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ABSTRACT Scalability is often mentioned in literature, but a stringent definition is missing. In particular,
there is no general scalability assessment which clearly indicates whether a system scales or not or whether
a system scales better than another. The key contribution of this article is the definition of a scalability
index (SI) which quantifies if a system scales in comparison to another system, a hypothetical system,
e.g., linear system, or the theoretically optimal system. The suggested SI generalizes different metrics from
literature, which are specialized cases of our SI. The primary target of our scalability framework is, however,
benchmarking of two systems, which does not require any reference system. The SI is demonstrated and
evaluated for different use cases, that are (1) the performance of an IoT load balancer depending on the system
load, (2) the availability of a communication system depending on the size and structure of the network,
(3) scalability comparison of different location selection mechanisms in fog computing with respect to
delays and energy consumption; (4) comparison of time-sensitive networking (TSN) mechanisms in terms of
efficiency and utilization. Finally, we discuss how to use and how not to use the SI and give recommendations
and guidelines in practice. To the best of our knowledge, this is the first work which provides a general SI
for the comparison and benchmarking of systems, which is the primary target of our scalability analysis.

INDEX TERMS Communication networks, performance, availability, scalability.

I. INTRODUCTION
The evaluation of systems focuses on different aspects: per-
formance, efficiency, elasticity, flexibility, and scalability.
Especially, scalability is often used in literature with state-
ments like ‘‘The system scales well.’’ or ‘‘Our approach scales
better than previous ones.’’ However, such statements are
imprecise and do not give meaningful insights. To this end,
a stringent definition of scalability is provided which allows
quantifying scalability and to compare the scalability of com-
munication networks and systems.

In the context of software engineering and cloud com-
puting, there are several definitions of scalability, e.g., [1],
and [2]. The closest work to ours is the definition of
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scalabilitymetrics in [1] for cloud computing. They define the
quality scalability metric of the system as follows: For a sys-
tem, the target measure of interest f (x) is measured depending
on a certain parameter. In the case of cloud computing [1],
the target measure is, e.g., the average service response time
and the parameter is the demand level x. The obtained area
F under the average service response time function is then
compared to the area H of an ideal system function h(x)
(i.e., ideal service response time) depending on the demand.
The quality scalability metric is the ratio of the two areas
under the curve, i.e. H/F , which gives a value between
0 and 1. This is visualized in Figure 1.

In the realm of communication networks and systems,
scalability is frequently acknowledged but lacks a precise def-
inition, analysis, and quantification in existing research and
literature. We generalize the definition in [1] by considering:
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FIGURE 1. Quality scalability metric as ratio H/F of the areas under the
target measure curves in the context of cloud computing according to [1].
The real system F is related to an ideal system H.

1) A system function f (x) which quantifies an arbitrary
target measure of interest, e.g., average response time,
e.g., 95% quantile of response time, e.g., packet loss
ratio.

2) An arbitrary reference system (with target reference
function h(x)), which may be the optimal system behav-
ior. However, the optimal system may be unknown in
practice, and we may want to consider if the system,
e.g., scales linearly. Then this can be done with a proper
reference function.

3) Instead of a parameter range [x0; x1] to be considered in
the scalability analysis, we focus on a weighted param-
eter range w(x) which allows defining the importance
of some parameter settings in the scalability analysis.
Or we may also exclude some parameter settings in the
analysis.

Our definition is more general, and several definitions
of scalability metrics in literature are a special case of
ours. The closest definition to ours is [1] which considers
the optimal reference system; however, the optimal system
behavior may be unknown for real-world communication
networks and systems. Furthermore, the arbitrary target mea-
sure needs to be adapted to communication networks and
systems, e.g., considering service-level agreements as we
demonstrate in our use cases. Our introduced weighted
parameter range is thereby of utmost importance to appro-
priately include the network and system configurations or
parameter values of interest. The weighted parameter range
may also consider costs, see the availability use case later.
Thus, all ingredients are generalized to the needs of commu-
nication networks.

A. CONTRIBUTION
The key contribution of this paper is a general framework
to quantify whether a system (or communication network)
is scaling in comparison to a reference system. This also
allows comparing two systems and to rank them, i.e., which
system is scaling better. We additionally provide an overview

of related concepts (performance, efficiency, elasticity, flex-
ibility) and how they differ from scalability. This conceptual
difference is important, since related work is partly mixing
terms and not providing measures for scalability. To this
end, we conduct an in-depth literature study and show the
differences of existing measures to our framework. We show
that our scalability index generalizes approaches from the
literature by the introduction of arbitrary reference sys-
tems and target measures, as well as the introduction of a
weighted parameter range. Finally, we demonstrate the usage
of the scalability framework for different use cases: IoT
load balancer, availability in communication systems, loca-
tion selection in fog computing, comparison of time-sensitive
networking (TSN) mechanisms. Those use cases show dif-
ferent aspects which need to be considered in a scalability
analysis and are summarized as lessons learned. We discuss
practical guidelines on how to use the scalability index, espe-
cially regarding the definition of reference systems, target
functions, weighted parameter ranges. Our contributions in
a nutshell:

• scalability framework generalizing existing approaches;
• overview of related concepts: performance, efficiency,
elasticity, flexibility, scalability;

• detailed analysis of related work wrt. scalability defi-
nitions: identification of misleading usage of the term
‘scalability’ due to missing scalability definition;

• complementary use cases which demonstrate how to use
the scalability index in practice and which indicate the
need for the suggested generalization.

B. ORGANIZATION
The remainder of this paper is structured as follows. Related
work is revisited in Section II to get an overview of existing
scalability definitions and to differentiate it from aspects like
performance, efficiency, elasticity. The literature study serves
as the basis for our definition of a scalability index (SI)
in Section III that generalizes the existing approaches.
To demonstrate the SI, different use cases are analyzed in
Section V: (1) scalability of an IoT load balancer depending
on system load, which is modeled with queueing theory; (2)
availability of a communication system depending on the
number of nodes and system structure, which is modeled
by probability theory; (3) scalability comparison of differ-
ent location selection mechanisms in fog computing with
respect to delays and energy consumption based on exist-
ing experimental results; (4) comparison of time-sensitive
networking (TSN) mechanisms in terms of the number of
deployed streams while guaranteeing upper delay bounds
based on measurement results, which are investigating an
unequally spaced parameter range (number of requested
stream). The intention of those use cases is to demonstrate
how to compare systems, the relevance of the target parameter
under investigation, how to cope with positive (e.g., avail-
ability) and negative target functions (e.g., waiting times),
the impact of the parameter range under investigation, how
the target measure influences the scalability result. This will
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be summarized in Section VI which provides additional
discussions and recommendations for the practical usage of
the SI and lessons learned from the use cases.

II. EXISTING FRAMEWORKS AND METRICS
ON SCALABILITY
In the context of cloud computing, several definitions of
scalability are provided, which are revisited and summarized
below. This summary will show that our proposed definition
of scalability is more general and abstracts the existing defi-
nitions. However, before that, we want to differentiate several
terms related to scalability to clarify the different scopes.

FIGURE 2. Performance curves of two systems F and G.

A. DIFFERENTIATION: PERFORMANCE, EFFICIENCY,
ELASTICITY, FLEXIBILITY, SCALABILITY
Figure 2 shows the performance of two different systems F
and G. In the example, the average response time is plotted
depending on the number of requests per hour to be served
by the system. Thereby, the system is considered for a given
request rate over a longer time, i.e., under quasi steady-state
assumptions1 of the system. It can be seen that the system F
has a better performance for 100 and 200 requests per hour
than G. However, G outperforms F for 300 or more requests
per hour. From Figure 2, it is unclear which system scales
better, but it seems that G has better scalability properties. For
such statements, a proper definition of scalability is required.
Efficiency relates to the costs (or consumption of resources

in general) required to complete a request or a given amount
of work in a system. For example, energy efficiency would
be the ratio of the number of completed requests in a system
compared to the maximum number of requests which could
have been completed in an ideal systemwith the same amount
of energy [3]. As for the quantification of performance, the
system is considered for a particular parameter setting over
longer time, e.g., 100 requests per hour. Of course, the request
arrivals are a stochastic process, but a quasi stationary system

1The system conditions are varying slowly enough such that the system
acts over a longer period of time as in equilibrium.

is considered where the request arrival rate over longer time
is quasi constant. Other measures of efficiency in the context
of distributed systems consider the work rate per processor,
while ‘‘Scalability means not just the ability to operate, but to
operate efficiently and with adequate quality of service, over
the given range of configurations’’ [4].
In contrast, elasticity considers the dynamic changes of a

system and quantifies the ability of the system to adapt itself
during shorter time scales. Elasticity is defined as ‘‘the degree
to which a system is able to adapt to workload changes by
provisioning and de-provisioning resources in an autonomic
manner, such that at each point in time the available resources
match the current demand as closely as possible’’ [5]. The
dynamic adaptation of capacity, e.g., by altering the use of
computing resources, to meet a varying workload is called
elastic computing [6]. In communication networks, elasticity
means that the network adapts its operation and reallocates or
redistributes resources (resource supply) according to tem-
poral and spatial traffic fluctuations and service demands
(resource demand). This may include computational and
communications resources, e.g., for the management of com-
putational resources in softwarized and virtualized networks,
e.g., in 5G systems [7]. Figure 3 illustrates the elasticity of
a system over time by comparing the resource demand and
the resource supply of that system. In contrast, efficiency
would relate the resource supply and the resulting costs to
the resource demand. Mathematical definitions for elasticity
are provided in [5].

FIGURE 3. Elasticity of a system relating resource supply and resource
demand [5].

It is worth noting that the time dynamics of the resource
demand in Figure 3 are summarized as a single parameter
setting x in the performance curve in Figure 2. E.g., the
average resource demand, expressed as number of requests
per hour, is the considered parameter in the quasi stationary
system. The performance of that system is then characterized
in that quasi steady state, e.g., by considering the average
response time. Thus, the results from Figure 3 are a single
point in Figure 2, as visualized in Figure 4.
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FIGURE 4. Performance and elasticity of a system are considered on
longer and shorter time scales.

Finally, flexibility is a key property of systems that are
surveyed for communication networks in [8]. A model for
measuring network flexibility is proposed in [9] which quan-
tifies network flexibility as the achievable subset of the set of
all possible demand changes. It is defined in [9] as: ‘‘Given
the demands the communication network has to respond,
network flexibility is the ability of the network to adapt its
state to satisfy the new demands promptly and with little
effort.’’ In contrast to elasticity, flexibility considers all pos-
sible demand changes in the quantification.

B. DEFINITIONS OF SCALABILITY IN LITERATURE
In general, scalability is seen as the ability of the system to
sustain increasing workloads of a quasi stationary system,
i.e., on a longer timescale, e.g., by making use of additional
resources, e.g., by adapting its configuration, e.g., by adapt-
ing or reducing QoS. In the context of cloud computing,
scalability is typically seen as the ability of the cloud-based
system to increase the capacity of the software service deliv-
ery by expanding the quantity of the software service that
is provided when such increase is required by increased
demand for the service over a longer period of time [1], [2].
In contrast, short-term flexible provision of the resources is
captured by elasticity of the service provision which means
scaling up or down at a specific time; hence, elasticity is
the measurement of the instantaneous behavior of the service
in response to changes in service demand [1], as depicted
in Figure 3. Scalability is scaling up by adding resources in
the context of a given time frame and considers the behavior
of the service over a (longer) period of time. Thus, scala-
bility does not aim at quantifying how fast, how often, and
at what granularity scaling actions can be performed [5],
but considers a longer period of time. However, scalability
needs to consider the system behavior (e.g., performance
or any other desired target function) of all different and
relevant demand scenarios. Hence, Figure 2 is the required
general input for a scalability measure. We follow this under-
standing of scalability and provide a general framework to

quantify a scalability index and show how to compare the
scalability of systems.

For various use cases and scenarios, particular definitions
of scalability are provided. For software defined networks,
scalability issues are arising due to logically centralized con-
trol planes, whichmay need to be physically distributed. Such
scalability issues as well as concrete solution approaches
are discussed, e.g., in a special issue [10]. However, still,
a concrete scalability metric is required whichmay be utilized
for quantifying such solution approaches. To this end, [11]
defines a scalability metric for control planes in software
defined networks. Thereby, the authors propose to use another
target function beyond throughput and latency to address
control planes properly. In particular, they consider for a
network the ratio of workload over overhead. Workload is
thereby quantified as the number of flows entering the net-
work through the data plane. Overhead is quantified as the
number of messages processed in the control plane. How-
ever, this definition of scalability lacks the consideration of
changed demands and is more related to efficiency. To fit
this into a general scalability framework, the ratio of work-
load over overhead may be considered as a target function
depending on the system load. The resulting curves which are
provided in [11] are then similar to Figure 1 and may serve
as input for a scalability index. In general, literature quite
often considers such performance curves (e.g., Figure 2) and
authors qualitatively argue that a system is scaling without
properly defining what this really means.

For communication networks, coping with dynamicity,
heterogeneity of demands, diversity of communication mech-
anisms, and the scale leads to significant challenges, while
stringent and dynamic quality requirements need to be ful-
filled. Such advancements in the field were considered
in [12] focusing on adaptive and scalable communication
networks. One of the core concepts is transitions, aiming
at increasing the flexibility and scale at which communi-
cation networks can be adapted. Thereby, possibilities to
change existing protocols, technologies, or their configu-
ration while the network is in operation are realized by
transitions. Still, for benchmarking different implementations
of transitions, a framework for comparing the scalability of
different transition solutions is missing. Complementing the
existing flexibility framework [9], our scalability framework
fulfills a need in literature and provides a novel approach
which can be applied in the domain of communication
networks.

The scalability of big data processing systems in clouds
is investigated in [13]. They consider some performance
curves depending on load and consider linear scalability,
sublinear scalability and super-linear scalability as defined
in previous work [14]. Thereby, scalability considers a ref-
erence system, which is a theoretical system with a linear
relation between the target measure and the parameter under
investigation. This will be a relevant scenario in practice,
since scalability is often interpreted as comparison to linear
relations. However, a precise definition is also needed here,
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since the constant offset of a linear function must be con-
sidered, see Section III-C. [13] also defines a higher level
target measure of the system performance for a dedicated
workload. This target measure is referred to as ‘scalability’
(which is misleading and wrong), but it does not provide
a single measure quantifying how the system behaves for
different workloads.

Reference [15] coined the term ‘stochastic scalability’ and
considered as an example P2P-based information sharing
platform. As target function of their analysis, they consider
the 99%-quantiles of search delays in such a platform depend-
ing on the number of customers of the network and the
amount of information to be stored in it (parameter under con-
sideration). This target function goes beyond typical works,
since quantiles instead of averages are considered, which
may be relevant for business. Reference [15] uses the term
‘functional scalability’ to analyze whether the functionality
of a system (quantified by the target function) also works
for many customers (parameter under investigation). Ref-
erence [15] advances the scalability analysis and defines:
‘‘Stochastic scalability, on the other hand, tries to verify
whether a system can sustain the stochastic behavior of its
components.’’ To be more precise, the influence of the coeffi-
cient of variation of the interarrival times of service requests is
considered as another parameter on the performance. Hence,
stochastic scalability changes the parameter under investi-
gation (here: coefficient of variation of interarrival times).
In our general framework, the target function and the stochas-
tic characterization of the system load as parameter under
consideration are well reflected. Hence, our framework also
includes stochastic scalability.

Ametric to predict software scalability is suggested in [16].
However, the authors simply define another target function,
which is referred to as Performance Non-Scalability Likeli-
hood (PNL). For a given load in a system, the PNL metric
reflects the probability that the system’s performance objec-
tive will not be met. Hence, again, the authors do not define a
scalability index considering various load situations and the
system’s performance. The PNL can be used in our frame-
work as a target function.

Other definitions of ‘scalability’ consider the ratio of effi-
ciency for two different load scenarios [4], although this
is more related to speedup and does not generalize scal-
ability for various load scenarios and in comparison to
arbitrary reference systems. Similarly, isospeed scalability
relates the workload capacity of the system at two different
scales [14]. The initial and scaled problem size (workload)
and the resources (number of processors) are considered.
The target function is the ratio of workload per processor.
Isospeed scalability quantifies then the ratio of the target
functions for the initial and scaled problem size. The Iso-
efficiency scalability [17] is described as the ‘‘ability of
parallel machines to keep the parallel efficiency constant
when the system and problem size increase‘‘ [11]. This is
advanced to H-isoefficiency for heterogeneous systems [18].

Similar critics as above are observed, since those quantities
do not reflect scalability as intended.

In the software engineering domain, it is often differenti-
ated between resource scalability and demand scalability, see
e.g., [19]. A resource demand metric indicates the resource
demand depending on the actual load. It is analyzed whether
the resource demand increases linearly, sub-linearly, or super-
linearly (i.e., using an appropriate reference function). This
analysis may also consider whether a system only scales up
to a certain point of load, while additional load cannot be
handled even though further resources are added. This is
also referred to a strong scaling in software engineering. The
load capacity metric indicates how processing capabilities
increase with increasing resources. Similarly, a certain point
of capacity may be reached when with additional resources
do not increase the processing capabilities anymore. The
additional resources may even decrease the capabilities due
to signaling and coordination overhead. This is also referred
to as weak scaling in software engineering. Both aspects are
included in our scalability framework by using appropriate
parameters under investigation and target functions.

III. GENERAL FRAMEWORK FOR QUANTIFYING AND
COMPARING SCALABILITY
From the definitions and understanding of scalability in lit-
erature, we provide now a general framework to quantify
scalability in terms of a scalability index, which allows com-
paring the scalability of different systems. To this end, exact
definitions of scalability and a scalability index (SI) are pro-
posed. The ingredients of the scalability index are discussed
and the fundamental characteristics of the SI are analyzed.

A. DEFINITION OF SCALABILITY INDEX
A tempting definition of scalability is seen as the ability
of the system to sustain increasing workloads of a quasi
stationary system. However, this definition is not precise
enough, since it is unclear what ‘‘sustaining’’ really means
here. It is not specified what is the target measure of inter-
est, what is the parameter under consideration, and how to
evaluate if a system ‘‘sustains’’ increasing workloads. Fur-
thermore, workload is only one specific parameter (probably
the most important one in practice), but also the size of
networks (e.g., IoT mesh networks), or stochastic variations
(i.e., stochastic scalability) may be of interest in a scalability
analysis. Another critical point is that ‘sustaining’ means that
we need a (theoretical) reference system for comparison. This
has also been suggested in literature for specific theoreti-
cal systems: linear, sublinear, super-linear scaling and target
functions [13], [14] or the comparison to the optimal/ideal
reference system [1].

Furthermore, the analysis of scalability needs to consider
all relevant parameter settings. By weighting the importance
or relevance of a parameter setting, the target measure then
needs to accumulate the weighted target measure. As a conse-
quence, the quantification of scalability results in an integral
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measurement of the (weighted) target measure over the entire
parameter range. If the system may not work properly above
a certain load, then this needs to be captured in the target
function, while the relevance or importance of such a scenario
can be adjusted with the weighting function.

Then, the ingredients of scalability and its quantification
are as follows:

1) A system function f (x) quantifies an arbitrary target
measure of interest for the system F , see Figure 1.

2) An arbitrary reference systemH with a target reference
function h(x), like the ideal system behavior in Figure 1,
is used for comparison. In practice, the optimal system
may be unknown. Or we may want to investigate if the
system scales linearly, i.e., the reference function is a
linear function.

3) Integral measurements F and H of the target measure
for the system and the reference consider the parameter
range under investigation. This is simply the area under
the corresponding target function curve in Figure 1.

4) A weighted parameter range w(x) allows defining the
importance of some parameter settings as weighted inte-
gral. Thereby, we may also exclude some parameter
settings in the analysis.

We propose the following definition of the term ‘scalability’.
Definition 1 (Scalability): The ability of a system to per-

form as well as a reference system regarding a target measure
within a defined weighted parameter range.

The quantification of scalability is then the weighted inte-
gral measurement F of the system function using the desired
target measure of interest in relation to the weighted integral
measurementH of a reference system over a defined parame-
ter rangeX. The parameter range is potentially weightedw(x)
according to the relevance/importance of a parameter setting
in the scalability analysis.

F =

∫
x∈X

w(x) · f (x) dx (integral system meas.)

H =

∫
x∈X

w(x) · h(x) dx (integral reference meas.)

Definition 2 (Scalability Index): Quantification of the
scalability of a system F with respect to a reference system
H as the ratio of the integral measurements F and H.

SI = H/For SI = F/H (scalability index)
Depending on the target measure, we may use the ratio

H/F or the inverse ratioF/H . In the case of a target reference
function, for which an increase means increasing ‘badness’,
e.g., average response time, then the ratio H/F is used.
If H is the optimal reference system, then SI is normal-
ized between 0 and 1. Note that in other reference systems,
e.g., a linear system, the SI may also achieve values larger
than 1. In the case of a target reference function, for which
an increase means increasing ‘goodness’, e.g., throughput or
availability, then the ratio F/H is used, see Table 1. We will
discuss this further for the two use cases in the later sections.

TABLE 1. Concrete definition of the scalability index as ratio of the
integral measurements F and H depending on goodness/badness of an
increase in the target measure and parameter, respectively, with some
(examples) given in brackets.

To have a general definition of the SI, we may use the
auxiliary variable γ with γ = 1 indicating ‘goodness’ and
γ = −1 indicating ‘badness’ of the target measure.
Definition 3 (General Scalability Index): Quantification

of the scalability of a system F with respect to a reference
system H as the ratio of the integral measurements F and H
and the goodness indicator γ .

SI = (F/H)γ (general scalability index)
With the definition of the SI, we can test if a system is

scaling. To be more precise, we need to provide the reference
target function h(x) and the weighting function w(x).
Definition 4 (Testing Scalability): A system F is scaling

with respect to a reference system H, a well-defined target
measure f (x) and h(x), respectively, a weighting func-
tion w(x), and a parameter range X if the scalability index
SI is less or equal to 1.

SI ≤ 1 : System scales wrt. h(x) and w(x) for x ∈ X.
SI > 1 : System does not scale wrt. h(x), w(x), x ∈ X.
Thus, testing scalability simply means comparing the inte-

gral measurements F and H . Note that a system is never
scaling in relation to the optimal system. But the quantifica-
tion SI shows how close a system gets to an optimal one.

Our definition of scalability and the scalability index gen-
eralizes definitions of scalability metrics in the literature,
which are a special case of ours. In particular, [1] uses an
optimal reference system H with equal importance of all
parameter settings, i.e. w(x) = 1. However, we may be
interested in quantifying if a system scales linearly, which we
discuss later.

B. COMPARING THE SCALABILITY OF SYSTEMS
With the definitions above, we can now compare the scala-
bility of two different systems F and G wrt. a reference sys-
tem H, well-defined target measure and weighting function.
The integral measurement is F and G and the corresponding
scalability index is SIF and SIG, respectively.
F is scaling better than G wrt. a well-defined target mea-

sure and weighting function, if the scalability index SIF
is larger than the scalability index SIG. For a target ref-
erence function indicating ‘badness’ (e.g., response times),
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this means:

SIF = H/F > H/G = SIG H⇒ F < G (badness)

if F is scaling better than G. For a target reference function
indicating ‘goodness’ (e.g., throughput), this means

SIF = F/H > G/H = SIG H⇒ F > G (goodness)

if F is scaling better than G. Hence, there is no need for an
additional reference systemH.
Definition 5 (Comparing Scalability of Systems): A sys-

tem F scales better than a system G with respect to a
well-defined target measure and a weighting function w(x)
defined for the parameter x if

(F/G)γ > 1 . (scalability comparison: F ≻ G)

System G is scaling better than F if

(G/F)γ > 1 . (scalability comparison: G ≻ F)
Hence, we have the same structure and definition for com-

paring a system to a reference system (Definition 4) or to any
other system (Definition 5).

C. LINEAR SCALING
In practice, linear scaling is important and a good reference
system for comparison. Statements like ‘‘The system is scal-
ing.’’ are not precise due to the missing reference system
and weighting function. However, often a linear function is
implicitly assumed while for comparison a parameter range
[x0; x1] is considered where all parameter settings are equally
important (w(x) = 1 for x ∈ X = [x0; x1]). Thus, the
weighting function is w(x) = 1X(x).
Nevertheless, it is important to clearly define the linear

function. Consider a simple example of a square relationship
between the request rate and the avg. response time in a sys-
tem F . The parameter range of interest is 1 s−1 to 3 s−1. The
reference systemH1 has a larger constant offset than another
reference system H2, while the gradient of the reference
function h1(x) is less than the gradient of h2(x). Depending
on the reference system, our conclusion would be that the
system is linearly scaling (F ≻ H1) or is not linearly scaling
(F ≺ H2). This becomes even more obvious when using
constant functions, cf. dashed lines in Figure 5.

D. FEATURES OF THE SCALABILITY INDEX
1) COMPARISON TO IDEAL SYSTEM
The scalability index is in the range [0; 1] if a system is
compared to an ideal system. Then, the SI shows how close
the system gets to the scalability behavior of the perfect
system.

2) CONSTANT REFERENCE TARGET MEASURE
The average f of the target measurement over the parameter
range is f = F/(x1 − x0), which is identical to the scalability
index (F/H )γ with a constant reference system h(x) = 1 and
equal weights w(x) = 1. The integral measurement of the
reference system is H =

∫ x1
x0
w(x) · h(x) dx = x1 − x0.

FIGURE 5. Linear scaling also needs to define a reference system and the
linear reference target function. The scalability index is SI1 = 1.2 and
SI2 = 0.9 wrt. system H1 and H2, respectively.

3) CONSTANT WEIGHTS AND RELATION OF MEANS
Constant weights w(x) = c have no influence on the SI.

SI =

(∫
x∈X f (x) · c dx∫
x∈X h(x) · c dx

)γ
=

(∫
x∈X f (x) dx∫
x∈X h(x) dx

)γ
(1)

It may be useful to define weights, such that the integral
measurements can be interpreted accordingly. For example,
we consider the mean of the system function f (x) and the
reference function h(x). The ratio of means corresponds to
the SI with constant weighting function w(x) =

1
x1−x0

.

f = F =

∫
x∈X

f (x)
1

x1 − x0
dx (2)

h = H =

∫
x∈X

h(x)
1

x1 − x0
dx (3)

SI = (F/H )γ = (f /h)γ (4)

It is tempting to compute the average function f by just
computing the system function f (x) of the average value of
the parameter range x =

x1+x0
2 . This would require only the

derivation of a single value of the system at the parameter
x instead of deriving the entire parameter range. Especially,
when measurements of the system F are conducted, this
would save significant efforts.

However, Jensen’s inequality, see for example [3], shows
that the two quantities are different in general.

f =
1

x1 − x0

∫
x∈X

f (x) dx ̸= f (x) = f (
x1 + x0

2
) (5)

Only for linear systems, both quantities are identical. Hence,
for testing linear scalability with h(x) = mx+c, the mean h of
the function h(x) and the function of the mean x are identical.

h =
1

x1 − x0

∫
x∈X

h(x) dx =
m
2
(x1 + x0) + c (6)

= h(
x1 + x0

2
) = h(x) (7)
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4) STOCHASTIC PARAMETER RANGE AND EXPECTED
TARGET MEASURE
A typical weight function w(x) is the probability or proba-
bility density function of the parameter x for a discrete and
continuous parameter range, respectively, see for example
Section IV-C. Hence, the parameter range X is a random
variable, described by w(x). The integral measurement is
then simply the expected value of the target function. The
scalability index relates the expected system target measure
E[f (X )] to the expected reference target measure E[h(X )].

SI =

(∫
x∈X f (x) · w(x) dx∫
x∈X h(x) · w(x) dx

)γ
=

(
E[f (X )]
E[h(X )]

)γ
(8)

5) DIFFERENCE OF SYSTEM CURVES
The SI can also be interpreted as the relative difference
between the integral measurements of the system function
f (x) and the reference function h(x).

SI = (F/H )γ = (H/H − H/H + F/H)γ (9)

=

(
1 −

H − F
H

)γ
(10)

The area H −F between the two curves is normalized by the
area H . This relative difference indicates how far away the
system F is fromH. The SI is then the difference between 1
and this relative difference.

6) MULTI-DIMENSIONAL PARAMETERS
Note that the integral measurement is defined for a parameter
x which may also reflect a vector of different parameters,
i.e. x = (ξ1, . . . , ξn). The measurement integral is then a
multiple integral over all parameter variables with a corre-
sponding multidimensional weighting functions.

F =

∫
x∈X

w(x) · f (x) dx (integral system meas.)

=

∫
ξ1∈X1

···

∫
ξn∈Xn

w(ξ1, ··· , ξn) · f (ξ1, ··· , ξn) dξ1 ··· dξn

The computation of the scalability index is not changed by
considering multidimensional parameters.

7) SCALING IN NON-OPERATIONAL AREA
Consider a system which is not operating, e.g., due to over-
load. For example, a single server waiting queue cannot serve
more requests than the service rate of the single processing
unit. Thus, the arrival rate λ must be smaller than the ser-
vice rate µ for a stable system. If this stability condition is
violated, the quasi steady-state is not reachable. Then, the
target measure like the waiting time is ∞. The corresponding
integral measurement is thenF = ∞ and the scalability index
is SI = H/F = 0.

8) ATTRIBUTES OF SCALABILITY
Scalability is an integrative concept that encompasses the
following basic attributes. Those attributes are considered in
our definition of the scalability index accordingly.

• The target measure defines the major interest and scope
of the scalability analysis, e.g., performance of the sys-
tem, e.g., availability of the system, and if the system
scales with respect to that particular target measure.
Considering several target measures lead to different SI
values or may be combined accordingly, see the example
in Section V-B4.

• Costs or importance of configurations or parameter
settings need to be considered. This may be achieved
through a proper weighting function.

• Elasticity is the ability of a system to automatically scale
resources up or down based on demand, and is a need for
scalability (see also Figure 4).

• Fault Tolerance and Redundancy are essential. Scal-
able systems should be designed with fault tolerance
in mind. Redundancy and replication of critical com-
ponents can ensure that failures in one node do not
disrupt the entire system. This behavior is included
through the target measure function, as system reaction
to faults.

The scalability index has the following characteristics to
quantify the scalability of a system under test F .

• A system function f (x) quantifies an arbitrary target
measure of interest for the system F .

• A weighted parameter range w(x) allows defining
the importance or costs of parameter / configuration
settings.

• An arbitrary reference systemH with a target reference
function h(x) is required to quantify howwell the system
F scales in comparison to an ideal, optimal, linear,
or arbitrary system.

In practice, there are several means to attain scalability.
Some common examples are reflected here. Vertical Scala-
bility (Scaling Up) is the ability to handle increased load by
adding more resources to a single node, such as increasing
the CPU, RAM, or storage capacity of a server. Vertical
scalability is often limited by the hardware limitations of a
single machine. Horizontal Scalability (Scaling Out) handles
increased load by adding more nodes to a distributed sys-
tem, such as adding more servers to a cluster. Horizontal
scalability is typically achieved through load balancing and
partitioning of data and tasks across multiple nodes. Load
Balancing means distributing incoming workloads (evenly)
across multiple resources or nodes, ensuring that no single
node is overwhelmed while others are underutilized. For
distributed systems, data partitioning and sharding involve
breaking large datasets into smaller, manageable subsets
and storing them across different nodes. This strategy helps
improve data access and distribution, making it easier to
scale horizontally. In particular, caching frequently accessed
data can significantly improve system performance and
reduce the load on devices. Effective caching mechanisms
can enhance scalability by reducing the need for repeated
data processing. Finally, breaking down a monolithic sys-
tem into smaller, loosely coupled modular microservices can
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enhance scalability. Each microservice can be scaled inde-
pendently based on its specific demands.

IV. COMPARISON OF GENERAL SI WITH EXISTING
SCALABILITY FRAMEWORKS
Table 2 summarizes relevant approaches from related work
which investigate scalability. The ingredients of a scalabil-
ity index are analyzed, that are the target measure and the
parameter of interest. It is considered if a reference system is
considered, e.g., a linear system, to investigate linear scal-
ability. Or if the approach can be used for comparing the
scalability of two systems. Our introduction of weights is only
partly addressed in literature by taking into account costs.

The column ‘scope’ in Table 2 indicates what kind of
concept is really considered, e.g., efficiency, performance,
scalability. Some works consider only performance curves,
e.g., a performance target measure depending on a parame-
ter like load (i.e., performance curve). Based on that curve,
scalability is qualitatively analyzed without providing any
scalability index. The column ‘index’ indicates whether a
scalability index is provided. The column ‘application’ shows
the example domain investigated in the presented approach.

A detailed description of the approaches is discussed in
Section II-B, while a brief summary is provided at the bottom
of Table 2. The comparison shows that literature misuses
the term scalability and partly considers different aspects
like efficiency or performance. The related performance- or
efficiency-curves give only qualitative insights. Those system
functions are the main ingredient of a scalability analysis,
and it is one possibility to report the system function as
curve measure concerning scalability. To relate this curve
measure to linear scalability, additionally a linear curve is
then provided as a reference function. Or when comparing
two systems, the two system functions are provided as curve
measures for scalability.

However, as already discussed, just providing those system
curves is typically not sufficient to identify which system
scales better, see as an example Figure 2 or Figure 5. Espe-
cially when the two system functions are crossing each
other.

Our goal is to provide a single-value scalability index
which allows comparing the scalability of the two systems.
Therefore, we need to aggregate the system function into a
single value, which is done through the integral measure-
ment. To relate the two systems, the ratio of the integral
measurements is considered, reflecting the SI. As shown
previously, this is identical to the ratio of the means of the two
functions.

Such a desired single-value scalability index is only pro-
vided in a few works. Our framework generalizes those
works and allows quantifying, e.g., linear, scalability, or to
benchmark the scalability of two systems. In the following,
we will show for some selected scalability measures from the
literature how they fit into our generalized framework. The
approaches from literature are a special case of our SI.

A. SI OF CLOUD SOFTWARE SERVICES IN RELATION TO
IDEAL SYSTEM
A single-value scalability measure for cloud-based software
services is provided in [1]. As target measure, the response
time of cloud services or volume of available software
instances is considered. They compare the system F under
investigation with an ideal systemH. The single-value metric
J is defined by comparing the areas under the curve. It is
0 ≤ J ≤ 1 with corresponding γ ∈ {−1; 1}.

J =

(∫
x f (x) dx∫
x h(x) dx

)γ
(11)

Bringing this approach into our scalability framework
yields the following instances of the SI constituents.

• Reference [1] ‘‘Scalability analysis comparisons of
cloud-based software services’’ by Al-Said Ahmad and
Andras

• target measure: f (x)
• reference system: ideal system with h(x)
• parameter range: x ∈ [x0; x1]
• weight: w(x) = 1

SI =

(∫
x f (x) · w(x) dx∫
x h(x) · w(x) dx

)γ
= J (12)

B. LINEAR SCALABILITY OF BIG DATA PROCESSING
SYSTEMS (BDPS)
Linear scalability is a common term in literature, e.g., [13],
and [14] divide scalability into three categories that are linear
scalability, sublinear scalability and super-linear scalabil-
ity. For the quantification, the system’s performance v(x) is
divided by a linear function l(x). As a result, a performance
curve f (x) = v(x)/l(x) is obtained, which indicates if the
performance is better (f (x) > 1) or worse than that of
the linear system.

As a concrete example, f (x) is the speedup of the system,
when the number of processing nodes is x, while l(x) indi-
cates linear speedup. Then, the system function is f (x) =

v(x)/l(x). Furthermore, a more advanced measure for BDPS
is provided which goes beyond speedup. Still, the basic con-
cept is to relate the measure to a linear system l(x).

For evaluating scalability, [13] provides the curve measure
f (x). Then, f (x) > 1 and f (x) < 1 shows super-linearity and
sub-linearity, respectively. To obtain a single value J from
the curve measure, we may use the average value. Then, the
single value J indicates whether the system scales linearly or
better (J ≥ 1).

J =
1
n

n∑
x=1

f (x) =
1
n

n∑
x=1

v(x)
l(x)

(13)

Bringing this approach into our scalability framework
yields the following instances of the SI constituents.

• Reference [13] ‘‘Scalability and performance analysis of
BDPS in clouds’’ by Li, Ou, Zhou, et al.

• target measure: f (x) = v(x)/l(x)
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TABLE 2. Comparison of the suggested scalability index and the framework for comparing the scalability of two systems. The ‘scope’ indicates what is
considered in the different papers and if a single metric for scalability is provided. ‘Index’ shows whether a single scalability index is provided to quantify
the scalability of a system. The ‘application’ shows the example domain investigated in the presented approach.
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• reference system: h(x) = 1
• parameter range: number of nodes x ∈ {1, 2, . . . , n}
• weight: w(x) = 1

SI =

∑n
x=1 f (x) · w(x)∑n
x=1 h(x) · w(x)

=

∑n
x=1 f (x)
n

= J (14)

Instead of using the relative target measure, the two curves
v(x) and l(x) may be directly used for comparison. This leads
to an alternative definition of the target measure and the
reference system.

• alternative comparison to [13]
• target measure: f̂ (x) = v(x)
• reference system: ĥ(x) = l(x)
• parameter range: number of nodes x ∈ {1, 2, . . . , n}
• weight: w(x) = 1

ŜI =

∑n
x=1 f̂ (x) · w(x)∑n
x=1 ĥ(x) · w(x)

=

∑n
x=1 v(x)∑n
x=1 l(x)

(15)

̸=
1
n

n∑
x=1

v(x)
l(x)

=
1
n

n∑
x=1

f (x) = SI (16)

The two definitions SI and ŜI lead to different values, but
similar behavior of the scalability index and conclusions are
observed. Figure 6 shows exemplary the scalability index SI
and ŜI when considering the throughput of a system depend-
ing on the number of processing nodes x. The throughput of
the system is f̂ (x) = v(x) = xβ with β = 0.9. The reference
system yields ĥ(x) = l(x) = x. The scalability index ŜI is
computed for the parameter range {1, . . . x1}, and x1 is varied
in Figure 6. In contrast, for the computation of SI , the target
measure f (x) =

v(x)
l(x) = xβ−1 and the reference function

h(x) = 1 are used. Both definitions of SI lead to similar
results in practice.

FIGURE 6. Different definitions of the target measure and the reference
system lead to the scalability index ŜI and SI as defined in Eq.(15) and
Eq.(16), respectively. It is f̂ (x) = xβ with β = 0.9 and ĥ(x) = v (x) = x
yielding ŜI . In contrast, SI uses f (x) = v (x)/l (x) = xβ−1 and the reference
function h(x) = 1.

C. DOMAIN-BASED SCALABILITY FOR MICROSERVICE
ARCHITECTURES
A single value scalability metric is provided for the
assessment of microservice architectures in [21]. Thereby,

the response time of the architecture is considered for a
given workload. This workload in the system is modeled as
a random variable X with a probability density function p(x)
for the parameter range x ∈ [x0; x1]. Thus,

∫ x1
x0
p(x) dx = 1.

Different services are tested under a certain load test speci-
fication. The fraction of successful executions of all services
for a given load x while keeping the response time below a
threshold is the target measure of interest f (x). The scalability
metric is defined as follows in [21].

J =

∫ x1

x0
f (x) · p(x) dx = E[f (X )] (17)

Hence, the scalability index J is the expected success ratio
E[f (X )] over all load conditions X , i.e., the expected value of
a function f (x) of the random variable X .
Bringing this approach into our scalability framework

yields the following instances of the SI constituents.
• Reference [21] ‘‘Scalability assessment of microser-
vice architecture deployment configurations: A domain-
based approach leveraging operational profiles and load
tests’’ by Avritzer, Ferme, Janes, et al.

• target measure: f (x) is the fraction of successful execu-
tions of all services for a given load x while keeping the
response time below a threshold

• reference system: ideal system h(x) = 1
• parameter range: x ∈ [x0; x1]
• weight: w(x) = p(x) with probability density function
p(x) for the random variable X of the load in the system

SI =

∫ x1
x0
f (x)w(x) dx∫ x1

x0
h(x)w(x) dx

=

∫ x1
x0
f (x)p(x) dx∫ x1
x0
p(x) dx

=

∫ x1
x0
f (x)p(x) dx

1
= E[f (X )] = J (18)

Besides the domain-based metric by [21], a domain-
specific metric was proposed by [22]. The differences
between the works is not the quantification of scalability
as a single-value measure, but whether resources may be
added to satisfy specified service-level objectives (SLOs)
requirements.

D. P-SCALABILITY OF DISTRIBUTED SYSTEMS
The P-scalability metric [23] depicts a measure curve which
combines capacity and response time with cost. Thereby,
the so-called ‘power’ measure P(x) is used when the
system is considered with a scale factor x. This power
measure is the ratio of the throughput of a distributed
system and the response time of the system. It follows
Kleinrock’s power metric [24] which considers the ratio of
‘goodness’ (here: throughput) to ‘badness’ (here: response
time). We discuss Kleinrock’s approach in more detail for
the use case of availability in communication networks
in Section V-B4.
The power measure P(x) is combined with the costs C(x)

and reflects the system function f (x) = P(x)/C(x). The scale
factor x reflects a certain number of active users or jobs x.
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As a simple example, a database system is considered in [23],
where the number of processors and the database size depend
on that scale factor x.

The P-scalability is then defined as the ratio between f (x)
(system with scale factor x) and a reference system f (x1)
(system with scale factor x1). However, [23] does not provide
a single-value scalability metric. Therefore, we consider the
system for all scale factors x ∈ [x0; x1] and compute the
average system function f . Then, a scalability index may
be given depending on the reference scale factor x1, i.e.,
h(x) = f (x1) = P(x1)/C(x1).

J =
f

f (x1)
=

∫ x1
x0
f (x) dx

x1 − x0
·

1
f (x1)

(19)

Bringing this approach into our scalability framework
yields the following instances of the SI constituents.

• Reference [23] ‘‘A scalability metric for distributed
computing applications in telecommunications’’ by
Jogalekar and Woodside

• target measure: f (x)
• reference system: h(x) = f (x1)
• parameter range: x ∈ [x0; x1]
• weight: w(x) =

1
x1−x0

SI =

∫ x1
x0
f (x) · w(x) dx∫ x1

x0
h(x) · w(x) dx

=

∫ x1
x0

f (x)
x1−x0

dx∫ x1
x0

f (x1)
x1−x0

dx

=

∫ x1
x0

f (x)
x1−x0

dx

f (x1)
∫ x1
x0

1
x1−x0

dx =

∫ x1
x0
f (x) dx

(x1 − x0)f (x1)
= J (20)

E. PRODUCTIVITY AND VALUES AS TARGET MEASURE
In a follow-up work of [23], another target measure was
defined [4], which is quite interesting. For a distributed sys-
tem, the productivity is considered as the value delivered per
second, divided by the cost per second at a scale factor x.
For a throughput t(x) (in responses per second at scale k)
and average value v(x) of each response, calculated from its
quality of service at scale x, the productivity f (x) is

f (x) = t(x) · v(x)/c(x) (21)

for the costs c(x) at scale x, expressed as a running cost per
second to be inline with the definition of t(x).
Similarly, as above [23], the scalability measure is a curve

measure and defined as the ratio of productivity figures. Over
the entire parameter range x of scale factors, we consider
therefore the average productivity and relate it to the refer-
ence point f (x1).

J =
f

f (x1)
=

∫ x1
x0
f (x) dx

x1 − x0
·

1
f (x1)

(22)

Bringing this approach into our scalability framework
yields the following instances of the SI constituents.

• Reference [4] ‘‘Evaluating the scalability of distributed
systems’’ by Jogalekar and Woodside

• target measure: f (x)

• reference system: h(x) = f (x1)
• parameter range: x ∈ [x0; x1]
• weight: w(x) =

1
x1−x0

SI =

∫ x1
x0
f (x) · w(x) dx∫ x1

x0
h(x) · w(x) dx

=

∫ x1
x0

f (x)
x1−x0

dx∫ x1
x0

f (x1)
x1−x0

dx

=

∫ x1
x0

f (x)
x1−x0

dx

f (x1)
∫ x1
x0

1
x1−x0

dx =

∫ x1
x0
f (x) dx

(x1 − x0)f (x1)
= J (23)

Note that Eq.(20) and Eq.(23) are identical, just the def-
inition of the target measure differs: power measure vs.
productivity.

F. USING SI WITHOUT REFERENCE SYSTEM: GENERAL
SYSTEM’S REFERENCE POINT
Some examples above used a single reference point xr and
related the target measure of the system f (x) to the target
measure at the reference point f (x), like in Section IV-E.
In general, instead of a reference system H, a single ref-

erence point xr and its target measure f (xr ) of the system F
can be utilized to indicate scalability. To be more precise, the
target measure of the system is related to that reference point,
how the system develops. This reference point may lead to the
best target measure, but any arbitrary reference point can be
used. It is just used to relate the target measure accordingly.

We consider the speedup as an example. The response time
of the system F is T (x) if x servers are used. The speedup
is then the factor S(x) = T (1)/T (x), i.e., the improvement
of the response time with respect to a reference system with
xr = 1 server and response time T (1). As weight, we consider
the probability p(x) that the system has x active servers.
The discrete random variable X models the number of active
servers with a probability function p(x). It is

∑x1
x=x0 p(x) = 1.

In general, for a discrete or continuous random variable X ,
we have the following ingredients for the SI, respectively.

• scalability index computation by only using the system
function without reference system

• target measure: f (x)
• reference system: h(x) = f (xr ) with reference point xr
• parameter range: x ∈ {x0; . . . ; x1} for a discrete param-
eter x; x ∈ [x0; x1] for a continuous parameter x

• weight: w(x) = p(x) with probability mass function
p(x) of the discrete random variable X ; w(x) = p(x)
with probability density function p(x) of the continuous
random variable X

The SI for a discrete parameter x is as follows.

SI =

∑x1
x=x0 f (x) · w(x)∑x1
x=x0 h(x) · w(x)

=

∑x1
x=x0 f (x)p(x)

f (xr )
∑x1

x=x0 p(x)
(24)

=
E[f (X )]
f (xr )

(25)

Hence, the expected target measure E[f (X )] is normalized by
the target measure at the reference point. For the example of
speedup, we may use as reference point the maximal speedup
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when x1 servers are available. Then, the SI indicates how far
the system is away from the performance at the reference
point. However, in practice, it may be more interesting to
understand if the speedup linearly scales or not. Then, the
SI is the relation between the expected target measure of
the system F and the linear reference system H: SI =

E[f (X )]/E[h(X )] with E[h(X )] = m · X + c.
Similarly, the SI for a continuous parameter x is computed

by using the probability density function p(x).

SI =

∫ x1
x=x0

f (x) · w(x) dx∫ x1
x=x0

h(x) · w(x) dx
=

∫ x1
x=x0

f (x)p(x) dx

f (xr )
∫ x1
x=x0

p(x) dx
(26)

=
E[f (X )]
f (xr )

(27)

It is the expected target measure of the system F , which is
normalized by the target measure at the reference point.

V. USE CASES FOR DEMONSTRATION
The application of the SI is demonstrated for four use cases:
(1) performance of an IoT load balancer depending on the
system load, (2) availability of a communication system
depending on the size and structure of the network, (3) scala-
bility comparison of different location selection mechanisms
in fog computing with respect to delays and energy consump-
tion; (4) comparison of time-sensitive networking (TSN)
mechanisms in terms of efficiency and utilization. The use
cases show the need for proper selection of reference systems
and target measures. The selected reference system and target
measure aim at analyzing the scalability with a concrete
question in mind. We also show the impact of the weighting
of the parameter space, e.g., according to its occurrence in
practice.

A. WAITING TIME OF AN IoT LOAD BALANCER
An IoT scenario is considered where data arrives from sensor
nodes and is aggregated at a load balancing gateway. This
IoT load balancer then forwards the data to the backend
cloud servers according to some load balancing strategy. This
IoT load balancer may be the performance bottleneck of
the IoT architecture [25] and we can model it as a single
server queueing system, e.g., to dimension the load balancer.
An appropriate model is an M/GI/1 waiting queue [3], for
which analytical formulas are well known and used here to
produce numerical results. IoT messages arrive at the load
balancer at rate λ and are served at rate µ. The mean service
time to process a single message is E[B] = 1/µ. The offered
load and the utilization of the load balancer is ρ = λ/µwhich
is the key quantity defining the waiting time of messages in
the queue before they are served. The system is stable when
λ < µ (ρ < 1). The variance of the service time is described
by the coefficient of variation cB.

1) SCALABILITY OVER THE ENTIRE PARAMETER RANGE
It is well known that a waiting system is not scaling if the
load gets close to 1. Then, the system is not stable anymore

and waiting times get bigger and bigger, thus for ρ → 1, the
expected waiting times are E[W ] = ∞. The average waiting
time is as follows, see, e.g., [3].

E[W ] = E[B]
ρ(1 + c2B)
2(1 − ρ)

(28)

Figure 7 plots the expected waiting time (the target measured)
depending on the load (the parameter under investigation
x = ρ). We compare it to a linear reference system with
h(ρ) = ρ. For ρ > 0.5, the IoT load balancer has a
worse performance in terms of expected waiting time than
the linear system. The strong decay indicates that the system
gets unstable when approaching ρ = 1.

FIGURE 7. IoT load balancer – Linear scalability wrt. mean waiting time
of messages normalized by message processing time. Deterministic
message processing times are assumed.

Let us formally analyze that a waiting system is not scaling
if the load gets close to 1. We are interested in analyzing
scalability with respect to the expected waiting time, a linear
reference system with h(x) = x and we consider the entire
parameter range X = [0; 1]. Then, the integral measurement
diverges: F =

∫
X f (x) dx = ∞ with f (x) = E[W ]. Hence,

the scalability index is SI = H/F = 0.

2) WEIGHTING THE PARAMETER RANGE
In practice, additional mechanisms like admission control
may be implemented to guarantee that the load is below 1,
e.g., ρ ≤ 0.8 such that the expected waiting time is below
a certain threshold and service-level agreements (SLAs) can
be met. Therefore, we limit the parameter range accordingly.
Figure 8 shows the integral measurement of the IoT load bal-
ancer and the linear system, while the considered parameter
range of the scalability analysis is [0; ρ]. We observe that
the integral measurement H of the linear system is slightly
above the integral measurement F of the load balancer when
the load is below 0.68. At the intersection point ρ∗

≈ 0.68,
the integral measurements are identical and SI = 1.
It is important to understand that the performance of

the IoT load balancer is worse than the linear system at
the load ρ∗. However, the scalability index considers the
entire range of parameter settings, i.e. ρ ∈ [0; ρ∗]. Over
the entire range, the accumulated expected waiting times are
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FIGURE 8. IoT load balancer – Integral measurement over the parameter
range [0; ρ] for the IoT load balancer and the linear system regarding the
mean waiting time of messages.

identical for both systems and the scalability behavior is the
same, i.e. SI = 1. This is also visualized in Figure 9.

FIGURE 9. IoT load balancer – Scalability index over the parameter range
[0; ρ] with respect to linear function h(ρ) = ρ and mean waiting time of
messages.

In general, it is important to consider the parameter range
of interest to draw conclusions. Furthermore, the importance
of the particular parameter settings may be adjusted. For
example, with higher offered load, more IoT sensors and their
messages are fed to the cloud. Therefore, this scenario and
higher loads may be more important in the evaluation (’high
load importance’). On the other hand, this load situation may
not be so relevant in practice, since it does not occur with high
probability. Assume a scenario where the less the load, the
more likely the scenario occurs. Accordingly, the parameter
weights may be adjusted (’load and medium load’). If such
weights are unknown, then all parameter settings should be
equally weighted (’equal importance’). Figure 10 indicates
the scalability index for those three different scenarios. The
resulting scalability index depending on the upper parameter
x1 = ρ to be considered in the integral measurement is visu-
alized. We see similar behavior for the three different weight
functions. Nevertheless, with low and medium load having
a higher importance, the SI is higher, e.g., when considering

FIGURE 10. IoT load balancer – Scalability index over a weighted
parameter range [0.1; ρ] with respect to linear function h(ρ) = ρ and
mean waiting time of messages. Three scenarios are considered: low and
medium load importance (w(x) = 1/x), equal importance of all
parameter settings (w(x) = 1), high load importance (w(x) = (x + 1)4).

the parameter range [0.1; 0.9], the SI is 0.73, 0.57, 0.45 for
low load, equal, high load importance, respectively.

3) STOCHASTIC SCALABILITY
Instead of considering how the system scales with respect to
load, it may also be interesting to analyze the scalability in
terms of variance of the service process due to different IoT
message sizes. To this end, the coefficient of variation cB of
the service demand (i.e., message size) is considered as
the parameter under investigation in the scalability analysis.
Hence, the stochastic scalability of the IoT load balancer
is investigated. Figure 11 shows the expected waiting time
depending on cB.

FIGURE 11. Stochastic scalability of the IoT load balancer – Expected
waiting time of the IoT load balancer for varying service demands,
expressed as coefficient of variation cB of the service time of a single IoT
message. The expected waiting time is normalized with the mean service
time E [W ]/E [B].

The scalability analysis uses the best case as a reference
system H, i.e., deterministic service times (cB = 0), and
considers the expected waiting time over the coefficient of
variation in the range [0; 2.0]. The resulting scalability index
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is SI = 0.43 for any load ρ.

F =

∫ x1

x0

E[B]ρ
2(1−ρ) (1 + c2B) dcB =

14
3

E[B]ρ
2(1−ρ)

H =

∫ x1

x0

E[B]ρ
2(1−ρ) (1 + 02) dcB = 2 E[B]ρ

2(1−ρ)

SI = H/F =
6
14

≈ 0.43

4) DIFFERENT TARGET MEASURES: MEAN, QUANTILE,
PROBABILITY
So far, we have changed the parameter range, the parameter
weights, and the reference system. Next, we consider differ-
ent target measure functions. Instead of looking at average
waiting times, the α%-quantile qα of the waiting times or the
probability wy that the waiting time is below y = 100ms
are considered, whichmay bemore relevant SLAs in practice.

We assume that the server operates with exponentially
distributed service times (M/M/1-∞). Then, the cumulative
distribution function of the waiting time is

W (t) = 1 − ρ · e−(1−ρ)µt (29)

and the α%-quantile follows as

qα = −

log( 1−α
ρ

)

(1 − ρ)µ
. (30)

With exponentially distributed service times (cB = 1), the
expected waiting time is

E[W ] = E[B] ·
ρ

(1 − ρ)
. (31)

Those different key characteristics may be considered as
SLAs and are depicted in Figure 12 depending on the system
load.

FIGURE 12. IoT load balancer – Different SLAs are now considered in the
scalability analysis.

In the scalability analysis, we consider those SLAs as
different target measures over the range [0.1; 0.9] with equal
weights. However, the question arises what is a good ref-
erence system. To this end, we define the reference system

to always operate like the original IoT load balancer at
load ρ = 0.5, see the dashed lines in Figure 12. For all
target measures, the SI is below 1. Thus, the original system
is less scalable than the reference system. In particular, the SI
is SIE[W ] = 0.5726, SIq0.99 = 0.7016, SIW (2E[B]) = 0.9239,
respectively.

5) ECONOMY OF SCALES – BUNDLING SERVERS
The term ‘‘economies of scale’’ is well known in the analysis
of queueing systems and refers to the fact that larger-scale
operation has advantages over smaller ones. In the particular
use case of the IoT load balancer, there may be several load
balancers which are independently operating. Let us assume
that there are n independent load balancers, i.e., a single pro-
cessing unit operating with service rateµ and a single waiting
queue for each of the n load balancers. The arrival rate of
requests to each of the n load balancers is λ.
Bundling all the n independent load balancers into a single

one results in a single entity with n processing units, but a
single waiting queue for all incoming requests. This single
entity then needs to serve all requests, i.e. n · λ. Economies
of scale means that the bundled servers will result in a better
performance like thewaiting probability of incoming requests
or the expected waiting time.

However, we are interested in quantifying the scalability of
the bundled servers, which is modeled as M/M/n-∞ waiting
queue. Formulas for the expected waiting time E[W ] or the
probability pW that a request has to wait (known as Erlang-C
formula) are given in literature, see e.g., the Python imple-
mentation for the numerical calculation of the M/M/n-∞
in [3].

FIGURE 13. Economies of scales of the IoT load balancer – The scalability
analysis uses as reference system an M/M/16 waiting queue with n
processing units, service rate µ per unit, arrival rate nλ. As target
measure, the waiting probability and the expected waiting time are
considered. The parameter under investigation is the load over the range
[0.1; 0.9].

Figure 13 shows the scalability index depending on the
number of bundled servers. If all IoT load balancers are
operating independently (n = 1), the scalability index is
only 0.3. Bundling the servers increases the scalability and
the SI reaches 1 for the reference system.
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6) HIGH-PERFORMANCE SERVER VS. COMMODITY SERVERS
Note that Figure 13 also shows the results to answer if it is
better to have a single high-performance server or n servers
bundled. The high-performance server operates at a rate µ
and serves an arrival rate λ. When having n servers with
less performance µ/n, the same total service rate is achieved.
However, with several smaller servers bundled into one entity,
the head-of-line blocking is reduced in comparison to the
single high-performance server.

In Section V-A5, bundling servers means increasing the
arrival rate nλ with service rate µ per processing unit. Thus,
the offered load is nλ/µ and the utilization per processing
unit is λ/µ. Here in Section V-A6, the high-performance
server has a service rate µ and serves an arrival rate λ,
while the low-end servers have a service rate µ/n and serve
the same arrival rate λ. Hence, the offered load is nλ/µ and
the utilization per processing unit is λ/µ. Thus, we get the
same results.

B. AVAILABILITY IN A COMMUNICATION SYSTEM
1) SYSTEM STRUCTURES/TOPOLOGIES
Communication systems have by design different physical
(and logical) topologies and structures, e.g., given by the
trade-off between the cost of network elements and the
required system availability. The availability of connected
peers will depend on the grade of redundancy provided in the
physical structure available. In this example, we define four
topologies with n (network) nodes:

(1) Bus topology (serial): a serial structure with no redun-
dancy for the connected peers, and with only one peer-to-
network link per peer, and n 9 1 intermediate links.
(2) Ring topology (serial-parallel): a serial structure in two
parallels which provides two node disjoint redundant paths
for the peer to peer connection between X and Y . It has two
peer-to-network links per peer, and n 9 2 intermediate links,
see Figure 14 for an illustration.

FIGURE 14. System structures and Reliability Block Diagrams (RBD) for
serial-parallel structure.

(3) Ring topology with cross-connects (parallel-serial): two
component parallels in a serial structure, which provides n
non-disjoint redundant paths for the peer to peer connec-
tion between X and Y . It has two peer-to-network links per
peer, and 2(n 9 2) intermediate links, see Figure 15 for an
illustration.

FIGURE 15. System structures and Reliability Block diagrams for
parallel-serial structure.

(4) Parallel topology (parallel): a parallel structure with n
node and link disjoint redundant paths for the connected
peers, with n peer to network links, and no intermediate links.
The parallel structure has the best system availability and
will be used as a reference system for the system availability,
but is regarded as too expensive to be a practical alterna-
tive because the number of peer-to-network links (access
links) increases with the network size. To reflect the cost of
the alternatives, we add cost related to the number of links
required in a network of size n nodes in the four different
cases.

In Figures 14 and 15, the serial-parallel and parallel-serial
systems are shown with their corresponding reliability block
diagrams (RBD). From the RBDs, the system availability of
the four system structures can be determined:

As(n, a) = an (serial)

Asp(n, a) = 1 9 (1 9 an/2)2 (serial-parallel)

Aps(n, a) = (1 9 (1 9 a)2)n/2 (parallel-serial)

Ap(n, a) = 1 9 (1 9 a)n (parallel)

where n = 2, 4, 6, · · · is the number of nodes, and a is the
(homogeneous) node availability.

The costs of the two peer-to-network links and the cost (c)
for each of the n intermediate links are considered for each
topology:

cs(n) = (2ca + (n− 1)c) (serial)

csp(n) = (4ca + (n− 2)c) (serial-parallel)

cps(n) = (4ca + 2(n− 2)c) (parallel-serial)

cp(n) = (2nca) (parallel)

2) SCALABILITY INDEX: SYSTEM AVAILABILITY
AS TARGET MEASURE
We want to study the scalability of the different structures.
In this example, we focus on how the system availability
scales with fixed node availability, a, when the number of
nodes, n, increases in the range (n0, n1). The target function
is system availability, Ai(n, a). We define the parallel system
as our reference system, and the other three as target systems.

The scalability index is then

SIi(n|a) = Fi/H = Ai(n|a)/Ap(n|a) (32)
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where i = s,sp,ps, and

Ai(n|a) =

n∑
k=2

Ai(k, a)

Figure 16a shows the SI wrt. system availability and
assumes a node availability a = 0.95 and the number of
nodes in the range n ∈ (2; 4000). Concerning the system
availability, the parallel structure is optimal. Individual nodes
may fail, still the communication is possible over other nodes.
As expected, the parallel-serial is second best. The serial
structure is the worst when considering the system availabil-
ity and achieves the lowest SI.

FIGURE 16. Scalability index for different network topologies in
communication networks, depending on the number of nodes n ∈ (2; n1)
with node availability a = 0.95. The reference system is the optimal one
wrt. target measure and plotted as a dashed line.

3) SCALABILITY INDEX: COSTS AS TARGET MEASURE
The system availability of the parallel structure results how-
ever in much higher costs. Therefore, we consider now the
scalability wrt. costs of the different structures. The serial
structure is the optimal one regarding costs and used as a
reference system. The link costs are ca = 2 c with c = 1,
i.e., the access links have double the cost compared with the

intermediate links.We see significant differences of the SI for
the structures wrt. costs, see Figure 16b.
Furthermore, we recognize that the ranking of the struc-

tures changes when considering system availability and costs.
Depending on the target measure, the decision which topol-
ogy to use in practice may vary. In general, the target measure
of interest determines the scalability index. As we have seen,
a systemmay scale with respect to one measure (here: system
availability), but not for another measure (here: costs).

4) SCALABILITY OF STRUCTURES: COMBING AVAILABILITY
AND COSTS
In practice, we may want to consider both, system avail-
ability and costs, to decide which topology to use regard-
ing their scalability. There are several approaches how to
tackle this multi-objective problem, e.g., Pareto optimization
approaches and exploration strategies of the Pareto front,
e.g., multi-objective ranking methods, e.g., the weighted sum
method by converting the multi-objective problem into a
single objective problem by linearly combining the objectives
with weights, e.g., the constraint method by introducing con-
straints that reflect the importance of each objective.

For the scalability analysis of structures, we follow here
Kleinrock’s approach [24] and use the so-called Power metric
ψ as a transformation into a one-dimensional utility metric.
The power metric is the ratio of ‘goodness’ (i.e., system avail-
ability) divided by ‘badness’ (i.e., costs). Then, higher values
of the power metric indicate a better system with respect to
system availability and costs. Thus, we are combining system
availability and costs appropriately and use the power metric
in the scalability analysis.

ψi(n, a) = Ai(n, a)/ci(n) (power metric) (33)

As reference system, we use the parallel structure H and
the corresponding integral reference measurement H . The
scalability index is then

SIi(n|a) = H/Fi = Aw
p (n|a)/Aw

i (n|a) (34)

where i = s,sp,ps,p, and

Aw
i (n|a) =

n∑
k=2

ψi(k, a) =

n∑
k=2

Ai(k, a)/ci(k) .

In other words, we are weighting the target measure
Ai(k, a) in the integral measurement with a weight wi(k, a) =

1/ci(k). Thus, a weight function wi(n) is added to each struc-
ture to reflect the cost (ca) of the two peer-to-network links
and the cost (c) for each of the n intermediate links:

wi(n) = 1/ci(n) (weight)

The integral measurement of the reference is also weighted
with the costs of the reference structure:

H = Aw
p (n|a) =

n∑
k=2

Ap(k, a)/cp(k) .
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Thus, the scalability analysis with Kleinrock’s power met-
ric as target measure is the same as the scalability analysis
with system availability as target measure, but weighted with
the inverse of the cost function.

In Figure 17, SIi(n|a) from Eq.(34) is plotted for i =

s,sp,ps, for node availability, a = 0.95 and a = 0.99, and
number of nodes in the range n ∈ (2; 400) and n ∈ (2; 400).
Again, the link costs are ca = 2 c with c = 1, i.e., the access
links have double the cost compared with the intermediate
links.

FIGURE 17. System availability scalability of n ∈ (2; n1) with node
availability a = 0.95 and a = 0.99, respectively.

The plots in Figure 17 show that all structures scale better
than the parallel due to the cost of access links relative to
the intermediate links when the node availability is high,
a = 0.99. For lower node availability, a = 0.95, parallel out-
ranks (crosses 1) the others, first serial, then serial-parallel,
and finally parallel-serial. For a = 0.95, the serial structure
scales best in the range (2; 16), and in the range (16; 210)
the serial-parallel, and then the parallel-serial. Observe that
even the serial scales better than the parallel in (2; 270). For
a = 0.95, the same is observed; serial scales best in (2; 70),
serial-parallel in (70; 4000), but now all scales better than the
parallel structure.

The main observation is that the scalability index as
defined in this section gives can be useful to gain insight
in how to structure the network when it is expected that the

number of nodeswill grow. The index used here takes both the
cost of links (and distinguished between access and interme-
diate links), the node availability, and the system availability
that is provided.

C. LOCATION SELECTION FOR FOG NODE DEPLOYMENT
As a concrete example from literature how to use the SI
to compare the scalability of different solution approaches,
the location selection for fog node deployment and routing
in SDN-based wireless networks for IoT systems is inves-
tigated [26]. The interesting aspect of that use case is that
we need to consider two different target measures, which are
the average end-to-end delay as well as the energy consump-
tion. The scalability of both aspects is thereby investigated
for three different solution approaches. The fog computing
architecture involves relocating services such as computing,
processing, and storage from the centralized cloud to the
network edge or nearby devices, where these services are
deployed. [26] introduces a novel approach called ‘‘Scal-
able and Optimal Near-Sighted Location Selection’’ (SOSW)
to address two key issues in fog computing architecture
with software-defined networking (SDN). (i) Fog nodes are
strategically deployed for optimal performance. (ii) A new
heuristic-based traffic engineering algorithm computes the
best paths for data flows based on constraints like end-to-
end delay and link utilization, which are deployed in an
SDN environment. The goal is to minimize both the energy
consumption and end-to-end delay of IoT devices during task
offloading.

The more fog nodes are deployed, the better the perfor-
mance measures. Nevertheless, increasing the number of fog
nodes comes with a significant cost, making it preferable
to achieve optimal performance using a limited number of
these nodes. For a given number of IoT nodes, the scalability
of the SOSW solution is therefore investigated in terms of
end-to-end delay, averaged over the number of tasks to be
offloaded, and the energy consumption of the IoT nodes.
Therefore, the scalability index is computed for both target
measures. As parameter, the number of tasks is considered,
which is varied from 100 to 1000. Equal weights are selected
for the entire parameter range. As reference function, we con-
sider linear scalability with the suggested linear functions
in Figure 18.
Figure 18a shows that the suggested heuristic even leads

to a better scalability index than the reference system with
SI = 1.03 > 1. However, the shape of the SOSW curve
is not following a linear curve. It has to be noted that the
scalability index only considers the parameter range of inter-
est with the corresponding weights. Hence, for computing
the SI, the parameter range of interest must be specified and
the corresponding target measure (here: end-to-end delay)
must be known. Otherwise, some prediction curves of the
end-to-end delay need to be assumed to compute the SI for
larger parameter range and a larger number of tasks. A power
law prediction of the delay curve is provided in Figure 18b.
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FIGURE 18. Example of location selection for fog node deployment and
routing in SDN-based wireless networks for IoT systems. The data is
taken from [26]. In addition, the SI is computed for different approaches
with respect to a linear reference system. As target measures, energy
consumption as well as the average end-to-end delay are considered. The
parameter range is equally weighted.

Now, we want to investigate the parameter range from 100
to 1200 tasks. While the measurement points are taken from
100 to 1200 tasks, the predicted delays are used for 1100
and 1200 tasks. Now, the SI is only 0.74 indicating that the
system is not scaling linearly over the parameter range up to
1200 tasks. This example again demonstrates the importance
of setting the relevant parameter range for the scalability
investigation.

Figure 18a also shows two other approaches from litera-
ture [27]: (a) the random offloading random path (RORP)
model, (b) the delay-aware greedy path (DGP). Their scal-
ability index is provided in the legend in relation to the linear
reference system. Considering the scalability of the delay,
the SOSW heuristic demonstrates significant improvements
over the two existing methods. Hence, we may conclude that
SOSW scales linearly and better than DGP and RORP, which
have SI values smaller than the SI of SOSW.

We may also directly compute the SI when using another
system as reference. Each row in Table 3 computes the
scalability index for different reference systems (as indi-
cated in the columns). For example, the SI of SOSW
with DGP as reference is SISOSW,DGP=1.20. The SI of
DGP with SOSW as reference system is the inverse:
SIDGP,SOSW=1/SISOSW,DGP=1/1.20=0.83. However, this is
not required, since we may simply compare the SI of SOSW
and DGP in comparison to the linear reference system:
SISOSW,lin.=1.03 and SIDGP,lin.=0.85. The SI shows that
SOSW outperforms DGP. The corresponding SI follows
directly: SISOSW,DGP=SISOSW,lin./SIDGP,lin.=1.20. In prac-
tice, we are typically interested in linear scalability, i.e., a lin-
ear reference function, and then a ranking of the methods.
Hence, the computation of the SI as indicated in the legend
of Figure 18a is sufficient.

TABLE 3. Fog computing example: The SI is computed for any
combination of the different approaches (SOSW, DGP, RORP) and the
linear reference.

Similarly, other target measures may be investigated in
terms of scalability. Figure 18c shows the energy consump-
tion of the IoT nodes depending on the number of tasks for the
different approaches and a linear reference system. Now, the
scalability of the SOSW is not linear when compared with an
appropriate linear system (SI<1). This is caused by a certain
amount of energy consumption in idle mode or when the load
in terms of number of tasks is low. Hence, we get different
conclusions when using different target measures, as already
discussed in Section V-A4 for the IoT load balancer. In the
fog computing example, the energy and delay scalability lead
to the same ranking of the approaches, see Table 3. The next
example will show that also the ranking may change itself
depending on the measure of interest.
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D. NUMBER OF SUPPORTED FLOWS IN TSN
As a final use case, time sensitive networking (TSN)
is considered with two different mechanisms, that are
the IEEE 802.1Q strict priority transmission selection
algorithm (SP) [28] and the IEEE 802.1Qcr Asynchronous
Traffic Shaping (ATS) mechanism [29]. The scalability anal-
ysis is based onmeasurement results, for which the parameter
values are not evenly spaced. Such a situation may happen
in practice, when comparing the scalability of an own system
with another system, where only limited measurement results
are available.

An IEEE 802.1Q Strict Priority switch supports differ-
ent traffic classes and uses a FIFO transmission selec-
tion algorithm for all data frames within the same queue
(i.e., traffic class). Reference [30] shows that determinis-
tic latency with priority queuing is feasible without the
need for network-wide information or reshaping and timed
gates in the SP forwarding devices. The mechanism relies
on a resource reservation process that communicates nec-
essary information for the resource reservation of each
stream along its path, e.g., based on the resource allo-
cation protocol (RAP) developed in IEEE 802.1Qdd [31]
which provides stream reservation and quality of service
capabilities.

In contrast, the ATS mechanism deploys a per-hop reshap-
ing of streams based on IEEE standard draft P802.1Qcr in
an ATS switch. To be more precise, ATS applies per-stream
leaky bucket shaping with interleaved queuing to keep the
burstiness of streams low. TheATS and the SPmechanism are
proven to guarantee latency bounds with a proper reservation
protocol [30], [32].

An evaluation of the impact of SP and ATS on stream
reservations is provided in [30]. In the experiments, a varying
number of streams is deployedwith different traffic character-
istics for low-priority and high-priority traffic. A new stream
attempts to reserve network resources, but if the new stream
reservation leads to violations of any delay guarantees for any
stream in the network, the new stream is declined. Otherwise,
the new stream is accepted.

Figure 19a shows the number of deployed streams depend-
ing on the number of requested stream reservations. The
study involves conducting multiple experiments with various
configurations of attempted reservations. These configura-
tions range from 100 to 2000 streams, with four different
steps in between. For each of these configurations, 20 rep-
etitions are conducted, each time using random stream
traffic specifications. Figure 19a shows the average num-
bers of accepted reservations for ATS and SP. It can be
seen that ATS could accept more streams than SP and is
therefore preferred. However, an ATS switch is more com-
plex than an SP switch, which is a lightweight solution
that is available in current switches. Note that SP and ATS
guarantee the upper delay bounds for the traffic of the dif-
ferent classes (which are low- and high-priority traffic in the
numerical example).

FIGURE 19. Time sensitive networking (TSN) using the strict priority (SP)
and the asynchronous traffic shaping (ATS) mechanism, respectively. The
experimental results are taken from [30] for two different traffic classes
with the following delay guarantees: δhigh = 2ms, δlow = 8ms.

The question arises how to compute the scalability
index. We use as a reference system the optimal system,
i.e., the number h(x) of accepted and deployed streams is the
number x of requested streams: h(x) = x. The parameter
range x is from 100 to 2000. The measurement points are
discrete and not evenly spaced. Instead, we have the measure-
ment values for the parameter x ∈ {100, 200, 500, 2000}.

In general, we may have n measurement values and there-
fore tuples (xi, yi) for i = 1, . . . , n. Then, the SI can be
computed by a piecewise linear function between the mea-
surement points. The area under that function is

Ây =

n∑
i=2

(xi − xi−1)yi−1 +
1
2
(xi − xi−1)(yi − yi−1)

=
1
2

n∑
i=2

(xi − xi−1)(yi + yi−1) (35)

for the parameter range x ∈ {100, 2000}. In our example, the
area Ah under the reference function h(x) = x is

Ah =
1
2
xnyn −

1
2
x0y0 (36)
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and the SI is

ŜI = Ây/Ah . (37)

Note that a piecewise linear function fitting f (x) leads to the
same area

Ay =

xn∑
x=x1

f (x) = Ây (38)

and consequently the same SI.
Figure 19b visualizes the piecewise linear function

between the measurement points and provides the scalabil-
ity index using the computation of the area in Eq.(36) and
Eq.(38). The scalability of ATS is SIATS/SISP = 1.36 times
better than the scalability of SP. The relation of the SI val-
ues simply means to compare the integral measurements of
the two systems, i.e., without explicitly defining a reference
system like the optimal system. This is a very useful feature
of the SI in practice. In general, there may be system F and
G with the corresponding integral measurement F and G,
respectively. Then, the scalability index SIHF and SIHF can
be computed based on a reference system H and integral
measurement H .

SIHF =

(
F
H

)γ
SIHG =

(
G
H

)γ
(39)

The relation of these two SI values is however the SI of theF
using G as reference system.

SIGF = SIHF /SI
H
G =

(
F
H

)γ
/

(
G
H

)γ
=

(
F
G

)γ
(40)

Thus, the scalability improvement or deterioration of F in
relation to G is quantified by the SI relation.

VI. CONCLUSION AND DISCUSSIONS
Scalability is often mentioned in literature, but a stringent
definition is missing. In particular, there is no general scal-
ability assessment which clearly indicates whether a system
scales or not or whether a system scales better than another.
Furthermore, it is often unclear what is meant by statements
like ‘‘A system scales.’’ To this end, we survey literature
and differentiate scalability from aspects like performance,
efficiency, elasticity.

A. KEY CONTRIBUTIONS
The key contribution of this paper is the definition of a ‘‘gen-
eral scalability index’’ that generalizes existing approaches
from the literature, which are a special case of ours. Our
general framework allows quantifying whether a system or
communication network is scaling in comparison to a ref-
erence system. This also allows, e.g., a comparison with an
optimal system or benchmarking systems and ranking them.
With our numerical results, we demonstrate the use of the
scalability index and emphasize the relevance of the key
components of the scalability index, which are as follows.

(1) The system function (or target measure function) quan-
tifies the target measure of interest for the system, depend-
ing on a certain parameter. The researcher needs to link
the scalability question about an appropriate target measure.
Diverse target measures can yield varying outcomes regard-
ing the scalability of a system in practical scenarios. Defining
the target measure, such as considering SLAs, is crucial and
should be prioritized as the initial step in assessing system
scalability. By modifying the system function, it becomes
possible to analyze additional aspects, such as stochastic
scalability. This opens up new opportunities for examining
the system under probabilistic scenarios.
(2) A reference system is used for comparison with the
system under test. The reference system serves as a bench-
mark for comparing and evaluating two or more systems.
It provides a standard against which the target measure of the
systems can be measured. Often, the ideal system serves as a
desirable benchmark; however, it may not always be achiev-
able or known in real-world applications. In practice, a typical
question is to investigate if the system scales linearly. Then,
the reference function is a linear function. Still, the slope and
offset of such a linear function needs to be determined.
(3) The analysis of scalability needs to consider all relevant
parameter settings. Scalability means not just the ability to
operate, but to operate efficiently and with adequate quality
of service, over the given range of configurations. Thus,
the scalability index must consider the parameter range of
interest to draw conclusions.
(4) By weighting the importance or relevance of a parame-
ter setting or configuration, the quantification of scalability
results in an integral measurement of the (weighted) target
measure over the entire parameter range.

B. LESSONS LEARNED FROM THE USE CASES
The use cases for demonstrating the SI are an IoT load bal-
ancer, availability in communication systems, node selection
in fog computing, and benchmarking of TSN mechanisms.
They differ in the parameter range (continuous load of
IoT balancer, discrete number of nodes, number of fog
computing tasks, number of requested TSN streams), the
goodness indicator (response times, availability, costs, delay,
energy consumption, deployed TSN stream), and the focus
of the scalability analysis (functional and stochastic scal-
ability, structure of networks, combination of availability
and costs, benchmarking of existing fog computing or TSN
mechanisms).

The use case of availability in communication systems
demonstrates that the scalability index can be useful to gain
insight in how to structure the network when it is expected
that the number of nodes will grow. The scalability of the
system differs depending on the target measure (availability,
costs), which are mutually contradicting. Therefore, it is
shown how to combine different target measures with the
power metric or using costs as weights. It is important to
understand that the scalability index and the scalability analy-
sis change depending on the target measure of interest. In our
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example, the parallel system scales wrt. availability, but not
wrt. costs.

For the use case of an IoT load balancer, our results
show how the scalability index helps to quantify aspects
like ‘‘economies of scale’’, i.e., larger-scale operation has
advantages over smaller ones. Bundling the servers increases
the scalability, as quantified by the scalability index. It also
allows quantifying how much better it is to have a single
high-performance server or smaller servers bundled.

The fog computing use case shows how to benchmark
different mechanisms concerning their scalability. Thereby,
the results show linear scalability of one approach. This
means that the system behavior in terms of delay as target
measure of a linear system is similar to the mechanism under
investigation. The performance curve shows however that the
curve is following an exponential increase instead of a linear
one. It is important to understand the scalability index needs
a defined parameter range of interest. If it is expected that the
system may also need to cope with larger parameter values
(number of tasks) in the future, then the performance curve
needs to be extended to the entire (future) parameter range.
This may be done based on predictions.

We clearly want to mention that the scalability index is
computed for a system where the behavior is known. This
means the target measure function must be known or esti-
mated for future developments. This is the required input
for the integral measurement. In other words, the scalability
index of a deployed system is constant. If the system is
changed, after it is built (e.g., by adding more resources),
then the scalability index must be re-computed, since this
would change the target measure function. If the system
behavior is unknown, then the scalability index cannot be
computed.

Finally, the TSNuse case shows how to deal with unequally
spaced measurements and limited configurations under test.
Piece wise linear functions may be used, if no more system
knowledge and more fine-grained target measure-parameter
curves are available. For benchmarking different mecha-
nisms, we may use the optimal reference system. Then, the
SI relates the scalability of a mechanism to the optimal sys-
tem and the absolute value of the SI provides meaningful
insights. Similarly, linear systems (i.e., linear target measure
functions) as reference allow quantifying to which degree a
system linearly scales.

The comparison of two mechanisms means to compute the
SI for one system in relation to another system. The relation
of the two SI values shows how much better a system scales
in comparison to another.

C. PRACTICAL GUIDELINES AND LIMITATIONS
For the scalability analysis of a system, there are a couple
of aspects to be considered in practice. We provide some
practical guidelines by revisiting the ingredients of the SI.

The target measure: The system function quantifies the
system behavior depending on a certain parameter and the
desired target measure of interest. This system function is

the input for the integral measurement of the SI. In practice,
several target functions may be of interest, e.g., delays or
energy consumption. Then, it is recommended to compute
the SI for all the interesting target functions. This gives a
detailed understanding how the system scales in different
dimensions. If there is the possibility to combine some target
measures into a single-dimensional utility function, then the
SI regarding that utility function as target measure function
may lead to different results and conclusions. Kleinrock’s
power metric or appropriate weighting functions, e.g., for
costs, are recommended and may give advice, which systems
are scaling better in practice.

The parameter range: The scalability analysis requires
a defined parameter range to be investigated. The parame-
ter range may also be unbounded, but the system function,
which is the target measure depending on a certain param-
eter over the entire range, is the necessary input for the
SI computation. In practice, only limited information, how
the system behaves, may be known for extended param-
eter ranges, e.g., future system size and more nodes in a
future system. The SI computation must get the system func-
tion as input. If the system behavior is not known for the
parameter range of interest, then the SI cannot be computed.
However, in practice, interpolation of measurement points,
e.g., piecewise linear functions, as well as prediction of
future system behavior are possibilities how to obtain the
system function.

The weighting function: The weighting function gives
a powerful way how to include additional aspects like
the importance of parameter / configuration settings, the
probability for such settings, or the costs resulting from
such settings. The weighting function requires deep expert
knowledge of the system, e.g., costs may be difficult to
measure or to estimate in practical environments. If not
known, all parameter settings should be treated equally,
i.e., same weight.

The reference system: : If the optimal system behavior is
known, the optimal system should be defined as a reference
system. The SI shows then how far a system is away from
the optimal system. In practice, the optimal system is often
unknown or too complex to be derived. Linear reference
functions are a proper mean to test for linear scalability,
which is a key comparison in practice. Still, a proper linear
function needs to be considered, see Section III-C. However,
knowledge in the domain or expert knowledge of the system
allows defining the slope as well as the constant offset of the
linear function. The offset may be derived from the system
in idle mode. The slope may reflect the desired or acceptable
behavior of the system.

However, we want to emphasize that the scalability anal-
ysis provides a framework to compare two different systems
F and G. Then, the scalability index can be computed with
a linear system as reference. Then resulting SI values of F
and G provide then a ranking, independent of which reference
system is used. The relation of the two SI values shows the
scalability improvement or deterioration ofF in relation to G,
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see the TSN example in Section V-D. For benchmarking of
two or more systems, the SI can be directly computed by
just using the system functions of F and G, see also the
fog computing example and Table 3. Thus, benchmarking
of two systems does not require a reference system – and
is the primary target of our SI framework. Probably most
often used in practice is the scalability comparison of a
system with another similar system. Only in case there is
no comparison targeted, we use a reference system for the
computation of SI.

In practice, additional issues may arise. To account for
situations where the system may not function correctly with
specific parameter settings or configurations, it is crucial to
incorporate this information into the target function. Addi-
tionally, the relevance or importance of such scenarios can
be adjusted using a weighting function. This ensures that
the scalability evaluation captures the impact of problematic
parameter settings or configurations appropriately.

If we compute the scalability index of a deployed system,
then the SI is constant. If the system is changed, after it is
built (e.g., by adding more resources), then the scalability
index must be re-computed, since the system function is
changed. If that system function is not known, the SI cannot
be computed. As discussed above, predictions or interpola-
tions may be useful in that case. This also means that the
SI will remain unchanged, i.e., constant, when a system is
not changed.

In general, the SI measures the potential of a system to
scale. If the system scales up/down over time, then this must
be captured in the system function. Hence, aspects like elas-
ticity are part of a scalability analysis.

Knowing how the system works and the system functions
are a prerequisite for calculating the SI. If we have a black box
system at hand, then we need to learn the system behavior to
derive the system function. This may be done via experiments
in a test bed or via simulations, or alternatively, we can do
some stress tests with the running system if possible. In prac-
tice, we typically want to compare a system with another
similar system. If no other system for comparison is available,
we can compare to a linear or optimal system.

REFERENCES
[1] A. Al-Said Ahmad and P. Andras, ‘‘Scalability analysis comparisons of

cloud-based software services,’’ J. Cloud Comput., vol. 8, no. 1, pp. 1–17,
Dec. 2019.

[2] S. Lehrig, H. Eikerling, and S. Becker, ‘‘Scalability, elasticity, and effi-
ciency in cloud computing: A systematic literature review of definitions
and metrics,’’ in Proc. 11th Int. ACM SIGSOFT Conf. Quality Softw.
Architectures (QoSA), May 2015, pp. 83–92.

[3] P. Tran-Gia and T. Hoßfeld, Performance Modeling and Analysis of Com-
munication Networks. Würzburg, Germany: Würzburg University Press,
2021. [Online]. Available: https://modeling.systems

[4] P. Jogalekar and M. Woodside, ‘‘Evaluating the scalability of distributed
systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 11, no. 6, pp. 589–603,
Jun. 2000.

[5] N. R. Herbst, S. Kounev, and R. H. Reussner, ‘‘Elasticity in cloud comput-
ing: What it is, and what it is not,’’ in Proc. ICAC, vol. 13, 2013, pp. 23–27.

[6] J. Perez, C. Germain-Renaud, B. Kégl, and C. Loomis, ‘‘Responsive elastic
computing,’’ in Proc. 6th Int. Conf. Ind. Session Grids Meets Autonomic
Comput., Jun. 2009, pp. 55–64.

[7] D. M. Gutierrez-Estevez, M. Gramaglia, A. D. Domenico, N. D. Pietro,
S. Khatibi, K. Shah, D. Tsolkas, P. Arnold, and P. Serrano, ‘‘The
path towards resource elasticity for 5G network architecture,’’ in Proc.
IEEE Wireless Commun. Netw. Conf. Workshops (WCNCW), Apr. 2018,
pp. 214–219.

[8] M. He, A. M. Alba, A. Basta, A. Blenk, and W. Kellerer, ‘‘Flexibility
in softwarized networks: Classifications and research challenges,’’ IEEE
Commun. Surveys Tuts., vol. 21, no. 3, pp. 2600–2636, 3rd Quart., 2019.

[9] P. Babarczi, M. Klügel, A. Martínez Alba, M. He, J. Zerwas, P. Kalmbach,
A. Blenk, and W. Kellerer, ‘‘A mathematical framework for measuring
network flexibility,’’ Comput. Commun., vol. 164, pp. 13–24, Dec. 2020.

[10] O. Hohlfeld, J. Kempf, M. Reisslein, S. Schmid, and N. Shah, ‘‘Guest
editorial scalability issues and solutions for software defined net-
works,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 12, pp. 2595–2602,
Dec. 2018.

[11] M. Karakus and A. Durresi, ‘‘A scalability metric for control planes in
software defined networks (SDNs),’’ in Proc. IEEE 30th Int. Conf. Adv.
Inf. Netw. Appl. (AINA), Mar. 2016, pp. 282–289.

[12] R. Steinmetz, I. Stavrakakis, C. E. Rothenberg, and B. Koldehofe, ‘‘Adap-
tive and scalable communication networks [scanning the issue],’’ Proc.
IEEE, vol. 107, no. 4, pp. 635–638, Apr. 2019.

[13] Y. Li, D. Ou, X. Zhou, C. Jiang, and C. Cérin, ‘‘Scalability and per-
formance analysis of BDPS in clouds,’’ Computing, vol. 104, pp. 1–36,
Feb. 2022.

[14] X.-H. Sun and D. T. Rover, ‘‘Scalability of parallel algorithm-machine
combinations,’’ IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 6,
pp. 599–613, Jun. 1994.

[15] P. Tran-Gia and A. Binzenhöfer, ‘‘On the stochastic scalability of infor-
mation sharing platforms,’’ in Distributed Cooperative Laboratories:
Networking, Instrumentation, and Measurements. Cham, Switzerland:
Springer, 2006, pp. 11–27.

[16] E. J. Weyuker and A. Avritzer, ‘‘A metric to predict software scalability,’’
in Proc. 8th IEEE Symp. Softw. Metrics, Jul. 2002, pp. 152–158.

[17] A. Y. Grama, A. Gupta, and V. Kumar, ‘‘Isoefficiency: Measuring the
scalability of parallel algorithms and architectures,’’ IEEE Parallel Distrib.
Technol., Syst. Appl., vol. 1, no. 3, pp. 12–21, Aug. 1993.

[18] J. L. Bosque, O. D. Robles, P. Toharia, and L. Pastor, ‘‘H-isoefficiency:
Scalability metric for heterogeneous systems,’’ in Proc. 10th Int. Conf.
Comput. Math. Methods Sci. Eng., 2010, pp. 1–11.

[19] S. Henning andW. Hasselbring, ‘‘How tomeasure scalability of distributed
stream processing engines?’’ in Proc. Companion ACM/SPEC Int. Conf.
Perform. Eng., Apr. 2021, pp. 85–88.

[20] W.-T. Tsai, Y. Huang, and Q. Shao, ‘‘Testing the scalability of SaaS
applications,’’ in Proc. IEEE Int. Conf. Service-Oriented Comput. Appl.
(SOCA), Dec. 2011, pp. 1–4.

[21] A. Avritzer, V. Ferme, A. Janes, B. Russo, A. V. Hoorn, H. Schulz,
D. Menasché, and V. Rufino, ‘‘Scalability assessment of microservice
architecture deployment configurations: A domain-based approach lever-
aging operational profiles and load tests,’’ J. Syst. Softw., vol. 165,
Jul. 2020, Art. no. 110564.

[22] S. Henning and W. Hasselbring, ‘‘A configurable method for bench-
marking scalability of cloud-native applications,’’ Empirical Softw. Eng.,
vol. 27, no. 6, p. 143, Nov. 2022.

[23] P. Jogalekar and C. Woodside, ‘‘A scalability metric for distributed
computing applications in telecommunications,’’ Teletraffic Sci. Eng.,
vol. 2, pp. 101–110, 1997. [Online]. Available: https://www.sciencedirect.
com/science/article/abs/pii/S1388343797800169

[24] L. Kleinrock, ‘‘Internet congestion control using the power metric: Keep
the pipe just full, but no fuller,’’ Ad Hoc Netw., vol. 80, pp. 142–157,
Nov. 2018.

[25] F. Metzger, T. Hoßfeld, A. Bauer, S. Kounev, and P. E. Heegaard, ‘‘Mod-
eling of aggregated IoT traffic and its application to an IoT cloud,’’ Proc.
IEEE, vol. 107, no. 4, pp. 679–694, Apr. 2019.

[26] M. Ibrar, L. Wang, G.-M. Muntean, N. Shah, A. Akbar, and K. I. Qureshi,
‘‘SOSW: Scalable and optimal nearsighted location selection for fog node
deployment and routing in SDN-basedwireless networks for IoT systems,’’
Ann. Telecommun., vol. 76, pp. 331–341, Apr. 2021.

[27] M. Chen and Y. Hao, ‘‘Task offloading for mobile edge computing in
software defined ultra-dense network,’’ IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[28] IEEE Standard for Local and Metropolitan Area Network—Bridges and
Bridged Networks, Standard IEEE 802.1Q-2018, IEEE 802.1 Working
Group, IEEE Standards Association, 2018.

101496 VOLUME 11, 2023



T. Hossfeld et al.: Comparing the Scalability of Communication Networks and Systems

[29] Draft Standard for Local and Metropolitan Area Networks—Bridges and
Bridged Networks—Amendment: Asynchronous Traffic Shaping, Standard
IEEE P802.1Qcr/D2.0, IEEE Standards Association, 2019.

[30] A. Grigorjew, F. Metzger, T. Hoßfeld, J. Specht, F.-J. Götz, F. Chen,
and J. Schmitt, ‘‘Bounded latency with bridge-local stream reservation
and strict priority queuing,’’ in Proc. 11th Int. Conf. Netw. Future (NoF),
Oct. 2020, pp. 55–63.

[31] IEEE 802.1Qdd: Draft Standard for Local and Metropolitan Area
Networks—Bridges and Bridged Networks—Amendment: Resource Allo-
cation Protocol, IEEE 802.1Working Group, IEEE Standards Association,
Piscataway, NJ, USA, 2023.

[32] J. Specht and S. Samii, ‘‘Urgency-based scheduler for time-sensitive
switched Ethernet networks,’’ in Proc. 28th Euromicro Conf. Real-Time
Syst. (ECRTS), Jul. 2016, pp. 75–85.

TOBIAS HOSSFELD (Senior Member, IEEE) was
the Head of the Chair Modeling of Adaptive
Systems, University of Duisburg-Essen, Germany,
from 2014 to 2018. He has been a Full Professor
and the Head of the Chair of Communication Net-
works, University of Würzburg, Germany, since
2018. He is a member of the editorial board
of IEEE COMMUNICATIONS SURVEYS AND TUTORIALS,
ACM SIGMM Records, and Quality and User
Experience (Springer).

POUL E. HEEGAARD (Senior Member, IEEE)
was a Senior Scientist with SINTEF Digi-
tal, from 1989 to 1999, and Telenor R&I,
from 1999 to 2009. He is currently a Full Professor
with the Department of Information Security and
Communication Technology, Norwegian Univer-
sity of Science and Technology (NTNU), where he
is also the Head of the Department of Information
Security and Communication Technology and the
Head of the Networking Research Group.

WOLFGANG KELLERER (SeniorMember, IEEE)
is currently a Full Professor with the Techni-
cal University of Munich (TUM), where he is
also heading the Chair of Communication Net-
works, Department of Electrical and Computer
Engineering. Before that, he was with the NTT
DOCOMO’s European Research Laboratories, for
over ten years. He currently serves as an Asso-
ciate Editor for IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT and an Area Editor for
Network Virtualization and IEEE COMMUNICATIONS SURVEYS AND TUTORIALS.

VOLUME 11, 2023 101497


