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ABSTRACT Bulk RNA sequencing technologies have provided invaluable insights into
host and bacterial gene expression and associated regulatory networks. Nevertheless,
the majority of these approaches report average expression across cell populations,
hiding the true underlying expression patterns that are often heterogeneous in nature.
Due to technical advances, single-cell transcriptomics in bacteria has recently become
reality, allowing exploration of these heterogeneous populations, which are often the
result of environmental changes and stressors. In this work, we have improved our
previously published bacterial single-cell RNA sequencing (scRNA-seq) protocol that is
based on multiple annealing and deoxycytidine (dC) tailing-based quantitative scRNA-
seq (MATQ-seq), achieving a higher throughput through the integration of automa-
tion. We also selected a more efficient reverse transcriptase, which led to reduced cell
loss and higher workflow robustness. Moreover, we successfully implemented a Cas9-
based rRNA depletion protocol into the MATQ-seq workflow. Applying our improved
protocol on a large set of single Salmonella cells sampled over different growth condi-
tions revealed improved gene coverage and a higher gene detection limit compared
to our original protocol and allowed us to detect the expression of small regulatory
RNAs, such as GcvB or CsrB at a single-cell level. In addition, we confirmed previously
described phenotypic heterogeneity in Salmonella in regard to expression of pathoge-
nicity-associated genes. Overall, the low percentage of cell loss and high gene detec-
tion limit makes the improved MATQ-seq protocol particularly well suited for studies
with limited input material, such as analysis of small bacterial populations in host
niches or intracellular bacteria.

IMPORTANCE Gene expression heterogeneity among isogenic bacteria is linked to clin-
ically relevant scenarios, like biofilm formation and antibiotic tolerance. The recent de-
velopment of bacterial single-cell RNA sequencing (scRNA-seq) enables the study of
cell-to-cell variability in bacterial populations and the mechanisms underlying these
phenomena. Here, we report a scRNA-seq workflow based on MATQ-seq with increased
robustness, reduced cell loss, and improved transcript capture rate and gene cover-
age. Use of a more efficient reverse transcriptase and the integration of an rRNA
depletion step, which can be adapted to other bacterial single-cell workflows, was
instrumental for these improvements. Applying the protocol to the foodborne
pathogen Salmonella, we confirmed transcriptional heterogeneity across and within
different growth phases and demonstrated that our workflow captures small regula-
tory RNAs at a single-cell level. Due to low cell loss and high transcript capture
rates, this protocol is uniquely suited for experimental settings in which the starting
material is limited, such as infected tissues.
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Until now, bacterial transcriptome studies have mainly relied on bulk RNA sequenc-
ing (RNA-seq) (1). This approach provides averaged gene expression values across

an entire cell population and therefore does not allow conclusions regarding transcrip-
tional heterogeneity between individual bacteria. Yet, such phenotypic heterogeneity
is a common microbial phenomenon (2). It is important for bacterial survival strategies
such as bet hedging, which allows fast adaptations to changing environments (3, 4), or
biofilm formation, in which individual cells take on highly specific roles within a com-
munity (5).

Dating to 2009, pioneering work established single-cell RNA-seq (scRNA-seq) in
eukaryotes (6). While this field rapidly evolved (7), the development of scRNA-seq in
bacteria was slow to progress due to several challenges (8). Prokaryotic cells are much
smaller than eukaryotic cells, leading to less input material per cell. Single bacteria con-
tain RNA in the femtogram range (9) and the average mRNA copy number is low, at
only 0.4 copies/cell (10). Further challenges include efficient cell lysis, which is ham-
pered by the bacterial cell wall, and capture of nonpolyadenylated bacterial transcripts.
These differences prevent a direct adaptation of most eukaryotic single-cell transcrip-
tomic workflows.

Nevertheless, thanks to technical advances, bacterial single-cell transcriptomics has
recently become a reality (8). Three general types of approaches are currently available.
Bacterial multiple annealing and deoxycytidine (dC) tailing-based quantitative scRNA-
seq (MATQ-seq) (11) is a workflow originally developed for eukaryotes (12) that relies
on cell isolation by fluorescence-activated cell sorting (FACS) and random priming of
cellular transcripts. A second type, also previously established for eukaryotes and
termed split-pool ligation transcriptomics sequencing (SPLiT-seq) (13), is based on
combinatorial barcoding. It was adapted for bacterial scRNA-seq in two independent
studies introducing the so-called prokaryotic expression profiling by tagging RNA in
situ and sequencing (PETRI-seq) and microbial SPLiT-seq (microSPLiT) protocols (14,
15). In comparison to MATQ-seq, bacterial split-pool barcoding workflows enable the
analysis of thousands of cells instead of a few hundred, offsetting the lower transcript
capture rate and higher rate of cell loss in these protocols. The third type is a micros-
copy- and probe-based approach that does not employ RNA-seq. It is called parallel se-
quential fluorescence in situ hybridization (par-seqFISH) and allows spatial transcrip-
tomics on the level of single bacteria (16).

Despite these recent advances, challenges remain. These include a high frequency of
cell loss and problems with robustness, coverage and prevalence of redundant rRNA. In
addition, short transcripts, such as small regulatory RNAs (sRNAs), show poor coverage or
are not measurable at all. Importantly, transcript detection is currently limited to ;200
genes per single cell, which is far below the average bacterial transcriptome. We reasoned
that targeted improvements of our previous MATQ-seq protocol would address some of
these challenges.

In this work, we present the next version of bacterial MATQ-seq. While the original pro-
tocol (11) has a high transcript capture rate, including low-abundance transcripts, it is also
limited in throughput and robustness. Through the integration of automation, we have
now achieved increased cell throughput. In addition, we improved robustness through the
selection of a more efficient reverse transcriptase (RT), which also led to a reduced tran-
script dropout rate. Finally, given that in our previous protocol the vast majority of reads
represented rRNA, we integrated a Cas9-mediated targeted rRNA depletion protocol, called
depletion of abundant sequences by hybridization (DASH) (17). This allowed us to obtain
more gene expression information per single cell with decreased sequencing costs.

RESULTS
Automation of the MATQ-seq workflow achieves higher throughput. Initially,

we aimed to increase cell throughput and read quality by integrating automation and
by refining our analysis pipelines. In order to enable direct comparison with previous
data, we performed all experiments with Salmonella enterica serovar Typhimurium.
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Within the MATQ-seq protocol, library preparation and quality control consist of a se-
ries of different labor-intensive pipetting steps. We implemented a user-friendly and
highly flexible automation process by establishing protocols for all pipetting steps on
the I.DOT dispensing robot (Dispendix), with the exception of cleanup and quality con-
trol steps (Fig. 1). This decreased turnaround times and the amount of consumables
needed. Concurrently, automation increased sample throughput.

For cDNA analysis and quality control, we integrated the high-throughput Qubit Flex
fluorometer for a precise and fast procedure. To facilitate sample processing, we applied a
miniaturization step for the final PCR volume by skipping the splitting step of the PCR
implemented in the original MATQ-seq protocol (12). This allowed processing of up to 96
single cells per MATQ-seq passage, compared to a maximum of 24 cells in the previous
protocol, and decreased the overall processing time from about 10 to 8 h. More impor-
tantly, the hands-on time was reduced from about 6 to 3 h. Finally, we updated our data
processing and analysis pipeline to improve data quality by implementing a better trim-
ming approach, alignment, normalization, and identification of outliers (see Materials and
Methods for details). Overall, all these steps discussed above led to higher cell throughput,
improved accuracy, and higher read qualities, as described in more detail below.

Optimized reverse transcription leads to higher robustness and reduced cell
loss. Reverse transcription is crucial for RNA conversion and thus greatly affects the
robustness of the scRNA-seq protocol and the detection of low-abundance transcripts.
In our previous study, we used SuperScript III (SS III) for the reverse transcription step
(11). In the meantime, RTs with properties that promised to improve reverse transcrip-
tion efficiency were reported (18–20). Therefore, we systematically tested SuperScript
IV (SS IV), an optimized RT based on SS III with improved thermostability, robustness,
and processivity; TGIRT and PrimeScript, two RTs that allow reverse transcription of GC-
rich regions and highly structured RNAs; and Maxima H Minus and SMARTScribe, two
highly efficient RTs with a high processivity and the capability to convert RNA tran-
scripts up to 20 or 14.7 kb in length. For the analysis of these five different RTs we used
fluorometer (Qubit) as well as high-resolution gel electrophoresis (Bioanalyzer) systems
to assess cDNA yield and integrity.

Initially, we used total RNA as a spike-in to evaluate the compatibility of the RTs
with the MATQ-seq workflow (Fig. 2A). Of note, reverse transcription during MATQ-seq
is performed with temperature gradients, which might interfere with RT efficiency.
Indeed, SMARTScribe and PrimeScript showed low efficiency and were excluded from
further validation. For the remaining three RTs, we adapted buffer conditions to the
manufacturer’s recommendation. This yielded larger fragments in Bioanalyzer profiles,
especially for SS IV and Maxima H Minus (Fig. 2B). Qubit measurements of cDNA
obtained from spike-in tests using TGIRT showed low yield insufficient for further
library preparation, ruling out this RT for further use (Fig. 2C).

Next, we assessed the performance of SS IV and Maxima H Minus on sorted cells.
Whereas the two RTs showed similar results for 50 and 10 sorted cells, Maxima H Minus
was less efficient at the single-cell level (see Fig. S1 in the supplemental material). In a
direct comparison of SS IV to SS III (Fig. 2D), SS IV showed a higher reproducibility, indi-
cated by a pattern of characteristic bands and an increase in cDNA yield at the single-cell
level. Based on these results and a lower cell loss overall, we implemented SS IV in the
MATQ-seq protocol. Of note, due to the implementation of automation and the improve-
ments in reverse transcription, only ;10% of all cells were lost during wet-lab processing
(MATQ-seq and library preparation) and/or excluded by bioinformatic filtering.

rRNA depletion substantially increases non-rRNA reads. In order to reduce
rRNA-derived reads, we applied an rRNA depletion step using DASH, a Cas9-mediated
cleavage protocol originally developed in eukaryotes that can be implemented at the
cDNA level (17). Specifically, a pool of single guide RNAs (sgRNAs) targeting rRNA-
derived cDNA is provided together with Cas9, causing targeted cDNA cleavage. DASH
had already been shown to work efficiently in low-input bacterial samples (.1 ng of
total input RNA) (21) as well as at a single-cell level in eukaryotes (22).

In order to optimize DASH conditions to our protocol, we tested five molar ratios of
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FIG 1 Improved MATQ-seq workflow for bacterial single-cell RNA-seq. (A) Overview of bacterial scRNA-seq pipeline including major
steps from cell culture to bioinformatic analysis. Changes from the previous MATQ-seq protocol are highlighted in blue. (B) Detailed
workflow of the MATQ-seq protocol separated into two main steps: cell isolation and cDNA synthesis (left) and library preparation
including DASH for rRNA depletion (right). Major improvements are highlighted in blue, including the use of SuperScript IV (SS IV) for
reverse transcription, reaction optimization, and integration of DASH into the library preparation. All pipetting steps were automated
using the I.DOT dispensing robot, with the exception of all cleanup and quality control steps.
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FIG 2 Selection of alternative reverse transcriptase. Shown are Bioanalyzer profiles of cDNA processed by MATQ-seq using different
reverse transcriptases. (A) Comparison of five different reverse transcriptases with SS III. Sample input was 50 ng of total RNA for all

(Continued on next page)

Improved Bacterial MATQ-Seq mBio

March/April 2023 Volume 14 Issue 2 10.1128/mbio.03557-22 5

https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.03557-22


Cas9 to sgRNAs in the range from 1:2 to 1:50 and compared the percentages of mapped
rRNA reads (Fig. S2). A ratio of 1:2 was the most efficient and led to an rRNA depletion of
75%. These results are consistent with previously described DASH protocols for rRNA
depletion in bacterial bulk samples, reporting depletion efficiencies in the range of 30 to
60% for Salmonella (21).

To evaluate rRNA depletion efficiency on a larger scale and across growth conditions,
we applied it to Salmonella in early exponential (EEP), mid-exponential (MEP), late expo-
nential (LEP), and early stationary (ESP) phases (Fig. 3A). Per condition, 96 single cells were
processed by MATQ-seq. DASH is performed after tagmentation and introduction of full
adapter index sequences by index PCR. Without this preamplification step, we were not
able to recover enough cDNA after DASH. Since indices that allow cell identification are
introduced during index PCR, samples can be pooled before DASH, thereby reducing the
number of DASH reactions (Fig. 1 and Fig. S3).

The newly generated data set showed a much higher percentage of non-rRNA reads in-
dependent of growth condition (Fig. 3B) than did the data obtained using our original
MATQ-seq protocol (11). Importantly, in contrast to single-cell libraries that were not
treated with DASH, we detected up to a 10-fold-higher percentage of reads mapped to
coding sequences (CDSs), sRNAs, tRNAs, and untranslated regions (UTRs), indicating suc-
cessful elimination of rRNA-derived cDNA upon Cas9-mediated cleavage. Of note, the over-
all distribution of all other RNA classes did not vary substantially among growth conditions
or between the two protocols, suggesting no major Cas9 off-target effect leading to
unwanted cleavage of libraries (Table S1A). Compared to our initial test experiments
(Fig. S2) using cDNA from sorted single cells grown under anaerobic shock conditions, the
rRNA depletion efficiency was lower in this larger-scale experiment, although we used the
same Cas9/sgRNA ratio. This might be due to an additional pooling step that could have
saturated the Cas9 enzyme or to differences in commercial Cas9 batches that were used.
Nevertheless, the DASH step still decreased rRNA reads up to;30%.

The successful implementation of DASH required several adjustments to facilitate

FIG 2 Legend (Continued)
conditions. (B) Further validation of the three RTs SS IV, Maxima H Minus (Maxima H-), and TGIRT after initial selection and subsequent
buffer optimization compared to panel A. All assays were performed with a spike-in of 50 pg of total RNA. (C) cDNA concentrations of
samples in panel B measured with a Qubit fluorometer. (D) Comparison of cDNA profiles obtained with SS III (left) and SS IV (right). Each
profile represents the cDNA prepared from either a single cell (sc) or 10-sorted or 100-sorted cells. Sorted cell conditions served as a
control to evaluate cDNA integrity obtained from a single cell. The positive control was performed with a spike-in of 50 pg of total RNA.
Characteristic bands are indicated with blue arrows. L, ladder; NC, negative control; PC, positive control.

FIG 3 Experimental design and RNA class distribution. (A) Growth curve of Salmonella in LB medium, with colored arrows indicating
the four sampling points for scRNA-seq experiments. Data are displayed as means 6 standard deviation (SD) of three independent
experiments. (B) Representation of RNA class distribution comparing both protocols under different growth conditions. See Table S1A
for detailed information on the prevalence of each RNA class. EEP, early exponential phase; MEP, mid-exponential phase; LEP, late
exponential phase; ESP, early stationary phase; LSP, late-stationary phase.
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compatibility with the scRNA-seq workflow. Specifically, pre- and postamplification
cycles were optimized to ensure enough yield and, at the same time, to prevent over-
amplification. We found that heat inactivation of proteinase K used in published DASH
protocols was highly inefficient in our experimental settings. As a result, the down-
stream PCR was negatively affected by proteinase K and rRNA-depleted libraries were
not amplified adequately. Inactivation by phenylmethylsulfonyl fluoride (PMSF) led to
higher efficiency and allowed PCR amplification of the final library pool (Fig. S3).
Another important adjustment was the cleanup procedure required to remove PCR
reagents, especially primer dimers from PCR products. The column-based purification
used in published protocols was not suitable due to high sample loss. Instead, we used
magnetic beads for the cleanup, which allowed us to purify low-input PCR samples
with minimal sample loss. The ratio of magnetic beads and PCR product was adjusted
to 1:1 (vol/vol), thereby ensuring capture of short fragments, including ones derived
from short transcripts, such as sRNAs (Fig. S2).

Improved MATQ-seq provides better gene coverage and shifts the gene detec-
tion limits. Due to the improvements we implemented, we were able to reduce the
sequencing depth compared to our original MATQ-seq protocol (11) and still detect more
genes on average across the four growth conditions than previous data: 307 versus 185
genes, respectively (Fig. 4A). We detected the highest number of genes in cells sampled in

FIG 4 Gene detection limit and robustness of improved MATQ-seq workflow. (A) Overlaid violin and boxplots
showing the median, quartiles, and distribution for the numbers of detected genes per condition. Mean numbers of
reads per single cell are indicated at the top. (B) Proportion of genes with no assigned reads (zeros) per single cell
compared to the number of sequenced reads, with each color-coded dot representing a single cell.
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EEP and MEP, in which more than 375 genes were detected on average (Fig. 4A). This is in
line with expectations, as the mRNA level/cell has previously been observed to increase
during exponential growth (23). Despite reducing the sequencing depth ;6-fold, we
achieved increased sensitivity of gene detection as the proportion of genes with no
assigned reads (“zeros”) across cells was reduced (Fig. 4B). This is directly related to the pro-
portion of genes we detected across cells genome-wide, which increased to 95% (Fig. S4),
but also genome coverage, which increased from 3.0� to 4.8� (Tables S1B and C).

We also wanted to assess how well our scRNA-seq data corresponded to condition-
matching bulk RNA-seq data. Therefore, we generated pseudo-bulk data by summing
gene expression across all cells per condition and compared them against bulk RNA-
seq data of samples taken from the same culture as the sorted single cells. To assess
possible biases introduced by DASH, we performed bulk RNA-seq library preparation
using a standard affinity probe-based rRNA depletion method. Using three bulk RNA-
seq replicates, we obtained higher correlations than previously observed (11), confirm-
ing a closer resemblance to bulk RNA-seq data (Fig. S5).

MATQ-seq enables detection of small regulatory RNAs. sRNAs play a major role
in bacterial gene regulation and are important during stress responses and virulence
(24, 25). However, short transcripts, like sRNAs, are notoriously difficult to detect at the
single-cell level due to inefficient recovery during the scRNA-seq workflow. In addition,
cleanup procedures are required to remove primer dimers, but these bear risk to also
target sRNAs which can be similar in size. Nevertheless, the use of magnetic beads at
high ratio (1:1 [vol/vol]) that we adapted in MATQ-seq for this purpose improved the
recovery of smaller fragments. As a result, we were able to detect a large number of
sRNAs across the different growth conditions (Table S1D) and between 28 to 46 unique
sRNAs per condition (Fig. 5A). We observed a high variability in the overall prevalence
and expression level of sRNAs across conditions but also within the same growth con-
dition (Fig. 5B). For example, the sRNAs CsrB and CsrC, known regulators of the global
RNA-binding protein CsrA (26), were among the most prevalent sRNAs detected and
showed highly variable expression across different growth conditions (Fig. 5B). The Csr
complex constitutes one of the key regulatory systems for virulence, stress responses,
motility, and biofilm formation in Salmonella (27). In accordance with our data, condi-
tion-dependent differences in expression levels of both sRNAs have previously been
described (28). The technical feasibility to detect sRNAs at a single-cell level was sub-
stantiated by csrB reads that only covered its transcribed region, indicating that cover-
age does not arise from processing artifacts. Though uneven mapping was observed
among different single cells (Fig. 5C), a broad coverage of csrB transcripts suggests ro-
bust detection of sRNAs by MATQ-seq.

As an additional example, the sRNA GcvB, whose regulon mainly includes enzymes
involved in amino acid biosynthesis and transporters, was highly expressed in the majority
of cells in the MEP phase (Fig. 5B). Nevertheless, we also observed cells that did not express
gcvB (Fig. 5D). This finding is in accordance with earlier studies investigating gcvB expres-
sion in bulk samples; however, we did not observe a complete absence of GcvB in the sta-
tionary phase as previously seen (29). Instead, we detected a highly variable expression of
GcvB in the ESP. Therefore, despite low (or nondetectable) expression at the whole-popula-
tion level, some cells still express GcvB, indicating heterogeneity across the cell population.
Overall, these examples show that our improved MATQ-seq protocol enables detection of
sRNAs at the single-cell level, reflecting expression patterns that have been previously
reported using bulk RNA-seq data sets.

Variability in Salmonella gene expression over different growth conditions.
Visualization of all analyzed cells using principal component analysis (PCA) showed varia-
tion in gene expression over the different growth phases in Salmonella, as expected
(Fig. 6A). EEP and MEP cells clustered together, in line with rapid cellular proliferation dur-
ing these growth phases, which necessitates high gene expression (23). LEP and ESP were
more distinct, reflecting the onset of nutrient starvation and a less active cellular state (30).
Genes that drive the separation of these three main clusters are involved with growth-
related processes and have previously been described (31). They include genes encoding
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components of flagella (flaG, also known as flhB, and fliC), lipid metabolism (fadB), glycoly-
sis (aceE), and others (Fig. S6). Overlaying the gene expression across all cells in the same
PCA plot helps visualize these expression patterns across and within conditions (Fig. 6B
and C).

We extracted the most highly variable genes (HVG) within each condition (Fig. 6D),

FIG 5 Small regulatory RNA regulation at a single-cell level. (A) Representation of unique sRNAs identified under each
growth condition. (B) Heat map showing prevalence and distribution of the most abundant sRNAs under different growth
conditions. (C) Coverage plot and read densities of sRNA CsrB in eight selected single cells (indicated by sample number).
(D) Coverage plot and read densities of sRNA GcvB in MEP in six selected single cells (indicated by sample number).
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FIG 6 Cluster identification and analysis of highly variable genes detected at a single-cell level. (A) Principal component analysis
(PCA) of all analyzed cells across the four growth conditions. (B) Overlay of the expression of genes contributing to the separation of
the three main clusters in panel A. (C) Expression of Salmonella pathogenicity genes sipB and sipC within ESP. (D) Heat map of the
gene expression level of the top 1% of highly variable genes detected for each growth condition. (E) (Left) PCA analysis of cells from
EEP and MEP. (Right) Overlay of expression of the flagellar gene fliC on the PCA blot shown on the left.
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highlighting their heterogeneous expression within a cell population. Of particular interest
was the ESP, because we observed numerous genes related to Salmonella pathogenicity
(tar, siiE, sipA, sipB, sipC, prgH, and prgI) that appeared to be associated with specific groups
of cells (Fig. 6D). To explore this further, we focused on genes expressed from Salmonella
pathogenicity islands (SPI) 1, 2, and 4 (Fig. S7). We observed three subpopulations based
upon a group of ;7 SPI genes, exhibiting very low or no expression (Fig. S7, middle), low
expression (left), and high expression (right). Bulk RNA-seq studies have shown that SPI
genes are more highly expressed during ESP than under earlier growth conditions (31).
Variation in expression of selected genes has previously also been reported at the single-
cell level (32). In this study, by examining a larger set of SPI genes, we observed that a small
subset of these genes mediates clustering of the cells into different populations.

To further analyze early growth conditions, we visualized only EEP and MEP cells with
PCA (Fig. 6E). Due to the limited variation from each principal component, the cells
remained closely clustered, further highlighting their similarities. Returning to the HVG, the
two flagellar genes flaG and fliC showed particularly high variability in both growth phases
(Fig. 6D). Both genes encode proteins of the core flagellum, and their expression has a direct
impact on cell motility (33). Overlaying the expression of fliC suggests two distinct subpopu-
lations of cells, including both EEP and MEP cells (Fig. 6E, right). To visualize if additional flag-
ellar genes show the same pattern, we generated heat maps containing flagellum-express-
ing genes (Fig. S8). While we did not detect distinct subpopulations, we did see a gradient
in flagellar gene expression, with a wide range of expression of flagellar genes within each
growth phase. This observation is in accordance with previous findings describing heteroge-
neous expression of fliC in Salmonella directly associated with cell motility and the potential
to evade host inflammatory responses (2, 34).

Effects of sequencing depth. The high number of sequenced reads per cell that
we obtained allowed us to explore gene detection limits per cell and how cell cluster-
ing is affected as sequence depth decreases. For both issues, we simulated scRNA-seq
data across all cells for each condition separately (see Materials and Methods), query-
ing different sequencing depths. Independent of the experimental condition, we
reached saturation of the number of detected genes per cell at around 5 million reads
(including rRNA-derived reads [Fig. S9A]). This saturation analysis will assist future stud-
ies using MATQ-seq to find a balance between sequencing depth, the number of cells
to analyze, and the associated costs.

We also explored how PCA clustering is affected by the number of detected genes.
For the four growth conditions tested, a minimum of 80 detected genes per cell led to
clustering results qualitatively similar to those obtained using a much larger number of
detected genes (Fig. S9B). Our expectation was that a greater number of detected
genes would reveal more distinct subpopulations, but this did not appear to be the
case within our experimental conditions, where a range between 80 and 126 genes
appeared to be sufficient to discriminate between growth phases. This suggests that it
may be possible to investigate the structure of expression within a population with as
few as tens of thousands of reads per cell given the efficiencies of cDNA conversion
and rRNA depletion we have achieved in this study.

DISCUSSION

Here, we report substantial improvements to our previously established bacterial
MATQ-seq protocol (11). Specifically, we focused on three elements of the workflow: (i)
integration of automation and minimization of reaction volumes during different steps
of the protocol, as well as optimization of the bioinformatic pipeline for data analysis;
(ii) selection of a more efficient RT; and (iii) implementation of an rRNA depletion step
by integrating DASH into the library preparation. We validated our improved MATQ-
seq protocol by generating a large data set of single Salmonella cells sampled over dif-
ferent growth conditions. Overall, our data show that the changes we implemented
increased the cell throughput and robustness of the protocol while reducing cell loss.
In addition, we were able to improve gene coverage and the gene detection limits. We
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were even able to detect sRNAs at the single-cell level, which previously had not been
feasible. This will allow the exploration of the regulatory functions of sRNA at the sin-
gle-cell level in future studies. Moreover, our data confirm previously described hetero-
geneity within the same cell population, especially regarding Salmonella pathogenicity
genes and genes encoding components of the flagellum (32, 34).

The successful implementation of DASH to deplete rRNA-derived cDNA was instru-
mental in achieving these advances. We believe that DASH can be adapted to other
single-cell approaches, which currently do not include a targeted rRNA depletion pro-
tocol (11, 14, 15). Because depletion is performed at the cDNA level, DASH only needs
to be customized to the library preparation step. For protocols that also use Nextera
XT for library preparation, such as PETRI-seq (15), a direct application without any fur-
ther adjustments is possible. The implementation of DASH would reduce the required
sequencing depth and overall sequencing costs.

A general limitation of current scRNA-seq workflows is efficient cell lysis, which
might require species-specific customization. Consequently, analysis of mixed bacterial
communities is a challenge. This is especially true if their cell wall compositions vary, as
this necessitates different enzymatic disruption and poses the risk of introducing bias
based on varying lysis efficiency. Combinatorial indexing-based protocols (14, 15) can
cope better with this limitation than MATQ-seq, because these protocols can process
many more cells at once. Inefficient lysis is therefore compensated for by a higher
number of input cells, although the danger of introducing bias remains. In contrast,
MATQ-seq is more limited in throughput because of the cell sorting step and therefore
inefficient lysis will lead to a high rate of failure. Nevertheless, MATQ-seq can in princi-
ple be applied to mixed cell populations if lysis conditions can be optimized.

Due to the high transcript capture rate of MATQ-seq, this method is particularly well
suited for experimental settings in which the starting material is limited, such as the analy-
sis of small subpopulations of bacterial cells in host niches or intracellular bacteria. In these
settings, the application of dual RNA-seq allows the study of host-pathogen interactions
through the simultaneous analysis of the transcriptomes of both the bacteria and the host
(1, 35). Single-cell dual RNA-seq (scDual-Seq) has been attempted, but so far, either bacte-
rial gene detection has been inefficient (36) or the experiments were performed under a
high multiplicity of infection, which does not reflect physiological conditions (37). Since
MATQ-seq was initially developed for scRNA-seq in eukaryotes (12), we see high potential
in establishing scDual-Seq with MATQ-seq to capture both eukaryotic and prokaryotic tran-
scripts. In this context, it is interesting that DASH has been shown to remove bacterial as
well as eukaryotic rRNA at a single-cell level (22). Nevertheless, establishment of an scDual-
Seq protocol based on MATQ-Seq will require further testing and validation.

MATERIALS ANDMETHODS
Bacterial strains and growth conditions. The bacterial strains used in this study are listed in

Table S1E. Salmonella enterica serovar Typhimurium SL1344 (38) and constitutively green fluorescent protein
(GFP)-expressing strain SL1344 (39) were grown in Lennox broth (LB) (tryptone [10 g/L], yeast extract [5 g/L],
and sodium chloride [85.6 mM]) medium. The GFP-expressing Salmonella strain was used only for FACS gat-
ing. Bacterial cultures were inoculated to an optical density (OD) at 600 nm of 0.01 and incubated at 37°C
with agitation (220 rpm) until early exponential, mid-exponential, late exponential, and early stationary
phases (ODs of 0.1, 0.3, 1.0, and 2.0; according to reference 31). A 1 mL volume of each culture was pelleted
and washed twice with 1 mL of 1� Dulbecco’s phosphate-buffered saline (DPBS). Afterwards, the pellet was
resuspended in 1 mL of 100% RNAlater/RNAprotect tissue reagent (Qiagen) and kept on ice. Right before
sorting, samples were diluted 1:20 in 1� DPBS.

All pipetting steps in the sections below were automated using an I.DOT (Dispendix) dispensing
robot except for cleanup and quality control steps.

Isolation of single cells. Isolation of single cells was done as previously described by Imdahl et al.
(11). Briefly, single cells were isolated using a BD FACS Aria III for sorting individual cells into 96-well
plates prefilled with lysis buffer (0.26 mL of 10� lysis buffer [TaKaRa], 0.03 mL of RNase inhibitor [100 U/
mL; TaKaRa], 0.26 mL of DPBS [Gibco], 0.1 mL of lysozyme [50 U/mL; Epicentre], and 1.95 mL of nuclease-
free water [Ambion]). After sorting, plates were kept on ice and stored at 280°C until further processing.

Improved MATQ-seq protocol. The improved MATQ-seq protocol is based on the protocol
described by Imdahl et al. (11), with several modifications. Briefly, reverse transcription was performed
using primers described by Sheng et al. (12). Instead of SuperScript III, SuperScript IV was used
(Invitrogen) as a reverse transcriptase without changing RT reaction volumes. As reaction buffer, SS IV
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buffer was used instead. Reverse transcription was followed by primer digestion, RNA digestion, and
poly(C) tailing. Subsequent second-strand synthesis was performed before PCR amplification with only
one-fourth of the reaction volume (40 mL instead of 160 mL). cDNA purification was performed using
AMPure XP beads (Beckman Coulter) at a 1:1 (vol/vol) ratio. cDNA quality was checked by using Qubit
Flex and the 2100 Bioanalyzer DNA High Sensitivity kit (Agilent Technologies). Oligonucleotides used for
MATQ-seq are listed in Table S1F.

DASH sgRNA pool generation. The sgRNA pool for Cas9-based ribosomal depletion in Salmonella
was generated according to Prezza et al. (21). Briefly, a double-stranded DNA (dsDNA) template for in
vitro transcription was generated with the oligonucleotide pool composed of 797 sequences targeting
rRNA of Salmonella (JVO-21893 [Table S1F]) as well as the fill-in reaction oligonucleotide (JVO-21894
[Table S1F]) using KAPA HiFi HotStart ReadyMix (Roche). After column-based cleanup and quality control
on Nanodrop and the Bioanalyzer DNA 1000 kit (Agilent), the sgRNA pool was generated by in vitro tran-
scription using MEGAshortscript T7 transcription kit (Invitrogen). The final pool, consisting of 797
sgRNAs, was purified using the Monarch RNA cleanup kit (500 mg; New England BioLabs [NEB]). sgRNA
quality control was performed with Qubit and the Bioanalyzer RNA 6000 Pico kit (Agilent).

Single-cell RNA-seq: library preparation, including ribosomal depletion. cDNA obtained from sin-
gle cells after MATQ-seq was further processed for library preparation, including a ribosomal depletion proto-
col. Library preparation was done using the Nextera XT DNA library preparation kit (Illumina) including the
DASH protocol (according to reference 21, with several modifications) with only one-fourth of overall reaction
volumes compared to the manufacturer’s recommendations. Tagmentation was performed with 5mL of total
reaction volume instead of 20 mL and 0.5 ng of cDNA input. Index PCR was performed with 13 cycles using
Integrated DNA Technologies (IDT) for Illumina Nextera DNA unique dual indexes and a total reaction volume
of 12.5 mL instead of 50 mL (Illumina). Obtained libraries were purified with AMPure XP beads (Beckman
Coulter) at a 1:1 (vol/vol) ratio to ensure capture of sRNA-derived cDNA. After quality control, up to 12 sam-
ples were pooled equimolar for ribosomal depletion. sgRNA/Cas9 complex formation was followed by DASH
using the appropriate ratio of cDNA, Cas9, and sgRNA. Cas9 enzyme was inactivated by proteinase K (15 min
at 37°C). Afterwards, proteinase K was inactivated by adding PMSF (1 mM final concentration). Depleted
cDNA was purified by another round of AMPure XP bead cleanup and used as the input for a second PCR
amplification. Depleted cDNA (0.5 ng) was used as the input for Nextera XT reactions omitting the tagmenta-
tion steps. Index-independent primers i5 and i7 were used to amplify noncleaved cDNA products. PCR was
done for 13 cycles, and cleanup was performed with AMPure XP beads at a 1:1 (vol/vol) ratio.
Oligonucleotides used for the second PCR are listed in Table S1F.

Total RNA extraction and library preparation. Bacterial RNA was isolated from Salmonella strain
SL1344 grown under the same conditions as for scRNA-seq experiments. RNA extraction was performed with
1.8 mL of each in vitro culture using the TRIzol reagent (Invitrogen) according to the manufacturer’s recom-
mendation. RNA quality was checked using the Qubit RNA high-sensitivity assay kit (Invitrogen) and 2100
Bioanalyzer RNA 6000 Pico/Nano kit (Agilent Technologies). Prior to library preparation, DNase treatment was
performed using a DNase I kit (Thermo Fisher), followed by rRNA depletion. rRNA was depleted using
Lexogen’s RiboCop META rRNA depletion kit protocol according to the manufacturer’s recommendation
using 100 ng of total RNA as the input per sample. DNA libraries suitable for sequencing were prepared using
the CORALL total RNA-Seq library prep protocol (Lexogen) according to the manufacturer’s recommendation
with 13 PCR cycles. Library quality was checked using a 2100 Bioanalyzer DNA High Sensitivity kit.

Sequencing. Sequencing pools of single cells as well as total RNA-seq libraries were checked using
the Qubit DNA High Sensitivity assay kit and a 2100 Bioanalyzer DNA High Sensitivity kit. Sequencing of
library pools, spiked with 1% PhiX control library, was performed in single-end 100-cycle sequencing
mode on the NextSeq 2000 or NovaSeq 6000 platform (Illumina). Demultiplexed FASTQ files were gener-
ated with bcl2fastq2 v2.20.0.422 (Illumina).

Bioinformatics. (i) Preprocessing. Read trimming and quality control of MATQ-seq reads were exe-
cuted using BBDuk (40) and MultiQC (41). To efficiently remove primer and adapter sequences located
at both ends of a read, we ran BBDuk in a two-pass procedure using the default adapter sequence data-
base augmented with MATQ-seq-specific sequences (Table S1G). The first pass focused on the 59 end,
with parameters minlen=18 qtrim=rl trimq=20 ktrim=l k=17 mink=11 hdist=1 trimpolya=30, while the sec-
ond pass focused on the 39 end, with parameters minlen=18 qtrim=rl trimq=20 ktrim=r k=17 mink=11
hdist=1.

(ii) Read alignment and counting. Read alignment and counting were performed with Bowtie2
(42) and featureCounts (43), allowing a single mismatch and run-in --local mode. BigWig files were gener-
ated using deepTools (44), passing additional parameters --binSize 5 --normalizeUsing BPM. We employed
the same gene detection method from the original MATQ-seq analyses (11), requiring a detected gene
to have.5 reads.

(iii) Normalization and differential expression. DESeq2 (45) was used for normalization and differ-
ential expression analysis, using size factors calculated by the computeSumFactors function in Scran (46)
and other recommended parameters for DESeq2 single-cell analysis, which included using the likelihood
ratio test (LRT), useT=TRUE, minmu=1e-6, and minReplicatesForReplace=Inf.

(iv) Identification of outlier cells. To identify outlier cells, we calculated the average number of
detected genes per cell (.5 reads) for each condition. Cells were determined to be outliers if their detected
gene number varied more than 2 standard deviations (SD) above or below the mean, which removed 14
cells. One additional cell was removed based on the PCA plot generated using PCAtools (47).

(v) Comparison with existing bulk and single-cell RNA-seq data. To ensure fair comparisons
between bulk RNA-seq and scRNA-seq data sets, we processed all FASTQ files using the same prepro-
cessing, alignment, and counting approaches as described above. For our pseudo-bulk representation
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from the single cell data, for each condition, we summed the counts across all cells for each gene. Bulk
RNA-seq data were generated in parallel with the single-cell data.

(vi) Small RNAs and highly variable genes. Additional small RNAs (sRNAs) were added to our annota-
tion, giving us 172 sRNAs in total. To show the most abundant sRNA in the heat map for Fig. 5, sRNAs were
only shown if the row sums of Transcripts Per Million (TPM) normalized counts across all conditions
was .100. The full list of expressed sRNAs is provided in Table S1D. Highly variable genes were identified
using Scran (46), with the top 1% of HVG used for the heat map in Fig. 6. The number of Salmonella pathoge-
nicity and flagellar genes used in the supplementary heat maps (Fig. S7 and S8) was reduced to show only
genes expressed under the examined conditions.

(vii) Single-cell simulations and downsampling. Simulated data were generated using the sample
function in R. All Salmonella genes (including rRNA) were sampled with replacement, with read count
frequencies used as probability weights per cell for each condition. Different sample sizes were used to
represent sequencing read depth, and detected genes were the resulting uniquely sampled genes.

Data availability. Data are available under Gene Expression Omnibus (GEO) accession number
GSE218633. Bioinformatic scripts used for analysis are available on GitHub: https://github.com/BarquistLab/
MATQ-seq_2023.
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