the perturbative expansion for
one more important observation: as long as the ground state of the single-site model
is degenerate, including also the 𝐽 = 0 case with six-fold degeneracy, the transition
at sufficiently low but non-zero temperature will be of first order independent of its
behavior at zero temperature [449], and therefore results demonstrating a first-order
transition at one single arbitrarily low but non-zero temperature, e.g. fromDMFTusing
a QMC solver, would not directly by itself allow us to draw a conclusion about the
nature of the transition at zero temperature or distinguish the cases with and without
Hund’s coupling.

This can be shown by considering the internal energy around the Mott transition
at a temperature slightly above zero [449], at which we have to include all the states
from the original ground state subspace of dimension 𝑁deg rather than just the lowest
lying after perturbation, as all their energies 𝐸𝑖 = 𝑒0 + 𝑒𝑖 ,2ℎ2 + 𝑒𝑖,4ℎ4 +𝑂(ℎ6) differ from
the ground state energy only by powers of the small quantity ℎ. For a low enough
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temperature, we can still assume that contributions from any of the other state with
a distance of about 𝐽 or more from the ground state are negligible. After setting the
unperturbed ground state energy 𝑒0 to zero for simplification, we can expand the total
internal energy

⟨𝐸⟩ =
∑︁
𝑖 𝐸𝑖 exp(−𝛽𝐸𝑖)∑︁
𝑖 exp(−𝛽𝐸𝑖)

=

∑︁
𝑖 𝐸𝑖(1 − 𝛽𝐸𝑖)∑︁
𝑖(1 − 𝛽𝐸𝑖)

+ 𝑂(ℎ6) (5.35)

=

(︄∑︂
𝑖

𝐸𝑖(1 − 𝛽𝐸𝑖)
)︄
𝑁−1

deg

(︄
1 + 𝛽

𝑁deg

∑︂
𝑖

𝐸𝑖

)︄
+ 𝑂(ℎ6) (5.36)

by first expanding the exponential functions for 𝐸𝑖 → 0 and, after factoring out the
degeneracy, the inverse as binomial series to just two terms, as this suffices for all the
decisive terms of fourth order in ℎ in total. With the average energy �̄� = 𝑁−1

deg
∑︁
𝑖 𝐸𝑖 of

the original ground states after perturbation, we can rearrange this after multiplying
out to get

⟨𝐸⟩ = �̄� − 𝛽

(︄∑︂
𝑖

𝐸2
𝑖

𝑁deg
− �̄�2

𝑖

)︄
= �̄� − 𝛽(𝐸 − �̄�)2 + 𝑂(ℎ6), (5.37)

where (𝐸 − �̄�)2 contains a strictly positive fourth-order contribution that ensures due
to its coefficient 𝛽 that the total fourth order terms of the energy and the Landau func-
tion are negative for sufficiently low temperature, indicating a first-order transition.
For exactly zero temperature on the other hand, only the energy contribution of the
ground state after perturbation is relevant, and so the transition order not generally
determined.

5.1.5 Conclusion, contextualization and outlook

Our results show that a zero temperature Mott transition of first order at half-filling,
which is present in the two-orbital Hubbard model with Hund’s coupling, implies a
quantum critical point (QCP) at finite doping. Using a perturbative analysis, we are
able to attribute the order of the phase transition at half-filling and thus the underlying
cause of the finite-doping QCP to the splitting of the ground state multiplet by a term
small relative to𝑈 , which is the Hund’s coupling 𝐽 in this case. This feature is neither
unique to models with two orbitals nor does it depend on our use of the semicircular
(Bethe lattice) density of states and it is reasonable to assume that at least other models
differing in only these aspects show similar behavior.

Other models for which we have performed similar analysis (using QMC-DMFT cal-
culations only) are e.g. a two-dimensional two-orbital model with a simple Hamilto-
nian designed to reproduce the LDA Fermi surface of iron-pnictide superconductors
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Figure 5.18: Left panel: Single-particle density of states 𝑁(𝜔) of the Hamiltonian of
a two-dimensional model for iron-pnictide superconductors with two de-
generate orbitals [450] used as DMFT input with a resolution of 107 × 109
𝑘-points. Right panel: Total occupation ⟨𝑛⟩ for this model with density-
density interaction at three different interaction strengths 𝑈 . Depending
on 𝑈 , we observe either a doping-driven phase transition (lowest 𝑈) or a
crossover.

[450]. The effective single-particle density of states for the resolution of the Hamilto-
nian in 𝑘-space used as input for the DMFT calculations is shown in the left panel of
Fig. 5.18 with the resulting ⟨𝑛⟩ (𝜇) curve (still for density-density interaction) next to
it. The shape of this density of states, which consists of two clearly distinguishable
contributions with different spreads, inversely proportional weights, and one typically
two-dimensional van Hove singularity each, slightly impacts the quantitative compa-
rability with our two-orbital Bethe lattice calculations. For this model, the total band-
width is 12𝑡1 with 𝑡1 the nearest-neighbor hopping between the orbitals extended in
the direction of the neighbor, which places the shown graph for 𝛽𝑡1 = 10 in approx-
imately the region of the 𝛽𝐷 = 50 graph (Fig. 5.12) for the Bethe lattice model. We
can recognize a coexistence region for 𝑈/𝑡1 = 16.0 for this model, which has an ex-
tent comparatively smaller in the chemical potential 𝜇 (after rescaling) but larger in the
doping or occupation ⟨𝑛⟩, even comparing with data for the next lower temperature of
𝛽𝐷 = 100 (Fig. 5.15) in the Bethe lattice model.

In addition to this comparison with another two-orbital model with only a more re-
alistic density of states, we have also compared models with more and non-degenerate
orbitals and more complicated forms of the interaction Hamiltonian. In the left panel
of Fig. 5.19, we show the ⟨𝑛⟩ (𝜇) curve for a Bethe lattice model with three degener-
ate orbitals and Kanamori interaction, and beside it that for a DFT-derived five-orbital
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Figure 5.19: Left panel: Total occupation ⟨𝑛⟩(𝜇 − 𝜇HF) as a function of chemical poten-
tial relative to half-filling for a Bethe lattice model with three degenerate
orbitals and Kanamori interaction at several different interaction strengths
𝑈 , with a doping-driven phase transition recognizable for intermediate𝑈 .
Right panel: Total occupation ⟨𝑛⟩(𝜇) for a five-orbital model using a DFT-
derived Hamiltonian for BaFe₂As₂ with density-density interaction using
realistic interaction strength parameters𝑈 = 2.8 eV, 𝐽 = 0.43 eV [451].

BaFe₂As₂ Hamiltonian with density-density interaction. For a suitably chosen value of
the interaction strength, we can see coexistence regions of multiple phases near inte-
ger filling in both of these systems as well. In BaFe₂As₂ calculations with Kanamori or
Coulomb interaction (not shown), we have so far only been able to identify a region
of increased compressibility, but no phase separation. This is in agreement with the
observation from SSMF [392], which we also confirmed for the two-orbital model at
non-zero temperature using QMC-DMFT (not shown), that coexistence regions with
Kanamori interaction tend to be smaller than with density-density interaction given
otherwise comparable systems. Aswementioned in the previous chapter, Hund’s cou-
pling is however not the only way to induce a splitting of the ground state multiplet,
so with the inclusion of other neglected effects such as spin-orbit coupling it may be
possible to find phase separation in BaFe₂As₂ as well.

However, our analysis is not only relevant for systems that require a multiorbital de-
scription due to intrinsically multiorbital physics “per site” like Hund’s metals, but can
also be connected with other systems in the context of which our orbital degree of free-
domwould represent something more abstract than simple atomic orbitals. Due to the
need of momentum-space dependence for an accurate description of the cuprates’ 𝑑-
wave superconductivity for example [33, 452], the two-dimensional single-orbital Hub-
bard model is typically not solved using plain single-site DMFT any more in this con-
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text, but rather using cluster extensions of DMFT [453–455], which allow the resulting
self-energy functions to capture the effects of short-ranged spatial correlations through
their momentum dependence. As little as two orbitals, assigned to different patches of
momentum space in the DCA approach, can already give a qualitative agreement of
calculated ARPES spectra with cuprate phenomenology [456].

In this way, our results of compressibility enhancement, phase separation with co-
existence of two metals and quantum criticality at finite doping lend themselves easily
to a comparison with the similar picture that already started to form in earlier stud-
ies of cuprate models [374–376] and is substantially confirmed and enhanced by clus-
ter DMFT calculations for the two-dimensional Hubbard model [421, 422, 457–465],
which indicate the influence of a (possibly quantum) critical point in the region of the
pseudogap and superconducting phases.

single site
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t 2t
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Figure 5.20: Illustration of the approximative mapping from CDMFT using a 2 × 2-
plaquette cluster for the single-orbital Hubbard model, used as cuprate
superconductor model in cluster DMFT calculations, to single-site DMFT
using a two-orbital model. By performing the change of basis (5.38) from
single orbitals (squares) to bonding (𝑐) and antibonding ( 𝑓 ) combinations
across the plaquette diagonals (red rectangles), we effectively end up with
two equal sites with Kanamori-interacting two orbitals each connected by
hopping only. This is an exact transformation of the plaquette cluster up
to the step where we neglect the depicted off-diagonal component of the
Weiss function 𝐺0 that connects the two sites in order to perform single-
site rather than two site DMFT as an approximation. Taken from Fig. 1 of
Ref. [466]³.

The relevance of the phenomenology of Hund’s metals including iron pnictide su-
perconductors to the description of cuprates as another prominent class of high-tempe-
rature superconductor has been speculated on before [383, 466]. Following this argu-
mentation, the physics of “spin-freezing” [35] that leads to non-Fermi-liquid states and
orbitally decoupled physics down to comparatively low temperature could be consid-
ered as the underlying shared mechanism between both of them. An explicit mapping

³Reprinted figure with permission from P. Werner, S. Hoshino, and H. Shinaoka, “Spin-freezing per-
spective on cuprates,” Phys. Rev. B 94, 245134 (2016). Copyright 2016 by the American Physical
Society.
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from a 2 × 2-plaquette with one orbital per site as it could be used in cluster DMFT
for a cuprate-inspired model to a two-site two-orbital model with was performed in
Ref. [466] in order to interpret the cuprate model behavior in terms of the spin-freezing
behavior typical formultiorbitalmodels: By going into the basis of bonding (𝑐𝑖) and an-
tibonding ( 𝑓𝑖) orbitals between the two pairs (𝑖 ∈ {1, 2}) of diagonally opposite corners
of the plaquette (red rectangles in Fig. 5.20),

𝑐1 =
𝑑1 + 𝑑3√

2
, 𝑓1 =

𝑑1 − 𝑑3√
2

, 𝑐2 =
𝑑2 + 𝑑4√

2
, 𝑓2 =

𝑑2 − 𝑑4√
2

, (5.38)

𝑑1 =
𝑐1 + 𝑓1√

2
, 𝑑2 =

𝑐2 + 𝑓2√
2

, 𝑑3 =
𝑐1 − 𝑓1√

2
, 𝑑4 =

𝑐2 − 𝑓2√
2

, (5.39)

where 𝑑𝑖 is the local orbital on each site (𝑖 ∈ {1, 2, 3, 4}) of the plaquette enumer-
ated in anticlockwise order (see Fig. 5.20), the single-orbital on-site repulsive inter-
action is transformed into an interaction of Kanamori form between the two orbitals
that belong to the same pair of sites each with all interaction parameters equal, i.e.
𝑈 𝑐/ 𝑓 = 𝑈′𝑐/ 𝑓 = 𝐽𝑐/ 𝑓 = 𝑈𝑑/2 with the original on-site repulsion 𝑈𝑑 and the new in-
traorbital repulsion𝑈 𝑐/ 𝑓 , interorbital repulsion𝑈′𝑐/ 𝑓 and Hund’s coupling 𝐽𝑐/ 𝑓 . Aside
from the local interaction, the chemical potential term for 𝑑 electrons turns into the
same chemical potential term for 𝑐 and 𝑓 electrons, the nearest neighbor 𝑡 hopping
term for 𝑑 electrons turns into a nearest neighbor hopping term with double coeffi-
cient 2𝑡 for 𝑐 electrons only and the next nearest (diagonal) 𝑡′ hopping term turns into
a crystal field splitting of size 2𝑡′ between the 𝑐- and 𝑓 -orbital on a site.

Obtaining the Weiss Green’s function in the new basis by transforming that of the
plaquette, we see that we have two equal sites with diagonal elements of 𝒢0 for each
orbital and additionally off-diagonals only between the two 𝑐-orbitals. As seen in the
last step of Fig. 5.20, it is then proposed in Ref. [466] further approximate the model by
now dropping one of the two sites and only performing single-site DMFT, such that all
the hoppings between orbitals of the same type including the site-offdiagonal ones are
at most treated through DMFT. This leads to a solution that is structurally the same as
that of our two-orbital model if we choose the Kanamori form for the interaction, but
the unusual values interaction parameters, which make the Hund’s coupling 𝐽 not at
all a small scale compared to 𝑈 , mean that no direct quantitative conclusions can be
drawn for this model.
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5.2 Detection of thermodynamic instabilities from
quantities on the two-particle level

In this section, we investigate the transition and crossover betweenweakly and strongly
correlated metal emerging from the Mott transition at half-filling at non-zero tempera-
ture and doping using two-particle response functions calculated by continuous-time
quantum Monte Carlo for DMFT solutions of the two-orbital Hubbard model. These
local quantities allow us to reproduce values for electronic compressibilities estimated
from numerical derivatives, including its enhancement and divergence in the vicin-
ity of the critical point. We find that reformulations in terms of the local generalized
susceptibilities are also possible for the other derivatives of thermodynamic potentials
and can be used to express thermodynamic stability conditions. Using the spectral
representation of the generalized susceptibility, an eigenvalue condition for the com-
pressibility divergence can be established and is found to serve as a threshold for the
distinction between stable and unstable phases as well, even if the compressibility of
an unstable solution is positive and would thus not suffice to establish instability by
itself.

This section covers mostly results published in the following preprint, Ref. [194], which is
also the source of some of the figures

A. Kowalski, M. Reitner, L. Del Re, M. Chatzieleftheriou, A. Amaricci, A. Toschi,
L. de’Medici, G. Sangiovanni, and T. Schäfer,

“Thermodynamic Stability at the Two-Particle Level”,
arXiv:2309.11108 [cond-mat]

5.2.1 The physics of response functions and vertex divergences

In the previous section, we examined the Mott metal-insulator transition as well as
the metal-metal transition and crossover that are its continuation at non-zero doping
by solving the Hubbard model using DMFT. The quantities we considered primar-
ily were e.g. the occupation or doping, double occupancies, quasiparticle weight, and
spectrum as functions of the interaction strength 𝑈 and chemical potential 𝜇 as pa-
rameters. Apart from the double occupancies, all of them are one-particle quantities
that we obtain by processing the local Green’s function and self-energy of the DMFT
solution. The compressibility enhancement and divergence associated with the phase
transitions [363, 369]manifest themselves in increased slopes of the 𝑛(𝜇) curves, see e.g.
Fig. 5.15. The physical information that we can extract from these slopes, i.e. from val-
ues of the one-particle quantity 𝑛 from multiple DMFT solutions with different 𝜇, tells
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us about the response of the occupation of the system to a change in its chemical poten-
tial, which effectively changes that occupation. At first glance this seems a little cyclical,
but CT-HYB allows us access to arbitrary correlation functions of the auxiliary AIM,
and we can e.g. consider the correlation ⟨𝑛(𝜏)𝑛(0)⟩ of the occupation with its value at
some different imaginary time. This charge-charge susceptibility or response function
is a two-particle correlation function made of four creators and annihilators and tells
us how the auxiliary impurity itself responds to a change of its 𝜇 parameter. Within
the DMFT embedding the direct change of the impurity 𝜇, though it is the same as the
lattice 𝜇, is not the only term that contributes to the compressibility 𝜕𝑛/𝜕𝜇 of the lattice
model. Still, it is possible in DMFT to use other more general two-particle quantities
we obtain for the impurity from CT-HYB to calculate also the response functions for
the lattice. With their informational content that essentially includes the lattice 𝜕𝑛/𝜕𝜇,
this allows us to roughly locate ourselves in the lattice phase diagram (a divergence of
the susceptibility would e.g. put us at the critical point) even though we only calculate
properties of one single DMFT solution. In this section, we will see how derivatives of
thermodynamic potentials and the thermodynamic stability conditions for the lattice
model can be rewritten in DMFT in terms of correlation functions of the auxiliary AIM
that can be calculated “locally” in parameter space. By analyzing the two-particle re-
sponse functions in their eigenbasis, we will further identify a remarkable connection
between the lowest eigenvalue, one single number, and thermodynamic stability.

𝜔 𝜔𝜒(𝜔) →
𝜈 + 𝜔

𝜈

𝜈′ + 𝜔

𝜈′

𝜒(𝜈, 𝜈′, 𝜔)

Figure 5.21: Comparison between the representations of a physical response function
𝜒(𝜔) (left) and a generalized susceptibility 𝜒(𝜈, 𝜈′, 𝜔) (right) as Feynman
diagrams [212]. The physical response function has only one frequency
argument, just as a correlation function like ⟨T𝜏 𝑛(𝜏)𝑛(0)⟩ only needs one
time argument assuming time-translational invariance. With reference to
this function, we could describe the generalization (arrow) leading to the
generalized susceptibility as splitting the densities into creators and anni-
hilators and relaxing the restrictions on all their time differences, which
pictorially “unties” the contracted legs and results in a different frequency
for each of them (of which only three are independent due to energy con-
servation).

The concrete quantity we are interested in is the uniform (q = 0) two-particle charge-
charge correlation function 𝜒𝑑,q=0 of the lattice in DMFT, which tells us how the occu-
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Figure 5.22: Divergence lines of irreducible vertices in different channels in the repul-
sive and attractive one-band Hubbard model at half-filling with the Mott
metal-insulator transition (blue, cf. Fig. 5.1) for reference. As the inter-
action is moved from zero, the first vertex divergences are encountered
significantly before reaching the Mott transition and are accompanied by
sign changes of the eigenvalues of the response function associated with
the channel. Taken from Fig. 1 of Ref. [467]⁴.

pation of the entire lattice responds. Its vertex part, i.e. the unit in its diagrammatic
representation that can not be split into disconnected parts by cutting two separate one-
particle Green’s function lines, is the two-particle irreducible vertex function Γ𝑑,kk′q.
In DMFT, a local vertex function calculated in the auxiliary AIM can be used for the
calculation of susceptibilities of the lattice problem [468]. The irreducible vertex func-
tion is thus the link between two-particle impurity and lattice quantities, similar to
the self-energy in the one-particle case. The equation analogous to the Dyson equa-
tion, which allows us to first extract the vertex function from the CT-HYB impurity
results and then to use it to calculate the lattice quantity is the Bethe-Salpeter equation
𝜒𝑑 = 𝜒0,𝑑 − 𝛽−2𝜒0,𝑑Γ𝑑𝜒𝑑 [33]. The quantity 𝜒𝑑 here is a generalized susceptibility [214],
differing from a physical susceptibility in having four uncontracted outer legs as shown
in Fig. 5.21 that can be linked together with other two-particle quantities to make up
longer diagrammatic contributions as in the second term of the Bethe-Salpeter equa-
tion. It consists of two- and one-particle Green’s functions, which we can calculate for
the auxiliary AIM to invert the Bethe-Salpeter equation and obtain the impurity vertex
function Γimp,𝑑. Inserted in the lattice Bethe-Salpeter equation, we can get the general-

⁴Reprinted figure with permission from D. Springer, P. Chalupa, S. Ciuchi, G. Sangiovanni, and A.
Toschi, “Interplay between local response and vertex divergences in many-fermion systems with on-
site attraction,” Phys. Rev. B 101, 155148 (2020). Copyright 2020 by the American Physical Society.
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ized susceptibility of the lattice and sum over the fermionic Matsubara frequencies to
get physical susceptibilities.

While we consider the Hubbard model in the vicinity of its critical point where the
susceptibility 𝜒𝑑,q=0 diverges, the divergences of the vertex function Γ𝑑 itself that we
insert into the Bethe-Salpeter equation have been of some interest recently. Solving the
equation for Γ𝑑, we get Γ𝑑 = 𝛽2(𝜒−1

𝑑
− 𝜒−1

0,𝑑) which tells us that a zero eigenvalue of the
generalized susceptibility will cause a divergence [469]. At 𝑈 = 0, all eigenvalues are
positive, but we know that in the Hubbard model, electrons start forming fluctuating
local moments as we approach the Mott transition, accompanied by the gradual in-
crease of spin fluctuations and suppression of charge fluctuations. In the eigenbasis of
the generalized susceptibility, this decrease of the charge susceptibility does not hap-
pen uniformly. Instead, more and more eigenvalues in the charge channel move from
positive to negative to bring down the value of the charge susceptibility, and this is as-
sociated with a divergence of the vertex for each of the eigenvalues [215, 469]. Fig. 5.22
shows the curves in the parameter space of the Hubbard model along which the di-
vergences of the irreducible vertices in the different channels occur, marking different
channels separately. These correspond to different components of the generalized sus-
ceptibility for which the Bethe-Salpeter equations decouple. Consequently, with each
channel a different irreducible vertex irreducible in that particular channel is associated.
For repulsive interaction the diagram shows that the first divergence does indeed hap-
pen in the charge channel, and that it in fact already occurs at interaction strengths
significantly below the coexistence region of the Mott transition as a sort of precursor
effect [470] and persists at temperature considerably above the critical temperature of
the Mott transition.

The area in phase space at high interaction strength that is separated from theweakly
correlated metal by the divergence line, which includes the coexistence region, is in-
terpreted to be the region where a perturbative description is no longer adequate as it
cannot capture the vertex divergence [471]. This breakdown of dressed perturbation
theory is rooted in the multivaluedness of the Luttinger-Ward functional in the Hub-
bard and other interactingmodels [469, 472–477]. With increasing interaction, physical
and unphysical solutions for the non-interacting Green’s function 𝐺0[𝐺] and conse-
quently the self-energy Σ[𝐺] as functionals of the full Green’s function 𝐺 cross [469],
leading to the failure of convergence of “skeleton” (or “bold”) diagrammatic series in
terms of full (“dressed”) 𝐺, which are resummations of the still converging series in
terms of 𝐺0 [472]. As the irreducible vertex Γ𝑐 can be expressed as functional deriva-
tive of Σ[𝐺] in the Luttinger-Ward formalism, this is naturally related to its divergence
[467, 470, 478–481]. Diagrammatic approaches to physical interpretation [215] as well
as diagrammatic and perturbative calculation schemes [472, 474] as well as non-local
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extensions of DMFT [216, 482] may be affected. Depending on the specific method this
may only have an effect very close to the divergence line and just require extra care,
but can necessitate the use of alternative methods or workarounds in other cases [483–
488]. Divergences of the irreducible two-particle vertices are however not only impor-
tant for technical considerations, but are linked to prominent physical features of the
systems. They arise due to the formation of local moments and suppression of fluctua-
tions as interactions increase [215, 467, 469–471, 479, 481, 488, 489], and are thus neces-
sary precursors of the compressibility divergence related to the Mott transition [470].
Further, they may contribute to other features of strongly correlated systems such as
high-temperature superconductivity, which could be promoted by vertex divergences
turning a repulsive interaction effectively attractive [490, 491].

We focus our attention on the connection between divergences of the charge suscep-
tibility and the physics of theMottmetal-insulator and the associatedmetal-metal tran-
sition and crossover in the two-orbital Hubbard model with Hund’s coupling that we
previously considered in Sec. 5.1 and Ref. [193]. In the vicinity of the critical points of
theMott transition in the one-bandmodel, Ref. [491] found apeak of the electronic com-
pressibility associated with the lowest eigenvalue of the two-particle charge response
function. We therefore consider particularly the area in parameter space around the
critical point at the end of the phase separation region at non-zero temperature and
doping in the two-orbital Hubbard model as well. For orientation, the zero tempera-
ture phase diagram in Fig. 5.11 can be used, which is also indicative of the situation at
finite low temperature. As that figure also shows, the area where we observe the com-
pressibility enhancement and divergence is at relatively high doping compared to the
one necessary for the one-band Hubbard model [482, 491]. We use the QMC-DMFT
results for one-particle quantities previously calculated using w2dynamics [40] for that
model, as described by the Hamiltonian given in (5.1) with only the density-density
terms (5.2) as interaction on a Bethe lattice with half-bandwidth 𝐷 = 1. Let us note
the importance of the implementation of phase-space extension [146] and non-linear
mixing [145, 431] for the convergence of solutions in the unstable phase again and refer
to Sec. 5.1.1 for more details concerning the model and its DMFT solution. In order
to obtain two-particle vertices, we calculate the two-particle impurity Green’s function
using component-wise worm sampling [74, 492–494] as implemented in the CT-HYB
impurity solver of w2dynamics with self-energies taken from our converged DMFT so-
lutions as input.
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5.2.2 Background on two-particle quantities

Introduction and definitions

As we have seen in Sec. 5.1, one of the characteristic features occurring at the phase
transition between the strongly correlated metal and the weakly correlated metal is a
pronounced enhancement of the electronic compressibility 𝜅 = 1

𝑛2
𝜕𝑛
𝜕𝜇 , a quantity pro-

portional to the slope of the 𝑛(𝜇) curves we have studied in detail. The simplest way to
calculate it from such data is the difference quotient of chemical potential input 𝜇 and
total occupation output 𝑛 of two points from calculations with a small difference in 𝜇

only. In principle, this requires only the one-particle quantities which we already have
access to in our study by virtue of using DMFT. The total occupation is related to the
sum of the diagonals of the one-particle Green’s function (5.41) at zero imaginary time
difference ⟨𝑛⟩ =

∑︁
𝛼 ⟨𝑛𝛼⟩ =

∑︁
𝛼

⟨︁
𝑐†𝛼𝑐𝛼

⟩︁
=

∑︁
𝛼(𝐺𝛼(𝜏 → 0+)), where the Greek index 𝛼

combines spin and orbital.
While this is a simple procedure, some disadvantages of the difference quotient are

that the results are only interval-averaged values of the true compressibility, which in
particular means that local maxima tend to be underestimated, and that the occupa-
tion, as a difference of Monte Carlo results which we would like to get as close to zero
as possible to reduce that underestimation, suffers from a rather high propagated un-
certainty. By getting the compressibility directly from a calculation for one single point
in parameter space, we could avoid such problems. Since we can obtain response func-
tions like susceptibilities from two-particle Green’s functions just as we can get values
for one-particle observables from the one-particle Green’s function [47, 214], all we
need to do is calculate the two-particle Green’s function using CT-HYB and use it to
get the DMFT lattice susceptibilities [33].

Let us start with a short introduction to two-particle quantities following Refs. [47,
214, 495] and for simplicity consider only impurity quantities until we get to the Bethe-
Salpeter equation. The basic two-particle impurity quantity thatwedirectly have access
to using CT-HYB is the already mentioned impurity two-particle Green’s function in
imaginary time [214]

𝐺𝛼𝛽𝛾𝛿(𝜏1, 𝜏2, 𝜏3, 𝜏4) =
⟨︁
T𝜏 𝑐

†
𝛼(𝜏1)𝑐𝛽(𝜏2)𝑐†𝛾(𝜏3)𝑐𝛿(𝜏4)

⟩︁
, (5.40)

with different argument order in this section compared to (3.7) and for consistency we
choose to define the one-particle Green’s function in this section as [214]

𝐺𝛼𝛽(𝜏1, 𝜏2) =
⟨︁
T𝜏 𝑐

†
𝛼(𝜏1)𝑐𝛽(𝜏2)

⟩︁
, (5.41)

also with opposite argument order compared to (2.12). The Lehmann representation
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[149] of the two-particle Green’s function,

𝐺𝛼𝛽𝛾𝛿(𝜏1, 𝜏2, 𝜏3, 𝜏4) =
∑︂
𝑛

⟨𝑛 | 𝑒
−𝛽𝐻

𝑍
𝑒𝜏1𝐻𝑐†𝛼𝑒

−(𝜏1−𝜏2)𝐻𝑐𝛽𝑒
−(𝜏2−𝜏3)𝐻𝑐†𝛾𝑒

−(𝜏3−𝜏4)𝐻𝑐𝛿𝑒
−𝜏4𝐻 |𝑛⟩

(5.42)

=
∑︂
𝑛

𝑒(−𝛽−(𝜏4−𝜏1))𝐸𝑛

𝑍
⟨𝑛 |𝑐†𝛼𝑒−(𝜏1−𝜏2)𝐻𝑐𝛽𝑒

−(𝜏2−𝜏3)𝐻𝑐†𝛾𝑒
−(𝜏3−𝜏4)𝐻𝑐𝛿 |𝑛⟩ ,

(5.43)

wherewe assume 𝜏1 > 𝜏2 > 𝜏3 > 𝜏4 without loss of generality, allows us to consider some
of its properties. Due to cyclic invariance of the trace and time-independence of the
Hamiltonian, the two-particle Green’s function depends only on three time differences
rather than all times, and so we may fix one time to zero by subtracting it from all of
them. As the energy eigenvalues of an unbounded system would not necessarily have
an upper bound, when we evaluate the Green’s function using its definition we must
require that the term 𝜏1 − 𝜏4 in the exponent is less than 𝛽 in order to obtain a finite
value, i.e. all imaginary times are contained in one single interval of size 𝛽. We will
choose to define it everywhere else as the antiperiodic continuation from this domain
with period 𝛽 in all arguments, consistent with the final property we show: the Green’s
function changes sign if the largest time is reduced by 𝛽 or the smallest increased by it.
Due to the previous requirement, such a change necessarily moves the first operator to
the back or the last one to the front, which picks up aminus sign from the time ordering
due to three exchanges of fermionic operators. Looking at one of the resulting values,

𝐺𝛼𝛽𝛾𝛿(𝜏1 − 𝛽, 𝜏2, 𝜏3, 𝜏4) =

−
∑︂
𝑛

⟨𝑛 | 𝑒
−𝛽𝐻

𝑍
𝑒𝜏2𝐻𝑐𝛽𝑒

−(𝜏2−𝜏3)𝐻𝑐†𝛾𝑒
−(𝜏3−𝜏4)𝐻𝑐𝛿𝑒

−𝜏4𝐻 𝑒(𝜏1−𝛽)𝐻𝑐†𝛼𝑒
−(𝜏1−𝛽)𝐻 |𝑛⟩

explicitly, we can see that by cyclically moving the last three factors to the front, we get
exactly minus the original expression after rearranging the exponents.

Such a two-particle Green’s function by itself also contains contributions from simple
products of two one-particle Green’s functions representing disconnected processes.
Therefore, we will later consider mainly the generalized susceptibilities [214]

𝜒𝛼𝛽𝛾𝛿(𝜏1, 𝜏2, 𝜏3, 𝜏4) = 𝐺𝛼𝛽𝛾𝛿(𝜏1, 𝜏2, 𝜏3, 𝜏4) − 𝐺𝛼𝛽(𝜏1, 𝜏2)𝐺𝛾𝛿(𝜏3, 𝜏4), (5.44)

combinations of the two- and one-particle Green’s functions such that the disconnected
process in the transverse channel that we later identify as “uncorrelated part” is re-
moved, represented diagrammatically in Fig. 5.23. For convenience, we usually work
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𝛼, 𝜈 + 𝜔

𝛽, 𝜈

𝛿, 𝜈′ + 𝜔

𝛾, 𝜈′

𝜒𝜈𝜈′𝜔
𝛼𝛽𝛾𝛿 =

𝛼, 𝜈 + 𝜔

𝛽, 𝜈

𝛿, 𝜈′ + 𝜔

𝛾, 𝜈′

𝐺𝜈𝜈′𝜔
𝛼𝛽𝛾𝛿 −𝛽

𝛼, 𝜈 + 𝜔

𝐺𝜈
𝛼𝛽

𝛽, 𝜈 𝛾, 𝜈′

𝐺𝜈′
𝛾𝛿

𝛿, 𝜈′ + 𝜔

𝛿𝜔,0
𝛿𝛼𝛽
𝛿𝛾𝛿

Figure 5.23: Diagrammatic representation of the definition (5.46) of the generalized
susceptibility 𝜒𝜈𝜈′𝜔

𝛼𝛽𝛾𝛿 in Matsubara frequency space with the three indepen-
dent frequencies chosen according to the particle-hole frequency conven-
tion (5.45) such that 𝜔 can be interpreted as energy transfer in a scattering
process of an incoming electron (upper left vertex, drawn as thick dot) and
incoming hole (upper right vertex). 𝜒𝜈𝜈′𝜔

𝛼𝛽𝛾𝛿 consists of a two-particle Green’s
function 𝐺𝛼𝛽𝛾𝛿 function with the transverse disconnected part 𝛽𝐺𝜈

𝛼𝛽𝐺
𝜈′

𝛾𝛿

subtracted. When physical response functions are calculated, this corre-
sponds to the subtraction of the “uncorrelated part” as discussed later. For
visual clarity, this is the definition in the impurity context. In the lattice
context, momentum indices must be added, cf. Fig. 5.24.

with such quantities in Matsubara frequency space. Since all the Green’s functions
depend on time differences only, the transform to Matsubara space is a function of
only three frequencies, two fermionic ones 𝜈, 𝜈′ and a bosonic one 𝜔. This may be in-
terpreted as energy conservation: the last frequency is fixed by the other three. We
choose a “particle-hole” convention for the frequencies, specifically

𝜈1 = 𝜈 + 𝜔, 𝜈2 = 𝜈, 𝜈3 = 𝜈′, 𝜈4 = 𝜈′ + 𝜔 (5.45)

where each 𝜈𝑖 goes with 𝜏𝑖 in the transform. Using frequency-dependent Green’s func-
tions, we can express our generalized susceptibility in Matsubara frequency space as

𝜒𝛼𝛽𝛾𝛿(𝜈, 𝜈′, 𝜔) = 𝐺𝛼𝛽𝛾𝛿(𝜈, 𝜈′, 𝜔) − 𝛽𝛿𝜔,0𝐺𝛼𝛽(𝜈)𝐺𝛾𝛿(𝜈′), (5.46)

where the fact that two time variables rather than just one are redundant in the dis-
connected term and that the two single-particle Green’s functions do not share any
time variables causes the additional relative factor of 𝛽 as well as a non-zero contribu-
tion only if the bosonic frequency 𝜔 is zero. This can also be interpreted as no energy
transfer between the two independently propagating particles, cf. its representation in
Fig. 5.23 where it simply follows from energy conservation along single-particle prop-
agations which manifests itself in the Green’s function being diagonal in frequency.
In Appendix A we show how to perform the integrations for the Fourier transform to
Matsubara frequencies explicitly.
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Relation between electronic compressibility and generalized susceptibility

With this definition of the generalized susceptibility at hand, let us make the connec-
tion back to the electronic compressibility and show how it can be calculated from
two-particle quantities. While we are more interested in the lattice compressibility 𝜅,
for simplicity wewill perform this derivation for the connection between the electronic
compressibility 𝜅imp of theAIMand the impurity generalized susceptibility 𝜒imp. Their
values are of course different from those of the lattice quantities, in particular the com-
pressibility 𝜅imp of the auxiliary AIM does not diverge at the critical point of the DMFT
lattice problem [491], but the relation between 𝜅imp and 𝜒imp that we derive is the same
as that between the DMFT lattice compressibility 𝜅 and the static uniform DMFT gen-
eralized susceptibility of the lattice 𝜒𝜔=0

q=0 since DMFT is thermodynamically consistent
at this level, cf. Ref. [496].

Starting from the resulting formula

𝜅imp =
1

𝑛2𝛽2

∑︂
𝜈𝜈′𝛼𝛽

𝜒imp,𝛼𝛼𝛽𝛽(𝜈, 𝜈′, 𝜔 = 0), (5.47)

cf. the single-orbital version of 𝜒loc given in Ref. [491], we begin by inserting the defini-
tion of the impurity generalized susceptibility in terms of impurity Green’s functions,

𝜅imp =
1

𝑛2𝛽2

∑︂
𝜈𝜈′𝛼𝛽

(︂
𝐺𝛼𝛼𝛽𝛽(𝜈, 𝜈′, 𝜔 = 0) − 𝛽𝐺𝛼𝛼(𝜈)𝐺𝛽𝛽(𝜈′)

)︂
(5.48)

=
1

𝑛2𝛽3

∑︂
𝜈𝜈′𝛼𝛽

(︂ ∫ 𝛽

0
d𝜏𝑖 𝑒 𝑖(𝜈(𝜏1−𝜏2)+𝜈′(𝜏3−𝜏4))

⟨︂
T𝜏 𝑐

†
𝛼(𝜏1)𝑐𝛼(𝜏2)𝑐†𝛽(𝜏3)𝑐𝛽(𝜏4)

⟩︂
(5.49)

−
∫ 𝛽

0
d𝜏𝑖𝑒 𝑖𝜈(𝜏1−𝜏2)⟨︁T𝜏 𝑐

†
𝛼(𝜏1)𝑐𝛼(𝜏2)

⟩︁∫ 𝛽

0
d𝜏𝑖𝑒 𝑖𝜈

′(𝜏3−𝜏4)
⟨︂
T𝜏 𝑐

†
𝛽(𝜏3)𝑐𝛽(𝜏4)

⟩︂ )︂
.

By pulling the Matsubara frequency summations into the integrals and identifying ex-
pressions 𝛽−1 ∑︁

𝜈 𝑒
𝑖𝜈𝜏 = 𝛿(𝜏) for the delta distribution, two tau integrals can be per-

formed explicitly to set two time variables each equal in the next step,

𝜅imp =
1
𝑛2𝛽

∑︂
𝛼𝛽

(︂ ∫ 𝛽

0
d𝜏𝑖

⟨︂
T𝜏(𝑐†𝛼(𝜏1)𝑐𝛼(𝜏1)𝑐†𝛽(𝜏3)𝑐𝛽(𝜏3))

⟩︂
(5.50)

−
∫ 𝛽

0
d𝜏1

⟨︁
T𝜏(𝑐†𝛼(𝜏1)𝑐𝛼(𝜏1))

⟩︁ ∫ 𝛽

0
d𝜏3

⟨︂
T𝜏(𝑐†𝛽(𝜏3)𝑐𝛽(𝜏3))

⟩︂ )︂
=

1
𝑛2𝛽

∑︂
𝛼𝛽

(︂ ∫ 𝛽

0
d𝜏𝑖

⟨︁
T𝜏(𝑛𝛼(𝜏1)𝑛𝛽(𝜏3))

⟩︁
(5.51)
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−
∫ 𝛽

0
d𝜏1 ⟨𝑛𝛼(𝜏1)⟩

∫ 𝛽

0
d𝜏3

⟨︁
𝑛𝛽(𝜏3)

⟩︁ )︂
.

The density correlation function in the first term depends only on the time difference
because it corresponds to a two-particle Green’s functionwith the first two and last two
time arguments equal. We can therefore set the time argument of the secondoperator to
zero and shift integral bounds of the first time integral over 𝜏1 to −𝜏3 and 𝛽−𝜏3. For the
same reason, minus signs from antiperiodicity would cancel and the function is thus 𝛽-
periodic in its remaining argument like a bosonic correlation function, so the bounds of
the first time integral over 𝜏1 can be reset to 0 and 𝛽, allowing us to perform the integral
over 𝜏3 yielding 𝛽. The steps of a similar calculation are explicitly demonstrated at the
end of Appendix A, with the difference that antiperiodic functions are involved there
and the exponential factor from the Matsubara transform is necessary to cancel the
minus sign. By taking into account that expectation values of static observables like
single occupations do not depend on their imaginary time argument at all, we can
simplify the second term as well and get the final result

𝜅imp =
1
𝑛2

∑︂
𝛼𝛽

(︂ ∫ 𝛽

0
d𝜏

⟨︁
T𝜏(𝑛𝛼(𝜏)𝑛𝛽(0))

⟩︁
− 𝛽 ⟨𝑛𝛼⟩

⟨︁
𝑛𝛽

⟩︁ )︂
. (5.52)

To verify this result for the impurity compressibility 𝜅imp, we need to compute the
derivative 𝜕𝑛/𝜕𝜇 for the AIM in terms of correlation functions as well. We usually
consider such a derivative in the context of DMFT, but the two derivatives differ even
though ⟨𝑛⟩ and 𝜇 are equal for the lattice and its auxiliary AIM. However, in the case
of an independent AIM all other impurity parameters are kept fixed for the derivative
𝜕𝑛/𝜕𝜇, while the change of DMFT results with 𝜇 requires an adjustment of the self-
consistent hybridization function as well. We shall write (𝜕𝑛/𝜕𝜇)|Δ=const. to make it
very explicit that we consider the derivative in the context of an independent AIM for
the moment rather than the DMFT one.

We perform the derivative for the AIM in the path integral formalism, using the
partition function (2.5) of the AIM with action (2.9). The total occupation is

⟨𝑛⟩ = 𝑍−1
∫

𝒟(�̄� , 𝑐)
∑︂
𝛼

𝑛𝛼(0) exp(−𝑆), (5.53)

the expectation value of the sum of individual occupations per spin and orbital, where
𝑛 in the path integral is shorthand for �̄�𝑐 and we have chosen to set its arbitrary imag-
inary time argument to 0. 𝜇 only appears in the action term 𝑆𝜇 = −𝜇

∫ 𝛽

0 d𝜏
∑︁

𝛼 𝑛𝛼, i.e.
once in the numerator and once in the denominator, so the derivative of ⟨𝑛⟩ can be
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calculated using the product rule resulting in

𝜕⟨𝑛⟩
𝜕𝜇

|︁|︁|︁|︁
Δ=const.

= 𝑍−1
∫ 𝛽

0
d𝜏

∫
𝒟(�̄� , 𝑐)

∑︂
𝛼𝛽

𝑛𝛼(𝜏)𝑛𝛽(0) exp(−𝑆) (5.54)

− 𝑍−2
(︂ ∫

𝒟(�̄� , 𝑐)
∑︂
𝛼

𝑛𝛼(0) exp(−𝑆)
)︂ (︂ ∫ 𝛽

0
d𝜏

∫
𝒟(�̄� , 𝑐)

∑︂
𝛼

𝑛𝛼(𝜏) exp(−𝑆)
)︂

=

∫ 𝛽

0
d𝜏

∑︂
𝛼𝛽

⟨︁
T𝜏(𝑛𝛼(𝜏)𝑛𝛽(0))

⟩︁
− 𝛽

∑︂
𝛼𝛽

⟨𝑛𝛼⟩
⟨︁
𝑛𝛽

⟩︁
. (5.55)

Divided by 𝑛2, this is identical to the final expression we obtained for the compress-
ibility 𝜅imp from the summation of the impurity generalized susceptibility in (5.52),
proving that we can indeed sum the generalized susceptibility of the impurity calcu-
lated from its two- and one-particle Green’s functions according to (5.47) to get the
impurity compressibility 𝑛−2 (𝜕𝑛/𝜕𝜇)|Δ=const..

Bethe-Salpeter equation

𝛼,
k + q,
𝜈 + 𝜔

𝛽,
k,
𝜈

𝛿,
k′ + q,
𝜈′ + 𝜔

𝛾,
k′,
𝜈′

𝜒𝜈𝜈′𝜔
kk′q𝛼𝛽𝛾𝛿 =

𝛼,
k + q,
𝜈 + 𝜔

𝛿,
k′ + q,
𝜈′ + 𝜔

𝛾,
k′,
𝜈′

𝛽,
k,
𝜈

𝜒𝜈𝜈′𝜔
0,kk′q𝛼𝛽𝛾𝛿 −𝛽−2

𝛼,
k + q,
𝜈 + 𝜔

𝜌,
k′′ + q,
𝜈′′ + 𝜔

𝜆,
k′′,
𝜈′′

𝛽,
k,
𝜈

𝜃,
k′′′ + q,
𝜈′′′ + 𝜔

𝜇,
k′′′,
𝜈′′′

𝜒𝜈𝜈′′𝜔
0,kk′′q𝛼𝛽𝜆𝜌Γ

𝜈′′𝜈′′′𝜔
k′′k′′′q𝜌𝜆𝜇𝜃

𝛿,
k′ + q,
𝜈′ + 𝜔

𝛾,
k′,
𝜈′

𝜒𝜈′′′𝜈′𝜔
k′′′k′q𝜃𝜇𝛾𝛿

Figure 5.24: Bethe-Salpeter equation (5.56) for the generalized susceptibility 𝜒, bubble
part 𝜒0 and irreducible vertex Γ in the longitudinal particle-hole channel in
its most general form for electrons in a lattice expressed in terms of Feyn-
man diagrams. All these quantities are two-particle quantities with four
legs, which are marked by dots. Where a quantity shares its right dots
with the left dots of another, the corresponding legs are connected, i.e.
corresponding indices associated to each of the legs are set equal and the
quantities’ product summed over all values they can attain. The indices
associated with the legs are here combinations of momentum vectors in
bold font, combinations of frequencies 𝜈, partially primed, and 𝜔, and
other Greek indices for the combinations of remaining quantum numbers,
in particular orbitals and spins.

Two-particleGreen’s functions andwith themgeneralized susceptibilities of theAIM
can be calculated using CT-HYB, allowing us to compute the compressibility 𝜅imp of
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an independent impurity from two-particle quantities as shown above. We are how-
ever actually interested in calculating the lattice compressibility 𝜅, which requires the
DMFT result for the uniform generalized susceptibility 𝜒q=0 of the lattice that describes
the charge response of the entire lattice. Similarly to how the self-energy is the quan-
tity establishing the connection between the one-particle Green’s function of the lattice
and that of the self-consistent impurity in DMFT, the irreducible vertex function is the
quantity connecting the two-particle response functions of the lattice and those of the
self-consistent impurity [33]. To extract it from the impurity problem and use it in the
lattice problem, we need the Bethe-Salpeter equation. Since we need the equations in
this section in both contexts, we will for completeness occasionally explicitly write lat-
tice momentum indices like k and q. For clarity, we will however often suppress all
indices that are not relevant at the considered stage of the derivation, and vectorial
momentum indices like k, k′, and q may be restored in any relation by placing them at
the same diagrammatic positions as the frequencies 𝜈, 𝜈′, and 𝜔 respectively .

The Bethe-Salpeter equation is an equation relating two-particle quantities in a way
analogous to how theDyson equation𝐺k𝛼𝛽(𝜈) = 𝐺0,k𝛼𝛽(𝜈)+𝐺0,k𝛼𝛾(𝜈)Σk𝛾𝛿(𝜈)𝐺k𝛿𝛽(𝜈) re-
lates the full one-particle Green’s function 𝐺, the non-interacting one-particle Green’s
function 𝐺0, and the one-particle irreducible self-energy Σ that represents the essen-
tial correction due to interaction without any non-interacting propagation mixed in.
When we consider the propagation of two particles, the simplest identifiable contri-
bution at the two-particle level consists of any arbitrary propagation of the individual
particles without any interaction between them. The full generalized susceptibility 𝜒

contains such two-particle reducible contributions, which are diagrams whose parts can
be disconnected by removing two single-particle propagators 𝐺. The Bethe-Salpeter
equation [33, 214]

𝜒𝜈𝜈′𝜔
kk′q𝛼𝛽𝛾𝛿 =𝜒0,kk′q𝛼𝛽𝛾𝛿 (5.56)

− 𝛽−2
∑︂

k′′k′′′𝜈′′𝜈′′′𝜆𝜌𝜇𝜃
𝜒𝜈𝜈′′𝜔

0,kk′′q𝛼𝛽𝜆𝜌Γ
𝜈′′𝜈′′′𝜔
k′′k′′′q,𝜌𝜆𝜇𝜃𝜒

𝜈′′′𝜈′𝜔
k′′′k′q𝜃𝜇𝛾𝛿 ,

diagrammatically represented in Fig. 5.24, describes how the full generalizable 𝜒 is re-
lated to the basic reducible two-particle “bubble” 𝜒𝜈𝜈′𝜔

0,kk′q𝛼𝛽𝛾𝛿 = −𝛽𝐺𝜈
k,𝛾𝛽𝐺

𝜈+𝜔
k+q,𝛼𝛿𝛿𝜈𝜈′𝛿kk′,

named after the circular form of the diagram when its outer legs are contracted, and
the two-particle irreducible vertex function Γ𝜈

′′𝜈′′′𝜔
kk′q,𝜌𝜆𝜇𝜃, the two-particle analogon of the

self-energy. In this expression for the Bethe-Salpeter equation, all quantities take all
arguments and indices that are necessary in the context of a lattice, but as previously
mentioned we shall suppress all those that are not directly relevant to the considered
step in the following and possibly make implicit use of simplifications due to e.g. our
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diagonal one-particle Green’s functions and spin and orbital degeneracy.
Unlike in the case of the Dyson equation and the self-energy, there are actually mul-

tiple Bethe-Salpeter equations and irreducible vertex functions. Whatwe consider here
is the Bethe-Salpeter equation in the longitudinal particle-hole channel for the vertex
function irreducible in the longitudinal particle-hole channel, which are the most suit-
able ones for our purposes [33]. Reducibility in different channels distinguishes be-
tween the different ways a diagram involving two incoming and two outgoing lines
can fall apart when two Green’s function lines are cut [214].

Let us interpret the terms of the Bethe-Salpeter equation in the longitudinal particle
hole channel as depicted in Fig. 5.24, starting with the full generalized susceptibility
𝜒𝜈𝜈′𝜔. In our diagram, its two free right legs correspond to the first two operators
and its two left legs correspond to the last two operators of the two-particle Green’s
function (5.40) it is made of. We can contract the two right legs and two left legs into
one vertex each, summing over all internal indices and arguments at the vertices to
receive a physical susceptibility as shown in Fig. 5.21. In that case, we have to imagine
often not explicitly depictedmomentum q and energy 𝜔 flowing into the diagram from
the left and leaving to the right [47], otherwise momentum and energy conservation at
the vertices would force them to zero.

Considering the explicit form of the Fourier transform of our generalized suscepti-
bility (5.44) into Matsubara frequencies with particle-hole frequency convention (5.45),
which is given by (A.8), we see that the summation over the internal indices 𝜈, 𝜈′, k,
k′, 𝛼 = 𝛽, and 𝛿 = 𝛾 will result in several Dirac delta distributions and Kronecker
deltas. These in particular send 𝜏1 − 𝜏2 and 𝜏3 − 𝜏4 to zero and thus, in combination
with the equality of the other indices, turn the two-particle Green’s function contained
in 𝜒 into a density correlation function of the form ⟨T𝜏 𝑛𝛼(𝜏1, r1)𝑛𝛿(𝜏4, r4)⟩ with the
distance 𝜏1 − 𝜏4 in time associated with the free bosonic Matsubara frequency 𝜔 and
the distance r1 − r4 in space with the free momentum q. The choice 𝜔 = 0 corresponds
to the static function integrated over imaginary time difference, which we have already
seen to be the right choice for the compressibility before in the derivation of (5.47), and
q = 0 to the uniform lattice function summed over all lattice sites. A similar consid-
eration allows us to recognize the reason for the explicit subtraction of the transverse
contribution in the definition (5.44) of 𝜒. When its legs are contracted, it turns into an
uncorrelated product 𝐺𝜈

k𝛼𝛼𝐺
𝜈′
k′𝛼𝛼 → ⟨𝑛𝛼(𝜏1, r1)⟩ ⟨𝑛𝛼(𝜏4, r4)⟩ that is subtracted from the

function ⟨T𝜏 𝑛𝛼(𝜏1, r1)𝑛𝛿(𝜏4, r4)⟩ to extract its “correlated part”, which is e.g. zero if the
correlation function itself can already be decomposed into such a product.

The first termon the right-hand side of the Bethe-Salpeter equation shown in Fig. 5.24
is the bubble contribution 𝜒𝜈𝜈′𝜔

0 = −𝛽𝐺𝜈
k,𝛾𝛽𝐺

𝜈+𝜔
k+q,𝛼𝛿𝛿𝜈𝜈′𝛿kk′, which is reducible in the

particle-hole channel and turns into a product of the form
⟨︁
T𝜏 𝑐

†
𝛼(𝜏1, r1)𝑐𝛼(𝜏4, r4)

⟩︁2 on
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contraction. The other contribution is a 𝜒0-like product of two Green’s functions at-
tached to the left vertices of the irreducible vertex Γ𝜈

′′𝜈′′′𝜔 that includes all propagation
processes irreducible in the particle-hole channel connected to the full generalized sus-
ceptibility 𝜒𝜈𝜈′𝜔 itself to its left. Like in the case of the Dyson equation, the repeated
insertion of the Bethe-Salpeter expression for 𝜒𝜈𝜈′𝜔 into the second term of its right-
hand side leads to a “ladder” decomposition (where the 𝜒0 and parallel edges of Γ in
the diagram look like the rails and the orthogonal edges of Γ like the rungs of a ladder)
containing all contributions from chains containing any number of irreducible Γ𝜈

′′𝜈′′′𝜔

blocks linked by and surrounded by insertions of the reducible 𝜒0 [33].
Due to the separate summations over internal indices at each vertex where multiple

legs are contracted, it is clear that the Bethe-Salpeter equations for different elements of
𝜒 are in general coupled. By taking symmetries into account [214], we can decompose
the Bethe-Salpeter equation for the full matrix quantities 𝜒 and Γ into several equations
for the actually coupled blocks.

We begin by considering the spin indices. Due to 𝑆𝑈(2)-symmetry and the implied
spin conservation, only the three spin index combinations ↑↑=↑↑↑↑, ↑↓=↑↑↓↓, ↑↓ =↑↓↓↑
are non-zero and independent [214, 495], and crossing symmetry could additionally
provide a relation between the latter two. In case we use the density-density form of
the interaction, which is the only one we consider in the following, our system is not
actually symmetric under arbitrary 𝑆𝑈(2) transformations. The preceding properties
follow from 𝑆𝑧 being a good quantum number and from the consideration of a simul-
taneous flip of all spin indices, which do however still apply. Since we are interested
in the charge compressibility and phases related to paramagnetic Mott metal-insulator
andmetal-metal transitions and do not want to consider anymagnetic phenomena, we
only need to consider their density combination 𝑥𝑑 = 𝑥↑↑ + 𝑥↑↓. Because Γ↑↑ = Γ↓↓,
Γ↑↓ = Γ↓↑ and the same relations hold for the elements of 𝜒 as well, the Bethe-Salpeter
equation for the “density channel” quantities reduces to

𝜒𝑑(𝜈, 𝜈′, 𝜔) =𝜒𝜈𝜈′𝜔
↑↑ + 𝜒𝜈𝜈′𝜔

↑↓ (5.57)

=𝜒𝜈𝜈′𝜔
0,↑↑ − 𝛽−2𝜒𝜈𝜈𝜔

0,↑↑

(Γ𝜒)𝜈𝜈′𝜔↑↑⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟(︄∑︂
𝜈′′

Γ𝜈𝜈
′′𝜔

↑↑ 𝜒𝜈′′𝜈′𝜔
↑↑ +

∑︂
𝜈′′

Γ𝜈𝜈
′′𝜔

↑↓ 𝜒𝜈′′𝜈′𝜔
↓↑

)︄
+ 𝜒𝜈𝜈′𝜔

0,↑↓ − 𝛽−2𝜒𝜈𝜈𝜔
0,↑↑

(︄∑︂
𝜈′′

Γ𝜈𝜈
′′𝜔

↑↑ 𝜒𝜈′′𝜈′𝜔
↑↓ +

∑︂
𝜈′′

Γ𝜈𝜈
′′𝜔

↑↓ 𝜒𝜈′′𝜈′𝜔
↓↓

)︄
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

(Γ𝜒)𝜈𝜈′𝜔↑↓=𝜒0,𝑑(𝜈, 𝜈′, 𝜔)
− 𝛽−2

∑︂
𝜈′′

𝜒0,𝑑(𝜈, 𝜈, 𝜔)Γ𝑑(𝜈, 𝜈′′, 𝜔)𝜒𝑑(𝜈′′, 𝜈′, 𝜔),
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which is decoupled from the equations for the other spin index combinations and
where some zero terms in the intermediate steps were left out for clarity. For the den-
sity channel of the generalized susceptibility of the impurity, we calculate 𝜒imp,𝑑 =

(𝜒imp,↑↑ + 𝜒imp,↑↓ + 𝜒imp,↓↑ + 𝜒imp,↓↓)/2 in practice to make efficient use of the avail-
able QMC results, which are not exactly symmetric due to the stochastic nature of the
method. From here on, we shall assume that density channel combinations are han-
dled if the spin indices of a two-particle quantity are not given explicitly, and where
they do not appear in the expression for a one-particle quantity a spin-diagonal element
is implied (as the diagonal elements are equal due to symmetry and the off-diagonals
zero).

For the orbital indices, we can proceed analogously [497]. Since we give indices of
four-legged objects in anticlockwise order starting from top left, matrices of the struc-
ture

𝚪 =

⎛⎜⎜⎜⎜⎝
Γ1111 Γ1122 Γ1121 Γ1112

Γ2211 Γ2222 Γ2221 Γ2212

Γ1211 Γ1222 Γ1221 Γ1212

Γ2111 Γ2122 Γ2121 Γ2112

⎞⎟⎟⎟⎟⎠
, (5.58)

allow us to write expressions corresponding to ladder diagrams in the longitudinal
particle-hole channel [214] extending in left-right direction as matrix products. The
first two orbital indices change with the row and the last two with the column. How-
ever, the order of index combinations for rows and columns is chosendifferently. Specif-
ically, the two individual indices for row 𝑖 must be swapped compared to those for
column 𝑖, which is exemplified by elements such as Γ1221 in the third row and third
column. In this way, the summation for the matrix product causes the indices of the
right legs of the first factor and the left legs of the second factor to match as demanded
by the diagram.This peculiar ordering is necessary because we assign indices in anti-
clockwise order to the legs of both factors. This means that we give the index of the
lower leg first on the right side (mapped to column) of a two-particle quantity, but that
of the upper leg first on its left side (mapped to row).

Using suchmatrices for the irreducible vertex 𝚪, the generalized susceptibility 𝝌 and
its bubble part 𝝌0, the Bethe-Salpeter equation with orbital indices can explicitly be
written as the matrix equation

𝝌 = 𝝌0 − 𝛽−2𝝌0𝚪𝝌. (5.59)

Due to the structure of our interaction, all elements with an orbital index that occurs
an odd number of times are zero. The matrix equation thus decouples into separate
equations for the upper left diagonal 2 × 2-block, which we shall call the “orbital-
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longitudinal” channel, and the lower right diagonal 2 × 2-block, which we shall call
the “orbital-transverse” channel [497]. For the case of density-density interaction that
we exclusively consider in the following, the non-zero index patterns are in fact exactly
the same as for the spin dimensions, i.e. of the transverse block only the 𝑎𝑏-elements
remain using the usual index abbreviations 𝑎𝑏 = 𝑎𝑎𝑏𝑏 and 𝑎𝑏 = 𝑎𝑏𝑏𝑎. The explicit
expressions for the longitudinal blocks are then

𝚪∥ =

(︄
Γ11 Γ12

Γ21 Γ22

)︄
, 𝝌∥ =

(︄
𝜒11 𝜒12

𝜒21 𝜒22

)︄
, 𝝌0,∥ = −𝛽

(︄
𝐺11𝐺11 0

0 𝐺22𝐺22

)︄
, (5.60)

and those for the transverse blocks

𝚪⊥ =

(︄
Γ12 0
0 Γ21

)︄
, 𝝌⊥ =

(︄
𝜒12 0
0 𝜒21

)︄
, 𝝌0,⊥ = −𝛽

(︄
𝐺11𝐺22 0

0 𝐺22𝐺11

)︄
. (5.61)

Two-particle lattice quantities in DMFT

The equations of DMFT establish relations between quantities of the lattice of inter-
est and quantities of the auxiliary AIM. On the one-particle level, the self-consistent
solution is characterized by the equality of the impurity Green’s function 𝐺imp(𝑖𝜔𝑛)
and the local Green’s function 𝐺loc(𝑖𝜔𝑛) =

∫
𝐷(𝐸)

𝑖𝜔𝑛+𝜇−Σimp(𝑖𝜔𝑛)−𝐸 d𝐸 of the lattice, where
𝐷(𝐸) is the density of states of the lattice and Σimp(𝑖𝜔𝑛) the purely local self-energy
of the impurity model. CT-HYB allows us only to calculate the correlation functions
of the auxiliary AIM directly, which can be used to compute the impurity self-energy
Σimp and impurity generalized susceptibility 𝜒imp according to the definitions (2.13)
and (5.46). Let us consider how we can use this data to get access to the uniform sus-
ceptibility 𝜒q=0 of the lattice that is actually relevant to the extremal behavior of the
lattice compressibility of interest to us. We follow the discussion of response functions
in DMFT given in Ref. [33].

Power counting in the limit of infinite coordination number in the contributions to
the irreducible vertex function Γ𝜈𝜈

′𝜔
kk′q𝛼𝛽𝛾𝛿 of the lattice proves that when all its vertices

are summed over and may thus be considered internal, such as in the ladder sums of
two-particle quantities in the Bethe-Salpeter equation, it can be replaced by the purely
local vertex function Γ𝜈𝜈

′𝜔
imp,𝛼𝛽𝛾𝛿 of the impurity [33, 468]. Apart from the restriction to

summations, this is the two-particle analogon of the self-energy [123]. Note that while
the self-consistency equations directly ensure the equality of the impurity and local
lattice Green’s functions 𝐺imp = 𝐺loc even when DMFT is used as an approximation
for finite dimensions, this is in general not the case for 𝜒loc. The susceptibility of the
impurity 𝜒imp,𝛼𝛽𝛾𝛿 is e.g. not equal to the local susceptibility of the lattice 𝜒loc,𝛼𝛽𝛾𝛿 =
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∑︁
q 𝜒q𝛼𝛽𝛾𝛿 in finite dimensions, and replacing the irreducible vertex function of the

lattice Γ𝜈𝜈′𝜔kk′q𝛼𝛽𝛾𝛿 by a local quantity constitutes an additional approximation in the finite-
dimensional case [33]. In infinite dimensions however, DMFT is exact, so the equality
between impurity and local lattice quantity holds.

In order to get to the irreducible vertex function of the impurity, it is first necessary
to calculate the full generalized susceptibility of the impurity according to (5.46) and
the bubble 𝜒𝜈𝜈′𝜔

imp,0𝛼𝛽𝛾𝛿 = −𝛽𝐺𝜈
imp,𝛾𝛽𝐺

𝜈+𝜔
imp,𝛼𝛿𝛿𝜈𝜈′ from the Green’s functions calculated by

CT-HYB as input for the Bethe-Salpeter equation for the impurity

𝝌 = 𝝌0 − 𝛽−2𝝌0𝚪𝝌

𝚪 = 𝛽2(𝝌−1 − 𝝌−1
0 ), (5.62)

whichwe solve for the irreducible vertex function of the impurity. Sincewe can use this
purely local quantity as vertex function in the Bethe-Salpeter equation for the lattice,
wherewe specifically care about the uniform case q = 0, we can skip intermediate steps
by directly equating the differences of inverted susceptibilities and obtaining

𝝌−1
q=0 = 𝝌−1

imp − 𝝌−1
0,imp + 𝝌−1

0,q=0. (5.63)

This is an expression for the uniform generalized susceptibility of the lattice that can
be computed using quantities of the impurity model only [33].

It is possible to further evaluate the bubble terms in a way that leads to a very simple
result for DMFT on the Bethe lattice in particular [33], which is the case we consider.
To do so, we express them in terms of the Hilbert transform �̃�(𝑥) :=

∫
𝐷(𝐸)
𝑥−𝐸 d𝐸 of the

density of states first, which for the impurity bubble as product of two local Green’s
functions trivially yields [33]

𝜒𝜈𝜈′𝜔
0,imp,𝑎𝑏𝑏𝑎 = −𝛽𝛿𝜈𝜈′�̃�(𝜁𝑎𝑎,𝜈+𝜔)�̃�(𝜁𝑏𝑏,𝜈) (5.64)

using the DMFT self-consistency condition with 𝜁𝑎𝑏,𝜈 := 𝑖𝜈 + 𝜇 − Σimp,𝑎𝑏(𝜈). For the
lattice bubble, due to the summation

∑︁
kk′ 𝜒

𝜈𝜈′𝜔
0,kk′q,𝑎𝑏𝑏𝑎 = −𝛽∑︁

k 𝐺
𝜈+𝜔
k+q,𝑎𝑎𝐺

𝜈
k,𝑏𝑏 over the

Green’s functions’ momentum indices or the equivalent integral

𝜒𝜈𝜈′𝜔
0,q=0,𝑎𝑏𝑏𝑎 = −𝛽𝛿𝜈𝜈′

∫
𝐷(𝐸)

(𝜁𝑎𝑎,𝜈+𝜔 − 𝐸)(𝜁𝑏𝑏,𝜈 − 𝐸)
d𝐸 , (5.65)

which can not directly be written as a product of Hilbert transformations, we addition-
ally need to perform a partial fraction decomposition of the integrand. In this way, we
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obtain [33]

𝜒𝜈𝜈′𝜔
0,q=0,𝑎𝑏𝑏𝑎 = 𝛽𝛿𝜈𝜈′

∫
𝐷(𝐸)

𝜁𝑎𝑎,𝜈+𝜔 − 𝜁𝑏𝑏,𝜈

(︃
1

𝜁𝑎𝑎,𝜈+𝜔 − 𝐸 − 1
𝜁𝑏𝑏,𝜈 − 𝐸

)︃
d𝐸

= 𝛽𝛿𝜈𝜈′
�̃�(𝜁𝑎𝑎,𝜈+𝜔) − �̃�(𝜁𝑏𝑏,𝜈)

𝜁𝑎𝑎,𝜈+𝜔 − 𝜁𝑏𝑏,𝜈
, (5.66)

a difference of two Hilbert transforms, which further gives the expression 𝜒𝜈𝜈′𝜔=0
0,q=0,𝑎𝑎𝑎𝑎 =

𝛽𝛿𝜈𝜈′�̃�
′(𝜁𝑎𝑎,𝜈) for the special case of four equal orbital indices and a static quantity,

which we concretely interpret as the limit 𝜔 → 0 here, by identifying the limit as an
expression for the derivative.

Since only the static uniform 𝜔 = 0, q = 0 case is relevant for the lattice compress-
ibility, the latter case directly applies to the orbital-longitudinal part (5.60), for which
the relation between impurity and lattice susceptibility (5.63) takes the form

(𝜒−1
∥ ,q=0)

𝜈𝜈′𝜔=0
𝑎𝑏

= (𝜒−1
∥ ,imp)

𝜈𝜈′𝜔=0
𝑎𝑏

+ 𝛽−1𝛿𝜈𝜈′𝛿𝑎𝑏

(︄
1

�̃�
2(𝜁𝑎𝑎,𝜈)

+ 1
�̃�

′(𝜁𝑎𝑎,𝜈)

)︄
= (𝜒−1

∥ ,imp)
𝜈𝜈′𝜔=0
𝑎𝑏

+ 𝑡2𝛽−1𝛿𝜈𝜈′𝛿𝑎𝑏 , (5.67)

where we used the analytical form 𝑅(�̃�(𝜁)) = 𝑡2�̃�(𝜁) + (�̃�(𝜁))−1
= 𝜁 of the inverse

Hilbert transform for the Bethe lattice [33] and the rule for differentiation of inverse
functions, �̃�′(𝜁) = (𝑅′(�̃�(𝜁)))−1

= (𝑡2 − �̃�−2(𝜁))
−1

, with the hopping 𝑡 on the Bethe
lattice equal to one quarter of its bandwidth [33].

For the diagonal orbital-transverse part (5.60), we have the same result

(𝜒−1
⊥,q=0)

𝜈𝜈′𝜔=0
𝑎𝑏

= (𝜒−1
⊥,imp)

𝜈𝜈′𝜔=0
𝑎𝑏

+ 𝛽−1𝛿𝜈𝜈′

(︃
1

�̃�(𝜁𝑎𝑎,𝜈)�̃�(𝜁𝑏𝑏,𝜈)
+ 𝜁𝑎𝑎,𝜈 − 𝜁𝑏𝑏,𝜈

�̃�(𝜁𝑎𝑎,𝜈) − �̃�(𝜁𝑏𝑏,𝜈)

)︃
= (𝜒−1

⊥,imp)
𝜈𝜈′𝜔=0
𝑎𝑏

+ 𝑡2𝛽−1𝛿𝜈𝜈′ , (5.68)

for the diagonals, where however 𝑎 ≠ 𝑏 in this case, using the analytical form �̃�(𝜁) =
𝜁−

√︁
𝜁2−4𝑡2
2𝑡2 of the Hilbert transform for the Bethe lattice with hopping 𝑡 equal to one

quarter of its bandwidth [33]. One can verify this identity by converting both fractions
to a common denominator and multiplying out all expressions in the numerator and
denominator, which in particular also includes the squares of the square roots in the
latter case.
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Spectral representation of generalized susceptibilities

A zero eigenvalue of a generalized susceptibility is associated with a divergence of the
associated vertex function [470, 479] and a divergent eigenvalue with a divergence of
the susceptibility itself [491]. Both are of course connected to the behavior of physical
susceptibilities [215, 467, 469, 491], so for our analysis in the vicinity of the critical point
of the lattice problem where the lattice compressibility diverges, we would like to con-
sider the behavior of the eigenvalues of the uniform generalized susceptibility of the
lattice. Usually this would mean bringing it into its spectral representation by diago-
nalizing it and rewriting it as sum of contributions in its eigenbasis, or in general by
performing a singular vector decomposition if it is not symmetric enough to guarantee
diagonalizability [479]. We will however see that using the relations (5.67) and (5.68)
between the uniform generalized susceptibility of the Bethe lattice and the impurity
generalized susceptibility, we can derive a simple relation between their eigenvalues.
For our purposes it is thus never necessary to explicitly diagonalize or even calculate a
generalized susceptibility of the lattice. Numerically we only handle generalized sus-
ceptibilities of the auxiliary impuritymodel and their eigenvalues, and our conclusions
about lattice quantities and their eigenvalues only follow from the impurity quantities
through the relations we derive.

For a model with only one orbital, we can consider a static generalized susceptibility
asmatrixwith respect to its two fermionicMatsubara frequency as dimensions [491]. In
our case of a two- or generallymulti-orbital model, even the static generalized suscepti-
bility still has orbital dimensions in addition to theMatsubara frequencies. In this case,
two of the four orbital dimensions can be combinedwith each of the twoMatsubara fre-
quency dimensions to obtain a two-dimensional object for diagonalization. Exploiting
the decoupling of the susceptibility with orbital dimensions into orbital-longitudinal
and orbital-transverse parts reduces the size of the matrix blocks that need to be nu-
merically diagonalized enabling considerable reduction of computing time due to the
scaling of diagonalization with the third power of the matrix dimension [498].

Given a matrix S with the eigenvectors {v1, . . . , v𝑛} of 𝜒𝜈𝜈′ as its columns, where
𝜈 and 𝜈′ may be combined indices for one fermionic Matsubara and two orbital di-
mensions each, the diagonal matrix 𝝀 with the eigenvalues {𝜆1, . . . ,𝜆𝑛} of 𝜒𝜈𝜈′ on its
diagonal can be expressed as the product 𝝀 = S−1𝝌S. Conversely, the generalized sus-
ceptibility can then be expressed as 𝝌 = S𝝀S−1. The relation between the compress-
ibility 𝜅 of the lattice and the static uniform generalized susceptibility of the lattice the
uniform lattice generalized susceptibility 𝜒𝜔=0

q=0 , analogous to the equation (5.47) for the
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corresponding impurity quantities, can thus be rewritten as

𝜅 =
1

𝑛2𝛽2

∑︂
𝜈𝜈′𝛼𝛽

𝜒𝜈𝜈′𝜔=0
q=0,𝛼𝛼𝛽𝛽 =

2
𝑛2𝛽2

∑︂
𝜈𝜈′𝑎𝑏

𝜒𝜈𝜈′𝜔=0
q=0,𝑑,𝑎𝑎𝑏𝑏 (5.69)

=
2

𝑛2𝛽2

∑︂
𝑎𝑏𝑐𝑑

𝑆𝑎𝑏𝜆q=0,𝑏𝛿𝑏𝑐(𝑆−1)𝑐𝑑 =
2

𝑛2𝛽2

∑︂
𝑎𝑏𝑑

(v𝑏)𝑎𝜆q=0,𝑏(v−1
𝑏 )

𝑑
=

2
𝑛2𝛽2

∑︂
𝑏

𝜆q=0,𝑏𝑤𝑏 ,

where the vectors {v−1
1 , . . . , v−1

𝑛 } are the rows of the inverse S−1 of the eigenvector ma-
trix S and we identify the weight 𝑤𝑏 of the contribution to the electronic compress-
ibility associated with a particular eigenvalue 𝜆q=0,𝑏 of the static uniform generalized
susceptibility as 𝑤𝑏 =

(︂∑︁
𝑎 (v𝑏)𝑎

)︂ (︂∑︁
𝑎 (v−1

𝑏
)
𝑎

)︂
. Due to the pairing of orbital indices in

the summation for the compressibility, it is only the orbital-longitudinal part (5.60) of
the static uniform generalized susceptibility of the lattice that contributes here, and
due to the spin summation over all rather than just the density channel combinations a
factor of 2 enters. According to (5.67), the inverse generalized susceptibility of the im-
purity becomes the inverse generalized susceptibility of the Bethe lattice by addition of
a term proportional to a unit matrix in Matsubara frequencies. We therefore only need
to perform the diagonalization of the generalized susceptibility of the impurity, which
we get relatively directly from CT-HYB results, and can obtain the eigenvalues of the
static uniform lattice quantity using

𝜆q=0,𝑏 =

(︃
𝜆−1
imp,𝑏 +

𝑡2

𝛽

)︃−1
. (5.70)

The eigenvectors remain the same, and from this formulawe can derive the condition
that the static uniform lattice susceptibility diverges when an eigenvalue of the impu-
rity susceptibility reaches the value −𝛽/𝑡2. In the following text and figures all explicit
numerical results for eigenvalues will be for eigenvalues 𝜆imp,𝑏 of generalized suscepti-
bilities of the impurity, and any properties of eigenvalues of generalized susceptibilities
of the lattice that we discuss or interpret follow exclusively from the impurity eigen-
values through the relation (5.70).

5.2.3 Compressibility enhancement and divergence in the
two-orbital Hubbard model

Using the DMFT results for the degenerate two-orbital Hubbard model on a Bethe lat-
tice calculated as described in Sec. 5.1.1, we can estimate the lattice compressibility
𝜅(𝜇) = 1

𝑛2
𝜕𝑛
𝜕𝜇 (𝜇) using finite difference quotients for a non-uniform grid of accuracy or-

der two as implemented in Ref. [499]. In this way, the derivative at a given chemical
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potential𝜇 is approximated using the data point for that chemical potential and the two
points around it where possible, or, at the boundaries of the range, two points toward
the interior of the range. In cases with only a crossover, we simply apply this proce-
dure to the entire data range at once. In caseswith a phase transition however, we apply
this procedure separately to each of the two stable and the one unstable branches, such
that the curve is divided into individually handled segments where 𝑛(𝜇) is a proper
single-valued function.
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Figure 5.25: Calculation of difference quotients as estimates of the electronic compress-
ibility 𝜅(𝜇) = 1

𝑛2
𝜕𝑛
𝜕𝜇 (𝜇) of the two-orbital Hubbard model with density-

density interaction on the Bethe lattice solvedwithDMFT.We show curves
for various interaction strengths 𝑈 at two temperatures (left: 𝛽𝐷 = 35,
right: 𝛽𝐷 = 50) as a function of the chemical potential 𝜇 relative to its
value at half-filling 𝜇hf.

The estimated compressibilities for temperatures 𝛽𝐷 = 35 and 𝛽𝐷 = 50 are shown
in Fig. 5.25 and the corresponding 𝑛(𝜇) curves were shown in Figs. 5.15 and 5.12. In
the case of the metallic branches starting from half-filling at the smallest interaction
strengths𝑈 , the compressibilities are visually constant at this scale and the numerical
data indicates a slight but systematic increase with 𝜇. At the two largest interaction
strengths shown for each temperature, we are in the crossover region with clearly visi-
ble peaks of the compressibility with a height that increases as we approach the critical
point by reducing the interaction strength.

In the phase transition cases, which are the remaining ones at intermediate inter-
action strengths, strong single-sided enhancements are visible at the ends of each of
the metastable solutions, where a further in- or decrease of 𝜇 would cause a jump to
the other stable solution. In some of the cases, such as the lower 𝜇 phase boundary at
𝛽 = 50, 𝑈 = 1.45, the enhancements are comparably small, which stems from the fact
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that both theweakly correlatedmetastable and the unstable branch approach the actual
turning point of the curve, where the two branchesmeet, almost linearly for a compara-
tively long stretch. Thismakes the section of the curve around the turning point, where
we find the divergence and around it the largest enhancements, much sharper and an
enhancement more difficult to resolve with numerical QMC-DMFT data points than in
the other cases. For the phase transition cases, the plots show not only the compress-
ibility on the stable branches, which are those two curves per interaction strength 𝑈
that are always positive, go up to one of the shown ends of the domain each and over-
lap for a part around the middle, but also the compressibility on the unstable branch,
which is one additional curve per interaction strengthwhose domain is that segment of
chemical potential in the middle where the other two compressibility curves overlap.
Towards the ends of its domain, it takes on particularly small negative values, i.e. such
of particularly large magnitude, mirroring the enhancements visible at the end of the
stable branches, while it attains a maximum somewhere in the middle of its domain.
In all the cases we show and calculated, that maximumhas a positive value of 𝜅, i.e. the
compressibility by itself is not even a sufficient criterion for the instability there, but at
interaction strength values closer to the upper end of the phase separation region the
𝑛(𝜇) curves should be less stretched with compressibilities of the unstable branches
negative on their entire domain, as seen in two of the NRG-DMFT curves in Fig. 5.12.

From the general shape of the 𝑛(𝜇) curves shown in Figs. 5.15 and 5.12, this behavior
of the compressibility is exactlywhat we should expect. For an interaction strength low
enough to start with a weakly correlated solution at half-filling, the occupation is al-
most linearly dependent on the chemical potential, reflected in the nearly constant com-
pressibility. In the cases with a crossover, the compressibility is nearly zero at the Mott
plateau around half-filling and then increases rapidly with increasing 𝜇 up to its maxi-
mum at the inflection point after which it drops again as the 𝑛(𝜇) curve approaches the
nearly linear behavior that it has in the weakly correlated metallic phase further away
fromhalf-filling. In the caseswith a phase transition, whenwe follow the curve starting
from half-filling we first have a strongly interacting branch, but rather than smoothly
crossing over into a stable weakly interacting branch, it becomes metastable at some
𝜇 (where phase separation happens and the system in stable equilibrium follows the
Maxwell construction, cf. Fig. 5.13) and ceases to exist at even higher 𝜇. Assuming that
we are taking the necessary measures to follow unstable branches in DMFT described
previously, the metastable branches at their ends continuously transition into the un-
stable branch. However, this branch connects the ends of both metastable branches
and the end of the high-𝜇weakly correlated branch is at lower 𝜇 than that of the low-𝜇
strongly correlated one, so aswe follow the curve fromametastable branch onto the un-
stable one, its direction along the 𝜇-axis changes. If the curve is continuously differen-
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tiable in that point, the compressibility diverges, which we can deduce by considering
derivatives along the curve length variable 𝑠: the change of direction in 𝜇 corresponds
to d𝜇 /d𝑠 = 0, such that d𝑛 /d𝜇 = (d𝑛 /d𝑠)(d𝑠 /d𝜇) → ∞. Considering the formula
(5.69) we found for the compressibility in terms of the eigenvalues of the (static) uni-
form generalized susceptibility 𝜒𝜔=0

q=0 of the lattice, this quantity diverges when one of
its eigenvalues with non-zero associated weight diverges, which according to (5.70) is
exactly then the case when an eigenvalue of the (static) generalized susceptibility of the
impurity 𝜒𝜔=0

imp reaches the value −𝛽/𝑡2.
In order to check for this condition, we perform CT-HYB using worm sampling [74,

492–494] to calculate the impurity two-particle Green’s function as implemented in
w2dynamics [40]. As input data we use the converged DMFT self-energies from the
points closest to the compressibility peaks in the crossover cases and in cases with a
phase transition, for lack of a clear distinguishing criterion, from some points close
to the transition region, preferably multiple ones on multiple branches for compari-
son. Using the newly calculated impurity two-particle Green’s functions and the local
Green’s functions from the converged DMFT solutions, we calculate the impurity gen-
eralized susceptibility using (5.46) and diagonalize its orbital-longitudinal and trans-
verse blocks, cf. (5.60) and (5.61), of the density combination of spins (5.57) to obtain
eigenvectors and eigenvalues. According to (5.70), which follows from (5.67) and (5.68),
the eigenvalues of the generalized susceptibility of the impurity we get in this way are
related to the eigenvalues of the uniform generalized susceptibility of the lattice by
inversion, addition of 𝑡2/𝛽 to the inverse, and inversion of the result of the addition.

We plot the lowest eigenvalues 𝜆𝐼 of the generalized susceptibility 𝜒imp of the im-
purity together with linear fits, difference quotient estimations of the lattice compress-
ibility 𝜅 with inverse function fits, and the 𝑛(𝜇) curve plots with markers indicating
some of the position where two-particle calculations were performed in Fig. 5.26 for
temperature 𝛽𝐷 = 35 and in Fig. 5.27 for 𝛽𝐷 = 50. The numerical results confirms
that the scenario of a diverging eigenvalue of the uniform lattice compressibility 𝜒q=0

applies here, corresponding to an eigenvalue 𝜆𝐼 = −𝛽/𝑡2 of 𝜒imp. As we go toward
the critical point along the crossover line (cf. Fig. 5.11), for which our compressibility
peak positions can be used as one possible proxy, the lowest eigenvalue of the general-
ized susceptibility 𝜒imp of the impurity gets closer to−𝛽/𝑡2 approximately linearlywith
𝑈 −𝑈CP. At the same time, the compressibility 𝜅 estimated via difference quotient (to
establish an independent reference value) even approximately follows the form of an
inverse function with a single first-order pole at the interaction strength value of the
critical point for the given temperature, which is just what we would expect if only the
contribution of the lowest eigenvalue 𝜆𝐼 is relevant and its weight constant.

Let us consider the contributions to the electronic compressibility 𝜅 of the lattice per
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Figure 5.26: Analysis of eigenvalues of 𝜒imp along the crossover line for the two-orbital
Hubbard model at 𝛽𝐷 = 35. Panel a: 𝑛(𝜇) curve with points used for
two-particle calculations marked (when full curves shown) Panel b: Low-
est eigenvalues 𝜆𝐼 of the generalized impurity susceptibility 𝜒imp (blue
squares) with linear fit and compressibilities 𝜅 estimated via difference
quotient (red triangles) with inverse fit. The condition 𝜆𝐼 = −𝛽/𝑡2 for a
divergence of the corresponding eigenvalue of the uniform lattice suscepti-
bility 𝜒q=0 is marked by a horizontal line, the compressibility pole is where
the impurity eigenvalue 𝜆𝐼 reaches it. Inset: eigenvalues and compressibil-
ities in a phase transition case of𝑈/𝐷 = 1.44 for fixed arbitrary 𝜇 = 1.3338
on all three branches, with eigenvalue below divergence condition only on
the unstable branch. Unstable branch values in main plot for comparison
as unfilled points.

eigenvalue of 𝜒imp as shown in Fig. 5.28 for points along the crossover. The contribution
associated to an eigenvalue 𝜆imp of 𝜒imp is to be understood as the term in (5.69) asso-
ciated with the corresponding eigenvalue 𝜆q=0 of 𝜒q=0 computed via (5.70). We find
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Figure 5.27: Analysis of eigenvalues of 𝜒imp along the crossover line for the two-orbital
Hubbard model at 𝛽𝐷 = 50. Panel a: 𝑛(𝜇) curve with points used for
two-particle calculations marked (when full curves shown) Panel b: Low-
est eigenvalues 𝜆𝐼 of the generalized impurity susceptibility 𝜒imp (blue
squares) with linear fit and compressibilities 𝜅 estimated via difference
quotient (red triangles) with inverse fit. The condition 𝜆𝐼 = −𝛽/𝑡2 for
a divergence of the corresponding eigenvalue of the uniform lattice sus-
ceptibility 𝜒q=0 is marked by a horizontal line, the compressibility pole is
where the impurity eigenvalue 𝜆𝐼 reaches it. Inset: impurity eigenvalues
and compressibilities in a phase transition case of𝑈/𝐷 = 1.46 for fixed ar-
bitrary 𝜇 = 1.3812 on all three branches, with eigenvalue below divergence
condition only on the unstable branch.

that in the entire region of interaction values shown for the fits of 𝜅 in Figs. 5.26 and
5.27, the by far largest contribution is indeed that of the lowest eigenvalue, and that
the total sum matches the values previously estimated by difference quotients well.
Since our generalized susceptibility matrices are not real bisymmetric as in the case
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Figure 5.28: Contributions to lattice compressibility 𝜅 per eigenvalue of 𝜒imp for points
along the crossover line for (top panel) 𝛽𝐷 = 50, cf. Fig. 5.27 and (bottom
panel) 𝛽𝐷 = 35, cf. Fig. 5.26. The two largest contributions in these cases
also belong to the two smallest eigenvalues 𝜆1 and 𝜆2, whose values are
given in the tick labels.

with particle-hole symmetry [467, 491], but only centrohermitian [491], the eigenvalue-
associated weights are just real but not necessarily positive [491, 500]. The remaining
contributions could therefore partially cancel each other, sowe also separately consider
the second largest contribution for comparison to verify that the remaining contribu-
tions are indeed individually smaller than the largest one. In all these cases, the second
largest contribution is also that of the second-lowest eigenvalue, always negative and
has a magnitude of at most one fifth down to about one eightieth of that of the largest
eigenvalue. Further, we can observe that apart from the contribution of the lowest
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eigenvalue that strongly increases as we go to the critical point, the second largest con-
tribution as well as the sum of remaining contributions remain approximately constant
as we move along the crossover line. This further confirms that the divergence of the
compressibility is caused by the divergence of the contribution associated to the lowest
eigenvalue of the generalized susceptibility of the impurity, as it was previously found
in a one-orbital model in Ref. [491].

So far, we have only approached the critical point from the crossover region and
thus considered the lattice compressibility contributions for stable phases only, find-
ing the largest contribution associated with the lowest eigenvalue of 𝜒imp positive and
diverging as the eigenvalue approaches −𝛽/𝑡2. Let us now observe how the contribu-
tion structure changes for solutions at an interaction strength with a phase transition
as function of 𝜇, particularly on the unstable branch. In Fig. 5.29, we examine contribu-
tions per eigenvalue again, but consider multiple solutions for the same temperature
𝛽𝐷 = 50 and interaction 𝑈/𝐷 = 1.46, a case in which a first-order phase transition
happens. The solutions are the three points at equal chemical potential on the three
different branches of the solution marked with roman numerals in Fig. 5.27, and ad-
ditionally one more unstable solution at larger chemical potential that has negative
compressibility unlike the other unstable one. For the Hund’s metal solution and the
unstable solution at the same chemical potential, the eigenvalues of 𝜒imp themselves
are additionally plotted in the complex plane in the lower panels of Fig. 5.29.

As previously discussed, we can see that the eigenvalues 𝜆imp are not purely real as
they would be for a bisymmetric matrix, which the generalized susceptibility is only in
case of particle-hole symmetry, but those that are not real come in complex conjugated
pairs [467, 491]. We can observe that the unstable solution has one real eigenvalue 𝜆imp

less than−𝛽/𝑡2, which is−200 in this case, which also applies to the other unstable solu-
tion as well as further not shown unstable solutions at the same temperature and both
unstable solutions at temperature 𝛽𝐷 = 35 for which we calculated two-particle quan-
tities, but is not the case for the shown stable solution or any other stable or metastable
solution for which we calculated two-particle quantities. The smallest real eigenval-
ues of the stable Hund’s metal solution, which is significantly farther away from the
end of its branch than the metastable good metal solution, is only slightly negative but
far away from −𝛽/𝑡2, in particular much farther than that of the good metal solution.
The smallest real eigenvalues of 𝜒imp are of particular interest here since, if they stay
real, they cause a divergence of the lattice compressibility when they cross the value
−𝛽/𝑡2 according to (5.70), while a complex eigenvalue with non-zero imaginary part
does not cause a divergence regardless of its real part. We observe that in the case of
the stable solution here, several conjugated pairs of complex eigenvalues of 𝜒imp have
significantly more negative real parts than its smallest real eigenvalue. The imaginary

189



= 1.3812
Good metal
1 = 181.8

2 = 0.4

= 1.3812
Hund's metal

17 = 0.4
26 = 0.2

= 1.3812
Unstable phase

1 = 215.9
6 = 10.2

= 1.4096
Unstable phase

1 = 203.0
2 = 78.2

1.5

1.0

0.5

0.0
Co

nt
rib

ut
io

n 
to

 
0.06

-0.00 -0.07

-1.67

-0.00 -0.00 -0.04 -0.11

0.14 0.16 0.16 0.16

Smallest real eigenvalue
Second smallest real eigenvalue
Rest

100 50 0
( m)

40

20

0

20

40

(
m

)

imp,

imp,

200 150 100 50 0
( m)

10

5

0

5

10

(
m

)

imp,

imp,

Figure 5.29: Top panel: Contributions to lattice compressibility per eigenvalue of
𝜒imp for points corresponding to solutions in different phases at 𝛽𝐷 =

50, 𝑈/𝐷 = 1.46, three of which are the points labeled with roman numer-
als in Fig. 5.27. The contributions associated with the two smallest real
eigenvalues are shown, whose values are given in the tick labels, where the
index of 𝜆 indicates their position in the eigenvalue list including complex
eigenvalues sorted by ascending real part. Bottom panels: Eigenvalues of
the orbital-longitudinal (𝜒imp,∥) and orbital-transverse (𝜒imp,⊥) generalized
susceptibility of the impurity plotted in the complex plane for the (left)
Hund’s metal and (right) unstable solution at 𝛽𝐷 = 50, 𝑈/𝐷 = 1.46, 𝜇 =

1.3812.

parts of the eigenvalues of 𝜒imp are not the primary reason why the corresponding
eigenvalue of 𝜒q=0 does not diverge, as the real parts are still not close to −𝛽/𝑡2, but
the situation is slightly reminiscent of the disappearance of vertex divergences due to
eigenvalues acquiring imaginary parts [482].
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We can further see that in the unstable cases, the contribution of the lowest eigen-
value always has a negative sign, while it has a positive sign in all other cases where it
is significantly different from zero. This is exactly what should be expected assuming
that the weight associated to the lowest eigenvalue does not change its sign when 𝜆imp

is close to −𝛽/𝑡2, as the according to (5.70) corresponding eigenvalue 𝜆q=0 has a pole of
first order as a function of 𝜆imp at 𝜆imp = −𝛽/𝑡2, so 𝜆q=0 changes its sign across the di-
vergence. In total, the empirical picture we get from the data we have suggests that the
smallest real impurity eigenvalue of 𝜒imp is above −𝛽/𝑡2 on the stable branches, crosses
that value at the ends of the metastable branches inside the phase separation region or
at the critical point, which causes the divergence of the generalized susceptibility 𝜒q=0

of the lattice and the lattice compressibility 𝜅, and is actually below −𝛽/𝑡2 on the en-
tirety of the unstable branch found between the ends of the metastable branches. The
resolution of contributions per eigenvalue of 𝜒imp shown in Fig. 5.29 also allows us to
understand how the positive compressibility on the unstable branch arises: While the
negative contribution associated with the smallest real eigenvalue has a large magni-
tude close to the divergence at the end of the unstable phase such that it dominates
the other contributions and causes a negative compressibility in total, further from the
ends of the unstable phase the smallest real eigenvalue may be sufficiently far below
−𝛽/𝑡2 that its contribution is of comparable magnitude to those associated with other
eigenvalues and thus the compressibility in total positive again.

Let us finally note that the eigenvalue structures as shown in the bottom panels of
Fig. 5.29 do not sensitively depend on the number of Matsubara frequencies included
in the generalized susceptibility. In the cases included in the figure as well as two other
cases, the diagonalization was repeated using data for only approximately one tenth
of the Matsubara frequencies originally calculated using QMC with the only visible
difference being the size of the cluster of eigenvalues around zero. Numerically, differ-
ences in the eigenvalues not belonging to that cluster were usually not found in the first
few decimal digits, the same is however not true for the associated weights and contri-
butions. Slightly related to that, the components of the eigenvector associated with the
smallest real eigenvalue and thus the susceptibility divergence were in all our calcula-
tions actually found to be strongly peaked around zero frequency. We may however
speculate that as we go to lower temperature along the line of critical points, we would
find a broadening analogous to that in the case of the first vertex divergence line of
the irreducible vertex at half-filling [479, 481]. This would be supported by the slightly
more pronounced peak at 𝛽𝐷 = 35 than at 𝛽𝐷 = 50 (not shown), and we might try to
interpret the relatively sharp peaks of the eigenvector componentsmerely as indicators
that we are only slightly below the critical temperature of the MIT in our calculations
in a manner similar to the interpretation of the structure of the full susceptibility in
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Ref. [471].

5.2.4 Connection between generalized susceptibility eigenvalues and
thermodynamic quantities

In the preceding section we have observed that all eigenvalues of the generalized sus-
ceptibility 𝜒imp of the impurity on stable branches are greater than −𝛽/𝑡2, the value at
which the lattice compressibility diverges according to (5.70), see e.g. the lowest eigen-
values shown in the right panels and insets of Fig. 5.26 and 5.27. The divergence con-
dition 𝜆imp = −𝛽/𝑡2 is shown in the plots as blue dash-dotted line. On the unstable
branches on the other hand, for which we included one data point labeled II in each
figure, and looking at numerical values of further two-particle calculations, we find
that the lowest eigenvalue is below the divergence condition in all cases we calculated.
Let us therefore consider the link between the eigenvalues of the generalized suscepti-
bility and thermodynamic properties of the system in more detail.

The basic condition for local thermodynamic stability of a phase is concavity of the
entropy in its natural variables, or, equivalently, concavity in intensive variables and
convexity in extensive variables of the internal energy or another thermodynamic po-
tential [439]. We shall consider the grand potential and its differential [459],

Ω = 𝐸 − 𝑇𝑆 − 𝜇𝑛 +𝑈𝐷, dΩ = −𝑆 d𝑇 − 𝑛 d𝜇 + 𝐷 d𝑈 , (5.71)

where 𝐸 is the internal energy, 𝑇 the temperature, 𝑆 the entropy, and 𝐷 := ⟨𝐻int⟩ /𝑈
proportional to the potential or interaction energy. This variable would be exactly the
only double occupancy in the single-orbital case and is in general a linear combina-
tion of double occupancies, which we shall call the normalized potential energy in the
following since it is the potential energy divided by its interaction strength prefactor,
wherewe assume fixed ratios between𝑈 andHund’s coupling 𝐽 as previously. The sta-
bility condition at fixed temperature can be expressed as the condition that the Hessian
matrix (︄

𝜕2Ω
𝜕𝜇2

𝜕2Ω
𝜕𝑈𝜕𝜇

𝜕2Ω
𝜕𝑈𝜕𝜇

𝜕2Ω
𝜕𝑈2

)︄
(5.72)

of Ω is negative definite, which in particular requires both of its diagonal elements
to be negative as well. For the first diagonal element, this results in the well-known
condition that the lattice compressibility should be positive,

−𝜕2Ω

𝜕𝜇2 = − 𝜕

𝜕𝜇
(−𝑛) = 𝑛2𝜅 > 0, (5.73)
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and for the second diagonal element in the condition that the normalized potential
energy 𝐷 should decrease with increasing interaction strength parameter𝑈 ,

𝜕2Ω

𝜕𝑈2 =
𝜕

𝜕𝑈
𝐷 < 0. (5.74)

According to Sylvester’s criterion, either of these conditions togetherwith the condition
that the determinant be positive,

𝜕2Ω

𝜕𝜇2
𝜕2Ω

𝜕𝑈2 − 𝜕2Ω

𝜕𝑈𝜕𝜇

𝜕2Ω

𝜕𝑈𝜕𝜇
= −𝜕𝑛

𝜕𝜇

𝜕𝐷

𝜕𝑈
−

(︃
𝜕𝑛

𝜕𝑈

)︃2
> 0, (5.75)

is sufficient for negative definiteness and thus local stability, and since all of them are
necessary, instability directly follows frome.g. the negativity of the lattice compressibil-
ity. We should note that the local stability conditions expressed in terms of derivatives
do not necessarily imply “global” stability, for which we may consider the metastable
phases as an example. As seen in Fig. 5.13, the metastable continuations of the stable
branches of the grand potential across the thermodynamic phase transition fulfill lo-
cal stability conditions as recognizable from the curvature, but they are not the actual
minima of the grand potential Ω for a given choice of the system parameter 𝜇.

As we have previously shown, the compressibility and thus one of these conditions
can be expressed in terms of eigenvalues of the uniform generalized susceptibility 𝜒q=0

of the lattice and associated weights calculated from the eigenvectors using (5.69), and
consequently also in terms of the eigenvalues of the generalized susceptibility 𝜒imp of
the impurity using (5.70). We now continue with the connection of the derivative of
the normalized potential energy 𝐷 with respect to the interaction strength parameter
𝑈 [501]. Using the formula of Galitskii andMigdal [148] for the potential energy ⟨𝐻int⟩,
whose derivation can be found in Appendix B, we can express the derivative

d𝐷
d𝑈 =

d
d𝑈

(︃
⟨𝐻int⟩
𝑈

)︃
= −𝐷

𝑈
+ 1
𝑈

d⟨𝐻int⟩
d𝑈 (5.76)

in terms of a derivative of one-particle quantities

d𝐷
d𝑈 = −𝐷

𝑈
+ 1
𝑈𝛽

d
d𝑈

∑︂
𝜈,𝑎

Σ𝑎(𝑖𝜈)𝐺𝑎(𝑖𝜈), (5.77)

where we can use the Dyson equation and the known relation [33] for DMFT on the
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Bethe lattice Δ𝑎(𝑖𝜈) = 𝑡2𝐺𝑎(𝑖𝜈) to get the expression

d𝐷
d𝑈 = −𝐷

𝑈
+ 1
𝑈𝛽

∑︂
𝜈,𝑎

(𝑖𝜈 + 𝜇)d𝐺𝑎

d𝑈 (𝑖𝜈) − 2𝑡2𝐺𝑎(𝑖𝜈)
d𝐺𝑎

d𝑈 (𝑖𝜈) (5.78)

in terms of the one-particle Green’s function and its derivative only.
Although the self-consistent DMFT local lattice Green’s function is equal to the im-

purity Green’s function of the auxiliary AIM, its derivative with respect to the lattice
parameter 𝑈 is not the same as that of the impurity Green’s function with respect to
the same parameter of the AIM. The derivative of the self-consistent Green’s function
in DMFT consists of two separate contributions, one due to the change of the impurity
Green’s function as a reaction to the change of the interaction𝑈 in the impurity model
and an additional one due to the change of the impurity Green’s function as a reaction
to the change of the hybridization function of the impurity model, which depends on
the impurity Green’s function due to the DMFT self-consistency condition. We there-
fore denote the former as 𝜕𝐺

𝜕𝑈 (𝑖𝜈)
|︁|︁
Δ=const., which could only be further evaluated in terms

of three-particle correlation functions and we so leave as it is, and focus our attention
on further evaluation of the latter, which can be written as functional derivative of the
impurity model partition sum (2.5) with action (2.9). By applying the product rule and
identifying the one- and two-particle Green’s functions in the evaluated derivatives,
we can therefore evaluate the total derivative of the local Green’s function as

d𝐺𝑎
d𝑈 (𝑖𝜈)=

∑︂
𝜈′,𝑏

𝛿𝐺𝑎(𝑖𝜈)
𝛿Δ𝑏(𝑖𝜈′)

𝜕Δ𝑏(𝑖𝜈′)
𝜕𝑈

+ 𝜕𝐺𝑎
𝜕𝑈

(𝑖𝜈)
|︁|︁|︁|︁
Δ=const.

=
∑︂
𝜈′,𝑏

𝛿
−𝛿𝑍imp

2𝑍imp𝛿Δ𝑎(𝑖𝜈)

𝛿Δ𝑏(𝑖𝜈′)
𝜕Δ𝑏(𝑖𝜈′)

𝜕𝑈
+ 𝜕𝐺𝑎

𝜕𝑈
(𝑖𝜈)

|︁|︁|︁|︁
Δ=const.

=
∑︂
𝜈′,𝑏

(︄
1

2𝑍2
imp

𝛿𝑍imp

𝛿Δ𝑎(𝑖𝜈)
𝛿𝑍imp

𝛿Δ𝑏(𝑖𝜈′)
−

𝛿𝑍imp

2𝑍imp𝛿Δ𝑎(𝑖𝜈)𝛿Δ𝑏(𝑖𝜈′)

)︄
𝜕Δ𝑏(𝑖𝜈′)

𝜕𝑈
+𝜕𝐺𝑎
𝜕𝑈

(𝑖𝜈)
|︁|︁|︁|︁
Δ=const.

=
∑︂
𝜈′,𝑏

(︄
2𝐺𝑎(𝑖𝜈)𝐺𝑏(𝑖𝜈′) −

1
2

∑︂
𝜎,𝜎′

⟨︁
𝑐†𝜈𝑎𝜎𝑐𝜈𝑎𝜎𝑐

†
𝜈′𝑏𝜎′𝑐𝜈′𝑏𝜎′

⟩︁)︄ 𝜕Δ𝑏(𝑖𝜈′)
𝜕𝑈

+ 𝜕𝐺𝑎
𝜕𝑈

(𝑖𝜈)
|︁|︁|︁|︁
Δ=const.

= − 𝛽−1
∑︂
𝜈′,𝑏

𝜒imp,∥ ,𝑎𝑏(𝜈, 𝜈′, 𝜔 = 0)𝜕Δ𝑏(𝑖𝜈
′)

𝜕𝑈
+ 𝜕𝐺𝑎

𝜕𝑈
(𝑖𝜈)

|︁|︁|︁|︁
Δ=const.

, (5.79)

where the inserted factors of two are necessary due to the continued use of our im-
plicit convention that without spin indices, one-particle quantities refer to diagonals
and two-particle quantities to the density channel combination. Using vector-valued
Green’s and hybridization functions and a matrix-valued generalized susceptibility,
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where componentswould be referred to by combined orbital andMatsubara frequency
indices, the derivative can be expressed as

dG
d𝑈 = −𝛽−1𝝌𝜔=0

imp,∥
𝜕𝚫
𝜕𝑈

+ 𝜕G
𝜕𝑈

|︁|︁|︁|︁
Δ=const.

. (5.80)

If we insert the Bethe lattice hybridization function Δ = 𝑡2𝐺, it is then possible to
solve for the total derivative of the Green’s function in terms of only the generalized
susceptibility of the impurity and the fixed-hybridization partial derivative, yielding

dG
d𝑈 =

(︃
1 + 𝑡2

𝛽
𝝌𝜔=0
imp,∥

)︃−1
𝜕G
𝜕𝑈

|︁|︁|︁|︁
Δ=const.

, (5.81)

and further by insertion into (5.78) the derivative of the thermodynamic quantity 𝐷

d𝐷
d𝑈 = −𝐷

𝑈
+ 1
𝑈𝛽

∑︂
𝜈,𝑎

(𝑖𝜈 + 𝜇 − 2𝑡2𝐺𝑎(𝑖𝜈))
[︄(︃

1 + 𝑡2

𝛽
𝝌𝜔=0
imp,∥

)︃−1
𝜕𝐺

𝜕𝑈

|︁|︁|︁|︁
Δ=const.

]︄
𝑎𝜈

. (5.82)

Here, we can again employ the spectral representation of the generalized susceptibil-
ity and write 𝝌imp = S𝝀impS−1 to obtain a form of the derivative with the dependence
on the eigenvalues clearly recognizable similar to (5.69),

d𝐷
d𝑈 = −𝐷

𝑈
+ 1
𝑈𝛽

∑︂
𝑎𝑏𝑐

(𝑖𝜈 + 𝜇 − 2𝑡2𝐺)𝑎𝑆𝑎𝑏
1

1 + 𝑡2

𝛽 𝜆imp,∥ ,𝑏
(𝑆−1)𝑏𝑐

𝜕𝐺𝑐
𝜕𝑈

|︁|︁|︁|︁
Δ=const.

, (5.83)

where S is again the matrix with the eigenvectors of 𝝌𝜔=0
imp,∥ as columns, all indices are

combined indices of oneMatsubara frequency and one orbital index, and standard sim-
plification rules were used to bring the matrices S and S−1 as far outside as possible.
We can identify the divergence condition 1 + 𝑡2𝜆imp,∥ ,𝑏/𝛽 = 0 here, giving again the
result 𝜆imp,∥ ,𝑏 = −𝛽/𝑡2 equal to the one that follows from (5.70). Note that the diver-
gence condition did not follow from explicitly replacing a lattice susceptibility 𝜒q=0 by
an impurity susceptibility 𝜒imp this time. Instead, we directly got a correlation func-
tion of four impurity operators during the derivation from the term representing the
change of the self-consistent Green’s function due to the change of the self-consistent
hybridization function in DMFT, and after applying the relation between hybridization
and Green’s function on the Bethe lattice we were able to separate out a factor that di-
verges under the same condition. Due to (5.67) we derived earlier, we could however
identify the factor in parentheses in (5.81) as a sort of ratio between impurity and lattice
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susceptibility, (︃
1 + 𝑡2

𝛽
𝝌𝜔=0
imp,∥

)︃−1
=

(︂
𝝌𝜔=0
imp,∥

)︂−1
𝝌𝜔=0

q=0,∥ , (5.84)

and equivalently write the derivative (5.81) as

dG
d𝑈 =

(︂
𝝌𝜔=0
imp,∥

)︂−1
𝝌𝜔=0

q=0,∥
𝜕G
𝜕𝑈

|︁|︁|︁|︁
Δ=const.

. (5.85)

Coming back to (5.83) after this slight detour, let us wrap up the compared to the
compressibility somewhat larger amount of other factors as weight as well to obtain

d𝐷
d𝑈 = −𝐷

𝑈
+ 1
𝑈𝛽

∑︂
𝑏

1
1 + 𝑡2

𝛽 𝜆imp,∥ ,𝑏
𝑤𝑏 (5.86)

with a weight 𝑤𝑏 =
(︁∑︁

𝑎 (𝑖𝜈 + 𝜇 − 2𝑡2𝐺)𝑎(vb)𝑎
)︁ (︂∑︁

𝑎
𝜕𝐺𝑎
𝜕𝑈

|︁|︁|︁
Δ=const.

(v−1
b )

𝑎

)︂
. Apart from just

being more factors, the factors do not just depend on the eigenvectors this time but
on the Green’s function and even the derivative of the impurity Green’s function with
respect to the impurity𝑈 , corresponding to a three-particle correlation function of the
impurity.

Nevertheless, with this expression at hand we may note that d𝐷 /d𝑈 and 𝜅 diverge
under the exact same conditions. Also, at least close to the divergence, i.e. sufficiently
close to the ends of the unstable and metastable phases, the eigenvalue closest to the
divergence (which has so far always been the smallest real one) will be associated to
the dominating contribution to both quantities, such that both change sign across the
divergence and thus are sufficient for instability at the edges of the unstable branch. As
we have seen in the previous subsection, the lowest eigenvalue may drop sufficiently
far below the divergence threshold in the interior of the unstable branch that its con-
tribution no longer dominates and these quantities change sign again, so this alone is
still not sufficient to show instability on the entire unstable branch.

We can finally also express all terms of the determinant condition (5.75) using the
spectral representation of the generalized susceptibility. Apart from the derivatives
of lattice quantities d𝐷 /d𝑈 and 𝜅 that we already have, this additionally requires the
derivative 𝜕𝑛/𝜕𝑈 of the lattice filling 𝑛with respect to the lattice interaction strength𝑈 ,
which is partial in the sense that the other parameter 𝜇 is kept fixed. Given that the sum
over all components of the Green’s function at fixed time or equivalently summed over
all Matsubara frequencies using 1

𝛽

∑︁
𝜈 𝑒

𝑖𝜈𝜏 = 𝛿(𝜏) corresponds to the total occupation,
we can reuse the expression (5.81) for the total derivative of the self-consistent DMFT
local lattice Green’s function with respect to the lattice interaction parameter 𝑈 . We
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thus obtain

𝜕𝑛

𝜕𝑈
=

1
𝛽

∑︂
𝛼,𝜈

d𝐺𝛼

d𝑈 (𝑖𝜈)

=
2
𝛽

∑︂
𝑎𝑏

[︄(︃
1 + 𝑡2

𝛽
𝝌𝜔=0
imp,∥

)︃−1
]︄
𝑎𝑏

𝜕𝐺𝑏
𝜕𝑈

|︁|︁|︁|︁
Δ=const.

=
2
𝛽

∑︂
𝑏

1
1 + 𝑡2

𝛽 𝜆imp,∥ ,𝑏

(︄∑︂
𝑎

(vb)𝑎

)︄ (︄∑︂
𝑎

𝜕𝐺𝑎
𝜕𝑈

|︁|︁|︁|︁
Δ=const.

(v−1
b )

𝑎

)︄
(5.87)

in the same way as we transform the expression for d𝐷 /d𝑈 from (5.82) to (5.86), with
the sum over spins included in Greek indices turning into a factor of two, Latin indices
as combined orbital and Matsubara frequency indices and the last two expressions in
parentheses identifiable as weight.

Using all our expressions in spectral representation, i.e. (5.69), (5.86), and (5.87), we
can write the entire determinant condition (5.75) in spectral representation. Note that
the eigenvalues 𝜆q=0,𝑏 in the expression (5.69) were eigenvalues for the (exclusively
relevant) orbital-longitudinal part of the generalized susceptibility 𝜒q=0,∥ of the lattice
that we replaced with the actually calculated eigenvalues 𝜆imp,∥ ,𝑏 of the impurity sus-
ceptibility 𝜒imp,∥ using (5.70), while the eigenvalues 𝜆imp,∥ ,𝑏 in the other expressions
were eigenvalues of the impurity quantity 𝜒imp,∥ already. For our final expression, we
therefore finally explicitly replace the lattice eigenvalues 𝜆q=0,𝑏 in (5.69) with impurity
eigenvalues 𝜆imp,∥ ,𝑏 using 𝜆q=0,∥ ,𝑏 = 𝜆imp,∥ ,𝑏/(1+ 𝑡2𝜆imp,∥ ,𝑏/𝛽), which is (5.70) expanded
by another factor of impurity quantity 𝜆imp,∥ ,𝑏 , to make it lookmore similar to the other
expressions. This results in

0 < − 𝜕𝑛

𝜕𝜇

𝜕𝐷

𝜕𝑈
−

(︃
𝜕𝑛

𝜕𝑈

)︃2

= − 2
𝑈𝛽3

∑︂
𝑏1 ,𝑏2

𝜆imp,∥ ,𝑏1

(︃∑︁
𝑎
(v𝑏1)𝑎

)︃(︃∑︁
𝑎
(v−1
𝑏1
)
𝑎

)︃(︃∑︁
𝑎
(𝑖𝜈 + 𝜇 − 2𝑡2𝐺)𝑎(vb2)𝑎

)︃(︃∑︁
𝑎

𝜕𝐺𝑎
𝜕𝑈

|︁|︁|︁
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(v−1
b2
)
𝑎

)︃
(1 + 𝑡2

𝛽 𝜆imp,∥ ,𝑏1)(1 + 𝑡2

𝛽 𝜆imp,∥ ,𝑏2)

− 4
𝛽2

∑︂
𝑏1 ,𝑏2

(︃∑︁
𝑎
(v𝑏1)𝑎

)︃ (︃∑︁
𝑎

𝜕𝐺𝑎
𝜕𝑈
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Δ=const.
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𝑏1
)
𝑎

)︃ (︃∑︁
𝑎
(vb2)𝑎
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𝑎

𝜕𝐺𝑎
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𝑈𝛽2
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𝑏
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)︃ (︃∑︁
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𝑏
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𝛽 𝜆imp,∥ ,𝑏
, (5.88)
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which does not change sign as the lowest eigenvalue of the impurity susceptibility
𝜒imp,∥ crosses 𝜆imp,∥ = −𝛽/𝑡2 because the terms with two denominator factors cross-
ing zero dominate in a region sufficiently close to that point. Since the determinant
is equal to the product of the eigenvalues and both eigenvalues must be negative in
a stable phase, this is consistent with both eigenvalues changing their signs at once.
Considering that we have previously found that both diagonal elements d𝐷 /d𝑈 and
−𝑛2𝜅 change their signs and the trace is the sum of the eigenvalues, this is also the only
possibility.

1.382 1.384 1.386 1.388 1.390 1.392 1.394 1.396
2

0

2

4

n

D
U

( n
U )2

n D
U ( n

U )2

Figure 5.30: Evaluation of all expressions occurring in thermodynamic stability con-
ditions for three points on the unstable branch 𝛽𝐷 = 50, 𝑈/𝐷 = 1.46, cf.
Fig. 5.27. While the compressibility is positive, the derivative 𝜕𝐷/𝜕𝑈 > 0
and the determinant condition −(𝜕𝑛/𝜕𝜇)(𝜕𝐷/𝜕𝑈)−(𝜕𝑛/𝜕𝑈)2 < 0 indicate
instability.

In conclusion, all thermodynamic stability conditions admit formulations showing a
clear dependence on the eigenvalues and eigenvectors of the generalized susceptibility.
In particular, the expressions show that all derivatives of the thermodynamic potential
diverge when an eigenvalue 𝜆imp,∥ of the orbital-longitudinal part of the generalized
susceptibility 𝜒imp,∥ of the impurity reaches −𝛽/𝑡2, as it happens at the critical point
and the ends of metastable branches, unless the associated weight is zero. Empirically,
we also found that an eigenvalue 𝜆imp,∥ < −𝛽/𝑡2 below the divergence threshold al-
ways indicated the thermodynamic instability of a DMFT solution, as we found such
eigenvalues exactly for all the solutions we calculated on unstable branches. While we
can reliably say that the expressions for the instability conditions change their signs as
an eigenvalue passes −𝛽/𝑡2 unless the weight changes its sign too, we have not proven
that any of them keep that new sign when the contribution associated with that eigen-
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value is no longer dominant. It is even precisely not the case for the condition related
to the compressibility at the points on the unstable branch where the compressibility
is positive, but numerical evaluation of the other two conditions shows that they are
still sufficient to demonstrate instability of all such points we checked, see Fig. 5.30.
A short survey of our total available data indicates also that we are mostly able to
demonstrate that the numerically evaluated stability conditions are fulfilled on stable
branches including in particular the region close to half-filling where the compress-
ibility is strongly suppressed, and this in spite of the relative sparsity with which we
collected data points away from the transition and crossover.

5.2.5 Conclusion and outlook

We have been able to identify the origin of the enhanced and diverging compressibility
along the Hund’s metal crossover at small doping in the two-orbital Hubbard model
[363] in the charge response contribution associatedwith the smallest eigenvalue of the
generalized susceptibility of the impurity. This contribution drives the system towards
a divergence of the charge-charge response function at the critical point of the Mott
transition while all other contributions in eigenbasis remain almost constant. Apart
from confirming the one-band results [491] systematically along the crossover line up
to the critical point at finite doping in a more complex two-band system with Hund’s
coupling, we further went beyond that analysis by calculating the generalized suscep-
tibilities at DMFT fixed points in the unstable phase. There, we discovered that the
lowest eigenvalue of the generalized susceptibility of the impurity also serves as a po-
tential criterion indicating the thermodynamic instability of a solution, namely then
when it has crossed below the threshold value that would indicate the divergence of its
associated compressibility contribution.

Unlike the evaluation of thermodynamic stability conditions using difference quo-
tients, which becomes difficult near critical points due to the small distances in pa-
rameter space that are needed to resolve sharp features but worsen the relative error
of the result, the calculation of the generalized susceptibility can be performed for a
single point, i.e. “locally” in parameter space. In DMFT, the generalized susceptibility
of the lattice can be determined in a lattice-dependent way from the calculated impu-
rity vertex with an error that in principle does not deteriorate near the critical point
except possibly due to critical slowing down. However, this also affects the difference
quotients in addition to their other problems and can be ameliorated by using sophis-
ticated fixed-point solvers instead of simple iteration [145].

If the observation that the eigenvalue of the generalized susceptibility indicates ther-
modynamic instability is generalizable, one single calculation of two-particle quanti-
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ties would suffice to demonstrate thermodynamic instability of a solution. In a general
case, this might be considerably less effort than the additional DMFT calculations nec-
essary to evaluate the difference quotients. For each parameter of the system, in our
case 𝜇 and𝑈 , one additional calculation is necessary that also must be close enough in
parameter space to be relevant and at the same time precise enough to reliably evalu-
ate the stability conditions. Particularly close to the critical point, this might be more
difficult to achieve than one single calculation of two-particle quantities.

With amulti-orbital model as considered here, we also come closer to direct physical
applicability, given that minimal models for the iron-pnictide superconductors with
just two orbitals have actually been proposed [450] as we have commented on before in
Sec. 5.1.5 and the same analysis is in principle also extensible tomoremodels, although
thatwill not only require higher resource usage for the impurity solver but also increase
the number of non-zero components of the two-particle Green’s function that need to
be calculated. As it was done in Ref. [491], that would allow the calculation of the
momentum-dependent structure of the susceptibility and identification of potential
effectively attractive interactions.
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6 Conclusion

We found the CT-HYB algorithm to be a powerful state-of-the-art method for the so-
lution of multi-orbital Anderson impurity models of the complexity necessary for the
realistic description of strongly correlated materials. The state and superstate sam-
pling algorithms we introduced enhanced its efficiency particularly in the case of more
realistic interaction parameterizations of higher accuracy, and symmetric improved es-
timators make the calculation of self-energies and vertex functions with constant error
possible, allowing us to get more accurate intermediate-frequency behavior that could
be advantageous for analytic continuation.

Wewere able to show that an accurate parameterization of the local interaction is nec-
essary to get qualitatively right results for the prototypical Kondo systemof a cobalt im-
purity on a copper surface, demonstrating how the density-density form of the interac-
tion, which disproportionately freezes out orbital fluctuations, would incorrectly lead
us to believe in a picture with only two relevant 3𝑑-shell orbitals and a Nevidomskyy-
Coleman spin-1 scenario with a Kondo temperature suppressed by orders of magni-
tude compared to the experimental one. This result should help to inform future first-
principles investigations of Kondo impurities of the dangers of simplified approxima-
tions of the interaction and consideration of insufficient orbital subsets.

The quantitative dependence of the Kondo effect of cobalt adatoms on a copper sur-
face embedded in “atomic wire” clusters of additional copper atoms of varying length
found in experiment could not be reproduced, in particular also not the qualitative total
absence of a resonance in the spectra of two clusters. Given no significant distinctions
between the hybridization functions and local impurity levels, the failure is not entirely
surprising. While effects of the environment on the local interaction are expected to be
minor, the considerable dependence of numerical results on at least the Hubbard-𝑈
repulsion, the adsorption distance, and likely the filling suggests that more accurate
model parameters may be necessary for quantitative statements. Recent challenges to
the identification of the zero-bias spectral feature as Kondo resonance also point to the
importance of spin-orbit coupling that we neglected, which could however be included
in future CT-HYB studies at additional computational cost.

Our results computed using the first-principles combination of DFT and CT-HYB
were able to reproduce the experimentally found variation of theKondo temperature of
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iron impurities on niobium with respect to the absorption site, connected to Yu-Shiba-
Rusinov resonance positions in the superconducting state. We identified the reduced
actual adsorption height of the iron adatoms on the oxygen-reconstructed surface as
primary cause that moves it into the strong-coupling regime, while those on the clean
surface are in the weak-coupling regime that admits a description as a classical spin.
The characterization of the surface dependence should guide potential attempts to as-
semble atomic iron wires hosting Majorana zero modes.

In our DMFT investigation of the two-orbital Hubbardmodel with Hund’s coupling,
we were able to identify the first-order interaction-driven Mott transition at half-filling
as a clear signature indicating the presence of a phase separation zone extending off
half-filling and terminating in a quantum critical point at finite doping. A perturba-
tive expansion around the phase transition point corroborates the connection between
Hund’s coupling and the first-order nature of the transition and demonstrates that any
small term splitting the ground-state multiplet could have a similar effect. We evoke
tentative investigations of a minimal two-orbital model for iron-pnictides and even a
full five-orbital DFT-parameterized model of an iron-pnictide superconductor along
similar lines, where we also found a phase separation region or at least a zone of com-
pressibility enhancement, whichmay be connected to an electronic pairingmechanism.

Finally, we trace the origin of the compressibility divergence at the critical points
of this model at finite temperature and doping in the eigenbasis of the two-particle
generalized susceptibility of the DMFT lattice solution. We identify a threshold for
the eigenvalues of the generalized impurity susceptibility as divergence condition and
show how the approach of the lowest eigenvalue to this threshold is responsible for
the compressibility enhancement along the crossover line and its divergence at the crit-
ical point away from half-filling. We further follow the eigenvalue structure into the
phase separation zone, where we calculate it for all phases including the unstable one.
We derive expressions for the thermodynamic derivatives that show their dependence
on the eigenvalues of the generalized susceptibility and demonstrate empirically that
our threshold value distinguishes between thermodynamic stability and instability of
DMFT solutions.

202



A Fourier transforms between
imaginary time and Matsubara
frequencies

In accordance with Ref. [47], wemay define our Fourier transforms between imaginary
time and Matsubara frequencies for one-particle Green’s functions (5.41) as

𝐺(𝑖𝜈𝑛) =
∫ 𝛽

0
exp(𝑖𝜈𝑛𝜏)𝐺(𝜏) d𝜏 (A.1)

𝐺(𝜏) = 𝛽−1
∑︂
𝜈𝑛

exp(−𝑖𝜈𝑛𝜏)𝐺(𝑖𝜈𝑛) (A.2)

with fermionicMatsubara frequencies 𝜈𝑛 = (2𝑛+1)𝜋𝛽−1 (as for the one-particle Green’s
function in our case) or bosonic Matsubara frequencies 𝜈𝑛 = 2𝑛𝜋𝛽−1, where 𝑛 ∈ Z.
This expansion in terms of Matsubara frequencies is essentially just a Fourier series
for periodic functions on [−𝛽, 𝛽], exploiting additionally the fact that our correlation
functions are either fermionic and 𝛽-antiperiodic or bosonic and 𝛽-periodic.

In this definition, we took advantage of time-translational invariance to fix one time
argument to zero and write the one-particle Green’s function as a function of the time
difference of its constituting operators only, cf. Sec. 5.2.2. In general, we can use

𝐺(𝑖𝜈1, . . . , 𝑖𝜈2𝑛) =
∫ 𝛽

0
𝑒 𝑖(𝜈1𝜏1−𝜈2𝜏2+···+𝜈2𝑛−1𝜏2𝑛−1−𝜈2𝑛𝜏2𝑛)𝐺(𝜏1, . . . , 𝜏2𝑛) d𝜏1 . . . d𝜏2𝑛 (A.3)

𝐺(𝜏1, . . . , 𝜏2𝑛) = 𝛽−2𝑛
∑︂

𝜈1 ,...,𝜈2𝑛

𝑒−𝑖(𝜈1𝜏1−𝜈2𝜏2+···+𝜈2𝑛−1𝜏2𝑛−1−𝜈2𝑛𝜏2𝑛)𝐺(𝑖𝜈1, . . . , 𝑖𝜈2𝑛) (A.4)

to transform 𝑛-particle Green’s functions like (5.40) [214], i.e. correlation functionswith
2𝑛 times. If we impose the Matsubara frequency transform

𝑐(𝑖𝜈𝑛) =
∫ 𝛽

0
exp(−𝑖𝜈𝑛𝜏)𝑐(𝜏) d𝜏 , (A.5)

𝑐†(𝑖𝜈𝑛) =
∫ 𝛽

0
exp(𝑖𝜈𝑛𝜏)𝑐†(𝜏) d𝜏 . (A.6)
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on creation and annihilation operators, we can get (A.3) simply by transforming all
involved operators.

By choosing 𝑛 = 1, we can apply (A.3) to the one-particle Green’s function, and
for comparison with our earlier expression (A.1) we can introduce time-translational
invariance into this general expression in the form of the energy conservation 𝜈1 = 𝜈2

that it implies [502]. We can then identify 𝜏 = 𝜏1 − 𝜏2, but are still left with two time
integrals rather than one. As we shall soon see, this gives us an additional factor of
𝛽 compared to our earlier expression. While the functions as arguments of time are
simply related by 𝐺(𝜏1, 𝜏2) = 𝐺(𝜏1 − 𝜏2) in the case of time-translational invariance,
the function of 2𝑛 − 1 frequency arguments is related to the one with an additional
redundant argument by 𝐺(𝜈1, 𝜈2) = 𝛿𝜈1 ,𝜈2𝛽𝐺(𝜈1), i.e. it differs by a factor of 𝛽 [214].

Let’s work out the form of the generalized susceptibility (5.44) inMatsubara frequen-
cies in terms of 𝑛-particle Green’s functions with 2𝑛 − 1 frequency arguments as an ex-
ample. Since the sum of ingoing frequencies must equal that of outgoing frequencies,
𝜈1 + 𝜈3 = 𝜈2 + 𝜈4, our final expressions will involve three frequencies only. We may
e.g. choose a particle-hole frequency convention (5.45) [214], 𝜈1 = 𝜈 + 𝜔, 𝜈2 = 𝜈, 𝜈3 =

𝜈′, 𝜈4 = 𝜈′ + 𝜔, where we choose to decompose the first ingoing fermionic frequency
into a sum of a fermionic frequency variable and a difference, which must be a bosonic
frequency variable. That bosonic frequency can be interpreted as the energy transfer in
a scattering process from an (ingoing) electron with initial energy 𝜈 + 𝜔 to an ingoing
hole (corresponding to an outgoing electron) with initial energy −(𝜈′ + 𝜔). Using this
frequency convention and (A.3), we want to compute

𝜒𝜈𝜈′𝜔
𝛼𝛽𝛾𝛿 = 𝛽−1

∫ 𝛽

0
d𝜏1,...,4 𝑒

𝑖((𝜈+𝜔)𝜏1−𝜈𝜏2+𝜈′𝜏3−(𝜈′+𝜔)𝜏4)𝜒𝜏1 ,𝜏2 ,𝜏3 ,𝜏4
𝛼𝛽𝛾𝛿 (A.7)

= 𝛽−1
∫ 𝛽

0
d𝜏1,...,4 𝑒

𝑖((𝜈+𝜔)𝜏1−𝜈𝜏2+𝜈′𝜏3−(𝜈′+𝜔)𝜏4)(𝐺𝜏1 ,𝜏2 ,𝜏3 ,𝜏4
𝛼𝛽𝛾𝛿 − 𝐺𝜏1 ,𝜏2

𝛼𝛽 𝐺𝜏3 ,𝜏4
𝛾𝛿 ), (A.8)

where the factor of 𝛽 is the conversion factor between the four-argument function re-
sulting from the Fourier transform and the three-argument function we want, with
energy conservation already enforced by our parametrization of the four frequencies.

Assuming time-translational invariance, we can use differences with respect to 𝜏4 in
the first term, differences with respect to 𝜏2 for the first Green’s function and associated
exponential of the second term, and differences with respect to 𝜏4 for the rest of the
second term. After the changes of variables 𝜏′1,...,3 = 𝜏1,...,3−𝜏4, 𝜏′4 = 𝜏4, �̃�1 = 𝜏1−𝜏2, �̃�2 =

𝜏2, �̃�3 = 𝜏3 − 𝜏4, �̃�4 = 𝜏4, the integral in (A.8) turns into
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∫ 𝛽

0
d𝜏′4

∫ 𝛽−𝜏′4

−𝜏′4
d𝜏′1,...,3 𝑒

𝑖((𝜈+𝜔)(𝜏′1+𝜏′4)−𝜈(𝜏′2+𝜏′4)+𝜈′(𝜏′3+𝜏′4)−(𝜈′+𝜔)𝜏′4)𝐺
𝜏′1𝜏

′
2𝜏

′
3

𝛼𝛽𝛾𝛿 (A.9)

−
∫ 𝛽

0
d�̃�2

∫ 𝛽−�̃�2

−�̃�2

d�̃�1 𝑒
𝑖((𝜈+𝜔)(�̃�1+�̃�2)−𝜈�̃�2)𝐺�̃�1

𝛼𝛽

∫ 𝛽

0
d�̃�4

∫ 𝛽−�̃�4

−�̃�4

d�̃�3 𝑒
𝑖(𝜈′(�̃�3+�̃�4)−(𝜈′+𝜔)�̃�4))𝐺�̃�3

𝛾𝛿 .

Using the antiperiodicity of Green’s functions in all their time variables, cf. Sec. 5.2.2,
we can show that the bounds of the integrals over the time differences can all be set back
to 0 and 𝛽 without changing their values. With 𝑓 (𝜏) a 𝛽-antiperiodic function∫ 𝛽−𝑥

−𝑥
d𝜏 𝑒 𝑖𝜈𝜏 𝑓 (𝜏) =

∫ 0

−𝑥
d𝜏 𝑒 𝑖𝜈𝜏 𝑓 (𝜏) +

∫ 𝛽−𝑥

0
d𝜏 𝑒 𝑖𝜈𝜏 𝑓 (𝜏) (A.10)

=

∫ 𝛽

𝛽−𝑥
d𝜏′ 𝑒 𝑖𝜈𝜏′−𝑖𝜈𝛽 𝑓 (𝜏′ − 𝛽) +

∫ 𝛽−𝑥

0
d𝜏 𝑒 𝑖𝜈𝜏 𝑓 (𝜏) (A.11)

=

∫ 𝛽

𝛽−𝑥
d𝜏′ 𝑒 𝑖𝜈𝜏′ 𝑓 (𝜏′) +

∫ 𝛽−𝑥

0
d𝜏 𝑒 𝑖𝜈𝜏 𝑓 (𝜏) (A.12)

=

∫ 𝛽

0
d𝜏 𝑒 𝑖𝜈𝜏 𝑓 (𝜏), (A.13)

where we can use 𝛽-antiperiodicity of 𝑓 and explicitly evaluate 𝑒−𝑖𝜈𝛽 for a fermionic
Matsubara frequency 𝜈 from (A.11) to (A.12) resulting in two factors of minus one that
cancel each other.

Therefore the inner integrals in (A.9) do not actually depend on 𝜏′4, �̃�2, or �̃�4 and we
can perform the integrals over these variables first. Since the Green’s functions do not
depend on the variables, the integrals are simple integrals over either an exponential
function if a nonzero frequency 𝜈′4 multiplies the variable or a constant otherwise. In-
tegrating the complex exponential over a multiple of its period results in zero, so they
evaluate to 𝛽𝛿0,𝜈′4 in total. For the two-particle Green’s function, this just ensures energy
conservation and is redundant with our parametrization in terms of three frequencies,
but for the product of two one-particle Green’s functions, we are left with both 𝛿𝜔,0
and a total factor of 𝛽 after taking the conversion factor into account. Identifying the
remaining integrals as the Fourier transforms of the Green’s functions, the expression
for the generalized susceptibility as a function of three frequencies in terms of Green’s
functions as functions of three or one frequencies is

𝜒𝜈𝜈′𝜔
𝛼𝛽𝛾𝛿 = 𝐺𝜈𝜈′𝜔

𝛼𝛽𝛾𝛿 − 𝛽𝛿𝜔,0𝐺
𝜈
𝛼𝛽𝐺

𝜈′

𝛾𝛿 (A.14)

as given in (5.46).
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B Equation of motion for the AIM
Green’s function

In this appendix, we show how to calculate the equation of motion for the one-particle
Green’s function of the Anderson impurity model by differentiating it with respect to
its time arguments. In this way, we derive the improved estimator [200] and symmetric
improved estimator equations (3.10) and (3.14) for the one-particle Green’s function of
the AIM and the Galitskii-Migdal formula for the potential energy [148] that we use to
express the derivative of the potential energy of the AIM in (5.76) as a derivative of the
one-particle Green’s function of the AIM instead. The derivation closely follows the
one found in Appendix A of Ref. [198].

Let us first note some definitions and properties that will be useful for the derivation,
all of which can e.g. be found in a textbook such as Ref. [47]. An operator 𝐴 can be
written in the Heisenberg picture for imaginary time 𝜏 as

𝐴(𝜏) = exp(𝐻𝜏)𝐴 exp(−𝐻𝜏), (B.1)

where𝐻 is the Hamiltonian. If the operator has no explicit time dependence, i.e. 𝜕𝜏𝐴 =

0 in the Schrödinger picture, and the Hamiltonian is time-independent as well, the
derivative of the operator 𝐴(𝜏) in the Heisenberg picture is therefore

𝜕𝜏𝐴(𝜏) = [𝐻, 𝐴](𝜏), (B.2)

where [𝐻, 𝐴] := 𝐻𝐴 − 𝐴𝐻 is the commutator. We define the time-ordering symbol T𝜏

in imaginary time for fermionic, i.e. anticommuting, operators 𝐴(𝜏1) and 𝐵(𝜏2) as

T𝜏 𝐴(𝜏1)𝐵(𝜏2) = 𝜃(𝜏1 − 𝜏2)𝐴(𝜏1)𝐵(𝜏2) − 𝜃(𝜏2 − 𝜏1)𝐵(𝜏2)𝐴(𝜏1), (B.3)

where 𝜃 is the Heaviside step function, which is one for positive argument, zero for
negative argument, and turns into theDirac delta distributionwhen differentiatedwith
respect to its argument. The anticommutation relations for fermionic creation and an-

207



nihilation operators 𝑐† and 𝑐 are

{𝑐𝛼(𝜏1), 𝑐𝛽(𝜏2)} = 0, (B.4)
{𝑐†𝛼(𝜏1), 𝑐†𝛽(𝜏2)} = 0, (B.5)

{𝑐𝛼(𝜏1), 𝑐†𝛽(𝜏2)} = 𝛿𝛼𝛽𝛿(𝜏1 − 𝜏2), (B.6)

where {𝐴, 𝐵} := 𝐴𝐵 + 𝐵𝐴 is the anticommutator. Simple rules for the evaluation of
commutators and anticommutators of products are

[𝐴𝐵, 𝐶] = 𝐴{𝐵, 𝐶} − {𝐴, 𝐶}𝐵 = 𝐴[𝐵, 𝐶] + [𝐴, 𝐶]𝐵, (B.7a)
[𝐴, 𝐵𝐶] = {𝐴, 𝐵}𝐶 − 𝐵{𝐴, 𝐶} = 𝐵[𝐴, 𝐶] + [𝐴, 𝐵]𝐶, (B.7b)
{𝐴𝐵, 𝐶} = 𝐴[𝐵, 𝐶] + {𝐴, 𝐶}𝐵 = 𝐴{𝐵, 𝐶} − [𝐴, 𝐶]𝐵, (B.7c)
{𝐴, 𝐵𝐶} = 𝐵{𝐴, 𝐶} + [𝐴, 𝐵]𝐶 = {𝐴, 𝐵}𝐶 − 𝐵[𝐴, 𝐶], (B.7d)

which can be verified by using the definitions and elementary manipulations.
With the help of these basic relations we find that the time derivative of the one-

particle Green’s function with two time arguments (3.6) of the AIM, whose Hamilto-
nian is given in (2.1), is

𝜕𝜏1𝐺𝛼𝛽(𝜏1, 𝜏2) = −𝜕𝜏1

⟨︂
T𝜏 𝑐𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
(B.8)

= −𝜕𝜏1

(︂
𝜃(𝜏1 − 𝜏2)

⟨︂
𝑐𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
− 𝜃(𝜏2 − 𝜏1)

⟨︂
𝑐†𝛽(𝜏2)𝑐𝛼(𝜏1)

⟩︂)︂
(B.9)

= −𝛿(𝜏1 − 𝜏2)𝛿𝛼𝛽 −
⟨︂
T𝜏[𝐻AIM, 𝑐𝛼](𝜏1)𝑐†𝛽(𝜏2)

⟩︂
, (B.10)

where we inserted the definition of time-ordering, and have the derivative of the step
functions in the first termwith the fermionic anticommutation relation for {𝑐𝛼 , 𝑐†𝛽} giv-
ing us 𝛿𝛼𝛽 and the derivative of the annihilation operator in Heisenberg picture in the
second term.

We proceed by evaluating the commutator

[𝐻AIM, 𝑐𝛼] =
∑︂
𝜇,𝛽

𝐸𝜇𝛽[𝑐†𝜇𝑐𝛽 , 𝑐𝛼] +
∑︂

𝜇,𝛽,𝛾,𝛿

𝑈𝜇𝛽𝛾𝛿

2 [𝑐†𝜇𝑐†𝛽𝑐𝛿𝑐𝛾 , 𝑐𝛼] (B.11)

+
∑︂
k,𝜌

𝜀k𝜌[𝑎†k𝜌𝑎k𝜌 , 𝑐𝛼] +
∑︂
k,𝜇,𝜌

𝑉k𝜌,𝜇[𝑎†k𝜌𝑐𝜇, 𝑐𝛼] +𝑉
∗
k𝜌,𝜇[𝑐†𝜇𝑎k𝜌 , 𝑐𝛼]

= −
∑︂
𝛽

𝐸𝛼𝛽𝑐𝛽 −
∑︂
𝛽𝛾𝛿

𝑈[𝛼𝛽]𝛾𝛿𝑐
†
𝛽𝑐𝛿𝑐𝛾 −

∑︂
k,𝜌

𝑉∗
k𝜌,𝛼𝑎k𝜌 , (B.12)

where we used the rules for products in (B.7) and fermionic anticommutation relations
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once for most terms and several times for the interaction term, there also followed by
renaming a summation index to collect terms and using the antisymmetrized interac-
tion matrix 𝑈[𝛼𝛽]𝛾𝛿 := 1

2(𝑈𝛼𝛽𝛾𝛿 − 𝑈𝛽𝛼𝛾𝛿) introduced in (3.13). We will further replace
𝑞𝛼 :=

∑︁
𝛽𝛾𝛿𝑈[𝛼𝛽]𝛾𝛿𝑐

†
𝛽𝑐𝛿𝑐𝛾 as defined in (3.12) to reach the expression

𝜕𝜏1𝐺𝛼𝛽(𝜏1, 𝜏2) = − 𝛿(𝜏1 − 𝜏2)𝛿𝛼𝛽 +
∑︂
𝛾

𝐸𝛼𝛾

⟨︂
T𝜏 𝑐𝛾(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
+

⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
+

∑︂
k,𝜌

𝑉∗
k𝜌,𝛼

⟨︂
T𝜏 𝑎k𝜌(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
(B.13)

for the time derivative of the impurity Green’s function.
Similarly to (B.8), but with no delta term because 𝑎 and 𝑐† always anticommute, we

can compute the time derivative of the mixed Green’s function in the last term as

𝜕𝜏1

⟨︂
T𝜏 𝑎k𝜌(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
=

⟨︂
T𝜏[𝐻AIM, 𝑎k𝜌](𝜏1)𝑐†𝛽(𝜏2)

⟩︂
. (B.14)

Using the rules for products, the commutator can be evaluated even more easily this
time to yield

[𝐻AIM, 𝑎k𝜌] =
∑︂
𝛼,𝛽

𝐸𝛼𝛽[𝑐†𝛼𝑐𝛽 , 𝑎k𝜌] +
∑︂

𝛼,𝛽,𝛾,𝛿

𝑈𝛼𝛽𝛾𝛿

2 [𝑐†𝛼𝑐†𝛽𝑐𝛿𝑐𝛾 , 𝑎k𝜌] (B.15)

+
∑︂
q,𝜇

𝜀q𝜇[𝑎†q𝜇𝑎q𝜇, 𝑎k𝜌] +
∑︂
q,𝛼,𝜇

𝑉q𝜇,𝛼[𝑎†q𝜇𝑐𝛼 , 𝑎k𝜌] +𝑉∗
q𝜇,𝛼[𝑐†𝛼𝑎q𝜇, 𝑎k𝜌]

= − 𝜀k𝜌𝑎k𝜌 −
∑︂
𝛼

𝑉k𝜌,𝛼𝑐𝛼 . (B.16)

Inserting this into (B.14), we get the expression

𝜕𝜏1

⟨︂
T𝜏 𝑎k𝜌(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
= −𝜀k𝜌

⟨︂
T𝜏 𝑎k𝜌(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
−

∑︂
𝛼

𝑉k𝜌,𝛼

⟨︂
T𝜏 𝑐𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
(B.17)

for the time derivative of the mixed Green’s function.
We get rid of the time derivative in this equation by first applying the Fourier trans-

form
∫ 𝛽

0 d𝜏1 exp(𝑖𝜈1𝜏1) from 𝜏1 to fermionic Matsubara frequency 𝜈1∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1𝜕𝜏1

⟨︂
T𝜏 𝑎k𝜌(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
= − 𝜀k𝜌

∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1
⟨︂
T𝜏 𝑎k𝜌(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
(B.18)

−
∑︂
𝛼

𝑉k𝜌,𝛼

∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1
⟨︂
T𝜏 𝑐𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
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and then integrating the integral containing the time derivative by parts to obtain∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1
⟨︂
T𝜏 𝑎k𝜌(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
=

∑︂
𝛼

𝑉k𝜌,𝛼

𝑖𝜈1 − 𝜀k𝜌

∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1
⟨︂
T𝜏 𝑐𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
,

(B.19)
where boundary terms vanished as 𝑒 𝑖𝜈1𝛽 = −1 for a fermionic Matsubara frequency 𝜈1

and the value of the two-time Green’s function for 𝜏1 = 0 differs from that for 𝜏1 = 𝛽 by
aminus sign only due to 𝛽-antiperiodicity, cf. Sec. 5.2.2. From the termwith the deriva-
tive of the exponential we got an extra factor of −𝑖𝜈1, and bringing all the coefficients
together we get a coefficient that is almost the hybridization function (2.10).

After applying the same Fourier transform and integration by parts to our last ex-
pression so far for the equation of motion of the impurity Green’s function (B.13), we
can insert the equation of motion (B.19) for the mixed Green’s function to get an equa-
tion purely in terms of correlation functions of impurity operators,

−𝑖𝜈1

∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1𝐺𝛼𝛽(𝜏1, 𝜏2) = −
∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1𝛿(𝜏1 − 𝜏2)𝛿𝛼𝛽 (B.20)

+
∑︂
𝛾

𝐸𝛼𝛾

∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1
⟨︂
T𝜏 𝑐𝛾(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
+

∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1
⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
+

∑︂
k,𝜌,𝜇

𝑉∗
k𝜌,𝛼𝑉k𝜌,𝜇

𝑖𝜈1 − 𝜀k𝜌

∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1
⟨︂
T𝜏 𝑐𝜇(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
,

where we can actually identify the second and fourth term on the right-hand side as
matrix products with impurity Green’s functions, and the matrix in the fourth term is
now exactly the hybridization function Δ𝛼𝜇(𝑖𝜈1) defined in (2.10). Bringing all these
terms to one side and adjusting all index names, we have∑︂

𝜇

(𝑖𝜈1𝛿𝛼𝜇 − 𝐸𝛼𝜇 − Δ𝛼𝜇(𝑖𝜈1))
∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1𝐺𝜇𝛽(𝜏1, 𝜏2) (B.21)

= 𝑒 𝑖𝜈1𝜏2𝛿𝛼𝛽 −
∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1
⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
,

where we can further identify 𝒢−1
0,𝛼𝜇(𝑖𝜈1) = (𝑖𝜈1𝛿𝛼𝜇 − 𝐸𝛼𝜇 − Δ𝛼𝜇(𝑖𝜈1)) to get

∑︂
𝜇

𝒢−1
0,𝛼𝜇(𝑖𝜈1)

∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1𝐺𝜇𝛽(𝜏1, 𝜏2) = 𝑒 𝑖𝜈1𝜏2𝛿𝛼𝛽 −
∫ 𝛽

0
d𝜏1 𝑒

𝑖𝜈1𝜏1
⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
.

(B.22)
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By Fourier transforming this equation from time 𝜏2 to Matsubara frequency 𝜈2 with∫ 𝛽

0 d𝜏2 exp(−𝑖𝜈2𝜏2), canceling the appearing factor of 𝛽 (cf. Appendix A), multiplying
the matrix 𝒢0 from the left to bring 𝒢0 to the other side, renaming some indices, and
identifying the last term as the correlation function 𝜉 defined in (3.11), we can get the
improved estimator equation (3.10).

If we want to proceed to the symmetric improved estimator equation, we instead
continue by computing the equation of motion for the correlation function in the last
term by differentiating with respect to 𝜏2 analogously to (B.10),

𝜕𝜏2

⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
= −𝛿(𝜏1 − 𝜏2)

⟨︂
{𝑞𝛼 , 𝑐†𝛽}(𝜏1)

⟩︂
+

⟨︂
T𝜏 𝑞𝛼(𝜏1)[𝐻AIM, 𝑐

†
𝛽](𝜏2)

⟩︂
. (B.23)

We calculate the anticommutator using the definition (3.12) of 𝑞 and rule (B.7c) fol-
lowed by rule (B.7a) as

{𝑞𝛼 , 𝑐†𝛽} =
∑︂
𝜇𝛾𝛿

𝑈[𝛼𝜇]𝛾𝛿{𝑐†𝜇𝑐𝛿𝑐𝛾 , 𝑐†𝛽} =
∑︂
𝜇𝛾𝛿

𝑈[𝛼𝜇]𝛾𝛿(𝑐†𝜇𝑐𝛿𝛿𝛾𝛽 − 𝑐†𝜇𝛿𝛿𝛽𝑐𝛾) = 2
∑︂
𝜇𝛾

𝑈[𝛼𝜇][𝛽𝛾]𝑐
†
𝜇𝑐𝛾

(B.24)
using definition (3.13) again, and for the commutator with the Hamiltonian we can just
reuse (B.12) by applying [𝐴, 𝐵]† = −[𝐴†, 𝐵†], which gives us

[𝐻AIM, 𝑐
†
𝛽] =

∑︂
𝛿

𝐸∗
𝛽𝛿𝑐

†
𝛿 + 𝑞

†
𝛽 +

∑︂
k,𝜌

𝑉k𝜌,𝛽𝑎
†
k𝜌 (B.25)

using definition (3.12) and keeping in mind that 𝑈𝛼𝛽𝛾𝛿 = 𝑈∗
𝛾𝛿𝛼𝛽 due to hermiticity of

the Hamiltonian.
Using these to evaluate the terms of the equation of motion (B.23) for 𝜉, we obtain

𝜕𝜏2

⟨︂
T𝜏𝑞𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
= − 2𝛿(𝜏1 − 𝜏2)

∑︂
𝜇𝛾

𝑈[𝛼𝜇][𝛽𝛾]
⟨︂
𝑐†𝜇𝑐𝛾

⟩︂
+
∑︂
𝛿

𝐸∗
𝛽𝛿

⟨︁
T𝜏 𝑞𝛼(𝜏1)𝑐†𝛿(𝜏2)

⟩︁
+

⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑞†𝛽(𝜏2)

⟩︂
+

∑︂
k,𝜌

𝑉k𝜌,𝛽

⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑎†k𝜌(𝜏2)

⟩︂
(B.26)

and proceed again by computing the equation ofmotion for themixed correlation func-
tion including the bath operator by differentiating it with respect to 𝜏2.

With no delta term again as 𝑞 and 𝑎† anticommute, we have

𝜕𝜏2

⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑎†k𝜌(𝜏2)

⟩︂
=

⟨︂
T𝜏 𝑞𝛼(𝜏1)[𝐻AIM, 𝑎

†
k𝜌](𝜏2)

⟩︂
(B.27)
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where a previously calculated commutator, (B.16), can again be reused

[𝐻AIM, 𝑎
†
k𝜌] = 𝜀k𝜌𝑎

†
k𝜌 +

∑︂
𝜇

𝑉∗
k𝜌,𝜇𝑐

†
𝜇. (B.28)

We perform the Fourier transform
∫ 𝛽

0 d𝜏2 exp(−𝑖𝜈2𝜏2) of (B.27) from time 𝜏2 to Mat-
subara frequency 𝜈2∫ 𝛽

0
d𝜏2 𝑒

−𝑖𝜈2𝜏2𝜕𝜏2

⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑎†k𝜌(𝜏2)

⟩︂
= 𝜀k𝜌

∫ 𝛽

0
d𝜏2 𝑒

−𝑖𝜈2𝜏2
⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑎†k𝜌(𝜏2)

⟩︂
(B.29)

+
∑︂
𝜇

𝑉∗
k𝜌,𝜇

∫ 𝛽

0
d𝜏2 𝑒

−𝑖𝜈2𝜏2
⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑐†𝜇(𝜏2)

⟩︂
and integrate by parts like before from (B.18) to (B.19) yielding∫ 𝛽

0
d𝜏2 𝑒

−𝑖𝜈2𝜏2
⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑎†k𝜌(𝜏2)

⟩︂
=

∑︂
𝜇

𝑉∗
k𝜌,𝜇

𝑖𝜈2 − 𝜀k𝜌

∫ 𝛽

0
d𝜏2 𝑒

−𝑖𝜈2𝜏2
⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑐†𝜇(𝜏2)

⟩︂
.

(B.30)
Inserting into (B.26) after first Fourier transforming it we obtain an equation in terms

of impurity correlation functions only

𝑖𝜈2

∫ 𝛽

0
d𝜏2 𝑒

−𝑖𝜈2𝜏2
⟨︂
T𝜏𝑞𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
= − 2𝑒−𝑖𝜈2𝜏1

∑︂
𝜇𝛾

𝑈[𝛼𝜇][𝛽𝛾]
⟨︂
𝑐†𝜇𝑐𝛾

⟩︂
+

∑︂
𝛿

𝐸∗
𝛽𝛿

∫ 𝛽

0
d𝜏2 𝑒

−𝑖𝜈2𝜏2
⟨︁
T𝜏 𝑞𝛼(𝜏1)𝑐†𝛿(𝜏2)

⟩︁
+

∫ 𝛽

0
d𝜏2 𝑒

−𝑖𝜈2𝜏2
⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑞†𝛽(𝜏2)

⟩︂
+

∑︂
𝜇

Δ𝜇𝛽(𝑖𝜈2)
⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑐†𝜇(𝜏2)

⟩︂
that can be rearranged to∑︂

𝜇

(𝑖𝜈2𝛿𝜇𝛽 − 𝐸𝜇𝛽 − Δ𝜇𝛽(𝑖𝜈2))
∫ 𝛽

0
d𝜏2 𝑒

−𝑖𝜈2𝜏2
⟨︂
T𝜏𝑞𝛼(𝜏1)𝑐†𝜇(𝜏2)

⟩︂
(B.31)

= −2𝑒−𝑖𝜈2𝜏1
∑︂
𝜇𝛾

𝑈[𝛼𝜇][𝛽𝛾]
⟨︂
𝑐†𝜇𝑐𝛾

⟩︂
+

∫ 𝛽

0
d𝜏2 𝑒

−𝑖𝜈2𝜏2
⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑞†𝛽(𝜏2)

⟩︂
,

where we can identify 𝒢−1
0,𝜇𝛽(𝑖𝜈2) = (𝑖𝜈2𝛿𝜇𝛽 −𝐸𝜇𝛽 −Δ𝜇𝛽(𝑖𝜈2)), but this time the sum over

its indices is equivalent to the matrix product of 𝒢−1
0 (𝑖𝜈2) and the correlation function
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with 𝒢−1
0 (𝑖𝜈2) as the right factor.

Fourier transforming this equation from time 𝜏1 to Matsubara frequency 𝜈1 with∫ 𝛽

0 d𝜏1 exp(𝑖𝜈1𝜏1), bringing 𝒢0 to the other side and using the definitions (3.11) of 𝜉
and (3.15) of 𝜗 results in

𝜉𝜈2
𝛼𝛿 = 2

∑︂
𝜇𝛾𝛽

𝑈[𝛼𝜇][𝛽𝛾]
⟨︂
𝑐†𝜇𝑐𝛾

⟩︂
𝒢𝜈2

0,𝛽𝛿 + 𝜗𝜈2
𝛼𝛽𝒢

𝜈2
0,𝛽𝛿 , (B.32)

which can be inserted into the improved estimator equation (3.10) to obtain the sym-
metric improved estimator equation (3.14).

Let us finally show how to derive the Galitskii-Migdal expression for the potential
energy, for whichwe return to equation (B.22). We explicitly perform the Fourier trans-
form from 𝜏2 to fermionic Matsubara frequency 𝜈2 to obtain∑︂

𝜇

𝒢−1
0,𝛼𝜇(𝑖𝜈)𝐺𝜇𝛽(𝑖𝜈) = 𝛿𝛼𝛽 −

∫ 𝛽

0
d𝜏1 d𝜏2 𝑒

𝑖𝜈(𝜏1−𝜏2)
⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
, (B.33)

where wemay retain only one fermionicMatsubara frequency on the left-hand side for
reasons discussed inAppendixA.Multiplying theDyson equation𝐺𝜇𝛽(𝑖𝜈) = 𝒢0,𝜇𝛽(𝑖𝜈)+∑︁

𝛾,𝜌 𝒢0,𝜇𝛾(𝑖𝜈)Σ𝛾𝜌(𝑖𝜈)𝐺𝜌𝛽(𝑖𝜈)with 𝒢−1
0 from the left, we can insert it into (B.33) and are

left with ∑︂
𝜇

Σ𝛼𝜇(𝑖𝜈)𝐺𝜇𝛽(𝑖𝜈) = −
∫ 𝛽

0
d𝜏1 d𝜏2 𝑒

𝑖𝜈(𝜏1−𝜏2)
⟨︂
T𝜏 𝑞𝛼(𝜏1)𝑐†𝛽(𝜏2)

⟩︂
. (B.34)

Considering the definition (3.12) of 𝑞, to get something resembling the potential en-
ergy ⟨𝐻loc,int⟩ (cf. (2.1)) we want to evaluate the correlation function on the right-hand
side at 𝜏1 − 𝜏2 → 0−, which gives us exactly the right operator product, and further
take the trace to sum over the free outer indices in just the same way as in ⟨𝐻loc,int⟩.
For the evaluation, we can just apply the transform back from Matsubara frequencies
𝛽−1 ∑︁

𝜈𝑛 exp(−𝑖𝜈𝑛𝛽−) = −𝛽−1 ∑︁
𝜈𝑛 , where we use the value 𝜏 → 𝛽− in [0, 𝛽] instead keep-

ing in mind that fermionic correlation functions are 𝛽-antiperiodic. This already takes
care of the sign we would get from performing time order, so we have

𝛽−1
∑︂
𝛼,𝜇,𝜈𝑛

Σ𝛼𝜇(𝑖𝜈𝑛)𝐺𝜇𝛼(𝑖𝜈𝑛) =
∑︂
𝛼𝜌𝛾𝛿

𝑈[𝛼𝜌]𝛾𝛿
⟨︂
𝑐†𝛼𝑐

†
𝜌𝑐𝛿𝑐𝛾

⟩︂
(B.35)

andwith the definition (3.13) of the antisymmetrized𝑈 , whose second term requires an
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exchange of creators to agreewith the order in𝐻loc,int, wefinally arrive at the expression

1
2𝛽

∑︂
𝛼,𝜇,𝜈𝑛

Σ𝛼𝜇(𝑖𝜈𝑛)𝐺𝜇𝛼(𝑖𝜈𝑛) =
∑︂
𝛼𝜌𝛾𝛿

𝑈𝛼𝜌𝛾𝛿

2

⟨︂
𝑐†𝛼𝑐

†
𝜌𝑐𝛿𝑐𝛾

⟩︂
= ⟨𝐻loc,int⟩ (B.36)

for the potential energy.
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