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1 Summary

Acceleration is a central aim of clinical and technical research in magnetic resonance

imaging (MRI) today, with the potential to increase robustness, accessibility and patient

comfort, reduce cost, and enable entirely new kinds of examinations. A key component

in this endeavor is image reconstruction, as most modern approaches build on advanced

signal and image processing. Here, deep learning (DL)-based methods have recently

shown considerable potential, with numerous publications demonstrating benefits for

MRI reconstruction. However, these methods often come at the cost of an increased risk

for subtle yet critical errors. Therefore, the aim of this thesis is to advance DL-based

MRI reconstruction, while ensuring high quality and fidelity with measured data. A

network architecture specifically suited for this purpose is the variational network (VN).

To investigate the benefits these can bring to non-Cartesian cardiac imaging, the first part

presents an application of VNs, which were specifically adapted to the reconstruction of

accelerated spiral acquisitions. The proposed method is compared to a segmented exam, a

U-Net and a compressed sensing (CS) model using qualitative and quantitative measures.

While the U-Net performed poorly, the VN as well as the CS reconstruction showed good

output quality. In functional cardiac imaging, the proposed real-time method with VN

reconstruction substantially accelerates examinations over the gold-standard, from over

10 to just 1 minute. Clinical parameters agreed on average.

Generally in MRI reconstruction, the assessment of image quality is complex, in

particular for modern non-linear methods. Therefore, advanced techniques for precise

evaluation of quality were subsequently demonstrated. With two distinct methods, res-

olution and amplification or suppression of noise are quantified locally in each pixel of

a reconstruction. Using these, local maps of resolution and noise in parallel imaging

(GRAPPA), CS, U-Net and VN reconstructions were determined for MR images of the

brain. In the tested images, GRAPPA delivers uniform and ideal resolution, but ampli-

fies noise noticeably. The other methods adapt their behavior to image structure, where

different levels of local blurring were observed at edges compared to homogeneous areas,

and noise was suppressed except at edges. Overall, VNs were found to combine a number

of advantageous properties, including a good trade-off between resolution and noise, fast

reconstruction times, and high overall image quality and fidelity of the produced output.

Therefore, this network architecture seems highly promising for MRI reconstruction.
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Chapter 2. Zusammenfassung

2 Zusammenfassung

Eine Beschleunigung des Bildgebungsprozesses ist heute ein wichtiges Ziel von klinischer

und technischer Forschung in der Magnetresonanztomographie (MRT). Dadurch könnten

Robustheit, Verfügbarkeit und Patientenkomfort erhöht, Kosten gesenkt und ganz neue

Arten von Untersuchungen möglich gemacht werden. Da sich die meisten modernen

Ansätze hierfür auf eine fortgeschrittene Signal- und Bildverarbeitung stützen, ist die

Bildrekonstruktion ein zentraler Baustein. In diesem Bereich haben Deep Learning (DL)-

basierte Methoden in der jüngeren Vergangenheit bemerkenswertes Potenzial gezeigt und

eine Vielzahl an Publikationen konnte deren Nutzen in der MRT-Rekonstruktion fest-

stellen. Allerdings besteht dabei das Risiko von subtilen und doch kritischen Fehlern. Da-

her ist das Ziel dieser Arbeit, die DL-basierte MRT-Rekonstruktion weiterzuentwickeln,

während gleichzeitig hohe Bildqualität und Treue der erzeugten Bilder mit den gemesse-

nen Daten gewährleistet wird. Eine Netzwerkarchitektur, die dafür besonders geeignet ist,

ist das Variational Network (VN). Um den Nutzen dieser Netzwerke für nicht-kartesische

Herzbildgebung zu untersuchen, beschreibt der erste Teil dieser Arbeit eine Anwendung

von VNs, welche spezifisch für die Rekonstruktion von beschleunigten Akquisitionen mit

spiralen Auslesetrajektorien angepasst wurden. Die vorgeschlagene Methode wird mit

einer segmentierten Rekonstruktion, einem U-Net, und einem Compressed Sensing (CS)-

Modell anhand von qualitativen und quantitativen Metriken verglichen. Während das

U-Net schlecht abschneidet, zeigen die VN- und CS-Methoden eine gute Bildqualität. In

der funktionalen Herzbildgebung beschleunigt die vorgeschlagene Echtzeit-Methode mit

VN-Rekonstruktion die Aufnahme gegenüber dem Goldstandard wesentlich, von etwa

zehn zu nur einer Minute. Klinische Parameter stimmen im Mittel überein.

Die Bewertung von Bildqualität in der MRT-Rekonstruktion ist im Allgemeinen

komplex, vor allem für moderne, nichtlineare Methoden. Daher wurden anschließend

forgeschrittene Techniken zur präsizen Analyse von Bildqualität demonstriert. Mit zwei

separaten Methoden wurde einerseits die Auflösung und andererseits die Verstärkung

oder Unterdrückung von Rauschen in jedem Pixel eines untersuchten Bildes lokal quan-

tifiziert. Damit wurden lokale Karten von Auflösung und Rauschen in Rekonstruktionen

durch Parallele Bildgebung (GRAPPA), CS, U-Net und VN für MR-Aufnahmen des

Gehirns berechnet. In den untersuchten Bildern zeigte GRAPPA gleichmäßig eine ideale

Auflösung, aber merkliche Rauschverstärkung. Die anderen Methoden verhalten sich lokal
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unterschiedlich je nach Struktur des untersuchten Bildes. Die gemessene lokale Unschärfe

unterschied sich an den Kanten gegenüber homogenen Bildbereichen, und Rauschen

wurde überall außer an Kanten unterdrückt. Insgesamt wurde für VNs eine Kombina-

tion von verschiedenen günstigen Eigenschaften festgestellt, unter anderem ein guter

Kompromiss zwischen Auflösung und Rauschen, schnelle Laufzeit, und hohe Qualität

und Datentreue der erzeugten Bilder. Daher erscheint diese Netzwerkarchitektur als ein

äußerst vielversprechender Ansatz für MRT-Rekonstruktion.
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Chapter 3. Introduction

3 Introduction

As an essential component of modern medicine and the life sciences, medical imaging is

of supreme importance to public health today. Starting with the discovery of X-rays,

and their subsequent applications for manifold purposes including diagnostics, the field

has been steadily evolving and growing. Today, medical imaging includes a large variety

of methods, among which are on one hand X-ray based techniques like conventional

radiography and computed tomography (CT), and on the other hand ultrasound, MRI,

and many more. While conventional radiography and CT enable fast and high-quality

imaging, they expose the subject to ionizing radiation, which is associated with health

risks and therefore a major drawback. Magnetic resonance imaging on the other hand

is not harmful. It relies solely on the interactions of electro-magnetic fields with human

tissue, which do not cause permanent damage if applied properly. Furthermore, due to the

unique mechanisms through which the signals are produced, a wide variety of contrasts,

in particular for soft tissues, can be achieved in the created images. For this reason, MRI

represents the gold standard for many clinical queries, e.g. in the brain or the heart.

However, it also comes with disadvantages: Compared to the process of creating signals

in other imaging techniques, in magnetic resonance (MR), the entire scanning procedure

is generally rather time-consuming. To some extent, this is simply a result of the physical

mechanisms of magnetic resonance imaging, where a complex sequence of operations has

to be played out to create signals and encode their spatial location. There are several

aspects why this is problematic. First, a lengthy scan can be a significant burden for

severely sick patients, or may even be entirely impossible due to their condition. Also,

with increasing scan times more patient motion tends to occur, which can corrupt the

acquired data, in some cases beyond diagnostic use. Furthermore, the acquisition and

maintenance of MRI scanners is extremely expensive. Therefore, utilizing the available

scan time as efficiently as possible is of economic interest. Lastly, for some clinical

queries, it is necessary to observe dynamic processes in the body. This poses additional

challenges, as it requires a certain temporal resolution, limiting the available scan time.

For all of these reasons, ever since MRI was conceived as a technique for medical imaging,

a central focus of research has been the acceleration of the procedure, while at the same

time preseving or even improving image quality.

In the early days of MRI, most progress has been made by improving hardware. The
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applied magnetic field strengths were continuously increased, which enabled higher signal

levels. Also, gradient systems and pulse sequences were refined throughout. A major

advancement was the development and widespread adoption of phased coil arrays. For

reconstructing data acquired with these, parallel imaging (PI) algorithms were developed.

By lowering the amount of acquired data below the Nyquist rate, an acceleration of

the scanning procedure is achieved. This is known as undersampling. If these data

are then reconstructed in a conventional manner, the consequence are artifacts in the

resulting images. But by using the information that is encoded by multiple receiver coil

channels, PI algorithms are able to correct these artifacts, and obtain a high-quality

reconstruction. More recently, further advances in signal and image processing were

made, along with an increase in the available computing power. This made more complex

image processing algorithms feasible, opening new possibilities for improving MRI. An

important example is the application of compressed sensing (CS) to MR, which made

even higher undersampling rates, and therefore acceleration possible. Under certain

conditions, it identifies and reduces redundancies in more complex domains to lower the

amount of data that is needed for high-quality reconstructions further.

In recent years, the world of image processing has seen drastic developments. Ma-

chine learning, and in particular deep learning (DL) is rapidly penetrating the field, and

challenges the state-of-the-art with ever new approaches outperforming previous meth-

ods. Advancements in this area often happen simultaneously on the computer hardware

and software side: More powerful hardware makes more complex models with ever-higher

parameter counts possible, while at the same time the latest models and algorithms are

developed with powerful, next-generation hardware in mind. Some of the ideas of deep

learning are already decades-old, but only now find their way to widespread adoption, as

availability of computing power increases and new ideas for applications are conceived.

Consequently, deep learning has also been applied to magnetic resonance imaging. The

number and variety of promising possibilities for applications of machine learning in MRI

is immense. Included are essentially all aspects of medical imaging, from AI-assissted se-

quence planning [1] to image reconstruction [2–5], post-processing [6–8] and classification

of diseases [9, 10]. While all of these and many more are certainly worthwhile approaches

to contribute to, in the thesis at hand the focus is exclusively on applications of deep

learning to image reconstruction.

While the idea of applying artificial neural networks for reconstruction of medical

images is not new [11], this approach only recently became feasible. Following a surge of

interest in deep learning in other areas of image processing [12], the first modern applica-

tions of DL in MRI reconstruction started to appear around the middle of the 2010s [13].

Initially, the used network architectures were adapted from other fields, consisting of

fully connected and convolutional layers. In 2018, several publications that later became

widely influential were presented [2, 3, 14, 15]. What these have in common is that they

7



Chapter 3. Introduction

proposed new and innovative network architectures, that where specifically adapted for

reconstruction of undersampled MRI data. Also, they showed a clear benefit of these

architectures over the previous state-of-the-art. Soon after, the number and variety of

approaches for exploiting DL in MRI reconstruction skyrocketed [5]. In particular, the

concept of unrolling gradient descent iterations [2, 14, 15] proved to be successful and

was later adapted in various forms [16–18]. Using the fact that MR reconstruction can be

cast as an inverse problem, it can be interpreted as a combination of DL with compressed

sensing. The key feature of this class of networks is that learned operators are combined

with data consistency mechanisms, to enforce fidelity of the network output with the

measured data. In the context of the described recent developments, it seems clear that

deep learning-based methods in general bear a considerable potential for increasing re-

construction performance. However, an increasing number of researchers also consider

how this comes at the cost of potential for critical errors. The key problem here is that

unlike previous methods, DL-based ones have the potential to manufacture an output

that appears error-free to a human observer, but actually misrepresent anatomy [18, 19].

A natural question to ask is therefore whether DL-based reconstruction models can be

designed in such a way, that the frequency of these errors is minimized. As discussed in the

previous paragraph, one approach to this are neural networks of unrolled gradient descent

type, which incorporate data consistency mechanisms to this end. While multiple variants

exist [14, 15], the focus here lies on variational networks [2]. Whether and - if so - how

well this concept is suited for robust MRI reconstruction is a key research question that is

to be investigated in this thesis. In particular, it is of interest how VNs perform not only

in relation to previously established CS models, but also compared to other DL-based

reconstruction methods without data consistency, as this allows drawing conclusions

about what benefits these mechanisms bring. Commonly, these evaluations are based

on global scores for image quality, like the mean-squared error with respect to some

reference. While these measures can provide some coarse information on quality, a lot of

nuance is inevitably lost when reducing an entire image to a single number. Therefore,

a second central question that progress should be made toward in the following is how

to better evaluate image quality. Methods to this end, like point-spread functions for

analysis of resolution, or the g-factor for assessment of noise have existed for a long time,

but the analysis of new, non-linear reconstruction methods requires further development.

This may also lead to interesting insights about current reconstruction methods.

As discussed above, there are manifold benefits to faster scans in MRI. In dynamic

imaging however, fast acquisitions are a prerequisite for applying MRI altogether, since

observing dynamic processes requires a certain temporal resolution. In functional imag-

ing of the heart, each frame of a dynamic series has to be acquired in no more than

50ms, to obtain an adequate temporal resolution. Since this is out of reach with con-

ventional Cartesian sampling patterns and sufficiently high spatial resolution, ”gating”
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(also termed a ”segmented cine”) is usually used, where data from several heartbeats

are combined into a single, virtual depiction of the beating heart. However, this requires

the patient to hold breath several times during an exam, which can be strenuous, and is

prone to errors. Recording data in free breathing would eliminate these problems, but it

requires accelerated acquisitions. One way to achieve these are non-Cartesian sampling

patterns, which are not yet widely used in clinical practice. This may be partly due to

imperfections in the gradient systems, which degrade image quality. To overcome these,

correction strategies [20–22] have recently been proposed. A second challenge is image

reconstruction. DL-based methods have lately shown considerable potential in MRI re-

construction, but robust DL-based reconstruction methods for non-Cartesian sampling

patterns are limited so far [23–29]. To this end, the first part presents a novel VN model

for reconstruction of non-Cartesian data in functional imaging of the heart. This serves

to investigate how a reconstruction based on VNs can be combined with spiral sampling

patterns, and what benefits this can bring to functional imaging of the heart. To assess

the suitability of the VN model for this task in relation to previous methods, the proposed

VN reconstruction method is compared to a low-rank plus sparse model, a U-Net and

the current clinical gold standard, a cine exam with a Cartesian balanced steady-state

free precession (bSSFP) sequence. On these methods, extensive evaluation is performed,

by comparing common image quality metrics as well as the clinical performance for func-

tional imaging.

For contributing to an improvement in robustness and quality in DL-based MRI

reconstruction in general, the second part of this thesis is dedicated to presenting and

applying methods for assessing the quality of MR reconstructions. A generalized concept

of point-spread functions is used for gaining insight into resolution properties, and a

pseudo multiple-replica method is applied for assessing noise. These methods are tested

on a suite of common modern reconstruction methods, including VNs, to understand

differences and similarities in their behavior. This further allows drawing some rough

general conclusions about the reconstruction methods, and also demonstrates how any

other advanced method can be evaluated systematically and what problems can arise.

A more critical view of image quality may therefore be promoted, which ultimately

could improve the development of new reconstruction methods and the interpretation

of MR images in general. An additional application of VNs to MRI reconstruction is

considered in the summarizing discussion, where the use of 3D VNs for reconstruction of

undersampled magnetic resonance cholangiopancreatography is shortly described.

To sum up, this thesis contributes to clinical MRI by advancing DL-based reconstruc-

tion with a focus on ensuring high image quality and data fidelity. It proposes a robust

reconstruction method based on a variational network for a reliable approach to fast func-

tional imaging of the heart with spiral trajectories, and demonstrates advanced techniques

for analyzing different aspects of image quality in modern reconstruction methods.
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Chapter 4. Real-time cardiac MRI using an undersampled spiral k-space trajectory
and a reconstruction based on a variational network

4 Real-time cardiac MRI using an
undersampled spiral k-space tra-
jectory and a reconstruction based
on a variational network

The contents of this chapter are adapted from the paper [30]

”Real-time cardiac MRI using an undersampled spiral k-space trajectory and a re-

construction based on a variational network”

by

Jonas Kleineisel1, Herbert Köstler1, Julius F. Heidenreich1, Philipp Eirich1,2, Bern-

hard Petritsch1, Thorsten A. Bley1, Nils Petri3, Tobias Wech1

who are affiliated with the following institutions:

1 Department of Diagnostic and Interventional Radiology
2 Comprehensive Heart Failure Center
3 Department of Internal Medicine I

at the University Hospital Würzburg in Würzburg, Germany.

The original article was published in Magnetic Resonance in Medicine in volume 88 on

pages 2167 through 2178 and online (https://doi.org/10.1002/mrm.29357) under the Cre-

ative Commons BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

The following chapter has been modified from the original text considerably by re-writing

of large passages, inclusion of additional sections and modification of some figures. This

or similar adaption is permitted under the Creative Commons BY-NC license.

Previous results have been published as a conference abstract [31].
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4.1. Abstract

4.1 Abstract

Purpose: Cardiac MRI represents the gold standard to determine myocardial function.

However, the current clinical standard protocol, a segmented Cartesian acquisition, is

time-consuming and can lead to compromised image quality in the case of arrhythmia or

dyspnea. In this article, a machine learning–based reconstruction of undersampled spiral

k-space data is presented to enable free breathing real-time cardiac MRI with high image

quality and short reconstruction times.

Methods: Data were acquired in free breathing with a 2D spiral trajectory corrected

by the gradient system transfer function. Undersampled data were reconstructed by a

variational network (VN), which was specifically adapted to the non-Cartesian sampling

pattern. The network was trained with data from 11 subjects. Subsequently, the imaging

technique was validated in 14 subjects by quantifying the difference to a segmented

reference acquisition, an expert reader study, and by comparing derived volumes and

functional parameters with values obtained using the current clinical gold standard, a

segmented cine exam.

Results: The scan time for the entire heart was below 1 min. The VN reconstructed data

in about 0.9 s per image, which is considerably shorter than conventional model-based

approaches. The VN furthermore performed better than a U-Net and comparable to a

low-rank plus sparse model in terms of achieved image quality. Functional parameters

agreed, on average, with reference data.

Conclusions: The proposed VN method enables real-time cardiac imaging with both

high spatial and temporal resolution in free breathing and with short reconstruction

times.

4.2 Purpose

In clinical practice, MR-based determination of cardiac function is achieved through

segmented Cartesian read-outs acquired over several heartbeats. By means of a simul-

taneously logged electrocardiogram, data can be processed into a series of fully sampled

images, representing one pseudo RR-interval. However, combining data from multiple

heartbeats requires a breath-hold for each slice or slice group, which renders the pro-

cedure time-consuming and strenuous for the patient. Furthermore, electrocardiogram

gating may be corrupted for arrhythmic heartbeats, which frequently results in severe

motion artifacts.

To waive the need for electrocardiogram and/or respiratory gating on the one hand,

and to maintain the high temporal and spatial resolution on the other hand, many ef-

forts have been made to considerably accelerate the procedure toward real-time imaging

[32] in the past. Parallel imaging (PI) [33–35] and compressed sensing (CS) [36–41] ap-
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proaches were applied to reconstruct undersampled data for this purpose. Moreover,

non-Cartesian sampling was used to acquire data more efficiently [42] and more suit-

able for the application of model-based acceleration techniques [43, 44]. Because those

trajectories are also more susceptible to inaccuracies of the gradient system, correction

methods such as those based on a gradient system transfer function were additionally

suggested [20, 21].

In the recent past, manifold approaches based on machine learning have been de-

scribed to further push acquisition and reconstruction speed of MRI [2, 14, 18, 45, 46].

By shifting the optimization workload to an offline training procedure, these have shown

potential to reconstruct data faster than previously used compressed-sensing approaches,

while also modeling the reconstruction process more effectively [4]. Initially introduced

for Cartesian k-space trajectories [2, 14, 18, 46–49], applications to non-Cartesian data

have been presented subsequently [23–29].

A specific machine learning–based family of approaches, the so-called unrolled con-

volutional neural networks [2, 14, 15, 50], can be interpreted as a machine learning

equivalent to classical compressed sensing: Regularizing layers are alternated with data

consistency steps within a closed network architecture, which can be trained in an end-

to-end fashion. Compared with straight-forward encoder–decoder convolutional neural

networks (CNNs) like U-Nets [51], which do not as strictly enforce consistency with ac-

quired k-space data, the problem of overfitting is reduced [4]. With respect to CS, learned

models can reduce the dimensionality of data more adequately. Moreover, less “itera-

tions” (i.e., cascades [45] ) are typically required, and the convolutions of the regulariza-

tion stage can be processed very efficiently on a GPU. Therefore, unrolled convolutional

neural networks provide MR reconstructions in much shorter run times.

To exploit the aforementioned advantages for cardiac MRI, we implemented a VN

for the reconstruction of undersampled spiral MR data. The network was subsequently

trained and evaluated for real-time measurement of cardiac function in free breathing.

4.3 Methods

4.3.1 Spiral real-time k-space trajectory

Spiral trajectory

All data of this study were acquired on a 3T MR-system (MAGNETOM Prisma, Siemens

Healthcare GmbH, Erlangen, Germany) using an in-house developed spoiled gradient

echo pulse sequence with a spiral trajectory, which was presented recently [21]. The

study was approved by the local ethics committee under IRB approval code 203/18sc

following the application on 20.09.2018, and written informed consent was obtained from

each participant. The non-Archimedean spiral waveforms were designed using a freely

available software package [52]. Ten subsequently acquired spiral arms were equally dis-
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4.3. Methods

tributed in k-space (i.e. with an angle-increment of 2π
10 ). This represents one moderately

undersampled frame of the real time series (see Figure 1). Acquiring one spiral arm takes

TR = 4.96 ms, and thus one undersampled real-time frame can be acquired in slightly

below 50 ms. Due to limits in peripheral nerve stimulation, which depend on the subject,

the maximum gradient slew rate and amplitude had to be adjusted individually for each

measurement. Therefore, we give ranges in the following, since the field of view (FOV)

and resolution varies slightly between subjects. The FOV corresponds to 130− 139 mm

close to the k-space center and decreases towards 44 − 47 mm at kmax. The maximum

values for gradient slew rates and amplitude were set to Smax = 149.5 mT/m/ms and

Gmax = 36 mT/m. Further parameters were: TE = 0.84 ms, dwell-time = 2.2 µs, flip-

angle = 15◦, in-plane spatial resolution = 1.34−1.46 mm, slice thickness = 8 mm, phased

array coil with 30-34 elements.

Figure 1: Shape of the spiral k-space trajectory. It consists of ten equally distributed
non-Archimedean spiral arms. The sampling density is highest near the center of k-space
and decreases towards the periphery.

Pattern rotation during series of real-time frames

A real-time depiction of the beating heart consists of a succession of real-time frames.

However, there are two distinct benefits to varying the sampling trajectory over the

course of a measurement: First, if combining the data from all real-times frames results

in a fully sampled temporal mean image, this can be used for estimating coil sensitivity

maps, which are necessary for a parallel imaging reconstruction. Second, if the sampling

pattern is varied in the right way across the cardiac cycle, it is possible to bin the data

such that one can also generate a segmented reconstruction. This requires the subject

to hold their breath during data acquisition, usually with one breath-hold per slice. To
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achieve these two objectives, we applied the following sampling pattern:

We first acquired n frames in some fixed orientation, where n is chosen such that n ·50

ms slightly exceeds the time of one RR-interval of the subject. We usually took n ≈ 20.

Then, we rotated the entire pattern by an angle, such that the largest gaps in k-space

were filled and again acquired a group of n frames, repeated up to eight times. These

rotations consequently result in orientations of 0, 12 ,
1
4 ,

3
4 ,

1
8 ,

3
8 ,

5
8 ,

7
8 , where the rotation

angle is given in relation to the first group of frames as a fraction of 2π
10 . Combining all

frames in the measurement then results in up to 80 equidistantly spaced spiral arms.

As a spiral reference standard for computing sensitivity maps and segmented recon-

struction as described in the following, we used 40 equidistantly spaced spiral arms,

which results in FOVcenter ≈ 540 mm and FOVperiph ≈ 180 mm. Since the size of the

observed objects is usually in the range of 50 cm, this is not technically fully sampled in

the entirety of k-space. However, the moderate undersampling only in the periphery is

not perceivable visually, therefore 40 siral arms were deemed sufficient. We refer to these

reconstructions as ’spiral reference’ in the following. Our real-time frames consequently

have an undersampling factor of R = 4 with respect to this reference.

If we acquired at least four groups, we have sufficient data for computing sensitivity

maps for the series. This was done separately for each slice using the adaptive approach

published in [53].

Furthermore, if the subject held their breath during the acquisition, we can generate

a segmented reconstruction as follows: Using the k-space center as self-gating signal, we

partition each heartbeat into 20 heart phases. Then, each real-time frame gets assigned

to that heart phase, where the temporal center point of the real-time frame acquisition is

closest to the temporal center of the heart phase. If the duration of each group matches

the duration of one heart beat, this results in exactly one frame per heart phase. If we

acquire for at least four cardiac cycles, this gives at least 40 equidistant spiral arms in each

heart phase, for longer acquisitions up to 80 equidistant spiral arms. Without triggering,

the groups do not always have the same frequency as the heart beat. For the breath-hold

measurements designated for segmented reconstruction, we therefore usually acquired

8-10 groups (the rotation pattern repeats after 8 groups). Since the heart rate usually

varies, acquiring more groups than minimally needed increases the chance of having

at least 40 equidistant spiral arms per heart phase. For free breathing measurements

where we were only interested in sensitivity maps and real-time reconstructions, we only

acquired between 4 and 6 groups.

If one is not interested in segmented reconstructions, the rotation pattern can be

chosen more freely. In the original publication [21], the trajectory was rotated by an

angle of 2ϕ
10 between each frame, where ϕ = π(3 −

√
5) is the golden angle. Since ϕ is

irrational, no two frames then have the same orientation, while the specific angle results

in the gaps in k-space getting filled efficiently. However, a disadvantage is that since

14



4.3. Methods

every real-time frame has a different trajectory, undersampling artifacts are changing

with every frame. If artifacts remain after applying a reconstruction method, these can

be more disruptive. This method and trajectory will be referred to by its acronym

’CRISPI’, which was introduced by the original publication [21].

4.3.2 Training, validation and evaluation dataset

For real-time cardiac imaging, obtaining a adequate dataset for training a neural network

is challenging, because it is impossible to obtain fully sampled reference images in real

time. This is the reason why we need accelerated acquisitions, after all. Therefore, one

has to use reference images from other sources.

Clinical routine commonly uses segmented Cartesian bSSFP sequences. Since our

spiral acquisitions are based on a spiral spoiled gradient echo sequence, these can not

be used for training, as the contrasts differ. Instead, we acquired segmented spiral scans

in breath-hold, as detailed in section 4.3.1. Since the segmented frames are combined

together from at least four real-time frames in a similar phase in the cardiac cycle, these

real-time frames can all be used as training data with the same target image. In this

way, we generated 5462 training dataset items from acquisitions of 3 healthy volunteers

with between 9 and 13 slices per subject and 168 real-time frames per slice.

Alternatively, one can use some other method of reconstructing undersampled data

to generate reference images. This has the profound disadvantage that the network

can not overcome any shortcomings of that method, as its output is given as training

target. However, the reference images are at least proper real-time frames. We used

data acquired with the CRISPI protocol [21] and reconstructed with the same low-rank

plus sparse (LRS) model as in the original publication. The images were from 6 healthy

volunteers and 2 clinical patients in both free breathing and breath-hold with 11 to 14

slices per subject and 47 real-time frames per slice.

By using a combination of training reference images from these two sources, the intent

is that the network can learn the specific favorable properties from each group, e.g. the

real-time temporal resolution from the CS reconstructions, while not getting degraded

by the adverse properties. The training dataset thus consisted of in total 13334 spiral

real-time frames.

For validation during training, we used an additional measurement of a healthy vol-

unteer in free breathing and breath hold with the CRISPI protocol, in total 960 real-time

frames with LRS reconstructions as references. Though unlikely to make a big difference,

it can nevertheless be seen as a shortcoming that no segmented frames were used in the

validation dataset.

We collected an additional dataset for evaluation of the network after training was

finished. In the context of artificial neural networks this is sometimes also referred to as

the test dataset. For these data, there is no need for reference reconstructions. We did
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however reconstruct the data with several other methods for facilitating a comparison

between methods, which is discussed in later sections. The dataset is comprised of scans

of two healthy volunteers and twelve clinical patients in free breathing. We used a fast

version of the pattern described in section 4.3.1, by acquiring 60 real-time frames in 3

groups per slice. This results in a total scan time of approximately 1 minute for all slices

(usually around 12). To enable comparison, we also collected Cartesian reference scans

from clinical routine. As it is common in clinical practice, the details of the acquisitions

vary. They were based on bSSFP in 12 cases and on spoiled gradient echo in 2 cases. For

the bSSFP scans, measurement parameters were in the following ranges: 46◦ ≤ flip-angle

≤ 50◦, 2.84 ms ≤ TR ≤ 3.02 ms, 1.42 ms ≤ TE ≤ 1.51 ms while the ones based on spoiled

gradient echo had a flip-angle of 12◦, TE = 2.89 ms and TR = 5.7 ms. For all scans,

slice thickness was 7 or 8 mm and in-place resolution between 1.3 and 1.8 mm. All were

segmented acquisitions with electrocardiogram (ECG)-triggering and 20 or 25 frames per

heart phase. By taking into account the subjects’ heart rates during measurement, one

can calculate the temporal resolution to be between 26 and 56 ms.

4.3.3 The variational network model

MRI reconstruction as a variational problem

Consider the following view on MRI reconstruction:

Say real-world anatomical information in the form of 1H density together with T1

and T2 information in space is represented by some image x ∈ Cn, n ∈ N. Then with

some plausible assumptions on the MRI system, the sampling procedure as described

above is a linear function, mapping real-world information to k-space frequency data in

k ∈ Cm,m ∈ N. We want to call this operator the MRI sampling operator, or MRI

forward operator, and denote it by A : Rn → Cm. The measurement process is then be

represented by

Ax = k (1)

where k denotes k-space data and x the reconstructed image. The task of MR image

reconstruction can then be viewed simply as the task of finding pre-images under this

operator of given, measured, k-space data. This means reconstruction is an inverse

problem. If A was bijective, then for each measurement data k there would exist a unique

reconstruction x, which could be determined simply by inverting the linear operator.

However, in practice A is usually not invertible. For one, the measured data k is subject to

noise. With A possibly ill-conditioned, this may lead to solutions that are not necessarily

a good representation of the underlying real-world data, or no solution may exist at all.

Also, if undersampling is used, A loses its injectivity, so the solution may not be unique.

Therefore, we need a robust way of recovering a - in some sense plausible - reconstruction

x, even if the recorded MRI data k is insufficient to fully determine the reconstruction.
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To this end, we first note that if (1) has a unique solution x, then x is the unique

minimizer of the optimization problem

argmin
x∈Cn

1

2
‖Ax− k‖22. (2)

If however if there is no unique solution to (1), for the reasons mentioned above, then a

solution to (2) may not represent a reasonable reconstruction. To overcome this problem,

one can add a regularizing term Ψ to the energy functional in (2), which enforces con-

straints on its solution to make it closer resemble the solution to (1) if k were fully sampled

and noise-free k-space data. This can also be interpreted as using prior knowledge about

the fully sampled reconstructions. We thus obtain the regularized optimization problem

argmin
x∈Cn

1

2
‖Ax− k‖22 + Ψ(x). (3)

Assuming the regularization term Ψ to be differentiable, the gradient of the target func-

tional reads

∇x
(

1

2
‖Ax− k‖22 + Ψ(x)

)
= A∗(Ax− k) + Φ(x) (4)

where A∗ denotes the adjoint operator of A and Φ := ∇xΨ the derivative of the regular-

ization term. Using this, we can write down the gradient descent scheme to approximate

the solution to the problem (3):

xt+1 = xt − λ(A∗(Axt − k) + Φ(xt)) (5)

For Φ = 0 this is known as a Landweber iteration [54]. The choice of Ψ and Φ remains

open for now.

The MRI forward operator for Cartesian MRI reconstruction

In the following, the MRI forward operator A is described in detail, first for fully-sampled

and then undersampled Cartesian data, after which the case of non-Cartesian sampling

is discussed.

As discussed before, k-space frequency data can be transformed to image data us-

ing the Fourier transform. Therefore, in the simplest case of single-coil fully sampled

data, the MRI sampling operator A is equal to the Fourier transform F . However, in

practice one almost exclusively uses multi-coil receiver arrays. In this case, the sampling

operator has to take into account the sensitivity profiles of the coils, which describe the

sensitivity of each coil to signals received in space. They are given as sensitivity maps

S = (S1, ..., Snc) ∈ Cnc in image space. For a given image x ∈ CN , the ith coil observes

the image Si�x, where � denotes pointwise matrix multiplication. This can be elegantly

described by the expand operator :

E : Cn → Cnc×n, E(S, x) = ES(x) = (S1 � x, ..., Snc � x) (6)
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This is a linear map. The MRI forward operator can then be written compactly as

A = F ◦ ES (7)

where the Fourier transform is understood to operate coil-wise, which is always the

convention in the following.

For reconstructing measured data, one has to combine multi-coil images with the

help of sensitivity maps. This can be achieved with the following function, called the coil

reduction operator :

R : Cnc×n → Cn, R(S, x) = RS(x) =

nc∑

l=1

S̄l � x (8)

Assuming we have normalized sensitivity maps S, i.e. S satisfy
∑nc

l=1 |Sl|2 = 1 point-wise,

then ES(x) is actually is the left inverse to the coil expansion as defined above, meaning

it holds Rs(ES(x)) = x for all x ∈ Cn.

Because of its importance in the variational approach described above, the adjoint

operator A∗ should also be characterized explicitly. It is well-known that the Fourier

transform is a unitary operator, in the discrete case with respect to the standard euclidean

scalar product on Cn. Therefore we have F∗ = F−1. Furthermore, the expand and reduce

operators as defined above are mutually adjoint, as one can easily see. Therefore, the

adjoint MRI forward operator is given by

A∗ = (F ◦ ES)∗ = E∗S ◦ F∗ = RS ◦ F−1. (9)

So far, we described the most basic case of fully sampled Cartesian multi-coil data,

where k-space is sampled sufficiently dense according to the Nyquist for the selected field

of view and spatial resolution. If undersampling is included additionally, this has to be

incorporated into the forward operator. If we denote the undersampling simply as a map

M : Cn → Cn which zeros specific locations at which no data was sampled, then the

forward operator reads [45]

A =M◦F ◦ ES , (10)

where we understand M to operate coil-wise. One can easily see that the masking

operator M is linear and self-adjoint. Thus, in this case the adjoint forward operator is

given by

A∗ = RS ◦ F−1 ◦M (11)

However, M is obviously not invertible, and thus the forward operator A is not unitary

in this case.
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The MRI forward operator for non-Cartesian data

For non-Cartesian acquisitions, A additionally has to include the projection onto the

k-space trajectory. In the case of 2D imaging, let us denote the sampling trajectory

as a vector τ ∈ Rm×2, which specifies a sampling location in R2 for each of m off-grid

sampling points.

By convention, the forward operation which maps from a Cartesian grid to off-grid

locations is called de-gridding or sometimes adjoint gridding, while the operation mapping

from off-grid locations to a Cartesian grid is called gridding. We denote these maps by

Gτ : Cm → Cn and G∗τ : Cn → Cm. Note that whether these two operations are inverse

to each other depends on the trajectory and the gridding method, but in general they

are not. The Fourier transform together with a gridding operator is commonly called

the non-uniform Fourier transform (nuFFT). Then the entire acquisition process can be

expressed by the forward operator

A = G∗τ ◦ F ◦ ES (12)

Possible undersampling does not have to be explicitly included, since the sampling tra-

jectory τ , already contains the full information about the sample locations.

For the adjoint operator, depending on the gridding method and the trajectory, one

has to additionally include a density compensation term Dτ before gridding, to account

for possible non-uniform sampling of k-space. This is discussed in the next section in

more detail. In this case, the adjoint operator is given by

A∗ = RS ◦ F ◦ Gτ ◦ Dτ . (13)

An illustration of the adjoint operator can be seen in Figure 2.

A∗ (non-uniform MRI reconstruction operator)

Dτ N ∗ RS

non-uniform
Fourier transform

coil
combination

density
compensationspiral k-space

Figure 2: Illustration of the adjoint MRI forward operator A∗ for non-Cartesian multi-coil
data.

Density Compensation Functions

For the spiral trajectory used here (see section 4.3.1), the sampling density of the non-

Cartesian data is higher near the center of k-space than in the periphery. Therefore,
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if one were to directly apply gridding on this data, the resulting k-space would misrep-

resent the measured data, as the signal levels are overestimated in regions with higher

sampling density and underestimated in regions with lower sampling density. This leads

to degraded image quality in the reconstruction. Also, it prevents the inverse operation,

which we want to call de-gridding, from being actually inverse to the gridding operator.

Therefore, one usually compensates for these effects by modulating the magnitude of the

non-Cartesian k-space data by a function representing the inverse local sampling density,

called a density compensation function (DCF). Various methods for computing DCFs

exist, e.g. analytically [55], by estimating density through a Voroni tessellation [56] or

through iterative methods [57]. As non-Cartesian sampling patterns become more widely

used due to their efficiency in k-space sampling, the interest in DCFs continues to rise,

with new methods for their determination being published to this date [58]. The DCF is

specific to the k-space sampling pattern τ only. Therefore it needs to be computed just

once an can then be used for gridding k-space data from this trajectory.

Usually one is only interested in gridding non-Cartesian data once before applying the

Fourier transform to obtain an image. In the VN model however, we actually repeatedly

transform between non-Cartesian k-space and image space, respectively after executing

a gradient descent step. This makes it important to avoid compounding of gridding

errors, which would otherwise lead to entirely unusable results. This leads to the idea of

approaching the computation of DCFs through the requirement that the gridding and

de-gridding operations are mutually inverse. If there is a unique solution to this problem,

this will also result in the DCF with the best image quality, as it is reasonable to assume

image quality to be best when the off-grid data and on-grid representation are maximally

consistent in the sense of the gridding operations.

Specifically, we obtain the DCF Dτ as the scalar function that minimizes the squared

L2-norm between some k-space data multiplied by is to the result after nuFFT-transforming

to image space and back several times, that is

Dτ = argmin
D∈RM

I∑

i=1

‖ki −N−1(· · · N (D · ki))‖22 (14)

where {k1, ...kI} is a set of k-space data. We transform to image space and back several

times, as this amplifies the effects of improperly represented k-space by compounding.

This could increase the effectiveness of the norm difference in the optimization. The exact

appearance of the sample k-spaces {k1, ...kI}matters only moderately. The corresponding

sample images should cover a reasonable range of features which translate into common

k-space features being represented, to equally distribute the influence of the DCF on all

important regions of k-space.

We compute the DCF for a spiral trajectory of 40 spiral arms as described in section

4.3.1. For this trajectory, it is a priori clear that the sampling density is decreasing
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monotonically along each spiral arm. Therefore we minimize only on the subspace of

monotonically increasing functions, which is enforced by projecting on this space after

each optimization step. As k-space data, we selected 500 images of segmented cine frames

and transformed them into synthetic off-grid k-space data. The minimization (14) was

implemented in PyTorch [59] and carried out by the ADAM optimizer [60] with a learning

rate of 10−2 for 104 epochs. We use three nuFFTs to image space and back. The mean

of resulting DCF along the 40 spiral arms is shown in Figure 3.
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Figure 3: Shape of the computed density compensation function for a spiral trajectory
(mean of all 40 spiral arms)

The variational network model

Let us now go back to equation (5). We established in section 4.3.3 that, with a proper

regularization term Φ, this gradient descent scheme approximates a solution to the MRI

reconstruction problem (1). In compressed sensing, the regularization term Φ is chosen

carefully by exploiting sparsity of the signal in some domain. However, this choice is not

at all straight-forward, and it is unclear which one is best suited.

Following an entirely different approach, the idea of variational networks is, to use

machine learning to obtain the regularization operator Φ from data. To this end, Φ is

realized by some artificial neural network, to which the task of enforcing a proper solution

then falls to. Many variants of this idea have been published [2, 14, 15, 23, 26, 45, 47,

61–63].

Usually, in a gradient descent scheme, the number of iterations is either dynamically

determined by a termination criterion, or, less ideally, fixed at a high number, after which

convergence is likely. The latter is the case for most CS models. However, both of these

approaches are problematic for a VN, in particular for its training. Since a dynamic

number of iterations is not practical, as this would change the size of the network upon
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inference, one has to use a fixed number of steps. But if the number of iterations is

high, the network is very deep, as the regularization networks are applied subsequently.

This leads to vanishing gradient problem, as well as high computational complexity. In

particular for non-Cartesian data, where gridding and de-gridding has to be performed,

this would result in very long runtimes. Thus, one uses a small, fixed number of steps,

typically around 10, which are called cascaces. An illustration can be seen in Figure 4.

Variational Network

· · ·A∗ C1 C2 Cm
gradient
descent
step

gradient
descent
step

gradient
descent
step

nuFFT
reconstructionspiral k-space

output

Figure 4: Illustration of a variational network. After transforming to image space using
the adjoint MRI operator A∗, a fixed number of cascades is applied subsequently.

In each cascade, a step

xt+1 = xt − λ(A∗(Axt − k) + Φ(xt)) (15)

is performed, with Φ a neural network. The term λ(A∗(Axt − k), the gradient of
λ
2‖Ax− k‖22, enforces agreement of the network output with measured data. It is called

the data consistency term. For the architecture of the regularization term Φ, a large

number of options have been used, usually CNNs. Many of the later publications use

U-Nets [45], but other options include plain CNNs [23], residual neural networks [63] or

a fields of experts model [2]. Just like in other networks, it is trained by using gradient

backpropagation from the network output. An illustration of one cascade can be seen in

Figure 5.

In some models, a separate network for each cascade is used [2, 14, 45], while in

others the same network is applied repeatedly [15, 63]. The latter has the advantage

of dramatically reducing the number of trainable parameters of the entire network by

a factor of the number of cascades (and thus likely also the required training data).

However, using separate networks allows more degrees freedom in the gradient descent

operation.

Variational network model for non-Cartesian k-space data

For reconstructing the data in this study, we use a VN model with appropriate forward

operator for non-Cartesian data as described previously. Gridding is achieved by using the

Kaiser-Bessel gridding operator implemented in [64], after applying the DCF described

in section 4.3.3.

As in other recent publications [18, 45], we chose a U-Net model for realizing the

regularization terms in the VN.
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C (Variational Network Cascade)
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Figure 5: Illustration of one cascade of a variational network. It performs a regularized
gradient descent step, consisting of a data consistency term (upper part) and a regular-
ization term (lower part) realized by a neural network. A variety of architectures have
been proposed.

Features are extracted by four subsequent convolutional blocks with downsampling

by average pooling. Subsequently, up-sampling is achieved by four transpose convolu-

tions with stride and kernel size 2 (followed by instance normalization and a leaky ReLU

activation function), and further convolutional blocks. The network features skip connec-

tions, i.e. the intermediate outputs in the downsampling path are concatenated before

the convolutional blocks in the upsampling path.

Each convolutional block consist of a multi-channel convolution with kernel size 3×3,

followed by instance normalization and a leaky ReLU activation function (with slope 0.2),

all of which is repeated two times. In the first convolution, the number of channels is

doubled (in the downsampling path) or halved (in the upsampling path). Due to the

skip connections, the transpose convolutions for up-sampling also halve the number of

channels.

All network parameters are real numbers, and the complex image data is treated as a

real image with two channels. The first convolutional block expands these two channels

to 18. No bias is applied in any of the convolutions except the last one before the output.

This architecture results in around 2.5 · 106 trainable parameters per U-Net. The entire

VN with 10 cascades has a total of 24.5 · 106 trainable parameters.

4.3.4 Network training

We used the structural similarity index measure (SSIM) as loss function. It is perceptually

motivated [65] and was preferred over the mean-squared error (MSE), since the latter

often introduces spatial blurring [66].

For computing the gradients during training, we used the common ADAM optimizer
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[60] with a learning rate of 5 · 10−3. Due to GPU memory constraints, the batch size was

set to 1. As we found it to introduce slight spatial blurring, no data augmentation was

applied. We executed the training procedure for 12 epochs while monitoring the SSIM

loss curves. On the hardware specified in 4.3.6, this took a total of approximately 105

hours.

After epoch 7 the train loss continued to decrease, while the validation loss started

to increase. We interpreted this as a sign that overfitting was present after this point.

Therefore, the weights of the network after training until epoch 7 were subsequently used.

This corresponds to 93.34 · 103 training steps, which took approximately 56 hours.

The training and validation loss curves can be seen in Figure 6.
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Figure 6: Training and validation loss curves of the variational network. The training was
carried out with SSIM as loss function. MSE was computed for additional monitoring
only.
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4.3.5 Comparison methods

To evaluate the performance of the VN model in reconstructing undersampled real-time

data, presented above, we chose two alternative state-of-the-art methods to compare it

against: A U-Net model and a low-rank plus sparse model. The latter was originally

introduced in [67] and previously used for a similar application in [21].

The U-Net model is designed as follows: It first applies an adjoint nuFFT to transform

the undersampled spiral data into image space, which it then passes through a single U-

Net for correction of undersampling artifacts. The U-Net is the same network as was

used for regularization in the VN, but with 5 pooling layers and 30 channels in the first

layer, resulting in a number of 2.7·107 trainable parameters in total. This size was chosen

to enable a fair comparison by approximately matching the number of parameters in the

U-Net model to the number of parameters in the VN model, which contains 10 U-Nets

of smaller size (in total 2.5 · 107 parameters). As loss function, we also use SSIM. The

training and validation datasets were the same as for the VN, but we applied additional

data augmentation in the form of random rotations during training. We trained for 16

epochs (2.1 · 105 steps) which, due to much faster inference than the VN model, took

approximately 35h.

4.3.6 Implementation

The neural network models were implemented in the open-source machine learning frame-

work PyTorch [59]. Parts of the VN and the U-Net implementation were modified from

the freely available implementation in the fastMRI project [66]. The nuFFT and Kaiser-

Bessel gridding operators were provided by the open-source library TorchKBnuFFT [64].

For computing coil sensitivity maps we used the method described in [53]. The source

code is publicly available on GitHub [68].

Both neural network models were implemented to run on an NVIDIA Titan RTX

GPU. The LRS model was implemented in MATLAB® (The MathWorks, Inc., Natick,

Massachusetts, United States) and supported CPU execution only. It was described in

[21] where it was used for reconstruction of data acquired with the CRISPI method.

4.3.7 Reconstruction time

With the implementations as described above, we investigated the runtimes for the vari-

ous reconstruction methods by reconstructing a representative real-time acquisition from

the evaluation dataset, consisting of 12 slices and 60 real-time frames per slice. Both

the VN and the U-Net model operate on each time frame separately, while the LRS

model applies a temporal model and therefore reconstructs the entire series slice-wise.

Accumulating the overall reconstruction time per slice for VN and U-Net, we tested for

differences in the runtimes per slice, by comparing the runtime of the methods first all
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together with a Friedman test, and subsequently pair-wise with Wilcoxon signed-rank

tests.

4.3.8 Quantitative evaluation

We evaluated the reconstruction performance of the VN in several ways, and compared

it to that of the U-Net and LRS model.

For a comparison by means of quantitative parameters, we calculated SSIM and

root mean-squared error (RMSE) between the respective reconstructions and reference

images. However, as discussed before, since it is impossible to obtain fully sampled real-

time reference data, we generated a synthetic dataset from segmented spiral images: For

one of the volunteers in the evaluation dataset (see section 4.3.2), we generated segmented

spiral cine images as described in 4.3.1 from breath-hold acquisitions of 9 slices with 20

frames per slice. These were de-gridded back to their acquisition pattern of 40 spiral

arms. By discarding 30 of these, we obtained pairs of undersampled spiral data (10

arms, as the real-time acquisitions) and reference images.

The undersampled spiral data can then be reconstructed by various methods, and

the result compared to the reference images by means of quantitative measures. We are

mostly interested in an accurate depiction of the heart, and not so much the background

or other anatomy. Therefore, we applied a circular mask that tightly covers the entire

heart prior to computing SSIM and RMSE. This results in scores on 180 images for VN,

LRS, U-Net and also the naive reconstruction by simple nuFFT.

For interpreting the results, we first conducted a Friedman test to test for whether

the reconstruction method has a significant impact on the performance. Post-hoc, we

applied Wilcoxon signed-rank tests for each pairing of two of these methods, to investigate

differences in SSIM or RMSE scores between the methods in detail.

4.3.9 Expert reader study

Quantitative parameters like SSIM and RMSE are well-known to have number of short-

comings for judging the visual quality of images, which is why an evaluation by human

experts is imperative [18].

To this end, we reconstructed all data in the evaluation dataset with VN, U-Net

and LRS, and submitted these together with the Cartesian reference acquisitions for

evaluation by two expert radiologists with four and ten years of experience in cardiac

imaging. The evaluation was carried out in the categories delineation/sharpness, arti-

facts, myocardium-blood contrast, temporal resolution and noise.

We used a four-point Likert scale, with the following grades: 1: poor, 2: moderate,

3: good, 4: very good. For each of the 14 subjects in the evaluation dataset, each rater

provided one such score per category. The two raters were blinded to each other as well

as to the reconstruction type.
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The performance of the reconstruction methods was compared by first conducting a

Friedman test, to investigate a significant impact of the reconstruction method on the

scores. Post-hoc, Wilcoxon signed-rank tests were conducted on the scores of each pairing

of methods, separately for each category. For the statistical analysis, the average grade

of the two readers was used, to alleviate the effects of inter-rater variability.

4.3.10 Quantification of functional parameters

For evaluation of clinical performance, the proposed method was applied to functional

imaging of the heart. On the entire evaluation dataset, along with the gold standard

Cartesian reference images, we determined cardiac functional parameters, specifically

end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV) and ejection

fraction (EF). To enable the analysis of inter-rater variability, the evaluation was done

repeatedly, by the same two expert radiologists as in 4.3.9. Both evaluated the two sets

of images independently from each other using a dedicated medical imaging software

(cvi42, Circle Cardiovascular Imaging Inc., Calgary, Canada).

Subsequently, the functional parameters derived from the two methods were compared

through Bland-Altman analysis [69, 70]. We used the method variant as described in [70],

which specifically takes into account the repeated evaluation.

Additionally, to provide context to the deviations between the methods, we estimated

the inter-rater variability, also through Bland-Altman analyses. This was done for each

parameter separately on the real-time VN images and the segmented Cartesian acquisi-

tions.

4.3.11 Investigation of alternative loss function

In the scientific literature, many potential loss terms for training deep learning models

are presented [4], each with their own advantages and disadvantages. The loss function

is one of many choices, that a scientist or engineer working with machine learning has to

make when designing a new artificial neural network model. Often, it is not clear, which

term is best for a specific application, and the investigation of different loss functions and

their differences remains an active field of research. We attempt to contribute to this

discussion, by investigating the impact of choosing SSIM or mean-squared error (MSE)

as loss function for our model. This was done by repeating the training procedure with

the same parameters, but changing the loss term from SSIM, which we used in the main

model, to MSE, and then comparing the two resulting models. The two models will be

referred to as MSE-VN and SSIM-VN. If no loss term is specified, SSIM-VN is meant.

The training and validation loss curves for MSE-VN can be seen in Figure 7. As

shown there, we trained the MSE-VN model for 14 epochs, but used the weights after

training for 10 epochs, or 133.3 · 103 steps, because the MSE validation loss stopped

decreasing. Both training loss curves are very similar for MSE-VN and SSIM-VN (see
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Figure 7: Training and validation loss for training of the VN model trained with MSE
as loss function. For MSE-VN, the SSIM loss curves were computed for additional mon-
itoring, but not used in the training procedure.

Figure 6). The validation loss curves however indicate substantially lower MSE and SSIM

validation loss values for MSE-VN than for SSIM-VN.

For computing quantitative scores, we used the same method and synthetic dataset as

in 4.3.8. The scores between the two models were compared with a Wilcoxon signed-rank

test for each parameter. Furthermore, we selected one slice of the dataset, and compare

reconstructions of several frames by MSE-VN and SSIM-VN visually.

4.4 Results

4.4.1 Effects of variational network reconstruction in k-space

Fig. 8 shows the k-space data of an exemplary undersampled real-time frame together

with its VN and direct nuFFT reconstruction. For an exemplary coil, the off-grid data
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on the 10 spiral arms (see Fig. 1) can be seen in Fig 8 a). Kaiser-Bessel gridding

transforms this data to k-space on a Cartesian grid, shown in Fig. 8 b). An inverse

Fourier transform then results in a nuFFT reconstruction of the undersampled data (also

in b). The artifacts arising from the undersampling are clearly noticeable.

In Fig. 8 c), one can see the reconstruction by the VN method. The undersampling

artifacts are substantially attenuated. In the corresponding k-space, the spiral pattern is

no longer apparent.

Undersampled reconstruction

VN reconstruction

b) Undersampled k-space

c) k-space of VN reconstruction
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read-out point

10
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1sp
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a) Off-grid undersampled kspace

Figure 8: Effects of the VN reconstruction for a representative real-time frame. a)
shows off-grid spiral k-space data (log of magnitude) b) shows the same dataset, after
performing a nuFFT reconstruction, together with the corresponding on-grid kspace (log
of magnitude). c) shows the reconstruction by the variational network, together with the
corresponding k-space (log of magnitude).
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Figure 9: Systolic and diastolic frames obtained by different imaging approaches in a
healthy participant. The temporal cross-sections (x-t plot) show the signal intensity of
the indicated line across all reconstructed cardiac phases reconstructed. For the real-time
acquisition, this corresponds to 50 frames. For the segmented approaches, 25 frames were
depicted repeatedly a) and in 20 frames d). The image in a) was obtained in breath-hold
with a fully sampled Cartesian balanced SSFP (bSSFP) protocol, as typically used in
clinical practice. The patient position is slightly different from the other acquisitions,
most likely due to motion between the acquisitions. Images in c) and d) are obtained
from the same spiral acquisition in breath-hold. In d), data were binned into segmented
frames, whereas in c) the data were reconstructed as real-time frames using VN. The
images in b), e), and f) are reconstructed from the same acquisition in free breathing
using a U-Net model, a low-rank plus sparse model, and the VN model, respectively. In
b)–f), signal voids due to flow can be observed in the left ventricle close to the lateral
wall. A dynamic view of this comparison is also available (see Supplementary Material
Information at the end of chapter 4).

4.4.2 Qualitative comparison of reconstruction methods

For comparing the image quality of VN reconstruction to the alternative methods de-

scribed in 4.3.5 as well as the clinical reference technique, Fig. 9 shows systolic and

diastolic frames for six different reconstructions as well as x-t plots. The latter show
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the indicated orange line across 50 frames, where the temporal dimension is represented

by the y-axis. A more detailed qualitative comparison can be seen in Fig. 10, where

we used the synthetic data as described in section 4.3.2 to compare the undersampled

reconstructions to spiral segmented fully sampled references with error maps. As sup-

plementary material (see Supplementary Material Information at the end of chapter 4),

one can see cardiac dynamics in 9 slices of a representative patient from the evaluation

dataset simultaneously.

The first column of Fig. 9 displays segmented reference methods: a) shows the clini-

cal reference Cartesian bSSFP acquisitions described in 4.3.2 while d) shows segmented

reconstructions from spiral acquisitions (see 4.3.1). Because of the bSSFP acquisition,

the contrast on a) is noticeably different from the other subplots, where the acquisitions

are based on spoiled gradient echo.
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Figure 10: Qualitative comparison of reconstructions by methods for reconstruction of
undersampled real-time data. To obtain a fully sampled spiral reference reconstruction
for generation of error maps, the undersampled data was generated by retrospectively
undersampling a segmented spiral acquisition. *The error map of the naive reconstruction
is clipped, i.e. values above the indicated range are shown as white.
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VN U-Net LRS

0.89± 0.03 s 0.07± 0.01 s 40.50± 0.69 s

Table 1: Runtimes of the different methods for reconstructing a single real-time frame.
Since the LRS model applies a temporal model, and thus reconstructs slice wise, the
number given here was obtained by dividing the runtime for an entire slice by the number
of real-time frames per slice (60). Note that VN and U-Net were implemented on GPU,
while LRS ran on CPU only.

In the center column, one can see reconstructions by the comparison reconstruction

methods for real-time data, U-Net and LRS, described in 4.3.5. In the x-t-plot in b),

streaks in t-direction can be seen, which are presumably residual artifacts that remain

stationary over time.

Finally, the last column shows reconstructions by the presented VN. c) shows a frame

from an acquisition in breath-hold, while the frame in f) was acquired in free breathing.

As can be expected due to the real-time acquisition, no difference in quality between the

two can be observed.

In all real-time reconstructions, one can observe dark signal voids in the cardiac

chambers and in the x-t plots. These are due to blood flow. Since turbulence resulting

from flow is aperiodic, and the segmented methods average over several cardiac cycles,

these regions appear smoother in both segmented reconstructions.

In Figure 10, large reconstruction errors can be observed in the U-Net output. These

may be residual artifacts or reconstruction errors. When comparing the U-Net error

map the that of the naive reconstruction, some similarities can be seen, but also some

errors that are not due to undersampling artifacts. In the lung, as well as the abdomen,

hallucinated blood vessels can be observed.

The VN and LRS reconstructions can barely be differentiated from the fully sampled

reconstruction. In the error maps, one can see that for VN, the largest differences to

fully sampled appear in the bright fat, and some moderate differences in the heart. For

LRS, the differences to fully sampled in the heart are slightly higher than for VN. As

the heart is the area of the image with the most dynamic, a potential reason for this

observation may be that the LRS method applies a temporal model.

4.4.3 Speed of reconstructions

The results of the investigation and comparison of runtimes of the tested reconstruction

methods (see section 4.3.7) can be seen in Table 1.

Additionally, computing sensitivity maps took on average 17.95 ± 0.03 s per slice.

For VN, reconstructing the representative measurement with 12 slices and 60 real-time
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frames per slice took 14.39 min in total. The statistical tests showed the runtimes to be

significantly different between all methods together as well as for each pair-wise compar-

ison.
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Figure 11: Comparison of reconstructions by the examined methods of short-axis (SAX)
and long-axis (LAX) data in systole and diastole of a healthy volunteer, which is not
part of the training or evaluation dataset. The VN and U-Net models were trained on a
dataset containing only short-axis training images. The red arrow indicates substantial
reconstruction errors in the U-Net reconstructions of long-axis images. Note that the
quality of the long-axis images is below the clinical standard, presumably due to flow
artifacts resulting from the real-time acquisition.

4.4.4 Investigation of generalization properties on long-axis images

To assess the generalization properties of the compared reconstruction methods, we ap-

plied them to short axis (SAX) and long axis (LAX) data of an additional (not part
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Naive U-Net VN LRS

SSIM 0.67± 0.04 0.83± 0.04 0.94± 0.01 0.95± 0.03

RMSE ×102 4.40± 0.65 2.36± 0.24 0.92± 0.25 1.05± 0.30

Table 2: Results of the quantitative analysis, comparing structural similarity index mea-
sure (SSIM) and root-mean squared error (RMSE) between different reconstruction meth-
ods. The scores were computed from reconstructing a synthetic dataset of 180 images
from 9 slices and comparing the respective reconstructions to fully sampled reference
reconstructions with the respective quantitative measure. A circular mask around the
heart was applied before computing scores.

of the training or evaluation set) healthy volunteer, shown on Figure 11. The recon-

struction quality of the SAX images is in line with the observations from the previous

chapter, where errors can be observed for U-Net, but VN and LRS show similar, high

image quality. On the LAX images, this holds true as well, but the quality of the U-Net

reconstruction is substantially inferior. At the side of the thorax (see red arrow), strong

hallucinations are present.

This is remarkable, because the U-Net and VN models were trained on only SAX

images, yet the VN is able to reconstruct LAX images without apparent loss of quality,

while the U-Net is not.

4.4.5 Quantitative comparison of reconstruction methods

The quantitative scores that were computed as described in section 4.3.8 can be seen

in Table 2. As expected, the naive reconstruction without correction of undersampling

artifacts performs poorly. The U-Net achieves somewhat better, yet by no means good

scores. VN and LRS are scored highly on both measures, where SSIM score is almost

identical and RMSE scores are slightly lower for VN. From these data, the Friedman test

showed there to be a significant difference (p = 0.05) in scores between the reconstruc-

tion methods, separately for SSIM and RMSE. The post-hoc Wilcoxon signed-rank tests

concluded that each pair-wise comparison exhibits a significant difference at p = 0.05.

Thus, excluding the naive reconstruction, U-Net performs worst, and VN best in terms

of RMSE while LRS performs best in SSIM.

4.4.6 Expert reader study

The mean scores with standard deviations from the expert reader study as described in

section 4.3.9 are listed in Table 3.

The Cartesian reference cine achieves the highest scores. As in the evaluation by

quantitative parameters, in most categories, U-Net performs mediocre to poor, while VN
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and LRS show similarly high scores.

The Friedman test showed significant differences between the methods in all categories

(p = 0.05). The subsequent pair-wise comparison through Wilcoxon signed-rank tests

confirmed that Cartesian cine is rated significantly (p = 0.05) better than all other

methods in all categories, except that no significant difference in temporal resolution

compared to LRS could be found. On the other hand, U-Net is scored worst in all except

the category noise. Between LRS and VN, no significant difference in scores could be

determined at p = 0.05, except that LRS exhibits a significantly higher level of noise.

Cartesian cine U-Net VN LRS

Delineation/Sharpness 4.0± 0.2 1.8± 0.6 3.0± 0.7 2.9± 0.5

Artifacts 3.6± 0.6 1.3± 0.5 2.6± 0.6 2.8± 0.5

Myocardium-Blood contrast 3.9± 0.3 2.1± 0.8 3.0± 0.7 2.9± 0.7

Temporal resolution 3.7± 0.6 2.0± 0.7 3.0± 0.8 3.1± 0.7

Noise 3.9± 0.3 2.3± 0.6 2.5± 0.5 1.6± 0.5

Table 3: Results of the expert reader study, comparing Cartesian segmented cine and
three reconstruction methods for spiral real-time data through expert scores in five cat-
egories. The scores were given by two experienced radiologists on a four-point Likert
scale, rating scans of fourteen subjects.

4.4.7 Investigation of alternative loss function

The mean values and standard deviations of the quantitative analysis for MSE-VN and

SSIM-VN are shown in Table 4. Both the SSIM and RMSE scores are slightly inferior for

MSE-VN compared to SSIM-VN. The Wilcoxon signed-rank test showed the differences

in both SSIM and RMSE to be significant at p = 0.05.

For a visual comparison of MSE-VN and SSIM-VN, Figure 12 shows reconstructions

by the two models, together with error maps. No difference is immediately noticeable in

the reconstructions, only in the error map can differences be observed. Concerning the

background, SSIM-VN seems to have higher error rates in bright regions, in particular

fat, while MSE-VN has a higher error level in the dark background. In the heart, slight

reconstruction errors in the form of small dots can be observed in both models, but on a

similar overall level and for the most part in the same areas.
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trained with SSIM (SSIM-VN) trained with MSE (MSE-VN)

SSIM score 0.94± 0.01 0.92± 0.01

RMSE score ×102 0.92± 0.25 0.96± 0.10

Table 4: Comparison of structural similarity index measure (SSIM) and root mean-
squared error (RMSE) scores between a variational network (VN) model trained with
SSIM (SSIM-VN) and one trained with mean-squared error (MSE-VN). The scores are
computed on the same dataset of 180 images from 9 slices with references from a spiral
cine sequence as in section 4.3.9. They quantify the difference to the fully sampled ground
truth cine images, after applying a circular mask around the heart.
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Figure 12: Comparison between the variational network trained with SSIM as training
loss (SSIM-VN) and the one trained with MSE as training loss (MSE-VN). To obtain a
dataset with ground truth reconstructions for computing error maps, segmented spiral
cine reconstructions of an exemplary slice were de-gridded to obtain synthetic data, which
was used as input for both networks.

4.4.8 Derived functional parameters

The cardiac functional parameter values that were derived from the Cartesian cine refer-

ence and the real-time VN reconstruction are shown in Figure 13. Their corresponding

comparisons between the methods and the observers through Bland-Altman analyses can
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be seen in Figure 14.

For the comparison between the reference cine and the real-time VN method, we

observe moderate deviations on average for EDV, ESV and SV, and very good agreement

for EF. The samples do not appear to show any proportional bias. However, for all

parameters, the limits of agreement around the mean deviation are quite large, between

10 - 30 % of the reference mean value. This indicates substantial variation between the

methods.
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Figure 13: Functional cardiac parameters resulting from the analysis by two observers
on real-time reconstructions by VN and the corresponding clinical Cartesian bSSFP cine
images. The dashed line separates healthy volunteers (2) from clinical patients (12).

However, the limits of agreement for the inter-rater variation is, at least when com-

paring the observers on the VN images, similarly high. On the reference images, the

raters agreement is better, yet the limits of agreement are still around 10% of the mean

of the reference value. The average of all subjects is similar between the raters for all

parameters.
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Figure 14: Bland-Altman plots of the functional cardiac parameters, comparing the
real-time acquisitions with VN reconstruction to the clinical Cartesian bSSFP cine (first
column) and the corresponding inter-rater variability between the two raters. The inter-
rater variability is computed separately on the VN and reference images (second and
third column). For providing context to the absolute values, each Bland-Altman plot
shows the mean value of the reference method, and gives all absolute numbers in relation
to this value (%-values in brackets).
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4.5 Discussion

In this chapter, we presented a variational network model for reconstruction of under-

sampled spiral real-time cardiac frames. Subsequently, we performed extensive evaluation

and investigated its suitability for functional imaging of the heart.

For benchmarking the performance of the presented VN method in reconstructing

undersampled MR data, we chose to compare it to a previously-published LRS method

[21, 67] and a general U-Net approach, which has been used in numerous publications

[17, 18, 51] before. Together with the VN method, we can interpret these as part of

a spectrum: On one end, the LRS model is purely based on a specific modeling of

the MR reconstruction process, where insights into the structure of the acquired signal

(i.e. sparsity) are used for reducing artifacts. The U-Net model on the other end is a

general model for image processing, which was originally introduced for segmentation

[71]. It does not use any additional information about the acquisition process or k-space

data, only the images themselves. The MRI-specific adaptation that enables artifact

reduction is completely learned from training images. The VN model can be interpreted

as an attempt to incorporate elements from both: Its structure is modeled after the same

gradient descent iteration as in compressed sensing, but the regularization is learned from

image data. This is motivated by the aim, to achieve good reconstruction performance

due to superior modeling capabilities of the U-Nets and the gradient descent structure,

while also enforcing data consistency.

In terms of reconstruction performance and image quality, we observed that the U-

Net is the fastest, but also delivers by far the worst image quality, on almost all measures.

Its output is often blurry, and artifact reduction is moderate at best. Furthermore, it

is very specific to the anatomy and image properties it was trained on. When applying

it to long-axis images, which were not represented in the training set, its performance

degraded even further, with hallucinations clearly visible.

The LRS model on the other hand is completely agnostic to anatomy. Its image

quality was generally high, with only minor to no residual artifacts, and sharp contrast.

However, it suffered from increased noise. Note, that the parameters of the algorithm

have to be set by hand, which is a time-consuming task for most compressed sensing

methods. Also it is essential to mention that the LRS model used here additionally

applies a model in the temporal dimension. This allows it to exploit sparsity in this

domain, which gives it a major advantage over the other models that do not incorporate

any temporal information.

The Cartesian cine references clearly achieve the highest scores of all images and in

all categories. However, it is unclear if these superior scores are due to these images being

acquired with a segmented, and therefore fully sampled method, or simply a difference in

contrast, since most of the reference images had bSSFP contrast. Also, another difference
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was that a Cartesian trajectory was used.

Finally, the VN model achieved good image quality. According to quantitative mea-

sures (SSIM and RMSE) and expert ratings, the obtained image quality was comparable

to the LRS method, even though no temporal model was applied in the VN. Remark-

ably, in its application to long-axis images, which were not represented in the training

set at all, the image quality and artifact reduction appeared to work equally well. We

attribute this superior generalization to the data consistency mechanisms inherent in the

VN model.

As with any supervised deep learning method, one possible way for improving per-

formance is through improving the training dataset. In our case, the training dataset

is relatively small with data from only 11 subjects. This is due to the fact that our

training data is expensive, as it was acquired in vivo specifically for this purpose. Thus,

performance gains could be expected from increasing the amount of training data. An

efficient way to do so, would be to use synthetic data. Though a lot of care has to be

dedicated towards making the simulated data realistic, the amount of data that could

potentially be obtained in this way is essentially unlimited, as large archives of clinical

cardiac measurements exist in clinical environments.

We chose SSIM as loss function in accordance with many prominent contributions pro-

posed recently [17, 18]. Because mean-squared error represents another popular choice,

we retrained our VN with mean-squared error and compared the resulting image quality.

In summary, only minor differences were found for our application.

In our study, we used a spiral sequence based on spoiled gradient echo, because it

was available in out institution from previous development [21]. However, with respect to

functional CMR, balanced SSFP sequences have several advantages in comparison to our

spiral spoiled gradient-echo prototype sequence, like higher signal-to-noise ratio (SNR)

and superior contrast between myocardium and blood [72]. Accordingly, the difference of

the contrast between clinical routine acquisition (bSSFP) and the accelerated image series

(spoiled gradient echo) represents a considerable limitation of the comparison shown in

Figure 9. Furthermore, in the real-time images, e.g. Fig. 9 and prominently also 11,

dark patches can be observed in the cardiac chambers. This might have been caused

by turbulent blood flow, since spoiled gradient-echo sequences are generally sensitive to

inflow effects. The reference acquisitions based on bSSFP did not suffer from signal voids

in a comparable manner. Furthermore, since the flow is aperiodic, it is averaged out to

some degree for segmented cine, but not for the real-time acquisitions. While the focus

in this work has clearly been on the reconstruction method, implementing a spiral pulse

sequence based on bSSFP represents the next logical step toward clinical application.

In comparison with other techniques that exploit extreme dimension reductions by re-

constructing a maximum of domains at once [73, 74] our approach is comparably limited

with respect to possible undersampling rates, as we chose to process each 2D real-time
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image of the dynamic series individually. Conversely, however, the potential of overfitting

in these domains is also prevented, which excludes the notorious risk of temporal blur-

ring. We feel that the 2D approach based on an efficient k-space trajectory represents a

sufficient and at the same time highly robust strategy for real-time cardiac MRI. Nev-

ertheless, the VN method could be extended by using a more sophisticated regularizer,

such as the recently-introduced total deep variation [19, 75].

It has been a recent subject of discussion [76–78] whether the term ”real-time” MRI

should continue to be used for methods which produce dynamic images where each time

frame depicts a succession of events in the same order that they occurred during the

data acquisition. Alternatively, it is proposed to reserve this term for methods that

additionally provide these images within a short time, so-called latency, after the data

acquisition. Various latencies are cited as potential requirements for this term, but all are

in the range of up to a few seconds. We share the opinion of Nayak [77], that the current

use of the term ”real-time” as only constituting requirements on the data acquisition

is intuitive and expressive, and therefore have used the term throughout this work in

this way. Additional low latency should be expressed by the addendum of the adjective

”interactive”. However, we want to stress that latency is an issue of supreme importance,

as has already been remarked [76]. It may well be the pivotal requirement hindering novel

imaging techniques from use in clinical routine.

One major improvement of the proposed method with respect to many previous

publications of fast cardiac MRI was to decrease latency. On our hardware described

above, we achieved reconstruction times of 0.9 s per frame, 14.39 min for an entire series

(including the computation of sensitivity maps), with our current implementation. Thus,

it can not and should not be considered ”interactive real-time MRI” by any standard.

However, we want to point out that even if the method is not fully interactive, decreasing

latency from hours to minutes is a key development, in particular for the determination

of functional parameters, where a latency of this length appears acceptable in clinical

practice. The model-based LRS approach, demanded considerably longer reconstruction

times. It is noteworthy that LRS was implemented and ran on a CPU only. Nevertheless,

the model structure including a singular value decomposition is - in general - more difficult

to parallelize, and the iterations needed for optimization (70) exceed the number of

cascades of the VN (10) by far. Thus, in our opinion, the VN represents the best trade-off

between image quality and run-times for the acceleration techniques tested. Although

the reconstruction time for an entire exam is still too long (14.39 min) for applying

VN in clinical routine, moderately upscaling the hardware can shorten runtimes toward

acceptable delays for most applications. Furthermore, we want to point out the fact that

our VN method reconstructs each frame individually, which provides high flexibility with

respect to how entire series are processed. Therefore, overall reconstruction times could

be extremely shortened by processing individual images in parallel (e.g. on multiple
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GPUs).

In the presented Bland-Altman analysis on the agreement of cardiac functional param-

eters, we found only small fluctuations on average, but the associated limits of agreement

showed rather large deviation between the methods. Several factors may contribute to

this. First, the clinical protocol for the segmented reference measurements was rather

inhomogeneous, with in particular (due to different heart rates of the subjects) the tem-

poral resolution varying between 26 and 56 ms per frame. Also, not all but most of the

clinical references were acquired with a bSSFP sequence, so a difference in contrast may

also have an impact. Furthermore, the inter-rater variability also contributes to the differ-

ence between the methods. The magnitude of the inter-rater variability according to the

limits of agreement in the Bland-Altman plots on the VN images is even approximately

as large as the deviations between the methods. Interestingly, the inter-rater variability

on the reference images was only approximately half as high. This may be explained by

the difference in contrast, as the bSSFP images generally have better myocardium-blood

contrast, making the segmentations more consistent. Also, measurements with bSSFP

contrast are the clinical standard, to which the raters are more accustomed. Still, it is

very likely that variability in the observers contributed to the large limits of agreement

between the methods. Furthermore, for each of the limits of agreement, the associated

95% confidence intervals were rather large, which limits the conclusions that can be

drawn from the limits of agreement. Note that in small sample sizes, the common choice

of 1.96σ we followed here overestimates the limits of agreement [79]. In general, the

analysis presented here is of qualitative nature, as no reliable quantitative assertions can

be made from such a small sample size. We conclude that the presented data does not in

any way suggest the methods to disagree, but is insufficient to show agreement with sta-

tistical significance. This would require a larger sample size and would be substantially

supported by a more consistent environment.

Recent work, mainly in the field of machine learning based post processing of medical

images, makes an entirely automatic quantification of cardiac function conceivable. Var-

ious publications [7, 8] already demonstrated semantic segmentation of the heart with

human level accuracy. The latter in conjunction with the presented acquisition and re-

construction method would reduce the workload for a functional MR exam of the heart

to just one minute of scan-time in free breathing without the need for any further manual

intervention. Undoubtedly, this would represent a substantial advancement with respect

to the current state-of-the-art. Similar techniques could be applied for other MRI ap-

plications, paving the way to improved accessibility, increased patient comfort, reduced

costs and even to entirely new kinds of investigations.
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4.6 Conclusion

We presented a variational network architecture that is capable of reconstructing cardiac

real-time data acquired with an undersampled spiral trajectory in free breathing. The

method was extensively evaluated and compared to other state-of-the-art methods. We

found that the VN is able to reconstruct images with high quality, equivalent to cur-

rent model-based methods. A comparison to the current clinical standard for cardiac

functional imaging remained inconclusive. In comparison to a purely image based U-Net

trained on the same task, we found that the data consistency mechanisms inherent in

the VN architecture constitute a considerable advantage, leading to better image quality,

higher robustness and better generalization properties.
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The contents of this chapter are adapted from the paper [80]

”Assessment of resolution and noise in magnetic resonance images reconstructed by

data driven approaches”
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able online (https://doi.org/10.1016/j.zemedi.2023.08.007) under the Creative Commons

BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). The following chapter
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Previous results have been published as a conference abstract [81].
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5.1. Abstract

5.1 Abstract

Introduction: Deep learning-based approaches are increasingly being used for the recon-

struction of accelerated MRI scans. However, presented analyses are frequently lacking

in-detail evaluation of basal measures like resolution or signal-to-noise ratio. To help

closing this gap, spatially resolved maps of image resolution and noise enhancement (g-

factor) are determined and assessed for typical model- and data-driven MR reconstruction

methods in this paper.

Methods: MR data from a routine brain scan of a patient were undersampled in ret-

rospect at R = 4 and reconstructed using two data-driven (variational network (VN),

U-Net) and two model based reconstructions methods (GRAPPA, TV-constrained com-

pressed sensing). Local resolution was estimated by the width of the main-lobe of a

local point-spread function, which was determined for every single pixel by reconstruct-

ing images with an additional small perturbation. g-factor maps were determined using

a multiple replica method.

Results: GRAPPA showed good spatial resolution, but increased g-factors (1.43 - 1.84,

75% quartile) over all other methods. The images delivered from compressed sensing

suffered most from low local resolution, in particular in homogeneous areas of the image.

VN and U-Net show similar resolution with mostly moderate local blurring, slightly

better for U-Net. For all methods except GRAPPA the resolution as well as the g-factors

depend on the anatomy and the direction of undersampling.

Conclusions: Objective image quality parameters, local resolution and g-factors have

been determined. The examined data driven methods show less local blurring than

compressed sensing. The noise enhancement for reconstructions using CS, VN and U-Net

is elevated at anatomical contours but is drastically reduced with respect to GRAPPA.

Overall, the applied framework provides the possibility for more detailed analysis of novel

reconstruction approaches incorporating non-linear and non-stationary transformations.

5.2 Purpose

Together with recent advances in machine learning and neural network-based computer

vision, data-driven methods have seen increasing interest in the MRI academic literature.

Several distinct tasks are suited for the application of machine learning, including recon-

struction of undersampled data [2, 14]. The data-driven modelling capabilities of neural

networks have shown enormous potential for improving and accelerating reconstruction

tasks, and are capable of coping with undersampled acquisitions.

However, unlike in classical MRI, the transformation properties and quality of ad-

vanced reconstruction methods, data-driven as well as model-driven, depend on local

structure and are not uniform across the imaged field of view. Therefore signal abnor-
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malities, e.g. pathological structures, should be judged in view of the local quality and

reliability of the imaging method. To this end, local and objective measures of the quality

of reconstructions obtained from data-driven methods are needed. These results could

moreover prove valuable in the development of new reconstruction methods: Knowing

where and how the quality of an image is compromised is certainly crucial for precisely

analyzing and systematically improving a reconstruction technique.

While “image quality” actually describes a number of several aspects, the performance

of new approaches is frequently assessed by determining only a single global score like

RMSE or SSIM. This undoubtedly leads to straightforward assessments, however, it also

over-simplifies the evaluation in many cases. Especially image resolution is not considered

precisely by these scores. Since classical MRI constitutes a linear and shift-invariant (also

called stationary) transform in good approximation, the resolution is uniform and can

be analyzed by determining a single point-spread function [82]. Model- and data-driven

reconstruction methods, however, in most cases introduce non-linear and non-stationary

aspects.

To overcome this problem, resolution has to be determined locally, at every spatial

location. Suitable techniques have been developed many years ago. Comprehensive

theoretical considerations have first been presented by Fessler and Rogers [83]. These

were geared towards applications in emission and transmission tomography, where more

research was done subsequently [84]. Later, Wech et al. [85] applied these concepts to

cardiac MRI, by determining resolution maps for images reconstructed with iterative

thresholding compressed sensing algorithms. However, the recent rise of deep learning-

based, highly non-linear image reconstruction methods makes this topic more current

than ever and leaves their assessment with these tools to be desired. Chan et al. [86] lately

assessed resolution for more recent reconstruction methods. They showed perturbation

responses in single pixels and checkerboard tests for the whole image. This provided an

improved assessment with respect to mere visual inspection, however, the proposed maps

are not easily interpretable as local resolution was not quantified. Additionally, the only

deep learning method they evaluated was a direct U-Net reconstruction, while unrolled

gradient schemes like the variational network architecture proved to provide superior

performance in the meantime.

Besides resolution, the signal-to-noise ratio (SNR) of an MR image is a decisive

quality measure. For determining the noise attenuation and amplification properties of

reconstruction methods, g-factor maps are well suited. These can be computed by using

a multiple-replica method [87]. By combining the evaluation of resolution with that

of noise behavior, we aim to obtain a more comprehensive picture of the properties of

current MRI reconstruction methods than previous studies.

By investigating resolution and noise of model- and data-driven reconstruction meth-

ods, this work has the following aims: First, it serves to better understand methods cur-
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rently being developed in academic research, thereby closing the gap toward widespread

application. Furthermore, it demonstrates how quality of advanced reconstruction meth-

ods can be evaluated systematically and how these evaluations can be interpreted. Ulti-

mately, this could increase diagnostic quality by aiding the analysis of MR images.

5.3 Methods

5.3.1 Measuring resolution using local point-spread functions

Local point-spread functions for general image processing

In the following let us understand a greyscale image with n pixels simply as a vector

in Rn. Then any kind of imaging method can be modeled as a function T : Rn → Rn,

wich maps some real-world quantity at n spatial locations onto a representation by an

image. Note that the complex case is also covered by choosing n and m appropriately

and using the isomorphy R2 ' C. In the case of MRI, T encompasses the multi-coil

sampling procedure together with all subsequent reconstruction operations.

The reconstructed image representes a discretization of proton density or another

quantity to which the specific sequence is sensitive. If a ∈ {1, ..., n} denotes an index

corresponding to a spatial location, and ea = (δka)k=1,...,n the standard basis vector at

that location, then bea represents a signal which consists only of a single point with

intensity b as location a.

For common MRI sampling and reconstruction methods, it is reasonable to assume

that T is continuously differentiable. Then, by definition of the differential, there exists

a gradient ∇T : Rn → C0(Rn,Rn) and a residual r : Rn → Rn, such that

T (O + bea) = T (O) + b∇T (O)ea + r(b) (16)

where it holds limb→0
r(b)
b → 0. That is, the effect that a small change bea in the input

quantity has on the reconstruction T (O) can be completely described by the partial

derivative ∇T (O)ea. Thus, from the definition it follows

lim
b→0

(T (O + bea)− T (O))

b
= ∇T (O)ea. (17)

Therefore, we define the local point-spread function (LPSF) [83, 85] as

LPSF (T,O, a) :=
(T (O + bea)− T (O))

b
(18)

for some small b > 0. If b > 0 is small enough we have

LPSF (T,O, a) ≈ ∇T (O)ea. (19)

The LPSF can be thought of as the change of the reconstruction T (O) at location a,

given a small change in the reconstructed object O at location a. If T is linear, one
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can immediately see from (18) that LPSF (T,O, a) = T (ea), i.e. the LPSF does not

depend on the baseline perturbed image. If the reconstruction method T is additionally

shift-invariant, it further does not depend on a.

The key idea for determining resolution from the shape of an LPSF is that details in

the input can be distinguished, if they are represented by distinguishable features in the

reconstruction [83, 85]. According to the Rayleigh criterion [85, 88], an average human

observer perceives two points in an image as belonging to different objects, if the signal

intensity on the line between these locations drops to below 81% of the maximum of the

brightness of the two points.

Thus, whether two points from the input can be distinguished in the output, depends

crucially on how distinct the points are represented in the output: If the two points are

both spread out too much by the reconstruction method, they may become indistigu-

ishable. Since the LPSF characterizes the output representation of a point perturbation

in an input object, the width of the main lobe of an LPSF can provide a measure of

resolution [83, 85].

In the case of classical MRI, i.e. fully sampled single-coil data, the reconstruction

operator T is a Fourier transform. In this case, due to the linearity and shift-invariance,

the LPSF is sinc-shaped everywhere. One finds that for two identical sinc-shaped LPSF,

the Rayleigh-criterion is met if the distance between their maxima is no less than the

width of the main lobe at 2
π ≈ 64% of the maximal height. Motivated by this observation,

for an arbitrary reconstruction method, we take the width of the main lobe at 64% of

the maximum height as a measure of resolution. Any value larger than 1 corresponds to

a situation where point inputs are spread out, such that they may not be distinguished

from neighbouring points, which corresponds to a loss of resolution.

Application to undersampled MRI

Now, assume that we have some fully sampled MRI k-space data, which represents some

real-world object O, together with a reconstruction method denoted by T . Then we

apply the concepts described in the previous section as follows:

First, we transform O coil-wise to image space. For a spatial location a, the image

is perturbed by adding a small perturbation to the pixel in a. Empirically, we found

that T (O + bea)− T (O) ∝ b holds true approximately if we choose the amplitude of the

perturbation no larger than 0.1% of the maximum of the root-sum-of-squares reconstruc-

tion of O for all the tested reconstruction methods and for both of the images that we

applied them to. The amplitude of the perturbation in each coil is chosen proportional

to the signal level of the coil in a. Furthermore, we found that for the examples stud-

ied in this paper, the complex phase of the perturbation had no substantial effect, and

thus we always keep the phase of perturbed pixels constant. For the perturbed coil-wise

images we then transformed to k-space and applied undersampling. From these ”raw
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data”, we then computed a perturbed reconstruction. An unperturbed reconstruction

was obtained simply by applying the model reconstruction to the undersampled original

data. As detailed above, the difference between the perturbed and unperturbed recon-

struction then yields the LPSF. The entire process is illustrated in Figure 15. From the

two-dimensional LPSF, the resolution in the two spatial dimensions was then determined

from the shape of the LPSF. For this, we extracted the row (respectively, the column),

and applied 5-fold Fourier interpolation before measuring the width of the main lobe at

64% of its maximum. This procedure yielded two resolution maps, for the resolution in

horizontal and vertical direction.

I - I 

1D local point-spread function

fully sampled k-space model reconstruction Iundersampled k-space

2D local point-spread function

perturbed 
undersampled k-space

perturbed 
multi-coil image

perturbed
model reconstruction ID

D

Figure 15: Illustration of the approach for determining local point-spread functions. Fully
sampled k-space data is retrospectively undersampled with and without previous pertur-
bation in a single pixel (marked red). By subsequently applying some reconstruction
method on the two k-space data, we obtain two model reconstructions. The difference
of these represents the 2D local point-spread function (LPSF) for the location of the
perturbed pixel. A horizontal or vertical profile is then used for measuring the width of
the main lobe.

5.3.2 Determining g-factor maps with a pseudo multiple replica method

Using the notation from the previous section, our goal in the following is to establish a

method for measuring the noise properties of a MRI reconstruction method.

Previously, we denoted the entire imaging method by an operator T : Rn → Rn,

going from real-world quantities to an image representation, both on a discrete grid. By

distinguishing between the acquisition and the reconstruction, the imaging operator can

be split into two parts:

T = E ◦ S (20)

Here, S : Rn → Cc×d denotes the sampling procedure, which maps from a real-world

quantity of interest to complex multi-coil MR k-space data. The dimension of size c
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denotes the coils. The reconstruction operator E : Cc×d → Rn takes the data and

reconstructs a greyscale image.

The sampling procedure is inevitably corrupted by additive noise, such that for a

given object O, the reconstruction can be expressed by

T (O) = E(S(O) +N) (21)

where N ∈ Rc×d contains complex normally distributed noise. Thus, the measured k-

space data that is to be reconstructed has the form k = S(O) + N . But neither the

ground-truth data S(O) or the noise N can be extracted from the data, in order to

investigate how the reconstruction operator E responds to the noise. To get around

this, we can add additional synthetic noise Ñ to the data, and infer from the response

E(S(O) + N + Ñ) how E reacts to noise in the input data. This is called the pseudo

multiple replica method and has been described previously [89].

However, due to physical coupling of the receiver coils between each other, the noise

N is correlated between the coils. To accurately simulate noise Ñ , this correlation has

to be taken into account. Since it can not be accurately measured from the k-space data

k, we use a separate acquisition without an RF-pulse, where consequently only noise is

acquired. If we denote the measured noise data by M ∈ Cc×d, the covariance matrix is

given by

Ψ :=
1

n
M M∗ =

(
1

n

n∑

k=1

Mi,kMj,k

)

i,j=1,...,n

∈ Cc×c , (22)

where we used the fact that the expected value for the noise is 0. The matrix entry Ψi,j

gives the covariance between the ith and jth coil. Once these correlations are known,

synthetic noise with the same correlation as the measured noise can be generated via

Ñ =
√

ΨN =




n∑

j=1

Ψ
1
2
i,jNj,k




i=1,...,c
j=1,...,m

(23)

where N ∈ Cc×m, N ∼ N (0, 1) and
√

Ψ is the positive root of Ψ. It can be obtained

from Ψ as follows: From the definition, it is immediately obvious that Ψ is Hermitian

and positive definite, and therefore diagonizable. Thus, with a matrix V of orthonormal

eigenvectors, Ψ can be written as

Ψ = V diag(λ1, ..., λc)V
−1 (24)

where λ1, ..., λc ≥ 0 are the non-negative eigenvalues of Ψ. Then the positive root
√

Ψ

can be obtained via

√
Ψ = V diag(

√
λ1, ...,

√
λc)V

−1. (25)
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With the method as described above we can generate r noise samples Ñ1, ..., Ñr, which can

be added to the measured k-space data k to obtain pseudo-repetitions k+ Ñ1, ..., k+ Ñr

of the measurement. By applying undersampling, and subsequently the reconstruction

operator E, we thus get r different accelerated reconstructions. Furthermore, since

the pseudo-repetitions are fully sampled, we can also reconstruct them classically, i.e.

by Fourier transform and root-sum-of-squares coil combination. This yields r non-

accelerated reconstructions. By computing the standard deviations σacc and σnormal

of the accelerated and non-accelerated reconstructions, the g-factor map is obtained as

g :=
σacc

σnormal
√
R

(26)

where R denotes the acceleration factor in the undersampling. It gives a spatially resolved

ratio of how much the reconstruction method for accelerated data increases noise over

a non-accelerated acquisition. Since a reduction in acquisition time by a factor of R

inevitably results in an increase in noise by a factor of
√
R, this effect is compensated for

by dividing by
√
R in equation (26). If g(a) ≥ 1 at some spatial location a, then noise is

increased by more than what is expected from the shortened acquisition, i.e. the method

amplifies noise. Conversely, if g(a) ≤ 1 then noise is suppressed at location a.

5.3.3 Reconstruction methods

For gaining insights into their reconstruction properties, we chose a selection of popular

model-based and data-driven methods:

GRAPPA: As classical parallel imaging baseline, we used a GRAPPA [90] implemen-

tation [91].

Compressed sensing: A TV-regularized compressed sensing (CS) model, which is

implemented in the Berkley Advanced Reconstruction Toolbox (BART) [92]. The op-

timization problem is solved with the ADMM optimizer [93]. The parameters (number

of iterations and regularization weight) were individually adjusted for the T1- and T2-

weighted image.

Variational network: For data-driven reconstructions, we used the publicly available

challenge dataset and the baseline models of the 2020 fastMRI challenge [18]. The pre-

trained models were provided by fastMRI. They are trained on the fastMRI 2020 multicoil

brain challenge dataset, consisting of 4469 T1, T1 post-contrast, T2, and FLAIR acquisi-

tions with additional 1378 for validation. The dataset and the models are described in

detail in the accompanying paper [18] and a previous publication [66]. The variational

network (VN) model consists of 12 cascades, and the regularization terms are realized by

U-Nets with 4 up- and downsampling steps and 18 channels in the first layer. The entire

VN model has 2.99 · 107 trainable parameters.

U-Net: Like the VN model, the U-Net model was one of the baseline models of the 2020

51



Chapter 5. Assessment of resolution and noise in magnetic resonance images
reconstructed by data driven approaches

fastMRI challenge [18], and was trained on the same dataset. It has the same structure

as the regularizers in the VN model, but uses 256 channels in the first layer. It has a

total of 4.96 · 108 trainable parameters.

All methods were applied to data, which were retrospectively undersampled with an

acceleration factor of R = 4. Undersampling was applied in phase-encoding direction,

which corresponds to horizontal direction in image space. The undersampling masks,

which differ between the methods due to their specific requirements, can be seen in

Figure 16. For all methods, a fully sampled region in the center of k-space with size

8% of phase encoding lines, called the autocalibration signal (ACS) region, was used.

For GRAPPA, the calibration was performed on this region and the reconstruction then

applied to k-space where every fourth line was sampled, without ACS region, to ensure

R = 4. For CS, a random undersampling pattern with ACS region was used. For both

VN and U-Net, an undersampling pattern with ACS region was used, where the width

of the gaps between the sampled lines alternates between 4 and 5 lines. This matches

the undersampling in the training data. Due to a different matrix size, the random and

equispaced masks for the T1-weighted scans differ, but follow the same principles.

GRAPPA

CS

VN and U-Net

Figure 16: Undersampling patterns with acceleration R = 4 used for masking the T1-
weighted scans. Only a section of the vertical size is shown. Due to a different matrix size,
the random and equispaced masks for the T2-weighted scans differ, but follow the same
characteristics. GRAPPA uses a regular undersampling pattern where every fourth line
is sampled and uses the fully sampled center region for kernel calibration (ACS region),
but not for reconstruction, such that R = 4 is achieved. The other methods include the
ACS region. CS uses a random undersampling pattern, while VN and U-Net alternate
between gaps of 4 and 5 missing lines between each sampled lines, to ensure R = 4 and
consistency with the masks in the training data.
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5.3.4 Acquisitions

Raw data of a fully sampled MR-investigation of the brain on a clinical 3T scanner

(MAGNETOM Prisma fit, Siemens Healthcare GmbH, Erlangen, Germany) was exported

as a representative dataset. The subject was a 57-year old woman. Images were acquired

to rule out cerebral manifestation of a B-Non-Hodgkin Lymphoma. Apart from a few

unspecific white matter lesions no intracranial pathology was found. Transversal T1-

weighted images were acquired using a spoiled gradient echo sequence (TE = 4.28 ms,

TR = 321 ms, flip angle 90◦, FOV = 235 × 235 mm2, in-plane spatial resolution =

0.61 × 0.68 mm2, matrix size 384 × 346) and T2-weighted images were acquired using a

TSE-sequence (TE = 91 ms, TR = 6610 ms, flip angle 150◦, FOV = 235 × 235 mm2,

in-plane spatial resolution = 0.46 × 0.51 mm2, matrix size 512 × 461), well within the

distribution of the NYU training dataset. A head coil with 20 channels was used. As

described in section 5.3.2, we additionally acquired a noise measurement for computing

g-factors.

Fully sampled GRAPPA CS U-Net VN

Figure 17: Reconstructions of a central slice of the T2-weighted acquisition by the tested
methods. The red arrows indicate substantial reconstruction errors in the U-Net output
where anatomy is misrepresented due to hallucinations. The yellow and blue boxes show
anatomical structure in detail in the lower two rows. One can see substantial noise in the
GRAPPA reconstructions, while the other model reconstructions appear smoothed and
alter the appearance of small details in some cases.
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Our study was approved by the institutional review board of the University of Würzburg

and the requirement of written informed consent by the study participant was waived

due to the retrospective study design (decision number 20220805 01 following the request

on 05.08.2022). The data was fully anonymized for data analysis.

5.4 Results

5.4.1 Qualitative comparison of reconstructions

Figures 17 and 18 show reconstructions of a central slice of the T2- and T1-weighted

acquisitions by the reconstruction methods as detailed above. In general, all methods

seem to correct for undersampling artifacts at R = 4 effectively. However, especially in

the enlarged ROIs (orange and blue boxes), some important differences can be noticed:

With respect to detail and sharpness, GRAPPA seems to preserve all information present

in the reference, but adds some noise. CS exhibits some clearly noticeable spatial blurring,

such that finer anatomical details are lost. The U-Net reconstruction appears to exhibit

Fully sampled GRAPPA CS U-Net VN

Figure 18: Reconstructions of a central slice of the T1-weighted acquisition by the tested
reconstruction methods. The yellow and blue boxes show anatomical structure in detail
in the lower two rows. Like in the T2-weighted images, one can see substantial noise in
the GRAPPA reconstructions, while the other model reconstructions appear smoothed
and alter the appearance of small details in some cases.
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low apparent noise and only minimal blurring. But, critically, in the locations indicated

by red arrows in the T2-weighted images, anatomy is misrepresented by hallucinations

which hide specific features. The VN on the other hand does not show similar systematic

errors for this example, and exhibits an apparently high image quality similar to the

reference.

5.4.2 Resolution maps

Representative LPSFs, one with a narrow and one with a wider main lobe can be seen

in Figure 19. In the 2D LPSFs, one can see that in particular CS and U-Net also

exhibit changes in pixels sometimes spatially quite far away from the location where the

perturbation was set.

Figures 20 and 21 show the resolution maps in both spatial dimensions obtained from

the proposed method for the T1- and T2-weighted images. Cumulative frequency analysis

(CFA) of the resolution maps and g-factor maps is shown in Figure 22, where a mask

was applied to only take pixels in the anatomy into account.

For the GRAPPA method, one can see from the maps and the CFA, that except for

some outliers, the maps are constant at a value around 1, indicating no substantial loss

in resolution with respect to nominal kmax, homogeneously across the image.

Compressed sensing clearly exhibits the largest broadenings of the LPSF’s main lobes

w, i.e. the lowest resolution. The resolution maps appear non-continuous, with even

neighboring pixels being assigned clearly different resolutions. In pixels near edges, the

width w of the LPSF’s main lobe is lower than in homogeneous areas, where values

between w = 1.5− 2.5 are common, indicating blurring there. The behavior is similar in

the resolution maps for both directions, with more blurring in the undersampled direction.

Similarly, U-Net and VN show blurring in the undersampled horizontal direction in

most of the pixels. Their general level of blurring is less pronounced compared to CS and

lowest for U-Net. A higher resolution close to 1 is preserved close to edges. In the fully

sampled vertical direction, the behavior is reversed, as U-Net and VN show moderate

blurring at sharp anatomical edges, while the width of the main lobe is reduced to values

smaller than 1 for homogeneous regions in the brain and the ventricles. The maps and

in particular the CFA present the resolution of U-Net and VN to be similar, while VN

shows slightly higher overall blurring and U-Net exhibits more outliers.

As clearly visible from the resolution maps and CFA, resolution in all methods is

noticeably lower in the horizontal direction, where undersampling was applied.
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Figure 19: Representative local point-spread functions (LPSF) for two pixels of the T2-
weighted image for all tested reconstruction methods. The first row shows the respective
locations of the pixels, and indicates a region of interest (ROI) to be investigated. Below,
the 2D LPSFs in this ROI as well as their profile in horizontal direction are shown. The
corresponding widths that were computed from these profiles at 65% of the peak height
after interpolation are noted. The locations were selected to show an example of a pixel
where the methods exhibit narrower (in the two left columns) and wider (in the two
right columns) widths of the LPSF’s main lobe, corresponding to lower and higher level
of local blurring. Especially in CS and U-Net, one can observe substantial signal in the
1D and 2D LPSF outside the main lobe.
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Figure 20: (Caption on the next page.)
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Figure 20: (Figure on the previous page.) Reconstructions of a T2-weighted slice by
GRAPPA, compressed sensing (CS), U-Net and variational network (VN), together with
error maps, resolution maps in both spatial directions and g-factor maps. The red ar-
rows indicate substantial reconstruction errors in the U-Net output where anatomy is
misrepresented due to hallucinations (see also Fig. 17). Since the output of the re-
construction models is scaled arbitrarily, for computing the error maps the output was
rescaled with a factor minimizing the l2-difference to the reference. The background of
the CS reconstruction appears bright in the error map due to the root-sum-of-squares
coil combination, which leads to noise with mean > 0 in the background of the reference,
while the CS model removes the noise prior to coil combination. The width of the main
lobe of the local point-spread function (LPSF) w is interpreted as a measure of resolution
(3rd and 4th row), where values larger than 1 correspond to a loss of resolution, i.e. local
blurring. GRAPPA shows no blurring throughout all locations. In CS and deep learning-
based methods, w correlates with anatomical structure. Undersampling was applied in
horizontal direction (see Fig. 16), where generally more blurring is indicated by the res-
olution maps. Values of the g-factor below 1 correspond to a suppression of noise, while
values above 1 show noise amplification. All methods except GRAPPA suppress noise in
most areas, while GRAPPA shows the known characteristics of noise amplification.
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Figure 21: Reconstructions of a T1-weighted slice by the tested methods together with
resolution maps in both spatial directions and g-factor maps. The results appear sim-
ilar to the ones obtained in the T2-weighted image (Fig. 20), with ideal resolution for
GRAPPA and blurring correlated with anatomical structure for the remaining model-
and data-driven reconstruction techniques. With respect to noise, GRAPPA again fea-
tures slightly elevated g-factors while the application of CS, U-Net and VN resulted in
denoised images.
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Figure 22: Cumulative frequency analysis (percentile plots) of the resolution maps in
horizontal and vertical direction and the g-factor maps that are shown in Fig. 20 and
21 for the T2 and T1-weighted image. A mask was applied to only take values inside
the anatomy into account. The x-axis specifies percentages, while the y-axis gives the
corresponding percentile of the number of pixels in the image. Resolution scores above 1
indicate local blurring in those pixels. The g-factor measures noise amplification (if > 1)
or suppression (if < 0). From the curves, it is obvious that GRAPPA shows no blurring
basically everywhere, and high g-factors above 1 in most pixels. The other methods
exhibit g-factors below 1 almost everywhere. For the resolution scores, CS shows values
substantially above 1 in most pixels, and the highest values of all methods. VN and
U-Net appear similar, with the widths of the LPSFs for VN somewhat larger than for
U-Net in most pixels. However, from the crossings of the green and red line one can see
that U-Net has more outliers.

5.4.3 g-factor maps

Figures 20 and 21 show the g-factor maps that were computed by the multiple-replica

method as detailed above, while the corresponding cumulative frequency analysis (CFA)

can be seen in Figure 22.

GRAPPA exhibits the classical g-factor maps as shown in various studies [87]. Their

geometry is driven by the arrangement of receiver coils.
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CS, U-Net and VN, all show a drastic denoising. However, this denoising is not

present at edges of the images where the g-factor are close to 1. For CS, U-Net and VN,

the g-factor maps appear rather similar.

5.5 Discussion

In this work, local spatial resolution and local noise enhancement is determined for data-

driven and model-based reconstructions of undersampled MRI data. Local point-spread

functions for each pixel and a multiple-replica approach were applied for quantifying

resolution as well as noise amplification in four different reconstruction methods. We

found that GRAPPA exhibits a homogeneously uncompromised resolution, but shows

considerable noise amplification, as it has been described previously [87]. For all other

investigated methods, the resolution depended on image structure. TV-regularized CS

suffers from a substantial decrease in resolution in homogeneous areas of the image, but

not at edges. To a lesser extent, this holds true for the resolution of U-Net and VN in

horizontal direction though also some scattered blurring independent of structure can

be seen in the resolution maps. In U-Net and VN in vertical direction, the resolution

also depends on anatomical structure and is close to 1 around edges. The blurring for

data-driven methods is substantially decreased compared to CS, and slightly higher for

VN compared to U-Net. g-factor maps are similar between VN and U-Net, showing noise

suppression almost everywhere except around hard edges.

While we are confident that the methods for investigating resolution and noise prop-

erties used here provide information on the general behavior of tested reconstruction

methods, all results in this paper are initially specific to the anatomy, contrast, acqui-

sition hardware etc. of the images we examined. Besides general similarity, some dif-

ferences between the T1- and the T2-weighted image remain, like lower resolution in the

T1-weighted image in the horizontal direction than in the T2-weighted one in all methods,

especially the VN (see Fig. 20, 21 and 22) and visibly lower reconstruction quality in the

CS reconstruction of the T1-weighted image (see Fig. 3 and 4) than of the T2-weighted

one. Since these issues are consistent with the fact that the T1-weighted image was ac-

quired (see section 5.3.4) with a lower in-plane spatial resolution (0.61× 0.68 mm2) than

the T2-weighted one (0.46×0.51 mm2), we think that the acquired resolution and matrix

size of the input data does have some effect on the performance of the reconstruction

methods and the methods for examining resolution and noise. For data-driven methods,

a good match between the training dataset and test images is also important. Investi-

gating these relationships in detail in a more comprehensive study including a variety

of anatomies, contrasts, resolutions and hardware would be a worthwhile goal for future

work.

We found that there is a substantial difference in the width of the LPSF’s main lobe
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for the vertical and horizontal directions. The values for w in the horizontal direction,

where undersampling was performed, were clearly higher than in the vertical direction,

see Fig.20, 21 and 22. This might be taken into account when choosing the direction in

which to perform undersampling.

The general idea of introducing some kind of perturbation to evaluate how a recon-

struction method responds has already been used in medical imaging [83–86]. Never-

theless, the approach of measuring the LPSF’s main lobe has profound advantages over

some previously presented methods. In particular, through the process of measuring the

width of local point-spread functions, we obtain a quantitative measure of resolution,

that can easily be interpreted as the ability to discern information by means of a single

map. However, this comes at the cost of losing some of the information present in the

2D LPSFs, as only the width of its main lobe is measured and the rest of its shape is not

considered. Furthermore, the spatially resolved g-factor also provides clear information

on the amplification or suppression of noise for the individual imaging and reconstruction

process.

In our results, we saw a clear difference in the maps of resolution and noise between

parallel imaging, represented by GRAPPA, and the other reconstruction methods CS, U-

Net and VN. GRAPPA interpolation is achieved by a convolution in k-space, separately

on the data of each receiver coil. The uniform operation in k-space allows GRAPPA to

retain ideal resolution, but at the cost of increased noise. Due to their similarity with

GRAPPA in terms of mechanisms and qualitative output, we believe that an assessment

of resolution of other parallel imaging techniques like SENSE would have similar results,

though a detailed investigation would be of interest. The other examined methods (CS,

U-Net and VN) are applied in image space. U-Net operates only on a coil-combined

reconstruction. CS and VN use the spatial information by the coil sensitivity maps in

their data consistency terms, but not in their regularization terms, which operate on

coil-combined images. We consider these mechanisms as a trade-off between resolution

and noise, as it allows them to achieve noise suppression and good artifact correction,

but results in the introduction of local blurring.

As the underlying goal of MRI is answering clinical questions, it is important how

our results translate to the diagnostic value of images reconstructed with the examined

methods. For GRAPPA, we did not find any impairment by blurring or otherwise aug-

mented anatomy, in accordance with the theory of the method. The risk here is that

the noise is increased to a level where subtle anatomical or pathological details would

get lost. The other methods, on the contrary, consistently reduced noise. However, all,

and CS the most, showed varying degrees of local blurring, which can hide abnormali-

ties. For the data-driven methods U-Net and VN, pathologies that were not represented

in the training set pose a further important challenge. Unlike the purely model-based

CS method, these data-driven methods have the ability to systematically suppress some
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image components, or fabricate an output which appears realistic to human observers,

while not being representative of the measured data. In general, the reconstruction de-

fects in deep learning-based methods are diverse and often subtle [18]. For example,

even though the U-Net reconstructions appear sharp and no residual aliasing artifacts

are visible, we observed hallucinations. We want to stress the fact that the dataset was

by no means specifically selected for this reason. Other studies have reported similar

errors [18, 30]. Though this is certainly a rare occurrence for well-designed methods, the

mere possibility raises the still open question of how these kind of reconstruction faults

could be discovered, should they appear in potential clinical application.

The methods we presented here can give a spatially resolved indication of the ability

to depict small details and the level of noise. High resolution and low noise are certainly

important prerequisites for proper reconstructions, and thus the maps we presented can

identify areas in which lower quality is possible. However, locally quantifying fidelity of

reconstructions to the measured data in a sufficient manner is a further step, and the

results presented here do not allow conclusions in this regard. For example, in Fig. 20

and 21 we saw overall higher values of w in VN than in U-Net, and yet the VN does not

exhibit obvious reconstruction defects like U-Net. Some recent publications attempt to

measure fidelity by repeated reconstructions of various kind, to identify areas in which

the reconstructions are associated with uncertainty [19, 94]. Still, we believe that further

development of functional and reliable methods that can provide quantifications of local

reconstruction fidelity is desirable, and can have a positive impact on the trustworthiness

of machine learning driven MRI.

A central assumption in the local approach, was to use sufficiently small perturba-

tions, in order to be able to use local linearity. This is justified, since the reconstruction

operator is usually smooth, and thus locally linear. On the other hand, the perturbation

should not be chosen too small, to avoid the perturbation being lost in the noise. By

reconstructing and checking the linearity condition, we found that, when we choose the

amplitude as 0.1% of the maximal pixel, all the tested reconstruction method behave

almost linear for both the T1 and the T2-weighted image. However, this is highly specific

to the reconstruction methods and should be checked for each new method and each new

image.

Note that, as described in the methods section, we used different retrospective sam-

pling patterns for the methods. This may introduce slightly different representation of

information simply due to the undersampling pattern and not directly the reconstruction

method. However, using a single pattern for all methods would have introduced a much

more substantial bias, since the methods have different requirements for undersampling

mask structure, e.g. GRAPPA requires regular undersampling while compressed sensing

benefits from random sampling. Furthermore, due to these patterns being so specific

to the reconstruction methods, one could actually regard the sampling as a part of the
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entire method, which consequently has to be included when comparing to other methods.

An obstacle to overcome for widespread application of local point-spread functions

may be computational time. For computing a resolution map, a reconstruction with the

method to be tested needs to be computed for each pixel of the input image. Since the

computation of the LPSF is not computationally demanding, almost all of the time for

computing a resolution map is spent on reconstructions. Therefore the computation times

for a resolution map depends heavily on the speed of the reconstruction method. This is

manageable for fast reconstruction methods, but problematic for slower ones. Thus, to

overcome this issue, the reconstruction method itself can be accelerated through efficient

implementations or appropriate hardware, like GPUs. Still, the determination of local

resolution may not be suited for routine computation in many images.

A clear advantage of the resolution measurement on the other hand is its simplicity.

The algorithm requires in essence only the computation of two reconstructions together

with some basic signal processing for determining the width of the main lobe of the LPSF.

We provide an implementation on GitHub (https://github.com/expRad/dlassessment).

5.6 Conclusion

We demonstrated methods for objective quality assessment of non-linear and non-stationary

MRI reconstruction methods, namely a multiple-replica method for examining noise and

a method for measuring local spatial resolution. These were applied to GRAPPA, com-

pressed sensing, variational network and U-Net reconstructions. This study may serve as

an example for the kind of critical and objective analysis of novel reconstruction methods

that is necessary for advancing these techniques toward clinical application.
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6 Summarising Discussion

With the overarching goal of improving clinical MRI, the intention in this work was to

advance MR image reconstruction. In the MR imaging procedure, reconstruction is a key

component. Not only does it have a direct impact on image quality, but it can also make

undersampling possible, which has been considered as a viable option for achieving ac-

celeration in the scientific literature [4]. Acceleration can increase efficiency, accessibility,

patient comfort and reduce cost. In some applications, like dynamic imaging, it is even

required for applying MRI in the first place. Therefore, much effort has been dedicated

to improving signal processing and reconstruction algorithms in MRI. Previously, CS al-

gorithms have been established to this end. More recently, great interest has been taken

in the rise of DL in image processing. Therefore, these algorithms have been applied to

MR reconstruction in the past years. With a large amount of active research currently

being conducted, they are constantly improving, and in some areas can already be seen

as the state-of-the-art.

For this task, a promising network architecture is a variational network (VN). It

incorporates data consistency mechanisms that promote fidelity of the reconstructions

with measured data, leading to more robustness. In the first chapter, a VN model

for reconstruction of undersampled spiral data for functional imaging of the heart was

presented. There are a number of alternative approaches and possible improvements of

the VN architecture that was used in this thesis, some of which are discussed in the

following.

Uniquely, the VN model explicitly incorporated the non-Cartesian data in the data

consistency term by transforming between on-grid and off-grid k-space in each cascade of

the network. This approach is rather puristic in the sense that the entire MRI sampling

procedure is modeled in the forward and adjoint operator of the VN. However, it has the

disadvantage the a gridding and de-gridding operation has to be performed for each data

consistency step, i.e. in each cascade. Even with computations on GPU, these operations

are comparatively slow, which lead to reconstruction times of about 0.9 s per image where

most of the time is spend on gridding. An alternative approach here would be to initially

transform to a Cartesian grid, and then perform the entire VN computation there, which

is much faster. The challenge then is to perform data consistency on the Cartesian

k-space, while the data are measured with spiral waveforms. Since data consistency
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should only be performed on k-space positions where data was actually measured, using

convolution gridding like it was done here is problematic, as it spreads out the measured

data in k-space. While it may be possible to come up with an approach to perform data

consistency on such a gridded k-space, another approach would be to use an alternative

method for transforming to a Cartesian grid. An option is grappa operator gridding

(GROG) [95], where the sampled off-grid positions are shifted and transformed to the

closest on-grid point, using the information gained from comparing different receiver coil

channels. This results in Cartesian k-space data with defined sampling positions, and

thus a VN that operates entirely on a Cartesian grid can easily be implemented. For data

similar to the spiral cardiac data presented in chapter 4, such an approach was attempted.

However, performance was inferior to a VN that performs data consistency off-grid. This

may be due to errors that were introduced in the GROG operation, which were then

enforced together with data consistency, thus degrading image quality. Nevertheless, the

potential for substantial acceleration warrants further investigation in this direction.

In a recently-presented paper [45], a VN model was used that performed the gradient

descent operation in k-space rather than image space. While the authors performed

experiments and found that in their application this improved performance, most current

publications use VNs operating in image space [2, 15, 17, 18]. This is problematic when

using Kaiser-Bessel gridding, as the undersampling mask can not be modeled correctly.

But using such a VN operating in k-space could be possible for non-Cartesian data, by

using GROG to initially transform the undersampled data to a Cartesian grid. This could

increase performance. Furthermore, the authors also included a learnable component that

estimates the coil sensitivity maps, which they found increased performance over using

pre-computed sensitivity maps. It would be worthwhile to explore whether these ideas

can be beneficial for in the applications presented in this thesis.

Considering for a moment the motivation for the VN model (described in section

4.3.3), the idea for the regularization term Φ in the equation

xt+1 = xt − λ(A∗(Axt − k) + Φ(xt)) (27)

is that is it uses prior knowledge to enforce high-quality network output and suppress

undersampling artifacts. In compressed sensing, Φ is realized by a hand-crafted model

term, while in the VN model the number of cascades is fixed and in each cascade an

individual regularization term is learned from data. However, in view of how regularized

gradient descent usually operate (e.g. in compressed sensing), it seems somewhat unnat-

ural that different regularization terms enforce different image features in each cascade.

One could think that it may just as well be possible to learn a single regularizer from

data, that enforces desirable image features, regardless of how many gradient descent

steps have taken done before. Apart from reducing the number of trainable parameters

in a VN model by a factor equal to the number of cascades (usually around 10), this
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would have the benefit that the number of iterations would not have to be fixed, and

could be adjusted to the specific input, as is done in compressed sensing. To investigate

this approach, the VN model from chapter 4 was re-trained, as well as several other VN

models for other applications. The number of cascades was kept constant, but only used

a single U-Net as regularizer, which was used to compute the regularization terms in

all cascades. This approach did result in a network model that was in principle able to

reduce undersampling artifacts. However, performance both in terms of the loss func-

tion as well as visual image quality consistently stayed behind the classical model, even

though the difference was only small in some tested applications. The reasons for this

are not clear. It may be that using different regularizers in each cascade leads to more

flexibility in the operation of the model or the higher parameter count could increase the

modeling capability. Nevertheless, even though no clear benefits could yet be found in

this approach, by potentially employing different training approaches, or tuning the hy-

perparameters (e.g. the size of the regularizing U-Net) it may well be possible to achieve

an innovative, and more flexible VN model.

The variational network model in chapter 4 was extensively evaluated, by comparing

it to segmented techniques including the clinical gold standard, a CS and a U-Net model

in a variety of categories. These included quantitative scores like SSIM and RMSE, an

expert reader study and performance in cardiac functional imaging. The goal of this

evaluation was to compare the various methods based on the quality of their output.

Image quality encompasses a large number of aspects. In medical imaging, the first

priority is clearly diagnostic value, i.e. the ability of an image to convey information in

a form that a trained radiologist can read to answer a specific clinical questions. This is

important, since it differentiates the concept of image quality in medical imaging from

that in general image processing. For example, up to a certain level, radiologists are

able to read through noise quite well, meaning that in spite of noise they are able to

discern structures that a normal, untrained observer may not. Also, not all parts of an

image are of interest, e.g. in functional imaging of the heart the main feature of interest

is the location of the myocardium-blood border, to enable an accurate segmentation

for computation of quantitative scores. On the other hand, image artifacts that look

similar to structures that are of interest may be more problematic. In a perfect world,

assessment of image quality in MRI would therefore be conducted on diagnostic value

directly. Unfortunately, this world is not perfect, and diagnostic value is quite hard and

usually expensive to measure. As a positive example, the 2020 fastMRI challenge [18]

should be mentioned. Some of the submitted reconstruction models were evaluated for

depiction of pathological structures, by reconstructing a dataset that included a range of

common pathologies, the depiction of which was then judged by a panel of radiologists.

However, this is unfortunately more of an exception than the norm, and even here, due

to the high effort, was done only to evaluate the finalists, which were selected on the
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basis of quantitative scores. In chapter 4, diagnostic value was assessed by computing

cardiac functional parameters for the clinical gold standard and the proposed VN model.

The other reconstruction methods (U-Net, LRS) were omitted from this comparison due

to the high effort that is necessary for manually segmenting cardiac images, though these

results would certainly have been of interest. Instead, like in many studies, these were

evaluated based on quantitative scores, both model-based with respect to a reference

(SSIM and RMSE) and through ratings by expert radiologists. While ratings by experts

are always possible, the effort is also relatively high due to the manual process. Also,

access to expert ratings can be limited. Depending on the rated categories and the clinical

query, it may allow some limited conclusions regarding diagnostic value. For the study

presented in chapter 4, the expert ratings could provide some information on the ability

of the reconstructions to accurately locate the myocardium-blood border. Furthermore,

these serve to generally evaluate the image quality of the examined models, which may

be of interest for potential other applications of these models. Lastly, assessment of

image quality based on quantitative metrics like RMSE or SSIM is the most common

form of evaluation. The required effort is relatively low, in particular for supervised

DL applications where some sort of trainings dataset is already present. After all, the

foundation of DL builds on the idea that good image quality in the output of a network

can be achieved by minimizing such a loss function. While this is true to some extent,

the information that model-based metrics of image quality provide is generally only very

coarse. These loss terms simply can not capture all detailed aspects of image quality

with respect to diagnostics, as these also depend on the clinical question. This is also

true for perceptually motivated terms like SSIM. Also, while evaluation on the basis of

quantitative scores is feasible in most cases, it can also be problematic in others. The

evaluation of the presented model had to rely on synthetic data that was generated from

cine reconstructions using a special spiral sequence (see Table 2), since no directly fully

sampled acquisitions are possible in cardiac imaging.

By this point, it seems clear that evaluation of reconstruction methods and their out-

put image quality in medical imaging is challenging, with considerable downsides to all

common approaches. As a potential step towards improving this situation, chapter 5 was

dedicated to demonstrating advanced, and not yet widely used, approaches for assessing

image quality in MRI reconstruction. It showed methods for assessment of resolution and

noise in MR reconstructions by non-linear, in particular data-driven, algorithms. Unlike

the purely image-based evaluations discussed above, these explicitly utilize the acquired

k-space data and the reconstruction method, to - essentially - ’locally probe’ the recon-

struction procedure of the examined image with either a small perturbation for assessing

local blurring or with repeated, noisy reconstructions for assessing noise amplification

or suppression. In a sense, both of these methods analyze the image by locally testing

how the reconstruction would have changed in the presence of either a local perturbation
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or input noise. Extracting additional information by repeated application of the recon-

struction method for assessment increases complexity, in particular computational effort,

but it also allows some conclusions that would not have been possible based only on the

reconstructed image alone. It should be noted that these results are specific to the ex-

amined image and reconstruction method, and care has to be taken before generalizing.

Although rather similar behavior in the reconstruction methods between the two tested

brain images was observed, the small sample size clearly limits the assertions that are

possible with respect to a reconstruction method in general. Still, even for analyzing just

single images, these methods may be valuable tools. They allow precise local analysis of

resolution and noise, which can be combined together to get a spatially resolved assess-

ment of image quality. However, directly infering conclusions about diagnostic value is

not possible. For example, the U-Net reconstructions were clearly flawed, as was appar-

ent from the error maps and the observed hallucinations, but this was not reflected in

the quantitative maps of resolution and noise. In the VN reconstructions, with clearly

less hallucinations, the quantitative maps actually indicated lower resolution in most of

the image (see Fig. 20, 21, 22). Therefore, these approaches do not aim to replace

any of the methods for analyzing MRI reconstructions discussed above. In particular, it

should be stressed again that for clinical applications, there currently does not exist any

alternative for reliably assessing diagnostic value other than analysis of clinical results by

experts. Instead, the presented methods should be seen as additional tools, with which

some important aspects of image quality can be judged. As such, the results above show

promising potential for enriching the analysis of MRI reconstructions.

Next to cardiac imaging, MRI is also particularly suited for abdominal imaging, due

to its superior contrast in soft tissue. For visualizing the biliary and pancreatic duct,

magnetic resonance cholangiopancreatography (MRCP) is currently considered the gold

standard, and is commonly used in clinical routine. MRCP consists of a heavily T2-

weighted, three-dimensional acquisition, covering the entire biliary tract. Its structure,

and in particular pathologies like stenoses in the biliary ducts are of principal interest

to clinicians. This presents challenges to the imaging system, as high spatial resolution,

and thus acquisition time, is necessary to detect small abnormalities. As it is therefore

currently not possible to record all necessary data in a single breath-hold, one uses respi-

ratory gating, which increases acquisition time even more. This is problematic, not only

from an economic point of view, but also since avoiding patient motion becomes increas-

ingly difficult with longer scan times. Together with residual breathing motion due to

imperfect gating, this results in scans commonly being corrupted by motion artifacts. To

overcome these difficulties, an acceleration of MRCP acquisitions beyond classical tech-

niques is imperative. This may be possible by reconstructing undersampled acquisitions

robustly with a VN. However, a hurdle to overcome is collecting an appropriate dataset

for fitting the model. This is particularly problematic in the case of MRCP, since fully
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sampled acquisitions are frequently corrupted by motion artifacts. One possible solution

may be to use an appropriate synthetic dataset. Another approach to even entirely over-

come the need for training data are self-supervised training schemes, which have recently

been applied to MRI reconstruction [63]. To explore these approaches, a 3D VN model

for Cartesian data, where all operations like Fourier transforms or convolutions in the

U-Net model are three-dimensional, was implemented. It was trained on one hand in the

classical supervised manner on a synthetic dataset generated from 807 MRCP volumes,

which were exported from the University Hospital Würzburg’s clinical archive. On the

other hand the self-supervised technique recently presented by Yaman et al [63], with

which the network weights can be fitted on only the data of a single acquisition was

also implemented. The resulting models were evaluated on prospectively undersampled

MRCP acquisitions at R = 12, and compared to a compressed sensing model. Pre-

liminary results were published as a conference abstract [96] and some representative

reconstructions can be seen in Fig. 23. One can observe that both VN models as well

as the CS model are in prinicple able to effectively reduce the undersampling artifacts

that are clearly visible in the naive reconstruction without any artifact correction. In the

output of the self-supervised VN and the CS model, slight blurring can be seen, while the

supervised VN shows some noise. However, for a robust and detailed assessment of these

models and training schemes, a more comprehensive study is necessary. To this end, a

larger patient study is currently being conducted, where undersampled MRCP data are

acquired at different acceleration factors. While this is a challenging undertaking due

to frequent corruption by gating errors, the aim is to develop a reliable, undersampled

MRCP protocol with a reconstruction based on a 3D VN. In summary, while these re-

sults are certainly still preliminary, they point towards another promising application of

VNs in clinical MRI.

For application to this or similar 3D reconstruction methods, generalizing the ap-

proaches for assessment of resolution and noise that were presented in chapter 5 could be

a worthwhile aim for future work. Most steps could be done just the same, and for the

pseudo-multiple replica method for computing g-factor maps no changes are necessary

beyond using 3D volumes instead of 2D images. The method for assessing resolution

would require measuring the width of the main lobe of a 3D instead of a 2D LPSF.

Straight-forward, this can be done by adding a third direction into which the 3D LPSF

is sliced. However, this raises the question, which is also valid for 2D images, whether

there is not an easier, more interpretable approach then examining two or three maps

for the spatial directions separately. For example, one could slice the LPSF’s main lobe

at some pre-determined height, and then measure the area (or, the volume respectively)

of the resulting shape. Regardless of dimensionality, this would result in a single map,

combining the information of the two maps for the spatial directions that can be seen

in Figures 20 and 21. However, while increasing simplicity, some information would be
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Figure 23: Comparison of reconstructions of prospectively undersampled (R = 12)
magnetic resonance cholangiopancreatography (MRCP) using a 3D variational network
trained with a supervised and a self-supervised method, and a compressed sensing model.
The first row shows a central slice, while the lower rows show maximum intensity projec-
tions. Compared to the naive reconstruction without any artifact correction, both VN
models as well as the CS model are able to effectively reduce undersampling artifacts.

lost, like the difference in behavior that was observed for the two spatial dimensions.

Going even beyond this, it is worth pointing out that the concept of analyzing MRI re-

construction methods through local point-spread functions, or more general by any kind

of perturbations, has a large potential for making more detailed assessments possible.

For example, one could perturb an image not only in single pixels, but multiple pixels

at once, and potentially even use carefully designed structures as perturbations. Devel-

oping ideas on how to best take into account the structure and shape of the 2D LPSF

beyond just measuring the width of the main lobe could also be beneficial, as with the

approach presented above, much information is disregarded (see Fig. 19). In a recent

paper [86], the authors attempted an approach where all pixels are perturbed simulta-

neously, and further presented a copious list of other possible ideas. Finally, expanding

the range of applications of the methods from chapter 5 by generalizing to non-Cartesian
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reconstruction methods would be useful. This could prove challenging due to the added

complexity of gridding, and cases like in chapter 4 where fully sampled data is difficult

or impossible to obtain pose additional obstacles. However, investigating the effects of

non-Cartesian reconstruction on resolution and noise would certainly be of interest and

a valuable extension to the results presented above.

With the motivation of improving magnetic resonance imaging in a clinical context,

this thesis identified reconstruction as a key component to facilitate progress. In the

scientific literature, the current advances in signal and image processing through novel

deep learning algorithms have recently demonstrated considerable potential for applica-

tions in MRI reconstruction. In particular variational networks, where the architecture

is informed by the nature of the task as an inverse problem by unrolling a gradient

descent iteration have been established as suitable [2, 14, 15, 17, 18]. Therefore, exam-

ining VNs took a central place in this thesis. The following paragraph reflects on these

results. First, in all presented applications, it was found that VNs are well suited for

reconstructing undersampling artifacts in MRI. They are highly versatile, and successful

applications to 2D Cartesian, 2D spiral and 3D Cartesian reconstruction problems were

presented. Perceived image quality was generally good. Slight blurring around edges

was observed on occasion, both visually (Fig. 10) and on the basis of local point-spread

functions (Fig. 20, 21), but to an extend acceptable for clinical use (Tab. 3). Noise is

generally low in the output images (Fig. 20, 21, Tab. 3), as it is actively suppressed by

the learned regularizers, in particular in homogenous areas. Like other advanced meth-

ods, the produced resolution and noise in the output is not homogenous, but adaptive to

the image structure (Fig. 20, 21). Compared to purely image-based data-driven artifact

correction based on a U-Net, clearly superior performance was observed in the VN on

all occasions. While computational complexity and runtimes are lower for U-Nets (Tab.

1), these showed more residual artifacts and blurring (Fig. 9, 10), substantially more

hallucinated image structures (Fig. 17, 18), and worse generalization beyond the trained

data domain (Fig. 11). Comparisons to model-based compressed sensing methods were

more balanced, with performance overall similar, but details depending on the specific CS

model. In different cases, lower levels of noise (Fig. 10, Tab. 3), blurring (Fig. 23) and

residual artifacts (Fig. 18) were observed in VN over CS. In dynamic imaging, perfor-

mance was overall on par, even though the latter was able to use additional information

by applying a temporal model (Fig. 9, Tab. 3). Unlike VNs, CS models do not need

to be trained and are agnostic to anatomy (Fig. 11), but often require longer runtimes

(Tab. 1, Section 4.5). For applying VN models to data with non-Cartesian sampling

trajectories, a novel approach, where the entire sampling process including gridding and

de-gridding was modeled in the forward and adjoint operator, was found to perform well

(Chapter 4).

Overall, VNs showed excellent performance in clinical MRI. They seem to combine
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the good modeling capabilities of deep learning with the data fidelity and robustness of

compressed sensing.

With a large host of publications on manifold applications in the past years, it may

be conceivable - and is certainly up to debate - to call VNs, or more general networks

of unrolled gradient descent structure, the current gold standard for DL-based MRI

reconstruction. Meanwhile, the field of image processing and with it MRI reconstruction

is continuing to evolve. In the very recent past, two new kind of new DL models, namely

Transformer and Diffusion Models have been gaining traction. While Transformers can be

used as a building block inside the regularizers of a VN or other neural networks, Diffusion

Models represent an entirely new approach to extracting and modeling prior knowledge

from a training dataset. Some first, promising applications to MRI reconstruction have

been presented [97–99], though it is certainly still too early to evaluate the benefits of

these techniques. It does however turn attention to the remakable speed and energy with

which innovation in the field of MRI reconstruction is driven today.
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“Self-supervised learning of physics-guided reconstruction neural networks without
fully sampled reference data,” Magnetic Resonance in Medicine, vol. 84, no. 6,
pp. 3172–3191, 2020. doi: 10.1002/mrm.28378.

78

https://doi.org/10.1002/mrm.27480
https://mrsrl.stanford.edu/~brian/vdspiral/
https://mrsrl.stanford.edu/~brian/vdspiral/
https://doi.org/10.1002/(sici)1522-2594(200005)43:5<682::aid-mrm10>3.0.co;2-g
https://doi.org/10.2307/2372313
https://doi.org/10.1002/mrm.1910380117
https://doi.org/10.1109/42.774166
https://doi.org/10.1002/(SICI)1522-2594(199901)41:1<179::AID-MRM25>3.0.CO;2-V
https://doi.org/10.1002/(SICI)1522-2594(199901)41:1<179::AID-MRM25>3.0.CO;2-V
https://doi.org/10.1002/mrm.28827
https://doi.org/10.1002/mrm.28420
https://doi.org/10.1002/mrm.28378


[64] M. Muckley, Torchkbnufft, https://github.com/mmuckley/torchkbnufft. Online, ac-
cessed 1 Aug. 2022.

[65] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: From
error visibility to structural similarity,” IEEE Transactions on Image Processing,
vol. 13, no. 4, pp. 600–612, Apr. 2004. doi: 10.1109/TIP.2003.819861.

[66] J. Zbontar et al., fastMRI: An open dataset and benchmarks for accelerated MRI,
Dec. 11, 2019. doi: 10.48550/arXiv.1811.08839.

[67] R. Otazo, E. Candès, and D. K. Sodickson, “Low-rank plus sparse matrix decom-
position for accelerated dynamic MRI with separation of background and dynamic
components,” Magnetic Resonance in Medicine, vol. 73, no. 3, pp. 1125–1136, 2015.
doi: 10.1002/mrm.25240.

[68] J. Kleineisel et al., GitHub - expRad/spiralvarnet, https : / / github . com / expRad /

spiralvarnet. Online, accessed 30 June 2019.

[69] J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement
between two methods of clinical measurement,” The Lancet, vol. 327, no. 8476,
pp. 307–310, Feb. 8, 1986. doi: 10.1016/S0140-6736(86)90837-8.

[70] ——, “Measuring agreement in method comparison studies,” Statistical Methods in
Medical Research, vol. 8, no. 2, pp. 135–160, Apr. 1, 1999. doi: 10.1177/096228029900800204.

[71] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and
A. F. Frangi, Eds., ser. Lecture Notes in Computer Science, Cham: Springer Inter-
national Publishing, 2015, pp. 234–241. doi: 10.1007/978-3-319-24574-4 28.

[72] N. Kawel-Boehm et al., “Reference ranges (“normal values”) for cardiovascular
magnetic resonance (CMR) in adults and children: 2020 update,” Journal of Car-
diovascular Magnetic Resonance, vol. 22, no. 1, p. 87, Dec. 14, 2020. doi: 10.1186/

s12968-020-00683-3.

[73] L. Feng, L. Axel, H. Chandarana, K. T. Block, D. K. Sodickson, and R. Otazo,
“XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state
dimensions using compressed sensing,” Magnetic Resonance in Medicine, vol. 75,
no. 2, pp. 775–788, 2016. doi: 10.1002/mrm.25665.

[74] A. G. Christodoulou et al., “Magnetic resonance multitasking for motion-resolved
quantitative cardiovascular imaging,” Nature Biomedical Engineering, vol. 2, no. 4,
pp. 215–226, Apr. 2018. doi: 10.1038/s41551-018-0217-y.

[75] E. Kobler, A. Effland, K. Kunisch, and T. Pock, “Total deep variation for linear
inverse problems,” in 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), Jun. 2020, pp. 7546–7555. doi: 10.1109/CVPR42600.2020.

00757.

[76] B. Dietz, B. G. Fallone, and K. Wachowicz, “Nomenclature for real-time magnetic
resonance imaging,” Magnetic Resonance in Medicine, vol. 81, no. 3, pp. 1483–
1484, 2019. doi: 10.1002/mrm.27487.

[77] K. S. Nayak, “Response to letter to the editor: Nomenclature for real-time magnetic
resonance imaging,” Magnetic Resonance in Medicine, vol. 82, no. 2, pp. 525–526,
2019. doi: 10.1002/mrm.27770.

79

https://github.com/mmuckley/torchkbnufft
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.48550/arXiv.1811.08839
https://doi.org/10.1002/mrm.25240
https://github.com/expRad/spiralvarnet
https://github.com/expRad/spiralvarnet
https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/10.1177/096228029900800204
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1186/s12968-020-00683-3
https://doi.org/10.1186/s12968-020-00683-3
https://doi.org/10.1002/mrm.25665
https://doi.org/10.1038/s41551-018-0217-y
https://doi.org/10.1109/CVPR42600.2020.00757
https://doi.org/10.1109/CVPR42600.2020.00757
https://doi.org/10.1002/mrm.27487
https://doi.org/10.1002/mrm.27770


Chapter 7. References
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Appendix B. Acronyms

B Acronyms

CT computed tomography

MRI magnetic resonance imaging

MR magnetic resonance

PI parallel imaging

CS compressed sensing

DL deep learning

VN variational network

CNN convolutional neural network

GPU graphics processing unit

IRB institutional review board

FOV field of view

bSSFP balanced steady-state free precession

LRS low-rank plus sparse

ECG electrocardiogram

TR repetition time

TE echo time

DCF density compensation function

nuFFT non-uniform Fast Fourier Transform

SSIM structural similarity index measure

MSE mean-squared error

RMSE root mean-squared error
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EDV end-diastolic volume

ESV end-systolic volume

SV stroke volume

EF ejection fraction

GRAPPA GeneRalized Autocalibrating Partial Parallel Acquisition

SNR signal-to-noise ratio

LPSF local point-spread function

ADMM alternating direction method of multipliers

SAX short axis

LAX long axis

MRCP magnetic resonance cholangiopancreatography

GROG grappa operator gridding
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