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Abstract

Deep Learning (DL) models are trained on a downstream task by feeding (potentially
preprocessed) input data through a trainable Neural Network (NN) and updating its
parameters to minimize the loss function between the predicted and the desired output.
While this general framework has mainly remained unchanged over the years, the archi-
tectures of the trainable models have greatly evolved. Even though it is undoubtedly
important to choose the right architecture, we argue that it is also beneficial to develop
methods that address other components of the training process. We hypothesize that
utilizing domain knowledge can be helpful to improve DL models in terms of performance
and/or efficiency. Such model-agnostic methods can be applied to any existing or future
architecture. Furthermore, the black box nature of DL models motivates the development
of techniques to understand their inner workings. Considering the rapid advancement of
DL architectures, it is again crucial to develop model-agnostic methods.

In this thesis, we explore six principles that incorporate domain knowledge to un-
derstand or improve models. They are applied either on the input or output side
of the trainable model. Each principle is applied to at least two DL tasks, leading to
task-specific implementations. To understand DL models, we propose to use Generated
Input Data coming from a controllable generation process requiring knowledge about
the data properties. This way, we can understand the model’s behavior by analyzing how
it changes when one specific high-level input feature changes in the generated data. On
the output side, Gradient-Based Attribution methods create a gradient at the end of
the NN and then propagate it back to the input, indicating which low-level input features
have a large influence on the model’s prediction. The resulting input features can be
interpreted by humans using domain knowledge.

To improve the trainable model in terms of downstream performance, data and compute
efficiency, or robustness to unwanted features, we explore principles that each address
one of the training components besides the trainable model. Input Masking and
Augmentation directly modifies the training input data, integrating knowledge about
the data and its impact on the model’s output. We also explore the use of Feature
Extraction using Pretrained Multimodal Models which can be seen as a beneficial
preprocessing step to extract useful features. When no training data is available for
the downstream task, using such features and domain knowledge expressed in other
modalities can result in a Zero-Shot Learning (ZSL) setting, completely eliminating the
trainable model. The Weak Label Generation principle produces new desired outputs
using knowledge about the labels, giving either a good pretraining or even exclusive
training dataset to solve the downstream task. Finally, improving and choosing the right
Loss Function is another principle we explore in this thesis. Here, we enrich existing
loss functions with knowledge about label interactions or utilize and combine multiple
task-specific loss functions in a multitask setting.

We apply the principles to classification, regression, and representation tasks as well as
to image and text modalities. We propose, apply, and evaluate existing and novel methods
to understand and improve the model. Overall, this thesis introduces and evaluates
methods that complement the development and choice of DL model architectures.
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Zusammenfassung

Deep-Learning-Modelle (DL-Modelle) werden trainiert, indem potenziell vorverarbeitete
Eingangsdaten durch ein trainierbares Neuronales Netz (NN) geleitet und dessen Parameter
aktualisiert werden, um die Verlustfunktion zwischen der Vorhersage und der gewünschten
Ausgabe zu minimieren. Während sich dieser allgemeine Ablauf kaum geändert hat,
haben sich die verwendeten NN-Architekturen erheblich weiterentwickelt. Auch wenn
die Wahl der Architektur für die Aufgabe zweifellos wichtig ist, schlagen wir in dieser
Arbeit vor, Methoden für andere Komponenten des Trainingsprozesses zu entwickeln. Wir
vermuten, dass die Verwendung von Domänenwissen hilfreich bei der Verbesserung von DL-
Modellen bezüglich ihrer Leistung und/oder Effizienz sein kann. Solche modellagnostischen
Methoden sind dann bei jeder bestehenden oder zukünftigen NN-Architektur anwendbar.
Die Black-Box-Natur von DL-Modellen motiviert zudem die Entwicklung von Methoden,
die zum Verständnis der Funktionsweise dieser Modelle beitragen. Angesichts der schnellen
Architektur-Entwicklung ist es wichtig, modellagnostische Methoden zu entwickeln.

In dieser Arbeit untersuchen wir sechs Prinzipien, die Domänenwissen verwenden, um
Modelle zu verstehen oder zu verbessern. Sie werden auf Trainingskomponenten im
Eingang oder Ausgang des Modells angewendet. Jedes Prinzip wird dann auf mindestens
zwei DL-Aufgaben angewandt, was zu aufgabenspezifischen Implementierungen führt.
Um DL-Modelle zu verstehen, verwenden wir kontrolliert generierte Eingangsdaten,
was Wissen über die Dateneigenschaften benötigt. So können wir das Verhalten des
Modells verstehen, indem wir die Ausgabeänderung bei der Änderung von abstrahierten
Eingabefeatures beobachten. Wir untersuchen zudem gradienten-basierte Attribu-
tion-Methoden, die am Ausgang des NN einen Gradienten anlegen und zur Eingabe
zurückführen. Eingabefeatures mit großem Einfluss auf die Modellvorhersage können so
identifiziert und von Menschen mit Domänenwissen interpretiert werden.

Um Modelle zu verbessern (in Bezug auf die Ergebnisgüte, Daten- und Recheneffizienz
oder Robustheit gegenüber ungewollten Eingaben), untersuchen wir Prinzipien, die jeweils
eine Trainingskomponente neben dem trainierbaren Modell betreffen. Das Maskieren
und Augmentieren von Eingangsdaten modifiziert direkt die Trainingsdaten und
integriert dabei Wissen über ihren Einfluss auf die Modellausgabe. Die Verwendung
von vortrainierten multimodalen Modellen zur Featureextraktion kann als ein
Vorverarbeitungsschritt angesehen werden. Bei fehlenden Trainingsdaten können die
Features und Domänenwissen in anderen Modalitäten als Zero-Shot Setting das trainierbare
Modell gänzlich eliminieren. Das Weak-Label-Generierungs-Prinzip erzeugt neue
gewünschte Ausgaben anhand von Wissen über die Labels, was zu einem Pretrainings-
oder exklusiven Trainigsdatensatz führt. Schließlich ist die Verbesserung und Auswahl
der Verlustfunktion ein weiteres untersuchtes Prinzip. Hier reichern wir bestehende
Verlustfunktionen mit Wissen über Label-Interaktionen an oder kombinieren mehrere
aufgabenspezifische Verlustfunktionen als Multi-Task-Ansatz.

Wir wenden die Prinzipien auf Klassifikations-, Regressions- und Repräsentationsauf-
gaben sowie Bild- und Textmodalitäten an. Wir stellen bestehende und neue Methoden
vor, wenden sie an und evaluieren sie für das Verstehen und Verbessern von DL-Modellen,
was die Entwicklung und Auswahl von DL-Modellarchitekturen ergänzt.
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1. Introduction

Deep Learning (DL) is a very powerful paradigm that has become the defacto standard
to solve many Machine Learning (ML) tasks in recent years. DL is based on Neural
Networks (NNs) that are trained to learn a mapping from input data to output data.

The general DL framework is shown in Figure 1.1: On the one side, there is an input
dataset, which can be preprocessed. On the other side is the corresponding output data.
In between, there is a trainable model that takes the input, transforms it into more useful
representations, extracts useful features to solve the task, and maps these features to the
output, which is compared to the desired output using a loss function [73]. Trainable
means that the parameters of the model can be optimized to better map the input to the
output. The computed loss value is then backpropagated to the model’s parameters to
minimize the loss function.

From this basic framework, multiple DL training regimes can be derived [246]. Super-
vised Learning (SL) is the most common training regime, where the input and output
data are paired, i.e., for each input example there is one desired output [145]. When no
explicit desired output data is available, Unsupervised Learning (UL) can be used in DL,
where the model learns to detect useful patterns in the input data and creates vector
representations that can be clustered, for example. One possible trainable model used in
this case is the Autoencoder (AE), where the desired output is the input itself, i.e., the
model learns to reconstruct the input. A subregime of UL is Self-Supervised Learning
(SelfSL), where the output is based on contrasting the features of different views, i.e.,
variations, of the input data [110]. When there is a mix of labeled and unlabeled data,
Semi-Supervised Learning (SemiSL) can be used, where the unlabeled data is used as
base data to let the model learn useful features and the labeled data is then used to refine
the model.

In recent years, Zero-Shot Learning (ZSL) has become a popular research topic, where
for a downstream task, no training data is available (zero training examples for the

Input Data Preprocessing Trainable Model Loss Function

Desired Output

Figure 1.1.: The general training framework of DL models. The input data is preprocessed and
fed through the trainable model. Its output is then compared to a desired output using a loss
function. The loss is then used to update the trainable model’s parameter in order to minimize
the loss function (dotted arrow).
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downstream task) [283]. Instead, the model is trained on a different task, where the
input and output data is available. A popular example are autoregressive Large Language
Models (LLMs) such as GPT-4 [202] (based on Generative Pre-Training [29]), which learn
to predict the next word/token in a sentence. Then, after trained on large text corpora,
the ability to continue sentences can be used to solve a task by cleverly embedding the
input text in a template such that the continuation, that the model produces, resembles
the desired output. Also, the output activations of the model can be used for further
processing. The training of the ZSL model fits the provided basic framework of DL, since
it is a trainable model trained on inputs and outputs. The downstream task, however,
keeps the weight parameters of the formerly trainable model fixed and only uses its
outputs. Since no model optimization takes place, we can interpret the trained model as
a preprocessing step, which, in turn, directly maps the input to the output or produces
new features that are further processed.

The basic framework for training NNs has not changed much since their invention [226].
During training, input data is fed through the NN and the output is compared to the
desired output using a loss function. The error, as measured by the loss function, is
then propagated back through the NN by differentiating the loss function with respect
to the weights of the NN. Given the computed gradients, the weights are updated using
an optimization algorithm, such as Stochastic Gradient Descent (SGD). The process
is repeated until performance metrics are no longer improving, indicating that the NN
converges to an optimum.

NNs can represent very complicated functions, which can make it challenging to
interpret the process of how they arrive at their prediction. Due to this occurring non-
interpretability, they are often called “black boxes”. Given the training examples, a NN
finds one function that explains the data well. Often, multiple or even infinitely many
functions can explain the data equally well. This can lead to undesired behavior. For
example, in order to predict that a ship is shown in an image, NNs often pay attention to
water, as most ships are pictured in water [142]. When showing ships in the desert, the
NN will not be able to predict that a ship is shown, since there is no water present. Since
using water as a proxy to detect ships seems to work for the dataset it has been trained
and evaluated on, catching such errors is difficult. Thus, it is desirable to understand
what kind of input features the NN has learned to focus on in order to generate its output.
Understanding this can help to catch errors and debug a model.

While the basic training framework of NNs — gradient descent based optimization of
the model’s weights — has not really changed, the used model architectures are constantly
evolving. Each model architecture and its variants use different assumptions to model
the data, aiming to introduce so-called inductive biases into the model to achieve better
performance. Inductive bias aims to narrow down the space of possible functions that can
explain the data, based on domain knowledge that lead to useful assumptions about the
data and the task. This can lead to the improvement of different aspects of the model:
better predictive performance, higher robustness regarding certain influencing factors,
fewer parameters to train, lower data requirements in terms of training dataset size,
shorter training times due to faster convergence, etc. The term “improvement” is thus
highly dependent on the context but means in general an outcome that is beneficial for the
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task at hand. For example, Convolutional Neural Networks (CNNs) use the assumption
that the input data is given in a grid-like structure that can be processed with the same
model at every location [115]. This assumption is then encoded in the model architecture
by using convolutional layers, which leads to fewer parameters to train, fewer training
examples needed, and better performance than using fully connected models. In other
situations, better performance is not always the highest priority. MobileNet [236] is a
CNN architecture that is optimized for mobile devices. Thus, the highest priority is to
have a small model size and faster inference times, while the performance of the model is
allowed to degrade a little. In other situations, the amount of training data is constrained,
which motivates other model architectures or training methods to reduce the amount of
training data needed.

Given the fast development of new architectures, we argue that it is necessary to develop
methods to understand the output generation process of DL models in a model-agnostic
way such that they can be applied to any model architecture that is or will be used in
the future. We hypothesize that domain knowledge, i.e. the insights, concepts, rules, and
heuristics that experts have acquired through their experience and study of a particular
domain, can be beneficial to understanding the model. In this thesis, we will focus on
methods to understand what low-level and high-level input features are important for
a model to form a prediction: so-called feature attribution. Here, domain knowledge
can be used to compute such attributions, but also to interpret them. It is consequently
desirable to also develop methods that improve NNs without dictating a specific model
architecture to allow for future developments.

The goal of this thesis is to provide an exploration, investigation, and practical
application of different methods and techniques to understand and improve NNs in a
model-agnostic way by using domain knowledge. We cover two principles to understand
trained DL models (namely Generated Input Data and Gradient-Based Attribution) and
four principles to improve them for their downstream task during training (namely Input
Masking and Augmentation, Feature Extraction using Pretrained Multimodal Models,
Weak Label Generation, and Loss Function). The four principles to improve the model
each touch on a different aspect of the training process besides the trainable model from
Figure 1.1. We discuss the principles in more detail in the following section.

1.1. Research Topics and Contributions

In this section we give an overview over the contributions in this thesis, which are also
depicted in Figure 1.2. We propose and introduce principles that incorporate domain
knowledge to understand and improve NNs without dictating a specific trainable
model. These are split into principles that take advantage of prior knowledge about the
model input and the model output. From these principles, we then derive task-specific
implementations that are applied in at least two contexts per principle. This distinction
between principles and implementations can be made clear using an analogy from the
software development domain. Here, a principle is similar to a design pattern, which
is a general solution to a recurring problem. It features the general idea and goal of
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Input Output

Understanding Generated Input Data
Chapters 6 and 7

Gradient-Based
Attribution
Chapters 8 and 9

Improving

Input Masking
and Augmentation
Chapters 11, 15 and 16
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Chapters 12 and 13

Weak Label Generation
Chapters 15 and 16
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Figure 1.2.: Overview of this thesis. Shown are the six principles we explore in this thesis. Each
can be categorized into principles to understand or improve DL models as well as principles that
work with the input or the output of the model. All principles incorporate domain knowledge in
some way. Also, the chapters in this thesis where each principle is implemented is stated.

the solution, but does not specify how to implement it. An implementation, in software
development as in this thesis, is then a concrete application of the design pattern to
a specific problem. The task at hand can be different and so is the implementation of
the principle, but the general idea — the principle — remains the same. Given this
distinction, we can discuss applicability of the principles and their implementations in
different contexts.

The contexts in which we apply the principles are very different from each other. We
cover several regression, classification, and representation tasks using image and text
modalities. We do this to demonstrate the general applicability of the principles and with
exemplary implementations for them in different scenarios.

Overall, we can structure our specific contributions along the understanding/improvement
and input/output axes, as shown in Figure 1.2. We now briefly describe each of the
investigated principles and what the contributions are. Structurally, we go from top to
bottom and left to right in Figure 1.2, beginning with the understanding principles. We
color-code the principles to make it easier to understand which principles are used in
combination for the proposed implementations in later sections.

1.1.1. Model-Agnostic Understanding of DL models

Understanding why and how a DL model generates its outputs can be very useful to debug
a model’s decisions and to prevent harmful behavior of a model, such as accidentally
discriminating among certain characteristics. Such analysis processes can be used to assure
quality of the model before considering deploying it. Explaining a model’s prediction
can uncover failure cases, which in turn help with identifying bugs and improving the
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model [217]. Also, understanding why a model outputs a prediction can lead to novel
domain knowledge, since the model might uncover new patterns in the data. This can
lead to new insights into how to solve tasks, which can then help humans to solve the
task more efficiently. This is referred to as “microscope” Artificial Intelligence (AI) [103].
We later demonstrate such a case in Chapter 6, where we identify certain patterns in how
different features are used by the model to generate its output in a Land Use Regression
(LUR) task.

Research on interpreting DL models has gained traction in recent years, which is
differentiated by Molnar using four criteria [185]:

1. Intrinsic vs. post-hoc: Intrinsic methods try to design DL models that are
inherently interpretable, while post-hoc methods try to interpret a model after it
has been trained.

2. Result of the interpretation method: Among others, some methods return
feature importances, that can be displayed as values or visualized (feature attribu-
tion). Others return information about specific weights of the model or data points
that are representative of or similar to the original input but lead to a different
prediction (counterfactual explanations).

3. Model-specific vs. model-agnostic: Model-specific methods are tailored to a
specific model or model class, while model-agnostic methods can be applied to any
model. Model-agnostic methods are by definition post-hoc.

4. Local vs. global: Local methods try to explain a single prediction, while global
methods try to explain the model as a whole.

Local methods are further split by Liang et al. into data-driven and model-driven
methods [153]. Data-driven methods are applied at the data-level, for example by
perturbing the input data and analyzing the output of the model (e.g., LIME [221] or
SHAP [165]). Model-driven methods rely on model properties, such as the fact that DL
models are differentiable. Analyzing single neurons or weights would also be model-driven.

Motivated by the rapid development in DL model architectures, we focus on model-
agnostic (and thus post-hoc) methods that can be applied to any model architecture.
Similarly, with no knowledge about the internals of the NN, we do not consider methods
that understand specific parameters or layers. Instead, we focus on methods that perform
feature attribution. Here, we distinguish between high-level and low-level input features.
Low-level input features are the raw input data, such as pixels or tokens. High-level
features are more abstract and often influence the low-level features, such as the image
background or the writing style of a text. With the two principles we investigate, we
mainly provide local methods, that can, however, be generalized to global methods,
which we also show in the corresponding sections. Here, Generated Input Data is
a data-driven principle that we use for high-level feature attribution and Gradient-
Based Attribution is a model-driven principle that we mostly use for low-level feature
attribution.
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Input

As shown in Figure 1.2, we evaluate two principles to understand the model. The first
one relies on knowledge about the input data of the model to better interpret what input
features are important for the model’s output.

Generated Input Data The goal of a model analysis is to understand to what kind of
input features the model is sensitive to. This can be investigated by changing certain
features of the input and observe the model’s output changes. In order to be able to
control certain input features in isolation from others, we propose to use generated input
data to analyze the model’s behavior. Here, it is necessary to be able to generate data
that is similar to the real data, requiring domain knowledge. Then, the change in model
output given changes in the desired input property can be analyzed. This gives insights
into how certain features are processed by the model and how large the effect of the input
property is on the model output.

We implement this principle for two concrete applications. First, we use this approach
for a LUR model, which is trained to predict air pollution using map images from the
OpenStreetMap (OSM) service. Since map images are computer-generated, it is quite
simple to imitate the map generation process and produce realistic map images. The
influence of map entities and their positions, such as streets, buildings, and parks, on
the model output can then be analyzed. Second, we analyze and compare different
Deep Metric Learning (DML) models that were trained on car images. We use a 3D
rendering software to generate different car models from different angles, in different
lighting conditions, etc. The change in model outputs then indicates the influence of those
features. To compare the model sensitivities to different input properties, we introduce a
new evaluation metric.

Output

While the Generated Input Data principle uses knowledge about the input data to
understand the model, the second principle applies to the output of the model. Here,
domain knowledge is then used to interpret the resulting low-level feature attributions.

Gradient-Based Attribution This principle uses gradient-based attribution maps to
understand what low-level input features are important to generate the given output.
For this, based on the output of the model, a gradient is created and propagated from
the output to the input of the model. Large absolute input gradients for specific input
features indicate that altering these features changes the output of the model considerably,
thus having a large effect on the model’s prediction.

Most proposed methods for gradient-based attribution are assuming that the task is
classification [248, 61, 320, 319, 305, 250]. Very often, the investigated model is an image
classifier, which is trained to predict a class label for an image. As a first implementation
for this principle, we use a previously proposed approach (Integrated Gradients [260]) in
a text classification task. While usually, pixels are highlighted in the attribution maps,

6



1.1. Research Topics and Contributions

we highlight words in the text that are important for the model’s prediction. More
specifically, we use this approach on a model that predicts scientific venues based on
a given title, abstract, and keywords of a publication. Using domain knowledge, the
highlighted words can be interpreted to understand why a certain venue might be a fitting
option for the provided publication or whether the model might have paid attention to
the wrong tokens.

As a second implementation, we propose a novel gradient-based attribution method that
highlights the important features for a DML model. Since DML is a representation learning
task, it is not trivial to apply previously proposed methods from the classification domain
to the DML domain. We use our proposed method to qualitatively and quantitatively
compare different DML models trained with different loss functions.

1.1.2. Model-Agnostic Improvement of DL Models

DL models learn a function that maps from inputs to desired outputs. Since the amount of
training data is finite, there are infinitely many functions that can fit the data. Thus, it is
not directly known what the model is learning and if the learned function is useful. After
understanding what input features have an influence on the model output, we can improve
the model in task-specific ways using additional domain knowledge. Task-specific means
that the performance in terms of evaluation metrics is not always the only goal. Other
properties such as robustness to certain input changes, the need for fewer parameters or
less training data, faster training times, or reusability of the intermediate representations
can also be considered.

We propose multiple methods to improve the performance of NNs by incorporating
domain knowledge and thus introducing assumptions about the input and output of the
NN. Again, this is done without any architecture changes of the trainable model. We
mainly explore four principles and ideas that can be mixed and matched. These principles
correspond to the training setup components displayed in Figure 1.1.

Input

The following principles consider the input side of the model, i.e., the input data and
preprocessing components in Figure 1.1.

Input Masking and Augmentation The first principle we explore to improve a DL
model is masking and augmentation of the input. Masking specific input features, e.g.,
pixels or words, directly removes information for the model to use. This way, the model
has no chance of using these input features for its learning process. Masking features that
the model should not learn to use can make the model more robust and let it generalize
better. Similarly, augmenting (parts of) input examples while using the same (or different)
desired output helps to guide the model to ignore the augmentation process, making it
more robust against the augmentation operation. Well-chosen masking and augmentation
operations can then guide the model’s focus on the important input features, leading
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to better performance. Choosing these operations requires extensive domain knowledge
regarding the task, data, and desired outputs.

We use input augmentation to make a DML model more robust to changing image
backgrounds in order to improve item retrieval performance. For the task of Image
Aesthetics Assessment (IAA), we augment aesthetically pleasing images with image
transforms in order to make them less appealing. The relation between a beautiful and
unaesthetic version of an image is then used to guide the model to understand what
aesthetically pleasing images look like. Finally, we use input masking in a sentiment
analysis setting, aiming to classify Twitch chat messages into “positive”, “neutral”, or
“negative” sentiment classes. Here, we first use a weak label generator that estimates
the sentiment based on sentiment words. These words are then masked with a certain
probability in the input text such that a DL based model does not necessarily have access
to these words. It is thus forced to not exclusively rely on the known sentiment words
but to identify other words and phrases that help with estimating the sentiment.

Feature Extraction using Pretrained Multimodal Models Whenever only little or no
training data is available for a downstream task, using transfer learning is a common
approach. Using a pretrained model that was trained on another but related task for which
enough training data exists, the model can be finetuned for the downstream task. Using
such models to extract features is a form of preprocessing, since the inputs are processed
to get more abstract features used as input for the trainable model. In this thesis, we
primarily explore the use of pretrained multimodal models for feature extraction. More
specifically, we focus on the image-text based Contrastive Language-Image Pre-Training
(CLIP) model, which is trained to map images and their respective text-based descriptions
to similar representations [214]. We explore how the additional modality of text can be
used to improve the performance of vision models, which should require less trainable
parameters and achieves faster training, while yielding comparable performance to other
unimodal models. When no image training data is available, we can utilize domain
knowledge expressed as text to solve the task in a so-called ZSL setting, which removes
the trainable model from the usual training pipeline altogether.

In this thesis, we explore this principle by using CLIP to estimate the aesthetics of
images. We show that CLIP has learned aesthetic-relevant features, which are better
suited for the IAA task than commonly used ImageNet features. We use a simple Linear
Regression (LR) model to predict the aesthetic of an image based on the representation of
the image, which already performs similarly compared to other fully supervised methods
while having only very few parameters to train. Additionally, we show that we can apply
CLIP for IAA in a ZSL setting by estimating the image aesthetics just using text prompts
and no explicit training data. This method does not reach the performance of fully
supervised models, but requires training data or parameters, is easy to apply, and possible
to use along other use cases of CLIP such as zero-shot search, since the model is frozen.

On a related note, we also introduce the advantages of pretrained multimodal models
in the DML domain. Usually, DML datasets define one notion of similarity, e.g., “two
car images are similar if they show the same car model”. We introduce a method that
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allows for fast adaptation of this similarity notion by using CLIP. Here, CLIP is used to
generate representations that contain general information about the image. We then use
domain knowledge encoded as text prompts to alter these representations to focus on the
desired similarity notion. This way, no training images and labels are needed, and the
method can be applied very easily and with fast results.

Output

Given the training setup shown in Figure 1.1, the following principles utilize domain
knowledge at the output side of the model, i.e., the desired output and the loss function
components.

Weak Label Generation This principle allows for generating larger training datasets,
which may be able to guide the model to learn more useful functions. Given a large set of
unlabeled input data, weak labeling is the process of finding small patterns within the
data that allow for assigning labels to the input data. These patterns come from domain
knowledge that is expressed by simple heuristics, rules, or other models. Weakly labeled
data is then easy to obtain in large amounts, but is also more noisy than hand-labeled
data (which, in turn, is expensive to obtain). As a consequence, such weakly labeled
datasets are usually used for pretraining DL models when not enough labeled data is
available. The pretrained model then usually has learned more useful features, which
can further be finetuned with the labeled data. The main goal is thus to allow for good
performance while using as few hand-labeled data points as possible. We explore this
principle in two settings, one using few and one using no labeled data points at all.

First, we apply this principle to sentiment analysis of Twitch.tv chat comments. Here,
we express our domain knowledge by a lexicon-based approach to weakly label large
amounts of chat comments. Since there is no labeled data available, we use the weakly
labeled data for training the DL model exclusively. We combine this principle with the
input masking principle described above. Second, we use weak labels in the estimation of
image aesthetics. For this, we use a corpus of aesthetically pleasing images, scraped from
a stock photo website. We then deteriorate these images’ aesthetics using image style
transforms such as increasing or decreasing the image’s contrast or brightness (applying
the Input Masking and Augmentation principle). We then use the observation that
images with no style destruction should usually be more aesthetically pleasing than their
transformed counterparts. This relation between image pairs is then used as weak labels
to guide a pretraining process of a NN before finetuning it on a labeled dataset. The
resulting model shows better performance than the NN that was exclusively trained on
the labeled dataset.

Loss Function The last principle we explore in this thesis is the design of loss functions
that incorporate additional task-specific knowledge. The loss function intuitively gives
a measure of how well the model performs on the task. The higher the loss, the worse
the model’s performance. Optimizing the NN aims to minimize the loss. This is done by
differentiating the loss function w.r.t. the model’s parameters and adjusting the parameters
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in the direction of the negative gradient. A well-crafted loss function can thus guide
the model to learn the desired function. Using additional knowledge about the task,
the desired function can be learned easier or faster by the model. Letting the model
solve multiple tasks simultaneously can also be beneficial, since the model can learn more
useful features given multiple gradient signals. Then, the loss function needs to combine
multiple single losses in a multitask setting. In this thesis, we investigate this principle in
two settings.

In our first implementation, we propose an adaptation of the Categorical Cross Entropy
(CCE) loss function, which is usually applied in classification settings. This new loss
function incorporates additional knowledge about the class similarities to guide the model
to predict more similar classes when not sure about the correct class. This leads to the
model making less severe mistakes, which can be an improvement in applications where
severe mistakes by the model are fatal.

We also combine task-specific loss functions in a multitask setting to pretrain an IAA
model. Here, we generate distorted images from a set of aesthetically pleasing images.
The relation between corrupted and original images is then the foundation for a loss
function that lets the model learn this relationship by ranking the images. Also, we
use the parameters of the image augmentation functions for a regression task and the
corresponding image augmentation filters for a classification task in order to teach the
model style-based aesthetic features. The combination of loss functions into a multitask
loss is then done with a technique from the literature [152]. We show that using these
pretraining tasks improves the performance of the IAA model on the aesthetic estimation
task. We also show that not every task is beneficial for the IAA task, but that the tasks
need to be carefully chosen.

1.2. Thesis Outline

This thesis is mainly split into two parts. The first part is dedicated to the analysis of
NNs — Model Understanding — while the second part is aims to improve NNs — Model
Improvement — as displayed in Figure 1.2. In each of these parts, we describe principles
to understand/improve models in a model-agnostic way, i.e., without any assumptions
about the model architecture. These principles in turn are categorized into input and
output principles, as shown in Figure 1.1. Concrete implementations that apply the
principles in task-specific settings are given afterwards.

To make it easier to use this thesis as a reference for future exploration of these
principles, we provide a summary box at the beginning of each principle section. This
info box contains the main idea of the principle, its goals, the domain knowledge utilized,
as well as the task and data requirements. This should give practitioners a fast and easy
to understand overview of the principle, its applications, and limitations.

The rest of the thesis is structured as follows. Chapter 2 gives an overview on the
mathematical notation used in this thesis and introduces the basic concepts of NNs.
While the methods described in this thesis are model-agnostic, it is certainly helpful to
have a basic understanding of NNs and what kind of models are used in the task-specific

10
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implementations. We then discuss the applications we implement our principles for in
Chapter 3. Chapter 4 discusses related work for each of the explored principles and puts the
contributions of this thesis in context. In Part II, we first describe the principles for model
understanding: Generated Input Data and Gradient-Based Attribution (Chapter 5). For
Generated Input Data, we demonstrate two implementations in Chapter 6 and Chapter 7.
In Chapter 8 and Chapter 9, we provide implementations for Gradient-Based Attribution.

In Part III, we describe the principles for model improvement: Input Masking and
Augmentation, Feature Extraction using Pretrained Multimodal Models, Weak Label
Generation, and Loss Function (Chapter 10). After the introduction of the principles, we
provide concrete implementations regarding different tasks and modalities (Chapters 11
to 16). These include implementations where we combine multiple principles. Based on
the results that we obtain by exploring these six principles, we finally conclude this thesis
and provide an outlook on possible future work in this area in Chapter 17.
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2. Deep Learning (DL) Foundations

This chapter introduces the basic concepts and architectures of Neural Networks (NNs) that
are used throughout this thesis. Even though this thesis focuses on principles that analyze
and improve NNs without dictating their architecture, the concrete implementations still
use well-suited NN architectures as a baseline for the improvement. We introduce the
notation, different NNs architectures, pretrained models, loss functions, as well as the
evaluation metrics that are used in our implementations. Please note that this chapter
does not fully cover DL, but rather should be seen as an introduction with the goal of
better understanding the work in this thesis. For better readability, we introduce only
those concepts that are used at several points in this thesis. Infrequently used concepts
are introduced when needed. For a more complete introduction to DL, see Goodfellow
et al. [73].

2.1. Notation

To facilitate the understanding of mathematical expressions, we unify the notation used
throughout this thesis. We mainly follow the notation of Goodfellow et al. [73]:

• Scalars are denoted by lowercase letters, e.g., a.

• Vectors are denoted by bold lowercase letters, e.g., x.

• Matrices are denoted by bold uppercase letters, e.g., W.

• Sets are denoted by calligraphic uppercase letters, e.g., A. Natural and real numbers
are denoted by N and R, respectively.

• Functions are denoted by lowercase Roman or Greek letters, e.g., f or σ. One
exception is the notation of loss functions, which are denoted by the uppercase
letter L and often further specified by a subscript. Also, some metric functions
are denoted by uppercase letters, letter combinations, or multiple words for better
readability.

2.2. Neural Network Architectures and Components

Even though this thesis tries to analyze and improve NN models without changing their
architecture, it is necessary to define the basic concepts and architectures of NNs to
understand the concrete implementations and applications. We thus introduce important
architectures and components that are used in the rest of the thesis.
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2.2.1. Multilayer Perceptrons (MLPs)

MLPs are very basic NNs that consist of multiple fully connected (also called linear)
layers [73]. Each layer is a linear transformation followed by a non-linear function. Given
an input vector x ∈ Rn1 , a k-layer deep MLP is defined by

h1 = σ1(W1x+ b1) // Input layer (2.1)
hl = σl(Wlhl−1 + bl) // Hidden layers (2.2)
o = σk(Wkhk−1 + bk) // Output layer , (2.3)

where all Wl ∈ Rnl×nl−1 and bl ∈ Rnl are the weights and biases of the network,
respectively, and o is the output of the network. The activation function σl (l ∈ {1, . . . , k})
is applied to its input vector. It is a non-linear function that is applied to the output of
each linear transformation. Depending on the task, however, the final activation function
σk can be linear. For example, in regression tasks, the output of the network is a scalar
and the final activation function is the identity function σ(x) = x. Note: The simplest
trainable regression model, the Linear Regression (LR), has only one linear transformation
with no activation function, i.e., only consists of the h1 output, where σ1 is the identity.
In representation tasks, the output of the network is a vector and the final activation
function is usually the identity or a normalization function. For classification, the output
of the network is a vector of probabilities and the final activation function is the softmax
function, which we will introduce in the next section.

Given the non-linear activation functions, MLPs are able to learn complex, non-linear
functions. With linear activation functions only, the network would be a linear model.
Given this simple architecture with at least one hidden layer, MLPs are theoretically
universal approximators. In simple terms, this means that they can approximate any
continuous function with a finite number of hidden neurons [93]. In practice, however, it is
not known how many hidden neurons are needed, and it is not guaranteed that the target
function is learned using optimization methods like Stochastic Gradient Descent (SGD).
Thus, empirical studies have shown that more hidden layers usually help to improve the
performance of MLPs [73]. The more hidden layers, the deeper the NN.

2.2.2. Activation Functions

Now that the term activation function is defined, we can discuss the activation functions
used in this thesis. Since most activation functions are applied element-wise to their input
vectors, we will define them mathematically with input scalars x, except when mentioned
otherwise.

Linear The linear activation function is defined as σ(x) = αx with its derivative
σ′(x) = α, where α is a constant. With α = 1, this function is the identity and thus
equivalent to not using any activation function at all. Using linear activations in the
hidden layers of a neural network is not recommended, as the model thus cannot learn
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non-linear functions. They are thus typically used in regression tasks, where the output
of the network is a scalar and thus the output should not be transformed.

Rectified Linear Unit (ReLU) The ReLU activation function is a piece-wise linear
function and is defined as σ(x) = max(0, x). Even though it has the same values as the
identify function for x ≥ 0 and is also linear for values below zero, the change in slope at

zero makes it a non-linear function. Its derivative is σ′(x) =

{
1 x ≥ 0

0 x < 0
, leading to easy

gradient calculations. The output of ReLU for negative input values is zero, resulting
also in a derivative of zero. This can be problematic during network optimization with
backpropagation. Given the chain rule ∂f(g(x))

∂x = ∂f(g(x))
∂g(x) · ∂g(x)

∂x , gradients for the chain
of functions is computed by multiplication. If the derivative of the ReLU function is zero,
the gradient of all weights before it are also zero. This is called the dying ReLU problem,
which hinders parameter updates in NNs.

Leaky ReLU The leaky ReLU activation function solves the dying ReLU problem
by always having a non-zero derivative, even for negative values [169]. It is defined
as σ(x) = max(αx, x), where α is a small positive constant. Thus, its derivative is

σ′(x) =

{
α x < 0

1 x ≥ 0
, giving a small gradient to negative values. The gradient that flows

through the network is thus not completely cut off.

Sigmoid The sigmoid function is defined as σ(x) = 1
1+exp(−x) , thus squashing the input

value between zero and one. It is often used in the output layer of binary classification
networks, since its output can be interpreted as a probability. Sigmoid is applied element-
wise to the input vector, so multiple outputs are independent of each other. Its derivative
is σ′(x) = σ(x) · (1 − σ(x)), which makes it easy to compute in practice, as the value
for σ(x) has already been computed in the forward pass of the network and can thus be
reused.

Softmax When performing classification tasks where it is needed to output a probability
distribution across the output dimensions of the network, the softmax function is used.
It is defined as σ(x) = exp(x)∑n

i=1 exp(xi)
, where n is the number of output dimensions. The

softmax function is applied to the entire output vector, not element-wise (thus using
vector notation).

While there are many more activation functions, all of them aim to solve the same
problem: to introduce non-linearity to the network while being differentiable. We mainly
use the described activation functions in this thesis.

2.2.3. Convolutional Neural Networks (CNNs)

The weight matrices in MLPs are multiplied by the input vectors and thus need to be at
least as large as the input vector in one dimension. For large inputs, this can lead to a
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Figure 2.1.: Illustration of a CNN. The figure is inspired by a figure from LeCun et al. [144].

*
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Figure 2.2.: Example 2D convolution of a matrix of size 3× 4 with a kernel of size 2× 2. The
values of the kernel are multiplied by the values of the input matrix while sliding the kernel over
the input matrix. Figure inspired by Goodfellow et al. [73].

large number of parameters. Especially for images, the number of input pixels is very
large. However, images show a lot of spatial structure, where it is usually not important
if a certain pattern is present in the top left corner or the bottom right corner. Thus,
it is possible to reduce the number of parameters by using the same NN weights for all
regions in the image. This is the basic idea of CNNs [144, 204]. They are designed to
work on spatial grids of inputs, such as images. Due to their use of convolutions, they
are equivariant by design, i.e., each position in the input is treated the same way. This
reduces the parameter count of the model and allows for more efficient training, since
parameters are shared. In the following, we focus on the application of CNNs to image
data.

Figure 2.1 shows a simple CNN architecture. The input to a CNN is a tensor of shape
w × h× d, where w is the width of the image, h is the height of the image, and d is the
number of channels (the depth of the input). In a grayscale image, d = 1, while in a
color image encoded using RGB, d = 3. This image is then fed through the CNN, which
consists of multiple convolutional layers, that are often accompanied by pooling layers, as
well as a MLP, depending on the task at hand. In the following, we explain convolutional
layers and pooling layers.

Convolutional Layer

The convolutional layer learns a set of convolutional kernels, which are applied to the input
image. The convolutional kernels are also called filters and have a shape of k1 × k2 × d,
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where k1 and k2 are the kernel sizes and d is the depth of the kernel. Since mostly k1 = k2,
we will use k to denote the kernel size. The depth of the kernel is the same as the depth
of the input image or subsequent representations. Figure 2.2 shows an example of a 2D
convolution, i.e., the depth of the input and kernel is one. The kernel is slid over the
input image with a certain step size (called the stride). For each position, the kernel is
multiplied element-wise with the input image region and the resulting values are summed
up. The resulting value is then stored in the output tensor at the current position. Since
the image gets smaller with the application of a kernel, it is possible to pad the image
with zeros or other appropriate values to keep the image size constant. For each kernel
in a convolutional layer, a bias value is added to the output. Thus, we can interpret
the application of a kernel to the input image as a linear transformation of each image
region, which is similar to applying a fully connected layer to the image region. Each
convolutional layer has one or multiple kernels, which are applied to the input, resulting
in two dimensional matrices. These matrices are then concatenated in a third dimension
to form the output of the convolutional layer. The output of a convolutional layer is thus
again a three dimensional tensor of shape w′ × h′ × d′, where w′ and h′ are the width and
height of the output, and d′ is the number of kernels in the convolutional layer. Since
the convolutional operation is a linear operation, a non-linear activation function is then
applied to the output.

Pooling Layer

The pooling layer is used to reduce the spatial size of the input. Especially in image
classification tasks, it is not important to keep the spatial dimension of the image. Here,
it is irrelevant if the object of interest is in the top left or the bottom right corner of the
image. We can thus reduce the spatial dimension of the intermediate representations
by applying a pooling operation. Also, it reduces the computational complexity in the
network, since the input to the next convolutional layer is smaller. Pooling combines
multiple spatial pixels in the activation map into one pixel. The most common pooling
operation is max pooling, which takes the maximum value of the input pixels in a region
and stores it in the output. For example, using a 2× 2 pooling kernel with a stride of
two, the input image is divided into non-overlapping 2 × 2 regions and the maximum
value of each region is stored in the output. This effectively results in a four times smaller
representation, since four pixels are combined into one. Other possible pooling operations
include average pooling, which takes the average of the input pixels in a region, and L2
pooling, which takes the L2 norm of the input pixels in a region.

After each convolutional layer, a pooling layer is typically applied. The resulting smaller
representation is then fed into the next convolutional layer. After the last convolutional
or pooling layer, the resulting representation can be flattened to a one-dimensional vector
that is fed into a MLP to generate an output vector for the CNN.
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Figure 2.3.: TextCNN architecture. Figure inspired by Kim [126].

CNNs for Text: TextCNN

While the previous section described CNNs for image data as an example, CNNs can
also be used for text data. Kim introduced a CNN architecture for text classification,
called TextCNN [126] (shown in Figure 2.3). The input to the model is a sequence of
words, which are represented as word embeddings. These embeddings are concatenated
to form a matrix with a width of the embedding size and a height of the sequence length.
This matrix is then fed into one convolutional layer with a set of differently sized kernels.
While all kernels have the same width to cover the complete embedding size, their height
differs. In the original paper, the heights are 3, 4, and 5 with 100 kernels per size in the
convolutional layer.

For each kernel, the output of the convolutional layer is a vector that is pooled with a
max-over-time pooling operation, which takes the maximum over all vector values along
the sentence length. The pooled outputs for all kernels are concatenated into one vector
and fed into a fully connected layer that generates the output of the model using a softmax
activation function. Even though this model is not the state-of-the-art anymore, we use
this architecture for text classification in some of our implementations, since it is fast,
efficient, and performs quite well.

2.2.4. Transformer

Proposed as an alternative to CNNs for texts, the Transformer is a NN architecture that
works on sequences of inputs [271]. Instead of using kernels as in CNNs, the Transformer
uses self-attention, which is a mechanism to compute a representation of a sequence based
on the representations of the individual elements in the sequence. In this explanation, we
will focus on the main building blocks of the Transformer, which are self-attention and the
multi-head attention mechanism (a schematic depiction of the Transformer architecture
is shown in Figure 2.4).

The input to a Transformer is a sequence of inputs. Here, we will focus on text as the
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Figure 2.4.: Transformer architecture. Figure inspired by Vaswani et al. [271].
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input data. While originally, the Transformer is a sequence-to-sequence model in order to
perform machine translation, using only its encoder was shown to be very effective for
other text related tasks [48]. In this thesis, only the encoder is used, so we focus on this
component of the model.

Given the input data, which is a sequence of words, the Transformer first embeds
each word (also called token, as sometimes not whole words but subwords are used) into
a vector. Since all operations in a Transformer are position-agnostic, the order of the
words needs to be encoded explicitly into the sequence. For this, positional embeddings,
i.e., embeddings encoding the position of the word in the sequence, are added to the
word embeddings. In the original paper, the positional embeddings are defined using the
following formula:

PE(pos, 2i) = sin(pos/100002i/dmodel) (2.4)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel) , (2.5)

where pos is the position of the word in the sequence, i is the index of the embedding
dimension, and dmodel is the embedding size. The position-enriched input sequence is
then fed into the Transformer.

The Transformer consists of n Transformer layers, each of them consisting of two
sublayers. The first sublayer is a multi-head attention layer, which is surrounded by
a residual connection and a layer normalization. The second sublayer is a MLP that
is applied to each sequence position independently. It is also surrounded by a residual
connection and a layer normalization. Residual connections add the initial input to the
sublayer output, letting the layer only learn to output the necessary change from the input,
which stabilizes training [86]. Layer Normalization normalizes the mean and standard
deviation of each input sample to a learned mean and standard deviation, which stabilizes
training and results in faster training speeds [12]. We now give a brief introduction to
the multi-head attention layer. For this, it is necessary to understand the self-attention
mechanism, which will be covered first.

Self-Attention

Self-attention is a mechanism that allows the model to focus on certain parts of its own
output. Given the concatenated sequence of token embeddings X that has a width of
the embedding size and a height of the sequence length, each token embedding is linearly
transformed into a query, key, and value vector, resulting in three matrices Q, K, and V,
respectively. The (scaled dot-product) attention mechanism as introduced in the original
paper is then defined as

A = softmax

(
QKT

√
dk

)
V , (2.6)

where A is the attention matrix, dk is the dimensionality of the key vectors, and softmax
is the softmax function, which is applied row-wise to the matrix. The dot products are
scaled by the square root of the dimensionality of the key vectors in order to prevent large
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dot products that can come from higher vector dimensionalities. The large dot products
can lead to small vanishing gradients in the softmax function.

The attention matrix A is the new output of this self-attention layer and has the same
height as the input (the sequence length). Its width depends on the dimensionality choice
of the value matrix V. This is the intermediate output of a Transformer layer.

Multi-Head Attention

Multi-head attention combines multiple self-attention layers. For this, the self-attention is
applied multiple times independently to the input sequence. The resulting new outputs are
concatenated along the embedding dimension and linearly transformed to a new output.
This mechanism allows the model to learn multiple different attention mechanisms, each
focusing on different aspects of the input.

The new output has the same height as the input, i.e., both share the same sequence
length. This output is a new representation of the input, which can be used as the input
for downstream tasks. For some tasks, special input tokens can be defined to capture
task-specific information. For example, for classification, the input is prepended with
a special token (called the [CLS], i.e., class token). The representation of this token
is then used as the input for a classification layer. Other strategies include using the
representation of the last token in the sequence or the mean of all tokens in the sequence,
which can be useful for representing the input [218].

Transformers for Images: Vision Transformers (ViTs)

While the Transformer was originally introduced for text, it can also be used for images [50].
Here, instead of token embeddings, the input is a sequence of non-overlapping image
patches, which are flattened to a vector and linearly transformed to the desired input
dimensionality. The resulting sequence is then fed into the Transformer encoder. A
schematic overview can be found in Figure 2.5.

The sizes of ViTs are given by the number of Transformer encoder layers, the number
of attention heads, the hidden size of the used MLPs, and the dimensionality of the token
embeddings. In the original paper, three different sizes are introduced, which are denoted
as ViT-B/16, ViT-L/16, and ViT-H/14. The letter indicates Base, Large, and Huge,
respectively. The number indicates the size of each image patch. While ViT-B/16 and
ViT-L/16 use image patches of size 16 by 16 pixels, ViT-H/14 uses image patches of size
14 by 14 pixels, resulting in more patches and thus a longer input sequence. Hence, the
ViT-H/14 model is computationally more expensive than the other two models.

2.3. Pretrained Models

In our experiments, we use several pretrained models that are publicly available. In this
section, we give a brief overview of these models.
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Figure 2.5.: The ViT architecture. Figure inspired by Dosovitskiy et al. [50].
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Figure 2.6.: The Word2Vec architecture. Figure inspired by Mikolov et al. [178].

2.3.1. Word2Vec

Word2Vec uses a two-layer NN to learn word embeddings from text corpora, such that
two words that share the same context, i.e., the same words surrounding them, are likely
to have similar meanings and should thus have similar embeddings [178, 179, 180].

There are two basic models, the continuous bag-of-words (CBOW) and the skip-gram
model, which are shown in Figure 2.6. The CBOW model predicts the current word
from the surrounding context words, while the skip-gram model predicts the surrounding
context words from the current word. While the diagram suggests simultaneous prediction
of all context words for the skip-gram model, one context word is sampled at random for
each training step. As input to the network, the center word of the chosen text window is
one-hot encoded and fed into the first layer. The first layer acts basically as a lookup
table, which maps the one-hot encoded word to its embedding, which has much fewer
dimensions than the one-hot encoded vector. This embedding is then fed during training
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into the second layer, which is a linear layer followed by a softmax function. It predicts the
probability of each word in the vocabulary to be the context word. The model is trained
using the Categorical Cross Entropy (CCE) loss function until convergence. Afterwards,
the weights of the first layer are used as the word embeddings’ lookup table.

Word embeddings have been shown to be very useful, since they can be trained on
large amount of unlabeled texts and capture the semantic meaning of words to some
extend. As a result, it is possible to perform “semantic calculations” with the word
vectors. For example, a famous example is that the word embedding of the word “king”
minus the word embedding of the word “man” plus the word embedding of the word
“woman” is very similar to the word embedding of the word “queen”. This behavior usually
emerges when trained on large text corpora. The original authors, Mikolov et al., provide
pretrained Word2Vec models [178]. These 300-dimensional embeddings for three million
words and phrases were trained on news texts of approximately 100 billion words. We
use this pretrained model to estimate the semantic similarity between dataset classes in
Chapter 14. In other chapters, we utilize the Word2Vec technique to train our own word
embeddings.

2.3.2. MobileNetV2

As the name suggests, MobileNetV2 (which is the successor to MobileNet [96]) is a CNN
architecture designed for image applications on mobile devices [236]. This means that the
model needs to have a low number of parameters to fit on mobile processors (3.4 million
parameters in the standard setting), needs to require as minimal memory as possible
during inference (maximal 400 kilobytes of memory), and should be computationally
efficient by using as few operations as possible (300 million multiply-adds). It was mainly
developed for image classification on ImageNet [46] but can also be used as a backbone
for object detection and semantic segmentation.

Since the underlying architectural details of MobileNetV2 are not relevant for this
thesis, we will only give a brief explanation. The main idea is to replace the convolutional
layers with operations that need fewer parameters and are faster to compute. In the
first version of MobileNet [96], the convolutional layers were replaced by depthwise
separable convolutions. This means that the convolutional layer was split into two layers,
a depthwise convolution and a pointwise convolution. The depthwise convolution is a
convolutional layer that is applied to each channel of the input independently (in contrast
to the full convolution, which takes all channels into account). The output of this layer
has again the same number of channels, since they are not interacting. The pointwise
convolution is a convolutional layer with a kernel size of 1 by 1, mixing the newly created
feature maps from the depthwise convolution. MobileNetV2 introduces a bottleneck by
letting the pointwise convolution have a smaller number of output channels than the input
channels, followed by another pointwise convolution to inflate the number of channels
again. While residual connections are often applied to the tensors with a large channel
count, MobileNetV2 applies them to the bottleneck tensors, given the intuition that the
information that is fed through the network is already fully captured in the bottleneck
tensor. This saves add operations and requires less memory, since smaller intermediate
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Figure 2.7.: Overview of the training process of CLIP and how to classify in a zero-shot
fashion. Each batch of images and their corresponding text descriptions are embedded using
the corresponding encoders and the cosine similarity between correct pairs is maximized. When
classifying, the possible class names are put into a text template and embedded. The most similar
prompt to the image embedding is the prediction. Figure inspired by Radford et al. [214].

result tensors must be saved for the residual connection.
In our Image Aesthetics Assessment (IAA) experiments in Chapter 16, we use the

MobileNetV2 model pretrained on ImageNet [46] as a base model for further training.

2.3.3. BatchNorm Inception Network

The Inception Network [262] is a CNN architecture that was developed to improve the
performance of the ImageNet Challenge [46]. It employs the so-called Inception block,
which is a set of parallely executed convolutional layers with different kernel sizes (1, 3,
and 5) as well as a 3 by 3 max pooling operation to capture different spatial information
of the same input. The input is padded to ensure that the outputs have the same spatial
dimensions as the input. This way, the outputs of all convolutional layers in one block
can be concatenated. The authors also propose to put convolutions with kernel size 1 in
front of the other convolutions to reduce the number of channels beforehand and can thus
reduce the number of required multiplications. The BatchNorm Inception Network [263] is
a variant of the Inception Network that uses batch normalization [108], which normalizes
the mean and standard deviation of the features for each input batch, leading to better
performance on ImageNet than the model without batch normalization. We use this
model that was pretrained on ImageNet as a base for some of our Deep Metric Learning
(DML) experiments, since it is a popular architecture in the literature.

2.3.4. Contrastive Language-Image Pre-Training (CLIP)

CLIP is a multimodal model, embedding images and texts into the same vector space [214].
CLIP consists of an image encoder and a text encoder. In the best performing setting
from the original paper, both models are Transformers (i.e., vision and text, respectively).
CLIP is trained on a corpus of around 400 million web images and their corresponding
text descriptions. Images and texts are mapped to a 512-dimensional vector space using
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the image and text encoder, respectively. Both encoders are trained to maximize cosine
similarity between the embeddings of corresponding images and texts while minimizing
similarity between mismatching image-text pairs. An overview of CLIP is depicted in
Figure 2.7.

Cosine similarity between two vectors i and t is the cosine of the angle between both
vectors and is defined as

simcos(i, t) =
i · t

∥i∥∥t∥ , (2.7)

where ∥ · ∥ denotes the Euclidean norm, i.e., the length of the vector. Thus, the cosine
similarity is the dot product of both vectors normalized to a length of one.

Given a batch of images and their corresponding texts, the cosine similarity is computed
between all image-text combinations in this batch. A softmax function is applied to
the similarities comparing one text to all images and one image to all texts. On these
distributions, the CCE is applied to boost the correct pair of image and text and make
the cosine similarity smaller for all other pairs.

Due to this training objective, CLIP is able to classify images based on natural language
prompts: Given an image and a set of possible text descriptions, the image and all texts are
encoded using CLIP’s image and text encoder, respectively. Then, the cosine similarities
between each text embedding and the image are computed. The text prompt with
the highest similarity is chosen as the predicted class. This procedure is also shown in
Figure 2.7. CLIP shows very good performance on many datasets in a kind of “zero-shot”
setting; no training example from the target dataset is used and only suitable natural
language prompts are engineered to identify the correct class. We use CLIP for one of our
IAA experiments in Chapter 12 as well as in one DML implementation in Chapter 13.

2.4. Loss Functions

Given a model architecture, the input of the model is transformed to an output. This
output is compared to the target label using a loss function. Depending on the task, there
are different loss functions that can be used. In this thesis, there are one loss function for
classification, one for regression, and five loss functions for representation tasks that are
used multiple times and thus are introduced in this section.

2.4.1. Classification: Categorical Cross Entropy

The CCE is the most common classification loss function. Its more general version,
Cross Entropy (CE), is used to compare two probability distributions. Given a batch of
examples B for a classification task with possible classes C, the model outputs probability
distributions p̂1, . . . , p̂|B| estimating the true distributions p1, . . . ,p|B|. The CE loss is
then defined as

LCE = − 1

|B|

|B|∑
i=1

∑
c∈|C|

pc log(p̂c) . (2.8)
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In multi-class classification settings, the target distribution is a one-hot encoded vector,
since only one class is correct. In this case, the estimated probability of the correct class
should be maximized. Given the target classes for the batch y1, . . . , y|B|, the loss is then
called CCE and simplifies to

LCCE = − 1

|B|

|B|∑
i=1

log(p̂i[yi]) , (2.9)

where p̂i[yi] is the estimated probability for the target class ci. The closer the model
output matches the target one-hot encoded vector, the closer the loss function gets to
zero, its minimum.

2.4.2. Regression: Mean Squared Error

MSE is usually used in regression tasks. For a given batch of examples B, the model
produces number estimates ŷ1, . . . , ŷ|B|. The true labels are y1, . . . , y|B|. Then, the MSE
loss function is defined as

MSE =
1

|B|

|B|∑
i=1

(yi − ŷi)
2 . (2.10)

Larger deviations from the true label are punished more due to the squared term. The
minimum of this function is zero, i.e., when the predictions are the same as the target
values.

2.4.3. Representation

We now turn to a set of common DML loss functions, where inputs are transformed to
vectors by the model.

Contrastive Loss In the case of the Contrastive Loss [80], an example in the batch B
consists of a pair of inputs along with a binary label y, whether these two inputs are
deemed similar (y = 0) or not (y = 1). The model converts both inputs to vectors x1 and
x2. Also given is the distance function d that computes the distance between two input
vectors. The Contrastive Loss function is then defined as

LContrastive =
1

|B|

|B|∑
i=1

(1− yi)
1

2
d(x1i ,x2i)

2 + yi
1

2
max(0,m− d(x1i ,x2i))

2 , (2.11)

where m is the margin, a hyperparameter that ensures that dissimilar vectors are not
pushed away indefinitely. Consequentially, dissimilar vectors need to have a distance of
at least m in order to count as zero into the loss function.

Triplet Loss Similar to the Contrastive Loss is the Triplet Loss, which — instead of pairs
— uses triplets of inputs [288]. The input are converted to the vectors a (the anchor),
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p (the positive), and n (the negative). The inputs are chosen such that a and p are
considered to be similar, while a and n are dissimilar. The idea of the loss is that n
should be farther away from a than p. Specifically, their distance should be larger by m
than the similar items, where m is a chosen hyperparameter. With distance function d
and the batch B, the loss function is defined as

LTriplet =
1

|B|

|B|∑
i=1

max(0, d(a,p)− d(a,n) +m) . (2.12)

Multi Similarity Loss While the Contrastive and Triplet Losses are using only one or
two other items to compute their loss for each example, Multi Similarity Loss uses a
set of positive (Pi) and a set of negative (Ni) examples for each example vector xi in
the batch B [284]. These sets are found by selecting the positives (examples that are
deemed similar) with the lowest cosine similarity simcos to the example and the negatives
(examples that are deemed dissimilar) with the highest cosine similarity to the example
from the batch, respectively. Then, the loss is defined as

LMultiSimilarity =
1

|B|

|B|∑
i=1

 1

α
log

1 +
∑
k∈Pi

exp(−α(simcos(xi,xk)− λ))

 (2.13)

+
1

β
log

1 +
∑
k∈Ni

exp(β(simcos(xi,xk)− λ))


 , (2.14)

where α and β are hyperparameters to weight the influence of the positive and negative
sets, respectively, and λ is a hyperparameter that offsets the exponent in the loss.

Normalized Softmax Loss The idea for the Normalized Softmax Loss is based on the
CCE loss function (see Section 2.4.1), which is usually used for classification tasks [159,
276, 312]. Thus, the Normalized Softmax Loss is a so-called classification based loss.
The CCE loss receives a probability distribution over all classes as input, that is usually
obtained by feeding the model’s output vector through a softmax function. In the case
of vector representations, each item belongs to a class c1, . . . , c|C| ∈ C, so items with the
same class should be deemed similar and thus more similar. In the Normalized Softmax
Loss, each class has a representation vector p1, . . . ,p|C| — a so-called proxy — that is
trained alongside the model parameters. For a batch B, the model outputs item vector
representations x1, . . . ,x|B|. We also know the class index y1, . . . , y|B| for each example
in the batch.

Normalized Softmax Loss then computes the Cosine Similarities simcos between each
vector representations and the class proxies by normalizing all vectors to unit-length and
computing the dot product. Then, these similarities are fed through a softmax function to
obtain a probability distribution (with an optional scaling factor s called the temperature).
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2. DL Foundations

Given the correct class index and this probability distribution, the CCE can be computed
to maximize the similarity between the vector and its corresponding class proxy while
minimizing the similarity to all other class proxies. All together, the loss function is
defined as

LNormalizedSoftmax = − 1

|B|

|B|∑
i=1

log

(
exp(simcos(xi, pyi)/s)∑
c∈C exp(simcos(xi, pc)/s)

)
. (2.15)

ArcFace Loss Finally, ArcFace Loss is also a classification based loss function [47]. It is
similar to Normalized Softmax Loss, but adds a margin penalty to the loss function for the
correct class. More specifically, the margin is added to the cosine similarity calculation:
Usually, cosine similarity is the cosine of the angle between the two vectors. An angle
of zero results in a similarity of one. ArcFace adds the margin m to the angle between
the example’s vector and its class proxy before computing the cosine, resulting usually in
lower similarities for this pair. Since the loss then optimizes for this pair’s similarity to be
higher than the similarity of the example to other class proxies, the similarities to other
proxies needs to be lower. This results in a higher similarity between examples from the
same class, while lowering the similarity between examples of other classes.

Mathematically, we define the margin-enhanced cosine similarity to be simm
cos(xi,pj) =

cos(θij +m), where θij is the angle between example vector xi and proxy pj . Then, with
the same variables defined for the Normalized Softmax Loss, the ArcFace Loss is defined
as

LArcFace = − 1

|B|

|B|∑
i=1

log

(
exp(σ · simm

cos(xi, pyi))

exp(σ · simm
cos(xi, pyi)) +

∑
c∈C\yi exp(s · simcos(xi, pc))

)
,

(2.16)
where s is an exponent scaling factor, which is a loss hyperparameter.

2.5. Evaluation Metrics

In our implementations, we work on different tasks and modalities and try to understand
and improve DL models regarding different aspects. One of these aspects is the model
performance. To measure the overall model performance and potential performance
improvements, we make use of different evaluation metrics. These are described in the
following sections. We structure them into classification, regression, representation, and
ranking metrics to show the broad task range of our experiments.

2.5.1. Classification

For classification tasks, there is a set of possible classes C. E.g. in a binary setting, there
are two classes, while ImageNet images have 1000 possible classes [46]. The goal is to
predict the correct class for a given input. Given the test dataset T with the target classes

30



2.5. Evaluation Metrics

y1, . . . , y|T | for each data point and the predicted classes ŷ1, . . . , ŷ|T |, we can compute the
following numbers for each class c ∈ C:

• True Positives (TPc):
∑|T |

i=1 1(yi = c, ŷi = c)

• False Positives (FPc):
∑|T |

i=1 1(yi ̸= c, ŷi = c)

• False Negatives (FNc):
∑|T |

i=1 1(yi = c, ŷi ̸= c)

• True Negatives (TNc):
∑|T |

i=1 1(yi ̸= c, ŷi ̸= c)

From this, we can compute the following metrics:

Accuracy is the fraction of correctly predicted examples:

Accuracy =
1

|T |
∑
c∈C

TPc . (2.17)

Recall for a class c is defined as:

Recallc =
TPc

TPc + FNc
. (2.18)

We can then combine the recall values for each class using different strategies. In our
experiments, we use the Macro Recall, which is the unweighted average over all classes:

Macro Recall =
1

|C|
∑
c∈C

Recallc . (2.19)

Hence, it does not take class imbalance into account.

F1-Score for a class label c is defined as:

F1c =
TPc

TPc +
1
2 · (FPc + FNc)

. (2.20)

Again, we use the Macro F1-Score in our experiments, which is the unweighted average
of the class F1-Scores:

Macro F1 =
1

|C| ·
∑
c∈C

F1c . (2.21)

Superclass Accuracy (SA) In addition to the standard metrics, we define and use
task-specific evaluation metrics. When measuring the similarity between class predictions
and their target classes in Chapter 14, we introduce the SA metric. Given the predictions
of the model, we introduce a function sup : C → S that maps a class label to its superclass
(which captures similar classes, so |S| < |C|; e.g., the classes “rose” and “violet” both have
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the superclass “flower”). We can then compute the classification numbers TPs, FPs, FNs,
and TNs for each superclass s ∈ S. SA is then defined as:

SA =
1

|T |
∑
s∈S

TPs . (2.22)

This value is always at least as high as Accuracy, as a correctly assigned class implies
the correct superclass.

Failed Superclass Accuracy (FSA) is another custom metric for the class similarity
setting. FSA only observes misclassified examples, thus measuring the similarity of
misclassifications compared to the target class. A high FSA means that if the model
predicts the wrong class, the predicted class is at least similar to the correct class:

FSA =

∑
s∈S TPs −

∑
c∈C TPc

|T | −∑c∈C TPc
. (2.23)

2.5.2. Regression

For the test dataset T , we also get a set of predictions ŷ1, . . . , ŷ|T | and a set of ground
truth labels y1, . . . , y|T |. However, in regression tasks, these values are continuous floating
point numbers and not class labels. The goal is thus to measure the difference between
the predictions and the ground truth labels or their correlations. We do this in our
experiments with the following metrics:

Mean Absolute Error (MAE) is defined as the mean of the absolute differences between
the predictions and the ground truth labels:

MAE =
1

|T |

|T |∑
i=1

|yi − ŷi| . (2.24)

MSE is defined as the mean of the squared differences between the predictions and the
ground truth labels, thus giving more weight to large errors:

MSE =
1

|T |

|T |∑
i=1

(yi − ŷi)
2 . (2.25)

Root Mean Squared Error (RMSE) is the square root of the MSE and measures the
average error in the same units as the ground truth labels:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 . (2.26)
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Coefficient of Determination/R2 measures how well the variance of the output variable
is explained by the model. It is defined as

R2 = 1−
∑|T |

i=1(yi − ŷi)
2∑|T |

i=1(yi − ȳ)2
, (2.27)

where ȳ = 1
|T |
∑|T |

i=1 yi is the mean of the ground truth values.

Pearson Correlation Sometimes, it is not important to predict the exact value of the
output variable, but rather to predict the correct ranking of the values. For this, we
can use different correlation metrics. While Pearson indicates the linear correlation
between the values, Spearman measures the correctness of the ranking. Formally, Pearson
correlation is defined as

Pearson =

∑|T |
i=1(ŷi − ¯̂y)(yi − ȳ)√∑|T |

i=1(ŷi − ¯̂y)2
√∑|T |

i=1(yi − ȳ)2
, (2.28)

where ¯̂y and ȳ are the mean of the predicted and ground truth mean scores, respectively.

Spearman Correlation Spearman correlation computes the ranks of the predicted and
ground truth mean scores and then computes the Pearson correlation between the ranks:

Spearman =

∑|T |
i=1(r̂i − ¯̂r)(ri − r̄)√∑|T |

i=1(r̂i − ¯̂r)2
√∑|T |

i=1(ri − r̄)2
, (2.29)

where r̂i and ri are the ranks of the predicted and ground truth mean scores, respectively.

Jensen-Shannon Divergence (JSD) is a measure of the similarity between two proba-
bility distributions. For this, the predictions and ground truth values have to be vectors
instead of scalars, so we use ŷ and y, respectively. JSD is defined as the symmetric
Kullback-Leibler divergence between the two distributions ŷ and y:

JSD(ŷ,y) =
1

2

(
KL
(
ŷ ∥ ŷ + y

2

)
+ KL

(
y ∥ ŷ + y

2

))
, (2.30)

where KL(· ∥ ·) is the Kullback-Leibler divergence. For two probability distributions p
and q, it is defined as

KL(p ∥ q) =
∑
i

pi log

(
pi

qi

)
. (2.31)

2.5.3. Representation

For representation tasks, the input to evaluation metrics is a list of different items that
are represented by the model in an embedding space, where closer items mean higher
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similarity. The goal of the metrics is to measure how well similar items are clustered
together. This is usually done by computing the distance between the embeddings of the
items and then sorting the items by their distance to a query item.

Formally, the model outputs vector q for a query item from the test set T and all other
test set items (called the reference set X ). We then compute the i nearest neighbors
N i

q ⊂ X of q in the reference set X as an ordered set with |N i
q| = i and ∀x ∈ X \ N i

q it
holds:

d(x,q) ≥ max
z∈N i

q

d(z,q) , (2.32)

where d(·, ·) is the distance between two embeddings. We then compute any of the
following metrics for each possible query item and average the results over all query items.
For simplicity, we omit the average over all query items in the following equations.

Precision at i (Prec@i) Given the first i nearest neighbors N i
q of a query embedding q,

the Prec@i is the percentage of this set that have the same class as the query embedding:

Prec@i =

∑
x∈N i

q
1
(
yx = yq

)
i

, (2.33)

where yx is the class of embedding x.

Precision at 1 (Prec@1) Consequently, Prec@1 is a special case of Prec@i, where i = 1.
It measures the percentage of query embeddings where the nearest neighbor from the
reference set has the same class as the query.

R-Precision R-Precision is similar to Prec@i, however, i depends on the query embedding.
For one query embedding q, the Rq closest embeddings are retrieved, where Rq is the
number of examples with the same class label yi as the query embedding:

Rq =
∣∣{x ∈ X | yx = yq}

∣∣ . (2.34)

The R-Precision then simply follows the definition of Precision@Rq for this query item
q, i.e., the average fraction of items having the same class label. Note that Rq can be
different for different query embeddings q, so the number of nearest neighbors is not
fixed as in Prec@i. This metric measures how well the model puts items with the same
property value closer together. The higher the R-Precision, the better the embedding
clusters w.r.t. the class. Note that we use R as the name for this variable even though it
contradicts our notation. We use the uppercase letter to be consistent with its naming in
the literature [193].

Mean Average Precision at R (MAP@R) A weakness of R-Precision is that it does
not take the ranking of the retrieved items into account. Given an R-Precision of 0.5,
this means that half of the Rq nearest neighbors belong to the same class as the query
embedding q. However, it is not possible to tell whether the items with the same class are
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closer or farther apart from the query. Musgrave et al. [193] thus propose the MAP@R
metric, which takes the ranking into account. It is defined as

MAP@R =
1

Rq

Rq∑
i=1

p(i) , (2.35)

where p(i) is

p(i) =

{
Prec@i if yi = yq

0 otherwise ,
(2.36)

and yi is the class of the i-th nearest neighbor of q. This gives lower scores to lower
ranked correct items, which is desirable. Since this metric combines multiple desirable
properties of Precision and R-Precision, we use it as our main metric for representation
tasks.

2.5.4. Ranking

Ranking tasks are similar to classification tasks, but the output of the model is not a
single class, but a list of classes, where the first class is the most likely class. The goal of
the metrics is to measure how well the model ranks the ground truth class of the input to
the top of the list. Formally, the model outputs a list of classes Cx for an input item x
from the test set T .

Accuracy@5 Accuracy@5 measures the fraction of test examples where the method
correctly puts the target output in the top five ranks. We thus define C5

x as the top five
most likely classes in Cx:

Accuracy@5 =
1

|T |
∑
x∈T

1
(
yx ∈ C5

x

)
, (2.37)

where yx is the ground truth class of the test item x.

Mean Reciprocal Rank (MRR) takes the rank of the ground truth class into account.
The higher the correct class is ranked by the model in the class list, the better. The MRR
is defined as

MRR =
1

|T |
∑
x∈T

1

rank(x)
, (2.38)

where rank(x) is the position at which the target item is ranked by the model in the
output list Cx. Always predicting the correct item at first position leads to a MRR of
one, while bad models achieve a MRR closer to zero.
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In this thesis, we aim to understand and improve Deep Learning (DL) models in a
model-agnostic way. For this, we explore the effectiveness of six principles by utilizing
them in a broad set of applications. We now give an overview on these applications
that span the three tasks classification, regression, and representation, as well as the two
input modalities image and text. We state the modalities and tasks for each application
in square brackets in the section title as a comma-separated list each, separated by a
semicolon. For each application, we give application-specific related work w.r.t. the facets
that we investigate in our implementations as well as a short overview of the datasets we
use.

3.1. Land Use Regression (LUR) [image; regression]

LUR refers to the task of estimating air pollution concentrations based on land-use
information [92, 22, 300]. Based on the application needs, the target variable can vary,
e.g., NO2, PM2.5, PM10, or surface dust concentrations. Different approaches use features
such as map entities, population, or road information. Such models are useful to estimate
concentrations in areas without monitoring stations, which are usually sparsely distributed.
In our application, we use openly available map images from OpenStreetMap (OSM) to
estimate NO2 (nitrogen dioxide) concentrations for locations without measurements using
a DL model called MapLUR. We then generate artificial map images to better understand
the behavior of this model.

3.1.1. Application-Specific Related Work

Current LUR models establish Linear Regression (LR) techniques as the de facto standard
model [22, 300, 194]. Especially noteworthy is the Escape project [52, 22] which has
built models for 36 European areas. The model building procedure of this project has
become a standard approach [194, 297, 176, 186, 280] with a tool automating the process
of variable generation, modeling, and prediction with a model based on LR [189].

However, more advanced Machine Learning (ML) methods are starting to become
more common. For example, Random Forests (RFs) [27] have been used successfully
in LUR scenarios [28, 34]. Neural Networks (NNs) have also been applied to a range
of pollutants [2, 158, 34, 58, 304, 15, 14, 4, 158, 304, 31]. Such NN-based models are
typically simple Multilayer Perceptrons (MLPs). However, there are DL models which
use Recurrent Neural Networks (RNNs) or Deep Belief Regression networks to forecast
pollution concentrations from earlier measurements or fill missing values for locations
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where measurements already exist [58, 304, 15, 14], which is not directly related to the
task of LUR. Both RFs and NNs have been shown to outperform LR in LUR [34, 28].

All aforementioned LUR models rely on manually engineered features, which are
typically gathered from various locally available data sources that might not be available
elsewhere. The combination of using hand-engineered features with a simple model like
LR helps with the interpretability of the model.

In contrast to these methods, we propose a DL model based on Convolutional Neural
Networks (CNNs), which is able to automatically learn relevant features from openly
available maps. This makes the model more powerful but less interpretable. With our
approach of using generated map images, we try to better understand what kind of
high-level features the model is extracting from the image.

Image-based approaches have been used before in the context of air quality estimation
and pollution detection. Singh interpreted modeled air pollution data as images and used
non-ML image classification techniques in order to detect significant periods of elevated
air pollution [249]. Furthermore, CNNs have been used before in the context of air quality
estimation by Zhang et al. [313] and Li et al. [150], who propose models to estimate
air haze level using photos from, for example, mobile phones or webcams. In contrast,
our work uses map and satellite imagery depicting land-use as model input, making our
model more closely related to LUR models. Additionally, our model estimates pollution
concentrations instead of haze levels.

3.1.2. Data

In our LUR experiments, we use pollutant concentrations from the London Atmospheric
Emissions Inventory (LAEI) [3]. It contains modeled annual mean concentrations of
NO2 and PM10, among other pollutants, at a 20m grid level for the complete Greater
London area in 2013. Mainly, we use the NO2 concentrations of the dataset since it is a
very frequently used pollutant for LUR models. The data is the result of a dispersion
model which incorporates a vast number of input factors like for example road and rail
networks, traffic data, aviation, pollution from individual industrial premises, domestic
and commercial fuel consumption, as well as fires. Through this approach, 5 856 428 data
points were generated where each data point represents a 20m by 20m cell [3].

From the dataset, we sample a training set consisting of 3000 data points and a test
set consisting of 1500 data points from the Central London part of the dataset in order
to have a reasonable number of urban data points for our experiments. The map images,
which we use to depict the areas around each air pollution data point, cover an area of
80m by 80m. The 20m by 20m cells are in the center of these images, allowing our model
MapLUR to see more of the surroundings and incorporate information about distant
emission sources. In order to avoid a potential evaluation issue, we sample data points in
such a way that no images can overlap. Please refer to our paper for more details on the
dataset and the sampling procedure [256].

As input data for our CNN based MapLUR model in [256], we use map images from
OSM [203], which is an open database for map data that is built and maintained by
volunteers. Data from OSM can be used to render maps in various ways through different
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stylesheets. We render map images based on OSM data without any text like street or
station names, avoiding the obstruction of map features. See our work in [256] for details.

3.2. Image Aesthetics Assessment (IAA) [image;
classification, regression]

IAA is the task of automatically quantifying the aesthetic appeal of an image. In the
literature, mainly two subtasks can be found [265, 311, 122, 94, 149]: The binary task is a
binary classification task where each image is classified as either aesthetic or unaesthetic.
A classification model is then trained to assign each image to one of the two classes. The
more realistic task is the continuous task, since it allows for applications such as image
ranking or generally a more fine-grained comparison of different images [60]. Here, the
task is to output a continuous value, where higher values indicate more aesthetic images.
In our experiments, we try to improve IAA models with better pretraining as well as
explore the use of Contrastive Language-Image Pre-Training (CLIP) for this task.

3.2.1. Application-Specific Related Work

Several DL architectures and loss functions have been developed to improve the perfor-
mance on the binary and continuous IAA tasks. The vast majority of these models is
based on CNN architectures pretrained on ImageNet, which are modified and finetuned
on the Aesthetic Visual Analysis (AVA) dataset. One of the most popular DL models for
IAA is Neural Image Assessment (NIMA) [265]. NIMA replaces the classification head of
a pretrained CNN with a fully connected layer and is finetuned to predict the image’s
rating distribution (as given by the AVA dataset) using the Earth Mover’s Distance
(EMD) loss. The EMD loss explicitly guides the network to include the order of scores
in the training process, resulting in competitive performance to more complex methods
on both tasks. Due to the simplicity and elegance of this approach, we use the training
procedure of NIMA in our experiments. Instead of using an ImageNet pretrained model,
however, we use CLIP model in Chapter 12 to show that CLIP is a more suitable feature
extractor than the ImageNet model.

Another DL model for IAA is Personality-Assisted Image Aesthetics Assessment
(PA_IAA) [149], which uses multitask learning to predict both a general and personalized
aesthetics score based on individual personality traits. The authors train a Siamese
network based on pretrained classification models using additional personality training
data and the EMD loss. This way, the network learns features that model personality
and subjectivity. Note that for this approach, additional personalized data is necessary,
which is not present in the AVA dataset.

Most methods resize and crop images to fit them into the required dimensions of the
underlying architecture, which can lose details and destroy image compositions. MLSP [94]
allows the model to extract features from the whole image by using activations from
multiple convolution blocks of a pretrained Inception network. On these features, the
authors train a custom CNN architecture.
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A related task to IAA is No Reference Image Quality Assessment (NR-IQA), which
assesses the technical quality of images. Many existing NR-IQA approaches make heavy
use of human-sourced quality scores [25, 116, 265]. Under the assumption that distorting
images degrades their technical quality, RankIQA [160] distorts technical aspects of
high-quality images and learns to rank the resulting images against each other using
an efficient ranking loss. Some NR-IQA approaches embed this task into a multitask
setting [117, 315] by adding a classification task to the ranking objective [117, 166, 301, 72].
In our multitask experiments in Chapter 16, we expand this methodology to the IAA task
and also include a regression task [315] in the multitask setting, estimating the distortion
intensity.

The use of distortions to generate weak labels is similar to other self-supervised methods
that aim to learn useful features. Many self-supervised pretext tasks for CNNs [112, 68, 77,
136] teach universally applicable image features using tasks like rotation classification [68],
image part shuffling, or super-resolution [112]. Sheng et al. [243] transfer distortion-based
self-supervised NR-IQA pretext tasks to the IAA task. They are able to improve the
prediction performance for the downstream IAA task on AVA over the de-facto default
ImageNet [46] pretext task [242, 265, 167, 129] by pretraining on mainly technical quality
focused distortions in a self-supervised multitask pretext setup. In Chapter 16, we expand
on this approach by explicitly introducing style and composition aware distortions and
evaluating different pretext task combinations against each other.

3.2.2. Data

In our implementations that work on the IAA task, we use the common benchmark
dataset AVA [191]. It consists of 255 522 (229 971 training and 25 551 test) images scraped
from a photography website1 along with the distribution of user ratings in {1, 2, . . . , 10},
where higher scores mean more aesthetically pleasing images. The mean score is then
used as the label of the continuous task to indicate how aesthetically pleasing the image
is. To create labels for the binary task, images with a mean score of ≥ 5 are considered
aesthetic.

3.3. Age Estimation using Class Similarities [image;
classification, regression]

Age Estimation is an ordinal classification task with the goal of predicting the age of a
person (in years) given an image of their face. It can be used in a variety of areas such
as advertisement, surveillance, or biometrics [54, 10]. It has been shown that reliable
Age Estimation is hard for humans and that algorithms can outperform humans in this
task [82]. We use this application in our experiments to demonstrate how to incorporate
additional information about class similarities into the loss function.

1www.dpchallenge.com (last accessed: 2023-08-15)
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3.4. Image Classification with Class Similarities [image; classification]

3.3.1. Application-Specific Related Work

Age Estimation can be interpreted as either a regression or a classification task. Since
the target values have an inherent order and are numbers, regression is the more natural
choice. However, since the possible age values are discrete, classification is also a valid
approach. Thus, there are many approaches that use regression, classification, or both for
Age Estimation [54, 10].

According to ELKarazle et al., approaches for Age Estimation can be categorized into
handcrafted, built-from-scratch, and pretrained models [54]. Handcrafted methods rely
on manually extracted features and can be deployed on devices with low computational
power, but are not very accurate. Built-from-scratch models give control over the design
of the model and build upon a learning process, which lets them perform better than
handcrafted methods. However, they require more computational power and take more
time to build, as they need a lot of training data and time. Pretrained models use transfer
learning to build upon the features extracted from a pretrained model. Given that the
pretrained model was trained on a suitable pretraining task, these models do not need as
much training data and time as built-from-scratch models. However, they are still more
computationally expensive than handcrafted methods. Also, the use of predefined models
does not give much choice regarding the design of the model. If the model is pretrained
on an unsuitable task, the model might not be able to learn the features needed for the
Age Estimation task and thus can perform badly.

In our implementation in Chapter 14, we interpret Age Estimation as a classification
task, but include similarities between the age classes as domain knowledge in the loss
function. We then measure the performance improvement that can be achieved using our
loss compared to the standard Categorical Cross Entropy (CCE) loss function.

3.3.2. Data

For our experiments, we use two common datasets for Age Estimation [54]: The UTK-
Face [318] dataset is a dataset for Age Estimation that contains over 20 000 images of
human faces annotated with their age ranging from 0 to 116 years. The AFAD [200] dataset
is also an Age Estimation dataset, containing over 160 000 images of Asian people, ranging
from 15 to 40 years. For both datasets, we randomly sample training/validation/test sets
using 60/20/20 splits.

3.4. Image Classification with Class Similarities [image;
classification]

In Image Classification, the goal is to recognize an object shown in an image, i.e., to
classify an image into one of several classes. In our experiments, we will work with a
variation of this task, where we want to classify an image but also take into account the
semantic similarity between the classes. In this task, classifying an image of a rose as
“violet” is less harmful than classifying it as “truck”.
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3.4.1. Application-Specific Related Work

Previous work on including task-specific knowledge in classification is mostly designed for
specific use cases, requires modifications to the model architecture or training procedure,
or implicitly learns the information while training. Sukhbaatar et al. implicitly learn a
probability matrix that indicates the chance of a falsely assigned class label in order to
compensate for noise [258]. This, however, requires changes in the network architecture
and a special training procedure. Related to tasks with similar classes are tasks where
classes have a taxonomic structure, which is called hierarchical classification. Specifically
designed loss functions and/or model architectures use the fact that classes that belong
to the same category are more similar than others [33, 298]. Izbicki et al. exploit the
geospatial relation between areas on earth to automatically geotag input photos [109].
Their model learns to predict a mixture of densities that spread across multiple areas
instead of specific classes/areas. A number of task-specific methods try to use the inherent
class order of so-called ordinal classification tasks [65, 78]. For example, Niu et al. use
multiple binary classifications each indicating whether the value is greater than the
class value [200]. Model architectures incorporating semantic similarities using word
embeddings were shown to usually predict more similar classes if they fail compared to
models without similarity information [64, 201]. In contrast to the related work, the loss
function that we introduce in Chapter 14, Similarity Based Loss (SimLoss), incorporates
the domain knowledge as class similarities in the loss function, which does not require
special model architectures and works on any common NN classifier. This makes it easy to
explicitly support the training procedure with background knowledge. After publication
of our approach, the TreeLoss [286] was proposed, which also is a drop-in replacement for
the CCE loss. However, this loss function requires that the classes are organized in a tree
structure, which is not always the case.

3.4.2. Data

For our experiments in this application, we use the CIFAR-100 dataset [141], which is
an image classification dataset that consists of 100 classes, each containing 600 images
of size 32× 32 pixels. Each class also belongs to one of 20 superclasses, which are more
general classes, e.g., classes “rose” and “orchid” have the superclass “flower”. We use these
superclasses in the evaluation of our image classification with class similarities task.

3.5. Deep Metric Learning (DML) [image; representation]

In DML, a Deep Neural Network (DNN) is trained to map input images to m-dimensional
embedding vectors that should be close to each other in embedding space (as measured by
a distance like Euclidean distance or a similarity like cosine similarity) if the corresponding
inputs share a given class. Thus, the network has to learn to extract discriminating input
features to embed an item.

DML has been applied to many scenarios such as image clustering, retrieval, person
reindentification, face verification, 3D shape retrieval, semantic textual similarity, and
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3.5. DML [image; representation]

speaker verification [119]. In our implementations, we focus on images, since this is the
most common application of DML.

There, we mainly work on two facets of DML: The influence of certain high-level
features (particularly the background of an image) on the embedding and making DML
models more data-efficient by eliminating the need for training images.

In order to measure the generalization capabilities of DML models, one usually does
split the dataset into a training and a test set with disjoint classes. Hence, the model
has never seen any of the test classes during training. Embeddings thus have to capture
relevant features so that examples from these unseen classes are still correctly clustered.

3.5.1. Application-Specific Related Work

In the following, we discuss related work on the two topics we cover in this thesis.

Background Bias in DML

Background bias is the phenomenon that a DNN uses information from the background of
an image to compute its output, which can be undesirable and lead to poor generalization.
We investigate background bias in DML models, which can be harmful in settings like
item retrieval, where the background should not have an influence on the embedding to
find similar items. However, researchers have mainly investigated background bias in
classification NNs. While during test time, only new images from a fixed set of classes
are given for classification, in a typical DML setting, the test classes are disjoint from the
training classes [193]. Also, DML networks map images to an m-dimensional embedding
space and do not classify them. Thus, findings of background bias in classification models
do not directly transfer to the DML setting.

In addition, methods developed to combat background bias are often specialized to
classification networks and cannot be directly applied to DML networks. Such methods can
be divided into two categories, which we term Background Augmentation and Attribution
Regularization. Background Augmentation methods exchange the background of images
during training or inference with random images [303, 267, 121]. This way, the model
cannot find correlations between background features and class labels. Another work
proposes to crop the image near the main object to prevent background from being
visible in the image [289]. In our experiments in Chapter 11, we use a Background
Augmentation technique. Attribution Regularization computes the attribution map of an
input sample during training to identify the image regions the model focuses on. The loss
function then guides the model to produce attribution maps that resemble the image’s
foreground/background segmentation map [230, 241, 155, 36]. Attribution Regularization
has not been applied yet to DML, even though attribution map generation methods
for DML models exist [134]. In Chapter 9, we also introduce a new attribution map
generation method for DML.

Related fields of background bias are also investigated in the literature. NN classifiers
often suffer from simplicity bias [240], using the simplest clues to classify an image.
Training an additional network that complements a biased model [198] or ensembles
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that learn diverse feature sets alleviate the problem that the model only learns a few
potentially irrelevant features [205]. To prevent models from using spurious correlations
between the image and the class label [307, 264, 234], the network’s last layer can be
finetuned on data that does not show such correlations [128].

Zero-Shot DML

As already stated, DML models are usually trained on images that are organized into
classes, so binary similarity annotations are readily available for each pair of data
points [119]. Testing then uses a disjoint set of image classes to measure the model’s
generalization ability, but the data is semantically similar to the training data, e.g.,
Cars196 [139] only shows cars and face recognition datasets [97] contain faces.

Studying DML generalization for images outside of the training domain has recently
become popular [182, 231, 181, 99, 98, 306]. However, all proposed methods to improve
the generalization performance to new datasets still use training images. We explore the
possibility of zero-shot DML by only using text prompts to create an image embedding
space specifically tailored to a desired similarity notion. For this, we use a fixed CLIP [214]
model to extract general purpose features.

The ability to rank possible text labels for an image using the cosine similarity of CLIP
embeddings has been used in the original paper to perform zero-shot image classifica-
tion [214]. For classification, the class names need to be known during inference, while in
our zero-shot DML approach, we create image embedding spaces reflecting the desired
similarity notion. Hence, the model needs to be able to handle images of unknown objects
and characteristics, e.g., new car models.

Baldrati et al. use CLIP to alter fashion image embeddings using text prompts [16],
e.g., the image of a black dress is combined with the text “is red” to find images of
red dresses. While exploiting similar properties of CLIP, we only use text prompts for
training a transformation to focus on the desired similarity notion. Image retrieval also
uses joint text-image embeddings search for image contents using text [177, 39]. We
use text exclusively during training, not during inference. Roth et al. [232] improve
DML models by feeding the class names through the CLIP text encoder and guide the
embedding process using these representations. While they also use text supervision
in their setup, they still use training images for their method and do not explore the
suitability for different similarity notions. To the best of our knowledge, no other work
has a comparable task setting or method as our method we explore in Chapter 13.

3.5.2. Data

We use a large set of datasets for the evaluation of DML models, depending on the
implementation. The most common benchmark datasets for DML are Cars196 [139],
CUB200 [275], and Stanford Online Products (SOP) [253] and we use them in all DML
related implementations. Here, one half of the classes is used for training and the other
half for testing. In addition, we use other datasets for our work in Chapter 13. We now
describe each dataset: Cars196 [139] features 16 185 real world car images. It contains
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196 classes, each one representing images of one car model. CUB200 [275] consists of
11 788 images showing birds that are grouped by bird species. Overall, it has 200 classes.
SOP [253] contains 120 053 images of 22 634 different products. These images are scraped
from eBay product pages. Synthetic Cars [134] is a self-created dataset that contains
100 000 3D-rendered car images with different car models, car colors, background colors,
car orientations, sun positions, and camera angles, all sampled independently at random.
We provide more information about this dataset in Chapter 7, where we create this
dataset for DML analysis purposes. DeepFashion [162] contains over 800 000 images of
persons wearing different clothes. With each image, there are different attributes such as
“Clothing Category”, “Texture”, “Fabric”, and “Fit” that can be used to group the images
into several classes. We use this dataset for DML evaluation. Movie Posters [41] is a
dataset of movie posters and corresponding metadata about the movie, such as genre or
production country. Due to non-standard encoding of the files, we overall are able to read
8052 different movie posters and use them in our experiments to evaluate DML models.

3.6. Scientific Venue Recommendation [text; classification]

Scientific Venue Recommendation is the task of predicting the conference or journal
(venue in the following) a paper should be submitted to, based on the contents of the
paper (i.e., its title, abstract, and/or keywords). We interpret this as a classification task
that only outputs one venue, but rank the outputs of the model to provide a list of fitting
venues.

3.6.1. Application-Specific Related Work

There exist several online services that recommend venues based on the contents of a
publication, but all of them are lacking in some ways:

1. Most of them only recommend journals, not conferences, e.g., Elsevier Journal
Finder2 [118], Journal Guide3, Springer Journal Suggester4, Wiley Journal Finder5,
Enago Open Access Journal Finder6, Edanz Journal Selector7, Manuscript Matcher8,
Journal/Author Name Estimator9, and SJFinder10. Especially in the fields of
Computer Science and Artificial Intelligence (AI), most work is published on confer-
ences [274], making this a severe drawback for AI researchers.

2https://journalfinder.elsevier.com (last accessed: 2020-09-21)
3https://www.journalguide.com (last accessed: 2020-09-21)
4https://journalsuggester.springer.com (last accessed: 2020-09-21)
5https://journalfinder.wiley.com/search?type=match (last accessed: 2020-09-21)
6https://www.enago.com/academy/journal-finder/ (last accessed: 2020-09-21)
7https://en-author-services.edanzgroup.com/journal-selector (last accessed: 2020-09-21)
8https://endnote.com/product-details/manuscript-matcher/ (last accessed: 2020-09-21)
9https://jane.biosemantics.org (last accessed: 2023-08-15)

10http://www.sjfinder.com/journals/recommend (last accessed: 2020-09-21)
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2. Most of the services are commercially motivated, such as Elsevier Journal Finder,
IEEE Publication Recommender11, Springer Journal Suggester, Wiley Journal
Finder, Enago Open Access Journal Finder, Edanz Journal Selector, or Manuscript
Matcher. Publishers and companies provide them to promote their own portfolio
or other services. Thus, they diminish the variety of the recommendations by only
considering their own journals.

3. Many of the services are black boxes without any information on how they perform
their recommendations. There are a few exceptions to this: Journal/Author Name
Estimator uses the open source search engine software Lucene to find the 50 most
similar papers according to the Lucene index and recommends the journals that
occur most often in this set [237]. Kang et al. extract noun phrases from the paper
and match these with a database using the Okapi BM25 algorithm [118, 224].

4. None of the provided services explain why a specific venue was chosen.

Only very recently, recommending conferences based on authors, abstracts, and key-
words became a new research area [105]. However, the authors approach a more general
setting that includes conferences from a wide variety of fields. They also incorporate
author information into the recommendation and do not provide an explanation to the
user why a given conference was recommended. With our work in Chapter 8, Where to
Submit (WTS), we introduce an open and explainable system that recommends both
journals and conferences and that is automatically analyzed to showcase the relevant
words and phrases for the recommendations using the Integrated Gradients method [260].

3.6.2. Data

In our implementation, we base our dataset on the Semantic Scholar [8] dataset12 by
extracting all publications that were published in the research fields Artificial Intelligence
and medicine.

A publication is considered to be an AI paper if it was published in one of the scientific
venues given by Kersting et al. [124]. We manually match them as closely as possible to
the Semantic Scholar venues. This procedure leads to 77 distinct venues. We also add a
class called “non-AI” consisting of 20 000 publications from other fields, to let the model
learn the difference between AI and non-AI venues, resulting in 78 classes for this dataset.
Overall, we have 245 573 publications in the AI dataset.

In the field of medicine, we only use publications from Semantic Scholar that originate
from Medline, a medical publication database. Due to a high number of venues with few
publications, we only consider the top 78 venues (the same number as for the AI dataset,
making the performance metrics comparable), which account for about 10% of the whole
dataset. This leads to overall 2 924 609 publications in the medicine dataset. In general,
we only keep publications where no input information is missing. For more information
about the dataset, see our work in [131]. Table 3.1 gives an overview of both datasets.
11http://publication-recommender.ieee.org/home (last accessed: 2020-09-21)
12Release from 2019-01-31.
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3.7. Sentiment Analysis [text; classification]

Table 3.1.: Comparison of the subsets for AI and medicine venues from Semantic Scholar.

Metric AI Medicine

Publications 245 573 2 924 609
Venues 78 78

Avg Title length 9.24 13.29
Avg Abstract length 153.65 185.18
Avg used Keywords 8.73 12.33
# total Keywords 32 139 209 525

Min. publication count 63 20 959
Mean publication count 3148.37 37 494.99
Standard Deviation 4102.96 28 170.86
Median publication count 1597.5 27 734.5
Max. publications count 21 122 201 469

From both datasets we randomly sample 80% as training, 10% as validation, and 10%
as test sets in a stratified manner. While our approach might favor larger conferences with
this sampling strategy, we argue that this procedure better reflects the venue landscape.
Larger conferences usually cover a larger thematic scope and accept more manuscripts.

3.7. Sentiment Analysis [text; classification]

Sentiment analysis refers to the task of predicting the sentiment of a text, i.e., classifying
each text into a sentiment category: negative, neutral, or positive.

In our experiments, we perform sentiment analysis on Twitch.tv comments. Twitch.tv
is a live streaming platform that enables individuals and companies to broadcast live
content, including gaming, cooking, and other live events. The platform allows users to
follow channels, access a list of currently streaming channels, and engage in live chat with
the channel’s community. Channel owners can also appoint moderators to help manage
the chat and can set chat rooms to be accessible only to subscribers or moderators. Twitch
has a rich history, beginning as a spin-off to the Justin.tv platform and later becoming
an independent entity that was acquired by Amazon. Twitch has become a source of
income for individual streamers, who earn money from subscriptions, advertising deals,
and branded content. One of the defining features of the Twitch platform is its use of
emotes, which are graphics used to express emotions and ideas in the chat. Emotes play a
crucial role in the Twitch community, helping to create a unique language and culture on
the platform. Twitch and streamers may want to analyze the sentiment of users regarding
certain products or events, and the information gathered from this analysis can help to
increase user engagement and income.
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3.7.1. Application-Specific Related Work

Sentiment analysis is a widely researched application area of AI. Besides popular usage
areas containing datasets of Amazon product reviews [174] and IMDB movie reviews [168],
lots of studies have also challenged more difficult domains such as the short, ortographically
inconsistent messages found on Twitter [196, 227, 228, 197, 229]. Research in this area
also entails the use of emojis for gaining insights into the sentiment of a message [138],
while there are also openly available resources for sentiment classification specifically
geared towards social media texts, such as the Valence Aware Dictionary for sEntiment
Reasoning (VADER) lexicon [69]. Additionally, there exist labeled datasets such as the
Sentiment140 Twitter dataset [71] utilizing text emoticons at the end of messages to
generate a large amount of so-called weakly labeled messages for use in supervised training
environments. We will use a similar approach to generate our dataset in Chapter 15.

The streaming platform Twitch itself has also gathered some research interest over
the years. For a general overview of Twitch and its user communities, we refer readers
to Smith et al. [251]. While Kaytoue et al. [120] analyze viewer numbers and prove
aspects such as the impact of tournaments and video game releases, Nascimento et al.
[199] conduct a more indepth research on behavioral patterns of audiences, such as channel
switching and channel surfing. There also exist studies in the area of viewer sentiment,
with Löffler et al. [163] investigating the impact of background color on the perceived
sentiment of chat messages. Barbieri et al. [18] research the process of removing ending
Twitch emotes from comments and predicting the removed emotes with Bidirectional
Long Short-Term Memory (LSTM) NNs. Predicting the overall sentiment of individual
comments on Twitch, however, is a novel contribution of our work in Chapter 15.

3.7.2. Data

Since we are the first to investigate this setting, we create two datasets for our experiments:
a large unlabeled dataset of Twitch.tv comments and a small labeled dataset, which is
exclusively used for evaluation. For more information about the dataset creation process
and a detailed analysis of the dataset, see our work in [133].

We collect a large dataset of publicly accessible comments from Twitch.tv by crawling
all comments from the site using the available API for April, May, and June of 2018.
From these 3 069 046 977 unlabeled Twitch messages, we sample 2000 comments and label
them by three crowd workers each, resulting in 1922 comments with a clear sentiment
label given by majority voting. From the labeled comments, 404 (21.02%) are classified
as negative, 748 (38.92%) as neutral, and 770 (40.06%) as positive.

48



4. Related Work for the Explored
Principles

We now discuss related work of the principles we explore in this thesis. Since the principles
are oftentimes not task- or domain-specific, we are not able to cover all related work
for each principle. We instead aim to structure the methodological implementations
and discuss representative and highly influential works such that we can classify our
implementations we propose in this thesis.

4.1. Understanding Deep Learning (DL) Models

Given the taxonomy for interpretable Artificial Intelligence (AI) by Molnar from Sec-
tion 1.1.1, we focus on discussing related work about model-agnostic/post-hoc interpre-
tation methods that can provide local and global explanations for DL models. Most
research in this taxonomy area focuses on explaining classification models by highlighting
important input elements such as pixels or tokens or by exploring the influence of certain
input concepts [171, 153]. Our concrete implementations use similar techniques but are
designed for the explanation of regression and representation models. Thus, they fill an
important gap in the literature.

4.1.1. Generated Input Data

We explore the use of synthetic data to analyze the influence of properties on the output
of a Neural Network (NN) in a post-hoc and model-agnostic way, as categorized by Molnar
[185]. While prior work mostly uses generated datasets for training NNs to improve
performance in real-world scenarios [269, 137, 88], only few works explore the use of
synthetic data to analyze DL models trained on real-world data.

Many works investigate the robustness of models on different data variations, which
is possibly closest to our explicit analysis objective. One can argue that robustness and
high-level feature influence are complementary: If a model is robust to a certain property
change, it is not influenced by this property. However, robustness research mostly tries to
find properties that should not, but do influence the model. The general idea of feature
influences is to find influencing properties, even if they are not necessarily bad.

For robustness research, we can identify mostly two methodological directions: Creating
augmentations from real-world data or generating synthetic data. Even though performing
data augmentation creates new data by controlling specific aspects of the original data,
we would not consider it generated data as we use it in our principle implementations.
However, works in the image domain find that even simple spatial transformations such
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as rotation, scaling, or translations of real images significantly impact the performance of
vision models [57, 11]. Here, the properties of interest are possible to vary using spatial
transformations. In Natural Language Processing (NLP), transformations can be applied
to the text itself, such as replacing words with synonyms [285]. Approaches such as
adversarial examples slightly modify existing data inputs such that the model output
changes [261, 75, 6, 285]. Since they are based on existing data, we also do not consider
them to be generated data as we use it in our implementations.

On the other hand, synthetic data allows for fine control over the generation process,
allowing to create different compositions and more abstract inputs. As with data aug-
mentations, most works from the literature investigate the robustness aspect of NNs.
Alcorn et al. [5], Abbas and Deny [1] generate synthetic images in a 3D rendering software
to analyze the influence of poses (position and orientation) of objects in images on the
output of image classification models. Unsurprisingly, they find that unusual poses lead
to a decrease in classification accuracy. Madan et al. [170] shows the same for changes in
3D viewing angles and lighting. Ibrahim et al. extend the variations to background and
size properties and to more vision models, but mainly reach the same conclusion as the
work before [106]. These results are supported by von Kügelgen et al., who specifically
investigate Self-Supervised Learning (SelfSL) models [273]. While the investigation of
robustness is certainly an important topic for DL, we use the Generated Input Data
principle (see Section 5.1) to analyze the influence of specific properties, i.e., higher-level
features, on the output of a model. For this, we analyze the changes in the output of
the model, not only their drop in evaluation metrics. This gives us more insight into
how high-level features influence the model’s predictions. Also, we can compare different
models based on these results.

Possibly closest to our work is research on bias detection in NLP [171]. For example,
Vig et al. [272] investigate gender bias in Large Language Models (LLMs) by feeding the
beginning of sentences like “The nurse said that” to a language model and analyze the
probabilities for the next token to be “he” or “she”. They then swap the word “nurse” with
“man” or “woman” and observe the change in the probabilities, computing the so-called
natural indirect effect. Here, the higher-level feature is the gender of the person in the
sentence and it is investigated how this affects the model’s behavior.

4.1.2. Gradient-Based Attribution

Using the gradient of the model w.r.t. the input data to analyze the influence of specific
features on the output of a model (post-hoc feature attribution, as categorized by Molnar
[185]) is a common approach in the literature. Multiple methods have emerged from
this principle, which have been applied to different tasks and different modalities. The
resulting feature attributions can be visualized and show what the model attends to
when making a prediction. Most methods are by default only applicable to classification
methods [248, 61, 320, 319, 305, 250]. These methods highlight input features that have
encouraged the model’s decision for one class.

For regression tasks, there are attempts to extend these methods to regression mod-
els [256]. In Deep Metric Learning (DML), most work on feature importance focuses on
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the image retrieval task and aims to highlight areas that were the reason for the respective
similarity score [257, 76, 323, 238]. Stylianou et al. [257] base their work on the Class
Activation Maps (CAMs) [319] method, which calculates the dot product of each position
in the last convolutional activation map with the other image’s representation, resulting
in a low resolution image showing what regions were deemed similar. Their approach is
only applicable to NN architectures that obtain the image representation by applying
global average pooling to the activation map of the final convolution layer and compute
the image pair’s similarity using the dot product. Its extension Grad-CAM [238] takes
the gradient of additional fully connected layers into account. Adapted to the DML
setting by Zhu et al. [323], the activation map’s pixels of two images are compared to
each other, thus matching similar regions between image pairs. The method proposed by
Chen et al. [37] uses triplets of training images and saves Grad-CAM’s attribution maps
to a database along with the corresponding embeddings. For test images, attribution
maps of similar images from the database are interpolated.

While explaining similarities between image pairs is useful for tasks like image retrieval,
in our proposed method in Chapter 9, we want to assess what image features are used by
the model to embed one image. We then use this information to compare different DML
methods regarding these regions. Our proposed method works with any NN architecture
and computes importances on pixel level.

In general, using raw gradients often leads to noisy attribution maps, which motivated
the development of methods that smooth the gradients. One method that does that and
that we apply in our experiments is Integrated Gradients [260]. We explain the idea and
methodology of it in Chapter 8. Another method is SmoothGrad [250], which we apply
in our attribution method that we propose for DML models.

4.2. Improving DL Models

As with the understanding of DL models, there are many works that aim to improve the
performance of DL models in a model-agnostic and non-invasive way.

4.2.1. Input Masking and Augmentation

Data augmentation and masking can be seen as regularization techniques that allow DL
practitioners to include biases about the data and tasks into the model. Thus, they are
not data- and task-agnostic, since they require deep knowledge about data properties and
task specifics. For example, flipping the input might work for images but is not applicable
to text, leading to reversing sentences. Also, horizontally flipping an image might work
for identifying natural objects, but not for detecting digits. Thus, a large corpus of data
augmentation methods has been developed by different strings of research. We focus on
the most common methods in Computer Vision (CV) [244] and NLP [245, 59], but there
are a myriad of methods for other modalities, such as audio [287] and time series [290].
Data augmentations have been better explored in CV than NLP, since it is more intuitive
to estimate the effects of certain augmentations on images and their desired outputs. In
general, analytically investigating the effects and properties of data augmentations have
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gained research interest in recent years [17, 66]. For example, Geiping et al. find that
well-crafted data augmentations can increase generalization more than additional training
data [66].

Both, image and text data augmentation methods, can be split into basic manipulations
and DL approaches. Basic manipulations include color space transformations, geometric
transformations, and mixing different inputs for images. For text, basic manipulations
include word and character insertions/deletions/replacements using rules, or augmenting
intermediate representations in the NN. DL approaches for data augmentation are based
on methods that generate new data by utilizing DL models. For images, these include
adversarial training, neural style transfer, and Generative Adversarial Network (GAN)
based methods. Text can be translated back and forth between languages to receive
different input texts that should convey the same meaning [244]. Similar to CV, style
transfer and generative data augmentations are possible with text. For example, given
some examples for one class as prompts, LLMs can generate new data points with the
same class [245].

While data augmentation can be used in both domains, the application of those
methods is less common in NLP. Only recently, with the rise of generative AI and
LLM, augmentation is easy to obtain for text [291]. Before, input masking has been a
more common technique in NLP, mainly in combination with a pretraining task. The
Bidirectional Encoder Representations from Transformers (BERT) [48] by Devlin et al.
and derivatives such as [161] are perhaps the most popular examples for this. They
mask 15% of the input tokens and train the model to predict the masked tokens, which
makes it easy to collect a large corpus of training data. The model has to learn the
connections between words to be able to solve this task. Inspired by this simple pretraining
task that has become a very solid base for downstream task training, CV researchers
have adopted this idea for Vision Transformers (ViTs), leading to Masked Autoencoders
(MaskedAEs) [87]. In the sense of using Transformer-based models for both, text and
images, we can see that NLP and CV are converging in their approaches.

Our concrete implementations of this principle work with images and texts. We
replace the background of images, which simultaneously masks and augments the image
(Chapter 11). We also mask/delete words from text input (Chapter 15) and apply filters
to images (Chapter 16).

4.2.2. Feature Extraction using Pretrained Multimodal Models

Multimodal models use multiple modalities of data to learn a task. Whereas there are
many ways to manage multiple modalities as given by the structure by Liang et al. [151], we
concentrate on approaches that learn representations, since we want to use these as features
in downstream tasks. Here, we can divide the literature into fusion, coordination, and
fission approaches. Fusion approaches map the m modalities to n < m representations.
Coordination approaches represent the m modalities into n = m representations by
exchanging cross-modal information. Fission approaches represent the m modalities into
n > m representations.

Our implementations focus on the Contrastive Language-Image Pre-Training (CLIP),
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which is one of the most popular multimodal models from recent years [214] and has been
described in Section 2.3.4. It is a representation coordination approach, since it maps the
two input modalities to two representations in the same representation space. Due to its
very large training dataset and quite simple training objective, it shows very general and
powerful feature extraction capabilities. The authors have shown that CLIP is able to
perform Zero-Shot Learning (ZSL) on different datasets, which means that no training
data for the target classes is required. While CLIP has been trained using two modalities,
each encoder can be used separately. We do this in our experiments in Chapter 12 and
Chapter 13 by using CLIP frozen image encoder and text encoder to extract image and
text features that are in the same representation space.

4.2.3. Weak Label Generation

Weak labels are target outputs for the training of DL models that are less than perfect, e.g.,
because they are not manually annotated and checked. They can be collected relatively
easily, but are usually not as accurate as manually annotated labels. However, due to the
low cost of obtaining, they can be obtained in large quantities to compensate their less
than ideal quality. Such labels can come from user-written heuristics, knowledge bases,
pretrained models, or external tools [314, 225]. This way of obtaining labels is also called
programmatic weak labeling.

In the programmatic weak supervision framework, a set of labeling functions is defined
that provide weak labels for a subset of the data [216, 215]. Due to the noise in the weak
labels, there can be conflicts between the labeling functions regarding the same data point.
Thus, so-called label models are used to combine the weak labels into a single label, e.g.,
majority voting, which is then used for training the Machine Learning (ML) model [216].
Also, other approaches directly incorporate the label models into the trainable model,
denoising the weak labels during training [219].

In our principle implementations, we use models with stronger assumptions and hypothe-
ses that generate weak labels. In all implementations, we use only one labeling function,
so we do not need to combine the weak labels. While in one of our implementations we
exclusively use weakly labeled data to train a model, in the other we use weak labels for
pretraining and then finetune the model on ground truth labels. This intertwines this
principle with Semi-Supervised Learning (SemiSL).

4.2.4. Loss Function

Choosing an appropriate loss function for the training of the NN is a crucial step in the
training process. The loss function should be able to measure the distance between the
desired output and the actual output of the model. Its choice thus has a large impact on
what the model learns and how well and fast it learns [281]. For example, for regression
tasks, both the Mean Absolute Error (MAE) and the Mean Squared Error (MSE) (see
Section 2.4.2) share the same fundamental idea, but the MSE is more sensitive to outliers
due to its squared distance. However, while the MAE loss gets lower for smaller distances
between predicted and desired outputs, its gradient is independent of this distance (−1
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or 1). This can make the model overshoot model parameter optima. To combine the
strengths of both loss functions, the Huber loss performs a piece-wise combination of the
MSE and MAE [102].

For classification tasks, the Categorical Cross Entropy (CCE) is the dominant loss
function in the literature. However, losses such as MSE or MAE can also be used for
classification tasks, since they can calculate a difference between the prediction of the
model (fed through a softmax function) and the desired output (a one-hot encoded
vector giving the correct class) [104]. The PolyLoss approximates different loss functions
using a combination of polynomials and tunes the combination parameters to the task at
hand [147]. Barz and Denzler propose to use the Cosine loss instead of CCE, which is
defined as one minus the cosine similarity between the predicted and desired output. They
show that this loss is suitable for datasets with only few samples per class. If an additional
hierarchy of classes is given, the desired output vectors can easily be adapted from one-hot
encoded vectors to class embedding vectors that reflect the semantic similarity between
classes [20]. We introduce additional knowledge about the similarities between classes
into the CCE in Chapter 14. Wang and Izbicki [286] explore a similar approach but
assume that classes are arranged as a tree. Intuitively, whenever the weights for one class
is updated, the weights for all classes that are similar to this class should also be updated.

In DML, there are a multitude of different loss functions that aim to improve the
performance of the model, make it more robust, or make it faster to train [193]. Mainly, we
can split the list of loss functions into three categories: ranking-based losses, classification-
based losses, and hybrid losses. Ranking-based losses, e.g., Contrastive loss [80] or Triplet
loss [288], work on tuples of samples and guide the model to output representations
such that similar input items are mapped to representations with smaller distance than
dissimilar input items. Classification-based losses, e.g., Normalized Softmax loss [159, 276,
312] or ArcFace loss [47], optimize vectors that represent classes, so-called proxies. Items
should then be mapped to representations such that they are close to their respective class
proxy and farther apart from other proxies. While ranking-based losses usually lead to
better performance since they can contrast two or more examples directly to each other,
classification-based losses often converge faster, because they do not need to compare all
items to each other and have one proxy per class that is more stable during training than
the representations of the items. Thus, hybrid methods try to combine the strengths of
both approaches [101].

Independent from the chosen task and domain, different loss functions can be combined
when training a NN in a multitask setting. Here, the choice of how the different task
losses are combined is important, since some tasks could have more influence on the model
than others. There are different approaches for loss combination [152]. The simplest
and most widely used one is the direct sum approach, where the sum of all training
losses is calculated and optimized. Sometimes, the mean loss is computed, but this is
equavalent to a scaled version of the direct sum approach. The weighted sum approach
assigns a weight to each task loss and then sums them up. The weights can be manually
set, learned during training by taking the types of loss functions into account [42], based
on the gradient norms of each loss [40], or by adapting the loss weights during training
based on the loss changes in the last few update steps [157]. In [175], the maximum of
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the losses is optimized, weighting the other losses by a factor of zero. This optimizes
for the worst case, but gives no smooth loss landscape and it thus hard to optimize.
Inspired by curriculum learning [23], where the difficulty of training examples the model is
presented with increases over time, multitask learning adopted this concept by increasing
the task difficulty during training, letting the model first learn easy tasks and then more
difficult ones [192]. Here, a weighting of the task losses is used, where the weights are
updated during training based on the loss values of the previous update steps. If a loss
was already low, the weight for this task is increased, prioritizing the training of already
well-performing tasks. The multi-objective optimization approach interprets the different
task losses as objectives and tries to optimize for all of them at the same time using
a quadratic programming solver [239]. Liang and Zhang propose a balanced multitask
learning framework that applies a monotonically increasing function to each loss value.
The higher the loss, the higher the weight for this task, which is the opposite of the
curriculum learning approach. We explain this approach in more detail in Chapter 16
and use it to improve on the Image Aesthetics Assessment (IAA) task.

4.2.5. Other

While we implement the principles introduced in Section 1.1, there also exist other
techniques to improve DL methods without dictating the model architecture. We briefly
discuss a non-exhaustive list in this section.

Scaling up Improving the performance of DL models can be done by scaling up most of
the components of the training process. Especially larger training datasets usually result
in better performance, since the model generalizes better, which initially led to the rise of
DL [145]. Also, training the model for more epochs can lead to better performance, even
when the validation performance has plateaued [211].

Optimizer There are a lot of different optimizers that can be used for training DL
models which feature different strengths and weaknesses, such as better generalization
or faster convergence [81]. Stochastic Gradient Descent (SGD) — and its version with
momentum — is one of the simplest possible choices for gradient based methods. It has
the learning rate as one parameter, which is applied to the gradients before updating
the model parameters. This uniform scaling of the gradients in all directions can lead
to bad performance on some ill-scaled problems and requires a lot of learning rate
tuning [125]. Thus, optimizers have been explored that introduce an adaptable learning
rate for each parameter. Examples for such optimizers are Adam [127], AdaGrad [51],
and RMSProp [268]. Some works have found that SGD generalizes better than adaptive
optimizers [295]. Thus, researchers try to combine the strengths of both optimizer types,
e.g., by switching from Adam to SGD during training [125]. Other works found that there
is a connection between generalization and the loss landscape, leading to a new suite of
optimizers. Such optimizers as Sharpness-Aware Minimization (SAM) take the curvature
of the loss function into account by using the second-order derivative of the loss [62].

55



4. Related Work for the Explored Principles

They are usually computationally more expensive, since the second-order derivative has
to be computed, but generalize better than other optimizers.

Initialization A careful choice of the parameter initialization method for a NN is crucial
for the training process. Sampling the weights from a gaussian or uniform distribution can
lead to exploding or vanishing gradients. To combat this, Glorot and Bengio introduce an
initialization, which samples the weights from a uniform distribution with a variance that
is inversely proportional to the number of input and output units, leading to more stable
training and improved performance [70]. However, their method is specifically designed
for feed-forward networks with sigmoid or tanh activation functions. He et al. propose a
variant for Rectified Linear Unit (ReLU) activation functions [85]. We argue that these
methods are not model-agnostic, since they are specifically designed for certain model
architecture components.

Only recently, Zhu et al. developed a method that is model-agnostic and can be used
for any NN architecture [322]. Their method introduces scaling factors for the weight
matrices that are optimized at the beginning of the training process, such that the loss of
the main task decreases maximally.

Pretraining Pretraining NNs on datasets other than the downstream task and then
finetuning on the downstream dataset — commonly referred to as transfer learning — can
be beneficial for smaller downstream datasets. It is claimed that the pretrained model
then already has learned some general representations and extracts knowledge from the
external dataset, which can be specialized to the needs of the downstream task [173].
LLMs, for example, are trained on large text datasets, which teaches the model to extract
general language related features and correlations. Finetuning such models (or parts of
them) on a small downstream dataset can then lead to better performance than training
a model from scratch on the small dataset [259]. In CV, usually pretrained ImageNet
models are used for finetuning on smaller datasets [223].

Recently, so-called self-pretraining has been explored in CV [87, 53] and NLP [140],
challenging the claims and justification of above findings. For self-pretraining, no external
dataset is used for pretraining, but only the data that is available for the downstream task.
Also, eliminating pretraining and combining labeled downstream data with a small subset
of the unlabeled dataset to enrich the dataset has been explored in the literature [308].

Prompting Prompting refers to finding a suitable input to a pretrained model to solve
a specific task, which leads to a ZSL setting. In NLP, this is often done with LLMs.
Since they learn to predict the next (or a masked) word given the beginning of a text,
choosing a suitable text that accompanies the downstream task’s input can lead to good
performance [156]. These prompt templates are filled with the downstream task’s input
and then fed into the model. The resulting answer can then be mapped to the downstream
task’s output space. For example, for sentiment analysis of movie reviews, the prompt
template “[X] Overall, it was a [Z] movie.” could be used, where [X] is the movie review
(the downstream task’s input) and [Z] is the token in the template that the model should
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predict [156]. Given the output probabilities for tokens in [Z], the sentiment can be
derived. In this example, [Z] was in the middle of the prompt template, which makes it
applicable to models that were trained with masked language modelling. Autoregressive
models, such as Generative Pre-Training (GPT), can also be prompted, but the prompt
template has to be at the beginning of the input [156]. While the prompt templates
can consist of real text, their embedding vectors can also be optimized to maximize the
performance of the downstream task [156, 321].

While most prompting methods are proposed in NLP, Bahng et al. explore prompting
large CV models [13]. Here, they optimize an image perturbation that is applied to all
images of the downstream task such that the frozen pretrained model predicts the desired
output. They utilize the multimodal CLIP model and other image-only pretrained vision
models.
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5. Principles for Understanding Deep
Learning (DL) Models

We now introduce the principles we explore to understand DL models in detail. Namely,
these are the Generated Input Data and Gradient-Based Attribution principles.
We split this section into input and output based methods, following the structure
displayed in Figure 1.2. Generated Input Data uses the forward pass of a DL model
to understand the model. Here, domain knowledge about the data properties is used
to change the input data. Then, the model’s output is observed. This principle thus
belongs to the input category. Gradient-Based Attribution uses the backward pass of a
DL model: It applies a custom gradient to the output of the model. It thus proceeds from
the network’s output to its input, belonging to the output category. Domain knowledge
is then used to interpret the results.

5.1. Input Principle: Generated Input Data

Generated Input Data

Idea Using generated/synthetic data to analyze the influence of certain (high-level)
input features onto the output of the trained model.

Goal Identifying the high-level properties that influence the output of the model
and quantifying their influence.

Domain Knowledge used How to generate data that imitates the input data and
can be changed w.r.t. the desired features?

Task Requirements None, however, the analyses conducted on the observed out-
puts are task-specific (e.g., change in accuracy in classification tasks or
magnitude of change in regression tasks).

Data Requirements Every modality might be used as long as the input data can
be generated in a controllable way w.r.t. the higher-level features that are
of interest. Also, depending on the desired method to analyze the output
(e.g., correlations of input change to output, change in evaluation metric),
the parameters of the generation process might need to have an order.

When trying to understand the influence of different factors on people, researchers
usually conduct a controlled study, where all factors are kept constant except for the one
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they are interested in. This is a standard procedure in many fields, such as psychology,
sociology, and medicine [19]. In computer science, this method is often referred to as A/B
testing. With only one changing factor, the change in outcome (e.g., medication treatment
results, survey answers, or click statistics on websites) can then be directly attributed to
the manipulated factor. The amount of change in the outcome is then a measure of the
importance of the manipulated factor. We transfer this idea to DL models by altering
their inputs in one property and observing the change in the output. In contrast to
humans, DL models are deterministic and produce their outputs independently, which
allows us to use the same model with different inputs.

In order to have full control over the input, we propose to use synthetic data, created
using a controllable generation process, which only changes one property of interest. The
property of interest can be categorical (e.g., type of object that is shown in an image),
ordinal (e.g., comparative forms of adjectives), or numerical (e.g., position of an object
in an image). The generated data is then fed through the model and the change in the
output is observed. From this, one can obtain insight into how sensible the network is
to the property of interest. Similar to this method being used for human studies, the
implementation of the Generated Input Data principle is highly dependent on the
input modality and task at hand.

Both, text and images, can either be very structured or natural in terms of their content.
Structured text can be well-defined and follow a specific grammar such as programming
languages, while natural text can be anything from a tweet to a novel. In the same
way, images can be either very structured, such as a generated OpenStreetMap (OSM)
image, or natural, such as a photo of an object in possibly arbitrary lighting, position,
and orientation. Structured data can often be generated more easily, since there are
less degrees of freedom that need to be taken into account. Natural data, on the other
hand, is often more difficult to generate. For texts, this can be done by manually writing
texts or operating on existing texts by e.g., deleting or repeating words or exchanging
words and phrases of interest with synonyms [187]. For structured images, the oftentimes
used generation process can be used to generate new images. Natural images can be
manipulated using image editing software such as Photoshop. For the generation of
natural images, more advanced software such as 3D modeling software can be used to
generate images of objects in arbitrary positions and orientations. Also, Generative
Adversarial Networks (GANs) can be used to generate images [74]. The controllability
of the generated output is here not directly assured, but some works show that there
are units in GANs that encode specific image properties that can be used to alter the
image in that property [282]. Recently, also diffusion models became popular for image
synthesis [49]. We concentrate on images in our implementations and create structured
data (OSM map images) and natural images (car images) using image editing and 3D
modelling software, respectively.

The Generated Input Data principle is also very task-dependent, since the analyses
that can be done on the output depend on the task. For example, for a classification task,
one can observe the change in the classification result when changing specific properties
of the input, but also the difference in output probabilities for all classes [106]. For
regression, the difference between the prediction on different variations can indicate how
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much the model relies on the property of interest and how much it changes with larger
variation. Given multiple characteristics of an ordinal or numerical property, one can also
observe the change in the output when changing the property in a certain direction. In
cases of numerical properties, correlations can be calculated or the output can be plotted
against the property of interest, which can give insights into how much the property of
interest matters. We do this in our analysis of the MapLUR model in Chapter 6, where
we investigate the influence of the position of streets in OSM map images on the output
of a Convolutional Neural Network (CNN). For representation tasks such as found in
Deep Metric Learning (DML), the change in a property might induce a change in the
representation of the input, which might be measured using the distance between the
representations of the original and the manipulated input. Also, since the representations
are often used for item retrieval, the change in retrieval quality when changing the
property of interest can be observed. If the retrieval quality changes significantly, this
can indicate that the property of interest is important for the model to represent the
input. In Chapter 7, we propose to use a metric that measures the clustering capabilities
of the embeddings given the different properties of the input. If a property is important
for the model to represent the input, changing the property should induce a change
in the clustering of the embeddings. The generation of independent images given the
investigated properties allows us to make this observation.

We present two concrete implementations of the Generated Input Data principle. First,
in Chapter 6, we investigate the influence of certain entities and properties of OSM map
images on the output of a Land Use Regression (LUR) model that estimates the air
quality of a location. For this, we synthetically generate OSM map images with different
properties and observe and visualize the change in the output of the model. Second, in
Chapter 7, we investigate the influence of different properties (e.g., model, rotation, or
color) of car images on a DML model using 3D renders. Both implementations aim to
better understand how certain properties influence the model output, giving insights into
the model’s behavior and how it might be improved.
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5.2. Output Principle: Gradient-Based Attribution

Gradient-Based Attribution

Idea Using the gradient of the output w.r.t. the input to analyze the influence of
certain input features onto the output of the trained model.

Goal Identifying (low-level) input features that influence the output of the model.

Domain Knowledge used How can low-level features with high influence be inter-
preted in the current task and data setting?

Task Requirements The gradient that is propagated back to the input needs to
be chosen carefully for each task. This gradient can be based on a certain
output of the model or designed by hand.

Data Requirements The input feature positions need to be interpretable, e.g.,
pixels in an image or words in a text.

In this section, we introduce the Gradient-Based Attribution principle, which is
mainly applied to the output of the model. The Gradient-Based Attribution principle
is based on the idea that if an input feature is important for the output of the model,
then a small change in this feature should have a large impact on the output. It makes
use of the fact that DL models are differentiable. We make the idea clearer by comparing
the methodology to the usual training of such models. When training DL models, we feed
an input through the network and compute a loss term, which measures the divergence
from a desired target value. Then, the gradients of the loss function are computed w.r.t.
the weight parameters of the model. Large gradients for a weight means that it needs to
be changed more than a weight with small gradients in order to change the loss value. For
attribution methods, the idea is that instead of computing gradients to the weights, we
compute them to the input features. The loss can also be chosen differently, depending on
what the gradients should present. It is even possible to directly create gradients that are
fed to the output of the network. For example, for classification tasks, the gradient of the
logit of the correct class w.r.t. the input is used. Large absolute gradients for an input
feature then means that changing them leads to a large change in the loss value. In the
classification setting, a large absolute gradient for a feature mean that the model’s output
changes its output probability for the correct class. This, in turn, indicates that this
feature and its value are important for the model. We can thus use the input gradients as
a measure of importance for the model’s output, which can be visualized by coloring the
input features according to their gradient value. Such visualizations are called attribution
maps. Domain knowledge can then be used to interpret them.

The principle is universal for all DL models, but needs task- and data-specific imple-
mentations. The most methods for this principle are implemented for classification, which
we also use in our implementation in Chapter 8. Regression tasks are not that common,
but there are works that use this principle to understand what input features let the
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prediction go up or down [256]. For representation tasks, there are some methods based
on this principle, but they often dictate a specific Neural Network (NN) architecture or
highlight the pixels in a pair of images that let them be close together (see Section 4.1.2).
We thus propose in Chapter 9 a new attribution map approach for DML models, which
only requires one input image and no specific architecture.

The general principle also needs to be adapted to the input modality. For images, the
gradient is given for all pixels and their channels. Therefore, usually, an aggregation is
done across the channel dimension in order to obtain a two-dimensional attribution map,
which only highlights locality importances. For text, the gradients are calculated for all
dimensions of all token embeddings. Thus, they are aggregated across the embedding
dimension to obtain a token-based attribution sequence. We use this principle in our
implementations for images and text and show common postprocessing steps of the
gradients in order to obtain attribution maps. In our two implementations, we first apply
the already established method “Integrated Gradients” in a text classification scenario
and show why the model predicts certain outputs based on words present in the input
in Chapter 8. Then, in Chapter 9, we adapt the principle to DML and propose a novel
attribution map generation method together with some comparison metrics in order to
investigate the learned features of DML models on a pixel level.
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Model using Generated Map Images

Our first implementation uses Generated Input Data to better understand a Deep
Learning (DL) model that estimates air pollution given map images and mainly follows
the analysis section of our work in [256]. The estimation of air pollution concentrations is
important, since it is known to have adverse effects on human health and the environ-
ment [30, 55] and monitoring stations are only sparsely deployed in many cities. The
estimation of such concentrations is thus necessary to assess whether the pollution levels
are still within acceptable and legal limits. LUR describes the task to assess the air
quality by using land-use, population, or road features to predict pollution concentrations
with models such as Linear Regression (LR) or Random Forests (RFs) [92, 22, 300]. In
[256], we propose a DL model — more specifically a Convolutional Neural Network (CNN)
— called MapLUR that estimates pollution concentrations in areas without monitoring
stations. MapLUR implements the “Data-driven, Open, and Global” (DOG) paradigm
for LUR models that we also propose in [256]. It automatically extracts features from
map images (data-driven), which are openly available (open) almost anywhere on earth
(global), and estimates air pollution based on these features.

Setting MapLUR is a CNN (see Section 2.2.3) whose structure is depicted in Figure 6.1.
The input to the model is an OpenStreetMap (OSM) image with the location of interest
in the center. The images cover approximately 80m by 80m around the location of
interest and are scaled to size 224 px by 224 px, following the input size to popular
CNN architectures for the ImageNet competition [46]. Given this image, the model
estimates the pollution concentration at the location of interest, taken from the London
Atmospheric Emissions Inventory (LAEI) dataset, which was split such that no images
from the training, validation, and test sets are overlapping.

The MapLUR model architecture contains 15 convolutional layers with batch normal-
ization [108] and the Rectified Linear Units (ReLUs) [195] activation function. The last
convolutional layer is followed by a Multilayer Perceptron (MLP) with two layers, 128
neurons in the hidden layer, and ReLU activation. The output is a single neuron with
linear activation that produces the estimated pollution concentration using the Mean
Squared Error (MSE) loss function (see Section 2.4.2). Each convolutional layer has 16
filters, a kernel size of 3, a padding of 1, and a stride of 1. The output size of these
layers is the same as their input size. Maximum pooling layers with a kernel size of 2
and stride of 2 are applied after the ReLUs of the first, third, fifth, seventh, tenth, and
thirteenth convolutional layer in order to reduce the number of activations. We found this
architecture and the corresponding hyperparameters by evaluating different variations of
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Figure 6.1.: Structure of MapLUR. The model consists of 15 feature-learning building blocks
which contain a convolution layer, batch normalization, rectified linear units (ReLUs), and
sometimes a pooling layer. These building blocks are concatenated and only the first, third, fifth,
seventh, tenth, and thirteenth block contain a pooling layer. These blocks are followed by a
simple fully connected layer with ReLU activation and finally a single fully connected neuron
with linear activation which returns the estimation of the pollution at the given location.

the model using tenfold cross-validations on the training set.
MapLUR is trained using the Adam optimizer [127] on batches of size 400 for at most

2000 epochs with a learning rate of 0.0001. We augment the training data by flipping or
transposing the images. Additionally, we employ early stopping, interrupting training
when the validation performance has not increased for 20 consecutive epochs.

In order to evaluate MapLUR, we compare our model to baseline models which are
commonly used in LUR: always predicting the mean training label, training a LR, RF,
and a MLP. For the baseline models, we use a set of standard land-use and road-related
features, which have been shown to be important influencing factors for air pollution [52].
These are computed in different radii around each datapoint. All of these features can be
calculated from OSM data, since we want to provide similar information to all models for
a fair comparison. The features include the areas of commercial, industrial, and residential
land-use, the lengths of big and local streets, and the distances to the next traffic signal,
motorway, primary road, and industrial premise. For all but the mean baselines, we use a
feature selection procedure to select the most relevant subset of features [52].

All models are evaluated using standard metrics for the evaluation of LUR models,
namely R2 and Root Mean Squared Error (RMSE) (described in Section 2.5.2). The
average performance over 40 initializations is reported to counteract unfortunate initial-
ization results. Additionally, the sample of 40 evaluation runs can be used as the input
to statistical significance tests to formally confirm differences in evaluation results. For
more information on the baseline models and the experimental setup, see [256].

The results in Table 6.1 show that MapLUR, which is trained on OSM images, performs
better than all baselines regardless of metric. Based on this observation, we are now
interested in the features the model has learned to extract from the input map images.
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Table 6.1.: Results of baseline methods and experiments. MapLUR, which is trained on OSM
images, is providing the best performance overall, beating all baselines. The RF model is
outperforming all other baseline models on this dataset which makes it the best baseline. All
results are significantly different to each other.

Model R2 ↑ RMSE [µgm−3] ↓
Mean baseline 0.000 13.971
LR 0.487 10.004
MLP 0.499 9.887
RF 0.662 8.119
MapLUR 0.673 8.002

6.1. Methodology

We now describe the task- and modality-specific implementation of the Generated
Input Data principle. In this case, we want to generate OSM images using a controllable
generation process, such that we can observe the changes they induce on the estimated
air pollution concentration.

The leading question in developing LUR methods in previous work is: What entity
of what area in what distance to the center is contributing to the pollution? From this,
we infer three categories of features that we want to investigate: entity features, area
features, and distance features.

6.1.1. Data Generation

To generate OSM images, we take advantage of the well-defined structure of map images
with different color-coded entities. Map images therefore can easily be recreated using
graphic editing software, which makes it possible to create artificial OSM images for
which we can control the features separately while keeping all other features fixed.

Entity Features

Entity features describe what is seen on the image. Entity features are often used for
the estimation of air pollution, as, for example, industrial areas are usually contributing
more to air pollution values than parks. For these features, we investigate how certain
entities are influencing the model estimate. We build two kinds of images: On the one
hand, we create images that are each completely covered by one specific type of entity,
resulting in uniformly colored square images. On the other hand, the same images are
then overlaid by the depiction of a motorway and a trunk road. We expect that different
underlying entities provide different estimates according to the usual presence of sources
for NO2 pollution. We also expect an increase in the air pollution estimate whenever a
road is added to the underlying entity. Depending on the type of road this increase might
fluctuate.
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Area Features

Area features describe how large a given entity is in the image. The area that an OSM
entity has on an image should contribute to the estimated pollution value. For these
features, we use the trunk road entity to analyze the influence of the area. We build
multiple images that contain a straight road that goes top to bottom or left to right
through the center of the image. As the background we always use the same neutral
background that depicts general land-use in OSM. We then vary the width of that street
either horizontally or vertically, depending on its orientation. A linear increase in the
street’s width is equivalent to a linear increase in the street’s area.

Distance Features

Distance features describe how far away a given entity is from the image center. For
this analysis, we create images that contain only one straight trunk road that is then
moved vertically or horizontally, depending on the direction of the street. With this setup,
we can control the distance of the motorway to the center of the image while fixing the
area and entity features. We expect that the model produces higher estimates for images
where the street is closer to the center, since the desired value from LAEI is coming from
a 20m subframe of the image which is in the image center. The model therefore should
have learned a tendency to weight features from the center of the image more than from
the borders.

6.1.2. Output Interpretation

Since the model solves a regression task, the output of the model is a continuous value
that inherently has an order. This value is directly interpretable as the estimated air
pollution concentration, so we are able to directly interpret the effects on the output
values when changing the input features.

Since for area and distance features, the high-level properties of the input images (the
area and the distance of certain entities), has an inherent order to them, we can plot
the resulting pollution estimates as a function of the input features. This allows us to
qualitatively observe the influence of the input features on the output values. Estimating
smooth approximating functions that fit the data can help with understanding the
proportionality of the input features to the output values. Assuming a linear dependency
between the input features and the output values, we can also compute the Pearson
correlation coefficient to quantify the proportionality of the input features to the output
values.

6.2. Experiments

We conduct three analysis experiments: One for each of the three categories of features.
Given the data generation processes for each high-level feature, we feed the generated
images through the model and observe the resulting pollution estimates. We then plot the
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Table 6.2.: Model estimate for a given OSM entity. The entities span across the whole image
and they are overlaid with different types of roads. Overlaying a road with another road does
not make sense so these values are omitted. The “neutral” entity is a background that is used by
OSM for indicating land with no particular land-use. All estimates are in µgm−3.
Road type Entity Name

industrial
area

residen-
tial area

commer-
cial area

park forest water neutral motor-
way

trunk

no road 37.71 38.29 38.72 38.87 39.27 41.66 42.06 47.23 80.63
trunk 61.70 50.94 59.73 64.14 57.94 59.62 58.62 — —

motorway 60.04 48.48 64.18 46.05 54.21 53.45 55.00 — —

resulting pollution estimates as a function of the input features and analyze the resulting
plots in a qualitative manner.

6.3. Results

Table 6.2 shows the resulting pollution estimates by MapLUR for the entity features. All
estimates exceed the World Health Organization’s recommended limit1 for NO2 long-term
exposure of 10µgm−3, which can lead to severe health conditions [30]. It also indicates
that the general air pollution in the training data seems to exceed this limit. In general,
different underlying entities do not lead to large differences in pollution estimates if there
is no road. Completely covering the image by a motorway or trunk road result in the
largest estimates. Additionally, trunk roads seem to have a much higher impact on the
air pollution estimate than motorways. Adding a trunk road or motorway to any entity
increases the air pollution estimate as expected. The amount of increase depends on
the underlying entity of the map and what kind of road is present. This shows that
the relationship of the entities that are visible in the map image are also important.
There seem to be complex correlations between different entity features, which cannot
be modeled easily in simpler models like LR. Surprisingly, adding a trunk road to a
park entity leads to a high estimation, while adding a motorway leads to a relatively
low estimation, compared to the other entities. We suspect that in the training data,
trunk roads or motorways going through parks rarely occurs, which results in relatively
unintuitive estimates by the model when such combination is presented.

For the area features, Figure 6.2 shows some of the artificial OSM images as well as a
plot of MapLUR’s output given the street width in pixels. As expected, an increasing
width — and therefore an increasing area — of the street tends to increase the pollution
estimate. Both horizontal and vertical growth have very similar curves that are not linear
but instead seem to be more logarithmic. The similarity was expected, as during training,
the images are augmented by rotation and flipping such that the direction of streets
should not have any impact on the overall output.

Concerning distance features, Figure 6.3 shows image samples and the resulting estima-

1see https://www.who.int/publications/i/item/9789240034228 for 2021 (last accessed: 2023-08-17)
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(b) NO2 estimate for a given width of the road.

Figure 6.2.: Varying the width/area of the street while keeping other features such as distance
to the center and type of street fixed.

tion curves when moving the trunk road farther away from the center of the image. As
expected, the proximity of a street to the image’s center contributes to the overall NO2

estimate positively. Pearson correlations of the distance with the estimated values are
always lower than −0.6, indicating a relatively strong negative correlation. The curves
that are shown are also not linear and can be better fitted by polynomials with a squared
feature term than by a line. To capture this non-linearity, more sophisticated methods
than LR need to be used, which justifies the use of RFs or Neural Networks (NNs).

6.4. Conclusion

We have analyzed MapLUR, a CNN based LUR model for air pollution estimation, which
automatically extracts useful features from OSM images, which are openly and globally
available. Using a concrete implementation of the Generated Input Data principle, we
have analyzed the factors that influence the prediction of this model, finding that the
automatically extracted features strongly relate to typical manually engineered features
for LUR models. However, instead of linear dependencies between the features and the
target variable, MapLUR uses non-linear functions to model their relation, which might
be a way to improve LR models: Train MapLUR on a large dataset of data such as
the LAEI dataset. Then, analyze the model’s behavior using our proposed analysis for
the features that are used in the LR model. Since the features of interest are altered in
isolation, finding non-linear dependencies between the features and the target variable can
be used to “linearize” the features for the LR model. For example, since the area features
for a street seem to influence the model output logarithmically, taking their exponential
could make them more linearly influencing. Given such transformations and that linear
models with hand-engineered features need much less data than MapLUR, this would
make it possible to use LUR models in areas with little data.
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Figure 6.3.: Varying the distance of a trunk road to the image center pixel by pixel while keeping
other features fixed.
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7. Analyzing Deep Metric Learning
Models using Generated Car Images

In this section, we use the proposed principle of using Generated Input Data to
compare what different DML models have learned to extract from the input data in
order to produce an embedding. Since each of the models was trained on a dataset of
car images, we utilize domain knowledge about how car images can look and generate
synthetic car images using a 3D modelling software, which are fed through the models.
Here, we can control different aspects of the generated images, such as the camera angle,
the background, the lighting, and the car model. To quantitatively compare the different
models, we introduce a new metric, which measures the influence of a feature on the
clustering capabilities of the model. An overview of this idea is shown in Figure 7.1.

The following sections mainly follow the second part of our work in [134]. First, we
motivate and explain the setting as well as describe the different models we compare.
We then describe the data generation process for the synthetic data. After that, we
introduce the metric we use to compare the models. Finally, we present the results of our
experiments and discuss them.

Recall that in DML, a Neural Network (NN) is trained to map input items to m-
dimensional embedding vectors, that should be close to each other if the corresponding
inputs share a given class. Thus, the network has to learn to extract discriminating input
features to embed an image. To achieve that, ranking based, classification based, and
hybrid loss functions have been introduced. An overview is given in Section 4.2.4.

In recent studies, different DML loss functions were shown to lead to similar test
performances if compared fairly [193, 231]. Musgrave et al. identify flaws in the evaluation
setups of many DML papers and conduct a fair comparison between DML methods by
testing several common loss functions with the same benchmark datasets, architecture,
and test metrics. Their study finds very similar performances for all the tested losses. In
general, research shows that even with similar performance, NNs might learn to focus on
different [45] and sometimes even undesired input features [142] for their output.

In this implementation of the Generated Input Data principle, we analyze and
compare what high-level features are paid attention to by NNs trained with common
DML loss functions, concretely the 14 pretrained models provided by Musgrave et al.
(shown in Table 7.1). We measure the influence of image properties, e.g., the rotation or
color of an object, on the embeddings. Usually in DML, networks learn to differentiate
one specific property, e.g., the car model for the Cars196 dataset [139], such that images
of the same car model have similar embeddings and different car models are farther apart
in embedding space. For testing, the network’s ability to cluster new car images regarding
their model is measured. Due to its training objective, other properties such as a car’s
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Neural Network 
trained with 

Contrastive Loss, Triplet Loss, ...

Properties 
car model 
car color 

...

Figure 7.1.: Given a trained DML model that maps images to an embedding space. Our idea is
to investigate the influence of image properties on the clustering behavior in the embedding space
and compare them between loss functions.

color or environmental illumination should have minimal influence on the embedding,
since the dataset contains images of the same car model in different colors and in different
lighting conditions. If the network makes use of a property to output an embedding,
images of the same property are likely to be clustered as well, potentially less pronounced.
To ensure the properties are not correlated, we generate a large image dataset consisting
of photo-realistic car renders. As we will argue in Section 7.1.2, measuring the clustering
behavior with the common metric R-Precision depends on the number of possible property
values. We thus propose a property-independent extension, Normalized R-Precision, that
enables the comparison of multiple properties.

Setting For our analysis, we use trained models provided by Musgrave et al., who train
a BatchNorm Inception network [108] with 14 DML loss functions and compare their
performance [193]. Table 7.1 lists all used losses with their loss type and distance/similarity
measure used. We have introduced a representative subset of those loss functions in
Section 2.4.3. Each network outputs an 128 dimensional embedding per image and is
trained and evaluated on Cars196 [139], CUB200 [275], and Stanford Online Products
(SOP) [253] datasets. For the image property analysis, we only analyze models trained
on the Cars196 dataset, since we loosely imitate this dataset using generated car images.
In Chapter 9, we will perform a pixel level analysis, where we use all three datasets.

For each loss, four trained models are provided, one for each fold of a four-fold cross
validation performed to optimize hyperparameters using a Bayesian optimizer. All models
are trained under the same conditions and the test results for all folds are averaged.
We also report average results, since for all folds, the results are very similar. More
information about the training setup and best hyperparameters of the used models can be
found in [193]. In addition, we also add an untrained model “None”, which is initialized
using weights from an ImageNet [46] classifier, while the last layer is initialized with
random weights [193].
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Table 7.1.: Analyzed losses taken from [193]. Method “None” has the same architecture but
without any training, thus only using weights from the feature extractor pretrained on ImageNet.

Method Year Loss type Distance/Similarity

Contrastive [80] 2006 Ranking Euclidean Distance
Triplet [288] 2006 Ranking Euclidean Distance
NTXent [252] 2016 Ranking Cosine Similarity
ProxyNCA [190] 2017 Classification Squared Euclidean
Margin [299] 2017 Ranking Euclidean Distance
Margin / class [299] 2017 Ranking Euclidean Distance
Normalized Softmax [159, 276, 312] 2017 Classification Dot Product Similarity
CosFace [277, 278] 2018 Classification Cosine Similarity
ArcFace [47] 2019 Classification Cosine Similarity
FastAP [32] 2019 Ranking Squared Euclidean
SNR Contrastive [310] 2019 Ranking SNR Distance
Multi Similarity [284] 2019 Ranking Cosine Similarity
Multi Similarity + Miner [284] 2019 Ranking Cosine Similarity
SoftTriple [212] 2019 Classification Cosine Similarity

None — None —

7.1. Methodology

We now describe the methodology used to analyze the trained models. Based on the
Generated Input Data principle, we need to generate input data using an interpretable
and controllable data generation process. The data is then fed through the trained model
and the output changes are observed and interpreted. The main idea is to measure
the clusterability of the embeddings given a fixed property. If the model uses a certain
property when embedding the input, changing said property should change the embedding.
Also, changing properties that are not picked up by the model should not change the
embedding that much. This leads to clusters of item embeddings with the same property.
We now aim to measure this clusterability that can be used to compare different models
and properties.

7.1.1. Notation

For a given loss function L ∈ {Lcontrastive, Ltriplet, . . . }, a NN fL : I → Rm maps an
input image I from the dataset I = {I1, . . . , In} to the m-dimensional embedding space.
This results in the embeddings X = {x1, . . . ,xn} with xi = fL(Ii) for i ∈ {1, . . . , n}.
Each image has properties; property k has the possible values Ak. The value of image
Ii’s property k is ak(Ii) ∈ Ak. One property aclass(Ii) ∈ Aclass is the class of the
image Ii that is used to define if two images are similar to each other while training
(if aclass(Ii) = aclass(Ij)). A loss-specific distance function dL : X × X → R+

0 calculates
the distance for two embeddings, e.g., the Euclidean distance. While dL can also be a
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Figure 7.2.: 1000 embeddings from a Cars196 model with Contrastive Loss visualized with
t-SNE [270]. Color denotes different property values.

similarity measurement, e.g., cosine similarity, that should be maximized between similar
embeddings, we assume it to be a distance metric for brevity.

7.1.2. Normalized R-Precision

We now want to measure the clusterability of the embeddings that are generated from a
set of generated images. Generated images vary in certain properties, describing concepts
like object form, color, or orientation. We investigate the question “What image properties
influence the model output?”. Each input image has a set of properties and their values.
A property with high influence on the embedding fulfills the two clustering objectives:
First, fixing this property and changing all other property values should result in small
deviations in embedding space. Second, changing the property while keeping everything
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7.1. Methodology

else fixed should result in large deviations in embedding space. This idea is used in
common evaluation metrics in DML, but are only applied to the image’s “class” property.
A DML NN is considered to work well, if it maps test images with the same class to similar
locations in embedding space, while embedding images with different classes to different
locations. For Cars196, a test class is a certain car model, for which many different images
from different angles, car colors, etc. exist in the dataset. Instead of the car model “class”,
we use other image properties such as the car’s color or the car’s orientation. A list of all
properties that we investigate is shown in Table 7.2. Even though the NN has not been
trained on these types of data splits, we can still measure the closeness of the resulting
embeddings regarding the defined property. If, for example, grouping embeddings by car
orientation shows well-defined clusters, we can conclude that changing the orientation
has significant effect on the network’s output. If the network is invariant to the car’s
orientation, changing it does not significantly alter the embedding vector, thus showing no
clustering behavior. Clustering examples for different properties are shown in Figure 7.2.
Here, car model is clustered well which shows that the model uses this property as a
discriminating feature for its embedding output. Car rotation shows local clusters, thus
still having an influence on the embedding. Other properties such as sun rotation have
no influence and are not clustered at all. Our goal is to quantify this clusterability of the
embeddings.

In order to measure the clustering behavior of properties, we propose to use the common
DML metric R-Precision as the base. We have introduced R-Precision in Section 2.5.3, but
generalize it now to work with multiple properties. Intuitively, for one query embedding
xq and a property k, the set of the closest Rk,q embeddings from the dataset are retrieved.
Rk,q is the number of images with the same property value ak(xi) in the dataset. This
set is called FR

k,xq
. Formally, it is defined as FR

k,xq
⊂ X \ {xq} subject to |FR

k,xq
| = Rk,q

and ∀xi ∈ X \ FR
k,xq

it holds:

dL(xi,xq) ≥ max
xj∈FR

k,xq

dL(xj ,xq) . (7.1)

The R-Precision for property k (R-Preck) is then defined as

R-Preck =
1

n

n∑
q=1

∣∣∣{xi ∈ FR
k,xq

| ak(Ii) = ak(Iq)}
∣∣∣

Rk,q
, (7.2)

i.e., the average fraction of items having the same property value. This metric measures
how well item embeddings with the same property value are spatially separated from
items with different property values. To illustrate this, imagine there are 100 items in the
dataset X . From this dataset, we choose one query item embedding xq. Rk,q = 10 other
items in the dataset have the same property value as xq. We thus retrieve the ten nearest
neighbors for xq. Pretend that five out of these ten are items with the same property
value as xq. The fraction in Equation (7.2) is then 5

10 = 0.5, since only half of the closest
embeddings have the same property value as the query, even though ten could be possible.
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Equation (7.2) averages these results for all possible query embeddings, i.e., the whole
dataset.

The higher the R-Precision for a certain property, the better the embedding clusters
w.r.t. to this property. Altering the property thus significantly changes the embedding
vectors, while the network is less influenced by other properties. However, R-Precision (for
any property k) depends on the number of property values: Given a random embedding
and only two possible property values with the same number of items, the expected
R-Precision is 0.5. For a property with ten possible values, the expected R-Precision
score is 0.1. Thus, an absolute comparison between properties is not possible, as random
embeddings would score differently. Therefore, we propose to apply a normalization
step to the R-Precision calculation. With randomly generated embeddings for all n
images, the number of images with the same property value of the property k as the
query embedding xq is binomially distributed. For the metric calculation, we take Rk,q

samples. There is a probability of pk,q =
|{xi∈X|ak(Ii)=ak(Iq)}|

n that a close embedding has
the same property value. We use the mean µk,q = Rk,q · pk,q and standard deviation
σk,q = Rk,q · pk,q · (1 − pk,q) of this binomial distribution to normalize the R-Precision
calculation per query embedding. We obtain the Normalized R-Precision (NR-Prec):

NR-Preck =
1

n

n∑
q=1

∣∣∣{xi ∈ FR
k,xq

| ak(Ii) = ak(Iq)}
∣∣∣− µk,q

σk,q
. (7.3)

Normalized R-Precision is zero if the clustering is as good as for random embeddings.
The larger the deviation from zero, the lower the probability of this clustering being due
to randomness. Due to the normalization, we gain two advantages over R-Precision: On
the one hand, we can now compare properties with different numbers of possible values,
allowing us to sort different properties by how much the model is influenced by them.
Normalized R-Precision results and their ranking can also be compared between models
in order to check if different loss functions pick up similar high-level features. On the
other hand, it is possible to measure statistical significance. Given a sufficiently large
dataset, the normalized binomial distribution approximates a normal distribution, so if
Normalized R-Precision exceeds 2.576, the embeddings locations are significantly different
from random embeddings with a 1% significance level.

It is important that properties in the dataset used to calculate Normalized R-Precision
are chosen independently for each image to correctly measure the property importance.
Imagine that the dataset consists of car images where each car model has its own specific
color. If the network is trained to cluster the car model, the high correlation between
car model and color leads to well-clustered embeddings for the color, even though the
network might only attend to car model features.

7.1.3. Data Generation

In order to make sure that properties are independent of each other for each image in our
test dataset, we create photo-realistic 3D renders of cars, loosely imitating the Cars196
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Table 7.2.: All properties and corresponding possible values in the car renderings. Combinations
were chosen uniform at random.

Property Possible Values

Car model Ferrari Enzo, Mercedes Benz 300sel, Megane RS,
Mercedes AMG Coupe, Range Rover Evoque, Tesla Model S

Car rotation 0°, 45°, . . . , 315°

Car color
Hue 0.0, 0.1, . . . , 0.9
Saturation 0.0, 0.25, . . . , 2.0
Value 0.0, 0.25, . . . , 2.0

Background color
Hue 0.0, 0.1, . . . , 0.9
Saturation 0.0, 0.25, . . . , 2.0
Value 0.0, 0.25, . . . , 2.0

Camera height 0.5, 1.5, 2.5, 3.5

Sun elevation 0°, 45°, 90°
Sun rotation 0°, 45°, . . . , 315°

Figure 7.3.: Sample images of our generated car dataset. We vary eleven properties, such as the
model, lighting, and colors.
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dataset. Besides the car model, we alter properties such as the car’s color, rotation, and
illumination. Table 7.2 shows all altered properties with their possible values. We sample
100 000 from all possible combinations (overall 3 023 308 800) uniformly at random to
ensure all splits have similar sizes and independent property value choices. Figure 7.3
shows samples of the dataset that we generate using Blender [44]. While many other
properties can be modelled (e.g., camera parameters, more complex backgrounds, etc.),
we restrict ourselves to these ten properties in addition to the model itself, which the
networks are trained on.

7.2. Experiments

The images of our generated dataset are fed through all fourteen tested models and the
Normalized R-Precision is computed for each of the eleven properties. The resulting
values are comparable, with higher values meaning that the property is more important
for the network.

7.3. Results

Car Car Color Background Color Sun
Model Rotation Hue Saturation Value Hue Saturation Value Camera Height Elevation Rotation

R
an

ki
n
g

Contrastive 58.32 39.60 3.02 3.28 4.72 1.52 1.30 2.09 20.92 8.23 0.85
Triplet 57.36 37.37 3.25 3.26 4.69 1.63 1.43 2.50 19.50 8.22 0.74
NTXent 57.87 38.22 3.44 3.30 4.54 1.57 1.46 2.18 20.32 8.55 0.78
Margin 57.91 38.58 3.50 3.18 4.76 1.59 1.29 2.04 21.21 8.30 0.78
Margin / class 58.92 39.65 3.41 3.36 4.83 1.89 1.72 2.25 21.55 8.82 0.76
FastAP 55.84 38.44 2.81 3.10 4.87 1.05 1.24 1.81 20.49 7.45 0.71
SNR Contrastive 57.38 39.88 3.41 3.37 5.05 1.69 1.56 2.22 21.40 8.66 0.82
Multi Similarity 59.81 41.03 3.18 3.37 4.95 1.83 1.74 2.59 21.14 8.73 0.87
Multi Similarity + Miner 57.82 38.86 3.24 3.13 4.52 1.84 1.52 2.03 20.03 7.66 0.77

C
la

ss
if
. ProxyNCA 57.68 37.64 4.73 3.93 5.72 2.33 2.09 2.52 19.82 9.77 0.84

Normalized Softmax 57.26 37.76 3.85 3.97 5.44 1.68 1.80 2.31 19.43 8.81 0.80
CosFace 56.50 38.51 4.00 3.65 5.32 2.40 2.39 2.64 19.10 8.72 0.83
ArcFace 55.62 37.20 4.15 3.72 4.91 2.90 2.84 2.93 18.70 8.98 0.78
SoftTriple 57.36 38.08 3.63 3.81 5.37 1.81 2.00 2.25 19.72 8.43 0.77
None 50.61 36.25 4.32 3.92 4.48 4.81 4.09 6.80 20.75 8.64 0.75
Ranking Mean 57.91 39.07 3.25 3.26 4.77 1.62 1.48 2.19 20.73 8.29 0.79
Classification Mean 56.89 37.84 4.07 3.82 5.35 2.23 2.22 2.53 19.35 8.94 0.80

Table 7.3.: NR-Precisions for the rendered car images. The higher the value (darker the cell
shade), the less likely that the performance stems from randomly sampling neighbors. Significantly
different values are underlined. We also give means for ranking and classification losses. There,
bold text indicates that, on average, one loss type pays significantly more attention to this
property than the other loss type.

Our experiments give the results in Table 7.3. All losses attend to the properties in
the same order. The car’s model yields the most notable embedding clusters, which is
not surprising, since all networks are trained to differentiate between car models. The
rotation’s clusters likely stem from discriminating features being visible to the camera. For
presumably similar reasons, the camera height shows good clustering as well. This might
also be because only few Cars196 training images show the car from low perspectives.
The sun rotation shows expectedly bad clustering behavior: Cars illuminated from many
possible directions are seen during training. Surprisingly, the sun’s elevation has high
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influence on the embedding. This might come from the training dataset consisting mostly
of photos taken in daylight. A low sun elevation makes the light warmer and casts longer
shadows. These influences on the image might be picked up by the DML models, since
there are few training examples in this situation. The background color has negligible
effect on the clustering, which is expected, since cars are pictured in many different
environments. In contrast, the car color leads to embeddings significantly different from
random embeddings, which is somewhat surprising, as each training car model is shown
in multiple colors. We suspect that different colors make it more difficult to identify
certain features. However, there might be small tendencies in the training dataset that
the networks pick up on. For example, Ferrari cars are usually red, while Lamborghini
cars are usually yellow.

We observe that the “None” baseline has the same property order as trained models.
Compared to trained embeddings, the car model shows weaker clusters and the background
color properties yield embeddings significantly different from random assignments. The
network’s weights, except for the last layer, are initialized with trained weights from the
ImageNet classification task. The network’s embedding therefore represents features that
were important for image classification. For this task, the learned features are usually
invariant to lighting conditions, but the environment can be a discriminating feature, e.g.,
the presence of water helps to identify ships [142]. Thus, the “None” network attends
to the background properties more to generate embeddings. During finetuning on the
Cars196 dataset, all loss functions guide the network to learn that the background is less
important for embedding the car model.

When grouped by their loss type, we identify differences in Normalized R-Precision
scores between ranking vs classification losses. We apply a Mann-Whitney U test [172]
with a significance level of 1%, showing significant differences between classification and
ranking based loss functions for all image properties except the car model and the sun
rotation. While ranking loss functions show significantly larger influence of car rotation
and camera height, classification based loss functions attend to the car and background
color properties as well as the sun elevation significantly more than ranking losses.

7.4. Conclusion

Based on the DML objective to cluster images from the same class together, we would
expect models to be invariant to unimportant features for the class, e.g., the car’s color, its
orientation, or environmental illumination when trained to embed the car model. However,
we have shown that the properties car color, rotation, sun’s elevation, and camera height
have significant influence on the embeddings. Also, classification losses usually pay more
attention to the background of images than ranking losses. Our proposed implementation
of Generated Input Data serves as a tool to analyze what high-level features are learned
by DML neural networks and to evaluate if they are invariant to unimportant properties.
Our tools can be used to develop and evaluate methods that encourage invariance for
undesired properties, e.g., [26]. Image augmentations like hue shifts, grayscaling, or
skewing, could remove dependencies on the car’s color or camera heights/angles. While
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we have not investigated the influence of other camera parameters such as focal length or
image properties such as contrast or brightness, these might also have undesired effects on
the resulting embeddings. Correcting for such parameters methodologically is desirable.
In Chapter 11, we will introduce a method to control for the image backgrounds and
their influence on the embeddings, which uses the Input Masking and Augmentation
principle.

Since we find differences between classification and ranking based methods, future work
might analyze hybrid loss functions and find reasons for found differences. Besides losses,
our method is able to examine differences between other methodological choices, e.g., tuple
mining or regularization methods. Since Cars196 is a common DML benchmark, most
researchers already train models on this dataset. Our image property analysis can thus
be conducted without additional training. Adapting this method to other datasets, such
as the birds dataset CUB200 [275], would be interesting but is not trivial, since rendering
convincing images of birds is difficult. Given car images, there are many different 3D car
models available, which are mostly static and do not have moving parts. Birds, on the
other hand, show larger flexibility in positions and posture. The number of properties
that need to be considered is thus much higher.
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8. Analyzing a Scientific Venue
Recommender using Integrated
Gradients

The following section mainly follows our work in [131]. When choosing a scientific confer-
ence or journal (in the following also called venue) to submit a manuscript, researchers
consider several factors. While factors such as the venue’s impact, time, or location are
important, the main factor is the manuscript’s thematic fit to the conference. This can
be ensured by inspecting the Call for Papers or by analyzing previously published papers
at the given conference. Given the growing number of conferences (e.g., the exponential
growth of computer science publications indicates more and/or larger conferences1), the
second approach has become harder than ever, especially for novice researchers, or even
senior researchers wanting to publish in a new domain. Finding a thematically fitting
venue for a manuscript therefore is a time consuming task.

We aim to simplify this process by introducing Where to Submit (WTS), a Natural
Language Processing (NLP) system based on a Convolutional Neural Network (CNN)
that recommends academic venues given the title, abstract, and/or keywords of a planned
publication. The system is trained on previously published manuscripts. To understand
the system’s choice of recommending a specific venue, WTS analyzes the words and
phrases that had the highest impact on a recommendation using the Gradient-Based
Attribution principle. More specifically, we use the Integrated Gradient method [260] to
calculate the importance of each word in the input. A researcher can then use the list of
recommended venues and their importance highlights as a starting point to find the best
fitting venue based on other factors such as the Call for Papers, rank, or deadline.

Setting Given a title, abstract, and keywords of a publication, we aim to predict the
venue where the paper was published. We interpret the classification task as a ranking
task by ordering the potential venues according to their score in the model output and
use metrics that assess the ranking performance.

To solve this task, we use a TextCNN model that is depicted in Figure 8.1. We lowercase
and embed each word in the title, abstract, and keywords using Word2Vec [179], trained
on the abstracts and titles of the respective dataset. This creates three two-dimensional
inputs for the model. Each input is then processed through a convolution layer with
potentially multiple filter sizes and max-over-time pooling, which maps the processed

1As visualized on https://dblp.uni-trier.de/statistics/recordsindblp (last accessed: 2023-02-
10).
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Figure 8.1.: Overview of WTS. Title, abstract, and keywords are processed separately by a
convolution layer and max-over-time pooling. The output vectors are concatenated and fed
through two fully connected layers that predict fitting venues. The green and red, dotted arrows
indicate how the gradient is used to visualize the most important words and phrases using the
Integrated Gradient method [260]. Green arrows indicate positive impact of the word on the
output, red arrows indicates a negative influence. Thicker arrows with stronger colors mean larger
gradients.

inputs to a fixed size. The resulting vectors are concatenated and fed through two feed-
forward layers that map to a vector representing the venues. Training with Categorical
Cross Entropy (CCE) leads to higher outputs for more likely venues. Dropout [255] and
batch normalization [108] are used for regularization.

In order to assess the performance of our model, we compare it to several baselines:
The random baseline always predicts venues in a uniformly random order. We report the
expected value for each metric. The majority baseline orders venues by the number of
publications in the training set in descending order. For the Logistic Regression baseline,
we tokenize the title, abstract, and keywords. From all tokens, we create a term frequency
vector and train a multi-class Logistic Regression. The venues are then sorted in decreasing
order based on the model output. We also compare our method to one of the approaches
outlined by Iana et al. in [105]. For better comparison, we use their best performing
approach (according to Recall@10) that does not incorporate any third-party information
(called “Ensemble TF-IDF & word2vec plus CNN (10)”). Here, a logistic regression
combines the outputs of two classifiers: (1) Concatenating all corresponding abstracts of
a venue, creating one TF-IDF representation and ranking venues using their distance to
the provided abstract representation and (2) classifying abstracts using TextCNN [126],
which has been described in Section 2.2.3. In contrast to our model, their approach does
not provide the network with title and keyword information.

We train and evaluate all models on the subsets of the Semantic Scholar dataset that we
have introduced in Section 3.6.2 as well as perform a hyperparameter random search [24]
on the validation data. We then report the three metrics Accuracy, Accuracy@5, and
Mean Reciprocal Rank (MRR) that we have described in Section 2.5 in Table 8.1.

On both datasets, Artificial Intelligence (AI) and medicine, WTS significantly outper-
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Table 8.1.: Results of the baselines and our methods. Best values are displayed in bold.

Method Accuracy ↑ Acc@5 ↑ MRR ↑

AI

Random 0.013 0.064 0.063
Majority 0.086 0.319 0.212
Log. Reg. 0.487 0.811 0.628
Iana et al. 0.065 0.198 0.154
WTS (Ours) 0.503 0.831 0.645

Medicine

Random 0.013 0.064 0.063
Majority 0.069 0.213 0.157
Log. Reg. 0.587 0.911 0.724
Iana et al. 0.440 0.808 0.599
WTS (Ours) 0.659 0.948 0.782

forms all baseline methods in all metrics according to a Wilcoxon signed-rank test [293, 294]
at 1% confidence level. In approximately 83% (AI) and 95% (Medicine) of all cases, the
correct venue is in the top five.

Interestingly, compared to the Medicine dataset, the method by Iana et al. [105]
performs poorly on AI publications. We suspect this is due to the smaller size of the AI
dataset and a higher skew in publication counts per venue (cf. Table 3.1).

8.1. Methodology

We now turn to the analysis of WTS’s predictions using a concrete implementation of
the Gradient-Based Attribution principle, more specifically the Integrated Gradients
algorithm [260]. This method allows us to not only recommend venues to the user but
also explain which words had the highest influence on a recommendation.

Integrated Gradients [260] works by defining a so-called baseline input. It aims at
providing counterfactual intuition: If a feature is important for the output, the absence
of that feature should change the output. Comparing the gradients of the model w.r.t.
the input with and without a feature allows us to quantify the importance of that feature.
Thus, a completely featureless input is a good baseline [9]. For images, this can be a black
image, for texts, all embedding vectors could be zero. Integrated Gradients then integrates
the gradients along the path from the baseline to the input. Since the integration is
computationally not feasible, the result is approximated by interpolating the input and
baseline in discrete steps and computing the gradients w.r.t. the model input for each of
the interpolated inputs. These gradients are then summed up. Given the input matrix
X containing all token embedding vectors for an input text, the baseline matrix Xbase,
and the Deep Learning (DL) model as function f that maps the input embedding matrix
to a class distribution, the approximated Integrated Gradients for the class index c are
defined as
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IntegratedGradients(X, c) = (X−Xbase) ·
m∑
k=1

∂f(Xbase +
k
m · (X−Xbase))c

∂X
· 1

m
, (8.1)

where m is the number of interpolation steps between the input and baseline and f(·)c
is the output of the model for class c. The output of this equation is a matrix of the same
size as the input embedding matrix X. The method satisfies two axioms that are desirable
for attribution methods: First, the sensitivity axiom states that if the input and baseline
differ in a feature and the resulting prediction of the model, the attribution of that feature
should be non-zero. Complementarily, if the output of a model does not depend on an
input feature, the attribution of that feature should be zero (“insensitivity”). Second,
the implementation invariance axiom states that if there are two functionally equivalent
models (the same inputs result in the same prediction for all inputs), the attribution of a
feature should be the same for both models. More information about these axioms can
be found in the original paper [260].

We use an implementation of Integrated Gradients from the PyTorch Captum library2

to find the most influential words and phrases for the top five recommendations of the
network. The number of interpolation steps between the embedding vectors and zero
embeddings is set to m = 50, which is the Captum default. The resulting attribution
scores are per embedding and per embedding vector dimension, so we need to average the
attribution scores over the embedding dimensions to obtain a single attribution score per
token. Positive attribution scores contribute positively to the prediction, negative scores
negatively. While each token gets assigned a score, oftentimes, the absolute scores are
comparably small except for a few tokens, because only those are enough to produce the
output. The resulting attribution scores can then be interpreted using domain knowledge
about the venues.

8.2. Experiments

We perform qualitative experiments with the Integrated Gradients method on our proposed
model. For this, we visualize the positive and negative highlights given by the explanation
method for specific papers. Since Integrated Gradients is a local method, we need to
select a specific paper to explain. Given the highlights, we can interpret them in terms of
usefulness for the recommendation. We expect to receive highlighted words and phrases
that are relevant for the recommended venue. We test this by looking at three papers
from different areas of AI: the well-known BERT paper (published and awarded with
the best paper award at NAACL, an NLP conference) [48] as well as the ResNet paper
(published at CVPR, a Computer Vision (CV) conference) [86] and the BatchNorm
paper (published at ICML, a core Machine Learning (ML) conference) [108]. We would
expect to receive different highlights for each paper, since the papers are from different
areas of AI. The BERT paper highlights should focus on language aspects, while the

2https://captum.ai (last accessed: 2023-02-10)
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ResNet and the BatchNorm paper highlights should focus on the image and the learning
aspects, respectively. Now that we formulated our expectations, we can compare them to
the actual highlights. In general, evaluating formulated expectations could be done by
surveying domain experts about how well they match the highlights for a sufficiently large
set of papers and making statistical statements about the usefulness of the highlights.

If, according to the surveyed experts, the expectations match the actual highlights, we
can conclude that the WTS model seems to extract the correct information from the
papers. It also allows us to find dissonances between the expectations and the actual
highlights, which can be used as a starting point for further investigations into the model
behavior. Given a non-obvious recommendation for a paper, we can also use the highlights
to find out why the model recommends a specific venue. Since obtaining feedback from
a group of domain experts for a sufficiently large set of papers is time-consuming and
expensive, it is out of scope for this thesis. We thus restrict ourselves to the three
mentioned papers and our opinion on the fit of highlights and expectations.

8.3. Results

Figure 8.2 visualizes the highlights given by Integrated Gradients for the three provided
papers. WTS correctly recommends the corresponding venues to all publications at the
highest rank. The follow-up recommendations by WTS are also thematically similar to
the top recommendation. For the NAACL paper, INTERSPEECH and EMNLP are also
recommended, which are both conferences for research in language and text processing.
ECCV and ICCV are recommended for the CVPR paper, which are also CV conferences.
Due to the relatively broad and theoretical impact of BatchNorm that reflects in the
ICML recommendation, the recommendations also include the AAAI. Here, however, the
RSS, which is a conference for robotics, is also recommended. We will explore why this
conference is recommended later.

The Integrated Gradients method highlights the words that are important for the
top recommendation in the title and abstract. Green text contributes positively to the
prediction, red text negatively. We see that the words “Transformers” and “Language
Understanding” are plausibly identified by the gradient attribution method as words that
qualify this publication as an NLP paper.

For the ResNet paper, the words “Recognition” and “visual” are most important for the
CVPR recommendation, while “Learning” seems to have a negative effect on this venue
recommendation. This negative impact might be surprising at first, but only approx. 26%
of CVPR training dataset papers contain the word “learning”, while core ML conferences
or some robotic conferences show much higher shares (e.g., ICML: approx. 56%, ECML:
approx. 59%, or “Conference on Robot Learning” (CoRL): approx. 90%). The presence
of the word “learning” is thus usually less of an indicator for the CVPR conference.

For the BatchNorm paper, “Training” and “method” are highlighted, indicating a method
paper, leading to core ML conference recommendations. To better understand why WTS
recommends the “Robotics: Science and Systems” (RSS) conference for the BatchNorm
paper [108], we visualize the attribution scores regarding this conference in Figure 8.3.
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BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
We introduce a new language representation model called BERT, which stands for Bidirectional
Encoder Representations from Transformers. Unlike recent language representation models,
BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly
conditioning on both left and right context in all layers. As a result, the pre-trained BERT
model can be fine-tuned with just one additional output layer to create state-of-the-art models
for a wide range of tasks, such as question answering and language inference, without substantial
task-specific architecture modifications. BERT is conceptually simple and empirically powerful.
It obtains new state-of-the-art results on eleven natural language processing tasks, including
pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to
(86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point
absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Venue recommendations: NAACL, INTERSPEECH, EMNLP

Deep Residual Learning for Image Recognition
Deeper neural networks are more difficult to train. We present a residual learning framework
to ease the training of networks that are substantially deeper than those used previously. We
explicitly reformulate the layers as learning residual functions with reference to the layer inputs,
instead of learning unreferenced functions. We provide comprehensive empirical evidence showing
that these residual networks are easier to optimize, and can gain accuracy from considerably
increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152
layers—8x deeper than VGG nets but still having lower complexity. An ensemble of these residual
nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC
2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The
depth of representations is of central importance for many visual recognition tasks. Solely due
to our extremely deep representations, we obtain a 28% relative improvement on the COCO
object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC &
COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection,
ImageNet localization, COCO detection, and COCO segmentation.

Venue recommendations: CVPR, ECCV, ICCV

Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift Training Deep Neural Networks is complicated by the fact that the distribution
of each layer’s inputs changes during training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning rates and careful parameter initialization,
and makes it notoriously hard to train models with saturating nonlinearities. We refer to this
phenomenon as internal covariate shift, and address the problem by normalizing layer inputs.
Our method draws its strength from making normalization a part of the model architecture
and performing the normalization for each training mini-batch. Batch normalization allows us
to use much higher learning rates and be less careful about initialization, and in some cases
eliminates the need for Dropout. Applied to a stateof-the-art image classification model, Batch
Normalization achieves the same accuracy with 14 times fewer training steps, and beats the
original model by a significant margin. Using an ensemble of batch-normalized networks, we
improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test
error, exceeding the accuracy of human raters.

Venue recommendations: ICML, AAAI, RSS

Figure 8.2.: Titles and abstracts for three publications [48, 86, 108] along their top venue recom-
mendations by WTS. It also highlights the words leading to the highest ranked recommendation:
green text contributes positively to the prediction, red text negatively. Black text does not
contribute. The more saturated the color, the more important the word.
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Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift
Training Deep Neural Networks is complicated by the fact that the distribution of each layer’s
inputs changes during training, as the parameters of the previous layers change. This slows down
the training by requiring lower learning rates and careful parameter initialization, and makes it
notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon
as internal covariate shift, and address the problem by normalizing layer inputs. Our method
draws its strength from making normalization a part of the model architecture and performing
the normalization for each training mini-batch. Batch Normalization allows us to use much
higher learning rates and be less careful about initialization, and in some cases eliminates the
need for Dropout. Applied to a stateof-the-art image classification model, Batch Normalization
achieves the same accuracy with 14 times fewer training steps, and beats the original model by
a significant margin. Using an ensemble of batch-normalized networks, we improve upon the
best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the
accuracy of human raters.

Figure 8.3.: Integrated Gradients attributions for the BatchNorm paper [108] w.r.t. the RSS
venue recommendation, which was ranked third by WTS.

Here, the method highlights “normalization” and “image”, but also “accelerating” shows
some positive influence for this recommendation. Due to the use of motors in robots,
“accelerating” seems to be a reasonable keyword for this conference. Also, many robotic
papers work on or with machine vision techniques, which is why “image” is also reasonable.
The word “normalization” seems to be relatively arbitrary, but the method assigns a high
influence on the model’s prediction. Such findings can motivate further investigations
into the model’s outputs and the underlying data. Does the model always correlate
“normalization” with robotics venues? Is there a thematically sound explanation for this
influence? The use of gradient-based attribution methods gives a first indication of where
to look. Without it, there would be no direct way to find out what word influences the
model to predict the RSS as a venue for the BatchNorm paper. Integrated Gradients thus
is a tool to debug the model and to reason about its predictions using domain knowledge.

8.4. Conclusion

We have analyzed our DL based model WTS that recommends scientific venues based
on the title, abstract, and/or keywords of a publication. WTS is designed to provide
an explanation as to why a certain venue was recommended by using the Integrated
Gradients method, which implements the Gradient-Based Attribution principle. This
integration makes WTS the first interpretable and open recommendation service for both,
conferences and journals. We have shown that WTS provides strong recommendations on
publications from the areas of AI and medicine.

In order to make our system available to the public, we release WTS as a web service3

where researchers can input their AI paper’s information and receive recommendations for

3https://wts.professor-x.de (last accessed: 2023-02-10)
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Figure 8.4.: A screenshot of the WTS website, which is openly available at https://wts.
professor-x.de (last accessed: 2023-02-10).
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venues. The web service applies the trained CNN and explainability method and shows
the top five predicted venues for the given paper along with a color-coded explanation
and venue-related information (see Figure 8.4). Given the Accuracy@5 results described
in Table 8.1 as well as the useful backup recommendations shown in Figure 8.2, a fitting
venue is usually displayed to the user. The explanations then help users to understand
the recommendation of the model and to build trust in the model’s performance.
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9. Comparing Deep Metric Learning
(DML) Models with a new Attribution
Map Generation Method

For this implementation of the Gradient-Based Attribution principle, we revisit the
DML model comparison setting from Chapter 7. We thus skip the motivation, setting,
and notation and refer to Chapter 7 and our work in [134] for details, from which this
section is mostly taken. While our implementation of the Generated Input Data principle
focused on high-level features, we now want to analyze the low-level features that are
used by the network to embed an image. Our general goal is still to find differences in
the feature importances between different DML loss functions. For this, we develop a
novel method to generate attribution maps for DML models that can be compared and
interpreted using domain knowledge. Such techniques are usually focused on classification
tasks. In the case of DML, we try to generate maps for a representation task. We then
qualitatively and quantitatively compare such maps between all models.

We first introduce our method for generating attribution maps for DML models and
then compare the 14 loss functions from Chapter 7 in terms of their low-level, i.e., pixel-
level, attribution across datasets. A qualitative analysis of the maps on a few samples is
also provided.

9.1. Methodology

Our proposed method aims to identify features on pixel-level that are important for the
network’s decision to output a certain embedding. For this, we adapt a gradient based
attribution map generation method to the DML setting [248]. While attribution maps are
usually used to qualitatively analyze one network on a single image, however, we propose
quantitative measures to compare models.

Our attribution maps seek to answer the question “What are the main image regions
that guided the network to output the specific embedding?”. Intuitively, we obtain the
final embedding xi for image iminsti by altering the pixels of an image that shows no
features (a baseline image as described in Section 8.1), i.e., a completely black image
Ibase, towards Ii. The larger the change towards the final embedding, the more important
a pixel. A visual depiction of this intuition is shown in Figure 9.1. Thus, we want
to identify the most influential pixels regarding the distance dL (xi,xbase) between the
image’s embedding xi and the embedding of the black image xbase = fL(Ibase). We do
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Figure 9.1.: Intuition for our gradient based attribution method. The distance between the
embeddings of the image and a completely black image (here shown in a two-dimensional space)
can be differentiated w.r.t. the image’s pixels. The larger the gradient for a pixel, the more
important the pixel is for the network to change the embedding from the black image’s embedding
(with no features) to the image’s embedding.
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this by computing the gradients of the loss-specific distance w.r.t. the input Ii:

sL(Ii) = ∂dL (xi,xbase) /∂Ii . (9.1)

Since these gradients can be noisy, we apply the SmoothGrad method [250] by creating l
image variants by adding gaussian noise N (0, σ2) to the input image and averaging the
resulting gradients:

ŝL(Ii) =
1

l

l∑
1

sL

(
Ii +N (0, σ2)

)
. (9.2)

High absolute gradients indicate that changing the corresponding input value has large
influence on the measured distance, thus identifying pixels responsible for the deviation
of the base embedding. We post-process the gradients using common techniques, namely
(in this order) taking the absolute value, averaging across the color channel dimension,
clipping values higher than the 99th percentile, and scaling the values to a range from
zero to one. These steps make the raw gradients more semantic, yielding an interpretable
attribution map s̃L(Ii) [250].

9.2. Experiments

Overall, our proposed method is a qualitative technique to highlight important image
areas for the network. While this can be used to visualize differences between DML loss
functions on single images, we propose to quantify differences using this technique: Given
two models fL1 and fL2 trained with different losses L1 and L2, we apply both models
on the same test images I1, . . . , In and compute the attribution maps s̃L(I1), . . . , s̃L(In)
for L1 and L2. Inspired by the literature for the visual saliency task [143, 222], i.e.,
estimating a heatmap of a human’s eye fixations on an image, we compare attribution
maps by calculating the average Pearson product-moment correlation coefficient and
Jensen-Shannon Divergence (JSD) [56] between the same image’s attribution maps of
two networks. We transform correlations to Fisher-Z space before averaging [247] and
divide each attribution map by its sum to obtain probability distributions for JSD. Mean
correlations close to one show that both attribution maps usually have a linear dependency,
meaning that both networks attend to the same image regions. Lower values indicate
that both models learned different features in order to represent images. JSD, on the
other hand, measures a divergence between attribution maps and thus grows with larger
differences between the attribution maps, which is the opposite to correlation. A mean
JSD of zero means that both methods produce the same attribution maps, while higher
values (bounded by 1, due to base 2 logarithm) show larger differences.
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Ranking Classification
Contrastive Triplet NTXent Margin Margin/class FastAP SNR Con. MS MS+Miner ProxyNCA N. Softmax CosFace ArcFace SoftTriple None
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n
g

Contrastive 84±6 86±5 86±5 85±5 85±5 86±5 86±5 87±5 85±5 86±5 85±5 85±5 86±5 74±11
Triplet 84±6 85±6 84±6 85±6 84±6 84±6 84±6 84±6 83±6 84±6 82±7 82±7 84±6 75±10

NTXent 86±5 85±6 85±6 85±5 85±6 85±5 86±5 86±5 85±5 86±5 84±6 84±6 85±5 74±10
Margin 86±5 84±6 85±6 85±6 85±6 85±6 85±5 85±6 84±6 85±6 84±6 83±6 84±6 74±10

Margin/class 85±5 85±6 85±5 85±6 84±6 84±6 85±5 85±5 84±5 85±5 84±6 83±6 84±6 75±10
FastAP 85±5 84±6 85±6 85±6 84±6 85±6 85±5 85±5 85±5 85±5 84±6 84±6 85±5 73±11

SNR Con. 86±5 84±6 85±5 85±6 84±6 85±6 86±5 85±5 84±5 86±5 84±6 84±5 85±5 74±10
MS 86±5 84±6 86±5 85±5 85±5 85±5 86±5 86±5 85±5 86±5 85±6 85±5 86±5 74±10

MS+Miner 87±5 84±6 86±5 85±6 85±5 85±5 85±5 86±5 85±5 86±5 85±6 85±5 86±5 73±11

C
la

ss
if
. ProxyNCA 85±5 83±6 85±5 84±6 84±5 85±5 84±5 85±5 85±5 87±4 85±5 85±5 86±5 74±10

N. Softmax 86±5 84±6 86±5 85±6 85±5 85±5 86±5 86±5 86±5 87±4 86±5 86±5 87±4 74±11
CosFace 85±5 82±7 84±6 84±6 84±6 84±6 84±6 85±6 85±6 85±5 86±5 85±5 87±4 73±11
ArcFace 85±5 82±7 84±6 83±6 83±6 84±6 84±5 85±5 85±5 85±5 86±5 85±5 86±4 73±11

SoftTriple 86±5 84±6 85±5 84±6 84±6 85±5 85±5 86±5 86±5 86±5 87±4 87±4 86±4 74±11
None 74±11 75±10 74±10 74±10 75±10 73±11 74±10 74±10 73±11 74±10 74±11 73±11 73±11 74±11

Table 9.1.: Average Pearson correlations between all loss functions on the Cars196 dataset. All
values are in 10−2.

Ranking Classification
Contrastive Triplet NTXent Margin Margin/class FastAP SNR Con. MS MS+Miner ProxyNCA N. Softmax CosFace ArcFace SoftTriple None

R
an

ki
n
g

Contrastive 88±7 89±6 89±6 89±5 89±6 89±5 89±5 89±5 88±6 89±6 89±6 89±6 89±5 86±6
Triplet 88±7 89±5 89±6 89±6 89±6 89±5 89±5 89±5 88±6 89±5 88±7 88±6 88±6 86±6

NTXent 89±6 89±5 89±5 90±5 90±5 89±5 90±5 90±4 89±5 90±5 88±6 89±5 89±5 86±6
Margin 89±6 89±6 89±5 90±5 90±5 90±5 90±5 90±5 89±5 89±5 88±6 89±6 89±6 86±6

Margin/class 89±5 89±6 90±5 90±5 90±5 90±5 90±5 90±5 89±6 89±5 88±6 89±5 89±5 86±6
FastAP 89±6 89±6 90±5 90±5 90±5 90±5 90±5 90±5 89±5 90±5 89±6 90±5 90±5 86±6

SNR Con. 89±5 89±5 89±5 90±5 90±5 90±5 90±4 90±5 89±5 90±5 89±5 89±5 89±5 87±6
MS 89±5 89±5 90±5 90±5 90±5 90±5 90±4 90±4 89±5 90±4 89±5 89±5 89±5 87±5

MS+Miner 89±5 89±5 90±4 90±5 90±5 90±5 90±5 90±4 89±5 90±5 89±5 89±5 89±5 86±6

C
la

ss
if
. ProxyNCA 88±6 88±6 89±5 89±5 89±6 89±5 89±5 89±5 89±5 89±5 88±6 89±5 89±5 87±5

N. Softmax 89±6 89±5 90±5 89±5 89±5 90±5 90±5 90±4 90±5 89±5 89±6 90±5 90±5 86±6
CosFace 89±6 88±7 88±6 88±6 88±6 89±6 89±5 89±5 89±5 88±6 89±6 90±5 90±5 86±6
ArcFace 89±6 88±6 89±5 89±6 89±5 90±5 89±5 89±5 89±5 89±5 90±5 90±5 90±5 86±6

SoftTriple 89±5 88±6 89±5 89±6 89±5 90±5 89±5 89±5 89±5 89±5 90±5 90±5 90±5 86±6
None 86±6 86±6 86±6 86±6 86±6 86±6 87±6 87±5 86±6 87±5 86±6 86±6 86±6 86±6

Table 9.2.: Average Pearson correlations between all loss functions on the CUB200 dataset. All
values are in 10−2.

Ranking Classification
Contrastive Triplet NTXent Margin Margin/class FastAP SNR Con. MS MS+Miner ProxyNCA N. Softmax CosFace ArcFace SoftTriple None

R
an

ki
n
g

Contrastive 62±12 59±12 61±12 61±12 59±13 60±12 59±13 60±13 46±20 49±17 45±20 45±20 46±20 51±21
Triplet 62±12 63±12 66±11 66±12 63±13 61±13 63±12 64±12 50±19 52±18 50±20 49±20 50±20 59±20

NTXent 59±12 63±12 61±12 62±12 59±13 57±14 59±13 62±12 52±18 54±16 52±18 52±18 53±17 56±19
Margin 61±12 66±11 61±12 65±12 61±13 59±13 62±12 62±12 50±19 51±17 50±19 49±19 50±19 58±19

Margin/class 61±12 66±12 62±12 65±12 61±13 59±13 62±13 63±13 50±19 52±17 50±20 49±20 50±20 58±20
FastAP 59±13 63±13 59±13 61±13 61±13 61±13 61±13 60±13 49±20 52±17 50±20 49±20 50±19 55±21

SNR Con. 60±12 61±13 57±14 59±13 59±13 61±13 59±14 57±14 44±22 47±19 43±22 43±22 44±21 48±23
MS 59±13 63±12 59±13 62±12 62±13 61±13 59±14 62±13 53±18 54±16 53±18 53±18 53±18 58±18

MS+Miner 60±13 64±12 62±12 62±12 63±13 60±13 57±14 62±13 54±17 55±16 54±18 53±18 54±17 58±18

C
la

ss
if
. ProxyNCA 46±20 50±19 52±18 50±19 50±19 49±20 44±22 53±18 54±17 62±14 67±12 66±12 64±13 60±16

N. Softmax 49±17 52±18 54±16 51±17 52±17 52±17 47±19 54±16 55±16 62±14 64±13 63±14 63±13 59±16
CosFace 45±20 50±20 52±18 50±19 50±20 50±20 43±22 53±18 54±18 67±12 64±13 69±11 67±11 63±14
ArcFace 45±20 49±20 52±18 49±19 49±20 49±20 43±22 53±18 53±18 66±12 63±14 69±11 65±12 61±15

SoftTriple 46±20 50±20 53±17 50±19 50±20 50±19 44±21 53±18 54±17 64±13 63±13 67±11 65±12 62±15
None 51±21 59±20 56±19 58±19 58±20 55±21 48±23 58±18 58±18 60±16 59±16 63±14 61±15 62±15

Table 9.3.: Average Pearson correlations between all loss functions on the Stanford Online
Products (SOP) dataset. All values are given in percent. Larger values have darker cells.
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9.3. Results

9.3. Results

Quantitative Comparison

Tables 9.1 to 9.3 show the correlations’ means and standard deviations for the test datasets
of Cars196, CUB200, and Stanford Online Products (SOP), respectively. We omit the
Jensen-Shannon Divergence and their standard deviations for legibility, as all values are
around 0.02± 0.01 and show similar tendencies as the correlation. The tables for the JSD
metric can be found in Appendix A.

Compared to the other datasets, correlations for SOP are generally weaker with larger
standard deviations, showing that losses are not consistent across images in terms of
feature extraction. Surprisingly, loss pairs of different loss types (ranking vs classification)
show lower correlations than pairs of the same loss type, suggesting that different loss
types lead to different attribution maps. Grouping loss pairs by their distance/similarity
metric does not show such clear differences. The “None” model has stronger correlation
with classification than with ranking losses, which is expected due to its training on a
classification task.

For the Cars196 and CUB200 datasets, we find overall stronger correlations, which
shows that models tend to focus on the same pixels to embed an image. Also, the
standard deviation is around 0.06 for both datasets, indicating consistent behavior across
all images. We cannot identify the same large correlation drops when comparing ranking
and classification losses. A noticeable drop in correlation can only be observed with the
untrained “None” model, which is expected, but surprisingly not that steep. This shows a
high similarity in extracted features between them. We conclude that ImageNet based
initialization of the untrained models already leads to features that are picked up by the
analyzed DML networks.

Qualitative Comparison

Given the findings of the quantitative results, we also visually inspect the learned features.
Figures 9.2 to 9.4 show attribution maps for all investigated networks for a sample image
of each of the three tested datasets. In the following, we focus on Figure 9.4, which shows
a chair from the SOP dataset, as this dataset shows clear tendencies in the quantitative
results. We observe that most methods highlight parts of the chair, but focus on different
areas. While e.g., Contrastive Loss attends to the chair’s legs and back, CosFace pays more
attention to the seat. Given the quantitative difference between ranking and classification
losses, we observe that ranking based methods usually show more pronounced local
highlights, while classification based methods highlight broader areas. It also seems that
the background area is more important for classification approaches. This matches our
observations from Chapter 7, where we have found that classification based losses tend to
focus more on the background than ranking based losses.
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9. Comparing DML Models with a new Attribution Map Generation Method

Figure 9.2.: Attribution maps of a sample image from Cars196. The original image and the
“None” baseline (pretrained ImageNet weights) are in the first column. The first two rows show
embedding losses, the third row shows classification losses.

Figure 9.3.: Attribution maps of a sample image from CUB200. The original image and the
“None” baseline (pretrained ImageNet weights) are in the first column. The first two rows show
embedding losses, the third row shows classification losses.
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9.4. Conclusion

Figure 9.4.: Attribution maps of a sample image from SOP. The original image and the “None”
baseline (pretrained ImageNet weights) are in the first column. The first two rows show embedding
losses, the third row shows classification losses.

9.4. Conclusion

We have introduced a new attribution method for DML models. With this, we have
analyzed and compared different DML loss functions. Our analysis has shown that on
the SOP dataset, classification based losses attend to fairly different regions than ranking
based losses. This matches our other findings that classification based losses tend to focus
more on the background than ranking based losses. However, in this case, we have used
another principle and a novel implementation of this principle to make these observations.
Overall, these two independent investigations show similar results, which also confirms
the validity of our approach.
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Part III.

Improving Deep Learning (DL)
Models
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10. Principles for Improving Deep
Learning (DL) Models

Now that we can obtain insights into how the Neural Network (NN) makes its decisions
and what low-level and high-level input features are important to form an output, we turn
to the improvement of DL models using domain knowledge by exploring four principles
and multiple of their implementations. Similar to the structure of Part II, we split this
part into principles that are mostly applied to the input and output. We then describe
specific implementations of these principles and evaluate their effectiveness in different
task settings. In addition, we also present implementations that use multiple principles
from both, the input and output.

First, we explore two principles that are based on the input side of DL models, namely
affecting the input data using the Input Masking and Augmentation principle
and altering the preprocessing step with the Feature Extraction using Pretrained
Multimodal Models principle. Afterwards, two principles relating to the output
components of the training process of the DL model are discussed. Here, we explore
the use of Weak Label Generation to enlarge the training dataset by altering the
desired output of the model. We also enrich the used Loss Function with additional
prior knowledge or better prerequisites for the model to learn or combine multiple loss
functions in a multitask setting.

105



10. Principles for Improving DL Models

10.1. Input Principle: Input Masking and Augmentation

Input Masking and Augmentation

Idea Masking certain input features or augmenting the input data using transfor-
mations during training.

Goal Decorrelate/correlate new input features with the output to make the model
more robust/sensitive to unimportant/important changes.

Domain Knowledge used What are relevant input features, and how can we alter
them in a beneficial and meaningful way?

Type of Improvement Better generalizability and robustness

Task Requirements None

Data Requirements For input masking, the positions of the input features must
be interpretable, e.g., words in a sentence or image regions/pixel positions.
For augmentations, the input data must be augmentable, i.e., there must be
clearly defined transformations that can be applied to the input data that do
or do not change the initial output label for the input. For example, flipping
images horizontally when detecting objects is usually not a problem, but
flipping images of text is.

Humans and DL models learn from examples. For instance, to learn to recognize a
dog, a human needs to see a dog and a DL model needs to be trained on images of dogs.
Due to the nature of the human’s vision system, we are able to separate the dog from
the background and focus on it. Also, due to the knowledge about the environment, we
are able to understand the interaction of light with the object and can thus interpret
cast shadows and different appearances based on lighting. DL models do not have these
properties. They find correlations between the input and the output. If the image
backgrounds or the lighting conditions correlate with the output label, the model will
learn to focus on these features. This is undesirable, since it makes the model less robust
to changes in the input. If the background or the lighting conditions change, the model
will not be able to make a correct prediction anymore. We already have shown such
undesired correlations for Deep Metric Learning (DML) models in Chapters 7 and 9.

One way to prevent this is to collect larger training datasets that show a larger variety
of input features, such as dogs in different environments, poses, and lighting conditions.
While this has shown to be effective in improving the performance of DL models, it is
not always possible or sustainable to collect more data. Thus, principles are needed to
decorrelate certain aspects of the input from the output. One of them is the Input
Masking and Augmentation principle, which hides certain input features or exchanges
them during training. This way, the model cannot pick up correlations between the
hidden or transformed input features and the output label. We hypothesize that as a
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10.1. Input Principle: Input Masking and Augmentation

result, the model has to focus on generalizing better to new situations and is more robust
to changes in the input.

The Input Masking and Augmentation principle can be applied to basically all tasks,
but the choice of which input features to hide or transform is highly task- and modality-
dependent as well as requires domain knowledge. There are mainly two approaches when
applying this principle: keeping the output label intact by altering “unimportant” input
features or deliberately changing the output label by altering “important” input features.
For example, in image content classification, the brightness and contrast of the image are
not crucial to detect the content of the image. We can say that they are not important
for solving the task. Thus, augmentations that apply brightness and contrast filters to
the input images can be used during training, since they should keep the output label
unchanged [146]. However, in the Image Aesthetics Assessment (IAA) task, for example,
the brightness and contrast of the image are important, since they severely influence the
aesthetic quality of the image.

Usually, Input Masking and Augmentation do not aim to change the desired output
but to create new training examples from existing ones. This is the approach we use in
Chapter 11 for DML and later in Chapter 15 for sentiment analysis. However, combined
with other knowledge about the input properties, it is also possible to augment the input
such that the desired output also changes. If it is known how an input transformation
affects the input, the new training examples can be used to guide the model to learn new
differentiating features. For example, consider a dataset of images of arrows, showing
different directions. When augmenting this dataset, we could integrate the knowledge
that horizontally flipping an arrow that points right will result in an arrow that points left.
This way, the desired output label changes, which is unusual for image augmentations, but
is possible due to the knowledge about the input. Similarly, we apply augmentations and
change the desired output of images in the IAA task in Chapter 16 where we apply image
filters to aesthetic images in order to deteriorate them. Doing this, we know that the
aesthetic value of the image decreases, which we can use to give the model comparisons
between an aesthetic and the new unaesthetic image.

Modality-wise, input masking can be applied to all modalities, as long as the positions
in the input have a certain meaning, so it can be decided whether this position can be
masked to achieve the desired goal. In images, for example, the pixels semantically belong
to different objects, so masking groups of pixels aims to remove certain objects or parts
of objects from the training input. For text, masking or removing words from the input
aims to remove certain semantic information from the input. We do this in Chapter 15
where we mask indicator words in texts that are important for sentiment analysis, aiming
to let the model learn other correlations between the text and the output label. For
input augmentations, transformations that can be applied to the input data that help
to decorrelate certain input features from the output (see Chapter 15) or create new
correlations that can be exploited for the training process (see Chapter 16) are essential.

107



10. Principles for Improving DL Models

10.2. Input Principle: Feature Extraction using Pretrained
Multimodal Models

Feature Extraction using Pretrained Multimodal Models

Idea Using a pretrained multimodal model as a fixed feature extractor. These
features can then be used to either train a new model on top of them or to
use different modalities to solve the task without any training.

Goal Creating a more suitable input representation that can be used in the trainable
model or that can even eliminate it altogether.

Domain Knowledge used Has the pretrained model potentially learned relevant
features for the downstream task? Can we express knowledge about the task
in other modalities?

Type of Improvement Fewer or no trainable parameters, less or no training data

Task Requirements Task objective can be modelled in combination with another
modality.

Data Requirements A pretrained model must exist for the used modalities in the
data. Additional modalities that can be handled by the pretrained model
can be used to solve the task.

As already mentioned, one way to let a DL model generalize better is to use more
data. However, collecting more labels for a specific downstream task often becomes
infeasible or even impossible. This motivates the development of methods to reduce the
required training dataset size to achieve good performance. To this end, using models
that are pretrained on larger datasets for a different but related task has become a
common practice. These models can then be used as feature extractors to create a more
suitable input representation for the task at hand. As a result, the trainable model
does not have to learn the features from scratch, but can focus on the task-specific
correlations, even with few training examples. When taking an additional modality into
account during the training of these models, using knowledge about one modality can
be used to solve the task in another modality, e.g., knowledge about text descriptions
can be used to solve an image classification task [214]. We thus focus on the potential
of pretrained multimodal models for the Feature Extraction using Pretrained
Multimodal Models principle, more specifically Contrastive Language-Image Pre-
Training (CLIP) [214] (see Section 2.3.4). This model can be used to extract features
from images and texts with aligned representation spaces. This way, multiple modalities
can be used to solve the task, either by training the trainable model on these features or
by using zero-shot capabilities of the pretrained multimodal model.

For this principle, we focus on CLIP, which works with images and texts. It aligns
the representations of images with their corresponding text descriptions. Given this
training objective, the model has to learn connections between the visual and textual
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10.2. Input Principle: Feature Extraction using Pretrained Multimodal Models

representations of the same object, scenes, or actions. Given the large variety of language
and descriptive capabilities, the image encoder extracts features from the image that
can be (often) also described by text. On the other hand, the text encoder needs to
extract features that are visually grounded in the image. For example, to align the
representations of an image of “a painting of a man sitting on a chair” with its text, it
needs to extract features that represent the objects “man”, “chair”, and “painting” as well
as the action “sitting”, that connects two objects, from both the image and the text. Due
to this, the variety of concepts the model can represent is larger than that of commonly
used pretrained models that are based on content classification, which only has a strictly
defined set of objects and usually no actions [46].

Given such a pretrained multimodal model, the features extracted from one of the
encoders can be used as inputs to the trainable model when task-specific training data is
available. In the same way, features from intermediate layers from the encoders can be
used. We argue that due to the broad set of learned concepts from the multimodal data,
the extracted features are better suited for many tasks than features from classification
models. Overall, there are basically no task limitations when using pretrained multimodal
models for feature extraction.

When no task-specific training data is available, those models can still potentially be
used in a zero-shot setting. The original CLIP paper shows that with clever prompting,
image classification tasks can be solved by the model without any training. In our
implementations, we show that CLIP can also be used for zero-shot regression and
retrieval tasks. Other work has shown that tasks such as image segmentation can also be
solved in a zero-shot setting with CLIP [164]. Since CLIP is relatively new, there are still
many possibilities for future work to explore other tasks that can be solved using this
model.

Data-wise, the multimodal model needs to support the modalities that are used in
the task. CLIP focuses on images and text, but there are other models that combine
other modalities in the same way as CLIP does. For example, there is a line of work that
incorporates audio into the same contrastive framework as CLIP [79, 302]. This way, the
model can be used for zero-shot tasks on audio. While our implementations focus on
images, they can potentially be easily adapted for the audio modality.

We also focus on models that have text as one of the multiple modalities, since it
is usually used to describe labels for classification, regression, and different similarity
notions for the retrieval task. It is widely available on the internet together with other
accompanying media such as images, giving paired training data without much manual
collection work.

When pairing modalities that do not contain text, the methods need to be adapted to
the new modalities. For example, suppose we have a model that is pretrained on images
and audio. Then, to classify an image, we need to define audio clips of the classes we
want to detect. To classify images into the classes “cats” and “dogs”, we would need one
or multiple audio clips of meowing and barking.

In our implementations, we use the fact that CLIP is pretrained on a large dataset
and thus extracts broad features from images and texts that somehow correlate in the
embedding space. In Chapter 12, we use image and text features to assess the aesthetics
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10. Principles for Improving DL Models

of images using prompting and thus in a zero-shot setting, completely removing the need
for a trainable model and training data. As an addition, we optimize a simple trainable
model on top of the image features, using CLIP as a capable fixed feature extractor.
In Chapter 13, we use CLIP’s image and text features to solve the DML task without
training images. Here, we use text prompts to guide the optimization of a simple trainable
model that learns to transform the image features into the desired embedding space,
encoding user-defined similarity notions.

10.3. Output Principle: Weak Label Generation

Weak Label Generation

Idea Generating or collecting many weak labels for unlabeled data, which can be
used for (pre-)training the NN, optionally along with hand-labeled data.

Goal Enlarging the training dataset.

Domain Knowledge used What heuristics and rules can be used to infer labels
for the task, that might not be perfect but better than random?

Type of Improvement Better generalizability, less explicitly labeled training data
required

Task Requirements None

Data Requirements There must be an unlabeled dataset which can be weakly
labeled, i.e., it possesses certain regularities that can be exploited by a weak
label process.

Larger training corpora usually improve the performance of DL models, since they
better reflect the distribution of the data and include more examples of rare cases [145].
Often, the collection of new training examples is costly, as described in previous sections.
While the previously described methods, such as image augmentations, enlarge the already
existing training examples by altering the input data but keeping or deterministically
changing the output label, there are often unlabeled examples available that could be
used to generate new training examples. For those examples, no desired output is known.
The Weak Label Generation principle proposes to use simple heuristics or models
with stronger assumptions to generate imperfect labels for unlabeled data in order to
enlarge the training dataset. Even though the new data is arguably noisy, the DL model
can extract useful features from it.

When applying this principle to a task, usually only a small number of labeled examples
is available, which is not enough to train the DL model from scratch. However, a large
corpus of unlabeled data is present that has a similar input data distribution. Then,
some knowledge about how the output is connected to the input can be expressed as a
heuristic to label the unlabeled data. For example, for image classification, a large set of
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images from the internet could be scraped along with their textual descriptions. Then,
one heuristic could be to use images that contain a certain word in their description to
label them with the corresponding class. This procedure is certainly noisy, but allows
for a large weakly labeled dataset, where the label has a better chance of being correct
than a random label. Jiang et al. [111] conduct a study to investigate how well an image
classification model can be trained using a dataset that includes noise, i.e., wrong labels,
based on this weak labeling technique. They show that a dataset which has 80% wrong
labels because of the used heuristic still shows only a drop in performance of maximally
20% compared to a dataset with only correct labels. On the other hand, when randomly
swapping labels, which imitates a random labeling and thus a weaker heuristic, the
performance drops by up to 75%. The choice of heuristic is thus crucial for a successful
application of this principle. As long as there is a heuristic that somehow captures some
ideas about the labeling process, the Weak Label Generation principle can be applied
to every task. We will explore this principle for Natural Language Processing (NLP)
and Computer Vision (CV) tasks. In Chapter 15, we perform sentiment analysis using
weak labels generated using sentiment lexica that label each word as positive, negative, or
neutral. In Chapter 16, we generate weak labels for the IAA task by applying image filters
to beautiful images. Here, the heuristic is that applying image filters such as brightness
or cropping to a well-lit and composed image, it becomes less aesthetically pleasing.

10.4. Output Principle: Loss Function

Loss Function

Idea Choosing or modifying the loss function or combining multiple loss functions
to better reflect the task’s goal and to incorporate additional knowledge
about the task.

Goal Guiding the model to a better solution faster.

Domain Knowledge used What does the task want to achieve? What kind of
task-dependent assumptions can be used to achieve this goal?

Type of Improvement Better generalizability, faster convergence, using different
task data effectively

Task Requirements None

Data Requirements None for the input data. Additional knowledge about the
task is incorporated into the loss, which comes from other data sources than
the training data. In case of multitask learning, additional output labels or
even additional input data may be necessary.

The loss function is a standard component of the DL model training process and
choosing a suitable one is crucial for the performance of the model and the convergence
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10. Principles for Improving DL Models

speed of the training. This differentiable function measures how accurate the model’s
predictions are and guides the model to improve them given its gradients. Different
loss functions emphasize different aspects that the model should pay attention to. The
knowledge about the needed emphasis is usually goal-driven: If, for example, a goal is
that outliers should be avoided, a loss function that penalizes large errors more than small
errors is needed. If the absolute output of the model is not as important as the relation
between different outputs, a ranking based loss might be more suitable than a regression
loss. Sometimes, the goal is to let the model extract useful features to be used in later
tasks. Then, the loss does not necessarily need to be related to the downstream task. Also,
multiple tasks could be solved simultaneously to let the model extract a broader range
of features [48]. Here, the loss function is a combination of the losses of the individual
tasks. The loss combination strategy needs to be chosen carefully in order to ensure that
all losses contribute accordingly to the overall loss. We explore a multitask pretraining
strategy in Chapter 16, where we define different tasks on a pretraining dataset that guide
the model to learn IAA related features. Modifying existing loss functions to incorporate
additional knowledge that is otherwise not captured by the loss function is also possible.
We explore this in Chapter 14 by enriching the Categorical Cross Entropy (CCE) loss
function with class similarities, which leads to lower losses when the NN predicts the
wrong, but closely related class.

As in the general DL training setting, the choice of loss function and its possible
adaptations is task specific. Classification, regression, and representation tasks usually
have different loss functions, as they want to achieve different goals. Loss functions are
independent of the input data modality, but depend on the task target. For example, the
CCE loss is used for multi-class classification tasks, independent of whether it is image
classification, text classification, or any other kind of classification. The desired output
for all multi-class classification tasks is a one-hot encoded vector over the possible classes.
Hence, the type of output is the same and thus the same loss function can be used. This
makes it possible to apply our proposed loss function modification in Chapter 14 to any
classification setup, whenever the additional knowledge about the class similarities are
known. Given other output structures or modalities, the loss function needs to be adapted
as well. For example, the Structural Similarity Index Measure (SSIM) Loss is used for
image regression tasks, where the goal is to predict an image. This loss function is specific
to images as outputs and cannot be applied in text tasks.

10.5. Hybrid: Combining Input and Output Principles

The discussed principles can be applied in isolation to a certain task. In some cases,
however, it can be beneficial to combine multiple principles. We call implementations
based on multiple principles hybrid methods. Sometimes, mixing multiple principles
might be necessary to avoid deterioration of the model’s performance. For example, in
Chapter 15, we explain a setting where using the Weak Label Generation principle
for text classification alone might not add any value, since the model would just learn
to imitate the weak label generation process. We thus explore the use of the Input
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Masking and Augmentation principle to let the model improve on the weak labels.
Another implementation we provide uses three principles at once: For the IAA task in

Chapter 16, we make use of the Input Masking and Augmentation principle, using
augmentations for Weak Label Generation. Given these labels, we introduce multiple
tasks with a multitask Loss Function to guide the model to learn useful features for the
IAA task. Altogether, this results in better performance metrics for the finetuned model
and substantially faster training times for the downstream task.
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11. Making Deep Metric Learning (DML)
Models More Robust to Background
Bias using Background Augmentation

After we have found evidence that DML models seem to pay attention to unnecessary
input properties when trained on images (see Chapters 7 and 9), we now explore the use
of image masking and augmentation to improve such models. In this section, we first
investigate the effect of the image background on DML models in more detail and then
propose a method based on the Input Masking and Augmentation principle to make
them more robust to it. The content of this section mainly follows our work in [130].

To recap, DML is the task of training a Neural Network (NN) to embed input items
(in this case, images) such that embeddings of similar items are closer together than
embeddings of dissimilar items [193]. This technique is often used in applications such
as face recognition, person reidentification, and item retrieval [119]. For instance in
item retrieval, a query image of an item is used to find semantically similar images by
identifying the closest images in embedding space. Two images are deemed similar if they
show the same item. Given this definition, the background of the images should not affect
the embedding process, since objects can be photographed in different environments and
thus appear in front of different backgrounds. Similar desired properties can be defined
for other DML applications such as person reidentification.

Previous analytical work for the different task of content classification shows that
NNs suffer from so-called background bias, i.e., they use information from the image
background to identify the image category. For example, image classifiers trained to
identify ships often focus on the water and not on the ship itself. This way, the classifier
is not able to identify ships on land [142].

Since DML does not classify images but embeds them as continuous vectors, the findings
on background bias from the literature are not directly transferable to these models.
However, our visual analysis in Chapter 9 indicates that sometimes, the background is
important for the DML model. If background bias was present in DML models, image
backgrounds would influence the embedding process. Then, taking a picture of an object
on the street or in a studio setup could lead to different search results when searched for
in item retrieval methods, resulting in performance degradations of the item retrieval
system. Figure 11.1 shows such a situation: Placing the bike in front of a brick wall or a
studio backdrop gives completely different nearest neighbor search results, given a model
that was trained on the Stanford Online Products (SOP) dataset. This is not desirable,
since the retrieval system should only take the main object — in this case the bicycle —
into account.
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11. Making DML Models More Robust to Background Bias

Figure 11.1.: Retrieval results for two query images (first column) based on the distance of
embeddings of a DML model trained on the Stanford Online Products (SOP) [253] dataset with
the Contrastive Loss [80]. The second query image shows the exact same object as the first one,
but we exchange the background using an image editing software. Ideally, the embeddings for
the two images should be similar since they show the same object, leading to similar retrieval
results. However, both queries result in very different retrieval results mostly based on background
similarity. While the first row only shows images that have a white background, the second one
only shows images with patterns resembling the brick wall background in the query image. This
behavior is not desirable in item retrieval systems.

We first investigate background bias in DML by conducting multiple experiments
on the three standard DML datasets (Cars196 [139], CUB200 [275], Stanford Online
Products [253]) and five different DML loss functions (see Section 2.4.3). We design a test
setting where we replace image backgrounds with other images and measure the retrieval’s
performance drop compared to the unmodified images; larger drops in performance
indicate that the model relies more on the background. We show that, depending on
the dataset, models can suffer from severe background bias. To combat this behavior,
we apply a simple but effective training strategy based on the Input Masking and
Augmentation principle that does not require any additional manual labeling work or
model changes and keeps the same inference times. Here, we extract the main object
from the images during training using a salient object detection method [213] and put
them onto randomly selected background images. We show that this technique, which
we call BGAugment, indeed improves performance in our test setting, even though no
foreground/background segmentation is available during testing, indicating that the model
learns to focus less on the background. To verify this, we qualitatively and quantitatively
analyze the resulting models and show that the model trained with BGAugment attends
more to the main object instead of the background, leading to better performance when
backgrounds change. For this, we introduce a metric that quantifies the focus of the
model on the foreground and background.
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11.1. Methodology

We first propose a test setting to quantify how prone the DML model is to background
bias. Given this measure, we can then propose our method to make the models more
robust to it. Given the test setting, we can measure the improvement of our method on
the DML setting.

11.1.1. Test Setting

In this section, we introduce our new test setting that quantifies the dependence of trained
DML models on the image background. Intuitively, the more a DML model attends
to the background of images to generate an embedding, the larger the change of the
embeddings when changing the image’s background. In turn, when randomly changing
the background of test images in the DML setting, the retrieval performance is expected
to drop substantially if the model pays much attention to the background.

We can assume that in item retrieval, the most salient object in an image is the object
that was intended to be photographed. Thus, for each image I ∈ Rh×w×3 (RGB image
with width w and height h) in the test dataset D, we identify the main object and create
a binary mask M ∈ [0, 1]h×w separating the most salient object from the background
(1/white denotes main object, 0/black denotes background). In order to obtain such
masks, we use the salient object detection NN U2-Net [213]. It is designed to detect the
most salient regions — in our case the main object — in the image and outputs a binary
mask that separates the object from the background. We verify the segmentation quality
of the network by computing the average overlap of generated and hand-annotated masks
on a randomly sampled subset of images for each tested dataset. Overlap is defined as
the percentage of the ground truth foreground area that is also covered by the generated
mask. We use overlap as a metric since it is more important to cover the relevant parts of
the image than removing the background. On average, the automatic mask generator has
an overlap of more than 90% with the manual annotated binary masks for all datasets,
so the generated masks mostly cover the relevant parts of the image.

In addition to the image I and mask M, we collect a dataset of background images
scraped from the popular stock photo website Unsplash1. We filter the dataset such
that no obvious foreground objects are present in the images. The resulting background
image dataset B contains one hundred images and shows solid colors, color gradients,
background objects, and abstract patterns.

During testing, for each image I, we sample a background photo B ∈ B to create a new
test example I′ with

I′:,:,c = M · I:,:,c + (1−M) ·B:,:,c (11.1)

for each color channel c ∈ {red, green, blue}. Here, · is the element-wise multiplication
and 1 = 1h×w, i.e., a matrix with the same size as M consisting of ones. We call the
newly created test dataset D′ the “corrupted” test set, while the original test dataset
D is called the “clean” test set. Both datasets D and D′ are fed separately through the

1Scraped from https://unsplash.com/s/photos/background on 2022-05-13
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Training Example Removed Background

Random Backgrounds

BGAugmented 
Training Example
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(using Salient Object 

Detection Model) sample and
combine

Figure 11.2.: Illustration of the BGAugment method. The background of each training image
is replaced with a randomly sampled background image. This decorrelates the background of
images with their embeddings.

trained model and a common evaluation metric is computed for the resulting embeddings.
Here we use Mean Average Precision at R (MAP@R) [193]. We can then observe the
drop in performance from the clean to the corrupted dataset. In order to average out the
influence of background samples, we run our test setting five times and report means and
standard deviations.

11.1.2. BGAugment: Background Replacement During Training

In order to combat background bias in DML, we apply a simple but effective strategy
during training inspired by the literature about background bias in classification networks.
We call this method BGAugment and show it in Figure 11.2. Similar to the test setting
description, we replace the background of input images. However, we do this during
training and validation. To not interfere with the background images used in the test set,
we collect another one hundred background images from Unsplash.

During each training iteration, we sample a random background image for each training
image and use the automatically generated binary mask from the salient object detection
model to replace the image background. Since we use a pretrained salient object detection
model [213], there is no need for additional manual data labeling. Also, since we do not
apply the background replacement during inference, there is no computational overhead
when applying the model in production. Additionally, BGAugment only touches the data
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loading process, leaving all other training components such as the model or loss function
intact, allowing for fast adoption of this technique.

11.2. Experiments

In our experiments, we compare five different loss functions. Given our insights from
Chapters 7 and 9 that there are differences between classification and ranking based losses,
we evaluate overall five loss functions: the three ranking losses Contrastive Loss [80],
Triplet Loss [288], and Multi Similarity Loss [284], as well as the two classification losses
ArcFace Loss [47] and Normalized Softmax Loss [159, 276, 312]. This should allow us to
identify differences in their performances. We perform experiments on the three standard
benchmark datasets for DML: Cars196, CUB200, and SOP.

11.2.1. Training and Evaluation Setup

We mostly follow the training procedure described by Musgrave et al. who design a
fair setting to compare different DML loss functions [193]. As a model base, we use
a BatchNorm Inception [108] network pretrained on ImageNet [46] with frozen Batch
Normalization layers. The last fully connected layer is replaced to output 128-dimensional
vectors. The outputs are normalized to unit length to stabilize training. The model is
trained with a learning rate of 10−6 on the first 80% of training classes and validated on
the remaining 20%. Musgrave et al. report the best hyperparameters for each loss function
on each dataset by conducting a cross validation. We adopt these hyperparameters for
our experiments and use them for all tested methods, i.e., there is no difference in
hyperparameters for the BGAugment runs. While a dedicated hyperparameter search
might improve the performance, we want to investigate how well BGAugment performs
when just applied to an existing model setup. More information on the training process
can be found in the original paper by Musgrave et al. [193].

11.3. Results

Table 11.1 shows the means and standard deviations of the MAP@R [193] for our
experiments. Depending on the dataset, the drop in performance from the clean to the
corrupted test set can be severe. While for Cars196, the performance drops by only
around 2 to 3 percentage points for all loss functions, CUB200 and SOP show much
larger differences (approx. 8 and 34 percentage points, respectively). That gives a
relative performance drop of around 20%, 40%, and 85% for Cars196, CUB200, and SOP,
respectively. Even though the performance of all models on the corrupted dataset is still
better than randomly sampling embeddings, the drop in performance is substantial. We
hypothesize that this is due to the training datasets’ properties. The images in Cars196
show cars in different environments, so the background does not often correlate with the
similarity between images. Since the birds in the CUB200 dataset are shown in their
natural habitat, the environment gives clues about the similarity between images. For
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11. Making DML Models More Robust to Background Bias

Table 11.1.: Mean and standard deviations of MAP@R for our experiments. All values are given
in percent. The best results between the vanilla and BGAugment models are written in bold.

Cars196 CUB200 SOP
clean ↑ corrupted ↑ clean ↑ corrupted ↑ clean ↑ corrupted ↑

Contrastive 15.22 13.31 ± 0.15 20.27 12.47 ± 0.08 37.98 4.17 ± 0.05
+ BGAugment 16.43 16.31 ± 0.03 19.39 15.46 ± 0.08 31.52 24.09 ± 0.04

Triplet 15.33 13.40 ± 0.04 18.29 10.94 ± 0.05 36.71 6.05 ± 0.06
+ BGAugment 15.28 15.19 ± 0.05 18.56 15.33 ± 0.16 29.63 21.39 ± 0.07

Multi Similarity 18.80 16.25 ± 0.06 19.19 12.21 ± 0.16 39.65 6.51 ± 0.06
+ BGAugment 15.61 15.48 ± 0.05 18.93 15.65 ± 0.16 32.67 24.00 ± 0.07

ArcFace 16.25 13.63 ± 0.08 20.66 12.87 ± 0.16 40.50 6.98 ± 0.05
+ BGAugment 16.19 16.23 ± 0.04 20.91 17.92 ± 0.08 22.25 16.53 ± 0.05

Normalized Softmax 18.06 15.36 ± 0.03 20.18 12.41 ± 0.10 41.52 7.67 ± 0.04
+ BGAugment 18.15 18.12 ± 0.05 20.60 17.39 ± 0.10 32.16 24.60 ± 0.03

example, there are waterbirds and landbirds in the dataset, thus the background features
can be used to differentiate between them. The background influence is the strongest
for the eBay product images in the SOP dataset. Images of one product are often taken
in the same environmental conditions. The DML model then picks up these features to
embed the image, since they are similar across images of one class and thus can be used
to find similarities between the images.

Between loss functions, we observe no large difference in drops and overall performance
on all datasets, indicating similar vulnerability to background bias of ranking and clas-
sification based losses. The use of BGAugment improves the models’ performance on
the corrupted dataset, except for the Multi Similarity Loss on the Cars196 dataset. On
Cars196 and CUB200, BGAugmented models perform similarly or even outperform their
base model on the clean dataset. This means that the backgrounds of images in Cars196
and CUB200 are not necessary to achieve good performance.

On the other hand, applying BGAugment to models trained on SOP improves the
performance on the corrupted dataset significantly but shows large performance drops on
the clean dataset. We hypothesize that the high performance without BGAugment is only
achievable by exploiting the background. In other words, the good performance of models
on the clean SOP dataset is misleading in terms of item retrieval, since the models are
not able to keep up the performance when backgrounds are exchanged during training.
In realistic item retrieval settings, query images most often show other backgrounds than
the images in the database.

11.4. Analysis

To better understand the improved test performance of BGAugment, we visualize the
input pixels the models are most sensitive to, using the DML attribution map generation
method introduced in Chapter 9. Figure 11.3 shows attribution maps of the Normalized
Softmax Loss model trained with and without BGAugment. BGAugment has a darker
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Figure 11.3.: Four images from the CUB200 test set and their corresponding attribution maps
(Normalized Softmax Loss model with and without BGAugment). The model focuses more on
brighter areas. The base model shows some attention on the background, while the BGAugment
model has sharper focus on the main object.

background area and thus focuses more on the main object in the image.
To quantify this, we introduce a new metric that measures how much of the model’s

focus is on the main object. Given a ground truth mask M ∈ [0, 1]h×w and an attribution
map A ∈ Rh×w

+ of a model for an image I ∈ Rh×w×c. Our ideal metric has the following
desired properties: (1) The best possible value is one, i.e., the model attends to only
the foreground area. (2) If the model does not focus on anything, but rather distributes
its attribution uniformly, the metric’s value should be zero. This makes it possible to
compare two images where the foreground areas are of different size. If, for example, the
main object has double the pixel count, then a naive metric that measures the percentage
of attribution that is on the foreground is also doubled when the attribution is in fact
uniformly distributed. We thus need to account for the size of the foreground object in
the metric. Overall, we propose the following score:

f(M) =
∑
i,j

Mi,j

w · h =
1

w · h
∑
i,j

Mi,j // percentage of foreground

(11.2)

a(M,A) =

∑
i,j Mi,j ·Ai,j∑

i,j Ai,j
// percentage of attribution on the foreground

(11.3)

score(M,A) =
a(M,A)− f(M)

1.0− f(M)
// final score normalized by foreground size

(11.4)

Our previous experiments have shown the dependence of models on the background
only indirectly, by showing that their performance drops substantially when replacing
backgrounds. With this metric, we can directly quantify the attribution that the model
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Table 11.2.: Means and standard deviations for our analysis using our proposed metric (Equa-
tion (11.4)) to quantify the attribution of the model on the foreground. Lower values indicate
larger dependence on the background.

Cars196 ↑ CUB200 ↑ SOP ↑
Contrastive 0.50 ± 0.09 0.25 ± 0.08 0.07 ± 0.16
+ BGAugment 0.53 ± 0.10 0.32 ± 0.10 0.31 ± 0.20

Triplet 0.50 ± 0.09 0.24 ± 0.08 0.08 ± 0.17
+ BGAugment 0.54 ± 0.09 0.33 ± 0.09 0.26 ± 0.22

Multi Similarity 0.52 ± 0.09 0.26 ± 0.08 0.11 ± 0.17
+ BGAugment 0.50 ± 0.09 0.30 ± 0.09 0.28 ± 0.19

ArcFace 0.49 ± 0.10 0.25 ± 0.08 0.13 ± 0.14
+ BGAugment 0.56 ± 0.10 0.33 ± 0.09 0.26 ± 0.17

Normalized Softmax 0.51 ± 0.09 0.24 ± 0.08 0.12 ± 0.14
+ BGAugment 0.56 ± 0.09 0.30 ± 0.08 0.28 ± 0.20

assigns to the foreground. Lower values thus signal more dependence on the background.
If the metric is negative, the model attends more to the background than the foreground.
Overall, the metric can achieve values in the interval (−∞, 1]. We apply it to all trained
models and test datasets and show means and standard deviations in Table 11.2. It shows
that models trained with BGAugment achieve higher values than their basic training
counterparts, i.e., are less dependent on the background. Overall, however, none of the
mean scores is negative, meaning that models trained without BGAugment are also
focusing on the foreground for the most part.

11.5. Conclusion

We have shown that DML suffers from background bias. Our experiments show that
performance can drop substantially when backgrounds are exchanged. Exchanging image
backgrounds during training using a salient object detection network improves performance
while having neither model changes, additional parameters, nor increased inference time.
Our qualitative and quantitative analyses confirm that models trained this way focus more
on the foreground, leading to better robustness regarding background changes. While
automatically generated masks from the state-of-the-art salient object detection network
mostly isolate the relevant object, masking accuracy is not perfect. Our hand-annotated
samples show that, on average, up to 10% of the ground truth foreground is not present
in the generated mask. While this might partially explain the performance drop in
our experiments, we can observe the dependence of standard trained models on the
background in Figure 11.3 without needing to trust the mask generation process.

Investigating and combating background bias in DML is beneficial to the development
of retrieval settings such as item retrieval or person reidentification systems. Our work
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suggests that such systems need to be trained carefully in order to find relevant images
without simply relying on unimportant background information. Implementing the Input
Masking and Augmentation principle can help substantially.
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12. Using Contrastive Language-Image
Pre-Training (CLIP) for Image
Aesthetics Assessment (IAA)

We now introduce a first implementation of the Feature Extraction using Pretrained
Multimodal Models principle that mainly follows our work in [90]. Here, we use the
large multimodal model CLIP [214] to solve the IAA task. CLIP is pretrained on a large
dataset of images and texts. We freeze its weights during its usage for the downstream
task. Technically, due to not optimizing its weights, we argue that it is not a trainable
model as in our definition of the Deep Learning (DL) training setup. We instead use
CLIP as a fixed general feature extractor for images and texts, i.e., a preprocessing step in
the input pipeline, using our domain knowledge that it should be able to extract aesthetic
features. These features can then be used to train a model on the target dataset or can be
combined with knowledge expressed in another modality to solve the task in a zero-shot
setting. In this section, we describe both of these methods and show that they can be
used to solve the IAA task, making it easy to reduce the number of trainable parameters
of the model.

Usually, IAA methods based on Deep Neural Networks (DNNs) are built on top of models
that were trained on the ImageNet classification task [94, 122, 149, 167, 242, 265, 311]. We
argue that content classification is not well-suited as a pretraining task for IAA methods,
since the model is optimized to be invariant to important factors of image aesthetics, e.g.,
contrast, lighting, or composition, as these are not important to identify the content of
an image.

In contrast to content classes, natural language can provide much richer descriptions.
Among others, it can describe styles (“a high-contrast image of a dog”, “a black-and-white
portrait”), compositions (“a man standing next to a chair”, “an image of a house with
the sun in the upper right corner”), or can even directly express the subjective feeling of
aesthetics (“a beautiful sunset”, “an ugly sweater”). We hypothesize that models trained
using natural language supervision are better suited for the IAA task, since they extract
broader and more useful features, since they can be related to a larger set of concepts.
In this section, we utilize the CLIP [214] model for our experiments. We have given an
introduction to CLIP in Section 2.3.4. In the original paper, CLIP’s capabilities only
have been shown on content classification datasets [214]. For the IAA task, however, the
extraction of both, content and style features is important, so it is not obvious that CLIP
is able to perform well on this task. We hypothesize that, due to the language guided
training objective, CLIP’s image encoder also extracts useful features for the IAA task,
such as lighting, composition, and properties of beauty ideals, such that it serves as a
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better base model for IAA networks than commonly used ImageNet classification models.

frozen CLIP Image Encoder

frozen CLIP Text Encoder

frozen CLIP Image Encoder

Linear Layer

“An outstanding picture” “A horrible picture” prediction

Cos. Sim.

prediction

Prompting Linear Probing

0.6

8.2

Figure 12.1.: A schematic overview of our investigation on the suitability of CLIP as a base
model for the Image Aesthetic Assessment task. Hatched elements are components with frozen
weights. Prompting does not modify any parameters, leading to a Zero-Shot Learning (ZSL)
scenario by eliminating the trainable model from the standard DL training setting. Linear
Probing, on the other hand, trains a Linear Regression (LR) on top of the last hidden activations
of CLIP’s image encoder.

To test our hypothesis, we conduct a study to investigate the suitability of CLIP for the
IAA task, which in turn shows the effectiveness of the Feature Extraction using Pretrained
Multimodal Models principle. As a ground truth for this very subjective task, we utilize
the Aesthetic Visual Analysis (AVA) dataset and estimate CLIP’s performance on the IAA
binary classification task (“aesthetic”/“not aesthetic”) and ranking of images (predicting
a mean aesthetic score over user ratings). A schematic overview of our two approaches
is shown in Figure 12.1: We use prompting, which uses no trainable parameters (i.e.,
Zero-Shot Learning (ZSL) for this task), and Linear Probing, which uses CLIP as a fixed
feature extractor for a linear layer. We compare the results to state of the art IAA models
and an ImageNet pretrained Vision Transformer (ViT) with a comparable model size
as the CLIP image encoder. With this, we hope to show that CLIP’s features are more
suitable for the IAA task than ImageNet features, which is commonly used as a base
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model in the literature. Also, following most IAA methods [94, 167, 242, 265, 311], we
finetune both the ImageNet ViT and CLIP’s image encoder on the AVA training dataset
to have an upper limit of how well CLIP might perform when using it as the trainable
model.

As a first experiment, inspired by CLIP’s ability to classify images without explicit
training using only natural language prompts [214], we test multiple ways of prompting
CLIP to estimate the aesthetic appeal of images. We use fixed prompts, add context
to better reflect the content of images, and create ensembles of prompts for binary
predictions. To overcome the issue that only classification tasks can be solved by finding
the most similar text prompt, we introduce a method to convert multiple positive and
negative prompts to a continuous score by calculating a weighted sum over the prompt
similarities. Our results show that plausible, carefully chosen prompts can beat simple
baselines without any model training, which shows that CLIP extracts features correlated
with subjective adjectives such as “outstanding” or “horrible”. This shows that we are
able to solve this task using only a pretrained model without any additional training, i.e.,
excluding the trainable model from the DL training framework.

Second, we use CLIP’s image encoder as a static feature extractor and train a Linear
Regression (LR) on top of it, called Linear Probing [214]. We compare the results to the
same regression optimized on features extracted from a comparable Vision Transformer
(ViT) [50], which has been pretrained on the ImageNet classification task. We show
that CLIP’s features substantially outperform ImageNet features, indicating that they
extract more useful information for the IAA task from the image. In fact, Linear Probing
CLIP achieves a performance competitive to fully finetuned ImageNet models, while only
optimizing 768 model parameters. This shows that feature extraction using a pretrained
multimodal model can give competitive results, minimizing the size of the trainable model
in the DL training setting. Overall, our investigations show that CLIP is well-suited as a
base model for the IAA task, since it extracts more useful features from the image, even
with frozen weights.

12.1. Methodology

We explore multiple methods that make use of the fixed CLIP model. We start with
different variants of prompting, which is a method that has been used to show that CLIP
can solve classification tasks without any training [214]. Here, we explore different styles
of prompting to assess the best possible performance without training any model. We also
perform Linear Probing, where we train a linear classifier or regressor on top of the fixed
CLIP image encoder. This introduces a small trainable model. We later evaluate the
methods on the binary as well as continuous tasks for IAA, as described in Section 3.2.

12.1.1. Prompting

CLIP has been shown to have good “zero-shot” performance on classification tasks by
prompting the network with text inputs based on the desired labels and measuring the
similarity to the image’s feature vector. More formally, CLIP’s image encoder represents
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an input image (resized and center-cropped to 224 × 224 pixels) as a 512-dimensional
vector i. CLIP’s text encoder encodes all possible class labels C, getting 512-dimensional
vectors tc for c ∈ C. Often, string templates, i.e., text strings that allow the insertion
of variable values into specific designated locations within them, are used to embed the
class labels into a coherent natural language text prompt before feeding it into CLIP’s
text encoder [214]. The label whose vector has the highest cosine similarity to the image
vector argmaxc∈C cos(i, tc) is chosen as the prediction.

It is important to note that there is no training involved in this method. Since CLIP
was trained on natural language, any text label can be used for the classification task. In
our setting, we use adjectives used to describe aesthetic or unaesthetic images as labels,
e.g., “beautiful” or “ugly”. To collect possible labels, we search synonyms for “ugly” and
“great” in WordNet [183] and augment the list of positive adjectives with “beautiful” and
“pretty”, since these were not part of the list. Overall, we get 27 positive and 12 negative
words.

Given descriptive words for aesthetic or unaesthetic images, we can construct prompts
by embedding them into a string template that are then used to measure the similarity to
the image vector. In the following, we describe and experiment with different prompting
methods that we term as fixed prompts, prompts with context, and ensembling. All the
prompting methods are designed for classification tasks, thus are naturally applicable to
the binary classification task of IAA. Predictions are made by finding the most similar
prompt to the image. For the continuous task, however, it is necessary to predict a single
scalar score that encodes both, positive and negative image aspects. We thus propose a
simple but effective strategy to compute scores from prompts.

Intuitively, prompts that suit an image better should be more similar to the image’s
embedding, while non-fitting prompts are less similar. Thus, high similarity between a
positive prompt and the image should lead to a high image aesthetic score. Correspond-
ingly, if the negative prompt has high similarity, the score should get lower. We build on
this intuitive idea and calculate the predicted score for an image and all prompts we use
by weighting the similarity of each prompt to the image with one or minus one, depending
on the prompt’s incentive:

score(I) =
∑
c∈C

simcos(i, tc) · wc (12.1)

wc =

{
1, if c is a positive label
−1, if c is a negative label

. (12.2)

Since the cosine similarity simcos is in range [−1, 1], very dissimilar negative (positive)
prompts make the score prediction higher (lower). In the following, we describe the
prompting methods we explore.
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Fixed Prompt

Our fixed prompt approach utilizes exactly two prompts, one for aesthetic images, one for
unaesthetic images. Both prompts are formed using the string template “a [label] picture”,
where [label] is either a positive or a negative word from our list of adjectives.1 Given
these two prompts, we find the one more similar to the image using CLIP and predict its
label for the binary classification task. The weighted score prediction described above is
used for the continuous task.

Context-Aware Prompts

Fixed prompts do not account for the content of the image. Instead of the generic prompt
“a beautiful picture”, we hypothesize that it is better to include the content of the image,
e.g., “a beautiful picture of a dog”. This specification of the text prompt moves the
encoded prompt vectors closer towards the image vector, thus reducing noise in similarity
measurements and maybe helping with the improvement on the IAA task. Since it is
not known what is in the photo, we use the text descriptions of all 1000 ImageNet [46]
classes.2 We then construct a prompt using the string template “a [label] picture, of a
#[content class]i”, where [content class]i is the ith class name of ImageNet. Including the
content as a hashtag showed performance improvements in preliminary experiments and
accounts for the internet-based origins of the dataset used to train CLIP.

Instead of two prompts as with the fixed prompt approach, we now have 2000, i.e.,
1000 for each positive/negative label. The label of the closest text prompt to the image
vector is used as the prediction in the binary task, while the weighed score is calculated
across all prompts in the continuous setting.

Ensembling

Our ensembling approach is structurally similar to the context-aware prompts. However,
we condense the 2000 prompts down to two vectors by averaging all prompt vectors of
each aesthetic label.

12.1.2. Linear Probing

Most IAA models use a classification Neural Network (NN) pretrained on ImageNet [46].
We also want to investigate the question whether CLIP’s features (as taken from the
pretrained model) are more suitable for the IAA task than features from an ImageNet
classification model. Intuitively, CLIP extracts broader features than an ImageNet model,
since for classification, only the content of the image is important. Features describing
certain aspects of the image are not needed for classification, especially features like

1In preliminary experiments, we found that only giving the adjectives as prompts did not work well and
“picture” in the prompt string template usually performed better than other words like “photo” or
“image”.

2Class names from https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a (last accessed: 2023-02-
10), using only the name up to the first comma for each class.
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12. Using CLIP for IAA

lighting, contrast, and other properties of the image that are important for IAA. On the
other hand, CLIP’s language-based training learns broader features, since language is
more descriptive and thus more nuanced than class labels.

For the experiments in this section, we train a LR on the features of CLIP’s image
encoder to predict AVA’s training images’ mean score. We take the activations from the
last layer before the output, which provides 768-dimensional feature vectors. The output
of the LR model is a scalar value, which is thresholded at five to predict binary classes
(as are the labels) while staying untouched for the continuous task.

12.2. Experiments

In this section, we present the experiments we conduct to investigate the usefulness of
CLIP’s features for the IAA task. We apply each of the prompting as well as the Linear
Probing methods to the binary and continuous IAA tasks. We evaluate the results using
the AVA dataset and the common metrics for the IAA task, i.e., Accuracy for the binary
task and Spearman and Pearson correlation coefficients for the continuous task. For our
experiments, we always use CLIP’s “ViT-B/32” variant for the image encoder.

For the fixed prompt method, we evaluate all combinations of positive and negative
prompts from our collection of adjectives. The labels performing best on AVA’s training
dataset for the binary task are “outstanding” and “atrocious” for positive and negative
prompts, respectively. For the continuous task, “outstanding” and “horrible” perform best
on the training dataset based on the Spearman correlation. We use these combinations
for our evaluation setting.

When adding context to the prompts, we find that “smashing”/“horrible” are the best la-
bels to use for the binary task on the training dataset. In the continuous setting, the labels
“outstanding”/“horrible” perform best. In the ensemble setting, “outstanding”/“horrible”
are the best labels in the binary as well as the continuous task. Generally, “outstanding”
and “horrible” can be seen as sensible defaults that always perform well and almost always
best.

Baselines

We compare our results to results reported in the literature. We train and test our
methods on the same datasplit as MPada [242], A-LAMP [167], [311], and MUSIQ [122]
and compare our results to these methods. Note that PA_IAA [149], NIMA [265], and
MLSP [94] certainly train and validate their models on a different dataset split as the
other models, thus their stated test results are only mentioned for reference. To allow a
fair comparison, we display the results of a NIMA reimplementation [148] that has been
trained on the same datasplit as the other models. In addition, we train and evaluate
MLSP on our datasplit using the code for the original implementation of MLSP provided
by Hosu et al. [94].

We also introduce a simple Majority Voting baseline that always predicts the positive
class in the binary classification task. Since the distribution of labels is skewed towards
aesthetic images, always predicting the positive class already gives 70.3% accuracy. Due
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to no variation in the predictions, correlations cannot be computed, thus this baseline is
not available for the continuous task.

In order to better estimate the performance gain of using CLIP instead of the commonly
used ImageNet pretrained models, we compare our results for the Linear Probing method
with results obtained by using features from a ViT3 [50, 292] that is very similar in size to
CLIP’s image encoder (also of type “ViT-B/32”), but was trained on ImageNet21k [223].
According to Radford et al. [214], the architectural difference between ViT and CLIP’s
image encoder are additional layer normalizations and a slightly different initialization
scheme. We thus argue that it is fair to compare both models.

Finally, as an upper-bound for what can be achieved with a CLIP based model, we
also finetune CLIP and the Vision Transformer on the AVA training dataset. We replace
the last layer of both models with a linear layer with ten outputs, each representing one
possible score. A softmax activation function converts the outputs into distributions that
can be compared to the target score distribution. We employ the Earth Mover’s Distance
(EMD) loss [233] as utilized by Neural Image Assessment (NIMA) [265] and finetune the
models using a batch size of 128, the Stochastic Gradient Descent (SGD) optimizer with
momentum of 0.5 and a learning rate of 0.01 for the classifier head and 0.0001 for the
rest of the model. Besides resizing and center-cropping the images to 224× 224 pixels, no
data augmentation is applied. Early stopping trains the model until the loss on a 10%
subset of the training data does not improve for ten consecutive epochs.

12.3. Results

Table 12.1 shows the results of all our models. Using fixed prompts (row “Fixed Prompt
CLIP”) already shows better performance than always predicting the majority class. On
the continuous scale, the predictions have moderate correlations with the ground truth.
This indicates that CLIP extracts features from images that correlate with descriptive
adjectives such as “outstanding” or “horrible”.

Adding context to the prompts (row “Context-Aware Prompt CLIP”) improves the
results in all evaluation metrics, especially in the continuous task. To better understand
the effects of adding content classes to the prompts, we visualize some test images with
their binary prediction, their actual AVA mean score, as well as the content class that was
used in the most similar prompt in Figure 12.2. We can observe that the closest content
class tends to describe the content quite well or approximates its visual appearance. The
predicted binary aesthetic label is mostly correct. Overall, the use of content classes
improves the results by moving the text prompt vector closer to the image vector. Then,
the choice between an aesthetic and an unaesthetic image is made depending on the
content of the image.

Ensembling the context-aware prompts into two vectors (row “Ensembling Prompt CLIP”
in Table 12.1) further improves the binary task performance while being computationally
less expensive, since only two instead of 2000 comparisons have to be done for each image.

3The pretrained model can be downloaded with the timm Python library under the model name
’vit_base_patch32_224_in21k’.
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Table 12.1.: Comparison between the results of all our models and the results of existing models,
which were published in their respective papers. “n/a” refers to metrics not stated in the original
work. Methods with “—” for Spearman and Pearson correlation are only designed to solve the
binary task. Methods in grey rows do not state the used training/test split or do not use the
same split as ours, thus we only reference them for context. In the case of NIMA, we refer to
the results of a reimplementation trained on the correct datasplit [148]. For MLSP, we use the
original code provided by Hosu et al. and train it on our datasplit. The other models use the
same training/test split as our work.

Method Accuracy ↑ Spearman ↑ Pearson ↑
PA_IAA (Inception-V3) [149] 0.837 0.677 n/a
NIMA (Inception-V2; paper results) [265] 0.815 0.612 0.636
MLSP (InceptionResNet-V2; paper results) [94] 0.817 0.756 0.757

Majority Voting Baseline 0.703 — —
MPada [242] 0.830 — —
A-LAMP [167] 0.825 — —
Zeng et al. (ResNet101) (2020) 0.808 0.719 0.720
MUSIQ [122] 0.815 0.726 0.738
NIMA (MobileNet; reimplementation) [148] n/a 0.626 0.609
MLSP (InceptionResNet-V2; original code
trained and evaluated on our datasplit) [94] 0.808 0.714 0.728

Finetuned ViT (ImageNet21k) 0.793 0.660 0.675
Finetuned CLIP 0.816 0.731 0.741

Fixed Prompt CLIP 0.725 0.435 0.453
Context-Aware Prompt CLIP 0.737 0.539 0.554
Ensembling Prompt CLIP 0.756 0.539 0.554

Linear Probing ViT (ImageNet21k) 0.767 0.574 0.587
Linear Probing CLIP 0.800 0.683 0.694
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Figure 12.2.: Example images with the binary prediction by the Context-Aware Prompts for
CLIP, the actual score by AVA (in parenthesis), and the content of the prompt with the highest
similarity to the image. The predictions and actual scores are colored to easily find the predictions
that are correct or wrong. Image credit is given in gray (name or username of photographer on
dpchallenge.com).

Overall, our prompting results show that CLIP extracts features that can be used for
the IAA task. These features correlate with text prompts describing the corresponding
aesthetic value of the image. Overall, the labels “outstanding” and “horrible” are well
suited for this task. In an application, it might be possible to get acceptable results if
only a pretrained CLIP model is available.

In our Linear Probing method, we train a LR on top of the features of CLIP’s
penultimate layer. Due to the training, the results exceed the prompting approach by
approx. 4% points in Accuracy and approx. 0.14 in correlations (see row “Linear Probing
CLIP”). Compared to the ImageNet pretrained ViT baseline, using CLIP as a static
feature extractor is much more effective for the IAA task. It achieves approx. 3% points
higher accuracy and improves both correlations by approx. 0.1. In fact, our results
approach competitive performance to IAA models that optimize all network weights,
such as the method introduced by Zeng et al. [311]. Their method finetunes a ResNet101
pretrained on ImageNet using the Cross Entropy (CE) loss, while also changing the target
score distributions based on manual examination of AVA’s target labels. Our results
are obtained by simply minimizing the Mean Squared Error (MSE) of the predicted
and target mean score. Using more sophisticated loss functions and target labels might
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Figure 12.3.: Visualized weights of the LR trained on AVA. While the ImageNet-pretrained
Vision Transformer (ViT) uses mainly one feature in the estimation of the target score, CLIP’s
features are more broadly used. Together with the fact that the LR on CLIP features outperforms
ImageNet features, this indicates that CLIP’s image features encode more useful and broader
information for the IAA task.

improve the results while still only requiring few parameters to optimize.
While the prompting and Linear Probing approaches show good performance without

any training or with only few trainable parameters, they are not as effective as finetuning
the whole model. The results in the row “Finetuned CLIP” show that the finetuned
CLIP model performs better than our other methods. One thing to notice is that it
performs better than the ImageNet pretrained ViT baseline, which gives evidence that
CLIP is a better base model for the IAA task than an ImageNet pretrained model. Most
notably, the CLIP model achieves the highest Pearson and Spearman correlations for the
models trained and evaluated on the same dataset split as ours. It also achieves the best
Accuracy when only compared to methods that are designed to output continuous scores.
Compared to the previous experiment, both models improve on their Linear Probing
counterpart. However, Linear Probing CLIP achieves better performance on all metrics
than the finetuned ImageNet model while optimizing a fraction of the parameters.

In conclusion, while our methods implementing the Feature Extraction using
Pretrained Multimodal Models principle do not exceed full finetuning in terms of
performance, they are much more efficient in terms of computational resources. They
require no to only few trainable parameters and can be applied to the pretrained CLIP
model, that might be available in applications for other tasks, such as content classification.

12.4. Analysis

To better understand the difference between CLIP’s and ViT’s features, we visualize the
768 weights from the trained Linear Regression in Figure 12.3. For this, we scale the
LR weights by the standard deviation of the input features to alleviate the impact of
differences in the features’ value ranges. The visualization shows that the LR mainly
focuses on only one dimension of the ViT features but on a broader set of features from
CLIP. Thus, the features from CLIP are a better starting point to predict the aesthetic
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Table 12.2.: Linear Probing results for similar ResNet-50 [86] models. CLIP models trained on
similarly sized datasets as ImageNet21k still outperform the baseline model. The performance of
CLIP on AVA improves with larger dataset sizes.
Method Num. Training Images Accuracy ↑ Spearman ↑ Pearson ↑
ResNet-50 (ImageNet21k) approx. 14 million 0.758 0.554 0.567

ResNet-50 OpenCLIP (Conceptual 12M) approx. 12 million 0.777 0.623 0.631
ResNet-50 OpenCLIP (YFCC-15M) approx. 15 million 0.793 0.662 0.673
ResNet-50 CLIP (OpenAI) approx. 400 million 0.793 0.674 0.682

score of images, since the LR model can combine more useful features. Overall, we can
summarize that CLIP as a static feature extractor is better suited for the IAA task than
a classification based feature extractor.

An alternative hypothesis would be that the improvements stem from the amount of
data CLIP has been trained on (400 million image-text pairs) compared to the ImageNet-
ViT (approximately 14 million images). To rule this out, we compare a ResNet-50 [86]
trained on ImageNet21k to ResNet-50 image encoders from OpenCLIP [107] trained on
the Conceptual 12M [35] and the YFCC-15M (a subset of the YFCC-100M dataset [266])
datasets. These datasets comprise of approx. 12 and 15 million image-text pairs,
respectively, so are comparable in size to the ImageNet21k dataset. The results for the
Linear Probing of these models in Table 12.2 show that both CLIP models show better
performance than the ImageNet21k model. This provides more evidence that the dataset
size is not the reason for CLIP’s performance improvement, but the quality of the training
data and its training task.

12.5. Conclusion

In our prompting experiments, context-aware ensemble prompts work best. Since we
do not know the correct content of the image, we have tried all class names of the
thousand ImageNet classes. While this seems to work quite well, it is not clear if the
chosen class names are the best choice for this task. Since each ensemble is represented
by only one feature vector, more content descriptions could be added without larger
computational requirements during inference. Future work might evaluate more and
different content descriptions, e.g., all class names of the ImageNet21k dataset or using
Knowledge Graphs such as ConceptNet [254]. Automatically generating image captions
for the image content and using these for more targeted prompting is also an interesting,
though more computationally expensive, research direction [184].

Our experiments have shown that the performance improves with the number of trained
parameters, but using prompt ensembles alone already shows acceptable performance
for many real-world tasks. Given that CLIP shows good performance on many different
datasets without explicit training [214], we see high potential for CLIP in image databases,
such as personal photo collections. It may be possible to store CLIP features for each image
and use them to perform tasks like searching for contents using text [16], finding similar
images, or creating image descriptions [184]. Our work shows that finding aesthetically
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pleasing pictures is another task that can be done with a pretrained CLIP model.
We have investigated the suitability of CLIP, a model jointly trained with image-text

pairs, as a static feature extractor for the IAA task. We have tested multiple methods with
different levels of computational complexity, namely prompting in different variations and
Linear Probing. All experiments have led to the conclusion that CLIP extracts features
from images that are related to human’s image aesthetic perception due to its training on
images and their corresponding human-generated descriptions. In our experiments, CLIP
features always outperform features extracted from an ImageNet classification model,
which is the base model in most IAA papers. We can thus use this pretrained multimodal
model as a preprocessing and feature extraction step for a variety of tasks, improving the
range of tasks that can be done without specifically trained NNs.
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13. Zero-shot Deep Metric Learning
(DML) with CLIP

In this section, we again use CLIP as a static feature extractor for images and texts.
Here, we implement the Feature Extraction using Pretrained Multimodal Models
principle for the DML task, which is a representation task. Two inputs, here images,
should be mapped to similar vectors when deemed similar by a given similarity notion.
We introduce a way to simply describe this similarity notion with text and use it to train
a model that maps images to vectors that reflect the similarity notion. This way, we can
incorporate additional domain knowledge about the similarity notion expressed as text
into the model. We mainly follow our work in [135].

As already discussed, DML is the task of training Neural Networks (NNs) that map
input items to a low-dimensional manifold such that similar items are represented by
vectors close to each other [119, 193]. In the usual DML setting, training examples are
needed that let the model learn which image properties make an image pair (dis)similar.
For example, in the Cars196 dataset’s setting [139], two images are deemed similar if
they show the same car model. Factors such as the car color, its orientation, or the
image’s environment should be suppressed by the embedding process. Other datasets have
different image properties to define when two images are similar. We call this high-level
interpretation of when two inputs are deemed similar a similarity notion. For Cars196,
the similarity notion is “Two car images are similar if they show the same car model”.
During testing, the ability of the NN to generalize this learned similarity notion to new
unseen classes (e.g., new car models) is measured.

Often, people have different similarity notions depending on the task at hand or personal
preference. It is thus desirable to be able to quickly adapt to changing similarity notions.
However, large labeled training datasets are needed to train a model for a new similarity
notion, which is time-consuming and tedious for users to create. We thus aim for a
zero-shot setting, where no training images and labels are needed. We argue that users
often can express the desired similarity notion using words, e.g., “Two car images are
similar if both cars have the same color”. This is especially the case when there are
categorical aspects with names that sort the images into disjoint classes. More specifically,
users can list a set of distinct aspects describing the similarity notion, e.g., “a red car”, “a
green car”, ... The use of language simplifies the process of expressing custom similarity
notions, which alleviates the problem of collecting new labeled datasets.

First, we introduce a new task we work on that we call Language-Guided Zero-Shot
Deep Metric Learning (LanZ-DML): Given a set of images I and a desired similarity
notion S that is described using text TS . Train a DML model using only the text input
TS such that the resulting model can embed images I → Rr to r-dimensional embedding
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Figure 13.1.: During InDiReCT’s training (top half), different aspects of the desired similarity
notion (e.g., car model or color) are collected in form of text prompts. CLIP’s frozen text encoder
embeds them and a dimensionality reduction method is learned to extract the dimensions that
encode the similarity notion’s aspects. During inference (bottom half), the trained dimensionality
reduction is applied to CLIP encoded images to obtain custom image embeddings representing
the desired similarity notion. Hatched components depict frozen elements of the model.

138



13.1. Methodology

vectors, making image embeddings more similar if they are deemed similar regarding
the similarity notion. For optimization, no training images or labels are allowed (thus
zero-shot).

Second, we propose InDiReCT (Image representations using Dimensionality Reduction
on CLIP embedded Texts), a model for LanZ-DML that uses a list of text prompts as
input and learns a transformation that maps images to a vector space that reflects the
desired similarity notion. It utilizes the CLIP [214] model as a static general purpose
feature extractor for images and texts. We assume that CLIP embeddings for images and
texts encode similar concepts in similar directions of the embedding space and that image
descriptions can focus on certain properties. For example, the text description “a photo
of a red car” focuses on the car color and not on other features, such as the car’s position,
orientation, or environmental factors.

Figure 13.1 gives an overview of InDiReCT. During training, CLIP’s fixed text encoder
represents different characteristics of a desired similarity notion S as 512-dimensional
vectors, e.g., “a red car”, “a white car”, and so on to encode the car color. We then extract
the largest variations of these vectors in the embedding space by applying a dimensionality
reduction method to these text representations, focusing on the changing aspects and
abstracting away other non-related dimensions. Learning the dimensionality reduction is
fast and often, only a few dozen text prompts are needed. Also, no training images or
labels are used, only text prompts.

During inference, images are fed through CLIP’s fixed image encoder and the trained
dimensionality reduction. Assuming that CLIP’s embeddings encode similar concepts in
similar embedding space directions for both modalities, the resulting image representations
are focused on the same dimensions as described by the text prompts. Finally, lower-
dimensional vectors can be used to find images similar to an image w.r.t. the desired
similarity notion.

13.1. Methodology

We now introduce InDiReCT, our method for Language-Guided Zero-Shot Deep Metric
Learning on images. It makes use of a fixed CLIP [214] as a general-purpose feature
extractor for images and texts. See Section 2.3.4 for an introduction to CLIP. Due to
its training task, CLIP learns to extract broad image features that can be correlated
with/expressed by language. Intuitively, we aim to learn a transformation that focuses on
the most important features extracted by CLIP regarding the desired similarity notion.
Figure 13.1 shows InDiReCT’s training and inference.

13.1.1. Training

In the training phase, n different text prompts are created that describe certain charac-
teristics of the desired similarity notion. For example, if the target images show cars and
we want to differentiate them by their color, we create a list of texts TS with |TS | = n
such as “a red car”, “a blue car”, “a white car”, and so on. The text prompts should only
vary in the notion that we want to differentiate (here, the color descriptions). Note that
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the aspects in the training text prompts are chosen independently from inference data,
since inference labels are not known during training and we want to generalize to new
aspects of the similarity notion as well.

When feeding all texts through CLIP’s text encoder, the resulting r-dimensional row
vectors1 ti ∈ R1×r for i ∈ {1, . . . , n} vary in certain directions. This is introduced by the
change in aspects of the desired similarity notion in the text prompts. Here, the variation
of the vectors is only explained by the change of color names in the texts.

Due to CLIP encoding similar concepts to similar embedding dimensions, varying
the same aspects in images and texts should result in embeddings that vary in similar
directions. Our goal is to find these directions using the text embeddings and suppress all
other directions in the image embedding space, which are influenced by undesired factors.
Given the n text representations ti ∈ R1×r for i ∈ 1, . . . , n, we thus aim to identify
the dimensions that vary the most in order to learn a transformation that retains these
directions while reducing the embedding to r′ < r dimensions (similar to dimensionality
reduction techniques such as Principal Component Analysis (PCA) [296]).

For this, we transform the text representations ti using a matrix U ∈ Rr×r′ and
reconstruct them using U⊤. We optimize U with gradient descent to minimize the
reconstruction loss L:

tnorm
i =

ti
∥ti∥

// normalize text embedding (13.1)

t′i =
tnorm
i U

∥tnorm
i U∥ // transform and normalize (13.2)

trecon
i =

t′iU
⊤

∥t′iU⊤∥ // backtransform and normalize (13.3)

L =
1

n

n∑
i=1

arccos(tnorm
i trecon

i
⊤) // minimize distance . (13.4)

CLIP’s use of cosine similarity as a similarity measure for embeddings disregards the
length of all vectors, so we map input vectors ti and their reconstructions to a unit
hypersphere (Equations (13.1) and (13.3)). Then we minimize the mean spherical distance
(Equation (13.4)) between the input and reconstructed vectors [123]. It is the geodesic
distance between the vectors along the surface of the hypersphere, scaling linearly with
the vector angle. The training objective effectively minimizes the angles between the
inputs and reconstructions.

In addition, the lower-dimensional embedding projections t′i are also mapped to a unit
hypersphere (Equation (13.2)). This ensures that the reconstruction only uses the angles
between the r′-dimensional vectors, keeping cosine similarity as a similarity measure in the
lower-dimensional space, while preserving the varying directions of the text embeddings.

Since only up to a few hundred text prompts are used and only the matrix U must
be optimized, L typically converges really fast. The whole optimization process usually

1r = 512 for CLIP’s base model, but it is not limited to that number
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finishes in less than a minute on a common laptop’s CPU, allowing InDiReCT to adapt
to new similarity notions fast.

13.1.2. Inference

Given query and reference images, we feed them through CLIP’s fixed image encoder and
apply the learned transformation to map these embeddings vi ∈ R1×r (i ∈ {1, . . . ,m}) to
r′ dimensions on a unit hypersphere:

vnorm
i =

vi

∥vi∥
// normalize image embedding (13.5)

v′
i =

vnorm
i U

∥vnorm
i U∥ // transform and normalize . (13.6)

These vectors can be compared using the cosine/dot product similarity to find similar
images w.r.t. the desired similarity notion. Since the transformation learns to suppress
dimensions that do not vary in the text prompts, these dimensions are also suppressed
for images, e.g., a car model dimension in the CLIP embedding space is suppressed when
training with the similarity notion “car color”.

13.2. Experiments

We now perform multiple experiments using InDiReCT and other baselines. Since
we are in a zero-shot learning setting, we have no access to labeled training images.
Hyperparameters cannot be tuned on a validation dataset, since labeled data is not
allowed. We thus define prompts and set hyperparameters based on commonly used
values or educated guesses. This resembles the real world scenario, where users do not
have any training data at hand to verify and optimize their input to the system.

We implement InDiReCT using PyTorch [206] and sample the initial values of U from
N (0, 0.1). We then optimize U using Adam [127] with a learning rate of 0.01 until it does
not improve the loss L (Equation (13.4)) for 100 consecutive iterations. We reduce CLIP’s
vectors to 128 dimensions, which is a common embedding size for DML models [193].

After training models, we compute image embeddings for each dataset and similarity
notion, following the standard evaluation setting of DML by measuring the retrieval
performance for these embeddings using the Mean Average Precision at R (MAP@R)
and Precision at 1 (Prec@1) (introduced in Section 2.5.3). Results for other evaluation
metrics can be found in Appendix B, but they show the same tendencies.

13.2.1. Datasets and Similarity Notions

We experiment with five datasets and overall thirteen similarity notions, which are listed
in Table 13.1. For each dataset, we define one to four similarity notions, e.g., the “Car
Model” similarity notion of the Synthetic Cars [134] and Cars196 [139] datasets can be
expressed as “Two car images are similar if they show the same car model”. Other notions

141



13. Zero-shot DML with CLIP

Table 13.1.: Details on the datasets and similarity notions used for our experiments.
Dataset Similarity Notion Class Count Prompt Template Aspects (Count)

Synthetic Cars [134] Car Model 6 “a photo of a [car model]” Volvo S60, BMW X5 M, ... (569)

Car Color 18 “a [color name] car” orange, black, ... (18)

Background Color 18 “a car in front of a [color] background” orange, black, ... (18)

Cars196 [139] Car Model 98 “a photo of a [car model]” Volvo S60, BMW X5 M, ... (569)

Manufacturer 35 “a photo of a car produced by [manufac-
turer]”

Tesla, BMW, ... (46)

Car Type 7 “a photo of a [car type]” convertible, SUV, ... (7)

CUB200 [275] Bird Species 100 “a photo of a [bird species]” Black footed Albatross, Rusty Black-
bird, ... (100)

DeepFashion [162] Clothing Category 50 “a photo of a person wearing a [clothing
category]”

anorak, turtleneck, ... (50)

Texture 7 “a photo of a person wearing clothes
with a [texture type] texture”

floral, striped, ... (7)

Fabric 6 “a photo of a person wearing clothes
made out of [fabric type]”

cotton, leather, ... (6)

Fit 3 “a photo of a person wearing clothes
with a [fit type] fit”

tight, loose, conventional (3)

Movie Posters [41] Genre 25 “a poster of a [genre] movie” Comedy, Action, ... (25)

Production Coun-
try

69 “a poster of a movie produced in [coun-
try]”

USA, India, ... (69)

can be formulated accordingly. Given a similarity notion, the datasets are split into
different numbers of test classes (shown in the “Class Count” column), e.g., we use the
98 car models from Cars196’s test dataset. We create multiple text prompts for each
similarity notion by collecting possible aspects and inserting them into a prompt template
(listed in the corresponding columns). The varying aspects are collected from different
sources, such as an online car dealer website (“Car Model” and “Manufacturer”), the
CSS2.1 color names (“Car Color” and “Background Color”), or the training dataset labels
(e.g., “Bird Species”). This promotes text prompts being possibly different from the test
class labels, ensuring a realistic DML scenario, where train and test classes are commonly
disjoint.

13.2.2. Baselines

InDiReCT is the first method for Language-Guided Zero-Shot Deep Metric Learning, i.e.,
it can efficiently generate specialized embedding spaces for images based on the desired
similarity notions. We visualize the embeddings produced by InDiReCT for multiple
similarity notions of the Cars196 dataset using TriMap [7] in Figure 13.2. In addition
to the “Car Model”, “Car Manufacturer”, and “Car Type” similarity notions, we also add
the “Car Color” similarity notion, which is not present in the original dataset’s metadata.
For visualization purposes only, we rudimentary label each image with one of eight colors
(‘black’, ‘blue’, ‘white’, ‘yellow’, ‘silver’, ‘red’, ‘mixed’, ‘other’). Note that since InDiReCT
does not need labeled images, this process was only necessary for this visualization of the
embedding space. The visualizations still show that cars with the same properties are
clustered relatively well, even though InDiReCT does not use any training images but
only text prompts. Given this, it is not fair to compare InDiReCT to fully supervised
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Figure 13.2.: TriMap visualizations of InDiReCT embedding spaces for multiple similarity
notions of the Cars196 dataset.

baselines. However, we still contrast some of InDiReCT’s results with fully supervised
models and an Oracle baseline. We use the following methods in our experiments to get
a sense of how well InDiReCT performs.

Random Baseline For this baseline, we sample r′-dimensional embedding vectors for
each image uniformly from the unit hypersphere [67]. To get such vectors, we sample all
dimensions independently from a normal distribution N (0, 1) with mean 0 and standard
deviation 1. Note that the standard deviation can be any number as long as it is the
same for all dimensions. Afterwards, we normalize the resulting vector to a length of 1.
This baseline indicates the performance lower bound for all methods.

CLIP [214] This baseline feeds all images through CLIP’s image encoder and uses the
unmodified r-dimensional vectors as embeddings (r = 512). Due to the broad set of
features CLIP extracts, its performance should already be quite good. However, since
it does not focus on specific dimensions, InDiReCT is assumed to perform better while
having fewer dimensions. Even more so, CLIP cannot adapt its embeddings based on the
desired similarity notion, i.e., it always yields the same embeddings for an image. This
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limitation holds for all embedding methods that do not use additional data regarding the
desired similarity notion.

Random Transformation InDiReCT optimizes a transformation that is applied to
CLIP’s image embeddings to achieve an embedding specialized towards a similarity notion
expressed by text. We evaluate how well the learning procedure of InDiReCT improves
the performance by leaving U as initialized for testing, i.e., sampled from N (0, 0.1). We
hypothesize that this baseline should, on average, be worse than both InDiReCT and the
CLIP baseline.

Principal Component Analysis [296] PCA is a popular dimensionality reduction tech-
nique which finds orthogonal directions that explain the largest variation in the data.
We test it as a possible alternative to our proposed method. In contrast to our method,
PCA solves for principal components analytically, requiring r′ to be strictly smaller than
the number of input data points [207]. This is not satisfied for almost all scenarios in
our experiments, since we only use a few text prompts while wanting to reduce CLIP’s
embeddings to a target size of 128 dimensions. We thus can apply PCA only on the
datasets that we collect more than 128 text prompts for, i.e., the “Car Model” similarity
notion for the Synthetic Cars and Cars196 datasets.

Linear Autoencoder The LAE is an alternative to PCA that provably spans the same
subspace while being able to be trained using gradient descent [209]. Formally, we optimize
the weight matrices W1 ∈ Rr×r′ , W2 ∈ Rr′×r and bias vectors b1 ∈ R1×r′ , b2 ∈ R1×r

with Adam (learning rate 0.01 and early stopping after 100 iterations) to minimize the
loss function

LLAE =

n∑
i=1

∑
j

((tnorm
i )j − (W2(W1t

norm
i + b1) + b2)j)

2 . (13.7)

Image vectors are then transformed with

v′
i = W1v

norm
i + b1 . (13.8)

Nonlinear Autoencoder (AE) While PCA and LAE are linear models, we also test a
more powerful nonlinear Autoencoder, which consists of a two-layer encoder and decoder
with 512 hidden units and leaky ReLU activation functions [169]. We use the same loss
function and hyperparameters as for LAE, but add a weight decay of 10−2 to alleviate
overfitting on the few text prompts.

Oracle InDiReCT uses only text prompts to optimize the transformation matrix U
that maps CLIP embeddings to a more specialized, lower-dimensional unit hypersphere.
To estimate how well InDiReCT could theoretically perform, we employ an Oracle that
optimizes U directly on test images and their labels. For this, we use the common
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DML loss function Normalized Softmax Loss [312]. We first compute unit-length image
embeddings v′

i =
vnorm
i U

∥vnorm
i U∥ with vnorm

i = vi
∥vi∥ as in Equations (13.5) and (13.6) and then

optimize the transformation matrix U to minimize the loss function

LOracle = − 1

m

m∑
i=1

log

(
exp(v′

ic
⊤
li
)∑

j exp(v
′
ic⊤j ))

)
, (13.9)

where m is the number of test images and cli ∈ R1×r′ with ∥cli∥ = 1 is the prototype
vector of the class for the label of the ith image li, which is optimized jointly with U
using Adam (learning rate 0.01, early stopping with patience 100).

Note that in our proposed Language-Guided Zero-Shot Deep Metric Learning, neither
images nor their labels are available for training. We use this baseline method in order to
provide a very optimistic estimate of what performance InDiReCT could achieve given
perfect information. The Normalized Softmax Loss is a classification-based training
objective, so image embeddings are processed independently. Thus, the loss does not
optimize for the best nearest neighbor performance, i.e., Precision@1. To compare the
Oracle baseline to other models, we thus primarily use MAP@R.

Low (high) Oracle performance can be used to identify similarity notions that cannot
(can) be reliably represented using InDiReCT since they are not captured (are captured)
in the CLIP embeddings. If InDiReCT performs substantially worse than the Oracle, it
means that the text prompts were not capable of capturing the desired similarity notion.

13.3. Results

We report the mean and standard deviation of the evaluation metrics over five runs
in Table 13.2. The CLIP baseline typically achieves substantially better results than
the random baseline. Since the embeddings stay the same in each run, its performance
does have a standard deviation of zero and is omitted for brevity. Despite the fact
that the CLIP baseline uses four times larger embedding vectors, InDiReCT almost
always performs better than CLIP and achieves the best performance in most datasets
and similarity notions. Depending on the dataset and similarity notion, InDiReCT can
improve CLIP’s MAP@R score by up to 14 percentage points (see Table 13.2). Switching
the learned matrix to a random transformation matrix in InDiReCT usually performs
worse than CLIP. As described in Section 13.2.2, PCA is only applicable to two datasets
and similarity notions. There, InDiReCT and PCA perform similarly. Training a LAE
on the text embeddings usually improves the CLIP baseline, but does not achieve better
performance than InDiReCT. Applying a more complex nonlinear Autoencoder performs
oftentimes worse than the CLIP baseline and also shows substantially larger standard
deviations, which might be due to the model not handling the few datapoints well. These
results show that choosing a suitable dimensionality reduction technique can improve
performance and opens up new research directions. In general, InDiReCT learns a useful
embedding function by using text prompts that describe different aspects of the desired
similarity notion.
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Table 13.2.: Results for our experiments. All values are given in percent, best in bold. The
Oracle baseline is given for reference.

Random CLIP
(512-dim.) InDiReCT Rand. trans. PCA LAE AE Oracle

Synthetic Cars

Car Model MAP@R ↑ 3.3 ± 0.1 43.5 57.4 ± 0.2 39.1 ± 1.6 56.2 ± 0.1 52.5 ± 0.5 39.5 ± 4.4 100 ± 0.0
Prec@1 ↑ 17.5 ± 0.9 95.4 96.4 ± 0.0 93.4 ± 0.5 96.6 ± 0.1 95.9 ± 0.5 88.7 ± 3.6 100 ± 0.0

Car Color MAP@R ↑ 5.0 ± 0.1 6.2 9.1 ± 0.1 6.1 ± 0.1 — 7.3 ± 0.2 8.6 ± 0.4 57.9 ± 0.9
Prec@1 ↑ 17.5 ± 0.8 27.6 31.4 ± 0.5 26.3 ± 1.3 — 29.4 ± 0.9 30.2 ± 1.3 79.3 ± 0.8

Background Color MAP@R ↑ 5.4 ± 0.0 6.2 7.1 ± 0.0 6.1 ± 0.2 — 6.3 ± 0.2 6.1 ± 0.2 74.0 ± 0.9
Prec@1 ↑ 19.4 ± 1.1 27.0 28.3 ± 0.3 26.6 ± 1.1 — 28.3 ± 0.7 21.6 ± 1.3 88.0 ± 0.4

Cars196

Car Model MAP@R ↑ 0.1 ± 0.0 23.5 37.4 ± 0.0 19.2 ± 0.3 37.5 ± 0.1 33.2 ± 0.2 20.0 ± 5.8 41.8 ± 0.0
Prec@1 ↑ 1.1 ± 0.1 78.0 84.4 ± 0.1 72.9 ± 0.5 84.2 ± 0.1 82.4 ± 0.2 63.8 ± 8.1 76.6 ± 0.1

Manufacturer MAP@R ↑ 0.5 ± 0.0 24.4 33.6 ± 0.1 21.2 ± 0.4 — 24.2 ± 0.4 18.0 ± 2.2 51.4 ± 0.0
Prec@1 ↑ 5.4 ± 0.3 89.0 90.5 ± 0.1 84.7 ± 0.8 — 85.5 ± 0.3 63.1 ± 3.9 84.0 ± 0.1

Car Type MAP@R ↑ 3.5 ± 0.0 25.1 36.1 ± 0.3 22.1 ± 0.8 — 27.7 ± 0.6 24.4 ± 1.6 73.8 ± 0.0
Prec@1 ↑ 17.3 ± 0.4 91.1 90.7 ± 0.2 88.3 ± 0.5 — 89.1 ± 0.4 63.2 ± 3.1 89.1 ± 0.0

CUB200 Bird Species MAP@R ↑ 0.1 ± 0.0 18.0 26.5 ± 0.0 15.2 ± 0.3 — 18.8 ± 0.2 15.1 ± 1.9 34.1 ± 0.0
Prec@1 ↑ 1.2 ± 0.1 58.2 65.3 ± 0.1 52.6 ± 0.3 — 58.1 ± 0.5 44.4 ± 3.6 65.3 ± 0.2

DeepFashion

Clothing Category MAP@R ↑ 2.3 ± 0.0 12.5 18.7 ± 0.1 11.3 ± 0.4 — 13.3 ± 0.3 16.9 ± 1.8 32.2 ± 0.1
Prec@1 ↑ 11.1 ± 0.4 45.2 50.9 ± 0.2 43.0 ± 0.6 — 45.5 ± 0.5 44.5 ± 2.4 55.8 ± 0.6

Texture MAP@R ↑ 11.8 ± 0.0 18.7 33.0 ± 0.4 11.2 ± 0.4 — 22.2 ± 0.5 16.3 ± 0.7 66.1 ± 0.1
Prec@1 ↑ 29.6 ± 0.7 60.2 66.8 ± 0.3 43.3 ± 0.5 — 61.2 ± 0.7 43.8 ± 1.7 80.6 ± 0.3

Fabric MAP@R ↑ 32.4 ± 0.0 34.0 37.7 ± 0.2 10.8 ± 0.3 — 35.6 ± 0.3 17.2 ± 0.6 64.2 ± 0.3
Prec@1 ↑ 49.4 ± 0.6 64.5 66.1 ± 0.6 42.6 ± 0.7 — 65.1 ± 0.6 44.7 ± 1.9 77.8 ± 0.4

Fit MAP@R ↑ 51.8 ± 0.0 53.3 53.9 ± 0.4 11.1 ± 1.0 — 53.4 ± 0.3 16.1 ± 1.8 82.0 ± 0.1
Prec@1 ↑ 66.6 ± 0.6 77.1 76.5 ± 0.4 43.1 ± 0.5 — 76.7 ± 0.7 42.9 ± 1.9 87.8 ± 0.6

Movie Posters
Genre MAP@R ↑ 4.1 ± 0.0 11.4 14.9 ± 0.0 9.1 ± 0.3 — 8.4 ± 0.1 9.8 ± 2.4 19.6 ± 0.1

Prec@1 ↑ 17.5 ± 0.4 41.8 44.0 ± 0.2 38.1 ± 0.7 — 36.6 ± 0.4 33.3 ± 3.0 43.2 ± 0.7

Production Country MAP@R ↑ 44.6 ± 0.0 49.3 51.3 ± 0.1 48.9 ± 0.4 — 47.7 ± 0.2 49.4 ± 0.7 58.1 ± 0.0
Prec@1 ↑ 59.2 ± 0.5 69.3 69.8 ± 0.3 67.9 ± 0.7 — 68.1 ± 0.3 64.9 ± 0.7 71.8 ± 0.3

The Oracle baseline is optimized directly on the image dataset and their labels. Despite
all this, InDiReCT matches or exceeds the Prec@1 performance of the Oracle baseline for
Cars196, CUB200, and the “Genre” similarity notion for the Movie Posters dataset. As
discussed in Section 13.2.2, this might be due to the classification-based nature of the
Normalized Softmax Loss. For MAP@R, the Oracle is the best model for all datasets and
similarity notions.

Even though the comparison is not fair, we contrast InDiReCT’s performance with
state of the art models from the literature that train on a large labeled training dataset
regarding the desired similarity notion. Note that only Cars196’s “Car Model” and
CUB200’s “Bird Species” similarity notions have been used in the literature in a DML
setting, so we only compare to them. Jun et al. [114] achieve Prec@1 of 94.8 and 79.2
for Cars196 and CUB200 in a supervised setting, respectively [220], which outperform
InDiReCT by ten to fourteen percentage points. However, the trained models output
1536-dimensional vectors, more than ten times the embedding dimensions we use in our
experiments. For embeddings of dimensions 128, Jun et al. achieve 90.1 (Cars196) and
67.6 (CUB200) Prec@1, which is only approximately six and two percentage points better
than InDiReCT. These results show that despite not using any training images, InDiReCT
can show strong performance even compared to fully supervised methods.
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13.4. Analysis

To better understand InDiReCT, we visualize the image regions focused by InDiReCT
and investigate the influence of different hyperparameters.

13.4.1. What does InDiReCT attend to in the input?

We want to visualize the image regions that are used by InDiReCT to output a certain
embedding. Due to the positive experimental results, we assume that, for a given
similarity notion, InDiReCT attends to subjectively more useful regions than CLIP. We
thus compute attribution maps using the method we described in Chapter 9 and subtract
InDiReCT’s attribution maps from CLIP’s attribution maps to qualitatively showcase
the difference between both methods.

We choose Cars196 and its similarity notions and hypothesize that InDiReCT pays
more attention to regions that represent the desired similarity notion than CLIP. In order
to increase the chance of obtaining visible differences in the attribution maps, we reduce
the number of embedding dimensions for InDiReCT to two, thus only extracting the most
important features to embed the given images. Figure 13.3 shows five randomly selected
example images. Yellow areas indicate image regions InDiReCT pays more attention to
than CLIP, while CLIP focuses more on blue regions. Grey areas show similarly strong
saliency.

Compared to CLIP, InDiReCT focuses more on the area of the car when using the “Car
Model” similarity notion, which is useful for the task. Interestingly, for “Manufacturer”,
InDiReCT mostly uses the front of the car, where the manufacturer’s logo is usually
found. Additionally, the design of the radiator grill and headlights is often relatively
unique to manufacturers. For the “Car Type” similarity notion, InDiReCT focuses more
on the back of the car, as car types such as “convertible”, “van”, or “sedan” differ mainly
in terms of trunk and roof design.

13.4.2. Do other embedding sizes perform differently?

While our experiments set the embedding size arbitrarily to 128, we now measure
the performance on the Cars196 dataset with varying target embedding dimensions
r′ ∈ {2, 4, 8, . . . , 256, 512}. We plot the MAP@R mean and standard deviation over five
runs for all methods and all similarity notions in Figure 13.4. CLIP with its fixed 512
dimensions is plotted as a reference line.

InDiReCT matches or exceeds CLIP’s performance when using at least 16 embedding
dimensions and peaks at 64 dimensions for all three similarity notions. The learned trans-
formation presumably selects, combines, and weights CLIP’s embedding dimensions such
that InDiReCT even outperforms CLIP when no dimensionality reduction is performed
at 512 dimensions.
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Image Car Model Manufacturer Car Type

Figure 13.3.: Example images from the Cars196 dataset and the attribution map differences
between each similarity notion and CLIP. InDiReCT focuses more on yellow regions, CLIP more
on blue regions. The patch patterns in the images are due to the patch creation of CLIP’s Vision
Transformer (ViT) [50].
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Figure 13.4.: On Cars196, InDiReCT outperforms other zero-shot models for embedding sizes
16 and up, while it peaks at 64 dimensions.
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Figure 13.5.: Larger CLIP models improve performance for the “Car Model” but not for color
similarity notions on Synthetic Cars.

13.4.3. Do larger CLIP models improve performance?

For our experiments, we use the CLIP model “ViT-B/32” [214], i.e., a Vision Transformer
(ViT) [50] with 12 layers and input patches of size 32 × 32 pixels. We now test larger
CLIP models as feature extractors in InDiReCT with CLIP’s “ViT-B/16” and “ViT-L/14”
versions, which change the input patches to 16× 16 and 14× 14 pixels, respectively, while
“ViT-L/14” also doubles the Transformer layers. Besides other parameters, “ViT-L/14”
also increases CLIP’s outputs from 512- to 768-dimensional vectors.

We test all three ViT sizes to see if larger CLIP versions lead to better performance [214].
The “Synthetic Cars” dataset with its similarity notions is used, since the performance of
InDiReCT is quite good for “Car Model”, but bad for “Car Color” and “Background Color”,
compared to the Oracle baseline. With this analysis, we can investigate whether larger
models can improve performance for these similarity notions. We use 128 embedding
dimensions.

Figure 13.5 shows that the performance of the Oracle baseline increases with larger
models, which means that the model extracts more useful features that could potentially
be picked up by InDiReCT. For the “Car Model” similarity notion, this also translates
to better performance of InDiReCT and CLIP in general. On the other two similarity
notions, however, we cannot find any performance improvements. Since the Oracle
baseline improves, we can conclude that the text prompts used to train InDiReCT lead to
a focus on suboptimal features for these similarity notions. Other text prompt templates
might increase performance.
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Figure 13.6.: Performance of InDiReCT for different number of training prompts. We sample
different car model names for each run.

13.4.4. Do more text prompts improve performance?

Our final analysis takes a closer look at how the performance of InDiReCT changes if
we use different numbers of prompts for our experiments. We use the Cars196 dataset
and focus on the “Car Model” similarity notion. Originally, we use 569 different car
model names from an online car dealer as a basis for the text prompts (“a photo of a [car
model name]”). We now sample differently sized sets from these car model names and
run our experiment five times with different samples. Figure 13.6 shows the means and
standard deviations for sizes {10, 20, . . . , 150}. The performance increases with larger
sample sizes and converges at around 90 prompts to the performance we observe in our
main experiments. This behavior is expected, since the learned transformation is able to
better capture the important dimensions in the text embeddings when more prompts are
used. For fewer prompts, InDiReCT can almost perfectly reconstruct the text embeddings,
thus is not forced to select the important dimensions. Figure 13.6 also shows that with
larger prompt sets, the standard deviation of performance tends to decrease. Overall,
we can observe that more text prompts should stabilize and improve performance for
InDiReCT.

13.5. Conclusion

Using natural language, the proposed LanZ-DML setting offers a simple interface for
adapting item retrieval systems to the desired similarity notion. This adaption is not
achievable using raw CLIP embeddings or other self-/unsupervised methods. For InDi-
ReCT, it is not necessary to collect and annotate example images, which is time-consuming
and tedious. Expressing the desired similarity notion using text prompts is certainly
simpler, but limits its application to similarity notions with categorical aspects. However,
this is a limitation that also holds for popular proxy-based DML loss functions such as
Normalized Softmax Loss [312] or ProxyNCA [190], i.e., loss functions that use class
prototype vectors. It should also be noted that the quality of text prompts might vary
significantly. In our experiments, we comply with the zero-shot setting by choosing
plausible prompt templates without validating them on the data. Overall, we achieve
good performance across datasets and similarity notions. However, as already shown for
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prompt engineering [214], there might be prompts that work substantially better. Often,
exploiting the peculiarities of the dataset CLIP has been trained on helps. For example,
instead of using single words as text prompts, short sentences usually work better [214].
Therefore, it is recommended to test different text prompts when applied in real-world
scenarios. Also, tuning the number of embedding dimensions is not straightforward
without validation data, leading to suboptimal performance when using 128- instead of
64-dimensional vectors for the Cars196 dataset, as shown in our analysis.

Since we use CLIP as a fixed feature extractor, we need to rely on the usefulness of
its embeddings. If CLIP does not extract properties from images and texts related to a
desired similarity notion, InDiReCT cannot show its full potential. We have shown that
InDiReCT mostly outperforms CLIP, so the text prompts help to focus on the desired
similarity notion. Given the Oracle results, however, some datasets and similarity notions
(e.g., Synthetic Cars’ color notions) could potentially work better. In some cases, larger
CLIP models can improve the performance as shown in our analysis.

Since we use pretrained CLIP embeddings and only a handful of text prompts, training
the dimensionality reduction is fast. It also allows us to precompute CLIP embeddings
for a whole image database and adaptively transform them with a trained dimensionality
reduction. The disadvantage of this is that, for each search, the transformation matrix
must be applied to all vectors in the image collection. Potentially, existing vector search
databases [279, 113] can efficiently incorporate the transformation to retrieve relevant
images.

We have introduced Language-Guided Zero-Shot Deep Metric Learning (LanZ-DML),
a setting where no training data and labels, but only texts are allowed to guide a Deep
Metric Learning model for a given similarity notion. Our proposed model InDiReCT
is based on fixed CLIP embeddings of text prompts describing the varying aspects of
a given similarity notion. We have shown that InDiReCT outperforms strong baselines
and approaches fully supervised methods. Our analyses show that InDiReCT focuses on
image regions that are subjectively important for the desired similarity notion. We have
also investigated the influence of different hyperparameters on the model performance.

Due to its simple design and fast training, InDiReCT can be useful for users to customize
the similarity notion of item retrieval systems. The need to define multiple prompts
based on the changing aspects of a similarity notion could be facilitated, e.g., by directly
learning the transformation from sentences such as “Two car images are similar if both cars
are the same model”. Automatic selection of hyperparameters and developing methods
for LanZ-DML on other modalities, e.g., audio or texts, are also interesting research
directions.
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14. Improving Classification Models using
Class Similarities in the Loss Function

This section mainly follows our work in [132] which proposes to include domain knowl-
edge into the commonly used classification Loss Function Categorical Cross Entropy
(CCE). CCE tries to maximize the assigned target class probability and punishes every
misclassification in the same way, independent of other information about the predicted
class. Often, however, classes have a special order or are similar to each other, such as
different flowers in image classification. Including class similarities using the inherent class
structure (e.g., class order), class properties (e.g., class names) or external information
about the classes (e.g., knowledge graphs) in the training procedure would allow the
classifier to make less severe mistakes as it learns to predict similar classes.

In this implementation, we modify CCE and propose Similarity Based Loss (SimLoss)
as a way to explicitly introduce domain knowledge into the training process, as visualized
in Figure 14.1. For this, we augment CCE with a matrix containing class similarities
and propose two techniques in order to prepare such matrices that exploit certain class
relations: class order and general class similarities. We show on two tasks, Age Estima-
tion (exploiting class order) and Image Classification (exploiting semantic similarities
using word embeddings), that SimLoss can significantly outperform CCE. We also show
that tuning the hyperparameters of both generation techniques influences the model’s
performance on metrics measuring either more or less specific predictions.

Neural Network
Classifier 
+ SimLoss

car 

truck 

train 

rose 

violet

Figure 14.1.: Similarity Based Loss (SimLoss) includes knowledge about class relations in the
loss function. In this example, the classes “car”, “truck”, and “train”, as well as “rose” and “violet”
are closer together, respectively.
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14.1. Methodology

Our proposed SimLoss is based on the CCE, which is introduced in Section 2.4.1. To
reiterate, CCE assumes that only one class is correct and is defined as

LCCE = − 1

|B|

|B|∑
i=1

log(pi[yi]) , (14.1)

where B is the current batch and pi[yi] is the probability vector output of the network at
the target index yi for the ith example. To model additional knowledge, SimLoss adds a
matrix S, which gives

LSimLoss = − 1

|B|

|B|∑
i=1

log

 |C|∑
c=1

Syi,c · pi[c]

 , (14.2)

where S ∈ [0, 1]|C|×|C| encodes class relations between all possible classes c ∈ C. Si,j is the
similarity between classes i and j. Si,j = 1 if and only if classes i and j are identical or
interchangeable.

SimLoss is equal to CCE if S = I|C| is the identity matrix. Non zero values lead to
smaller losses when the network gives a high score to classes similar to the correct one.
For misclassifications, this leads the network to predict similar classes.

14.1.1. Relation between Similarity and Probability-based Matrices in
SimLoss

Some works from the literature use a loss function similar to our proposed SimLoss.
Instead of similarities, the matrix S consists of probabilities, such that each row sums to
one [258, 109]. We will call this loss Lprob.

We can show that both similarities and probabilities in the matrix lead to the same
gradients: We can transform our loss LSimLoss into Lprob by dividing each similarity matrix
entry by the row’s sum. This loss depends on the network’s output — the probability
distribution p — as well as the corresponding target class indices y. It can be written as:

Lprob = − 1

|B|

|B|∑
i=1

log

 |C|∑
c=1

1∑|C|
c′=1 Syi,c′

Syi,c · pi[c]

 (14.3)

= − 1

|B|

|B|∑
i=1

log

 1∑|C|
c′=1 Syi,c′

|C|∑
c=1

Syi,c · pi[c]

 (14.4)

= − 1

|B|

|B|∑
i=1

log
 |C|∑

c=1

Syi,c · pi[c]

− log

 |C|∑
c′=1

Syi,c′


 (14.5)
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= − 1

|B|

|B|∑
i=1

log
 |C|∑

c=1

Syi,c · pi[c]


+

1

|B|

|B|∑
i=1

log
 |C|∑

c′=1

Syi,c′


 (14.6)

= LSimLoss +
1

|B|

|B|∑
i=1

log
 |C|∑

c′=1

Syi,c′


 . (14.7)

(14.8)

The second summand leads to different loss function values for both matrices, but does
not depend on the probability output p. Therefore, when calculating the gradients with
respect to p, this term becomes zero:

∂

∂p
Lprob =

∂

∂p
LSimLoss . (14.9)

As a result, both LSimLoss and Lprob yield the same gradients when optimizing the
model. If the largest values in the matrices are on the diagonal, both matrix variants
will have the same parameters when reaching the global optimum [317]. Even though
both methods theoretically lead to the same results, our method is less restrictive since
it does not require a probability distribution per row. For example, while similarities
can be calculated for each class pair independently, a probability distribution needs to
be normalized over all values in the row prior to use. For tasks with a large number of
classes, the similarity matrix might not need to be stored but could be calculated on the
fly, while probabilities would cause larger computational costs. Especially on edge devices
with very limited memory, this is an advantage of our method. Also, a large number of
classes would result in very small non-zero probability values in a probability matrix,
which might lead to numerical instabilities.

Another advantage of similarities compared to probabilities is that, because the diagonal
of the similarity matrix consists of ones, a value of zero can be reached by the loss function,
making the loss value more interpretable. A loss value of zero always means that the
probability mass of the Neural Network (NN) output vector is put into the correct
class, even if there are similar classes. Normalizing such a matrix to ensure probability
distributions per row would always yield larger loss values, even if the correct class is
predicted with 100% probability. Therefore, LSimLoss always has a lower bound of zero,
which gives an interpretable impression of the training status. In a probability matrix
based loss, such an interpretation is not given as the lower bound of the loss depends on
the probability distributions in the matrix rows. A loss value of zero can only be achieved
when using the identity matrix. This, however, would be equivalent to CCE and would
not allow for including domain knowledge into the model.

14.1.2. Matrix Generation

We now propose two techniques to generate the matrix S, which explicitly captures
domain knowledge about class relations. Our techniques allow the modeling of class order
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and general class similarities.

Class Order If classes have an inherent order, we can calculate class similarities based
on the distance between the class indices. As classes lying next to each other are more
similar, we construct the similarity matrix S as follows: Assuming the same distance
between neighboring classes, we define the reduction factor r ∈ [0, 1) to be the rate at
which the similarity will get smaller given the distance to the correct class. The similarity
matrix is then

Si,j = r|i−j| ∀i, j ∈ {1, . . . , |C|}. (14.10)

The smaller the reduction factor, the faster the entries converge to 0 with increasing
distance to the target class. If the reduction factor is set to 0, the matrix becomes the
identity, resulting in the CCE loss. The reduction factor is a hyperparameter of this
technique, which can be tuned using a validation dataset to optimize the model for
different metrics, as we show in Section 14.2. As SimLoss is equivalent to CCE when
r = 0 (assuming 00 = 1), an optimized r will always perform at least as good as CCE
unless we overfit.

General Class Similarity For some classification tasks, a similarity between classes, such
as class names, is available or can be defined. Then, we can use an appropriate similarity
measure sim : |C|×|C| → [0, 1] that returns the similarity for two classes i, j ∈ {1, . . . , |C|}
and calculate all entries of the similarity matrix S. Such similarity measures can be
manual, semi- or fully-automatic. Additionally, we define a lower bound l ∈ [0, 1) as a
hyperparameter that controls the minimal class similarity that should have an impact on
the network punishment. We cut all similarities below l and then scale them such that l
becomes 0:

Si,j =
max(0, sim(i, j)− l)

1− l
∀i, j ∈ {1, . . . , |C|} . (14.11)

Assuming only the diagonal of S are ones, setting l to the largest similarity value below
one (l = max({sim(i, j)|i, j ∈ {1, . . . , |C|}, i ̸= j})) leads to the CCE loss, as only the
ones in the diagonal are preserved by the lower bound cut-off.

14.2. Experiments

In the following, we compare SimLoss to CCE by applying them to the same NN model
with the same hyperparameters for Age Estimation and Image Classification. For Age
Estimation, we train NNs on the UTKFace [318] and AFAD [200] datasets. We randomly
sample training/validation/test sets using 60/20/20 splits. For Image Classification, we
use the CIFAR-100 dataset [141]. We also use pretrained Word2Vec embeddings [178] to
calculate the semantic similarity between class names. Four class names do not yield a
word embedding and are therefore eliminated. Each remaining class has 450 training, 50
validation, and 100 test examples.

We evaluate the Age Estimation models using Accuracy (Acc), Mean Absolute Error
(MAE), and Mean Squared Error (MSE) (introduced in Sections 2.5.1 and 2.5.2). Accuracy
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captures exact predictions, while MAE and MSE capture the distance to the target class,
thus considering class order. For Image Classification, we use Accuracy, Superclass
Accuracy (SA), and Failed Superclass Accuracy (FSA) (introduced in Section 2.5.1).
Recall that every example in the CIFAR-100 dataset has a main class and a superclass
(e.g., classes “rose” and “orchid” have the superclass “flower”). SA (FSA) determines, how
many of the (incorrectly classified) examples are put into the correct superclass. Accuracy
only counts exact predictions, while SA and FSA focus on the semantic similarity of the
prediction to the target class.

14.2.1. Generating the Similarity Matrix

Since Age Estimation has equidistant classes, the similarity matrix can be built using
Equation (14.10) without any modifications. In Image Classification, we define the
similarity matrix as the cosine similarity simcos : w → [−1, 1] between class name
embeddings, where simcos(w,w) = 1. To ensure compatibility with the definition in
Section 14.1.2, we set sim(i, j) = max(0, simcos(wi,wj)) in Equation (14.11).

14.2.2. Experimental Setup

Since SimLoss is a drop-in replacement for CCE, we investigate the effects of changing
the loss function on our example tasks. Recall that we do not focus on task specific
models, but rather on the evaluation of SimLoss as a general loss function which can
be used on various tasks. Both classification tasks are typical examples for using CCE.
For Age Estimation, we take the Convolutional Neural Network (CNN) from Niu et al.
[200] and change the output size to be the dataset’s number of classes. The input images
are resized to 60 px by 60 px and the values of all color channels are standardized. We
use the softmax function and apply the SimLoss function using the similarity matrix
introduced above. We study the effect of the reduction factor r by performing grid search
for r ∈ {0.0, 0.1, . . . , 0.9} on the validation set. Optimizing the network using Adam [127]
with a learning rate of 0.001 and a batch size of 1024, we employ early stopping [188] with
a patience of 10 epochs on the validation MAE. We smooth random differences in the
results (e.g., by weight initialization) by averaging over 10 runs. For Image Classification,
the LeNet CNN [144] is used. Global standardization is applied to the color channels of
the input images. We stop early if the Accuracy on the validation set plateaus for 20
epochs of the Adam optimizer with a learning rate of 0.001, and a batch size of 1024. We
optimize the matrix generation technique’s lower bound l ∈ {0.0, 0.1, . . . , 0.8, 0.9, 0.99}
with grid search and average 10 runs per configuration. l = 0.99 makes the loss equivalent
to CCE, cutting all similarities except the diagonal.

14.3. Results

Table 14.1 shows the resulting mean metrics for the validation and test sets given a
reduction factor r for both Age Estimation datasets. The best performing reduction
factors on the validation and test set are always higher than 0.0, meaning that SimLoss
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Table 14.1.: Validation and test results averaged over 10 runs on UTKFace and AFAD. Accuracy
(Acc) is given in percent. Best validation values are written in bold. Statistically significantly
different test values are marked by + or −, if they are on average better or worse than CCE (i.e.,
r = 0.0).

UTKFace AFAD

r
Validation Test Validation Test

Acc ↑MAE ↓MSE ↓ Acc ↑ MAE ↓ MSE ↓ Acc ↑MAE ↓MSE ↓ Acc ↑ MAE ↓ MSE ↓
0.0 15.23 7.09 122.12 14.47 7.39 131.65 11.17 4.05 32.61 11.22 4.10 33.64

0.1 15.43 7.06 119.87 14.48 7.29 127.18 11.21 4.06 32.75 11.30 4.10 33.73
0.2 15.94 7.06 121.28 14.57 7.27 127.13 11.40 4.09 33.52 11.37 4.15− 34.60−

0.3 16.25 6.95 117.67 15.17+ 7.19+ 125.70 11.34 4.10 33.53 11.38+ 4.16− 34.53−

0.4 16.13 6.95 117.52 15.46+ 7.18+ 125.74 11.33 4.10 33.44 11.45+ 4.16− 34.56−

0.5 16.10 6.89 115.59 15.09 7.18+ 123.94 11.44 4.06 33.02 11.49+ 4.13 34.21
0.6 15.62 6.83 112.85 14.34 7.09+ 120.34+ 11.26 4.01 31.99 11.31 4.05+ 32.84+

0.7 14.39 6.79 110.12 13.07 7.08+ 121.19+ 11.22 3.95 31.17 11.11 4.02+ 32.36+

0.8 13.50 6.74 108.80 12.57− 7.01+ 117.99+ 8.58 4.58 38.69 8.55− 4.64 39.78
0.9 9.69 6.90 106.23 9.16− 7.18+ 117.62+ 6.55 5.09 44.87 6.47− 5.15− 45.82−

outperforms CCE. Choosing the reduction factor then depends on the metric to optimize
for. For UTKFace, a reduction factor of 0.3 leads to the best validation Accuracy, while
0.8 or 0.9 optimize MAE and MSE, respectively. For AFAD, r = 0.5 yields the best
validation result on Accuracy, while r = 0.7 results in the best MAE and MSE. Overall,
choosing a smaller reduction factor r ≈ 0.4 optimizes the Accuracy, while larger r ≈ 0.8
optimizes MAE and MSE. This is because large r lead to higher matrix values and thus
smaller punishments for estimating a class near the correct age. A model optimized for
that is favored by metrics that accept approximate matches, such as MAE or MSE.

A Wilcoxon signed-rank test [293, 294] with a confidence level of 5% shows that
optimizing the reduction factor always leads to significant improvements over CCE.
Sometimes, however, choosing the reduction factor based on a specific metric also results
in a trade-off between the chosen and other metrics.

For the Image Classification task, Table 14.2 shows the results for the validation and
test set of the CIFAR-100 dataset given a lower bound l. On average, the best performing
model always has a lower bound of less than 0.99, again showing that SimLoss outperforms
CCE. Also, a statistical test reveals that l = 0.9 gives significantly better results on the
test set in terms of Accuracy and SA. Smaller lower bounds tend to reduce the Accuracy
as the loss function hardly punishes any misclassification. For l ≈ 1, the loss is equivalent
to CCE, forcing the network to predict the correct class, thus increasing Accuracy. In
between, the network is guided to predict the correct class but is also not punished
severely for misclassifications of similar classes. This improves SA, which pays attention
to more similar classes.
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Table 14.2.: Validation and test results over 10 runs with early stopping on the modified
CIFAR-100 dataset. Best validation values are written in bold. Statistically significantly different
test values are marked by + or −, if they are on average better or worse than CCE (i.e., l = 0.99).

l
Validation Test

Accuracy ↑ SA ↑ FSA ↑ Accuracy ↑ SA ↑ FSA ↑
0.99 46.89% 55.78% 16.73% 39.51% 49.22% 16.05%

0.90 47.42% 56.32% 16.95% 40.15%+ 49.93%+ 16.36%
0.80 46.37% 55.38% 16.80% 39.49% 49.32% 16.22%
0.70 46.95% 55.92% 16.90% 39.86% 49.63% 16.25%
0.60 47.28% 56.44% 17.39% 40.00% 50.00% 16.67%+

0.50 46.36% 56.18% 18.28% 39.26% 49.40% 16.70%+

0.40 38.03% 50.58% 20.28% 32.18%− 44.58%− 18.30%+

0.30 28.65% 43.76% 21.18% 24.43%− 38.90%− 19.13%+

0.20 21.66% 37.97% 20.80% 18.54%− 33.68%− 18.58%+

0.10 16.40% 31.68% 18.31% 14.25%− 28.70%− 16.85%
0.00 2.80% 8.37% 5.77% 2.53%− 8.06%− 5.71%−

14.4. Analysis

To understand the effect of SimLoss, we focus on Age Estimation whose one dimensional
classes are easy to visualize. We compare the best performing models for UTKFace
trained using SimLoss and CCE, i.e., models with r ∈ {0.0, 0.3, 0.8, 0.9} (see Table 14.1).
For each r, we plot the mean output distribution for all examples in the dataset as well
as the real age distribution, which is shown in Figure 14.2a. CCE (r = 0.0) resembles the
real age distribution the best, while higher reduction factors tend to aggregate groups of
multiple age classes. With a higher reduction factor, the number of spikes decreases and
the distances between them increase: The model chooses representative classes to which
it mainly distributes the output probability mass. This becomes apparent in Figure 14.2b,
where we plot the mean output distribution for all examples of age 30. The network with
r = 0.9 focuses its probability output to the two nearest representative classes, in this
case “26” and “35”. The Accuracy of the network decreases, as the output probability
mass is not on the correct class, but the distance of the prediction to the correct class is
smaller than for CCE. Representative classes are apparently chosen such that frequent
items receive more probability mass from the model. A higher reduction factor therefore
leads to a coarser class selection. This can be explained by the optimization objective of
the loss function. The loss should be smaller for misclassifications of similar classes than
for dissimilar classes. Representing multiple similar classes as one class and predicting it
more often for similar classes does not lead to the smallest possible loss value. However,
the loss gets smaller compared to predicting dissimilar classes, as the punishment should
be smaller for classifying a similar class. In the case of Age Estimation, predicting an
age that lies close to the correct age will decrease the Accuracy, but perform better than
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(a) All examples. CCE fits the real data distri-
bution the best.
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(b) All examples of class “30”. The grey line
indicates the target age.

Figure 14.2.: Mean probability distribution output for different r. High reduction factors lead
the network to choose only few representative classes.

CCE on MAE and MSE. In Image Classification, selecting one or multiple representative
classes leads to smaller Accuracy but to higher SA and FSA than CCE. Higher similarities
in the matrix thus guide the network to make coarser predictions, improving metrics
that accept predictions of similar classes. The results from Section 14.2 also show that
keeping the loss near CCE by choosing the similarity matrix conservatively can improve
on specific prediction metrics such as Accuracy as well.

14.5. Conclusion

In this section, we have presented SimLoss, a modified CCE loss function that incorporates
domain knowledge about class relations in form of class similarities, thus implementing
the Loss Function principle. We have introduced two techniques to prepare similarity
matrices to exploit class order and general class similarity that can be used to significantly
improve the performance of NN classifiers on different metrics. Also, SimLoss helped with
predicting more similar classes if the model misclassified an example. In our analysis, we
found that SimLoss forced the model to focus on choosing representative classes. The
number of representative classes can be implicitly tuned by a hyperparameter. While
finding the best hyperparameter and similarity metric can be computationally expensive
and non-trivial, SimLoss can incorporate arbitrary similarity metrics into a classifier.
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15. Training a Sentiment Analysis Model
with Weak Labels and Input Masking

In this section, we mainly follow our work in [133] where we explore the combination of
the Input Masking and Augmentation and Weak Label Generation principles to
train a sentiment analysis model on Twitch.tv1 chat messages without ground truth labels.
Since live streaming gaming sessions has evolved into a very lucrative business, streamers
are interested in knowing how their audience reacts to certain events in their streams. The
comments in the fast moving chat section of a stream — where users can interact with
each other and comment on the stream in a timely fashion — can give valuable feedback
to the streamer. Automatically estimating the sentiment trends of the comments enables
streamers to adapt their behavior or presentation in real-time, or learn for future streams
in order to achieve the desired emotions from the audience. Due to popular streams
getting many comments per second, automatically estimating the comments’ emotions in
real-time would facilitate this implicit way of gathering feedback. In this implementation,
we automatically assess the emotion of comments by applying sentiment analysis methods.
This way it is possible to check whether an event is positively or negatively perceived by
the audience, which helps streamers understand the preferences of their target audience.

The biggest challenge in performing sentiment analysis on Twitch comments is the non-
standard language. An impression of Twitch language usage can be seen in Figure 15.1.
The language consists of many abbreviations, intentional and unintentional grammatical
and orthographic mistakes, duplicated phrases, and short sentences. Pictographical
images and animations called emotes are also very popular2 due to their ability to express
emotions in a way that is easily interpretable by the human eye. The way emotes are used
makes them an own form of language that is captured in the comment by the emote’s,
sometimes cryptic, text representation. For this reason, lexicon based sentiment analysis
methods designed for common English typically fail to correctly classify Twitch comments.

To overcome the issue of having no direct training data, we explore the suitability of
emotes as emotion indicators to perform sentiment analysis on Twitch comments, and
introduce multiple methods that rely on emote-, emoji-, and word-sentiment lexica. We
show that emotes are a good complement to other lexica. Additionally, we compare two
types of lexica: average based sentiment lexica that provide one sentiment score per word
and distribution based sentiment lexica that contain a distribution over all classes based
on the annotator’s votes. We show that distribution based sentiment lexica improve our
test scores as they provide more information regarding “controversial” emotion indicators,
i.e., words that can have positive as well as negative connotations.

1https://www.twitch.tv (last accessed: 2023-02-10)
2https://stats.streamelements.com/c/global (last accessed: 2023-02-10)
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Use as weak label

Negative: 84.6%
Neutral:  7.7%
Positive:  7.7%

Input Masking 
(indicator words with 50% chance)

“This season is so fucking bad”
Lexicon based

classifier

“This season is so         bad” TextCNN
Negative: 84.6%
Neutral:  7.7%
Positive:  7.7%

Figure 15.2.: Overview of our training strategy of the Deep Learning (DL) model for sentiment
analysis of Twitch comments. We generate weak labels using a lexicon based approach and use
input masking to let the Neural Network (NN) not directly imitate the weak labeling approach.

Figure 15.1.: Screenshot of
a Twitch comment section.
The language used in the com-
ments is fairly different from
common English. In the bot-
tom right, an emote picker
helps with selecting an emote.
User names are anonymized
due to privacy reasons.

We then use the Weak Label Generation principle and
generate weak labels for a very large unlabeled dataset of
Twitch comments using the distribution based sentiment
lexicon approach. Introducing additional domain knowledge
to the model in this way, we train a Convolutional Neural
Network (CNN) model on these weak labels (see Figure 15.2).
Arguing that the model would just learn to take the signal
words from the lexica into account and thus effectively mim-
icking it, we explore the use of the Input Masking and
Augmentation principle and randomly mask words that
were used for the weak labeling process. This way, we aim to
guide the model to take other words from the input text into
account and find other correlations to classify the comments.
We thus investigate whether this combination of principles
leads to better generalization of the classifier on texts that
do not have signal words in them.

15.1. Methodology

The basic task in sentiment analysis is to classify a text
as one of the classes “positive”, “negative”, and “neutral”.
Due to Twitch comments being fairly short and often not
containing punctuation, we follow the structurally similar
setting employed by the sentiment classification tasks on
Twitter messages of Rosenthal et al. [229], which is predicting
the sentiment of entire comments. Given enough comments
over time in a chat, the overall sentiment of the audience can
be estimated by aggregating the sentiment of all individual
comments. We thus aim to train a Neural Network (NN)
that can predict the sentiment of a comment given its text.

Since there are no Twitch.tv related labeled sentiment analysis datasets, it is not
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possible to perform supervised learning. We thus explore the Weak Label Generation
principle by training the NN in a weakly supervised manner. To weakly label Twitch.tv
messages, we propose to make use of the emotes that are used in Twitch comments.

15.1.1. Weak Label Generation using Sentiment Lexica

To generate weak labels for our NN based approach, we propose to use a sentiment lexicon
based approach. Sentiment lexica are a commonly used resource in sentiment analysis.
Generally, they are lists of words associating each word with a polarity, providing valuable
hints for the sentiment conveyed by sentences including these words. We use three lexica
for weakly labeling our data, namely a word-, emoji-, and emote-based lexicon:

• The VADER lexicon is a word based sentiment lexicon [69], providing a list of
7517 English words, phrases and ASCII text emoticons together with ratings by ten
subjects on an integer scale from −4 (very negative) to 4 (very positive).

• The Emoji lexicon by Kralj Novak et al. [138] contains 969 unicode emojis and
their respective sentiment distribution based on the sentiment of tweets these emojis
appear in. To ensure reliable labels, we only considered the emojis that appear in
50 or more tweets, which yields annotations for 300 unicode emojis.

• The Emote lexicon is of special importance for Twitch comments. Since there is
no labeled sentiment lexicon for emotes, we create our own by labeling the top 100
emotes measured by the usage frequency in the unlabeled dataset we introduced in
Section 3.7.2. To label these emotes, a survey was conducted using Google forms
and published on two gaming-related Twitter accounts and on various gaming and
Twitch related subreddits on Reddit3 to ensure that mainly users of Twitch and
therefore people with background knowledge about emotes and emote usages were
participating. Participants were then shown images and text representations of
the emotes and were instructed to “rate [the emotes] as either negative, neutral or
positive, according to the sentiment of the situation in which you would or already
have used this emote.” Overall, the survey received answers from 108 participants,
which was sufficient to show clear tendencies for the sentiment of most emotes. More
information on the survey, its participants, and the results can be found in [133],
but an excerpt of the resulting lexicon can be found in Table 15.1.

We construct three distribution based lexica Ldist from the provided sentiment scores by
saving the distribution over the three possible classes “positive”, “neutral”, and “negative”
for each word, emoji, and emote. While the emoji and emote lexica already offer only
three classes, we group the VADER scores −4 to −2 as negative, −1 to 1 as neutral and
2 to 4 as positive and construct the distribution over these labels. Hence, the distribution
based lexica Ldist are a partial function that maps each token from the vocabulary for
which lexica entries are available Vdist to a three-dimensional vector whose sum of values is

3http://reddit.com (last accessed: 2023-02-10)
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Table 15.1.: Some answers to our Twitch emote sentiment survey.

Emote
Sentiment Negative Neutral Positive Unknown/NA

FeelsBadMan 71 17 19 1

FeelsGoodMan 1 7 98 2

LUL 11 23 72 2

OMEGALUL 17 26 62 3

PogChamp 1 3 101 3
...

...
...

...
...

Jebaited 25 27 37 19
...

...
...

...
...

mcaT 10 34 12 52

forsenPls 13 26 17 52

PepoDance 9 26 20 53

RedCoat 5 46 4 53

jinnytHype 7 31 17 53

one: Ldist : Vdist → [0, 1]3. Each entry Ldist(t) for a token t is the probability distribution
for the three possible classes given this token.

As preprocessing for our weak label generation, we lowercase and tokenize each Twitch.tv
comment into words and punctuation while preserving emoticons, unicode emojis and cap-
italization of Twitch emotes. To standardize occurring words for our learning procedures,
we replaced occurrences of urls with the tag “URL” and reduced characters occurring more
than twice in succession in a word to two occurrences (e.g., “loooove” is standardized to
“loove”). We then look up each token in the three lexica. In case of entries that are present
in multiple lexica, the emote lexicon takes precedence over the emoji lexicon, which in
turn supersedes VADER, representing how specialized the lexica are to the domain of
Twitch comments.

Given the tokenized comment T = (t1, t2, . . . , tm), we construct the sequence T ∗ =
(ti | ti ∈ Vdist) of tokens that are present in the lexica Ldist. We now want to predict
the correct class c for this list T ∗ = (t1, t2, . . . , tn) using p(c | ti) where i ∈ 1, . . . , n and
c ∈ {negative, neutral, positive} = C. This can be done by assigning the most likely class
c∗ to T ∗ given t1, . . . , tn, that is c∗ = argmaxc∈C p(c | t1, . . . , tn). The standard naive
Bayes formula

c∗ = argmax
c∈C

p(c | t1, . . . , tn) = argmax
c∈C

p(c)

n∏
i=1

p(ti | c) (15.1)
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cannot be applied here as we want to classify in an unsupervised manner and do not
have examples to infer p(ti | c) from. However, using Bayes’ theorem and assuming
conditional independence p(t1, . . . , tn | c) =∏n

i=1 p(ti | c), we can show that
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which only uses the sentiment distributions p(c | ti) given by our lexica Ldist. We use
this fact to build a probabilistic classifier that computes c∗ as its prediction, if any token
in the comment is present in one of the lexica:

sentiment(T ∗) :=

{
c∗ if |T ∗| > 0

neutral otherwise .
(15.11)

Given this classifier, we can now generate weak labels for the unlabeled dataset (see
Section 3.7.2). The labels are weak, since they are only based on the presence of tokens in
the lexica. Our distribution based approach labels messages as “neutral” if they contain
no signal tokens found in any of the three lexica. On the one hand, they may actually be
neutral and therefore not contain any signals. On the other hand, many of the comments
in Twitch contain orthographic mistakes or Twitch specific words which are not covered
by any of the lexica but might still provide valuable information about the sentiment in a
comment. The resulting labels are therefore not perfect. However, we can easily generate
a large amount of weak labels for the unlabeled dataset, which can be used to train a
more robust classifier.
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15.1.2. Input Masking of the NN

Given a large dataset of weakly labeled comments, we can train a NN to classify comments
into the three possible classes. Our intuition is that the network will be able to find the
relation between a comment’s sentiment and words that are not covered by the lexica, as
well as being more robust to orthographical errors. This stems from converting the input
tokens to embedding vectors to allow the model to work with them. Here, frequent typos
are given a similar embedding, and can therefore be evaluated correctly by the NN, while
a typo cannot be found in a lexicon.

As our NN model, we use the TextCNN for sentiment analysis introduced by Kim [126]
and already explained in Section 2.2.3. As inputs to the model, we use Word2Vec embed-
dings [178] trained on the unlabeled corpus as input representation (see Section 2.3.1).
To train the embeddings, we use the preprocessing described above on our unlabeled
dataset and filter all words that occur fewer than 100 times. This means that some words
are not available in the training phase of the network. Tokens that yield no embedding
are replaced by zero vectors. We use the “cnn-nonstatic” variant of the TextCNN, which
means that the embedding layer of the model is initialized with the pretrained embeddings.
This layer is then finetuned along with the other network weights during training.

We train the network by feeding the labels produced by our distribution based lexicon
classifier as targets. This approach predicts a neutral label for every comment that has no
token present in one of the used sentiment lexica. Since this is only a default assumption
and not a label actually provided by the classifier, we model these predictions as uncertain.
Therefore, for any comment that does not contain any signal tokens from our lexica, we
use a target distribution of 25% negative, 50% neutral, and 25% positive as target.

As this might lead to the network simply overfitting to this target distribution, we
adapt a method proposed by Go et al. [71]: masking signal tokens from the network’s
input, which implements the Input Masking and Augmentation principle. This
forces the network to look for other words, phrases, and structures in the comment that
correlate with its sentiment. In order to enable the network to rely on both signal tokens
from the lexica and possible new clues, we replace any signal token with a zero vector
with a 50% probability.

15.2. Experiments

With the weak labels obtained by the distribution based lexicon approach on the large
unlabeled dataset, we train a TextCNN on the resulting dataset and evaluate its per-
formance on the labeled test set, which is described in Section 3.7.2. The metrics for
evaluating our results are Accuracy, Macro Recall and Macro F1 score (described in
Section 2.5.1). Since Accuracy (i.e., the percentage of correctly classified samples) tends
to overestimate the predictive power of a classifier when classes are unbalanced, results
are here reported using the Macro F1 score as well as the Macro Recall.

To find the best hyperparameters for the CNN, we use approx. 20% of the unlabeled
Twitch chat message training dataset (introduced in Section 3.7.2) as a validation set
and perform a random search over the CNN filter count and dropout probability [255],
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following Zhang and Wallace [316]. After training about 30 different configurations, we
select the model with the lowest validation loss. This results in a TextCNN consisting of
182 filters and a dropout probability of 27% on the CNN layers during training. During
training, we use early stopping on the validation loss, which is calculated after every 500
batches consisting of 2816 training examples. If the validation loss does not improve
during 5 consecutive validation iterations, we stop and use the training state that produces
the lowest loss.

15.2.1. Baselines

We compare our proposed weakly supervised approach with the following baselines:

Random Baseline This very simple baseline consists of two possible strategies: (i)
Sampling uniformly from the three possible sentiment labels for each comment and (ii)
exploiting the knowledge about the distribution of the labeled dataset and then sampling
randomly from this distribution.

Majority Baseline The most common class in the evaluation dataset is “positive” with
40.06%. This baseline always predicts the “positive” class.

NLTK VADER Baseline As a more sophisticated baseline, we choose the sentiment
analysis system that was proposed along with the VADER lexicon [69] and is implemented
in the Python NLTK module4. This module uses the VADER lexicon, as well as some
rules to combine the word labels for predicting the overall sentiment of a text. Rules
include intensification of all-caps words, dampening a word’s sentiment if preceeded by
“kind of”, or negating the sentiment when a negation word is found. VADER serves as a
relatively strong baseline, as it was designed specifically for social media texts.

Distribution Based Lexicon Approach We can use the weak label generation process
as the baseline for our approach. Here, the output of the model is directly used as its
prediction. We can use this baseline to estimate the performance gain of our approach
over the distribution based lexicon approach.

Average Based Lexicon Approach The distribution based lexicon approach requires
the lexica to provide distributions over the sentiment labels. We thus want to test another
method that simplifies this requirement by using the average sentiment score of a token
instead of a distribution. We call these the average based lexica Lavg, a partial function
that maps a token from the available vocabulary t ∈ Vavg to a number Lavg(t) ∈ [−1, 1],
where higher numbers indicate a more positive sentiment: Lavg : Vavg → R. After applying
the same preprocessing and tokenization as for the distribution based lexicon approach,

4https://www.nltk.org/api/nltk.sentiment.vader.html#nltk.sentiment.vader.
SentimentIntensityAnalyzer (last accessed: 2023-02-10)
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Table 15.2.: Results for sentiment classification achieved by all methods. Best values are given
in bold.

Method Accuracy ↑ Macro Recall ↑ Macro F1 score ↑
Random Baseline 33.3% 33.3% 32.7%

Random Baseline
(sampling from target distribution) 35.6% 33.3% 33.3%

Majority Baseline 40.1% 33.3% 19.1%

NLTK Baseline 43.0% 39.3% 34.0%

Average Based Lexicon Approach 61.8% 58.9% 60.5%

Distribution Based Lexicon Approach 62.8% 60.5% 61.7%

TextCNN 63.8% 61.4% 62.6%

the token sequence T ∗ = (ti | ti ∈ Vavg) that consists only of the tokens that are present
in at least one of the lexica is generated. T ∗ is then scored as follows:

score(T ∗) :=

{
average(Lavg(t) | t ∈ T ∗) if |T ∗| > 0

0 otherwise.

Thus, the score of an entire comment is the average over all scores of tokens the lexica
provide an entry for. This results in a continuous score between -1 and 1. To receive the
final, discrete sentiment labels of negative, neutral or positive, thresholds were introduced
as follows:

sentiment(T ∗) :=


negative if score(T ∗) < −0.33

neutral if − 0.33 ≤ score(T ∗) ≤ 0.33

positive if 0.33 < score(T ∗) .

15.3. Results

Table 15.2 shows Accuracy, Macro Recall, and Macro F1 score for all methods on the
labeled dataset. We report the expected metrics for the random baselines. Sampling
uniformly from the three possible sentiment labels for each comment produces the worst
performance for our tested methods. Exploiting knowledge about the distribution of
the labeled dataset and sampling randomly from this distribution, we can increase the
expected Accuracy to 35.6% and Macro F1 score to 33.3%, while the expected Macro
Recall stays the same at 33.3%. The Majority Baseline, i.e., always predicting the
“positive” class, as it is the most frequent one in the dataset, leads to an improved
Accuracy but worse performance for the Macro F1 score.

Even though VADER is specifically designed for dealing with social media texts, the
Macro F1 score obtained by this method is 34.0%, which is only a small increase in
contrast to randomly selecting labels. This is due to the fact that the language used
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on Twitch is very different from common English and even from common social media
language. The Macro Recall and Accuracy, however, increase to 39.3% and 43.0%,
respectively.

Our simplest method based on multiple sentiment lexica, the average based lexicon
approach, yields an Accuracy of 61.8%, Macro Recall of 58.9% and a Macro F1 score
of 60.5%. 65.2% of comments in our evaluation dataset contained tokens found in our
lexica and were therefore labeled by the classifier. The other 34.8% were assigned the
“neutral” label by default. The large improvement over the other baselines shows that
incorporating sentiment lexica for emoji and emotes can provide reasonable accuracy even
with a rather simple classifier.

Our weak label generation method, the distribution based lexicon classifier, achieves
an Accuracy of 62.8%, a Macro Recall of 60.5%, and a Macro F1 score of 61.7%, which
is an improvement to the previous approach. As above, 65.2% of the comments in the
dataset had tokens found in the lexica, the remaining comments were labeled as neutral
by default.

The best method in our experiments is our weakly supervised TextCNN, which achieves
an Accuracy of 63.8%, a Macro Recall of 61.4%, and a Macro F1 score of 62.6%. This
result improves the distribution based lexicon approach, even though the weak labels were
produced by the lexicon based method, which provides evidence that the combination of
weak labels and input masking can lead to improved performance.

15.4. Analysis

We have shown that our weakly supervised model outperforms the baselines as well as
the weak label generation method. In the following, we provide some analyses of the
model to better understand if the better performance is due to the applied principles.
For more analyses and case studies that do not directly relate to these specific principle
implementations, see our work in [133]. There, we analyze the capabilities of the Word2Vec
embeddings trained on Twitch messages and provide case studies where we apply our
sentiment analysis model to Twitch streams and show that certain stream events correlate
with the sentiment of the chat.

15.4.1. Ablation Study: Emotes Matter

In order to validate our assumption that emotes have major influence on the sentiment of
Twitch chat messages, we conduct an ablation study for our two lexicon based classifiers,
investigating the influence of different lexica. We find that both approaches profit strongly
from the inclusion of emotes. Table 15.3 shows the results for all combinations of the
three lexica. Along with the measures Accuracy, Macro Recall, and Macro F1 score, the
table shows the percentage of messages with at least one token found in the lexicon. The
emoji lexicon does not improve the classification performance by much, but increases
the amount of messages that are not simply assigned a default “neutral” label by two
percentage points. It can be seen that all lexica are relevant to the classification, while
the emote lexicon has the single largest influence. Also note that the emote lexicon covers
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more messages than any other lexicon. These findings are in line with our expectation
that emotes are crucial for the understanding of comments on Twitch.

Table 15.3.: Results of both lexical approaches using different combinations of lexica. Best
results are written in bold.

Accuracy ↑
Average/Distribution

Macro Recall ↑
Average/Distribution

Macro F1 score ↑
Average/Distribution

% of comments
containing signal tokens

Emoji 39.5% / 39.8% 34.0% / 34.3% 21.1% / 21.4% 3.8%

Vader 48.3% / 45.9% 45.1% / 43.1% 42.1% / 38.1% 26.6%

Emoji + Vader 48.5% / 46.4% 45.3% / 43.6% 42.7% / 39.2% 29.1%

Emote 58.9% / 59.7% 54.3% / 55.2% 55.1% / 56.0% 48.0%

Emote + Emoji 58.9% / 60.3% 54.4% / 55.8% 55.3% / 56.7% 50.6%

Emote + Vader 61.8% / 62.4% 58.8% / 60.2% 60.4% / 61.3% 63.4%

Emote + Emoji + Vader 61.8% / 62.8% 58.9% / 60.5% 60.5% / 61.7% 65.2%

15.4.2. Comparison of Approaches: Complexity Matters

In addition to the ablation study presented above, we analyze the differences between
the predictions our classifiers make in order to enable a better understanding of their
relative performance. Despite similar numeric results in the average and distribution
based approach and a Spearman correlation coefficient of 0.88, there are a number of
cases where the approaches classify messages differently. In fact, both approaches are
significantly different from each other with a significance level of 1%, based on the
Randomized Matched-Pair Test by Yeh [309] (p-value for F1 score: 1.9× 10−6). Using
the same test, comparing the CNN and distribution based approach also shows significant
difference with a p-value for F1 score of 2.9× 10−6.

As previously mentioned, approx. 35% of messages in the evaluation dataset did not
contain tokens present in the lexica. These messages were assigned the “neutral” label
by default by the lexicon based approaches. When comparing the results of all three
classifiers, it is noticeable that in contrast to our expectations, the CNN did not improve
the classification of these messages. Almost all of these 669 messages (i.e., 35% of the
evaluation dataset) were also classified as neutral by the CNN. However, as seen in
Table 15.4, the TextCNN generally classifies fewer messages as neutral. This means that
messages that have signal tokens in them but were classified as neutral by the lexicon (e.g.,
because of not reaching the threshold) based approaches are more likely to be classified as
positive or negative by the CNN. This seems to be the largest influence for the improved
performance over the average based and distribution based approaches. The fact that
the CNN does not improve the classification of messages without signal tokens suggests
that the input masking is not the main reason for the improved performance of the CNN.
Inspecting some messages and their predicted probability distributions across the three
labels “negative”, “neutral”, and “positive”, we find that the distribution based approach
often has the same probabilities for at least two labels. This is due to the lexica entries
often having the same probability for multiple labels. Choosing the label with the largest

170



15.5. Conclusion

Table 15.4.: Distribution of classified messages of all three approaches and the original evaluation
dataset.

Classifier Negative Neutral Positive

True Sentiment 404 748 770

Average Based Classifier 237 1027 658
Distribution Based Classifier 290 971 661
TextCNN 281 962 679

Table 15.5.: Amount of messages labeled as negative/neutral/positive by the classifiers in
comparison to the true sentiment. Excluding messages with default neutral sentiment due to
undetected tokens.

True
Sentiment

Estimated
Sentiment

Average Based
Lexicon Approach

Distribution Based
Lexicon Approach TextCNN

neg. neu. pos. neg. neu. pos. neg. neu. pos.

negative (312) 174 112 26 195 80 37 193 83 36

neutral (320) 49 112 159 71 104 145 63 111 146

positive (621) 14 134 473 24 118 479 25 100 496

probability then can lead to possibly undesirable labels, since the maximum function
from the used Python library NumPy [83] usually takes the first occurrence of the largest
value, making the prediction more negative. The TextCNN, due to its NN approach, does
not give the same probability for multiple labels. We suspect that this leads to a more
nuanced and thus accurate prediction of the sentiment.

Table 15.5 compares the sentiment predicted by our methods in comparison to the
true sentiment. The table shows that, except for true neutral messages, the classifiers
show a clear tendency to correctly classify negative and positive messages. Only very
few messages have completely contrary sentiment where the classifiers predict negative
sentiment for a message labeled as positive by the crowd workers or vice versa.

15.5. Conclusion

In this implementation of the Input Masking and Augmentation and Weak Label
Generation principles, we have presented a NN based method that is able to reliably
estimate the sentiment of Twitch comments. This allows streamers to visualize trends in
the audience’s sentiment to get feedback for their product or stream and perhaps adapt
their presentation accordingly.

The basic assumption was that, due to the very specific language of Twitch comments,
generic sentiment analysis approaches would fail to provide satisfactory classifications
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on Twitch data. We also hypothesized that using emotes could be a way to overcome
the challenge posed by this language, as they make up a large part of Twitch comments.
Our experiments show that both of these assumptions are correct: The VADER baseline,
even though it is designed for social media texts, cannot capture the sentiment expressed
in Twitch comments. Our methods however, which include sentiment information about
emotes in addition to words and emojis, are able to detect sentiment with reasonable
accuracy. Our ablation study has shown that this is indeed mostly due to the emote
lexicon.

A common shortcoming of lexicon based classifiers is their inability to deal with spelling
errors or, more, generally, words not contained in the lexica they are based on. We
proposed to use a CNN based on word embeddings to enable generalization to unknown
words. Our analysis shows that, while the CNN does indeed perform better than the
lexicon based classifiers, this improvement is not due to the generalization we had hoped
for. This could be due to the network overfitting to the target distribution given by our
distribution based lexicon classifier. We had hoped that marking the default neutral
classification for comments that do not contain words in our lexica as uncertain by
representing it as 25% positive, 50% neutral, and 25% negative would be enough to
prevent this, however this does not seem to be the case. Exploring other methods to enforce
better generalization is an interesting topic for future work. Possible approaches include
providing a target distribution closer to the uniform distribution, deleting uncertain
training examples with a given chance, or modifying the learning rate of the NN to be
lower when the label is uncertain.

Despite the better results, the CNN requires time-consuming training and hyperparam-
eter optimization as well as rather large amounts of storage space for the embeddings and
weights compared to the lexicon based approaches. While this does not pose a significant
problem for most applications, it could be relevant for real-time use. Our lexicon based
classifiers could easily be integrated into a browser plugin to provide streamers with
real-time information about their audience’s sentiment and enable them to adjust their
stream accordingly. On the other hand, the slightly higher accuracy of the CNN could be
useful for offline analysis of comments after events.
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16. Improving Image Aesthetics
Assessment (IAA) Models using
Self-Supervised Pretraining with
Image Augmentations, Weak Labels,
and Multitask Learning

We now revisit the task of Image Aesthetics Assessment which is described in Section 3.2
and combine several principles in this implementation in order to improve the performance
of IAA models. For this, we mainly follow our work in [208].

As already discussed, assessing the aesthetics of an image automatically can be used in
many applications. Modern IAA methods are based on Convolutional Neural Networks
(CNNs) that receive an image as input and output a score that is higher for more aesthetic
images. Such models are usually initialized with weights trained on the ImageNet
classification task [46] to build on the already learned features by finetuning the network
on a labeled dataset such as Aesthetic Visual Analysis (AVA) [191]. As we already have
discussed in Chapter 12, we argue that the ImageNet classification task is not well-suited
for IAA models, since it is not designed to teach the network aesthetically relevant features.
Due to the classification objective, it even discourages features important for IAA. For
example, a classification network should be invariant to the image’s lighting conditions
and thus discourages features taking the image’s brightness into account. We therefore
propose to pretrain the model on pretext tasks that are specifically designed to let the
network learn relevant features to assess the aesthetics of an image.

While in Chapter 12, we proposed to handle this by using the Contrastive Language-
Image Pre-Training (CLIP) model as a fixed general feature extractor, we now use
Self-Supervised Learning (SelfSL) to pretrain the IAA model such that it learns to extract
more useful features for the IAA task. In the related task of technical Image Quality
Assessment (IQA), the method RankIQA [160] pretrains a CNN to rank images based
on the intensity of an applied technical distortion. Images of high technical quality are
distorted by applying artificial technical distortions such as noise addition, blurring, or
JPEG compression. Since technical distortions clearly degrade an image, the network can
be trained to assess images with higher distortion intensity to be of lower quality in a
self-supervised fashion. We propose to adapt and extend this self-supervised pretraining
for the task of IAA. Instead of just technical distortions, we apply image filters that usually
change an image’s technical quality (e.g., noise), style (e.g., contrast), or composition
(e.g., cropping). However, applying style or composition filters to ordinary images can
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Figure 16.1.: A schematic overview of our novel pretext tasks. Images are singly distorted using
image filters in different intensities. The Neural Network (NN) then learns to output higher scores
for less distorted images. In a multitask setting, the network additionally classifies the distortion
or estimates the distortion’s intensity.
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lead to undesired improvements in the image aesthetics, violating the assumption of
the self-supervised task. Thus, we introduce a large dataset of highly aesthetic images,
consisting of the most popular images from the stock photo website pexels.com. Using
the domain knowledge and showing that applying filters to those images usually results
in less appealing images, we can use this ranking as an application of the Weak Label
Generation principle and adopt the same ranking task for IAA. Degrading images
through filters is implementing the Input Masking and Augmentation principle.

According to related IQA literature [117, 166, 301, 72, 315], embedding similar ap-
proaches into a multitask training setting can improve the prediction performance of the
resulting image assessor by making use of additionally available information. Therefore
we propose to combine this ranking task with a classification or regression task adapted
for IAA: While the ranking task itself focuses on predicting relative changes in image
aesthetics, the classification learns to predict the applied distortion and the regression task
estimates the intensity of the currently applied distortion. Since we define a task-specific
loss function to each task and an overall combination of these losses into one final loss,
this method is an implementation of the Loss Function principle. Figure 16.1 shows a
high-level overview of our proposed pretext tasks.

In our experiments, we use the IAA method Neural Image Assessment (NIMA) [265] as a
reference and replace its pretrained weights with the weights from our other self-supervised
pretext tasks before finetuning on the labeled AVA dataset [191]. We find that we can
improve the performance over the baseline method while reducing the number of epochs
until convergence by up to 47% over the ImageNet-initialized NIMA. In an analysis, we
find that we match the fully supervised model’s correlation and Mean Absolute Error
(MAE) metrics while requiring approximately 20% less labeled training data.

16.1. Methodology

Our method is based on the observation that singly distorting a high-quality image results
in a lower-quality image, which is exploited in the technical IQA method RankIQA [160].
The authors apply image filters to high-quality photos, e.g., JPEG compression and
noise, thus effectively degrading the technical quality of the image and then train a CNN
to output higher scores for less distorted pictures. We transfer their approach to the
Image Aesthetic Assessment setting by using image filters that degrade not only technical
quality, but different aspects of image aesthetics. For example, changing the brightness of
a well-lit photo will usually result in a less appealing image or cropping a well-composed
image will certainly result in a less than optimal photo crop. To overcome the challenge
that applying image filters such as contrast adjustments might enhance images, we define
requirements for the dataset used in the pretext tasks. By training a Neural Network
(NN) to output higher scores for less distorted versions of an image, the network has to
learn what filter intensity is more appropriate between two images. We propose to also
optionally add one of two other pretext tasks in a multitask setting, making use of other
objectives besides the relative ranking:

1. Distortion identification guides the network to differentiate between distortions.
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2. Distortion intensity estimation lets the model learn about the absolute intensity.

Our three proposed pretext tasks are depicted in Figure 16.1.
Following the common transfer learning setting, the resulting model acts as initialization

for finetuning on a labeled image aesthetic dataset in a supervised fashion. We later
show that our pretrained models learn more suitable features for the IAA task than the
common ImageNet [46] initialization [242, 265, 167, 129].

16.1.1. Aesthetic-Aware Image Distortions

From related works [265, 243] we identify five essential aspects of general image aesthetics:
technical quality, style, composition, content, and semantics. For our pretext tasks we
aim to select image filters that distort aesthetic base images regarding these aspects.
Since it is non-trivial to find image filters that distort image content and semantics in a
self-supervised way [243], we focus on the remaining aspects technical quality, style, and
composition, even though it is possible to include content or semantic based distortions if
such image filters are found. In the following, we discuss these aspects in general, while
in Section 16.2.1, we select specific image distortions.

Technical Quality Technical distortions can appear on an image under real world use
cases, when taking, saving or transmitting an image, e.g., compression, blurring, or the
addition of noise. It is well documented that applying such technical distortions to an
image lowers its perceived quality [117, 166, 301, 315, 72, 210]. For our method, a set of
distortions Dtech influencing this aspect has to be chosen.

Image Style Image style is mostly described through image properties such as contrast,
brightness, or saturation. Thus, style based distortions consist of image filters that are
often used for color correction and color grading. Applying a filter from the chosen filter
set Dstyle to an aesthetic image results in a degradation in quality, especially when using
high filter intensities.

Image Composition Image composition concerns the location of subjects and objects
in the image, thus it is highly correlated with the chosen image crop. We assume that
for highly aesthetic images, the original framing is selected in an aesthetically pleasing
way, e.g., by following common guides such as the rule of thirds. Operations like crops or
rotations then destroy such alignments. Applying these distortions Dcomp in pretraining
has the additional benefit of making the network learn to recognize structures in images in
general, which has been shown to be useful in similar image pretext tasks [112, 68, 77, 136].

16.1.2. Highly Aesthetic Dataset

The dataset chosen for pretraining is important for our proposed method, as the purpose
of applying any distortion described in Section 16.1.1 to an image from the dataset is
to degrade its aesthetics regarding the corresponding aspect. In RankIQA, high-quality

176



16.1. Methodology

images with regard to the technical aspect are required to make sure that applying a
technical distortion does in fact degrade an image’s quality [160]. The application of
style and composition filters thus has to consistently degrade the associated aspect of
aesthetic quality of an image from the dataset. We therefore derive two requirements for
the pretraining dataset used in our method:

Highly Aesthetic The dataset needs to contain only highly aesthetic images with regard
to their technical quality, style, and composition. This minimizes the risk that applying a
filter accidentally improves the image’s aesthetics, since the undistorted image presumably
already has optimal filter parameters.

Diverse in Style and Content To prevent the network from overfitting on a specific
editing style or image content, the dataset needs to contain a wide variety of different
images. High content diversity ensures that the model learns to generally correlate content
with style features, e.g., sunsets with orange tints or portraits with natural skin tones.
Consequently the dataset needs to be of sufficient size to meet the requirement regarding
its diversity.

16.1.3. Self-Supervised Aesthetic-Aware Pretext Tasks

Applying the selected aesthetic-aware image distortions to the high-quality images results
in a dataset containing the original, unedited images and some automatically generated
lower quality image variants (regarding technical quality, style, and composition). While
there is no absolute aesthetic score for neither the original image nor any of the generated
images, we can access the intensity of the applied distortion and the fact that a higher
intensity of an applied distortion makes the image look less aesthetically pleasing. In
the following we introduce our main ranking-based self-supervised pretext task as well as
two additional tasks based on classification and regression. We combine the ranking task
with each of the other tasks in a multitask setting to guide the network to learn features
related to image aesthetics. In our experiments, we then assess the effects of the pretext
tasks on the downstream IAA performance.

Given an image I and a set of distortions that unites all image filters defined for
technical quality, style, and composition Dall = Dtech ∪ Dstyle ∪ Dcomp. Each distortion
d ∈ Dall has a set of possible intensity values V(d) = {v|v ∈ R} that can be positive or
negative. Applying the filter with these distortion intensities to the image I, we obtain
a set of distorted images I(d) = {I(d)v |v ∈ V (d)}. An intensity value of zero equals the
original image I

(d)
0 = I.

In general, a NN pretrained on ImageNet is used as the base model. For each task, the
last layer is replaced in order to conform to the desired output.

Ranking Aesthetic Value

Our main pretext task is a ranking task based on the RankIQA method for technical
image assessment [160]. Given all distorted versions of an image, the original image
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I
(d)
0 is assumed to be the most aesthetically pleasing and should therefore be rated with

the highest score. Images I
(d)
i with a higher absolute distortion intensity value |i| > 0

should decrease the image aesthetics, e.g., increasing the brightness results in a less
appealing image and a lower score compared to an image with a weaker increase in
brightness. Given these assumptions, we utilize the ranking-based pretext task from Liu
et al. [160] that ranks all images with respect to their intensity value. With our dataset
and aesthetic-aware image distortions, we are able to apply this method to IAA. The NN
is supposed to output scalars that are larger for higher-quality images and predict smaller
values for images with larger distortion intensities. We let the last layer of the base NN
output one scalar and apply a sigmoid activation function.

For one image, the ranking loss is defined as

Lrank =
∑

I
(d)
i ,I

(d)
j ∈I(d),

d∈Dall,
|i|<|j|,

sign(i)=sign(j)

max
(
0, (frank(I

(d)
i )− frank(I

(d)
j ))−m

)
, (16.1)

where m is the margin denoting the desired output difference between two differently
distorted images when fed through the ranking network frank which returns a score
between 0 and 1 for low- and high-quality images, respectively. sign is the distortion
intensity’s sign. Since we can not estimate how positive or negative filter parameters
relate to the image distortion, sign(i) = sign(j) ensures that only image pairs with the
same distortion “direction” (e.g., increasing the contrast) are compared.

Classifying Applied Distortions

In addition to the ranking task, we optionally train on a distortion identification task
in a self-supervised manner as done in some No Reference Image Quality Assessment
(NR-IQA) methods [117, 166, 301, 72]. We replace the network’s last layer with three
separate layers, one for each quality aspect a ∈ {tech, style, comp}. Each layer has |Da|
outputs followed by a softmax activation function to output probabilities fa

class(I) for a
given input image I. We consider each quality aspect separately to allow cross synergies,
e.g., adding noise to an image often results in lower saturation. A single probability
distribution across all distortions could not consider such synergies and would increase
the loss since multiple changes were correct.

The loss for this pretext task is thus defined as

Lclass =
∑

I
(d)
i ∈I(d),
d∈Da,

a∈{tech,style,comp}

LCCE

(
fa
class

(
I
(d)
i

)
, d

)
, (16.2)

where LCCE is the Categorical Cross Entropy (CCE) loss function taking the output
probability distribution and the index of the applied distortion.
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Estimating Intensity of Applied Distortions

While the distortion identification task only classifies the distortion, another task we can
add to our multitask setting is to explicitly predict the distortion intensity. The last
network layer is replaced to output |Dall| values, one for each distortion. We calculate
the loss by applying the squared error to the output for the applied distortion. Only
calculating the error at the output index of the applied distortion makes it possible to
model cross relations between distortions.

The loss function for the regression task is

Lregr =
∑

I
(d)
i ∈I(d),
d∈Dall

(
fregr

(
I
(d)
i

)
d
− norm(i)

)2

, (16.3)

where fregr

(
I
(d)
i

)
d

is the estimated intensity value by the regression network fregr for the
given distortion d and norm(i) is the normalized intensity value to be predicted. The
intensity value is normalized such that all non-negative intensities are normalized to the
range [0, 1] and all non-positive intensity values are normalized to the range [−1, 0]. This
scales all intensity values to similar ranges, lowering the influence of single distortions on
the loss.

16.1.4. Multitask Pretraining and Finetuning

Related IQA approaches [117, 166, 301, 315] have shown that a multitask training setup
improves the resulting image assessor due to the additional information being available
during training. For our proposed multitask setting that implements the Loss Function
principle, we combine the ranking task with either the classification or regression task
by adding the losses for the given pretext tasks using the balanced multitask learning
framework by Liang and Zhang [152]. For the final loss that is used for training, it defines
a function that is applied to each individual loss value. This function h needs to have
certain properties to ensure good mathematical behavior: First, h should be a strictly
monotonically increasing function. This ensures that large loss terms contribute more
to the overall loss than small ones. Second, the derivative of h should also be strictly
monotonically increasing. Given that the chain rule is used to differentiate the loss, the
derivative of h can be interpreted as a weight of the individual loss term’s derivative.
Intuitively, this weight should also be larger for larger loss terms. Finally, h and its
derivative should yield non-negative values when the input is non-negative. Given that
the loss values are larger than or equal to zero, the transformed loss values as well as the
derivative, i.e., the weight for the update step, should also be non-negative.

The basic approach of summing up all loss terms corresponds to using the identity
function h(x) = x as h. Given the requirements above we see that the derivative of the
function is not strictly monotonically increasing, as it is always 1. Thus, the weight of
the derivative of the loss term is constant, which does not give optimal mathematical
properties. Thus, the authors propose to use h(x) = exp(xt ), where t is a positive
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hyperparameter. The exponential function is strictly monotonically increasing and its
derivative 1

t exp(
x
t ) is also strictly monotonically increasing. Also, the function and its

derivative are non-negative for non-negative input values (actually, for all real numbers).
We use this loss balancing scheme, since it is easy to implement. Overall, this results

in the loss
L = h (Lrank) + h (Lclass) (16.4)

when adding classification to the ranking task and

L = h (Lrank) + h
(
Lregr

)
(16.5)

when adding the regression task. We set the hyperparameter t in h(x) = exp(xt ) to 50,
according to the authors’ recommendation [152]. Each loss component is non-negative, so
the final loss is also non-negative. Additionally, due to the exponential in h, even negative
values would become positive.

After pretraining the model with the proposed self-supervised tasks, the network should
have learned important visual features to identify and judge image aesthetics. We can
finetune the pretrained model on a labeled image aesthetics dataset, which should achieve
better performance on the labeled dataset.

16.2. Experiments

Now, we describe implementation details and our experimental setup in order to evaluate
our methodology. This includes the acquisition of a suitable high-quality dataset, image
distortions and NN architecture, training, baselines, and evaluation measures.

16.2.1. Aesthetic-Aware Image Distortions

During our self-supervised pretraining we apply technical, style, and composition filters to
the high-quality images. Table 16.1 shows our selected distortions with corresponding
intensity values.

To change the technical quality of an image, we use the library “imagenet-c” [89],
introduced to benchmark the robustness of image classification models against distortions
on the ImageNet [46] dataset. For changes in style we use the graphics suite darktable1 that
provides common color correction and color grading filters. All compositional distortions
such as cropping, rotation, or adjusting image ratios are implemented in Python using
Pillow [43]. We resize and pad all images to 224×224 pixels. This ensures that we do not
accidentally destroy the image’s composition.

16.2.2. Highly Aesthetic Dataset

For our dataset, we download the 130 000 most popular images of all time2 from the
free stock photo website pexels.com. As detailed in Section 16.1.2, the dataset needs

1https://www.darktable.org (last accessed: 2023-09-26)
2pexels.com/popular-photos/all-time/ (scraped on 2020-02-06; now offline)
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Table 16.1.: Actual parameters and implementation specifics for each distortion and intensity
level. Technical parameters are passed to imagenet-c [89] and style parameters to darktable while
compositional distortions are implemented by us.

Distortion Intensity Actual Parameters

T
ec

h
n
ic

al

JPEG compression [0, . . . +4, +5]

The editing library accepts the technical intensities as is.

Defocus blur [0, . . . +4, +5]
Motion blur [0, . . . +4, +5]
Pixelate [0, . . . +4, +5]
Gaussian noise [0, . . . +4, +5]
Impulse noise [0, . . . +4, +5]

S
ty

le

Brightness [-5, -4, . . . , +4, +5] [−1.0, −0.8, . . . , 0.8, 1.0]
Contrast [-5, -4, . . . , +4, +5] [−1.0, −0.8, . . . , 0.8, 1.0]
Saturation [-5, -4, . . . , +4, +5] [−1.0, −0.8, . . . , 0.8, 1.0]
Exposure [-5, -4, . . . , +4, +5] [−3.0, −2.4, . . . , 2.4, 3.0]
Shadows [-5, -4, . . . , +2, +3] [−100, −60, −20, 20, 40, 50, 60, 80,100]
Highlights [-3, -2, . . . , +4, +5] [−100, −80, −60, −50, −40, −20, 20, 60,100]
Temperature [-4, -3, . . . , +4, +5] [2000, 3000, 5000, 6000, 6500, 7000, 8000, 10 000, 14 000, 18 000]
Tint [-5, -4, . . . , +4, +5] [0.75, 0.8, . . . , 1.2,1.25]
Vibrance [-2, -1, . . . , +3, +4] [0, 20, 25, 40, 60, 80, 100]

C
om

p
os

it
io

n Rotation [-5, -4, . . . , +4, +5] [10◦ ⟲, 8◦ ⟲, . . . , 8◦ ⟳, 10◦ ⟳]
Horizontal crop [-5, -4, . . . , +4, +5] We resize the image to 336px and then crop patches of size

224px from the resulting image. Intensity 0 is a centercrop,
while a |intensity| == 5 results in a crop from the images’
border.

Vertical crop [-5, -4, . . . , +4, +5]
Left Diagonal crop [-5, -4, . . . , +4, +5]
Right Diagonal crop [-5, -4, . . . , +4, +5]
Image Ratio [-5, -4, . . . , +4, +5] [stretch along y-axis 100%, y80%, . . . , x80%, stretch along x-axis 100%]

to contain highly aesthetic images of diverse style and content to be usable in our self-
supervised pretext tasks.

Highly Aesthetic

Stock photos are inherently made to be aesthetically pleasing, which makes a stock photo
website an ideal source for our dataset. It can safely be assumed that stock photos
in general are quite well lit and color coordinated. By taking only the most popular
photos, we are certain that these images are liked by the general public. Figure 16.2
shows randomly selected images from the dataset. To spot-check the aesthetics, we
conduct a survey: A random image from the dataset and the same image with an image
filter applied are shown. The subject clicks on the image that they find to be more
aesthetically pleasing. 73 annotators have rated 6182 image pairs. For 74% of these
pairs, the unedited image is preferred, when compared to any style filter in any intensity.
Besides the survey, we apply a trained version of NIMA3 [265] to the original images,
which classifies approximately 88% of them as high-quality.

Diverse in Style and Content

According to pexels.com, the stock photos are from a wide variety of art styles and
topics. Available categories range from dominant colors over common photo tags like

3https://github.com/kentsyx/Neural-IMage-Assessment (last accessed: 2023-02-10)
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Figure 16.2.: Random examples from our unlabeled dataset from pexels.com used for our
self-supervised pretraining.

food, fashion, or people to emotional aspects like moody, wellbeing, or happy. This induces
a high diversity in image contents and styles. Assuming that the most popular images
are a somewhat representative sample of all images, our dataset covers a wide range of
different styles while each individual image remains well edited. Additionally, we apply
a pretrained DenseNet121 [100] for image classification and RetinaNet [154] for object
detection to our dataset to make sure that the images are diverse in content. We find
that the images of our dataset spread across many different classes and contain a wide
variety of objects and subjects, as can be seen in Table 16.2.

Table 16.2.: Most and least commonly detected classes and objects in the images of our dataset.

most common classes
class count

seashore 3554
alp 2568
lakeside 2446
fountain 2265
valley 2011
miniskirt 1455
gown 1430
bikini 1176
. . . . . .
sloth_bear 2
affenpinscher 2
patas 1
Sealyham_terrier 1
Japanese_spaniel 1

most common objects
object count

person 44301
car 3186
cup 2880
bird 2788
cell phone 1749
boat 1618
dog 1581
potted plant 1580
. . . . . .
refrigerator 31
snowboard 25
skis 23
hair dryer 7
toaster 7
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16.2.3. Self-Supervised Aesthetic-Aware Pretraining

As the main pretext task, we train the network to rank an image with differently intense
filter settings for one filter. In addition, we add one of two tasks, as described in Sec-
tion 16.1.4, resulting in three pretext task combinations: ranking, ranking+classification,
and ranking+regression. We set the hyperparameter m, which describes the desired
minimal margin between two images with different distortion intensities, to 0.2 in our
experiments.

Prior to training, we randomly split our dataset into 100 000 training images, 15 000
validation, and 15 000 test images. Every image is then distorted using each of the filters
described above with all respective intensity values, resulting in 173 different variants
per image, including the original image. Overall, this makes 100000× 173 = 17300000
training images and 15 000×172=2 595 000 images for validation and testing.

As the NN architecture, we use MobileNetV2 [236], since it speeds up training times due
to fewer parameters while still performing well [265]. This allows us to train comparatively
quickly even on the approximately 17 million training images.

For each pretext single-task or multitask setting, we train the model for 20 epochs and
then select the epoch with the lowest validation loss as the initialization for finetuning. We
select an initial learning rate of 10−4 for all model configurations based on a hyperparameter
search. All other training settings are taken directly from the original MobileNetV2
paper [236], i.e., optimizing using RMSProp [91] with decay and momentum set to 0.9,
weight decay regularization of 4× 10−5, and an exponential learning rate decay of 0.98
per epoch. As batch size, we take eight images and all their distorted variants as a batch,
thus resulting in 1384 images in each batch.

16.2.4. Baselines

We compare our method to three other models. On the one hand, we train a model that is
initialized with weights trained on the ImageNet classification task [46], a common initial-
ization for IAA methods [242, 265, 167, 129]. On the other hand, we employ two common
self-supervised pretext tasks. RotNet [68] classifies the rotation ∈ {0◦, 90◦, 180◦, 270◦}
applied to an input image. SimCLR [38] aims to output similar representations for
different augmentations of the same image. To allow for a fair comparison, we use the same
MobileNetV2 [236] architecture for all methods. Each model is initialized with ImageNet
weights. Additionally, all algorithms are applied to our collected highly aesthetic dataset
to make sure that all methods have access to the same images while pretraining.

RotNet For RotNet [68], we use the authors’ implementation4. We follow the same
procedure as in the original paper and only change the given network architecture and
dataset.

4https://github.com/gidariss/FeatureLearningRotNet (last accessed: 2023-02-10)
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Table 16.3.: Performance results: Shown are the Accuracy on the binary task, Pearson and
Spearman correlations, as well as the Mean Absolute Error between the ground truth and the
scores returned by our model. The best value for each metric is printed in bold. For our pretext
tasks, † indicates significantly better results compared to the ImageNet pretext task.

AVA TID2013

Pretext Task Epochs Pearson ↑ Spearman ↑ Accuracy ↑ MAE ↓ Pearson ↑ Spearman ↑ MAE ↓
ImageNet [46] 147 0.5491 0.5372 0.7548 0.4716 0.4760 0.3897 0.9747
RotNet [68] 79 0.3272 0.3139 0.7112 0.5376 0.1282 0.1075 1.1334
SimCLR [38] 65 0.5483 0.5360 0.7540 0.4718 0.4824 0.3944 0.9688

ranking 96 0.5536 0.5414 0.7560 0.4698† 0.4842 0.3946 0.9679†

ranking + classification 89 0.5535 0.5409 0.7550 0.4702 0.5009 0.4111 0.9620†

ranking + regression 77 0.5541 0.5420 0.7582 0.4697† 0.4855 0.3971 0.9672†

SimCLR For this baseline, we use an unofficial reimplementation5 that is able to
reproduce the results from the paper [38]. The code provides the choice between the
Adam optimizer and the LARS optimizer [38]. For our experiments we select the latter
with a cosine annealing learning rate schedule as in the original paper. We are therefore
positive that this is comparable to the original implementation.

16.2.5. Finetuning Pretrained Models

After pretraining, each model is finetuned on the AVA dataset [191]. Note that our
pretrained models are drop-in replacements for all IAA methods that initialize their
weights with a pretrained CNN. For our experiments, we follow the training method
from NIMA [265], since it is simple and elegant: We replace the last layer of the network
with a fully connected layer with ten outputs, indicating the possible AVA scores one to
ten. Outputs are normalized to a distribution using the softmax function. The training
procedure then uses the Earth Mover’s Distance Loss [95] on the rating distribution of
the annotator’s votes for each image.

Training parameters are kept close to the original values proposed by Talebi and
Milanfar [265], only incorporating small practical improvements by Lennan et al. [148]
and changes to adapt for the different pretext tasks: We train using the Adam [127]
optimizer with separate learning rates for the pretrained layers (10−4) and for the new
fully connected layer (10−3) and a weight decay regularization of 4× 10−5. Additionally,
we use a learning rate schedule that monitors the validation loss and halves the learning
rate if the loss does not significantly improve for five consecutive epochs. This schedule
is a compromise between the originally proposed schedule in NIMA [265] and the more
aggressive decline in learning rate used by Lennan et al. [148]. As suggested by Lennan
et al. we keep the weights of all layers but the very last frozen until the validation loss
plateaus for the first time. We train on the AVA dataset and employ an early stopping
strategy that stops training once the validation loss does no longer improve for ten
consecutive epochs.

5https://github.com/Spijkervet/SimCLR (last accessed: 2023-02-10)
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16.2.6. Evaluation Setup

For evaluating the trained models, we mostly follow the setup by Talebi and Milanfar
[265]. Given the ten-dimensional output denoting a distribution across the possible rating
scores, a mean score can be computed by calculating the expected score given the output
distribution. We let all models predict the mean aesthetic scores for the test split of the
AVA dataset and label images with scores above five as aesthetic and below five as not
aesthetic. As in our other IAA works in this thesis, we calculate the Accuracy [235] and
the Spearman [235] and Pearson [63] correlation coefficients. Additionally, we compute
the MAE [235] between the predicted and ground truth mean scores.

In addition to AVA, we, like Talebi and Milanfar [265], also test our models on the
TID2013 [210] dataset that is designed to measure the performance of technical IQA
models. Since our pretext tasks incorporate distortions leading to technically degraded
images, we suspect that the performance of pretrained models improves on this dataset
as well. We calculate the Spearman correlation, Pearson correlation, and MAE between
the predicted and ground truth scores from the dataset.

16.3. Results

In Table 16.3, the finetuned models are identified on the basis of their respective pre-
text task they were initialized with. In addition to the evaluation metrics specified in
Section 16.2.6, we also provide the number of training epochs before halted by early
stopping.

Models pretrained on any of our proposed pretext tasks show better evaluation metrics
than all baseline models. Compared to the ImageNet baseline, any additional pretraining
reduces the number of epochs during finetuning by 29% to 55%, while only our pretext
tasks consistently improve the performance of the resulting model at the same time.

Adding classification to the ranking task in a multitask setting does not improve the
performance of the ranking task on AVA, however, results in the best model evaluated on
the TID2013 dataset. This supports the findings of previous work that used classification
pretext tasks for technical image quality assessment [117, 166, 301, 72]. We suspect
that this is due to the difficulty of distinguishing some categories of distortions. In the
classification task, we categorize all image filters into the categories technical, style, and
composition and train the network to identify the distortion in the corresponding category.
We observe that the classification accuracy per category of the pretrained model on the
test set of our collected stock photo dataset is higher for technical distortions than for
style or composition changes (see Table 16.4). The pretrained model has learned to
extract features that are especially useful for technical image distortions, making the
model more suitable to be used as an initialization for IQA.

In contrast to classification, adding the regression task yields the best performance
metrics on AVA in our experiments. Our intuition is that this is due to two effects.
First, the loss only takes exactly one distortion into account, thus making all distortions
independent of each other. For the classification task, we have to combine multiple
distortions based on their type in order to be able to calculate the CCE loss, making their
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Table 16.4.: Prediction accuracy for the correct distortion by the classification layer. Included is
a random baseline guessing a random distortion.

Accuracy technical style composition

ranking+classification 0.445 0.127 0.257
random 0.167 0.111 0.167

20 40 60 80 100
% of training data
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160
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Epochs Until Convergence

ImageNet
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Figure 16.3.: Epoch in which early stopping occurred by dataset size.

outputs dependent on each other. Second, and more importantly, letting the network
predict an intensity per distortion encourages the extraction of features that already have
a notion of order. These features are then effectively used during finetuning and result in
better performance. In fact, Bonferroni-corrected [84] one-sided Wilcoxon signed rank
tests [293, 294] on the MAE show that using our pretext tasks over ImageNet produces
significantly better results at an α level of 1%. This means, on average, the returned score
is significantly closer to the mean human annotated score than when using the ImageNet
initialization.

The self-supervised baselines RotNet [68] and SimCLR [38] are explicitly designed to
learn content based features in order to improve image classification performance. Thus,
similar to the ImageNet pretraining, learned features are influenced more by the image’s
content than its style, which is a disadvantage in the IAA task. When finetuning the
pretrained models, these style features need to be relearned in order to solve the task.
Since our method explicitly embraces these features during pretraining, this leads to more
useful features to start with and better results in the downstream task.

16.4. Analysis

Now that we know that our pretraining improves performance, we conduct an analysis of
the capabilities of the pretrained models.
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Figure 16.4.: Outputs of the brightness (left) and contrast (right) neuron for different intensities
(x-axis) of the brightness distortion.

Aesthetic Pretraining Learns Cross-Distortion Relations In the following we analyze
the outputs of the pretext regression network fregr. Note that we study the pretrained
model that was not yet finetuned on the AVA dataset. During pretraining, the regression
loss is only computed on the corresponding output dimension denoting the currently
applied distortion, as described in Section 16.1.3. All other outputs are not used for loss
calculation, thus can independently predict intensities for their respective distortions.
This allows the network to learn synergies between different distortions, e.g., an increase
in brightness usually reduces the contrast (see Figure 16.1) and vice versa.

To check if the model has learned these relations, we feed all test images of our collected
dataset with all brightness changes through the network. Then, we plot the model’s
predicted brightness and contrast changes as a violin plot in Figure 16.4. Given higher
or lower brightness intensities, the predicted outputs are also increasing or decreasing,
respectively. An increase in brightness also results in a decrease in contrast, which shows
the model learned cross-distortion relations, which it was never explicitly trained on.

Aesthetic-Aware Pretrained Models Need Less Labeled Data According to our results,
models pretrained on our proposed tasks were able to learn useful image features for
IAA, resulting in significantly improved prediction performance and training time. We
hypothesize that this also reduces the need for labeled training images in order to achieve
comparable performance to the ImageNet baseline. To verify this, we finetune the
ranking+regression pretrained model and the ImageNet baseline on subsets of the AVA
training data: 20%, 40%, 60%, 80%, 100%. Figure 16.5 shows the Accuracy, Pearson
and Spearman Correlation Coefficients, as well as the MAE on the AVA test set for
both models. While our model seems to match the baseline’s accuracy on the binary
task, it consistently outperforms the baseline on both correlation coefficients and the
MAE. Due to the higher correlations, we can assume that our model matches the relative
aesthetic order of images better than the baseline. Furthermore, we find that we match
the ImageNet model in terms of correlation and MAE while needing approximately 20%
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Figure 16.5.: Accuracy (ACC), Pearson (LCC)/Spearman (SRCC) correlation coefficient and
MAE for different sizes of the labeled dataset.
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less training data. Our pretrained model also converges faster than the ImageNet baseline
across all training data sizes, as shown in Figure 16.3. Overall, pretraining the model on
our proposed tasks thus provides a better initialization for finetuning than the ImageNet
classification task.

16.5. Conclusion

In our self-supervised pretraining, our models do not learn to rank different images against
each other but only to differentiate between distortions and intensities applied to one
image. Our models are therefore not able to learn some potentially relevant aesthetic
features and relations between different images during pretraining. To furthermore enable
our models to e.g., rank different base images during the pretext task, we suggest exploring
additional losses: A loss minimizing the distance between scores of two images of the
same distortion and same intensity could be introduced. Additionally, we can extend
the ranking loss and not only rank distortions of the same image against each other, but
against other base images as well. Under the assumption that all images in the dataset are
roughly equally aesthetic, this allows our network to learn relationships between aesthetic
features of different base images.

We have proposed self-supervised aesthetic-aware pretext tasks optimized for finetuning
IAA models. For this, we have introduced a large dataset of highly aesthetic images
that were systematically degraded in quality using distortions in three aspects of image
aesthetics: technical quality, image style, and composition. We have applied the pretext
tasks in a multitask setting and have shown that ranking as well as estimating distortion
intensities improves performance over the employed baselines and converges faster than
starting with ImageNet initialization. An analysis has shown that our pretext tasks are
able to teach the NN meaningful and relevant features about image aesthetics, without
access to an explicit human opinion as reference. This strengthens the evidence for our
hypothesis from Chapter 12 that pretrained models that extract more suitable features
are needed for the task of IAA.
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Based on the results presented in this thesis, we can now discuss the effectiveness of the
proposed methods and principles. The goal of this thesis was to explore, investigate, and
apply different methods to understand and improve Deep Learning (DL) models in a model-
agnostic way by using domain knowledge, as discussed in Chapter 1. We have introduced
six principles that formulate potential ways to incorporate domain knowledge into the
analysis and training routines of Neural Networks (NNs) in different components of the
common DL training framework. We have tested these principles by implementing them
for different applications. Our numerous experiments have shown that the application
of the discussed principles indeed help with understanding and improving DL models.
We can thus conclude in this thesis that considering the provided principles can be a
beneficial route to take when developing DL systems. Implementing the understanding
based principles gives us insights into how the model reaches a conclusion. Implementing
the improving principles alone or in combination can increase the model’s performance,
its robustness, reduce training data requirements, or let it converge faster than before.

While all principles are independent of each other, principles aiming for understanding
the model can help us to identify the biggest flaws in a model. This can facilitate the
search for how we can improve the model or which improving principle is most likely to
achieve the desired results. For example, the Generated Input Data principle might be
applied to an image model. The results indicate that the model is prone to background
bias (as shown in Chapters 7, 9 and 11 for Deep Metric Learning (DML) models). We
can then use this insight to make a fitting choice for improving the model, for example by
applying the Input Masking and Augmentation principle (done in Chapter 11). This
thesis can thus serve as inspiration and as a systematic reference for DL practitioners who
want to understand and improve their models in a model-agnostic way. The key for each
of the considered principles to work is the domain knowledge that is necessary to better
understand and improve the model. While NNs are universal function approximators [93],
the use of additional domain knowledge allows for better control of the training routine.
For this, inductive biases are defined, which steer the model training to a certain direction
based on the domain knowledge. These inductive biases can be incorporated at every step
of the typical DL training framework and lead to the desired improvements of the model,
but need to be chosen carefully. We thus now discuss the effectiveness and limitations of
each of our principles. Afterwards, we give an outlook on what future research directions
might be for the topic of model-agnostic DL with domain knowledge.
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17.1. Principle Discussion

For each of the six principles we explore, we have provided at least two different imple-
mentations that make use of this principle. Given the results of our exploration, we can
now discuss the possibilities and limitations of the principles.

17.1.1. Generated Input Data

Knowing the influence of different properties on a DL model’s output and how it changes
with different variations of the property can give insights into the model’s behavior and
how it might be improved. For example, our analysis of the Land Use Regression (LUR)
model provides estimates of how an increase in street width might influence the air
quality. Such insights can be incorporated into simpler models such as Linear Regression
(LR). Our investigation of DML models using car images has shown that these models
can be sensitive to properties that should not be important for the embedding process.
This can be used to improve the model by for example designing property-specific data
augmentations that we have presented in Chapter 11.

One thing to consider is that generated data compromises on the generality of the
analysis results. DL models are highly non-linear models that combine low-level features
in sometimes non-obvious ways. Generating fake data then always abstracts away from
the real data, which could discard other influencing factors that interfere with the property
of interest. The sheer number of properties that can be changed in the data can also be
overwhelming, which means that it might not be possible to analyze all properties and
how they interact with each other. For instance, while we have investigated the effect
of the street’s position and its width on the air quality estimates separately, we have
not investigated how the two properties interact with each other. Due to the number
of possible property characteristics, a certain abstraction level has to be reached when
generating fake data. For example, the fake car images for the DML model only have
solid background colors, which is not a realistic property of car images.

On the other hand, using realistic backgrounds would result in a huge number of
possible backgrounds, which would make the generation of fake data infeasible. Also, the
influence of certain background patterns might influence the model in non-obvious ways.
This may need to be investigated in a different setting.

On a related note, the change of high-level properties can influence low-level and
other high-level features. For example, the change in the background color can show in
reflections of the car, which indirectly influences the car color. This can lead to unintended
effects, which is why it is important to carefully craft the generation process and find the
right abstraction level. In the case of the background color, for example, we generate the
image such that the background does not interact with the car, leading to no car color
changes when changing the background.

Despite all these limitations and considerations to take into account, the Generated
Input Data principle is very powerful, since it can be applied to all tasks and most
modalities, as long as they are fakable in a controllable way. This requires a deep domain
knowledge but makes it a very useful tool for understanding the influence of certain
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properties on DL models, which in turn can be used to improve them.

17.1.2. Gradient-Based Attribution

The Gradient-Based Attribution principle is a model-agnostic principle that can be
applied to all DL models that are differentiable. In comparison to the Generated Input
Data principle, it highlights low-level features such as pixels or words. This can make it
sometimes more difficult to interpret, since a human observer has to look at the generated
attribution maps, the input, and use domain knowledge to find a connection between
them. Also, methods implementing this principle can by default only work on single
inputs, leading to only anecdotal evidence and qualitative results. This makes it difficult
to make more broad statements about the model, which would require looking at and
interpreting a large amount of examples. In Chapter 8, we provide anectodal evidence
that our proposed venue recommendation model Where to Submit (WTS) indeed relies
on useful words and phrases present in the publication’s title and abstract. This might
be a useful tool to understand why the model chose a certain venue for the given input,
but does not directly provide high-level features the model learned. Thus, in Chapter 9,
we compare different models to each other, which includes the idea that different models
should usually learn similar features for the same images. This way, the anecdotal evidence
can be turned into more general statements about the differences between models, without
using any other information about the images.

Incorporating additional knowledge about the input data allows for more general
statements about the model by the attribution method. For example, computing statistics
for the attribution given to specific words compared to other words in a text can help to
understand what general words and phrases seem to be more important for the model’s
output. We do something similar for DML models in Chapter 11, where we use separation
masks of images to compute the influence of foreground and background elements on the
model’s output. Overall, the Gradient-Based Attribution principle can be used to debug
DL models, which helps with finding ideas to improve them.

17.1.3. Input Masking and Augmentation

The Input Masking and Augmentation principle aims to guide the model to ignore
unwanted input features when producing an output. Our concrete implementation in
Chapter 11 shows that it is possible to decorrelate the background from the foreground
of an image by applying background augmentations. This results in better robustness of
models regarding background changes, which, in the case of item retrieval, is a desirable
property. We have shown that the higher robustness regarding background changes due
to the BGAugment method leads to a drop in performance on the clean test dataset
for the Stanford Online Products (SOP) dataset. However, the performance on the test
dataset with background changes increases significantly. We suspect that this comes from
the fact that the good performance on the clean dataset can only be achieved by learning
correlations between the background and the foreground of the image. Then, this is a
deceptive result, since this is not the goal of the task. As with the provided results, it is
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also possible to use augmentations and masking to better understand the performance of
DL models. We have created a new test setting that shows that DL models are prone to
background bias, which is based on augmenting the background of the images. This is
similar to the Generated Input Data principle, where one aspect of the input is changed.
However, in this case, real data is used and transformed to make statements about the
influence of the “high-level feature” background on the model’s output.

While decorrelating certain input features from the model’s output, we also designed a
scenario where a new correlation is introduced using this principle. In Chapter 16, we
augmented aesthetic images in order to generate less aesthetic ones. This introduced the
correlation of certain style changes to the desired output of the model: The more we
destroy an aesthetic image with image filters, the less aesthetic the image becomes.

In general, the creation of transformations and masking procedures needs to be done
carefully in order to achieve the desired goal. It is certainly task- and modality-specific,
which draws parallels to the feature engineering process for other Machine Learning (ML)
models that do not directly work on raw data. Here, features are engineered from the
data in order to remove unimportant correlations that might influence the model’s output.
With data augmentations and masking, the same goal is reached but for DL models. This
way, the model can still work on low-level data, but task- and modality-specific semantic
knowledge can be captured in the data preparation step.

17.1.4. Feature Extraction using Pretrained Multimodal Models

Our experiments have shown that using pretrained multimodal models can be a good
way to solve tasks that do not have enough training data. As we have seen, zero-shot
methods are capable of achieving good results on different tasks. However, they can often
not achieve the same performance as methods that are trained on the task-specific data.
Using the features from the pretrained model to train a new model on top of them shows
better performance. However, it does not reach the performance of a fully finetuned
model.

There certainly is a trade-off that has to be made. On the one side, there is computa-
tional complexity and data need, on the other side performance. Zero-shot methods do
not need any training data, and they eliminate the need for a trainable model in the DL
training pipeline. Thus, no training data needs to be collected, and the model can usually
be run on less powerful hardware, since only the inference is performed, which can be an
advantage in compute- and data-constrained environments. However, zero-shot methods
in this setting often require an input that guides the model to solve the task, e.g., a text
prompt in language models. The choice of these prompts can be difficult, since models
are often very sensitive to certain word changes.

Training a small trainable model on top of the multimodal model’s features, such as
a LR, can improve the performance over zero-shot approaches, but needs task-specific
training data and requires the optimization of a model. This is computationally more
expensive than Zero-Shot Learning (ZSL) with pretrained models, but usually has still
fewer hardware requirements than full finetuning, since the extraction of features for a
training dataset needs to be done only once. Due to the small number of parameters, the
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model can be trained relatively quickly and with relatively few datapoints.
The full finetuning of the multimodal model usually achieves the best performance, but

is also the most expensive approach. The model cannot be reused for other tasks anymore
since it is finetuned specifically for the task at hand. When we aim to improve DL models
using feature extraction from pretrained multimodal models, we mean to reduce the
computational complexity and the data needs of the trainable model. We also achieve a
certain reusability of the multimodal model: When using Contrastive Language-Image
Pre-Training (CLIP) for Image Aesthetics Assessment (IAA) by using prompting, linear
probing, or for DML using text prompts. The original parameters of CLIP stay untouched,
which allows us to use it for other tasks such as content search or item retrieval. This can
reduce memory requirements in practical applications, since not multiple model instances
need to be initialized with different weights. Also, oftentimes, the feature vectors can be
precomputed and then used for different tasks without much computational overhead.
Given all these improvements, we can still achieve good performance on the task at hand,
even though it might not be as good as the performance of a model that is trained on the
task-specific data.

17.1.5. Weak Label Generation

Weak labels are a simple way to enlarge the training data. However, they require additional
knowledge about the task and data which is then captured by the heuristic or the model
with stronger assumptions. The improvement that is achieved by this principle is a better
performance of the DL model. This comes with larger training data and thus larger
computational complexity, since the model needs to be trained on more data. Because
DL models are usually more powerful than the weak labeling model, the final trained
DL model usually has better performance than the weak labeling model. However, this
depends on the weak labeling strategy and the complexity of the task. If the weak label
generation is too simple, the model will not learn anything useful from it. If the weak label
generation already gives very good results, the computational overhead to train a NN on
the weak labels might not be worth it. In the sentiment analysis task, the lexicon based
approach already shows good results, so the NN does not add much performance gain.
The DL model, however, is able to find other correlations than the weak label generation
process between the input and the output, leading to a better generalization. The use
of weak labels thus is a trade-off between the performance gain and the computational
overhead.

17.1.6. Loss Function

The loss function is one of the most important choices to make in a DL training pipeline.
Since it is only used during training and does not need to be evaluated during inference,
the exchange of a loss function for another one does not affect the inference times of the
model. Based on the goal that the model should achieve, the loss function can often be
chosen from a wide variety of options. The advantage of the loss function is that it provides
a simple interface that receives the predictions of the model and the corresponding ground
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truths and returns a single value. Apart from required differentiability, there are basically
no restrictions on what happens inside the loss function. The use of multiple loss functions
in a multitask setting for the pretraining of an IAA model in Chapter 16 has shown that
with the right choice of loss function, the model can be steered towards learning beneficial
features for a downstream task. However, the side effects of the loss function on the
learned features or model outputs are not directly visible. As we have shown for our
proposed Similarity Based Loss (SimLoss) in Chapter 14, the trained model predicts more
similar classes when making mistakes, which is certainly desired. On the other hand, the
model seems to reduce its possible output classes to representatives that have, on average,
good similarity scores to the ground truth class. This behavior might not be desired in
some circumstances. The introduction of a hyperparameter in SimLoss that balances
the effect of the similarity matrix and the usual Categorical Cross Entropy (CCE) loss
function can alleviate this problem, which shows the trade-off between the performance
on certain metrics and the desired behavior of the model.

17.2. Outlook

We have seen that the explored principles can, when implemented for specific tasks and
modalities, lead to a better understanding and improvement of DL models. All methods
we have demonstrated are model-agnostic and can be applied to any DL model. The
results shown in this thesis indicate that modifying components of the DL training setup
other than the trainable model can lead to multiple model improvements and is thus
a promising starting point for better DL. The selection of the right principle heavily
depends on the type of improvement one wants to achieve. Overall, we promote the use
of such principles as a complement to the exploration of a better model architecture. The
goal should be to model as much domain knowledge into the training process and model
architecture as possible. This starts with the choosing a suitable model architecture.
Then, evaluating which understanding principles can be applied to the task and data at
hand can lead to a better understanding of and new insights about the model behavior.
Finally, the obtained knowledge can be used by one or multiple of our explored principles
to improve the model.

In this thesis, we have shown that the model can be better understood and improved
by using the explored principles. We have successfully done this for different tasks and
different modalities, which shows the broad applicability of these principles. Combining
multiple principles and specific techniques can lead to even better results, as we have
shown. In the future, the combination of multiple independent principles without necessity
and their joint effects on the model are worth exploring. As different principles apply
to different components of the training setting, multiple principles can be implemented
independently. To simplify the adoption of these principles for practitioners, a software
library with well-tested implementations of the discussed principles is another more
practical direction for future work. With a growing set of supported applications and
tasks, the broader impact of certain principles can be assessed, leading to a better
understanding of the requirements for tasks to benefit from a principle. We hope that
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this thesis with its initial application of principles for different tasks and modalities will
inspire others to explore the use of these principles and techniques in their own work.
Also, we hope that this thesis will encourage others to explore and invent new principles
and implementations in order to make DL models better in a model-agnostic way using
domain knowledge.
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A. Jensen-Shannon Divergence (JSD)
Tables for Deep Metric Learning
(DML) Attribution Method

Ranking Classification
Contrastive Triplet NTXent Margin Margin/class FastAP SNR Con. MS MS+Miner ProxyNCA N. Softmax CosFace ArcFace SoftTriple None

R
an

ki
n
g

Contrastive 2±0 1±0 2±0 2±0 2±0 2±0 1±0 1±0 2±0 2±0 2±0 2±0 2±0 3±1
Triplet 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 3±1

NTXent 1±0 2±0 2±0 1±0 2±0 1±0 1±0 2±0 2±0 1±0 2±0 2±0 2±0 3±1
Margin 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 3±1

Margin/class 2±0 2±0 1±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 3±1
FastAP 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 4±1

SNR Con. 2±0 2±0 1±0 2±0 2±0 2±0 1±0 2±0 2±0 1±0 2±0 2±0 2±0 3±1
MS 1±0 2±0 1±0 2±0 2±0 2±0 1±0 1±0 1±0 1±0 2±0 2±0 2±0 3±1

MS+Miner 1±0 2±0 2±0 2±0 2±0 2±0 2±0 1±0 2±0 1±0 2±0 2±0 1±0 3±1

C
la

ss
if
. ProxyNCA 2±0 2±0 2±0 2±0 2±0 2±0 2±0 1±0 2±0 1±0 1±0 2±0 1±0 3±1

N. Softmax 2±0 2±0 1±0 2±0 2±0 2±0 1±0 1±0 1±0 1±0 1±0 2±0 1±0 3±1
CosFace 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 1±0 1±0 2±0 1±0 3±1
ArcFace 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 1±0 3±1

SoftTriple 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 1±0 1±0 1±0 1±0 1±0 3±1
None 3±1 3±1 3±1 3±1 3±1 4±1 3±1 3±1 3±1 3±1 3±1 3±1 3±1 3±1

Table A.1.: JSD between all loss functions on the Cars196 dataset. All values are in percent.

Ranking Classification
Contrastive Triplet NTXent Margin Margin/class FastAP SNR Con. MS MS+Miner ProxyNCA N. Softmax CosFace ArcFace SoftTriple None

R
an

ki
n
g

Contrastive 2±0 2±0 2±0 2±0 2±0 2±0 1±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0
Triplet 2±0 1±0 1±0 1±0 2±0 2±0 1±0 1±0 1±0 1±0 2±0 2±0 2±0 2±0

NTXent 2±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 2±0 1±0 2±0 2±0
Margin 2±0 1±0 1±0 1±0 2±0 1±0 1±0 1±0 1±0 1±0 2±0 2±0 2±0 2±0

Margin/class 2±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 2±0 1±0 2±0 2±0
FastAP 2±0 2±0 1±0 2±0 1±0 1±0 1±0 1±0 2±0 1±0 2±0 2±0 2±0 2±1

SNR Con. 2±0 2±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 2±0 2±0 1±0 2±0
MS 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 2±0

MS+Miner 2±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 2±0 1±0 1±0 2±0

C
la

ss
if
. ProxyNCA 2±0 1±0 1±0 1±0 1±0 2±0 1±0 1±0 1±0 1±0 2±0 1±0 1±0 2±0

N. Softmax 2±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 2±0 1±0 1±0 2±0
CosFace 2±0 2±0 2±0 2±0 2±0 2±0 2±0 1±0 2±0 2±0 2±0 1±0 1±0 2±0
ArcFace 2±0 2±0 1±0 2±0 1±0 2±0 2±0 1±0 1±0 1±0 1±0 1±0 1±0 2±0

SoftTriple 2±0 2±0 2±0 2±0 2±0 2±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 2±0
None 2±0 2±0 2±0 2±0 2±0 2±1 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0

Table A.2.: JSD between all loss functions on the CUB200 dataset. All values are in percent.

In Chapter 9, we compared the attribution maps for all images in a dataset between two
loss functions. We mainly compared them using the mean correlation. We also calculate
the JSD between the attribution maps of the two loss functions, after normalizing them
to have a sum of 1, i.e., to resemble a probability distribution. Tables A.1 to A.3 show
the mean and standard deviation for the three datasets we investigate. All values are
around 0.02 ± 0.01 and show similar tendencies as the correlation, i.e., the Stanford
Online Products (SOP) dataset shows differences between loss functions of different types
(ranking or classification).
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A. JSD Tables for DML Attribution Method

Ranking Classification
Contrastive Triplet NTXent Margin Margin/class FastAP SNR Con. MS MS+Miner ProxyNCA N. Softmax CosFace ArcFace SoftTriple None

R
an

ki
n
g

Contrastive 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 3±1 3±0 3±1 3±1 3±1 4±1
Triplet 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 3±1 3±0 3±1 3±1 3±1 3±1

NTXent 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 3±0 3±0 2±0 3±1
Margin 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 3±0 3±0 3±1 3±1 3±1 3±1

Margin/class 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 3±0 3±0 3±1 3±1 3±1 3±1
FastAP 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 3±1 3±0 3±1 3±1 3±1 3±1

SNR Con. 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 3±1 3±1 3±1 3±1 3±1 4±1
MS 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 3±0 2±0 3±0 3±0 3±0 3±1

MS+Miner 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 2±0 3±0 3±0 3±0 3±1

C
la

ss
if
. ProxyNCA 3±1 3±1 2±0 3±0 3±0 3±1 3±1 3±0 2±0 2±0 2±0 2±0 2±0 3±1

N. Softmax 3±0 3±0 2±0 3±0 3±0 3±0 3±1 2±0 2±0 2±0 2±0 2±0 2±0 3±1
CosFace 3±1 3±1 3±0 3±1 3±1 3±1 3±1 3±0 3±0 2±0 2±0 2±0 2±0 3±0
ArcFace 3±1 3±1 3±0 3±1 3±1 3±1 3±1 3±0 3±0 2±0 2±0 2±0 2±0 3±1

SoftTriple 3±1 3±1 2±0 3±1 3±1 3±1 3±1 3±0 3±0 2±0 2±0 2±0 2±0 3±0
None 4±1 3±1 3±1 3±1 3±1 3±1 4±1 3±1 3±1 3±1 3±1 3±0 3±1 3±0

Table A.3.: JSD between all loss functions on the Stanford Online Products (SOP) dataset. All
values are in percent.
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B. InDiReCT Full Results

In Chapter 13, we evaluated our InDiReCT technique on five datasets and thirteen
similarity definitions. There, we used Mean Average Precision at R (MAP@R) and
Precision at 1 (Prec@1) as evaluation metrics. In Table B.1, we show more evaluation
metric results for our experiments. Namely, these are MAP@R [193], Prec@1, R-Precision
(R-Prec), Adjusted Mutual Information (AMI), Normalized Mutual Information (NMI),
Mean Average Precision (MAP), and Mean Reciprocal Rank (MRR). For an overview of
different evaluation metrics in the context of DML, we refer the reader to the appendix
of the paper by Roth et al. [231]. For more technical details, see this documentation1.
The results are very similar as for the original two metrics.

1https://kevinmusgrave.github.io/pytorch-metric-learning/accuracy_calculation/
#explanations-of-the-default-accuracy-metrics (last accessed: 2023-02-10)
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B. InDiReCT Full Results

Table B.1.: Full results for our experiments on five datasets and thirteen similarity notions in
Chapter 13. The Oracle baseline is given for reference.

Random CLIP InDiReCT Rand. trans. PCA LAE AE Oracle

Synthetic Cars

Car Model

MAP@R 0.033 ± 0.001 0.435 0.574 ± 0.002 0.391 ± 0.016 0.562 ± 0.001 0.526 ± 0.005 0.395 ± 0.044 1.000 ± 0.000
Prec@1 0.175 ± 0.009 0.954 0.964 ± 0.000 0.934 ± 0.005 0.966 ± 0.001 0.959 ± 0.005 0.887 ± 0.036 1.000 ± 0.000
R-Prec 0.167 ± 0.001 0.548 0.662 ± 0.001 0.510 ± 0.014 0.653 ± 0.001 0.624 ± 0.004 0.517 ± 0.036 1.000 ± 0.000

AMI -0.000 ± 0.002 0.623 0.737 ± 0.006 0.559 ± 0.086 0.730 ± 0.004 0.713 ± 0.010 0.539 ± 0.060 0.896 ± 0.000
NMI 0.007 ± 0.002 0.626 0.738 ± 0.006 0.562 ± 0.085 0.732 ± 0.004 0.715 ± 0.010 0.542 ± 0.059 0.897 ± 0.000
MAP 0.172 ± 0.001 0.591 0.716 ± 0.002 0.546 ± 0.016 0.706 ± 0.001 0.675 ± 0.005 0.551 ± 0.041 1.000 ± 0.000
MRR 0.367 ± 0.009 0.974 0.980 ± 0.000 0.961 ± 0.003 0.981 ± 0.000 0.977 ± 0.003 0.928 ± 0.024 1.000 ± 0.000

Car Color

MAP@R 0.050 ± 0.001 0.062 0.091 ± 0.001 0.061 ± 0.001 — 0.073 ± 0.002 0.086 ± 0.004 0.579 ± 0.009
Prec@1 0.175 ± 0.008 0.276 0.314 ± 0.005 0.263 ± 0.013 — 0.294 ± 0.009 0.302 ± 0.013 0.793 ± 0.008
R-Prec 0.174 ± 0.001 0.198 0.250 ± 0.002 0.196 ± 0.002 — 0.218 ± 0.001 0.238 ± 0.004 0.676 ± 0.007

AMI -0.003 ± 0.004 0.029 0.170 ± 0.003 0.027 ± 0.008 — 0.073 ± 0.002 0.156 ± 0.016 0.629 ± 0.009
NMI 0.058 ± 0.004 0.088 0.220 ± 0.003 0.086 ± 0.008 — 0.129 ± 0.002 0.207 ± 0.015 0.652 ± 0.008
MAP 0.179 ± 0.001 0.197 0.247 ± 0.002 0.196 ± 0.002 — 0.213 ± 0.001 0.236 ± 0.005 0.712 ± 0.007
MRR 0.336 ± 0.007 0.451 0.493 ± 0.003 0.439 ± 0.014 — 0.474 ± 0.008 0.477 ± 0.011 0.859 ± 0.006

Background
Color

MAP@R 0.054 ± 0.000 0.062 0.071 ± 0.000 0.061 ± 0.002 — 0.063 ± 0.002 0.061 ± 0.002 0.740 ± 0.009
Prec@1 0.194 ± 0.011 0.270 0.283 ± 0.003 0.266 ± 0.011 — 0.283 ± 0.007 0.216 ± 0.013 0.880 ± 0.004
R-Prec 0.183 ± 0.001 0.200 0.218 ± 0.001 0.199 ± 0.003 — 0.204 ± 0.003 0.197 ± 0.004 0.805 ± 0.007

AMI 0.004 ± 0.003 0.017 0.089 ± 0.003 0.025 ± 0.012 — 0.039 ± 0.006 0.048 ± 0.018 0.686 ± 0.008
NMI 0.065 ± 0.002 0.076 0.144 ± 0.003 0.084 ± 0.011 — 0.097 ± 0.006 0.106 ± 0.017 0.705 ± 0.008
MAP 0.188 ± 0.000 0.203 0.218 ± 0.000 0.202 ± 0.002 — 0.205 ± 0.002 0.200 ± 0.004 0.831 ± 0.007
MRR 0.356 ± 0.007 0.444 0.462 ± 0.003 0.439 ± 0.008 — 0.453 ± 0.003 0.391 ± 0.013 0.920 ± 0.003

Cars196

Car Model

MAP@R 0.001 ± 0.000 0.235 0.374 ± 0.000 0.192 ± 0.003 0.375 ± 0.001 0.332 ± 0.002 0.200 ± 0.058 0.418 ± 0.000
Prec@1 0.011 ± 0.001 0.780 0.844 ± 0.001 0.729 ± 0.005 0.842 ± 0.001 0.824 ± 0.002 0.638 ± 0.081 0.766 ± 0.001
R-Prec 0.010 ± 0.000 0.354 0.486 ± 0.000 0.309 ± 0.005 0.487 ± 0.001 0.450 ± 0.002 0.326 ± 0.058 0.545 ± 0.000

AMI -0.000 ± 0.001 0.634 0.766 ± 0.002 0.597 ± 0.010 0.771 ± 0.002 0.738 ± 0.008 0.606 ± 0.073 0.803 ± 0.000
NMI 0.142 ± 0.001 0.685 0.798 ± 0.002 0.653 ± 0.008 0.803 ± 0.002 0.774 ± 0.007 0.661 ± 0.062 0.831 ± 0.000
MAP 0.011 ± 0.000 0.335 0.501 ± 0.000 0.281 ± 0.005 0.504 ± 0.000 0.456 ± 0.003 0.305 ± 0.070 0.573 ± 0.000
MRR 0.047 ± 0.002 0.853 0.898 ± 0.000 0.815 ± 0.004 0.897 ± 0.000 0.885 ± 0.001 0.745 ± 0.063 0.844 ± 0.000

Manufacturer

MAP@R 0.005 ± 0.000 0.244 0.336 ± 0.001 0.212 ± 0.004 — 0.242 ± 0.004 0.180 ± 0.022 0.514 ± 0.000
Prec@1 0.054 ± 0.003 0.890 0.905 ± 0.001 0.847 ± 0.008 — 0.855 ± 0.003 0.631 ± 0.039 0.840 ± 0.001
R-Prec 0.054 ± 0.000 0.363 0.445 ± 0.001 0.333 ± 0.004 — 0.362 ± 0.004 0.309 ± 0.021 0.622 ± 0.000

AMI 0.001 ± 0.001 0.544 0.631 ± 0.002 0.509 ± 0.014 — 0.535 ± 0.008 0.436 ± 0.026 0.725 ± 0.001
NMI 0.023 ± 0.001 0.555 0.640 ± 0.002 0.520 ± 0.013 — 0.546 ± 0.008 0.449 ± 0.026 0.732 ± 0.001
MAP 0.055 ± 0.000 0.358 0.461 ± 0.001 0.321 ± 0.005 — 0.355 ± 0.005 0.293 ± 0.024 0.655 ± 0.000
MRR 0.155 ± 0.002 0.928 0.938 ± 0.001 0.899 ± 0.005 — 0.904 ± 0.003 0.737 ± 0.030 0.891 ± 0.000

Car Type

MAP@R 0.035 ± 0.000 0.251 0.361 ± 0.003 0.221 ± 0.008 — 0.277 ± 0.006 0.244 ± 0.016 0.738 ± 0.000
Prec@1 0.173 ± 0.004 0.911 0.907 ± 0.002 0.883 ± 0.005 — 0.891 ± 0.004 0.632 ± 0.031 0.891 ± 0.000
R-Prec 0.171 ± 0.000 0.407 0.509 ± 0.003 0.381 ± 0.008 — 0.437 ± 0.006 0.420 ± 0.015 0.802 ± 0.000

AMI -0.000 ± 0.000 0.371 0.479 ± 0.012 0.317 ± 0.024 — 0.409 ± 0.011 0.390 ± 0.032 0.744 ± 0.001
NMI 0.001 ± 0.000 0.372 0.480 ± 0.012 0.318 ± 0.024 — 0.410 ± 0.011 0.391 ± 0.032 0.744 ± 0.001
MAP 0.172 ± 0.000 0.413 0.531 ± 0.003 0.383 ± 0.008 — 0.446 ± 0.006 0.421 ± 0.017 0.844 ± 0.000
MRR 0.356 ± 0.003 0.946 0.942 ± 0.001 0.928 ± 0.003 — 0.933 ± 0.002 0.753 ± 0.022 0.929 ± 0.000

CUB200 Bird Species

MAP@R 0.001 ± 0.000 0.180 0.265 ± 0.000 0.152 ± 0.003 — 0.188 ± 0.002 0.151 ± 0.019 0.341 ± 0.000
Prec@1 0.012 ± 0.001 0.582 0.653 ± 0.001 0.526 ± 0.003 — 0.581 ± 0.005 0.444 ± 0.036 0.653 ± 0.002
R-Prec 0.013 ± 0.000 0.297 0.386 ± 0.000 0.265 ± 0.004 — 0.306 ± 0.002 0.261 ± 0.022 0.474 ± 0.000

AMI 0.000 ± 0.002 0.562 0.659 ± 0.003 0.520 ± 0.009 — 0.578 ± 0.010 0.483 ± 0.024 0.736 ± 0.002
NMI 0.160 ± 0.002 0.627 0.711 ± 0.002 0.593 ± 0.007 — 0.642 ± 0.008 0.564 ± 0.020 0.777 ± 0.002
MAP 0.015 ± 0.000 0.268 0.379 ± 0.000 0.235 ± 0.004 — 0.282 ± 0.003 0.241 ± 0.023 0.488 ± 0.000
MRR 0.055 ± 0.001 0.704 0.758 ± 0.001 0.656 ± 0.002 — 0.702 ± 0.003 0.579 ± 0.033 0.758 ± 0.001

DeepFashion

Clothing
Category

MAP@R 0.023 ± 0.000 0.125 0.187 ± 0.001 0.113 ± 0.004 — 0.133 ± 0.003 0.169 ± 0.018 0.322 ± 0.001
Prec@1 0.111 ± 0.004 0.452 0.509 ± 0.002 0.430 ± 0.006 — 0.455 ± 0.005 0.445 ± 0.024 0.558 ± 0.006
R-Prec 0.109 ± 0.000 0.247 0.322 ± 0.001 0.230 ± 0.003 — 0.256 ± 0.003 0.302 ± 0.020 0.449 ± 0.001

AMI -0.001 ± 0.002 0.239 0.350 ± 0.003 0.228 ± 0.010 — 0.266 ± 0.009 0.297 ± 0.027 0.439 ± 0.001
NMI 0.049 ± 0.002 0.276 0.383 ± 0.003 0.266 ± 0.009 — 0.303 ± 0.009 0.333 ± 0.026 0.467 ± 0.001
MAP 0.111 ± 0.000 0.226 0.307 ± 0.001 0.213 ± 0.003 — 0.238 ± 0.004 0.290 ± 0.020 0.449 ± 0.001
MRR 0.242 ± 0.004 0.588 0.631 ± 0.002 0.565 ± 0.004 — 0.585 ± 0.004 0.577 ± 0.022 0.668 ± 0.003

Texture

MAP@R 0.118 ± 0.000 0.187 0.330 ± 0.004 0.112 ± 0.004 — 0.222 ± 0.005 0.163 ± 0.007 0.661 ± 0.001
Prec@1 0.296 ± 0.007 0.602 0.668 ± 0.003 0.433 ± 0.005 — 0.612 ± 0.007 0.438 ± 0.017 0.806 ± 0.003
R-Prec 0.294 ± 0.000 0.358 0.480 ± 0.004 0.229 ± 0.004 — 0.388 ± 0.004 0.296 ± 0.008 0.743 ± 0.000

AMI 0.000 ± 0.000 0.081 0.305 ± 0.014 0.224 ± 0.005 — 0.143 ± 0.012 0.295 ± 0.014 0.551 ± 0.001
NMI 0.003 ± 0.000 0.083 0.307 ± 0.014 0.262 ± 0.004 — 0.145 ± 0.012 0.330 ± 0.013 0.553 ± 0.001
MAP 0.295 ± 0.000 0.363 0.496 ± 0.004 0.211 ± 0.004 — 0.395 ± 0.005 0.282 ± 0.009 0.767 ± 0.000
MRR 0.479 ± 0.006 0.723 0.768 ± 0.001 0.568 ± 0.003 — 0.728 ± 0.004 0.573 ± 0.016 0.865 ± 0.002

Fabric

MAP@R 0.324 ± 0.000 0.340 0.377 ± 0.002 0.108 ± 0.003 — 0.356 ± 0.003 0.172 ± 0.006 0.642 ± 0.003
Prec@1 0.494 ± 0.006 0.645 0.661 ± 0.006 0.426 ± 0.007 — 0.650 ± 0.006 0.447 ± 0.019 0.778 ± 0.004
R-Prec 0.498 ± 0.000 0.526 0.560 ± 0.002 0.224 ± 0.004 — 0.539 ± 0.002 0.307 ± 0.005 0.735 ± 0.002

AMI 0.000 ± 0.000 0.049 0.119 ± 0.004 0.219 ± 0.012 — 0.079 ± 0.012 0.302 ± 0.010 0.403 ± 0.006
NMI 0.003 ± 0.000 0.051 0.121 ± 0.004 0.257 ± 0.011 — 0.081 ± 0.012 0.337 ± 0.010 0.405 ± 0.006
MAP 0.499 ± 0.000 0.524 0.556 ± 0.002 0.208 ± 0.004 — 0.536 ± 0.003 0.294 ± 0.004 0.746 ± 0.002
MRR 0.636 ± 0.004 0.764 0.775 ± 0.003 0.564 ± 0.005 — 0.767 ± 0.004 0.580 ± 0.015 0.848 ± 0.003

Fit

MAP@R 0.518 ± 0.000 0.533 0.539 ± 0.004 0.111 ± 0.010 — 0.534 ± 0.003 0.161 ± 0.018 0.820 ± 0.001
Prec@1 0.666 ± 0.006 0.771 0.765 ± 0.004 0.431 ± 0.005 — 0.767 ± 0.007 0.429 ± 0.019 0.878 ± 0.006
R-Prec 0.666 ± 0.000 0.675 0.680 ± 0.001 0.227 ± 0.009 — 0.677 ± 0.001 0.294 ± 0.017 0.871 ± 0.001

AMI -0.000 ± 0.000 0.002 0.003 ± 0.001 0.217 ± 0.008 — 0.013 ± 0.004 0.284 ± 0.017 0.376 ± 0.002
NMI 0.000 ± 0.000 0.002 0.004 ± 0.001 0.255 ± 0.008 — 0.013 ± 0.004 0.320 ± 0.016 0.377 ± 0.002
MAP 0.667 ± 0.000 0.685 0.689 ± 0.002 0.211 ± 0.009 — 0.685 ± 0.002 0.320 ± 0.016 0.879 ± 0.001
MRR 0.772 ± 0.005 0.850 0.846 ± 0.003 0.566 ± 0.003 — 0.845 ± 0.003 0.565 ± 0.017 0.919 ± 0.003

Movie Posters

Genre

MAP@R 0.041 ± 0.000 0.114 0.149 ± 0.000 0.091 ± 0.003 — 0.084 ± 0.001 0.098 ± 0.024 0.196 ± 0.001
Prec@1 0.175 ± 0.004 0.418 0.440 ± 0.002 0.381 ± 0.007 — 0.366 ± 0.004 0.333 ± 0.030 0.432 ± 0.007
R-Prec 0.174 ± 0.000 0.273 0.306 ± 0.000 0.246 ± 0.003 — 0.237 ± 0.001 0.248 ± 0.031 0.364 ± 0.001

AMI 0.000 ± 0.000 0.186 0.196 ± 0.003 0.150 ± 0.004 — 0.101 ± 0.007 0.107 ± 0.044 0.254 ± 0.001
NMI 0.013 ± 0.000 0.196 0.206 ± 0.003 0.160 ± 0.004 — 0.112 ± 0.007 0.118 ± 0.043 0.263 ± 0.001
MAP 0.175 ± 0.000 0.261 0.298 ± 0.000 0.236 ± 0.003 — 0.227 ± 0.001 0.242 ± 0.028 0.354 ± 0.001
MRR 0.346 ± 0.005 0.573 0.587 ± 0.001 0.540 ± 0.005 — 0.529 ± 0.004 0.495 ± 0.027 0.579 ± 0.006

Production
Country

MAP@R 0.446 ± 0.000 0.493 0.513 ± 0.001 0.489 ± 0.004 — 0.477 ± 0.002 0.494 ± 0.007 0.581 ± 0.000
Prec@1 0.592 ± 0.005 0.693 0.698 ± 0.003 0.679 ± 0.007 — 0.681 ± 0.003 0.649 ± 0.007 0.718 ± 0.003
R-Prec 0.592 ± 0.000 0.625 0.639 ± 0.001 0.621 ± 0.002 — 0.613 ± 0.001 0.624 ± 0.006 0.693 ± 0.000

AMI -0.000 ± 0.001 0.063 0.076 ± 0.001 0.057 ± 0.002 — 0.048 ± 0.002 0.047 ± 0.007 0.110 ± 0.001
NMI 0.046 ± 0.001 0.106 0.118 ± 0.001 0.100 ± 0.002 — 0.093 ± 0.002 0.091 ± 0.007 0.150 ± 0.001
MAP 0.592 ± 0.000 0.634 0.648 ± 0.001 0.629 ± 0.003 — 0.620 ± 0.001 0.629 ± 0.005 0.692 ± 0.000
MRR 0.692 ± 0.003 0.770 0.773 ± 0.001 0.760 ± 0.003 — 0.760 ± 0.001 0.739 ± 0.005 0.788 ± 0.002
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C. Contribution Statement

Multiple publications have been written and published during the course of this thesis.
The following list contains all publications that have been written by the author of this
thesis and that contributed to the contents of this thesis. Note that not all contents of
these publications are included in this thesis. We state what parts of the publications are
contributing to this thesis. The list is sorted by the occurrence of the publications in the
thesis. For each publication, we state the contributions of each coauthor, abbreviated by
their initials.

M. Steininger, K. Kobs, A. Zehe, F. Lautenschlager, M. Becker, and A. Hotho.
MapLUR: Exploring a New Paradigm for Estimating Air Pollution Using Deep
Learning on Map Images. ACM Transactions on Spatial Algorithms and Systems, 6
(3):1–24, May 2020. ISSN 2374-0353, 2374-0361. doi: 10.1145/3380973 [256]

M.S., F.L., and M.B. conceived the methodology for MapLUR. M.S. designed and
implemented the MapLUR model, conceived the experiments as well as the analysis
using guided backpropagation and carried them out. K.K. contributed the idea and
implementation of the analysis using artificial images and wrote the accompanying section
in the publication. F.L. generated features for conventional ML models. M.S. designed
visualizations with contributions from K.K. for the publication. M.S., K.K., A.Z., F.L.,
M.B., and A.H. analyzed and discussed the results. M.S. wrote the publication with
substantial contributions from A.Z. and M.B. as well as contributions from K.K., F.L.,
and A.H.

The use of generated map images for analysis purposes, which was developed and
executed by K.K., is the main contribution of this publication to this thesis and is
described in Chapter 6. The main idea of MapLUR and its results are given in this thesis
to put the analysis contribution in context.

K. Kobs, M. Steininger, A. Dulny, and A. Hotho. Do Different Deep Metric Learning
Losses Lead to Similar Learned Features? In IEEE International Conference on
Computer Vision, pages 10644–10654, 2021 [134]

K.K. developed the ideas for the methodology, designed the experiments, and implemented
them. M.S., and A.D. contributed to the discussion for the development of the Normalized
R-Precision metric based on K.K.’s idea. K.K., M.S., A.D., and A.H. analyzed and
discussed the results. K.K. wrote the publication with substantial contributions from
M.S. as well as contributions from A.D. and A.H.

The methodology and experiment results, which are mainly developed and executed by
K.K., are the main contributions of this publication to this thesis and are described in
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Chapter 7 and Chapter 9.

K. Kobs, T. Koopmann, A. Zehe, D. Fernes, P. Krop, and A. Hotho. Where to
Submit? Helping Researchers to Choose the Right Venue. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 878–883, Online,
Nov. 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.findings-emnlp.78 [131]

K.K., T.K., and A.Z. had the idea for the task and methodology and guided the im-
plementation of the experiments. K.K. had the idea of using Integrated Gradients for
the analysis and guided its implementation. T.K. created the dataset. D.F. and P.K.
implemented the experiments. All authors analyzed and discussed the results. K.K. and
T.K. implemented the accompanying website with code written by D.F. and P.K. K.K.
wrote the paper with substantial contributions from T.K. and A.Z. as well as contributions
from D.F., P.K., and A.H.

This publication is based on the results of a student project. For the publication, the
experiments were extended by another dataset. The model analysis using Integrated
Gradients was not part of the student project. Thus, the main contribution of this
publication to this thesis is not part of any other examination work. Also, the analysis
of the model was extended by K.K. for this thesis. The introduction of the task, model,
and dataset is given in this thesis to put the analysis contribution in context. The
contributions are mainly described in Chapter 8.

K. Kobs and A. Hotho. On Background Bias in Deep Metric Learning. In
International Conference on Machine Vision, volume 12701, pages 331–338. SPIE,
June 2023. doi: 10.1117/12.2679270 [130]

K.K. developed the methodology, designed the experiments, and implemented them.
K.K. and A.H. analyzed and discussed the results. K.K. wrote the publication with
contributions from A.H. The full publication contributes to the thesis and is mainly
described in Chapter 11.

S. Hentschel, K. Kobs, and A. Hotho. CLIP knows Image Aesthetics. Frontiers in
Artificial Intelligence, 5, 2022. ISSN 2624-8212 [90]

K.K. developed the idea for the methodology and guided the implementation of the
experiments. K.K. and S.H. designed the experiments. S.H. implemented the experiments.
K.K., S.H., and A.H. discussed the results. K.K. wrote the publication with contributions
from S.H. and A.H.

This publication is based on the results of the bachelor thesis of S.H. For the publication,
the experiments were extended with more analyses and discussions. The main contribution
of this publication to this thesis is the methodology and the results of the experiments,
which are mainly described in Chapter 12.
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K. Kobs, M. Steininger, and A. Hotho. InDiReCT: Language-Guided Zero-Shot
Deep Metric Learning for Images. In IEEE Winter Conference on Applications of
Computer Vision, pages 1063–1072, 2023 [135]

K.K. had the idea for the methodology, designed the experiments, and implemented
them. K.K., M.S., and A.H. refined the methodology during discussions and analyzed
and discussed the results. K.K. wrote the publication with contributions from M.S. and
A.H. The full publication contributes to the thesis, mainly in Chapter 13.

K. Kobs, M. Steininger, A. Zehe, F. Lautenschlager, and A. Hotho. SimLoss: Class
Similarities in Cross Entropy. In D. Helic, G. Leitner, M. Stettinger, A. Felfernig,
and Z. W. Raś, editors, Foundations of Intelligent Systems, Lecture Notes in
Computer Science, pages 431–439, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-59491-6. doi: 10.1007/978-3-030-59491-6_41 [132]

K.K. developed the methodology, designed the experiments, and implemented most of
them. M.S. implemented the similarity matrix generation for the CIFAR-100 dataset.
K.K., M.S., A.Z., F.L., and A.H. analyzed and discussed the results. K.K. wrote the
paper with substantial contributions from M.S., A.Z. and contributions from F.L. and
A.H. The full publication contributes to the thesis, mainly in Chapter 14.

K. Kobs, A. Zehe, A. Bernstetter, J. Chibane, J. Pfister, J. Tritscher, and A. Hotho.
Emote-Controlled: Obtaining Implicit Viewer Feedback Through Emote-Based
Sentiment Analysis on Comments of Popular Twitch.tv Channels. ACM Transactions
on Social Computing, 3(2), 2020 [133]

K.K. and A.Z. developed the idea for using a TextCNN, guided the implementation
of the experiments, and had the idea of using weak labels and input masking for the
TextCNN. A.B., J.C., J.P. implemented the experiments and analyses. A.B. contributed
the creation of the emote lexicon and the average based lexicon approach. J.C. contributed
the distribution based lexicon approach. J.P. implemented the TextCNN approach. All
authors analyzed and discussed the results. K.K. wrote the paper with substantial
contributions from A.Z. as well as contributions from A.B., J.C., J.P., J.T., and A.H.

This publication is based on the results of a student project, but the use of the
TextCNN model and the weak label approach was not part of the original project. The
main contribution of this publication to this thesis is the methodology of using weak
labels and input masking to improve sentiment analysis as well as its results and analysis,
mainly described in Chapter 15. Thus, the main contribution of this publication to this
thesis is not part of any other examination work. The order of student authors (A.B.,
J.C., J.P.) is based on the alphabetical order of their last names and does not reflect the
contribution of each author.
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J. Pfister, K. Kobs, and A. Hotho. Self-Supervised Multi-Task Pretraining Improves
Image Aesthetic Assessment. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 816–825, June 2021. doi:
10.1109/CVPRW53098.2021.00091 [208]

K.K. developed the idea for the methodology and guided the implementation of the
experiments. K.K. and J.P. designed the experiments and discussed the results. J.P.
implemented the experiments. K.K. and J.P. wrote the publication with contributions
from A.H.

This publication is based on the results of the master thesis of J.P. For the publication,
the experiments were extended, and the results were analyzed and discussed. The main
contribution of this publication to this thesis is the methodology and the results of the
experiments, mainly described in Chapter 16.
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