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1 Introduction 1

1  Introduction

Histopathology is still the standard for the assessment of drug candidate toxicity in

animal experiments,  required for preclinical safety testing. Histopathological  evaluation

not only requires large numbers of animals, but also trained specialists. Therefore, for cost

reduction and animal welfare reasons, there is an urgent need for the development of novel

non-invasive methods for toxicity screening.

The  existing  urinary  and  plasma  parameters  measured  routinely  with  clinical

chemistry analysis  are too insensitive as well  as too unspecific to be used for  toxicity

assessment alone. For example, the most commonly used clinical markers of renal injury,

blood  urea  nitrogen  (BUN)  and  serum  creatinine,  do  not  detect  kidney  damage  until

70-80% of the renal epithelial mass is lost. Urinary analysis has three advantages: urine is

not subjected to such a close homeostasis as plasma or other body fluids and alterations

due to perturbations of metabolic processes should show up earlier than in plasma, urine

samples  can  be  collected  non-invasively,  and  urine  is  available  in  comparably  large

quantities.  However,  the  sensitivity  and specificity  of  increased glucose and decreased

osmolarity,  the  urinalysis  parameters  indicating  renal  damage  in  clinical  chemistry

analyses, are not satisfactory.

The  omics  technologies  provide  a  promising  approach  for  urinary  analysis,

combining  modern  computer-assisted  data  acquisition  with  multivariate  statistical

modeling. In the omics-cascade, going from genomics via proteomics to metabonomics,

metabonomics is the phenotypic end. It focuses on small molecules and is therefore well

suited for urinary analysis. There are two potential routes to a metabonomics approach for

urinary analysis: a pattern recognition approach for sample classification based solely on

the  differences  of  1H NMR  spectra  or  GC/MS chromatograms  of  treated  animals  and

controls,  and  the  identification  of  new biomarkers  of  toxicity  found  by  a  mechanistic

understanding of the observed alterations of sample composition.

In this thesis, urinary metabonomics is applied to several rodent toxicity studies to

assess whether urinary metabonomics may serve as a complementary tool to “classical”

histopathology and clinical chemistry for the detection of drug candidate toxicity.
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2  Background

2.1  Conventional methods for the non-invasive detection of
nephro- and hepatotoxicity

2.1.1  Clinical chemistry parameters

Kidney and liver function can be assessed routinely by clinical chemistry parameters

and histopathology. While blood and urine parameters can be sampled repeatedly and non-

or  minimal-invasively,  these  parameters  lack  sensitivity.  Histopathology,  while  being

sensitive and specific, requires sacrifice of the animal.

Clinical  chemistry  parameters  monitoring  renal  function  are  blood  urea  nitrogen

(BUN) and serum creatinine which increase when the kidney's ability to filtrate and excrete

these  compounds  is  reduced,  together  with  a  decrease  in  urine  specific  gravity  or

osmolarity and an increase in urinary glucose, occurring when the concentration of urine

and the reabsorption of glucose from the filtrate are impaired. However, such alterations

can be observed only when the kidney is already substantially damaged [1].

Liver injury specific clinical chemistry parameters are the increase of alanine amino

transferase (ALAT) in serum if  aspartate amino transferase (ASAT) increases in parallel,

however, an ASAT increase in serum may also be observed for muscle damage. Liver

injury may lead to low BUN, but disturbed hepatic function may not be observed until half

of  the  functional  liver  mass  is  lost.  Increased serum and urine bilirubin and increased

serum bile acids together with increased alkaline phosphatase (ALP) and gamma glutamyl

transferase (GGT) indicate bile duct damage and cholestasis [2].

2.1.2  Histopathology

The  liver  consists  mainly  of  hepatocytes  and  bile  ducts.  The  most  common

pathological lesions observed in the liver are apoptosis or necrosis and proliferation of

hepatocytes,  as  well  as  lesions of the bile  duct.  Bile  duct  lesions observed are  mainly

necrosis or hyperplasia of the bile ducts and cholangiofibrosis.

Compared to the liver, the kidney possesses a complex anatomy. The kidney consist

of various parts with different functions. The glomerulus, the proximal convoluted tubule,

the pars recta, the thin limbs of the loop of Henle, the thick ascending limb of the loop of
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Henle, the juxtaglomerular apparatus, the distal convoluted tubule, the collecting duct and

the interstitium.

The glomerulus is responsible for the filtration of molecules from the blood, based

on molecule size, configuration and charge. Transport decreases in the order from cationic,

neutral to anionic molecules.

In the proximal convoluted tubule, active transport of sodium, calcium, potassium,

phosphate as well as organic acids takes place, to recover these ions and molecules from

the  urine.  The  proximal  tubule  epithelial  cells  exhibit  a  high  P450  mixed  function

oxigenase activity, and organic anion transporters are highly expressed as well, therefore it

is an important place for xenobiotica metabolism. The proximal tubule endothelial cells

also possess a very active cytosis and lysosomal apparatus. All these factors predestine the

proximal convoluted tubule as primary target for many nephrotoxins [1].

2.1.3  Novel protein biomarkers for kidney and liver injury

To complement the classical clinical chemistry parameters and histopathology, there

are a number of novel protein-based biomarkers with potential for the detection of kidney

and liver injury. Kidney injury molecule 1 (KIM1) is a renal tubular protein elevated in

experimental animals with acute kidney injury. Urinary neutrophil  gelatinase-associated

lipocalin  (NGAL),  urinary  interleukin  18  (IL-18)  and  urinary  N-acetyl-ß-D-

glucosaminidase (NAG) perform well for the diagnosis, early detection and prognosis of

acute kidney injury [3]. This is also the case for clusterin and osteopontin [4; 5].

For the early non-invasive detection of liver damage, some novel serum parameters

are  proposed.  Increase  in  glutamate  dehydrogenase  (GLDH),  serum  F  protein

hydroxyphenylpyruvate deoxygenase (HPD), glutathione-S-transferase alpha (GSTα) and

Arginase I correlate with hepatic injury. Malate dehydrogenase (MDH), like ALT, is a

periportal enzyme released into serum. Purine nucleoside phosphorylase (PNP) is located

in endothelial cells, Kupffer cells and hepatocytes and is released during necrosis of these

cells. Paraoxonase 1 (PON1) is reduced in serum upon hepatic injury [2]. Besides bilirubin

and bile acids, no robust urinary parameter indicating liver injury has been found yet.
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Table  2.1.3.1: “Classical”  clinical  chemistry  parameters  and  novel  protein-based
biomarkers for the detection of kidney and liver damage. Especially for the detection of
liver damage, a robust urinary parameter still remains to be found.

kidney liver

serum urine serum urine

clinical chemistry blood urea nitrogen
(BUN)

glucose alanine amino
transferase (ALAT)

bilirubin, bile acids

serum creatinine aspartate amino
transferase (ASAT)

bilirubin, bile acids

alkaline phosphatase

gamma glutamyl
transferase (GGT)

novel protein
biomarkers

kidney injury molecule
1 (KIM1)

neutrophil gelatinase-
associated lipocalin

(NGAL)

glutamate
dehydrogenase

(GLDH)

interleukin 18 (IL-18) serum F protein
hydroxyphenylpyruvate

deoxygenase (HPD)

N-acetyl-ß-D-
glucosaminidase

(NAG)

glutathione-S-
transferase α (GSTα)

clusterin arginase I

osteopontin malate dehydrogenase
(MDH)

purine nucleoside
phosphorylase (PNP)

paraoxonase (PON1)

2.2  Definitions and terminology

2.2.1  Omics and metabolites

The “omics” technologies have gained a large impact in the life sciences in the recent

years. Starting with genomics, on the DNA level, transcriptomics and proteomics on the

RNA respectively protein level and finally metabonomics on the metabolite level, these

technologies  are  based  on  the  comprehensive  analysis  of  the  genome,  transcriptome,

proteome  or  metabolome,  i.e.  the  complete  set  of  an  organism's  or,  more  generally

speaking, test system's genes, transcripts, proteins or metabolites.

Contrary to the “classical” analytical chemistry approach were a targeted analysis is

carried out  aiming at  a small  number of  compounds which are known or suspected to

change within the experimental setting, the metabonomics-approach is different. A global

analysis is carried out, using 1H NMR or full scan MS, to access as many metabolites as
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possible. Then, using statistical tools, the differences between samples are filtered, thereby

allowing the identification of alterations in samples without a priori knowledge.

Metabolites in this context are all endogenous intra- and extracellular compounds

produced by the  organism with a  mass  of  up to  1000 amu.  This  definition  has  to  be

distinguished from the common pharmacological use of the term “metabolite” for drug

metabolites,  i.e.  the  degradation  or  conjugation  products  of  pharmaceutical  agents  or

xenobiotica in general. Throughout this thesis, the term “metabolite” shall be used in the

former sense of all endogenous intra- and extracellular compounds of an organism. The

complete set of all metabolites in an organism or system is defined as the metabolome [6],

in analogy with the genome being the complete set of a system's genes.

2.2.2  Metabonomics vs. metabolomics

There  are  a  number  of  terms  such  as  metabonomics,  metabolomics,  metabolite

profiling,  metabolic  fingerprinting  etc.  found  in  the  literature  which  are  neither  well

defined nor used consistently. The question which term is appropriate is often more of a

philosophical nature, since these definitions try to differentiate between approaches that are

based  on  the  same  analytical  and  statistical  techniques  and  are  only  distinguished  by

minute  differences  in  their  objectives,  and  are  also  used  interchangeably  by  different

authors.

Metabonomics  is  defined  as  the  “quantitative  measurement  of  the  dynamic

multiparametric response of living systems to pathophysiological stimuli or modification”

[7] and is often used interchangeably with metabolomics, the “study of global metabolite

profiles in a system (cell, tissue, organism) under a given set of conditions” [8; 9]. The

notion  that  metabonomics  refers  to  1H NMR  analysis  and  metabolomics  to  MS-based

analysis origins from the fact that the pioneers in the field that coined these definitions

used  1H NMR analysis  respectively  MS-based  analysis.  Metabolic  fingerprinting  is  an

“unbiased, global screening approach to classify samples based on metabolite patterns or

“fingerprints” that change in response to disease, environmental or genetic perturbations”

[9;  10].  “Metabolic fingerprinting” is  based solely on pattern recognition, and turns to

“metabonomics”  or  “metabolomics”,  when  the  pattern  or  “fingerprint”  is  assessed  as

quantitative metabolite data. Metabolic profiling is the “quantitative analysis of a set of

metabolites in a selected biochemical pathway or a specific class of compounds” [9; 10]. It

focuses on a subset of the metabolome.
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While  metabolite  profiling  is  focused  on  a  specific  compound  class,  metabolic

fingerprinting is a global approach, trying to analyze a pattern or “fingerprint”, but not

necessarily  with  quantitative  data  or  metabolite  identification.  The  omics  technologies

require quantitative data and identification of the changes with regard to a systems biology

approach.  However,  for  practical  purposes  the  distinction  between  metabonomics,

metabolomics  and  metabolite  profiling  is  of  little  importance,  since  the  analytical  and

statistical methods used are highly similar. Therefore, the term “metabonomics” will be

used throughout this thesis.

2.3  Analytical platforms

The demand of obtaining a global metabolite profile for metabonomics applications

requires a new analytical approach. Instead of focusing on a single analyte or a small group

of  compounds  with  similar  properties,  comprehensive  metabolite  profiles  have  to  be

obtained in a single analytical run. The large progress in the field of instrument technology

and  computer  processing  power  in  the  last  few  years  has  facilitated  the  recording  of

comprehensive metabolite profiles.

2.3.1  1H NMR for metabonomic analysis

The pioneers of metabonomic applications in the field of toxicology used 1H NMR

analysis. They studied alterations in urinary excretion patterns upon administration of renal

toxins such as mercuric chloride [11; 12] cadmium chloride [13] and various nephrotoxins

[14]. The advantage of  1H NMR technology is that aqueous biological samples such as

urine  or  plasma  require  only  minimal  sample  work-up.  Mostly,  only  addition  of  a

deuterated  standard  as  chemical  shift  reference  and  buffering  to  reduce  pH-dependent

shifts of pH-sensitive resonances is required. Although 1H NMR analysis indiscriminately

records  resonances  from  all  proton-containing  compounds  in  a  sample,  and  thus  well

fulfills the requirement of “global” profiling, it has three major draw-backs. First, 1H NMR

has limited sensitivity and dynamic range compared to GC/MS or LC/MS analysis. It is

widely recognized throughout the metabonomics community that in most cases the range

of 1H NMR analysis is limited to the 20-30 most abundant molecules in urine, which are

often referred to as the “usual suspects” [15]. Secondly, detection of metabolites depends

on the proton structure of the compound. Molecules with a large number of chemically

equivalent protons such as trimethylamine-N-oxide (TMAO) can be detected in relatively
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small  quantities  as  their  resonance  is  a  prominent  singlet.  Compounds  with  many

chemically different protons with complicated multiplet resonances such as glucose are

still lost in the spectral baseline noise at much higher concentrations. Finally, the missing

chromatographic separation of metabolites compared to GC- or LC/MS leads to a large

overlap of resonances making metabolite identification difficult.

A fact that is under technical control but has to be considered nevertheless is that the

sample solvent, water, produces a dominant resonance of its own. Thus, the recording of
1H NMR  spectra  requires  water  suppression,  which  can  be  handled  well  with  pulse

sequences  such  as  the  noesyprd1  pulse  sequence  contained  in  the  Bruker  library.

Resonances of compounds of biological interest are found in the chemical shift region of

δ = 0 – 10 ppm. However, a range of around 18% of this region of the 1H NMR spectrum

has to be excluded from the analysis due to residual water resonances. Fortunately, not too

many compounds have resonances in this chemical shift region of δ = 4.40 – 6.20 ppm.

Despite these drawbacks, it must be recognized that  1H NMR analysis is relatively

cheap, fast and offers superb reproducibility across different laboratories, and therefore is

the analytical technique that can be easily implemented for a routine toxicity screening.

Furthermore, the samples are not destroyed during analysis. The wealth of publications on
1H NMR based metabonomics applications across a broad scientific field proves the value

of this approach [16].

2.3.2  GC/MS analysis for metabonomic analysis

Until recently, GC/MS-based applications with a metabonomics approach have been

mostly used in the plant and cell sciences [17; 18], although the first profiling approaches

in the 1970's using a GC/MS platform were intended for clinical uses [19]. A quantitative

method for more than 100 compounds found in human urine was published as early as

1991 [20]. Such screening methods are routinely used for screening of inborn errors of

metabolism in newborns [21; 22].

The  relatively  small  range  of  toxicological  applications  of  GC/MS-based

metabonomics is probably not so much a question of the analytical technique, but also of

fashion:  the  advent  of  electrospray  ionization  (ESI)  and  the  possibilities  for  LC/MS

analysis of aqueous biological samples opened by this new ionization technique moved the

focus away from GC/MS in toxicological research. Thus, up to date, only few GC/MS-

based  metabonomics  studies  with  a  toxicological  background  are  published  [23;  24].
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Although  GC/MS  requires  volatile  analytes  and  thus  extensive  sample  work-up  with

extraction,  drying  and  derivatization,  GC/MS  analysis  is  otherwise  well  suited  for

metabolome analysis.

Figure 2.3.2.1: GC/MS derivatization. Silylation of nucleophilic groups of the metabolites
in biological samples increases the volatility and thermal stability of the analytes (a). In
order to prevent the formation of isomers by enolization (b), silylation is preceded by a
reaction with methoxyamine hydrochloride (c). The resulting oximes stabilize the ketones
and aldehydes.

Comprehensive  derivatization  methods  such  as  the  silylation  with  N-methyl-N-

trimethylsilyltriflouroacetamide  (MSTFA)  exist,  allowing  access  to  a  large  number  of

compounds in body fluid samples by transferring OH-, NH- and SH-groups into stable

volatile products (Fig. 2.3.2.1a). Prior to silylation, ketones and aldehydes are converted to

oximes in order to avoid isomer formation due to keto-enol tautomery (Fig. 2.3.2.1b and

c).  A major  advantage  of  GC/MS analysis  is  the  high  separation  capacity  of  GC/MS

columns,  yielding  sharp,  baseline-separated  peaks  and  good  peak  forms  which  enable

automated processing by specialized peak picking and alignment software. Furthermore,

due  to  almost  40 years  of  experience  with  GC/MS  analysis  with  capillary  columns,

derivatization  agents  and  artifacts  are  well  investigated  [25],  and  large  commercially

available  databases  (Wiley  Registry  of  Mass  Spectral  Data,  NIST Mass  Spectral  Data

Base) exist, allowing the rapid identification of unknown metabolites.

Lately, a number of validated GC/MS methods intended for metabonomic analysis

for urine or serum have been published [24; 26; 27], demonstrating the return of GC/MS

analysis  to  metabolite  profiling in  toxicology.  This  is  also due to the  advent  of  novel
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techniques  such  as  two-dimensional  GC separation  coupled  to  time-of-flight  detection

(GC × GC/TOF-MS) [28; 29].

A  drawback  of  GC/MS-based  methods  is  the  differential  response  of  different

compounds. The derivatization procedure requires optimization, since some endogenous

metabolites  are  more  reactive  than  others,  and  in  some  cases  one  compound  forms  a

variety of different derivates instead of a single product. A general problem with MS-based

techniques is the response to the ionization procedure. Some compounds are ionized more

easily  than  others.  Therefore,  quantification  of  MS  data  is  more  difficult  than  with
1H NMR data and classical analytical procedures use 2D- or 13C-labeled internal standards

for quantification. However, this procedure cannot be implemented easily for an untargeted

analysis such as required for metabonomic analysis.

2.3.3  LC/MS analysis for metabonomic analysis

LC/MS analysis has been used in a variety of metabonomic studies in the recent

years. However, as LC/MS analytics included only a minor part of this thesis, this method

shall only be mentioned briefly in order to complete the discussion of analytical platforms

applied  to  metabonomic  analysis.  LC/MS  has  gained  importance  for  metabonomics

applications  [30; 31],  especially  after  the  introduction  of  ultrahigh  pressure  liquid

chromatography (UPLC) [32] resulting in superior separation, and hydrophilic interaction

liquid  chromatography  (HILIC)  [33],  allowing  efficient  separation  of  highly  polar

compounds. Advantages are high sensitivity, good chromatographic separation and less

sample work-up needed as compared to GC/MS. However, the automatic processing and

interpretation  of  results  is  hampered  by  retention  time  drifts,  adduct  formation,  ion

suppression and the lack of databases allowing rapid identification of unknown metabolites

based on their ESI spectra.

2.3.4  Combination of analytical platforms

It is important to recognize that  1H NMR spectroscopy and mass spectrometry are

complementary  tools  and  that  a  combination  of  methods  provides  wider  coverage  of

metabolites and thus a much more comprehensive picture of the metabolome than any

single  technique  by  itself.  Using  a  combination  of  1H NMR,  GC/MS  and  LC/MS

techniques,  Atherton  et  al. [34]  were  able  to  identify  metabolic  perturbations  in  the

PPAR-α null mutant mouse liver as compared to wild-type mice, ranging from decreased
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glucose and choline discovered by 1H NMR analysis to increased stearic acid, cholesterol

and pentadecanoic acid found with GC/MS analysis. Similarly, plasma analysis using all

three analytical platforms provided a more comprehensive metabolite profile of normal and

Zucker (fa/fa) obese rats than any methodology would have on its own. For instance, GC/

MS revealed an increase in arachidonic acid and tocopherol, whereas a rise in taurocholate

in Zucker rats was detected UPLC/MS [35].

2.4  Multivariate data analysis

The  modern  analytical  methods  for  comprehensive  metabolite  screening  require

computerized data collection for the rapid sampling of large amounts of data. These large

data quantities have to be filtered by automatized techniques to separate information from

noise. Of the thousands of resonances in a  1H NMR spectrum of an urine sample, those

which are altered as a consequence of a toxic insult must be filtered. There are various

approaches for multivariate data analysis in metabonomics [36], but the most common one,

principal component analysis (PCA), is based the projection of variance. The methods for

data reduction applied in this thesis are all based on PCA.

2.4.1  Unsupervised models: principal component analysis

Modern analytics produce so called short and fat matrices, meaning that there are

much more variables (i.e. metabolites, chromatographic peaks, 1H NMR resonances) than

observations  (i.e.  animals,  and  their  urine  samples  respectively)  in  a  study.  In  typical

toxicity studies, three groups of animals (n = 5) are observed at three time points, resulting

in  45 observations.  1H NMR  spectra  are  typically  binned  into  250 bins;  and  at  least

500 features  (mass/retention time pairs)  can  be  extracted  from  GC/MS chromatograms.

The data structure is a k-dimensional coordinate system with k variables describing each

observation (for 1H NMR data: 250 variables describing 45 observations). Moreover, these

data tables often contain missing values either because some metabolites simply do not

exist in certain samples, for example, if they are only excreted upon treatment or they are

not detected, because they are contained in the samples in concentrations near their limit of

detection. To analyze this kind of data, PCA is useful, as it is robust against outliers and

missing values [37].
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Figure 2.4.1.1: Principal component analysis (PCA) is a data reduction method based on
the projection of variance. The data, represented by a k-dimensional coordinate system is
reduced to a two-dimensional coordinate system, spanned by the principal components
(PCs). The first PC is chosen in such a way that the variance along it is maximized. The
second PC is orthogonal to the first, and maximizes the variance as well. In this way, the
complex data can be visualized two-dimensionally,  while  retaining a large part  of  the
information which is contained in the data.

PCA is a multivariate projection method, based on the identification of systematic

variation and the maximization of variance. The many partially correlated variables are

reduced to few independent, latent variables, the principal components (PCs). Every PC is

a linear combination of the original parameters. Consecutive PCs are orthogonal to each

other and thus independent. Every observation can therefore be plotted in a two- or three-

dimensional coordinate system of latent variables, which still contains most of the spectral

or chromatographic information (Figure 2.4.1.1). Since the localization of the scores in the

plot is based purely on variance and no other information is put into the model, PCA is

called an unsupervised method. PCA is the first method of choice used for metabonomics,

before  any  more  complex  data  analysis  methods  are  employed,  since  it  is  robust,

unsupervised and can be implemented quite easily [36].

While PCA can be applied to gain a rapid insight  into data structure,  a problem

associated with PCA-based variance analysis is its sensitivity to variables not correlated to

the trends investigated, such as analytical variability, sample work-up, analytical artifacts,

physiological influences (genotype, sex, age, day time, food etc.) and vehicle or compound

metabolites  in  animal  experiments.  For  the  identification  of  discriminating  markers

between experimental groups, supervised approaches are superior.
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2.4.2  Supervised models: orthogonal projection to latent structures

For closer examination of such samples containing a large variance and possessing

only very little discriminating information,  a supervised approach often yields superior

results. Supervised multivariate analysis means that information on class identity, such as

"vehicle control" versus "treated" is included in the statistical analysis. The partial least

squares projection to latent structures analysis (PLS) can be seen as an extension of PCA

with a regression element. Two blocks of variables (X-block and Y-block) can be brought

into relation with each other. The X-block is the k-dimensional coordinate system also used

in  the  PCA,  while  the  Y-matrix  consists  of  one  or  more  continuous  variables.  For  a

two-class problem such as modeling control versus treated animals in a toxicity study, the

Y-block becomes a so called dummy matrix, a single column with two descriptors (0, 1),

and the PLS becomes a discriminant analysis (PLS-DA).

Because the results of PLS and PLS-DA are often difficult to interpret, especially

when trying to determine which variables contribute most to the class discrimination (or, in

the concrete case of toxicity modeling: which metabolites are changed between controls

and treated animals as a result of a toxic insult), a further extension of PLS-DA can be

made.  Under  the  assumption  that  the  X-block  variables  contain  a  certain  part  of

information not correlated to the Y-block describing the class,  the X-block variance is

modeled in such a way that discriminating information is modeled on the first component

t[1]P and orthogonal information, i.e. information not contributing to class separation, is

modeled with the second component t[2]O and all following components. This approach is

called orthogonal projection to latent structures discriminant analysis (OPLS-DA) [38].

The  OPLS-DA approach  allows  a  better  analysis  of  discriminating  features,  and

allows the analysis and interpretation of information not contributing to class separation.

Analytical  variation,  sampling  sequence,  genetic  differences,  daytime  effects  and

physiological variation have been found by this approach. Thus, OPLS-DA of metabolite

profiles  obtained  with  GC/MS  analysis  revealed  differences  between  three  strains  of

Zucker rats [39], and a model based on metabolite profiles obtained from human cancer

tissue samples could differentiate between colon and rectal cancers [40]. The OPLS-DA

models  can also  be used to  identify  the  variables  responsible  for  class  separation and

therefore  they  can  be  used  for  identification  of  potential  biomarkers  of  toxicity.  One

approach used is the S-plot [41],  which plots the covariance (p) against the correlation

(pcorr). For a marker, both the contribution to the model expressed in p and the effect and
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reliability  of  this  contribution  expressed  in  p(corr)  should  be  high.  Thus  the  potential

markers are located on the outer ends of the S-shaped point swarm (Figure 2.4.2.1).

2.4.3  Binning, peak picking and alignment

Data extraction from the chromatogram to the X-matrix in table format containing

the  features  that  can  be  processed  with  statistics  programs  require  different  software

packages. The approaches between 1H NMR and GC/MS are fundamentally different. For
1H NMR data  processing,  the  routine  method  is  spectral  binning.  The  whole  1H NMR

spectrum is divided into 0.04 ppm-wide bins, and the total intensity of each bin is recorded.

The resulting table contains 250 bins for a 10 ppm wide  1H NMR spectrum. With the

multivariate data analysis, alterations in a bin are detected. Subsequently, the compounds

contained in these bins responsible for the change in intensity have to be identified.

For GC/MS (and LC/MS) applications, signal processing software extracts the peaks

of each mass trace according to certain criteria such as signal to noise ratio, length of the

peak  etc.  These  software  packages  yield  tables  for  statistical  analysis  containing

mass/retention time pairs as peak identity and the corresponding intensity. The software

requires some optimization of the extraction parameters, but offers the advantage that the

resulting ions  can be directly  compared to  reference compounds  and the separation of

Figure  2.4.2.1:  S-plot  (a)  and  column  plot  of  extracted  variables  with  jack-knifed
confidence intervals (b) of an GC/MS data based OPLS-DA model to illustrate the process
of marker identification. The S-plot shows the covariance p against the correlation p(corr)
of the variables of the discriminating component of the OPLS-DA model. Cut-off values for
the covariance of p ≥ ‌0.05‌ and for the correlation of p(corr) ≥ ‌0.5‌ were used, the variables
thus  selected  are  highlighted  in  the  S-plots  with  red  squares  (a).  In  order  not  to
overinterpret  the  model,  the  markers  were  selected  in  a  conservative  manner  by
investigating only those variables showing a jack-knifed confidence interval less than half
of the variable’s value (b).
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overlapping peaks is possible too. A variety of software tools is available for this purpose,

such as  MetAlign [42],  mzMine [43]  and XCMS [44].  An overview of  the  variety  of

commercially and publicly available software tools is given by Katajamaa and Oresic [45].

Recently, Lange et al. systematically tested six peak processing and alignment programs

and attested XCMS superior performance concerning both data quality and run time [46].

2.4.4  Normalization and scaling

A problem is the normalization of urinary data prior to analysis.  In conventional

studies, parameters are normalized to urinary creatinine. For metabonomics analysis, this

approach seemed not  feasible,  especially  for  nephrotoxic  compounds,  where  creatinine

excretion  may  be  altered  as  toxic  response,  so  another  approach  is  chosen.  For  most

metabonomic studies, GC- or LC/MS chromatograms or 1H NMR spectra are normalized

to total integral, meaning that each peak intensity is divided by the intensity of all peaks in

one sample. This levels out any differences in sample concentration or MS response, as

long  as  the  samples  analyzed do  not  differ  too  much and  any  alterations  in  the  peak

intensities are small compared to the total intensity of the spectrum. It also circumvents the

problem of internal analytical standards in MS-based analyses, since in this way all other

compounds act as a standard for the peak analyzed. Even though the normalization to total

integral is by no means the optimal procedure, it is easy to implement and yields good

results  and  is  therefore  used  by  many  researchers.  Warrack et  al.  recently  tested  the

differentiation of urine samples obtained from control and treated animals in multivariate

models  comparing  normalization  to  osmolarity,  creatinine  and  total  integral  and  no

normalization, and found that total integral and osmolarity normalization performed best

[47].

Centering and scaling is applied to the data prior to multivariate analysis. Data is

mean centered, meaning that the mean of each peak intensity across all samples is set to

zero. This allows the comparison of peaks with different means. Scaling has influence on

the variance of the peaks [36]. No scaling would mean the absolute variance of the peak is

used, leading to the dominance of the few large peaks detected. Unit variance scaling set

the  variance  of  the  peaks  to  one,  giving  the  same  weight  to  all  peaks.  This  scaling

procedure however places too much weight on the noise. A good compromise between no

scaling and unit variance scaling is pareto scaling, which weighs the variance according to

its square root. This procedure reduces the influence of the high intensity peaks on the
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model and at  the same time does not overestimate the contribution of the noise to the

model [37].

2.5  Applications in toxicology

Metabonomics  is  increasingly  being  propagated  as  a  non-invasive  method  for

toxicity  assessment.  This  technology may  offer  a  fast  and comprehensive detection of

biochemical  perturbations  in  urine  or  plasma  indicative  of  toxicities  and  may  provide

information on mechanisms of toxicity. Metabonomics techniques have been applied to

analyze the urinary profiles of various model hepato- and nephrotoxins such as hydrazine

and  mercuric  chloride,  and  to  characterize  the  toxicities  of  novel  compounds  in  drug

development [15].

2.5.1  1H NMR-based metabonomics in toxicology

A large number of studies focusing on single compounds have been published in the

recent years. Using 1H NMR techniques, decreased urinary Krebs cycle intermediates and

increased urinary creatine were identified after acetaminophen treatment in rats [48; 49].

Cadmium induced creatineuria in rats, and complexion of urinary citrate by cadmium was

observed  [50].  α-Naphthylisothiocyanate-induced  cholestasis  in  rats  correlated  with

creatineuria,  taurineuria,  bile  aciduria  and decreased urinary  Krebs  cycle  intermediates

[51]. Decreased urinary Krebs cycle intermediates as well as increases in the excretion of

creatine,  glucose,  choline,  alanine  and 5-oxoproline  were  observed  for  bromobenzene-

induced liver damage in rats [52]. N-Phenylanthranilic acid treatment of rats resulted in an

increased excretion of ketone bodies and ascorbate with urine [53].

2.5.2  GC/MS-based metabonomics in toxicology

GC/MS analysis was used to investigate the toxic effects of hydrocortisone in rats,

indicating  increased  catecholamine  synthesis  and  raised  levels  of  urinary  alanine  and

cholesterol [54]. Galactosamine-induced hepatic failure in the mouse was characterized by

increased  amino  acids  and  Krebs  cycle  intermediates  in  plasma  [55].  Tetrahydro-

corticosterone  and  5α-terahydrocorticosterone  were  identified  as  putative  urinary

biomarkers  for  nonylphenol-induced kidney injury in the  rat  [56].  Carbontetrachloride-

mediated acute liver failure in mice correlated with elevation of gluconeogenic amino acids

and depletion of free fatty acids in plasma [57].
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2.5.3  LC/MS-based metabonomics in toxicology

LC/MS analysis was applied to studies of nephrotoxicity induced by various heavy

metals in rats, indicating decreased urinary levels of xanthurenic acid, kynurenic acid and

increased levels of phenolic sulfoconjugates upon treatment [58–60]. Similar effects were

also observed after treatment with cyclosporin A [61].  D-Serin induced nephrotoxicity in

the  rat  correlated  with  glucosuria,  aminoaciduria,  lactaturia  and  decreased  levels  of

xanthurenic acid [62].

2.5.4  Identification of putative biomarkers

These  applications  were  not  only  aimed  at  differentiating  between  controls  and

treated groups, but also at biomarker identification. For example, various combinations of

elevated and decreased excretion levels of up to 20 metabolites quantified from 1H NMR

spectra of urine from rats treated with various nephrotoxins were proposed as putative site-

specific biomarkers of nephrotoxicity [14; 63] and hydrazine-induced neurotoxicity [64].

Increased urinary phenylacetylglycine (PAG) excretion was proposed as a biomarker of

drug-induced phospholipidosis [65].

2.5.5  Confounders

One problem with studies comprising only one or a few compounds administered are

the confounders, which may be altered in correlation with compound administration but

are  not  related  to the  mechanism of  toxicity.  In  humans,  urinary carnosin and anserin

excretion increased after  meat  consumption,  betaine and trimethylamine excretion after

fish and shellfish consumption and fructose excretion after cherry consumption [66]. A

large influence on urinary profiles of rats is now attributed to the intestinal microflora [67;

68],  especially  the  excretion  levels  of  hippurate,  3-hydroxyphenylpropionic  acid  and

phenylacetylglycine  vary  with  alterations  in  the  intestinal  microflora.  Hippurate  and

3-hydroxyphenylacetic  acid excretion also  varied  with  diet  [69].  Alterations  in  urinary

profiles of rats were also correlated to the female cyclus [70], and age-dependent changes

in the urinary excretion of citrate and taurine were observed [13].

2.5.6  Multiple compound studies

The collection of toxin-specific and organ-specific patterns in urinary metabolites

would  be  practicable  to  build  a  system  for  toxicity  classification  and  biomarker
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identification [71].  To address these problems and generally evaluate the work-flow of

metabonomics studies, a large-scale consortium project was initiated to assess the value of
1H NMR metabonomics studies with a large number of compounds. The aim was also to

control  the  inter-laboratory  variance  of  metabonomics  studies.  The  Consortium  for

Metabonomic Toxicology (COMET) was formed between six pharmaceutical companies

and the Imperial College of Science, Technology and Medicine in London to evaluate the

role of metabonomics in xenobiotic toxicity studies [72]. The focus thereby lay on nephro-

and hepatotoxicity. The evaluation of more than eighty compounds analyzed with urinary
1H NMR  metabonomics  during  the  COMET  project  resulted  in  an  expert  system  for

prediction of toxicology based on 1H NMR urinary profiles which is able to predict toxicity

based on urinary 1H NMR profiles with good predictivity [73].

While  COMET  was  focused  on  the  evaluation  of  1H NMR  metabonomics  in

toxicology,  the InnoMed PredTox project  was designed to evaluate a broader range of

novel approaches, including genomics, proteomics and metabonomics approaches for the

early prediction of toxicity [74].

In summary, metabonomics approaches have gained large impact in the recent years

not only in toxicology but also in various other fields of the life sciences. The pharmaco-

metabonomic approach aims to predict outcomes of drug treatment based on the metabolic

phenotype  of  the  individual.  The  concept  was  demonstrated  by  the  prediction  of  the

magnitude of paracetamol toxicity in rats from the predose urinary 1H NMR profiles [75].

GC/MS based urinary profiles are used in clinical screening of newborns for the detection

of inborn errors of metabolism [22]. Furthermore, metabonomics is applied in the fields of

plant sciences [76], environmental technology [77],  in vitro test systems [78] as well as

food quality control and nutrition [79].

2.6  Model compounds for nephro- and hepatotoxicity

2.6.1  Gentamicin

The aminoglycoside antibiotic gentamicin is used against life-threatening infections

with gram-negative bacteria. Its heterocyclic structure consists of two aminosugars linked

to an aminocyclitol ring by glycoside bonds (Fig.2.6.1.1). Gentamicin binds irreversibly to

the  ribosomal  30S  subunit  of  bacteria  and  thereby  blocks  their  protein  synthesis.  The

drawback  of  gentamicin  and  the  aminoglycoside  antibiotics  in  clinical  use  is  their

nephrotoxicity, occurring in about 10 % of all cases treated.
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Figure 2.6.1.1: Chemical structure of aminoglycoside antibiotic gentamicin. It is built up
of two aminosugars linked to an aminoglycitol ring by glycoside bonds.

Gentamicin induces non-oliguric renal failure with a rise in serum creatinine and impaired

urinary concentration, accompanied by tubular dysfunction manifested in the release of

brush border enzymes and renal wasting of K+, Mg2+, Ca2+ and glucose. Gentamicin is not

absorbed from the intestine after p.o. administration and has to be given i.v. or i.p.. It is not

metabolized  and  excreted  almost  completely  over  the  urine  after  glomerular  filtration.

However, a small amount is retained in the tubular epithelium of the S1 and S2 segment of

the proximal tubuli. Gentamicin enters the cell by endocytosis mediated by the megalin

receptor and accumulates in lysosomes [80]. Release of gentamicin from the lysosomes

leads to apoptosis of the tubular epithelial cells involving the mitochondrial activation with

release of cytochrome c and caspase-3 activation [81].

2.6.2  Ochratoxin A

Ochratoxin  A  (OTA)  is  a  mycotoxin  produced  by Aspergillus and  Penicillium

species and is found in a variety of foodstuffs such as cereals, nuts, spices, dried fruits,

coffee,  beer  and  wine.  Its  structure  comprises  a  dihydrocoumarin  moiety  linked  to  a

molecule  of  L-ß-phenylalanine via  an amide  bond (Fig.  2.6.2.1).  OTA is  suspected to

cause balkan endemic nephropathy (BEN) in humans, which is characterized by interstitial

fibrosis, vascular and glomerular lesions as well as proximal tubule degeneration [82; 83].

In  rats,  OTA  nephrotoxicity  is  characterized  by  polyuria  and  histopathological

lesions of the proximal tubule epithelium [84]. Short-term studies showed disorganization

of the tubule arrangement, single cell degeneration, nuclear enlargement and polyploidy.

Chronic exposure to OTA leads to adenomas and carcinomas of tubule cells,  whereby

males are more susceptible than females [85; 86].
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Figure 2.6.2.1: Chemical structure of the mycotoxin and renal carcinogen ochratoxin A.

The mechanism of OTA-mediated carcinogenicity is still unclear. There exists little

evidence of genotoxicity [83],  and a combination of  various epigenetic  mechanisms is

discussed  [87].  There  is  evidence  of  the  involvement  of  protein  synthesis  inhibition,

oxidative stress, nuclear factor kappa B (NF-κB), as well as disturbance of cell signaling

and calcium homeostasis [87].

2.6.3  Aristolochic acid

Aristolochic acid (AA) is a mixture of nitrophenanthrene carboxylic acid derivatives,

predominantly AAI and AAII, found primarily in Aristolochia species [88]. AA is a potent

renal toxin and carcinogen, associated with Chinese herb nephropathy and BEN in humans

[89].  The  former  is  caused  by  exposure  to  AA-containing  plants  mistakenly  used  in

traditional  Chinese  medicine  formulations,  the  latter  is  suspected  to  be  caused  by  the

ingestion of aristolochia contaminated flour [89].

AA  is  metabolized  primarily  by  CYP1A1  and  CYP1A2  to  aristolactams  via  a

reactive cyclic nitrenium ion (Fig. 2.6.3.1), and this reactive metabolite binds preferentially

to  the  exocyclic  amino  groups  of  purine  bases,  thereby  acting  as  a  genotoxic  cancer

initiating agent [88]. In rats, oral administration of 10 mg AA/kg bw for three months leads

to renal pelvis carcinomas, urinary bladder carcinomas and forestomach carcinomas after

nine months [90].
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Figure 2.6.3.1: Chemical  structures  and CYP450 mediated metabolism of  aristolochic
acids (a) and the formation of DNA adducts via the cyclic nitrenium ion intermediate (b).
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2.6.4  Furan

Furan is an industrial chemical that serves as an intermediate in the production of

polymers.  It  has  been  shown to  cause  liver  carcinoma  in  rodents  and  is  classified  as

possibly  carcinogenic  to  humans  [91].  Concentrations  in  foodstuffs,  especially  canned

meat products, reach levels that cause an increased tumor incidence in rodents [92].

Figure 2.6.4.1:  Metabolism of  furan.  Furan is  metabolized oxidatively  by CYP 2E1 to
cis-2-butene-1,4-dial. The isomerization to trans-2-butene-1,4-dial is prevented in aqueous
solution by the formation of a cyclic hydrate. cis-2-Butene-1,4-dial may react further with
nucleosides  (A)  and  amino  acids  (B)  in  proteins.  Conjugation  with  glutathione  (C)
eliminates the reactive metabolite.

It is readily absorbed and rapidly metabolized by the liver. CYP enzymes open the

furan  ring,  forming  the  reactive  metabolite  cis-2-butene-1,4-dial  (Fig.  2.6.4.1).  This

reactive  metabolite  is  eliminated by conjugation with  glutathione,  but  a  fraction binds

irreversibly to proteins, and possibly to DNA as well (Fig. 2.6.4.1). The exact mechanism
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of toxicity is still unclear, but the carcinogenicity of furan is probably due to a genotoxic

mechanism, combined with secondary cell proliferation and thereby indirectly amplifying

tumor growth. [92; 93].

2.6.5  The InnoMed PredTox project

The  InnoMed  PredTox  project  is  a  joint  industry  and  European  Commission

collaboration  aimed  at  improving  drug  safety.  The  consortium  is  composed  of  14

pharmaceutical companies, three academic institutions and two technology providers. The

goal  of  InnoMed  PredTox  is  to  assess  the  value  of  combining  results  from  omics

technologies together with the results from more conventional toxicology methods in more

informed decision making in preclinical safety evaluation [74].

The studies conducted and evaluated in the project comprised 16 compounds in total,

14 of those were drug candidates that failed during the preclinical development process in

part  due  to  hepato-  or  nephrotoxicity.  Troglitazone  and  gentamicin  were  analyzed  as

reference compounds for hepatotoxicity and nephrotoxicity, respectively. (Fig. 2.6.5.1).

Figure 2.6.5.1: Work flow scheme of the InnoMed PredTox Project. 16 compounds are
administered orally in a standardized study design. Besides histopathology and clinical
chemistry data, which are routinely collected in toxicity studies, a panel of various omics
technologies is applied to the samples in order to evaluate which benefit can be gained
from these techniques.
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Although the number of compounds is rather limited compared to other projects such

as COMET [72], InnoMed PredTox is outstanding as it tries to evaluate a large panel of

different omics technologies. It has to be kept in mind that the project is designed as a

proof-of-concept to serve as a basis for a large follow-up project. The questions the project

is designed to answer is which combination of methods and technologies is suited best to

deliver predictive results for each compound and for each class of toxicity (hepatotoxicity,

nephrotoxicity).  Besides,  the  identification and evaluation of  potential  new biomarkers

from the omics technologies might be achieved [74]. A great value of the project is also the

joint effort made by pharmaceutical companies, universities and  technology providers for

a global perspective of preclinical safety evaluation in the 21st century [94].



24 3 Objectives

3  Objectives

Aim of this thesis was the assessment of metabonomics techniques for early, non-

invasive detection of toxicity in animal experiments compared to classical endpoints such

as clinical chemistry and histopathology. This required

● Development/establishment of a GC/MS method for metabolite profiling

● Establishment of a peak picking and alignment software for GC/MS data

● Analysis of urine samples from various rodent toxicity studies with GC/MS and
1H NMR

● Identification of  potential  biomarkers  of  toxicity  and their  evaluation in  the

context of biological pathways and mechanisms of toxicity

The focus thereby lay on  1H NMR and GC/MS analysis  of  urine samples.  Urine

samples were obtained from four studies conducted in-house, as well as from the InnoMed

PredTox project.  1H NMR analysis  is  the  best-established  metabonomics  method,  high

reproducibility and a large number of studies published allow easy comparison with results

and fast reproduction of the methods used. Only few toxicological studies have applied

GC/MS metabonomics up to date, therefore the development of a GC/MS metabonomics

approach offers the possibility of acquiring more comprehensive metabolite profiles and

the chance of discovering novel biomarkers.

The focus of this work lies in the measurement and interpretation of data from three

rodent studies conducted in-house with various nephrotoxins. Application of gentamicin to

rats  for  seven  consecutive  days  was  used  as  a  pilot  study,  comparing  the  GC/MS

metabonomics method to previously published  1H NMR data [95]. A 90 day subchronic

ochratoxin  A  study  that  had  been  conducted  in-house  previously  [96]  with  full

histopathology  and  clinical  chemistry  data  was  reanalyzed  and  evaluated  with

metabonomics methods. Aristolochic acid was administered to rats for 12 days at doses

causing  forestomach,  kidney  and  bladder  carcinomas  [90;  97].  All  three  studies  were

analyzed with  1H NMR and GC/MS for  changes in the endogenous metabolite  profile.

These changes were evaluated with regard to mechanisms of toxicity and whether changes

in urinary composition can be used as early, sensitive and specific marker of toxicity as

compared to classical histopathology and clinical chemistry analysis.
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The second part of the work was the analysis of urine samples from the InnoMed

PredTox project, part of the European Union 6th Framework Programme. 14 failed drug

candidates from the participating pharmaceutical companies and two reference compounds

were evaluated. Here, the focus lay on the evaluation of quantitative 1H NMR data and on a

subgroup of four studies with compounds inducing bile duct necrosis. In the course of the

project,  urinary  1H NMR  data  was  quantitatively  analyzed  with  regard  to  changes  in

metabolite  excretion.  The  performance  of  the  GC/MS  method  in  combination  with
1H NMR was also tested.
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4  Materials and methods

4.1  Chemicals and solvents

All  chemicals  and  reagents  were  purchased  from  commercial  suppliers.

Methoxyamine hydrochloride,  myo-inositol, dried pyridine, acetone and chloroform were

obtained from Sigma Aldrich (St. Louis, MO). Methanol was purchased from Carl Roth

GmbH  (Karlsruhe,  Germany).  N-methyl-N-(trimethylsilyl)-trifluoracetamide  (MSTFA)

was purchased from AppliChem (Darmstadt, Germany). Gentamicin (GM) was purchased

as solution (5 × 50 mg/mL in deionized water, liquid, sterile-filtered, cell culture tested,

Sigma Aldrich Lot number 057K2371). Ochratoxin A (OTA) (CAS No. 303-47-9; 99 %

purity)  was  purchased  from  Axxora,  Grüneberg,  Germany  (batch  no.  L16528/a).

Aristolochic acid (AA) sodium salt was purchased from Sigma Aldrich as a mixture of

65 % AA I and 27 % AA II (lot 054K06551).

4.2  Animal handling

Animals  were purchased from commercial  suppliers.  The animal  were  housed in

groups of five in standard macrolon cages. They had free access to water and standard diet

(SSniff, Soest, Germany) and were kept under standard conditions (12 h day/night cycle,

temperature  21–23 °C,  humidity  45–55 %).  All  animal  experimentation was  performed

under permit from the appropriate authorities in the approved animal care facility of the

department.  Treatment  was  carried  out  as  described  below  in  detail  for  each  study.

Animals were sacrificed by CO2 asphyxation and cervical dislocation. Urine samples were

collected  for  24 h  on ice,  aliquoted and stored at  −20 °C until  further  analysis. Blood

samples were obtained by punctuation of either the tail vein or the retro-orbital plexus

during the study and by cardiac puncture at sacrifice. Livers and kidneys were removed,

snap-frozen  in  liquid  nitrogen  and stored  at  −80 °C until  further  analysis.  Aliquots  of

tissues  were  fixed  in  neutral-buffered  formalin,  embedded  in  paraffin,  cut  into  5 µm

sections  and  stained  with  haematoxilin  and  eosin  for  histopathological  evaluation.

Histopathological evaluation was carried out by two independent pathologists.

4.3  Clinical chemistry

Analysis of clinical chemistry parameters was carried out at the central laboratory of

the university hospital of the University of Würzburg on a Vitros 700XR (Ortho-Clinical
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Diagnostics, Neckarsgemuend, Germany) using standard protocols for the determination of

these parameters according to the manufacturer's instructions. The following parameters

were  determined  in  urine:  glucose,  gamma  glutamyl  transferase  (GGT),  total  protein,

creatinine  and  osmolarity.  The  following  parameters  were  determined  in  plasma:

creatinine,  urea,  total  bilirubin,  glutamate pyruvate  transaminase (GPT) (alanine amino

transferase  (ALAT)),  glutamate  oxalacetate  transaminase  (GOT)  (aspartate  amino

transferase (ASAT)), gamma glutamyl transferase (GGT), alkaline phosphatase (ALP) and

total protein.

4.4  Study design

4.4.1  Gentamicin

The study design was based on a previously published study by Lenz  et al.  [95].

Male  Wistar  rats,  6–8  weeks  old,  weighing  200 g  (Harlan-Winkelmann,  Borchen,

Germany) were divided into three groups of five animals each. Following one week of

acclimatization, animals were adjusted to metabolic cages three days prior to treatment.

Gentamicin (GM) dosing solutions of 10 mg/mL (low dose group) and 20 mg/mL

(high dose group) were prepared daily by diluting the stock solution 1 : 5 or 1 : 2.5 with

sterile water. Control groups received 0.9 % physiological saline.

Dosing solutions were administered subcutaneously twice a day at  an eight  hour

interval for seven consecutive days. The low dose group received 2 × 30 mg GM/kg bw

per day and the high dose group 2 × 60 mg GM/kg bw per day. The control group received

an  equivalent  volume  of  physiological  saline.  The  animals  were  housed  in  individual

metabolic cages during the study. Food and water consumption was recorded daily. Urine

was collected daily  at  24 h intervals.  A 250 µL aliquot  of  urine  was used directly  for

clinical  chemistry analyses.  The remaining urine was aliquoted (250 µL) and stored at

−20 °C. Blood samples were drawn from the retro-orbital plexus under light isoflourane

anaesthesia 24 h and 72 h after  the first  dosing and used for  clinical  biochemistry and

haematology. On the eighth day, the animals were sacrificed by CO2 asphyxiation and

blood was collected by cardiac puncture. A 250 µL aliquot of blood was used for clinical

biochemistry analyses. Blood samples were collected in heparinized tubes and centrifuged.

Plasma  was  used  for  clinical  chemistry.  The  remaining  plasma  was  stored  at  −20 °C.

Organs (liver and kidney) were removed and weighed. The liver was partitioned in lobes

and snap-frozen in liquid nitrogen and stored at −80 °C. One part of the left liver lobe was
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stored in formalin. The left kidney was partitioned transversely in a ratio of approximately

2 : 1, the larger part was stored in formalin. The remainder and the right kidney were snap-

frozen in liquid nitrogen and stored at −80 °C.

4.4.2  Ochratoxin A

Urine  samples  collected  in  several  fractions  were  obtained  from  a  previously

published study [96]. Shortly, male Fisher F344 rats (205–225 g, n = 5 per group) were

dosed with 21, 70 or 210 µg OTA/kg bw by gavage for 14, 28 or 90 days 5 days per week.

Controls received corn oil only. Urine samples were collected over a 24 h collecting period

pre-dose and after 14, 28 and 90 days of administration. Urine was collected on ice and

stored at  −20 °C until further analysis. Samples were only thawed once and prepared for

metabonomic analysis within six hours.

Histopathology scores were obtained as previously described [96]. Scoring for the

following endpoints was integrated in the data analysis: liver glycogen, liver fatty change,

liver  inflammatory  foci,  kidney  hyaline  inclusions,  kidney  tubular  basophilia,  kidney

tubular  vacuolization,  kidney  tubular  cell  apoptosis,  kidney  mononuclear  foci,  kidney

tubular casts, kidney karyomegaly and kidney interstitial fibrosis.

4.4.3  Aristolochic Acid

Male  Wistar  rats,  6–8 weeks  old,  weighing  200 g  were  purchased  from  Harlan-

Winkelmann, Borchen, Germany.

Aristolochic acid (AA) dosing solutions of 26.7 µg/mL (low dose group), 267 µg/mL

(mid dose group) and 2.67 mg/mL (high dose group) were prepared daily by dissolving

AA in tap water.

Male Wistar rats (n = 20) were randomly divided into four groups with five animals

each.  Dosing  solution  was  administered  daily  by  gavage,  five  days  per  week  for  two

weeks. The low dose group received 0.1 mg AA/kg bw per day, the mid dose group 1.0 mg

AA/kg bw per day and the high dose group 10 mg AA/kg bw per day. Control animals

received an equivalent volume of tap water. The animals were transferred to individual

metabolic cages for urine collection for 24 h after dosing on day one, five and twelve. An

aliquot of urine (250 µL) was used directly for clinical chemistry analyses. The remaining

urine was aliquoted (250 µL aliquots) and stored at  −20 °C. Blood samples were drawn

from the retro-orbital plexus under light isoflourane anesthesia 24 h and 120 h after the
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first dosing and used for clinical biochemistry and haematology. On the twelfth day, the

animals were sacrificed by CO2 asphyxiation and blood was collected by cardiac puncture.

An aliquot of blood (250 µL) was used for clinical biochemistry analyses. Blood samples

were  collected  in  heparinized  tubes  and  centrifuged.  Plasma  was  used  for  clinical

chemistry. The remaining plasma was stored at −20 °C. Organs (liver, kidney and bladder)

were removed and weighed. The liver was partitioned in lobes and snap-frozen in liquid

nitrogen and stored at  −80 °C. Part of the left liver lobe was stored in formalin. The left

kidney was partitioned  transversely in a ratio of approximately 2 : 1, the larger part was

stored in formalin. The remainder and the right kidney were snap-frozen in liquid nitrogen

and stored at −80 °C. The bladder was stored in formalin.

The following parameters were determined in urine: GGT, total protein, creatinine

and osmolarity. Urinalysis was carried out  for erythrocytes,  leukocytes,  nitrite,  protein,

glucose,  ketone  bodies,  bilirubin,  urobilinogen,  pH-value  and  specific  gravity.  The

following parameters were determined in plasma:  creatinine, urea, total bilirubin, GOT

(ASAT), GPT (ALAT), GGT, alkaline phosphatase and total protein.

4.4.4  Furan

Urine samples were obtained from a study conducted in-house [98]. Male F344/N

rats (Harlan-Winkelmann, Borchen, Germany) aged 7–9 weeks were randomly allocated to

four groups of 15 animals each. They received furan at doses of 0.0 mg, 0.1 mg, 0.5 mg

and 2.0 mg/kg bw by gavage in corn oil. Dosing solutions were prepared directly prior to

administration to prevent loss of furan by evaporation. Animals were treated five days per

week for four weeks, with an interim sacrifice of five animals after five days. A group of

rats  was  also  left  for  two weeks  without  treatment  after  the  four  week  dosing  period

(recovery  group).  In  the  recovery  group,  only  controls  (0.0 mg/kg bw)  and  high  dose

animals (2.0 mg/kg bw) were included. Urine was collected on ice in metabolic cages 24 h

before sacrifice. Animals were fasted during urine collection but had free access to tap

water.

4.4.5  InnoMed PredTox

In the course of the InnoMed PredTox project, the toxicity of 16 compounds after

single  and  repeated  administration  was  investigated.  The  compounds  included  two

reference  compounds,  troglitazone as  a  model  hepatotoxin and gentamicin  as  a  model
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nephrotoxin,  and  14 compounds  that  failed  in  the  drug  development  pipeline  of  the

participating companies in part due to signs of hepato- or nephrotoxicity. The compounds

were  administered  to  rats  at  two  dose  levels  for  14 consecutive  days.  The  animal

experiments  were  carried  out  in  the  animal  experimentation  units  of  the  participating

companies, following a standardized protocol.

Male  Wistar  rats  (SPF  quality,  acquired  from  Charles  River  Laboratories)  aged

8–10 weeks were allocated to nine groups of  five animals each,  i.e.  three dose groups

(vehicle control, low dose, high dose) and three necropsy time points (one day, three days

and twelve days after the first administration). Animals received the test substances orally

by gavage. The dose levels were selected on the basis of previous studies so that the low

dose  was  between  the  no-observed-adverse-effect-level  (NOAEL)  and  the  lowest-

observed-adverse-effect-level (LOAEL) and the high dose was selected to produce clear

signs of toxicity after 14 days of administration observable by clinical chemistry and/or

histopathology.  Urine was collected on ice for  a 24 h interval  in metabolic  cages.  For

metabonomic  studies,  the  urine  of  the  study groups  sacrificed on the  twelfth  day was

collected throughout the studies, i.e. urine samples of the same animals were collected one,

three and twelve days after start of treatment. Blood was collected at necropsy. Urine and

serum  clinical  chemistry  data,  haematology,  clinical  observations  as  well  as

toxicogenomics  of  blood  samples  and  proteomics  of  plasma  and  urine  samples  was

performed by participating parties.

1H NMR  analysis  of  urine  samples  was  performed  by  the  participating  parties

according to a standard protocol (for experimental details see below). GC/MS analysis was

performed in-house following the experimental procedures described below.

The compounds administered are coded FP001RO, FP002BI, FP003SE, FP004BA,

FP005ME,  FP006JJ,  FP007SE,  FP008AL,  FP009SF  (gentamicin),  FP010SG

(troglitazone),  FP011OR,  FP012SV,  FP013NO,  FP014SC,  FP015NN,  FP016LY.

Structures and doses of the compounds administered are confidential.

Three studies FP004BA, FP005ME and FP007SE inducing bile duct necrosis were

analyzed as single studies with 1H NMR- and GC/MS-based metabonomics.
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4.5  GC/MS analysis

4.5.1  Sample treatment for GC/MS analysis

Urine  samples  were  thawed  overnight  at  4 °C.  After  thawing,  the  samples  were

vortexed shortly to remove any inhomogeneity in the solution due to the freezing-thawing

process. Proteins were precipitated by addition of 100 µL cold methanol to 50 µL of urine.

After centrifugation (2.31 g, 10 min), 50 µL of the supernatant were transferred to a GC

autosampler vial with micro insert. The samples were evaporated to dryness at 30 °C in a

Centrivac vacuum centrifuge (Heraeus Instruments, Osterode, Germany). After 2 h, 50 µl

of acetone were added to each sample to ensure complete drying of the sample. Acetone

addition was repeated once. After removal of acetone, the samples were derivatized with

50 µL methoxyamine hydrochloride in pyridine (20 mg/mL) at 40 °C for 90 min. Then, the

samples were silylated at 40 °C for 1 h with 100 µL MSTFA and directly used for GC/MS

analysis. All samples were randomized for each treatment step.

Additionally,  50 µL of each sample were pooled. After every fourth sample,  this

pooled urine  was  worked  up  in  the  same  manner  as  the  samples  and used  as  quality

control. The repeated work-up and analysis of a pooled sample for quality control was

proposed  by  Sangster  et  al.  [99]  to  overcome  the  problem  of  monitoring  sample

preparation and analytical  performance in untargeted analysis,  where internal  standards

cannot be implemented easily.

Treatment with urease is often used to remove urea from urine samples [ 26; 100],

because urea is contained in such large quantities that the urea peak is overloading the

column and saturates the detector. However, it has been demonstrated that urease treatment

drastically alters urinary profiles apart from the removal of urea [101], therefore it has to

be applied with care and was not used for the preparation of GC/MS samples throughout

this thesis.

4.5.2  GC/MS analysis

Samples  were analyzed on a  HP6980 gas  chromatograph with split/splitless  inlet

(split ratio 20:1) equipped with a J&W Scintific DB5-MS column (dimensions: 30 m ×

0.25 mm × 0.1 µm film) coupled to a HP5973 mass selective detector. Data recording and

instrument control was performed by HP ChemStation version D.02.00 (all from Agilent

GmbH,  Waldbronn,  Germany).  Samples  were  introduced  by  a  CombiPal  autosampler
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(CTC  Analytics  GmbH,  Zwingen,  Switzerland).  Inlet  temperature  and  transfer  line

temperature were set to 280 °C. The oven temperature increased from 60 °C to 250 °C at a

rate of 9 °C/min and held at 250 °C for 5 min. Helium carrier gas flow was kept constant at

0.8 mL/min.  The detector  was  switched off  during the elution of  the  urea signal  from

11.50 min to 16.00 min. The detector operated in the scan mode from 60 m/z to 650 m/z

with a sampling rate of 1 leading to 8.69 scans/sec and a threshold of 50 counts. Source

temperature and quadrupol temperature was kept at 230 °C and 150 °C, respectively.

4.5.3  Raw data handling and statistical analysis

Chromatograms were inspected visually and those that deviated strongly from the

rest due to chromatographic problems were excluded, since these do not carry any relevant

information  for  statistical  analysis  and  interfere  with  the  automatic  peak  picking  and

alignment  process.  The  remaining  chromatograms  were  exported  in  the  platform-

independent  netCDF  (*.cdf)  format  with  the  ChemStation  export  function  for  further

analysis.

Automatic peak detection and peak alignment was performed by the freely available

software XCMS. R-program version 2.4.0 [102] and XCMS version 1.6.1 [44] were used.

Default  parameters  of  XCMS  were  used  except  for  the  following:  fwhm = 4.0 sec,

profmethod = ”binlinbase”.  The  results  table  containing  mass  spectral  features  as

mass/retention time pairs in a tab-separated text file (*.txt) was imported into Excel work

sheets (Microsoft, Unterschleißheim, Germany). Normalization to total ion current (TIC)

and further data handling steps such as sorting the data according to retention time was

carried out in Excel prior to statistical analysis with SIMCA-P version 11.5+ (Umetrics,

Umeå, Sweden).

Variables were mean-centered and pareto-scaled for principle component  analysis

(PCA) and orthogonal projection to latent  structures discriminant analysis  (OPLS-DA).

The significance of the components was determined by leave-one-out cross validation, the

default validation tool in SIMCA P+ 11.5. Only significant components were used for the

analysis. If a separation between control and dose groups was observed in the PCA scores

plot, OPLS-DA was performed to highlight the differences between the groups.

Potential  molecular  markers  responsible  for  group  separation  were  identified  by

looking at the S-plot [41], which plots the covariance (p) against the correlation (pcorr).

For  a  marker,  both  the  contribution  to  the  model  expressed  in  p  and  the  effect  and
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reliability of this contribution expressed in p(corr) should be high, therefore the potential

markers are located on the outer ends of the S-shaped point swarm. To limit the number of

potential markers and focus on the most important ones, cut-off values of p ≥ |0.05| and

p(corr) ≥ |0.5| were used. Marker selection was done in a conservative manner so that only

markers  showing a  significant  jack-knifed  confidence  interval  of  less  than  half  of  the

variable's covariance p were investigated further. With the mass/retention time pairs, the

corresponding peak was identified in the original GC/MS chromatograms. Then, AMDIS

deconvolution was run and the peak was compared to the NIST mass spectral database

(National  Institute  of  Standards  and  Technology,  Gathersburg,  MD)  for  identification.

Confirmation of peak identity was carried out by co-eluting authentic reference compounds

if available.

4.6  1H NMR analysis

4.6.1  Sample treatment for 1H NMR analysis

Urine samples were thawed overnight at 4 °C and precipitated solids were removed

by centrifugation (14.000 rpm, 10 min). 630 µL of urine were buffered with 70 µL of a

1 M phosphate buffer in D2O containing 10 mM  d4-trimethylsilylpropionic acid sodium

salt  (TSP)  as  shift  lock reagent  prior  to  the  transfer  into  a  5 mm NMR tube  (Aldrich

Series 30). Samples were randomized for each treatment step.

4.6.2  1H NMR analysis

1H NMR spectra were recorded on a Bruker DMX 600 spectrometer equipped with a

5 mm DCH cryoprobe  using pulsed  magnetic  field  gradients  (both  by  Bruker  Biospin

GmbH, Rheinstetten, Germany). Water suppression was achieved with the noesygppr1d

pulse  sequence  from the  Bruker  library.  For  Fourier  transformation,  32 scans  with  an

aquisition time of 2.75 sec and a delay time of 2.00 sec were recorded. Spectral width was

11904 Hz or 19.8 ppm. Each spectrum was manually baseline-corrected and referenced to

TSP (δ = 0.00 ppm). Instrument control, data recording and baseline correction was carried

out with the Bruker WIN NMR Suite.
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4.6.3  Raw data handling and statistical analysis

1H NMR  spectra  were  inspected  visually  to  exclude  any  outliers  due  to  dilute

samples  or  inadequate  water  suppression.  The  spectra  were  then  imported  into  the

Chenomx NMR Suite 4.6 (Chenomx, Edmonton, Canada) and binned into 0.04 ppm wide

bins. The bins around the water resonance from 4.40 to 6.20 ppm were excluded from the

analysis.  Binned  1H NMR  data  were  normalized  to  total  integral  and  imported  into

SIMCA-P+ version 11.5. Multivariate data analysis was carried out in the same manner as

described for the GC/MS data. The compounds contained in the bins which were found to

be altered due to treatment with toxicants were identified using the spectral library of the

Chenomx NMR Suite.

Figure 4.6.2.1: Workflow for metabonomic analysis with GC/MS and 1H NMR as it was

applied in this thesis.

4.7  LC/MS analysis

4.7.1  Sample treatment for LC/MS analysis

Urine samples were thawed, centrifuged at 14.000 g and 4 °C for 10 min and diluted

to  an  equal  osmolality  of  154 mosmol/kg  for  adjustment  of  salt  content  (final  volume

150 µL, dilution with water). An amount of 10 µL of the adjusted samples was taken to

prepare a pooled quality control sample [99]. This sample was analyzed four times at the
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beginning of  the  batch  and then after  every  ten runs  of  study samples.  Samples  were

randomized for all treatment and analytical steps.

4.7.2  LC/MS analysis

LC/MS analyses were carried out at  the analytical  laboratory of the Drug Safety

Evaluation  department,  Sanofi  Aventis,  Frankfurt,  Germany.  Analyses  were  run on  an

UPLC system coupled to a Micromass LCT Premier (ESI-TOF) controlled by MassLynx

software version 4.1. The analytical column was an ACQUITY BEH C18 (dimensions:

2.1 × 100 mm,  1.7 µm)  and  kept  at  40 °C  (Waters  GmbH,  Eschborn,  Germany).  An

injection volume of 10 µL was used with a flow rate of 0.500 mL/min. The solvents were

water with 0.1 % formic acid (solvent A) and acetonitrile with 0.1 % formic acid (solvent

B)  with  the  following  gradient:  0 min  100% A,  4.00 min  80% A,  9.00 min  5 %  A,

12.00 min 100 % A. The following MS parameters were used: negative ionization mode,

survey scan mass range 50–1000 Da, nebulization gas (N2) 700 L/h at 450 °C, cone gas

15–20 L/h, source temperature 120 °C, capillary voltage 60 V, LCT-W optics mode with

12000 resolution using dynamic range extension (DRE), data acquisition rate 0.1 sec with

a 0.01 sec interscan delay; lock spray 2000 counts; lock spray method: leucine/enkephalin

50 fmol/µL,  lock  mass:  m/z = 556.2771,  flow  rate:  30 µL/min,  frequency:  5 sec;  data

collection was performed in centroid mode averaged over 10 scans.

4.7.3  LC/MS raw data handling and statistical analysis

Raw data files  were exported in the platform-independent netCDF (*.cdf)  format

with the MassLynx export function for further analysis. Automatic peak detection and peak

alignment was performed by XCMS. R program version 2.6.2 [102] and XCMS version

1.11.20 [44] were used. The following XCMS parameters were used: xcmsSet function

method = centWave,  chromfiles  ppm = 50,  peakwidth  c(3, 15);  group function bw = 2,

minfrac = 0.5, minsamp = 1, mzwid = 0.05, max = 50. The results table containing mass

spectral  features  as  mass/retention  time  pairs  in  a  tab-separated  text  file  (*.txt)  was

exported to SIMCA P+ version 11.5. Multivariate data analysis was carried out in the same

manner as described for the GC/MS data. Mass traces of known compound metabolites

were  excluded  prior  to  any  multivariate  data  processing  steps.  Identity  proposals  for

regulated metabolites were made with the METLIN Metabolite Database [44] using the

links supplied by XCMS in the results table.
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4.7.4  Targeted bile acid screening

A bile acid standard mix was analyzed with the  full scan LC/MS method in ESI

negative mode described in section 4.7.3. 

The peak lists extracted from the urinary LC/MS chromatograms with XCMS where

then manually searched for the mass ratio and retention time of the characteristic ions of

the bile acid standards. In this way, the data obtained by the full scan LC/MS screening

method  could  be  mined  for  altered  bile  acid  excretion  with  urine.  The  mass  spectral

features corresponding to bile acids found by this approach are given in Table 4.7.4.1.

Table 4.7.4.1: Bile  acids and their  masses (m/z)  and retention times (RT) used in  the
targeted bile acid screening (ESI negative mode).

bile acid m/z RT[min]

taurocholic acid (TCA) 514.3 5.89

tauro-β-muricholic acid (TbMCA) 514.3 5.72

u-TbMCA 512.3 5.77

taurodeoxychilic acid (TDCA) 498.3 7.20

glycocholic acid (GCA) 464.3 6.25

cholic acid (CA) 453.3 6.69
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5  Method and workflow development

For a functional metabonomics platform, several steps in the analysis procedure have

to be optimized and combined to a working unit. Metabonomics requires the following

separate procedures: a comprehensive analysis method detecting as many metabolites as

possible, a software solution that converts the chromatograms or spectra into a machine-

readable format for statistical analysis, a software for the statistical analysis itself and the

use  of  databases  and  biochemical  pathways  for  the  structural  elucidation  of  altered

metabolites and their evaluation within the context of toxic mechanisms.

Analytical tools and software solutions are well developed for 1H NMR analysis and

can be implemented rapidly. Using the noesypr1d pulse sequence from the Bruker spectral

library for water suppression, 1H NMR spectra were recorded in buffered urine. Alignment

of  the  spectra  and binning was  performed with  the  Chenomx NMR Suite,  which also

allows identification and quantitation of  metabolites  from the original  spectra  with the

spectral data base included in this software package. The statistical calculations for the

identification of altered metabolites  was carried out  with the SIMCA P+11.5 software,

using projection-of-variance-based methods such as principal component analysis (PCA)

and orthogonal projection to latent structures discriminant analysis (OPLS-DA).

GC/MS  analysis  required  the  development  of  a  analysis  method  and  workflow

suitable  for  global  metabolite  profiling that  could be implemented on the HP6980 gas

chromatograph  and  the  HP5973  mass  selective  detector  available  at  our  laboratory.

Silylation of nucleophilic groups preceded by methoximation of ketogroups was chosen as

derivatization method as this approach allows the analysis of a wide range of compound

classes such as alcohols,  ketones,  aldehydes,  organic acids,  amino acids,  sugars etc.  A

large number of reference spectra of silylated compounds is included in the NIST mass

spectral database, allowing the rapid identification of unknown metabolites.

The recording of a global metabolite profile in a urine sample requred adapting and

combining  a  variety  of  existing  GC/MS methods  [20,  24;  26;  27].  Bis-trimethylsilyl-

trifluoroacetamide  (BSA)  and  N-methyl-N-trimethylsilyl-trifluoroacetamide  (MSTFA)

were tested derivatization agents, the latter was chosen as it had a higher reproducibility

and introduced less variance. Sample pretreatment such as protein precipitation and drying,

sample volume, derivatization times and temperatures had to be adapted for our method.

Furthermore, GC and MS parameters such as temperature gradient, carrier gas flow and
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injection volume as well as scan range and sampling rate had to be optimized to allow the

recording of a global metabolite profile. These parameters had to be chosen in such a way

that across the whole runtime, the chromatographic peaks were baseline-separated and of

gaussian peak shape. These requirements were necessary for the proper functioning of the

peak picking and alignment software.

In order to use multivariate statistics on GC/MS data, sophisticated peak picking and

alignment  of  GC/MS  chromatograms  is  necessary.  Three  publicly  available  software

packages for peak picking and alignment, MetAlign [42], mzMine [43] and XCMS [44],

were tested and XCMS was found to perform best regarding data quality, run time and user

friendliness.  A  result  that  was  later  confirmed  by  Lange  et  al. [46].  As  XCMS  was

originally developed for LC/MS analysis, a variety of software parameters regarding peak

shapes and intensities had to be optimized for the routine handling of GC/MS data.

With  the  converted  chromatograms  from  the  XCMS  package,  the  multivariate

statistics  could  be  performed  with  the  SIMCA  P+11.5  program.  The  scaling  and

normalization of the data had to be tested. With the peak identity of the altered metabolites

supplied by the multivariate data analysis, the original chromatograms were compared to

the NIST mass spectral data base and authentic reference standards.

For both 1H NMR and GC/MS based metabonomic analysis, a large part of the work

consisted in the evaluation of the altered metabolites within the biochemical pathways and

toxic mechanisms, requiring extensive literature research.
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6  Gentamicin

Metabonomic changes in a rat model of gentamicin nephrotoxicity

6.1  Introduction

Gentamicin (GM) is an aminoglycoside antibiotic used against life threatening gram

negative bacterial infections, but its use is limited due to its nephrotoxic potential. GM

selectively damages the S1 and S2 segments of the proximal tubuli and was thus selected

as a model substance for nephrotoxicity. After binding to membrane components, GM is

taken  up  to  a  certain  extent  into  the  epithelial  cells  by  phagocytosis  and  stored  in

lysosomes  [103].  After  reaching  a  threshold,  these  lysosomes  burst  and  release  their

contents, including reactive oxygen species, into the cells, and thereby inducing cell death.

The overall study design and choice of the model compound were deliberately based

on the report by Lenz et al. [95], but a lower dose and quantitative assessment of the major

urinary metabolites detected by 1H NMR were included. The study was planned as a proof-

of-concept study to test  the GC/MS metabonomics approach for the early non-invasive

detection of drug-induced nephrotoxicity.

Male Wistar rats received 0 mg (control), 60 mg (low dose) or 120 mg (high dose)

GM/kg bw per day by subcutaneous (s.c.) injection twice daily for seven consecutive days.

The injection of two doses per day was chosen to achieve a higher basal plasma level of

GM, as the damage to the proximal tubuli induced by GM correlates with the basal plasma

level and not with the peak plasma levels. As GM enters the cells by phagocytosis this

route becomes saturated at high plasma levels. Therefore, permanently high basal plasma

levels  result  in greater GM-induced kidney damage than high peak levels.  For clinical

antibiotic therapy therefore, dosing is once daily to reduce risk of kidney injury. Urine was

collected in 24 h intervals throughout the study and plasma was collected one, three and

seven days after the start of treatment.



40 6 Gentamicin

Table  6.2.1:  Clinical  chemistry  data  of  the  gentamicin  study.  Values  are  given  as
mean ± SD; significance levels were determined with ANOVA and Dunnett's post hoc test
(* p<0.05, ** p<0.01, *** p<0.001).

Urine clinical chemistry

volume
[mL]

osmolarity
[mosmol/kg]

creatinine
[mg/24h]

glucose
[mg/24h]

GGT
[U/24h]

total protein
[mg/24h]

C1 11.8 ± 4.5 1348 ± 476 4.88 ± 0.17 2.31 ± 0.24 150.7 ± 42.8 8.27 ± 3.79
day 0 L2 8.2 ± 2.5 1140 ± 258 4.82 ± 0.69 1.84 ± 0.44 113 ± 17.1 7.51 ± 3.63

H3 7.8 ± 1.6 1525 ± 361 4.96 ± 0.29 1.93 ± 0.27 126.5 ± 38.1 7.74 ± 1.97

C 11.4 ± 2.4 1457 ± 385 5.63 ± 0.75 2.86 ± 0.36   93.7 ± 23.9 11.29 ± 4.86
day 1 L 8.2 ± 2.2* 1477 ± 147 5.64 ± 0.73 2.82 ± 0.34   151.3 ± 27.7 11.96 ± 3.81

H 8.0 ± 1.2* 1728 ± 370 5.85 ± 0.49 6.21 ± 2.37** 153.4 ± 52.7 14.44 ± 3.12

C 10.0 ± 1.6 1568 ± 411 5.35 ± 0.51 2.54 ± 0.26     127.4 ± 18.6 10.68 ± 4.10
day 2 L 6.6 ± 1.1 1615 ± 327 4.85 ± 0.89 3.51 ± 0.59     194 ± 38.5 9.93 ± 4.24

H 7.5 ± 3.8 1563 ± 717 5.19 ± 0.31 5.11 ± 0.99*** 244.2 ± 58.5* 12.61 ± 3.21
C 10.6 ± 2.9 1551 ± 347 5.72 ± 0.83 2.43 ± 0.32 145.2 ± 34.4 10.36 ± 3.41

day 3 L 8.8 ± 1.7 1472 ± 165 5.03 ± 0.65 3.07 ± 0.52 163.3 ± 43.3 9.51 ± 0.67
H 10.4 ± 3.4 1216 ± 500 5.54 ± 0.85 4.00 ± 1.05** 175.7 ± 52.3 13.62 ± 4.74

C 9.4 ± 3.0 1883 ± 765 5.62 ± 0.87 2.48 ± 0.51 157.5 ± 46.9 9.41 ± 3.42
day 4 L 8.8 ± 3.1 1392 ± 318 4.51 ± 1.27 3.50 ± 1.27 203.4 ± 67.9 11.91 ± 3.18

H 14.0 ± 5.8 1365 ± 840 7.10 ± 3.23 4.89 ± 2.27 256.4 ± 75.1 28.78 ± 17.07*

C 8.8 ± 2.1 1933 ± 338 6.10 ± 0.46 2.57 ± 0.27 197.5 ± 40.9 110.60 ± 1.89    
day 5 L 12.2 ± 4.8 1380 ± 594 5.62 ± 0.57 3.76 ± 1.41 234.3 ± 70.3 16.24 ± 5.81    

H 17.4 ± 9.3 436 ± 104*** 4.03 ± 1.49* 24.4 ± 21.9 285.7 ± 143.8 40.59 ± 16.28**

C 9.6 ± 3.3 1959 ± 614 6.10 ± 0.97 3.07 ± 0.97 153.6 ± 36.9 12.71 ± 5.25
day 6 L 14.4 ± 4.2 1171 ± 434* 6.21 ± 0.47 19.5 ± 30.8 201.6 ± 47.6 24.56 ± 7.53

H 12.0 ± 6.2 377 ± 61*** 2.71 ± 1.10*** 26.3 ± 24.5 62.2 ± 52.8** 28.18 ± 16.19

C 9.6 ± 4.7 1550 ± 352 6.46 ± 1.32 3.39 ± 1.21 161.2 ± 52.8 14.06 ± 5.34
day 7 L 15.8 ± 2.5 1023 ± 312* 6.32 ± 0.95 31.2 ± 49.3 211.9 ± 66.7 28.96 ± 6.20

H 8.3 ± 7.8 384 ± 53*** 1.62 ± 1.26*** 14.8 ± 15.5 9.7 ± 11.0** 15.62 ± 12.61*

Plasma clinical chemistry

  
creatinine
[mg/dL]

urea
[mg/dL]

GGT
[U/L]

GOT(ASAT)
[U/L]

GPT(ALAT)
[U/L]

ALP
[U/L]

total protein
[g/dL]

C 0.2 ± 0.0 37.5 ± 3.8 0.1 ± 0.0 133.5 ± 78.8 48.7 ± 9.2 249.8 ± 32.7 5.8 ± 0.1    
day 1 L 0.2 ± 0.0 43.7 ± 1.5 0.1 ± 0.0 136.7 ± 28.1 43.3 ± 4.6 230.2 ± 30.7 5.8 ± 0.3    

H 0.2 ± 0.0 46.0 ± 9.3 0.2 ± 0.3 134.6 ± 38.0 47.4 ± 3.5 227.6 ± 24.1 5.8 ± 0.2    

C 0.2 ± 0.0 38.1 ± 6.8 0.1 ± 0.0 88.0 ± 13.7 45.9 ± 2.4 233.8 ± 24.6    5.7 ± 0.2    
day 3 L 0.2 ± 0.0 42.4 ± 4.9 0.1 ± 0.0 161.1 ± 44.9* 53.3 ± 5.3 199.4 ± 19.5*    5.6 ± 0.3    

H 0.3 ± 0.1* 50.2 ± 5.5* 0.1 ± 0.0 139.3 ± 42.2 42.9 ± 7.2 194 ± 13.4* 5.7 ± 0.2    

C 0.2 ± 0.0    39.2 ± 4.1    0.4 ± 0.6 129.5 ± 60.9  83.8 ± 36.6 266.2 ± 27.6    6.5 ± 0.1    
day 7 L 0.6 ± 0.6    89.6 ± 54.6    0.9 ± 1.0 174.3 ± 55.1  62.2 ± 11.6 218.4 ± 34.5    6.1 ± 0.2*   

H 5.0 ± 1.6*** 496.3 ± 145.5*** 49.1 ± 60.6 277.7 ± 76.6** 49.3 ± 9.5 160.0 ± 26.0*** 5.3 ± 0.2***

Organ and animal weights
rel. kidney weight

  
animal wt

[g]
rel. liver wt
[g/kg bw]

left
[g/kg bw]

right
[g/kg bw]

total
[g/kg bw]

C 253.0 ± 6.0    4.5 ± 0.2 0.41 ± 0.04 0.40 ± 0.03   0.81 ± 0.07 
day 7 L 241.4 ± 24.6   4.0 ± 0.5 0.47 ± 0.03 0.46 ± 0.04* 0.93 ± 0.06 

H 203.8 ± 12.1*** 3.6 ± 0.9 0.49 ± 0.07* 0.48 ± 0.05** 0.97 ± 0.11*
1C, control group, 0 mg/kg bw/day; 2L, low dose group, 60 mg/kg bw/day; 3H, high dose group, 120 mg/kg bw/day
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6.2  Results

Clinical  chemistry  analyses  showed  a  significant  increase  in  urinary  glucose

excretion in the high dose group from the first day onwards. A two- to threefold increase

could be observed in the first three days, then the individual urinary glucose levels vary

strongly with up to 50-fold increase as compared to controls. The low dose group showed

an increase in glucose excretion from day five onwards. (Tab. 6.2.1). Urinary osmolarity

decreased significantly from day five onwards in the high dose and from day six onwards

in  the  low dose  group while  urinary volume was  not  changed.  A parallel  decrease  in

urinary  creatinine  and an increase  in  protein  excretion was  observed in  the  high dose

group. As the creatinine excretion was not constant due to the induced kidney damage,

clinical  chemistry parameters  were not  normalized to creatinine,  but  are given as 24 h

excretion rates. Plasma parameters showed an increase in creatinine and urea starting on

day three. An increase in plasma GGT, a parameter used for the diagnosis of kidney failure

in clinical chemistry, could only be observed in the high dose group as late as day seven

(Tab. 6.2.1). The high dose animals showed decreased body weight gain on day seven, and

two high dose animals were removed from the study on day six due to overt  signs of

toxicity. After necropsy on day seven, relative kidney weight of the high dose group was

increased  and  kidneys  of  both  treated  groups  appeared  pale  and  discolored.

Histopathological inspection showed marked epithelial necrosis, predominantly involving

proximal convoluted tubules of the cortex, with increasing severity related to dose.

Urine samples collected on day one, two, three and six after start of GM treatment

were subjected to 1H NMR and GC/MS analysis. Visual inspection of 1H NMR spectra and

GC/MS chromatograms revealed differences in urinary composition between controls and

treated  animals,  most  prominently  an  increase  in  glucose  excretion in  urine  of  treated

animals. (Fig. 6.2.1). To further investigate these differences, principal component analysis

(PCA)  models  were  constructed  using  1H NMR  and  GC/MS  data  respectively.  The
1H NMR model shows a clear dose-dependent separation of controls and treated animals

along the first principal component (PC) t[1] from day one onwards (Fig. 6.2.2a). From the

first day after start of treatment onwards, low and high dose animals can be separated from

control animals by unsupervised multivariate data analysis. The shift of the high dose day

six animals and one low dose day six individual to the lower left corner of the plot along

the second PC t[2] shows that at this time point the samples deviate strongly from all other
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samples, which correlates with the onset of marked alterations in urine and plasma clinical

chemistry on day six.

Figure 6.2.1: GC/MS chromatograms (a) and 1H NMR spectra (b) of representative day 6
control  and  high  dose  urine  samples  of  the  gentamicin  study.  Prominent  signals  are
labeled,  an  increase  in  glucose  excretion upon GM treatment  can be  observed.  TMS,
trimethylsilyl; MO, methoxyamine.
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PCA of GC/MS data resulted in a model dominated by a strong outlier due to high

glucose concentrations in a high dose animal on day six and a cluster of control and low

dose animals moving away from the main body of samples (Fig 6.2.2b). Analysis of the

original  chromatograms  revealed  that  a  large  signal  of  2-oxoglutarate  3TMS  was

responsible for the deviation of these samples in the scores plot. To obtain a homogeneous

data set  for subsequent supervised multivariate  data analysis and marker identification,

these samples were excluded from the following analyses, since no analytical or biological

cause could be found for this deviation. The high dose day six outlier was also excluded to

Figure 6.2.2: Scores plots of multivariate models of urinary gentamicin 1H NMR and GC/
MS data.  (a) PCA of  1H NMR data, all  time points.  (b) PCA of GC/MS data,  all  time
points. Note the outlier in the bottom right corner. (c) PCA of GC/MS data, with outlier
excluded. (d) OPLS-DA of 1H NMR data, all time points. (e) OPLS-DA of GC/MS data, all
time points, with outlier excluded. Model characteristics are (a) R2X(cum) = 0.84, Q2(cum)
= 0.64, 6 significant components; (b) R2X(cum) = 0.90, Q2(cum) = 0.72, 8 significant
components; (c) R2X(cum) = 0.82 Q2(cum) = 0.68, 5 significant components; (d) R2X(cum)
= 0.70, R2Y(cum) = 0.88 Q2(cum) = 0.83, 1 + 2 significant components; (e) R2X(cum) =
0.60, R2Y(cum) = 0.75, Q2(cum) = 0.62, 1 + 2 significant components.
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obtain a more homogeneous data structure. The resulting PCA is shown in Fig. 6.2.2c. GC/

MS analysis is also able to discriminate treated animals from controls, however, a large

variance  probably  introduced  by  the  necessary  sample  work-up  and  derivatization

procedure  is  dominating  the  plot.  To  analyze  the  metabolic  changes  in  more  detail,  a

supervised multivariate data analysis was used. Orthogonal projection to latent structures

discriminant  analysis  (OPLS-DA)  models  were  constructed  with  both  1H NMR  and

GC/MS data respectively (Fig. 5.2.2d and e). In OPLS-DA models, a classifier, in this case

control, Y = 0, and dose, Y = 1 is given to each sample, and the data is modeled in such a

way that the discriminating information contributing to group separation is forced onto the

first  PC  t[1]P,  while  the  orthogonal  information  not  contributing  to  the  separation  is

modeled in the following components.

Table 6.2.2: 1H NMR spectral bins and the corresponding putative metabolite IDs found to
be altered significantly upon gentamicin treatment in urine. Changes in excretion levels
are marked with arrows, (↑) up and (↓) down. Metabolites that could only be assigned
speculatively are marked with (?).

δ [ppm] Change Identification δ [ppm] Change Identification

8.80 - 8.84 ↓ trigonelline 3.48 - 3.52 ↑ glucose (?)
7.76 - 7.84 ↓ hippurate 3.40 - 3.44 ↑ glucose (?)
7.64 - 7.68 ↓ 3-indoxylsulfate 3.32 - 3.36 ↑ glucose (?)
7.60 - 7.64 ↓ hippurate 3.16 - 3.20 ↓ ?
7.52 - 7.56 ↓ hippurate 3.08 - 3.12 ↓ creatinine
7.48 - 7.52 ↓ 3-indoxylsulfate 2.88 - 2.92 ↑ N,N-dimethylglycine
7.44 - 7.48 ↓ ? 2.68 - 2.76 ↑ dimethylamine
7.24 - 7.32 ↓ ? 2.60 - 2.68 ↓ citrate
7.04 - 7.12 ↓ ? 2.48 - 2.52 ↓ ?
6.72 - 6.76 ↓ ? 2.16 - 2.20 ↓ ?
4.16 - 4.24 ↑ ? 2.00 - 2.04 ↑ N-acetyl groups
4.04 - 4.08 ↑ lactate (?) 1.92 - 1.96 ↑ acetate
3.96 - 4.04 ↓ creatinine 1.84 - 1.88 ↑ ?
3.92 -3.96 ↓ hippurate 1.52 - 1.56 ↓ ?
3.76 - 3.80 ↑ ? 1.28 - 1.40 ↑ lactate
3.56 - 3.64 ↓ ? 1.12 - 1.16 ↓ ?

Both  1H NMR model  (Fig.  6.1.2d) and GC/MS model  (Fig.  6.2.2e) show a clear

separation  of  controls  from  dosed  animals  from  the  first  day  onwards  along  the

discriminating component t[1]P. Compared to the control groups, the dosed groups show a

much larger orthogonal variance on the second orthogonal component t[2]O. Especially the

high dose animals at the late time points shift to the upper part of the plot, which mainly

stems from an increased urinary glucose excretion.
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The S-plot was applied for marker identification in OPLS-DA models as proposed by

Wiklund  et  al.  [104].  Following  GM  treatment,  citrate,  hippurate,  trigonelline  and

3-indoxylsulfate were found to be decreased in a dose-dependent manner using 1H NMR.

Lactate, acetate, N,N-dimethylglycine and glucose increased in a dose-dependent manner.

Several other spectral regions were also altered compared to controls, but no metabolite

assignment could be made for those (Tab. 6.2.2). In agreement with 1H NMR analysis, the

GC/MS model  showed decreased  citrate  and increased lactate.  Additionally,  decreased

2-oxoglutarate and increased 5-oxoproline was observed as well as alterations in aromatic

gut  microflora  metabolites  such  as  phenyllactate  and  hydroxyphenylpropionate

(Tab. 6.2.3).

Table 6.2.3: Mass spectral features and the corresponding putative metabolite IDs found
to  be  altered  significantly  upon  gentamicin  treatment  in  urine.  Mass  fragments  and
retention time in the GC/MS chromatogram are given. Changes in excretion levels are
marked  with  arrows,  (↑)  up  and  (↓)  down.  Metabolites  that  could  only  be  assigned
speculatively are marked with (?).

main fragments  [m/z] RT [s] Change Metabolite ID

117 399 ↑ Lactate 2TMS
156 1123 ↑ 5-Oxoproline 2TMS

113, 147, 318, 347 1211 ↓ 2-Oxoglutarate 3TMS
193 1234 ↑ Phenyllactic acid 2TMS (?)

177, 192, 205, 310 1302 ↓ 3-Hydroxyphenylpropionate 2TMS (?)
174 1304 ↑ Putrescine 4TMS (?)
179 1326 ↑ (?)

273, 347, 363, 465 1374 ↓ Citrate 4TMS
192, 209 1422 ↑ (?)

179 1455 ↑ 4-Hydroxyphenylpropionate 2TMS (?)
169, 257, 375 1785 ↓ (?)

191 1892 ↓ (?)

Quantitative analysis of 1H NMR spectra with the Chenomx NMR Suite spectral data

base  (Tab. 6.2.4)  generally  confirmed  results  found  by  multivariate  data  analysis

(Tab. 6.2.2).  The data shown here is the metabolite excretion over 24 h. A decrease in

Krebs cycle intermediates could be observed, especially malonate excretion was decreased

significantly in both dose groups from the second day onwards, while citrate was only

decreased significantly on day six in the high dose group. A decrease in renal osmolytes,

prominently trimethylamine-N-oxide (TMAO),  could be observed from the second day

onwards. The most sensitive alterations were the increase in lactate and alanine excretion,

which occurred in the high dose group already on day 1 and in both dose groups after

2-3 days. Although still  quite variable, these levels returned to control levels on day 6.
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Aromatic  gut  flora  metabolites  were  also  found  to  be  altered  significantly,  especially

hippurate was decreased highly significantly from the first day onwards (Tab. 6.2.4).

6.3  Discussion

Unsupervised PCA of  1H NMR data  is  able  to  discriminate  treated  from control

animals from the first day post treatment, and GC/MS is able to completely separate high

dose samples from the first day and low dose samples from the second day onwards from

untreated controls with supervised OPLS-DA. This demonstrates that multivariate pattern

recognition methods are able to detect GM-induced changes in renal function earlier than

classical clinical chemistry approaches.

The PCA and OPLS-DA scores plots show that the toxic insult produced by the GM

administered in  this  study is  very variable,  leading to  a  large scattering of  the treated

samples in the scores plot for both 1H NMR and GC/MS. This is especially evident for the

GC/MS analysis, where there are several outliers and even with those outliers excluded

from the model the treated animal scatter widely across the plot. However, a deviation of

the 120 mg/kg bw/day day 6 samples is obvious in both GC/MS and LC/MS analysis and

can be attributed mainly to a marked glucosuria.

Markers found by analysis of the S-plot of the OPLS-models of both 1H NMR and

GC/MS confirmed increased glucose excretion upon GM dosing. Metabolites found to be

altered upon GM treatment with 1H NMR in this study confirm the results of Lenz et al.

[95], who reported increased lactate, glucose and decreased hippurate, TMAO and betaine

excretion. Lenz  et al.  reported an increase in citrate excretion [95],  while in this study

multivariate data analysis of both 1H NMR and GC/MS samples indicated decreased citrate

excretion upon GM dosing. Quantitative analysis of the 1H NMR spectra confirmed citrate

to  be  significantly  decreased  in  the  60 mg/kg bw/day and  120 mg/kg bw/day group on

day 6.  How these differences in urinary citrate  levels  between the two studies may be

explained is unclear.

GC/MS analysis found several aromatic compounds such as phenyllactic acid and

hydroxyphenylpropionate  altered  upon  GM  dosing.  Together  with  the  decrease  in

hippurate excretion observed with 1H NMR, this shows the alteration of the gut microflora

induced by the pharmacologic antibiotic effect of GM as already observed [95].
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Increased urinary 5-oxoproline excretion as observed with GC/MS metabonomics

and  decreased  excretion  of  the  antioxidant  trigonelline  as  observed  with  1H NMR are

evidence for an involvement of oxidative stress in gentamicin toxicity [105]. 5-oxoproline

is accumulated in the γ-glutamyl cycle upon glutathione (GSH) depletion. 5-oxoprolinuria

has  been  observed  after  treatment  of  compounds  leading  to  oxidative  stress,  such  as

bromobenzene [52].

Decreased excretion of guanidoacetic acid, which has been observed as a sensitive

indicator of gentamicin toxicity with LC/MS [106] could not be observed in 1H NMR. Due

to the inherent insensitivity of the  1H NMR method, guanidoacetate is almost lost in the

baseline of the 1H NMR spectrum and thus could not be quantified.

In a recent study, where quantitative 1H NMR metabolite data were used, Xu et al.

[107] found  an  increase  in  the  urinary  excretion  of  acetoacetate,  glucose,  lactate,

3-hydroxybutyrate, creatine and various amino acids together with a decrease in hippurate,

N-acetyl-tryptophan, taurine and trigonelline upon daily administration of 0, 20, 80 and

240 mg/kg bw for 3, 9 or 15 days. In this study, transcriptomics revealed the participation

of transporters in gentamicin toxicity [107].

Significant alterations in the composition of urinary profiles were detected before

marked  changes  in  clinical  chemistry  parameters  were  evident,  supporting  the  use  of

metabolite  profiles  as  non-invasive  sensitive  endpoints  of  kidney injury.  However,  the

dominating  metabolites  responsible  for  group  separation  for  this  study  were  increased

urinary glucose, a well known marker of kidney damage; and changes in metabolites such

as hippurate, which are widely attributed to alterations in the gut microflora [68; 69], a

pharmacological effect to be expected from an antibiotic. These results demonstrate that

any  group  separation  observed  by  pattern  recognition  methods  has  to  be  investigated

closely.  Mechanistic  understanding  is  necessary  to  separate  toxic  effects  from

pharmacological or adaptive changes.



Table 6.2.4: 24h excretion rate of urinary metabolites after gentamicin administration quantified with Chenomx NMR Suite; values are
given as mean ± SD in [µmol/24h]; significance levels were determined with ANOVA and Dunnett's post hoc test, * p<0.05, ** p<0.01,
***p<0.001. Arrows indicate whether metabolite excretion is primarily increased (↑) or decreased (↓) compared to controls.

Krebs cycle intermediates Renal Osmolytes

 Dose
[mg/kg bw] Citrate 2OG1 Malonate ↓ Succinate ↓ cis-Aconitate ↓ TMAO2 ↓ Betaine ↓ Methylamine DMG3 DMA4 Formate ↓

0 719 ± 145 305 ± 72 23.9 ± 4.9 35.0 ± 6.2 25.9 ± 4.2 18.3 ± 5.2 18.8 ± 21.6 0.0 ± 0.0 11.8 ± 6.3 15.7 ± 1.6 12.2 ± 2.2
day 1 60 589 ± 226 279 ± 165 19.2 ± 4.1 23.3 ± 8.2 23.2 ± 6.9 13.7 ± 8.4 20.2 ± 17.6 0.6 ± 1.4 23.7 ± 9.5* 14.9 ± 6.0 9.8 ± 2.4

120 548 ± 112 296 ± 64 19.1 ± 4.6 28.4 ± 7.8 24.7 ± 4.3 16.8 ± 6.9 13.6 ± 2.9 2.9 ± 3.4 30.8 ± 3.2** 18.0 ± 2.6 9.8 ± 2.7

0 585 ± 104 243 ± 58 23.1 ± 5.8 49.2 ± 12.1 24.4 ± 2.2 17.1 ± 2.4 13.3 ± 13.9 3.5 ± 2.0 10.5 ± 4.9 17.2 ± 1.4 11.6 ± 2.0
day 2 60 501 ± 152 216 ± 118 11.2 ± 4.0** 27.2 ± 13.2* 18.9 ± 4.5* 5.2 ± 2.9*** 11.6 ± 6.7 1.4 ± 1.4 14.6 ± 6.1 11.3 ± 4.3* 8.1 ± 2.7

120 385 ± 26* 198 ± 36 131 ± 3.3* 30.2 ± 10.9 18.7 ± 2.8 5.1 ± 1.9*** 8.9 ± 1.5 0.7 ± 0.6* 11.7 ± 6.8 11.7 ± 2.2* 7.1 ± 2.1*

0 583 ± 70 245 ± 35 19.0 ± 3.9 33.2 ± 5.5 25.3 ± 3.2 19.2 ± 4.2 15.2 ± 17.4 0.8 ± 1.8 10.1 ± 6.7 16.8 ± 2.6 10.9 ± 2.2
day 3 60 559 ± 110 299 ± 59 8.0 ± 2.8*** 25.8 ± 3.7 20.5 ± 2.6 5.5 ± 2.5*** 19.4 ± 15.7 0.5 ± 0.6 20.0 ± 10.6 11.7 ± 2.6* 8.3 ± 1.6

120 501 ± 121 284 ± 97 10.5 ± 2.7* 23.0 ± 4.9* 16.0 ± 4.3** 2.9 ± 2.4*** 9.2 ± 5.6 1.3 ± 0.8 17.1 ± 11.4 12.7 ± 2.7 6.6 ± 2.4*

0 537 ± 71 226 ± 55 19.0 ± 6.5 40.6 ± 10.2 25.8 ± 4.3 19.4 ± 4.1 14.1 ± 14.1 2.2 ± 1.0 10.0 ± 6.3 16.5 ± 3.3 11.1 ± 2.9
day 4 60 678 ± 334 353 ± 185 9.9 ± 9.8 34.4 ± 16.5 24.6 ± 10.6 12.5 ± 7.1 17.4 ± 13.4 1.3 ± 0.4 19.3 ± 14.1 11.7 ± 5.4 10.7 ± 5.3

120 627 ± 90 281 ± 54 4.4 ± 4.7* 26.6 ± 5.8 9.5 ± 9.1* 5.5 ± 3.2** 8.0 ± 3.5 1.1 ± 0.7 16.9 ± 2.3 17.1 ± 2.4 8.3 ± 2.7

0 613 ± 63 231 ± 21 19.1 ± 4.5 36.0 ± 4.7 27.8 ± 3.1 19.7 ± 2.0 7.7 ± 2.9 1.4 ± 1.3 7.3 ± 3.7 17.7 ± 1.3 11.3 ± 1.6
day 5 60 765 ± 169 345 ± 120 6.1 ± 6.5** 34.4 ± 8.0 19.0 ± 11.5 17.9 ± 11.3 24.1 ± 19.9 1.1 ± 0.8 26.6 ± 13.9* 18.3 ± 6.1 12.4 ± 4.9

120 452 ± 259 171 ± 87 0.0 ± 0.0*** 20.9 ± 10.2 0.0 ± 0.0*** 7.0 ± 4.3* 8.6 ± 5.8 0.0 ± 0.0 13.7 ± 3.7 13.6 ± 4.3 6.3 ± 3.1
0 650 ± 163 274 ± 55 17.9 ± 12.8 39.9 ± 6.9 31.3 ± 7.9 21.5 ± 5.9 16.8 ± 16.4 3.1 ± 2.4 9.9 ± 6.9 17.6 ± 2.6 12.0 ± 3.1

day 6 60 881 ± 163 361 ± 110 7.3 ± 13.7 36.1 ± 5.4 21.3 ± 7.5 15.4 ± 9.3 19.8 ± 18.3 0.3 ± 0.7* 18.4 ± 13.6 14.7 ± 3.9 12.0 ± 3.2
120 274 ± 185** 71 ± 51** 0.0 ± 0.0* 11.2 ± 8.3*** 4.5 ± 4.8*** 4.2 ± 6.1** 6.7 ± 11.9 0.3 ± 0.5* 20.3 ± 11.9 9.5 ± 4.2** 3.8 ± 2.6**

0 618 ± 82 266 ± 45 20.3 ± 9.0 36.4 ± 7.6 28.0 ± 4.3 19.2 ± 7.6 13.9 ± 12.7 1.4 ± 2.1 9.0 ± 5.7 17.3 ± 3.2 11.29 ± 2.78
day 7 60 851 ± 227 373 ± 228 8.2 ± 5.1* 30.5 ± 8.7 23.2 ± 9.2 22.7 ± 4.4 23.6 ± 16.0 0.3 ± 0.6 24.9 ± 10.3* 15.2 ± 3.0 10.73 ± 3.36

120 146 ± 65* 30 ± 15 0.0 ± 0.0* 4.7 ± 0.9** 6.7 ± 4.1** 2.2 ± 0.1* 7.5 ± 6.5 0.0 ± 0.0 12.3 ± 3.2 7.5 ± 0.2** 3.70 ± 0.42*
12OG, 2-oxoglutarate; 2TMAO, trimethylamine-N-oxide; 3DMG, N,N-dimethylglycine; 4DMA, dimethylamine;



Table 6.1.4 (continued): 24h excretion rate of urinary metabolites after gentamicin administration quantified with Chenomx NMR Suite;
values are given as mean ± SD in [µmol/24h]; significance levels were determined with ANOVA and Dunnett's post hoc test, * p<0.05,
** p<0.01, ***p<0.001. Arrows indicate whether metabolite excretion is primarily increased (↑) or decreased (↓) compared to controls.

Gut microflora metabolites

  Dose
[mg/kg bw] Hippurate ↓ 4HPA1 PAG2 Lactate ↑ MNA3 Acetate TRIG4 ↓ 3IS5 ↓ Alanine ↑ Creatine ↑ Creatinine Glucose ↑

0 142 ± 24 6.6 ± 2.9 10.6 ± 1.3 6.2 ± 1.9 2.8 ± 1.2 7.9 ± 1.1 13.7 ± 2.0 13.9 ± 3.0 3.0 ± 0.7 0.0 ± 0.0 92 ± 10 44.0 ± 6.5
day 1 60 65 ± 37** 9.5 ± 3.1 18.0 ± 6.7 7.2 ± 1.5 2.8 ± 1.1 5.5 ± 0.9* 11.7 ± 3.4 15.1 ± 3.6 3.3 ± 0.8 0.0 ± 0.0 95 ± 13 39.0 ± 6.5

120 65 ± 21** 9.3 ± 1.3 14.1 ± 7.6 18.8 ± 5.9*** 2.7 ± 0.9 6.7 ± 1.8 11.9 ± 2.7 11.6 ± 7.7 7.9 ± 2.7** 0.0 ± 0.0 103 ± 10 77.8 ± 25.9*

0 101 ± 27 10 ± 1.0 9.3 ± 1.9 5.5 ± 1.5 2.5 ± 1.1 13.7 ± 8.7 12.5 ± 1.8 14.6 ± 2.3 2.7 ± 0.5 0.0 ± 0.0 98 ± 14 49.2 ± 10.2
day 2 60 9.4 ± 3.0 *** 12.9 ± 2.9 11.3 ± 0.9 9.9 ± 1.7** 2.4 ± 0.8 6.4 ± 1.3 9.7 ± 4.8 10.2 ± 0.7 4.8 ± 1.2** 2.5 ± 2.3* 93 ± 23 49.2 ± 11.9

120 7.8 ± 1.4*** 13.8 ± 1.0* 12.90± 2.9* 12.1 ± 1.9*** 2.5 ± 1.1 6.1 ± 1.2 7.6 ± 1.8 4.3 ± 5.1*** 7.2 ± 1.0*** 4.9 ± 0.5*** 100 ± 10 70.3 ± 16.5

0 105 ± 17 6.8 ± 4.5 7.9 ± 4.7 4.7 ± 0.9 2.0 ± 0.5 8.4 ± 3.6 13.3 ± 2.0 16.3 ± 2.2 2.4 ± 0.7 0.0 ± 0.0 96 ± 13 36.1 ± 6.8
day 3 60 7.6 ± 2.2 *** 11.2 ± 10.0 12.2 ± 3.5 9.4 ± 0.7* 2.6 ± 1.9 4.7 ± 0.9 9.9 ± 2.0 14.7 ± 2.7 3.9 ± 0.2* 0.4 ± 0.7 85 ± 11 38.4 ± 5.4

120 6.6 ± 1.8*** 7.9 ± 4.6 13.6 ± 4.0 10.1 ± 3.4** 1.9 ± 0.8 5.4 ± 2.3 7.7 ± 3.1** 8.7 ± 5.5* 4.8 ± 1.2** 5.9 ± 4.7* 102 ± 25 49.8 ± 16.9

0 118 ± 37 9.2 ± 2.7 9.6 ± 1.6 4.8 ± 1.2 1.8 ± 0.6 9.5 ± 2.6 12.2 ± 1.8 15.2 ± 3.4 2.6 ± 0.6 0.0 ± 0.0 98 ± 18 40.8 ± 9.5
day 4 60 9.3 ± 3.5*** 20.6 ± 8.0* 11.2 ± 5.2 9.6 ± 4.4 2.7 ± 2.2 8.4 ± 3.9 11.0 ± 4.8 12.9 ± 9.5 4.3 ± 2.2 1.1 ± 1.6 107 ± 44 57.2 ± 36.5

120 7.2 ± 0.8*** 10.3 ± 7.0 13.4 ± 3.6 10.9 ± 3.0* 1.9 ± 0.5 8.3 ± 0.4 8.3 ± 2.2 8.2 ± 6.4 4.8 ± 3.1 20.3 ± 24.1 115 ± 21 72.7 ± 29.7

0 108 ± 24.1 10.2 ± 3.0 11.1 ± 0.2 4.9 ± 0.6 1.9 ± 0.4 9.4 ± 2.0 12.6 ± 1.5 17.1 ± 3.5 3.0 ± 0.6 0.0 ± 0.0 107 ± 7 47.4 ± 7.6
day 5 60 10.1 ± 3.4*** 22.6 ± 4.8** 18.3 ± 3.4* 13.4 ± 6.6 2.7 ± 1.4 9.0 ± 2.4 13.5 ± 5.2 15.8 ± 10.0 5.6 ± 3.8 4.0 ± 5.8 122 ± 33 71.2 ± 52.7

120 6.3 ± 1.8*** 9.8 ± 4.9 14.0 ± 4.4 19.9 ± 19.2 1.1 ± 0.7 15.1 ± 5.8 4.7 ± 2.6* 3.1 ± 4.2* 5.8 ± 2.9 50.1 ± 62.8 89 ± 27 365 ± 365

0 117 ± 68 10.0 ± 2.1 11.7 ± 2.2 4.9 ± 1.1 2.0 ± 0.6 11.2 ± 3.8 14.7 ± 4.0 19.3 ± 5.5 2.7 ± 0.6 0.0 ± 0.0 115± 20 45.5 ± 10.7
day 6 60 10.9 ± 3.5** 16.8 ± 7.5 15.0 ± 3.7 12.8 ± 2.4 2.4 ± 1.8 11.7 ± 4.0 13.1 ± 8.8 12.7 ± 9.3 4.0 ± 2.8 4.6 ± 6.3 122 ± 23 243 ± 369

120 5.1 ± 2.2** 4.7 ± 3.4 13.0 ± 4.3 21.5 ± 25.0 0.1 ± 0.2* 15.7 ± 10.2 3.1 ± 2.1* 0.3 ± 0.8*** 4.1 ± 2.9 57.8 ± 42.2** 73 ± 38 382 ± 311

0 101 ± 63 5.5 ± 4.9 10.0 ± 1.9 5.6 ± 1.2 1.7 ± 0.3 8.8 ± 2.0 13.4 ± 2.7 15.7 ± 3.6 3.5 ± 0.8 0.0 ± 0.0 106 ± 17 51.2 ± 19.1
day 7 60 8.9 ± 1.7* 14.0 ± 7.1 15.6 ± 4.3* 12.1 ± 2.9* 1.9 ± 1.5 9.8 ± 3.6 13.0 ± 4.2 15.9 ± 8.1 4.3 ± 0.5 6.1 ± 13.6 110 ± 13 323 ± 495

 120 4.0 ± 0.7* 2.6 ± 1.0 6.9 ± 1.1 21.8 ± 6.0*** 0.0 ± 0.0 30.9 ± 29.3 2.8 ± 0.5** 0.0 ± 0.0* 5.3 ± 3.1 30.7 ± 22.1* 56 ± 9** 350± 75
14HPA, 4-hydroxyphenylacetate; 2PAG, phenylacetylglycine; 3MNA, 1-methylnicotinamide; 4TRIG, trigonelline; 53IS, 3-indoxylsulfate;
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7  Ochratoxin A

7.1  Introduction

Ochratoxin A (OTA) is a mycotoxin produced by various species of the Aspergillus

and Penicillium genus. It is found in a variety of food stuffs and beverages such as cereals,

spices, nuts,  dried fruits,  coffee,  beer and wine [82] and as a consequence, the human

population is continuously exposed to OTA. Since OTA is a nephrotoxin and a potent renal

carcinogen in rodents [85; 86], it is of concern to the public health, even more so as its

mode of action is not fully understood [87].

In routine toxicity testing, histopathology is still the “gold standard” for detection of

chemically induced pathologic lesions. Histopathology data is acquired together with urine

and plasma samples for clinical chemistry analysis. For metabonomic analysis however,

only the body fluid samples are used, and the changes in urinary or plasma composition are

correlated to the dose of the compound examined in the study. The first aim of this study

was to test the metabonomics approach for the assessment of toxicity in comparison to the

“gold  standard”  histopathology.  The  second  aim  was  to  demonstrate  the  use  of

metabonomics  as  a  tool  for  biomarker  discovery  and  for  the  elucidation  of  toxic

mechanisms.  Since  histopathology  is  the  phenotypic  anchoring  of  toxic  lesions,

information which is generally not included in the metabonomic analysis, an approach was

developed which allows the inclusion of histopathology data in metabonomics studies.

To  demonstrate  how  metabonomics  may  be  used  for  toxicity  assessment  and

biomarker identification, GC/MS-, 1H NMR- and LC/MS-based techniques were applied to

investigate metabolic changes in urine caused by OTA. Full histopathology and clinical

chemistry of a 13 week subchronic study on OTA have been reported [96]. Rats (n = 5 per

group) were treated with 0, 21, 70 or 210 µg/kg bw by gavage 5 days per week for 90 days.

Urine  samples  were  collected  over  night  after  14,  28  and  90  days  of  treatment.  The

suitability of different metabonomic techniques and their power to detect changes in the

molecular composition of urine indicative of toxicities and its mechanisms were assessed.

Chemometric analyses of urine samples separated treated animals from controls in a dose-

dependent manner and a series of molecular markers of OTA toxicity was identified.
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Figure  7.2.1:  GC/MS  chromatograms  (a),  1H NMR  spectra  (b)  and  LC/MS
chromatograms  (c)  of  a  representative  control  group  and  high  dose  group  animals
respectively  after  13 weeks  of  OTA administration  showing  subtle  changes  in  urinary
composition.  The  GC/MS  analytes  are  given  as  the  derivatized  compounds,  MO  =
methoxime, TMS = trimethylsilyl.
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7.2  Results

Visual  inspection  of  GC/MS  chromatograms  and  1H NMR  spectra  showed

differences  between  control  group  and  high  dose  group  animals  respectively

(Fig. 7.2.1a and b). The LC/MS total ion current (TIC) chromatograms of control group

and  high  dose  group  animals  could  not  be  distinguished.  (Fig.  7.2.1c).  PCA  models

constructed with GC/MS and  1H NMR data respectively separated control animals from

high dose animals (210 µg/kg bw) after  4 weeks of OTA treatment  along the first  and

second principal component (PC) t[1] and t[2] (Fig. 7.2.2a and b). GC/MS also showed a

trend to separate animals of the mid dose group (70 µg/kg bw) from controls from the

fourth week onwards, however, the plot was dominated by a large variance, presumably

introduced  by  the  necessary  sample  work-up  (Fig.  7.2.2a).  With  1H NMR,  individual

animals from the high dose group separated from controls as soon as two weeks after the

start of treatment (Fig. 7.2.2b). The LC/MS model discriminated only sampling time points

along the first two PCs t[1] and t[2] (Fig. 7.2.1c and 7.2.2c), dose-dependent information

was only evident on the fourth PC (data not shown).

Figure 7.2.2: PCA scores plots of GC/MS (a),  1H NMR (b) and LC/MS (c) data. Models
include  all  time  points,  variables  are  mean-centered  and  pareto-scaled.  PCA  model
characteristics are the following: (a) R2X(cum) = 0.74, Q2(cum) = 0.41, 7 significant PCs,
(b) R2X(cum) = 0.87, Q2(cum) = 0.59, 9 significant PCs and (c) R2X(cum) = 0.68, Q2(cum)
= 0.38, 8 significant PCs.
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In  order  to  identify  discriminating  markers  between  control  and  dose  groups,

OPLS-DA models were constructed. In contrast to the unsupervised PCA models, where

discrimination  originates  only  from  the  projection  of  variance,  the  class  identity  in

OPLS-DA  is  given  in  a  Y-matrix  to  which  the  spectral  data  is  then  correlated.

Discriminating  information  is  forced  to  the  first  PC,  while  the  following  components

contain orthogonal information, i.e. information not contributing to class separation. In the

OPLS-DA models, the control group and low dose group animals (vehicle and 21 µg OTA/

kg bw) were combined into a new control group as 21 µg OTA/kg bw was established as

no-observed-effect-level  (NOEL)  with  regard  to  the  classical  clinical  chemistry  and

histopathological endpoints [96]. They were analyzed against the combined mid and high

dose  animals  (given  70  and  210 µg OTA/kg bw)  as  a  new  dose  group.  A  Y-Matrix

containing the values Y = 0 for the control group and Y = 1 for the dose group was used.

This approach was chosen since model quality improves with the number of observations

and equal group sizes [37]. Mean centering and pareto-scaling were applied to the data

when  constructing  the  models.  This  scaling  procedure  is  a  compromise  between  unit

variance  scaling,  which tends  to  overestimate  noise,  and no scaling,  which causes  the

model to be dominated by the few high-intensity signals in the chromatograms or 1H NMR

spectra  [37].  Characteristics  of  the  dose-based  OPLS-DA  models  (Fig.  7.2.3a-c)  are

summarized in Table 7.2.2.

The  OPLS-DA  models  constructed  with  data  from  all  three  analytical  methods

separate  control  groups  from  dose  groups  in  a  dose-dependent  manner  along  the

discriminating component t[1]P. Control groups and high dose groups are located on the

outer edges of the plot, while the low and mid dose groups are situated inbetween. A time

trend can be recognized in the dose groups. In the GC/MS and 1H NMR models, the high

dose samples are clearly separated from the rest from the four week time point onwards

(Fig 7.2.3a, b). The LC/MS model separates high dose samples already after two weeks of

administration. The orthogonal component  t[2]O,  which models  information that  is  not

contributing to the group separation, contains information on the sampling time point. This

can  be  observed  especially  in  the  1H NMR model  (Fig.  7.2.3b),  where  the  13  weeks

samples are located in the upper region of the plot.
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In order to further enhance the power of the multivariate statistics models, a data

analysis  approach  was  chosen  in  which  information  regarding  the  severity  of

histopathological  changes  caused  by  OTA  treatment,  i.e.  histopathology  scores,  was

included.  The  histopathology  scores  of  all  animals  at  all  time  points  and  all  findings

examined and were used to construct a separate PCA model (Fig. 7.2.4). The resulting

scores  plot  shows a  time-  and dose-dependent  separation of  OTA-dosed animals  from

controls along PC1 and PC2 from the top left to the bottom right side of the plot. In the

loadings  plot,  five  kidney  findings,  i.e.  karyomegaly,  interstitial  fibrosis,  tubular

vacuolization, tubular basophilia and tubular cell apoptosis are responsible for the dose-

dependent separation of samples in the scores plot. From these five findings, correlating

with the administration of OTA, the tubular basophilia histopathology score was selected

as  Y-matrix  for  the  construction  of  OPLS-DA  models  as  it  showed  the  strongest

correlation  with  dose  and  was  diagnosed  in  a  large  number  of  animals.  Model

Figure: 7.2.3: Scores plots of OPLS-DA models. As discriminating Y-Matrix, either the
dose (control and low dose animals versus mid and high dose animals, plots a, b and c) or
the histopathology scores of kidney tubular basophilia (plots d, e, and f) were used.
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characteristics  of  the  OPLS-DA  models  constructed  with  histopathology  scores  as

discriminators (Fig. 7.2.3d-f) are compared to those of models constructed with dose in

Table 7.2.2.

Construction  of  supervised  OPLS-DA  models  with  histopathology  scores  as

classifier (Fig. 7.2.3d-f) yielded three models with similar qualities to those constructed

with  dose  as  classifier  (Fig. 7.2.3a-c).  A  clear  dose-dependent  separation  along  the

discriminating  component  t[1]P  can  be  observed  with  all  three  analytical  methods

(Fig. 7.2.3d-f) with the control and high dose groups on either side of the plot and the mid

dose group clustering inbetween.

Even though they do not differ when inspected visually, the histopathology-based

OPLS-models  (Fig  7.2.3d-f)  better  reflect  the  data  structure  described  by  the  model

characteristics in Table 7.2.2. With all three analytical models, the variance modeled with

first component R2Y(P1) increased when using histopathology scores instead of dose as

classifiers. This parameter is indicative of how much of the information of the data that is

modeled into the discriminating component t[1]P of the model can be correlated with the

discriminating Y-matrix. The predictive power in leave-one-out cross validation Q2(P1) of

the discriminating component also increased with all three analytical methods when using

histopathology scores instead of dose as classifiers. In general, it can be stated that model

quality improved when histopathology scores were used as classifiers instead of dose.

Figure 6.2.4: Scores plot (a) and the corresponding loadings plot (b) of a PCA model
using histopathology scores as variables. The dose- and time-dependent separation of dose
group animals from control group animals is best reflected by the finding of kidney tubular
basophilia, thus this parameter was chosen as Y-matrix for OPLS-DA models. K = kidney
findings, L = liver findings.
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Table 7.2.1: Summary of histopathological observations in kidneys of male F344/N rats
treated with 0, 21, 70 or 210 µg OTA/kg bw for 14, 28 or 90 days. - lesion not observed, +,
minimal, ++ mild, +++ moderate and ++++high severity of lesion.

Histopathological change Interval [days]
Ochratoxin A [µg/kg bw]

0 21 70 210

Tubular basophilia 14 +(3/5) +(4/5) +(2/5) ++(5/5)
28 +(1/5) +(2/5) +(2/5) +++(5/5)
90 +(2/5) +(5/5) ++(5/5) +++(5/5)

Tubular degeneration 14 - - -+(1/5) ++(5/5)
28 - - +(5/5) +++(5/5)
90 - - ++(+)(5/5) ++++(5/5)

Nuclear enlargement 14 - - - +(5/5)
28 - - +(5/5) +++(5/5)
90 - - ++(5/5) ++++(5/5)

Cell proliferation 14 - - - +(5/5)

28 - - +(5/5) +++(5/5)

90 - - +++(5/5) ++++(5/5)

The  S-plots  of  the  OPLS-DA  models  were  used  for  identification  of  potential

markers of group separation as proposed by Wiklund et al. [41]. The variables responsible

for group separation are presented in Tables 7.2.3-7.2.5. For all three analytical methods,

there  was  substantial  overlap  between  the  variables  found  with  either  dose  or

histopathology scores as Y-Matrix.

For marker identification, the original GC/MS chromatograms and 1H NMR spectra

were used. For the identification of GC/MS markers, AMDIS-deconvoluted peaks or peaks

from the  original  HP  ChemStation  chromatograms  were  compared  to  the  NIST  mass

spectral library and subsequently to chromatograms of authentic reference compounds, if

available.  1H NMR peaks  were  identified  by  comparison  to  the  spectral  library  of  the

Chenomx NMR Suite.  LC/MS signals  were compared to the  contents  of  the METLIN

Metabolite Database using the queries supplied by the XCMS program [44]. However, due

to the limited size of the METLIN Metabolite Database and the large mass tolerance used

in the queries, the identities given for LC/MS-based markers require further elucidation

and should be considered only as tentative assignments.
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Table  7.2.2:  Characteristics  for  OPLS-DA  models  constructed  with  either  dose  or
histopathology scores (histo) as Y-Matrix.

Y-Matrix R2X(cum) R2Y(P1) R2Y(cum) Q2(P1) Q2(cum) Significant
Components

GC/MS dose 0.33 0.42 0.58 0.32 0.29 1+0
histo 0.33 0.51 0.67 0.43 0.51 1+1

LC/MS dose 0.32 0.52 0.78 0.15 0.36 1+2
histo 0.18 0.54 0.71 0.26 0.47 1+0

NMR dose 0.38 0.49 0.59 0.39 0.33 1+0
histo 0.39 0.53 0.61 0.45 0.43 1+0

Putative markers of OTA toxicity were found by analyzing either the dose-based

(0 and 21 versus  70 and 210 µg/kg bw) or  histopathology-based OPLS-DA models  for

each analytical technique. There was substantial overlap for both analytical strategies. GC/

MS analysis showed that excretion of the following metabolites was increased in OTA-

treated  animals  exhibiting  histopathological  changes  in  the  kidney  (Tab. 7.2.3):

5-oxoproline, a C4-polyol, presumably erythritol, 2,3,4-trihydroxybutyric acid, D-glucose,

myo-inositol,  pseudouridine,  and  5-hydroxy-1H-indole.  2-Oxoglutarate  and  citrate  were

decreased using the dose-based model.

Table  7.2.3: Main  fragments  and  chromatographic  retention  time  (RT)  of  metabolic
changes upon ochratoxin A administration identified using GC/MS. Metabolites are given
as  the  actual  analyte,  i.e.  the  methoxime  (MO)  and  trimethylsilyl  (TMS)  derivate.
Metabolite  identification  was  carried  out  by  comparison  to  the  NIST  mass  spectral
database.

Main fragments [m/z] RT [s] ↑↓1 Identification
156, 157, 258 1046 ↑ 5-oxoproline 2TMS

205, 217 1049 ↑ C4-polyol 4TMS (erythritol 4TMS)2

100, 115, 143, 329 1075 ↑ creatinine enol 3TMS3

292 1082 ↑ tetroric acid 4TMS
277, 278 1207 ↑ (5-hydroxy-1-H-indole 2TMS)2, 4

103, 117, 133, 205 1354 ↑ D-glucose MO5TMS
191, 204 1412 ↑ D-glucose 5TMS

305 1472 ↑ myo -inositol 6TMS
217, 218, 357 1619 ↑ pseudouridine 5TMS

112, 156, 229, 304 1113 ↓ 2-oxoglutarate MO2TMS
273, 347, 363, 465 1303 ↓ citrate 4TMS

1↑ Indicates increased excretion in exposed groups compared to the control group, ↓ indicates decreased excretion in
exposed  groups.  2Metabolites  in  brackets  are  only  putatively  assigned.  3Observed  in  histopathology  based  model
only.4Observed in dose based model only.

1H NMR analysis showed increases in the excretion of N,N-dimethylglycine, taurine

and  creatinine.  Excretion  levels  of  acetate,  2-oxoglutarate  and  citrate  were  decreased.

Bins 23 (1.32–1.36 ppm) and 26 (1.44–1.48 ppm) were also increased.  These bins are

known to contain the resonances of  lactate  and alanine,  respectively.  However,  due to
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overlaying  signals,  a  definite  identification of  the  signals  responsible  for  this  increase

could not  be  performed (Tab. 7.2.4).  A number  of  other  bins  for  which no metabolite

assignment could be made were also changed.

Table 7.2.4: Bins and chemical shifts of the metabolites altered upon OTA administration
identified using 1H NMR analysis. Metabolite identification was carried out by comparison
to the Chenomx NMR Suite database.

Bin dose Bin histo ∂ [ppm] ↑↓1 Identification
20 20 1.20 – 1.24 ↑ (lactate)2

--- 22 1.32 – 1.36 ↑
23 23 1.36 – 1.40 ↓
26 --- 1.44 – 1.48 ↑ (alanine)2

39 39 1.96 – 2.00 ↓ acetate
43 43 2.12 – 2.16 ↓

50, 51 50, 51 2.40 – 2.48 ↓ 2-oxoglutarate
53 53 2.52 – 2.56 ↓ citrate

56, 57 56, 57 2.64 – 2.72 ↓ citrate
62 62 2.88 – 2.92 ↑ N,N -dimethylglycine
64 64 2.96 – 3.00 ↓ 2-oxoglutarate
--- 69 3.16-– 3.20 ↑ (glucose)2

--- 73 3.32-– 3.36 ↑ (glucose)2

74 74 3.36 – 3-40 ↑ (glucose)2

76 76 3.44 – 3.48 ↑
78 78 3.52 – 3.56 ↑ taurine
79 79 3.56 – 3.60 ↑

81 – 88 81 – 88 3.64 – 3.94 ↑ (glucose)2

89 --- 3.96 – 4.00 ↑ creatinine
1↑ Indicates increased excretion in exposed groups compared to the control group, ↓ indicates
decreased excretion in exposed groups.  2Signals were not strong enough for unambiguous
identification and are only putatively assigned.

LC/MS analysis showed a number of variables to be changed due to OTA treatment.

Based  on  the  spectral  information,  these  metabolites  may  represent  citrate  and

oxoglutarate,  as  well  as  aldose  phosphates  and  steroid  hormones.  However,  due  to

insufficient information obtained from the spectra, further structure elucidation was not

possible (Tab. 7.2.5), and these alterations are not discussed any further.

7.3  Discussion

In  this  study,  three  complementary  analytical  techniques  were  used  to  correlate

metabonomic findings with histopathology endpoints from a 90 day toxicity study with

OTA. In the study, histopathologic analysis gave a NOEL of 21 µg OTA/kg bw, minimal

to mild changes in kidney histopathology and clinical chemistry at doses of 70 µg/kg bw,

visible as early as four weeks after continuous OTA administration and minimal to mild

changes in histopathology as early as two weeks at doses of 210 µg OTA/kg bw. After

90 days, the 210 µg/kg bw group showed degeneration of tubular lining cells and nuclear

variability  implying  increased  nuclear  size  and  mitotic  figures  [96].  Applying

metabonomic analysis, alterations in the composition of urine samples were indicated in
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urine samples collected after four weeks in the 70 µg/kg bw and 210 µg/kg bw dose groups

and after two weeks in individual animals of the 210 µg/kg bw dose group with both GC/

MS and 1H NMR using unsupervised PCA, and with all three analytical approaches using

supervised OPLS-DA metabonomics.

Table  7.2.5: Mass-retention  time  pairs  of  the  metabolic  alterations  upon  OTA
administration  identified  using  LC/MS.  Mass  traces  of  OTA and  its  metabolites  were
excluded in the analysis.

Variable ID dose
[M(m/z)T(RT)

Variable ID histo
[M(m/z)T(RT)] ↑↓1 Identity proposal2

M145T40 M145T40 ↓ 2-oxoglutarate, adipate, lysine
M145T46 M145T64 ↓ 2-oxoglutarate, adipate, lysine

--- M181T153 ↓
M191T51 M191T51 ↓ citrate

--- M191T62 ↓
M192T51 M192T51 ↓ citrate (isotope peak)

--- M201T303 ↓

M206T260 M206T260 ↑ acetylphenylalanine,
phenylpropinylglycine

--- M217T281 ↓  
M231T141 M231T141 ↑  
M231T79 M231T79 ↓ melatonine

M232T143 --- ↑  
M237T339 --- ↑  
M244T117 M244T117 ↓ aldose phosphates

--- M249T234 ↑  
M251T32 M251T32 ↑ aldose phosphates

--- M252T260 ↑  
--- M259T102 ↓  

M259T306 --- ↓ aldose phosphates
M259T325 M259T325 ↓ aldose phosphates
M260T325 M260T325 ↓ aldose phosphates (isotope peak)

--- M260T90 ↑  
M261T113 M261T113 ↓  

--- M261T138 ↓  
--- M262T138 ↓  
--- M269T344 ↑  
--- M273T283 ↑  
--- M275T174 ↓  

M287T367 --- ↑  
M301T309 --- ↓ steroid hormone
M302T131 --- ↓ steroid hormone
M303T248 --- ↓ steroid hormone
M303T260 M303T260 ↓  
M317T253 M317T253 ↓  
M318T253 M318T253 ↓  

--- M323T284 ↓  
--- M337T313 ↓  

M350T135 M350T135 ↑  
M372T111 --- ↓  
M402T419 --- ↑  

--- M409T372 ↑  
M411T194 M411T194 ↑  

--- M412T194 ↑  
M417T299 --- ↑  

--- M421T211 ↑  
--- M445T248 ↑  

M461T167 --- ↑  
M473T318 M473T318 ↑  

--- M474T318 ↑  
--- M523T138 ↓

1↑  indicates  increased  excretion  in  exposed  groups  compared  to  the  control  group,  ↓  indicates
decreased excretion in exposed groups.  2Identity  proposals  are made by the METLIN Metabolite
Database using the linking function in XCMS.
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Predictivity of the OPLS-DA models increased when using histopathology scores as

Y-matrix  instead  of  dose,  while  yielding  the  same  metabolites  to  be  responsible  for

separating  controls  from  dosed  animals.  This  approach  allows  the  inclusion  of  the

information  gained  by  histopathology,  which  is  otherwise  not  used  for  metabonomic

analysis. Moreover, it helps to overcome the problem of heterogeneous response of dosed

animals to toxic insults which is often observed in toxicity studies, since the actual effect

that is used for the diagnosis of toxicity, i.e. the histopathological findings, is correlated to

the changes in the metabolism.

In our studies, both GC/MS and 1H NMR were able to differentiate between controls

and exposed groups and complemented each other with regard to marker identification due

to the availability of databases, as well as sensitivity and metabolite coverage. However,

GC/MS analysis may be further improved with the use of sampling robots to minimize

variance  introduced  by  the  derivatization  procedure  and  the  introduction  of  two-

dimensional GC coupled to time-of-flight detectors (GC×GC/TOF-MS) [26; 108]. LC/MS

analysis  contained  more  noise  and  structural  elucidation  of  putative  markers  requires

substantial  effort  due  to  lack of  characteristic  mass  spectral  features  and spectral  data

bases. Thus, LC/MS appears to be more suited for targeted analysis of specific compound

classes [109].

The combined GC/MS and 1H NMR based metabonomic analysis of urine samples

from rats administered OTA showed a decrease in the urinary excretion of the Krebs cycle

intermediates  citrate  and  oxoglutarate,  as  well  as  an  increased  excretion  of  glucose,

creatinine,  pseudouridine,  alanine,  N,N-dimethylglycine  and  renal  osmolytes  such  as

taurine and myo-inositol.

These changes may be rationalized based on the well described OTA-toxicity and

general considerations on kidney toxicity. In histopathology, OTA toxicity is characterized

by damage to the S3 segment of the proximal tubule of the kidney with accompanying

impairment of renal excretory function resulting in alteration of osmolyte excretion as an

early toxic effect [84; 86; 96]. Whether the altered osmolyte excretion is due to impaired

excretory function or just due to damaged cells  remains unclear.  On the cellular  level,

impairment of mitochondrial function, oxidative stress and inhibition of protein synthesis

have been described as toxic effects [110–113] and these can be associated with altered

levels of Krebs cycle intermediates, increased 5-oxoproline and amino acid excretion as

described below.
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Increased excretion of glucose in urine as observed in some of the high dose group

animals is associated with impairment of renal function. Although no significant changes

in urinary glucose and creatinine excretion were found by clinical chemistry analysis from

the study an increase in serum creatinine after 13 weeks was observed in the 210 µg/kg bw

group [96], suggesting impaired renal function at this dose and time-point. Such changes in

the  excretion  levels  of  a  number  of  metabolites  contribute  to  group  separation  in

multivariate data analysis, even if these alterations are not statistically significant when

considered isolated for each single metabolite.  Thus, multivariate data analysis may be

more sensitive than classical clinical chemistry regarding small and variable changes of

effect markers.

A  decrease  in  citrate  and  2-oxoglutarate  excretion  is  widely  attributed  to  a

disturbance of mitochondrial energy production. Impaired energy metabolism results in a

depletion of ATP in the cells. ATP depletion is a consequence of mitochondrial toxicity as

a prominent feature of OTA-induced renal toxicity in rodents [110]. However, impairment

of the Krebs cycle is described in many metabonomic studies [15] and may rather be an

effect  of  stress  response  and general  toxicity  than of  specific  kidney toxicity  or  OTA

effects.

5-Oxoproline  is  involved  in  the  γ-glutamyl-cycle,  which  is  responsible  for  GSH

synthesis [114]. Accumulation can either occur by inhibition of the enzyme 5-oxoprolinase

or by ATP-depletion. ATP-depletion would also result in the accumulation of cysteine and

glycine (Fig. 7.3.1). This would also explain the increase in taurine excretion observed by
1H NMR,  since  excess  cysteine  is  converted  to  taurine  to  prevent  its  accumulation.

Alternatively,  glutathione  may  act  as  a  feedback-inhibitor  for  the  production  of

5-oxoproline [115]. Excessive GSH depletion in the kidney due to oxidative stress may

lead  to  induction  of  the  γ-glutamyl  cycle.  The  consequence  is  increased  5-oxoproline

production,  exceeding  the  capacity  of  the  5-oxoprolinase,  leading  to  accumulation  of

5-oxoproline.  Oxoprolinuria  in  rats  is  induced  by  several  agents  which  induce  GSH

depletion [116; 117]. The observation of increased secretion of 5-oxoproline is consistent

with a reduction of detoxifying capacity via inhibition of Nrf2-dependent gene expression

and reduced glutathione concentrations observed after OTA-treatment [118]. The increase

of N,N-dimethylglycine observed with 1H NMR is probably also related to oxidative stress

and  increased  glutathione  synthesis.  There  is  evidence  that  glycine  needed  for  GSH

synthesis  may also  be supplied by dietary choline,  which is  transferred  to  glycine via
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betaine, dimethylglycine and sarcosine [119]. Induction of this pathway may explain the

observed increase in N,N-dimethylglycine excretion. Thus, increased urinary 5-oxoproline

and  N,N-dimethylglycine excretion is further evidence for the involvement of oxidative

stress in OTA toxicity [120].

Kidney  injury  and  impaired  renal  function  may  result  in  changes  in  osmolyte

excretion,  either  by  leakage  from  damaged  cells  or  by  disturbances  of  osmolyte

transporters,  and  the  metabonomic  analysis  identified  increased  excretion  of  several

osmolytes  in  OTA-treated  animals.  Taurine  is  a  renal  osmolyte  whose  excretion  and

re-uptake  is  regulated  by  sodium-dependent  transporters  [121].  An  increase  in  taurine

excretion may occur due to inhibition of the taurine re-uptake or by leakage from damaged

renal  cells.  Increased taurine excretion is  also discussed as a  marker  of  impaired liver

function. However, no histopathology in the liver was observed in the study providing the

samples for this analysis, and the link to OTA toxicity remains unclear.

Fig  7.3.1: The  γ-glutamyl  cycle  is  responsible  for  the  production  of  glutathione.
Metabolites accessible by the GC/MS or 1H NMR analysis methods described are marked
in red.
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myo-Inositol,  which regulates the osmotic pressure in renal cells,  is the osmolyte

with the highest concentration in proximal tubule cells [122] and its cellular concentration

is regulated by transporters, two sodium-dependent transporters SMIT1 and SMIT2 and a

sodium-independent transporter HMIT [123; 124]. Increase in  myo-inositol excretion as

observed after OTA treatment may occur as a response to hypotonicity of the urine or from

a decreased reabsorption due to a disturbance of the transporters [125].

Several  other  markers  identified  by the  metabonomic  analysis  may be  related  to

stimulation  of  cell  proliferation  in  the  kidney  induced  by  OTA  as  observed  by

5-bromo-2'-deoxyuridine (BrdU) staining [96]. Pseudouridine is a modified nucleoside in

sRNA and tRNA. When RNA is degraded to nucleosides and bases, pseudouridine cannot

be reused for  de novo nucleotide synthesis and is excreted into the urine. Pseudouridine

excretion  with  urine  is  therefore  indicative  of  increased  RNA  turnover  and  has  been

postulated  as  a  cancer  marker  [126].  An  increase  in  RNA turnover  is  consistent  with

increased DNA synthesis as a result of the stimulation of renal cell proliferation observed

in  the  study  [96].  5-Hydroxyindole  is  a  product  of  tryptophan  metabolism.  Increased

excretion of various tryptophan metabolites was associated with tumor growth [127], since

tryptophan metabolites play a role in various regulatory and signaling pathways. A targeted

screening method for tryptophan metabolites [128] may reveal alterations in tryptophan

metabolite excretion that yield insights into these pathways.

Figure 7.3.2: The renal osmolyte myo-inositol, the modified nucleoside pseudouridine and
the tryptophan metabolite 5-hydroxyindole were found to be increased in urine upon OTA
treatment.

After application of OTA at higher doses and a shorter period of observation, Mally

et al. observed increased excretion of the renal osmolyte trimethylamine-N-oxide (TMAO)

as dominating molecular marker by 1H NMR metabonomics [84]. GC/MS analysis of these

samples  also  yielded  a  nine-fold  increase  of  myo- inositol  excretion  in  dosed  animals

(unpublished results). Since there was no alteration of TMAO excretion observed in this

OH

OH
OH

HO

OH
HO

myo-inositol

HO

HO OH

O

HN
O

NH

O
pseudouridine

H
N

HO

5-hydroxyindole



64 7 Ochratoxin A

study,  myo-inositol  seems to be a more sensitive indicator  of disturbed renal  osmolyte

handling in OTA toxicity than TMAO.

Although the biochemical perturbations observed in this study reflect rather general

alterations and none of the metabolites observed in this study is predictive on its own, they

correlate  well  with  observations  made  in  other  studies  on  OTA  toxicity.  With

metabonomics, the onset of toxic lesions could be observed at the same time points as with

histopathology. It must be noted however, that the mechanistic hypotheses postulated for

the  OTA-induced  alterations  in  urinary  profiles  are  only  speculative.  However,  for

compounds with unknown toxic mechanisms, such hypotheses allow specific confirmatory

experiments.

The integrated multi-platform metabonomics approach with GC/MS,  1H NMR and

LC/MS shows promise for the investigation of changes in urinary metabolite pattern, since

good correlation exists between metabonomics group discrimination and histopathological

findings,  especially  since  the  histopathological  changes  were  rather  subtle  [96].  The

alterations in urinary metabolite profile observed for OTA toxicity are rather a pattern of

various  metabolites  than  one  specific  marker.  However,  they  correlate  with  the

observations made on OTA toxicity. The data show that an inclusion of histopathology

scores in a metabonomic analysis improves model quality and allows greater confidence in

discriminating markers found by metabonomics. The data analysis strategy presented here

can be used for the analysis of existing toxicology studies to gain mechanistic insight of

observed toxicities.



Table 7.2.5: Excretion levels of urinary metabolites after OTA administration quantified with the Chenomx NMR Suite; values are given
as mean ± SD in [µmol/µmol Crea]; significance levels were determined with ANOVA and Dunnett's post hoc test* p<0.05, ** p<0.01,
***p<0.001. Arrows indicate whether metabolite excretion is primarily increased (↑) or decreased (↓) compared to controls.

Krebs cycle intermediates Renal Osmolytes

  Citrate ↓ 2OG1 ↓ Malonate Betaine myo-Inositol DMG2 ↑ Taurine Acetoacetate 5-Oxoproline Glycolate ↑

C6 9.45 ± 4.93 6.06 ± 3.00 0.50 ± 0.36 0.35 ± 0.13 0.38 ± 0.20 0.11 ± 0.04 3.64 ± 2.94 0.48 ± 0.42 0.54 ± 0.44 0.50 ± 0.19

week2 L7 5.86 ± 4.62 2.85 ± 2.16 0.13 ± 0.07* 0.32 ± 0.22 0.38 ± 0.21 0.06 ± 0.04 2.94 ± 1.85 0.21 ± 0.20 0.54 ± 0.53 0.35 ± 0.14
M8 7.03 ± 4.09 3.69 ± 1.97 0.18 ± 0.04 0.33 ± 0.21 0.26 ± 0.09 0.11 ± 0.05 3.77 ± 1.68 0.30 ± 0.14 0.54 ± 0.36 0.48 ± 0.14
H9 6.56 ± 2.72 3.34 ± 1.63 0.33 ± 0.22 0.58 ± 0.36 0.50 ± 0.27 0.26 ± 0.17*  3.16 ± 2.09 0.63 ± 0.48 0.41 ± 0.17 0.64 ± 0.24

C 13.11 ± 6.57 9.54 ± 4.22 0.55 ± 0.38 0.62 ± 0.64 0.42 ± 0.22 0.16 ± 0.09 10.91 ± 7.17 0.59 ± 0.45 0.46 ± 0.25 0.59 ± 0.15

week4 L 9.63 ± 5.16 7.11 ± 4.09 0.48 ± 0.37 0.41 ± 0.21 0.40 ± 0.32 0.11 ± 0.05 8.86 ± 4.82 0.45 ± 0.40 0.67 ± 0.64 0.63 ± 0.22
M 7.38 ± 3.37* 5.60 ± 2.52* 0.71 ± 0.53 0.48 ± 0.31 0.52 ± 0.36 0.26 ± 0.21 8.56 ± 4.07 054 ± 0.53 0.78 ± 1.08 0.72 ± 0.36
H 5.70 ± 1.95** 2.28 ± 0.78*** 0.70 ± 0.34 0.44 ± 0.18 0.33 ± 0.09 0.61 ± 0.16*** 9.48 ± 3.68 0.24 ± 0.08 0.58 ± 0.16 1.06 ± 0.15***

C 9.47 ± 3.55 6.74 ± 2.33 0.48 ± 0.34 0.40 ± 0.19 0.41 ± 0.14 0.06 ± 0.02 12.16 ± 6.36 0.47 ± 0.26 0.61 ± 0.27 0.62 ± 0.23

week13 L 17.66 ± 10.76 12.42 ± 7.35 0.87 ± 0.34 0.58 ± 0.10 1.04 ± 0.21 0.10 ± 0.02 18.99 ± 0.80 0.97 ± 0.09 1.55 ± 0.24 1.00 ± 0.22
M 8.45 ± 4.28 3.73 ± 2.50** 0.80 ± 0.49 0.55 ± 0.47 0.70 ± 0.69 0.18 ± 0.06* 10.35 ± 3.34 0.32 ± 0.22 0.84 ± 0.85 0.78 ± 0.26
H 3.06 ± 1.14** 0.78 ± 0.26*** 0.68 ± 0.53 0.47 ± 0.21 0.44 ± 0.33 0.43 ± 0.07*** 10.97 ± 6.51 0.43 ± 0.48 1.74 ± 3.06 0.97 ± 0.33**

Gut microflora metabolites

Hippurate ↓ 4HPA3 PAG4 Lactate ↑ MNA5 Acetate Choline ↑ Glycine ↑ Alanine ↑ Creatine

C 3.61 ± 1.70 0.37 ± 0.22 3.72 ± 1.84 0.37 ± 0.15 0.72 ± 0.29 0.86 ± 0.31 0.14 ± 0.07 0.77 ± 0.33 0.34 ± 0.14 0.18 ± 0.14

week2 L 2.81 ± 1.18 0.18 ± 0.06 1.40 ± 0.89 0.28 ± 0.12 0.31 ± 0.29 0.87 ± 0.34 0.09 ± 0.03 0.53 ± 0.22 0.26 ± 0.14 0.27 ± 0.25
M 3.36 ± 1.70 0.32 ± 0.07 2.27 ± 0.54 0.28 ± 0.09 0.44 ± 0.13 0.67 ± 0.41 0.12 ± 0.04 0.63 ± 0.20 0.27 ± 0.09 0.16 ± 0.13
H 4.04 ± 1.50 0.38 ± 0.23 3.93 ± 2.70 0.43 ± 0.18 0.70 ± 0.41 1.04 ± 0.31 0.15 ± 0.05 1.08 ± 0.49* 0.41 ± 0.19* 0.17 ± 0.19
C 6.21 ± 2.77 0.57 ± 0.29 4.41 ± 2.42 0.52 ± 0.30 1.23 ± 0.70 0.58 ± 0.35 0.20 ± 0.09 1.04 ± 0.61 0.50 ± 0.28 0.33 ± 0.40

week4 L 4.84 ± 2.19 0.42 ± 0.16 3.69 ± 1.56 0.37 ± 0.20 0.91 ± 0.43 0.75 ± 0.39 0.17 ± 0.07 0.95 ± 0.37 0.35 ± 0.18 0.30 ± 0.20
M 6.07 ± 2.86 0.61 ± 0.39 4.75 ± 3.90 0.59 ± 0.43 1.20 ± 0.68 0.77 ± 0.52 0.22 ± 0.15 1.34 ± 0.90 0.54 ± 0.42 0.44 ± 0.52
H 5.41 ± 1.59 0.58 ± 0.21 3.32 ± 0.99 0.91 ± 0.22*** 1.08 ± 0.20 0.82 ± 0.14 0.22 ± 0.05* 6.17 ± 1.49*** 0.71 ± 0.22** 0.21 ± 0.12

C 3.80 ± 1.24 0.37 ± 0.11 2.45 ± 0.58 0.34 ± 0.11 0.86 ± 0.31 0.44 ± 0.10 0.14 ± 0.04 0.81 ± 0.38 0.31 ± 0.09 0.42 ± 0.29

week13 L 7.81 ± 2.87 0.55 ± 0.06 3.73 ± 0.44 0.56 ± 0.08 1.51 ± 0.21 1.83 ± 1.54 0.22 ± 0.06 1.14 ± 0.26 0.62 ± 0.12 0.53 ± 0.33
M 6.01 ± 2.34 0.67 ± 0.26 3.72 ± 1.72 0.59 ± 0.22 1.21 ± 0.46 0.94 ± 0.62 0.19 ± 0.08 1.62 ± 0.58 0.53 ± 0.23 0.48 ± 0.40
H 2.85 ± 1.02* 0.42 ± 0.20 2.85 ± 0.73 1.09 ± 0.23*** 0.67 ± 0.27 0.78 ± 0.38 0.23 ± 0.07*** 5.02 ± 0.70*** 0.49 ± 0.20* 3.10 ± 6.38

12OG, 2-oxoglutarate; 2DMG, N,N-dimethylglycine; 34HPA, 4-hydroxyphenylacetate; 4PAG, phenylacetylglycine; 5MNA, 1-methylnicotinamide; 6C, control group, 0 µg OTA/kg bw; 7L, low
dose group, 21 µg OTA /kg bw; 8M, mid dose group, 70 µg OTA/kg bw; 9H, high dose group, 210 µg OTA/kg bw;
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8  Aristolochic Acid

8.1  Introduction

Aristolochic acid (AA) occurs in plants of the genus aristolochia and is a mixture of

structurally related nitrophenanthrene carboxylic acid derivatives, mainly aristolochic acids

I and II (AAI and AAII) [88]. AA shows nephrotoxic potential in rodents with a clear site-

specificity in the proximal tubuli [90; 129; 130]. The mechanism of action is not fully

understood, but DNA adducts of reactive AA-metabolites correlate with bladder carcinoma

induced  by  AA administration  [131].  Its  relevance  for  human  health  is  based  on  the

occurrence of Chinese herb nephropathy (CHN) and Balkan endemic nephropathy (BEN),

which, although occurring in completely different populations, show the same symptoms

and are presumably caused by chronic exposure to AA [89]. Traditional Chinese medicine

(TCM) uses  herbs  of  aristolochia  sp. and  related  plants  for  various  medications  [88].

Exposure to nephrotoxic concentrations of AA occurs when herbs in TCM preparations are

accidentally substituted with leafs from aristolochia sp. with high AA contents. The cause

of BEN is postulated to be the uptake of AA-contaminated flour. The contamination occurs

when Aristolochia clematitis growing on the wheat fields is harvested with the grain and

processed [89].

A number of studies have been already published applying various metabonomics

techniques to analyze changes induced by AA administration in rats. LC/MS analysis of

urine [132; 133] and plasma [134] as well as GC/MS [135] and 1H NMR [136] analysis of

urine have been used to identify various putative biomarkers of AA nephrotoxicity.

This  study  was  designed  to  detect  early  signs  of  nephrotoxicity  after

AA-administration. The dose levels were based on a previous four week oral gavage study,

were  0.2 mg/kg bw  was  established  as  NOAEL  concerning  clinical  chemistry  and

histopathology and mild renal lesions were observed at 1.0 mg/kg bw [129]. In our study,

male Wistar rats received 0, 0.1, 1.0 and 10.0 mg AA/kg bw dissolved in water daily by

oral gavage for 12 consecutive days. Urine and blood were collected on days 1, 5 and 12

and  necropsy  occurred  on  day  12  of  the  study.  Routine  clinical  chemistry,

histopathological assessment of liver and kidney as well as metabonomic analysis of urine

with GC/MS and 1H NMR was carried out.
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Table 8.2.1: Clinical chemistry data of the aristolochic acid study. Values are given as
mean ± SD; significance levels were determined with ANOVA and Dunnett's post hoc test.
(* p<0.05, ** p<0.01, *** p<0.001).

Urine clinical chemistry

volume
[mL]

osmolarity
[mosmol/kg]

creatinine
[mg/24h]

GGT
[U/mg Crea]

total protein
[mg/g Crea]

C1 29.4 ± 11.7 339.8 ± 158.7 21.6 ± 8.3 0.34 ± 0.07 759 ± 374

day 1 L2 24.4 ± 13.0 434.0 ± 181.2 27.6 ± 12.1 0.30 ± 0.07 841 ± 414
M3 18.8 ± 7.2 583.4 ± 194.7 32.5 ± 10.9 0.32 ± 0.09 524 ± 151
H4 17.0 ± 5.8 504.6 ± 159.8 34.4 ± 12.0 0.32 ± 0.07 692 ± 360

C 30.5 ± 7.6 295.5 ± 115.8 21.9 ± 7.1 0.43 ± 0.08 722 ± 419

day 5 L 23.8 ± 8.1 394.4 ± 154.4 29.7 ± 12.8 0.41 ± 0.06 857 ± 269
M 18.8 ± 9.0 387.8 ± 184.2 30.2 ± 14.5 0.42 ± 0.08 666 ± 161
H 20.3 ± 10.9 414.8 ± 266.9 33.1 ± 23.6 0.36 ± 0.06 584 ± 416

C 27.8 ± 14.1 552.8 ± 351.5 36.4 ± 20.7 0.30 ± 0.06 1452 ± 154

day 12 L 30.6 ± 9.9 410.8 ± 121.0 28.1 ± 7.1 0.35 ± 0.09 1179 ± 200
M 20.8 ± 12.8 687.4 ± 317.8 47.7 ± 22.2 0.29 ± 0.05 1137 ± 335
H 27.2 ± 9.9 489.4 ± 278.8 33.5 ± 17.3 0.22 ± 0.04 1301 ± 357

Plasma clinical chemistry

glucose
[mg/dL]

creatinine
[mg/dL]

urea
[mg/dL]

total protein
[g/dL]

C 148 ± 14.1 0.24 ± 0.05 35.1 ± 1.76 5.86 ± 0.17

day 1 L 74.6 ± 13.0*** 0.24 ± 0.05 27.8 ± 4.70* 5.92 ± 0.23
M 82.0 ± 7.31*** 0.03 ± 0.00 29.6 ± 2.45 5.88 ± 0.11
H 74.2 ± 8.41*** 0.28 ± 0.04 29.0 ± 5.07 5.90 ± 0.14

C 118 ± 21.7 0.30 ± 0.00    44.0 ± 4.05 6.34 ± 0.23

day 5 L 88.2 ± 48.2 0.24 ± 0.05*** 29.5 ± 5.39** 6.42 ± 0.22
M 132 ± 15.2 0.28 ± 0.04    36.1 ± 7.80 6.08 ± 0.23
H 114 ± 19.2 0.30 ± 0.00    43.8 ± 7.04 5.84 ± 0.27*

C 115 ± 18.4 0.26 ± 0.05 32.4 ± 4.33 6.12 ± 0.22

day 12 L 105 ± 18.5 0.26 ± 0.05 29.8 ± 4.19 6.12 ± 0.16
M 114 ± 10.2 0.30 ± 0.00 37.0 ± 5.58 6.04 ± 0.21
H 125 ± 17.6 0.28 ± 0.04 37.3 ± 6.15 5.90 ± 0.02

GOT(ASAT)
[U/L]

GPT(ALAT)
[U/L]

GGT 
[U/L]

ALP
[U/L]

C 91.4 ± 6.55 31.4 ± 9.0 0.48 ± 0.47 267 ± 51.4

day 1 L 97.5 ± 7.73 27.9 ± 4.2 0.40 ± 0.37 237 ± 19.8
M 101.0 ± 26.8 27.1 ± 4.7 0.24 ± 0.32 267 ± 54.8
H 91.1 ± 25.7 25.3 ± 4.6 0.10 ± 0.00 239 ± 23.2

C 101.7 ± 40.8 33.4 ± 5.90 0.28 ± 0.40 247 ± 61.7

day 5 L 94.1 ± 9.17 32.2 ± 6.1 0.08 ± 0.04 237 ± 28.8
M 88.0 ± 13.2 25.5 ± 4.8 0.12 ± 0.04 262 ± 48.0
H 89.3 ± 11.2 21.4 ± 1.2*** 0.16 ± 0.13 211 ± 27.0

C 75.4 ± 8.24 30.5 ± 2.4 0.10 ± 0.00 211 ± 44.4

day 12 L 86.0 ± 15.5 35.1 ± 6.1 0.10 ± 0.00 185 ± 20.8
M 92.0 ± 23.6 31.0 ± 10 0.10 ± 0.00 209 ± 40.1
H 81.5 ± 1.45 29.7 ± 3.2 0.10 ± 0.00 164 ± 32.9

Organ weights
animal bw gain [g] relative organ weights [g/kg bw]

  day 1 day 5 day 12 liver kidney bladder

C 35.2 ± 3.03 50.4 ± 10.3 88.6 ± 15.5 3.01 ± 0.23 0.68 ± 0.06 0.07 ± 0.02
L 38.4 ± 6.19 50.0 ± 11.2 89.6 ± 18.1 3.23 ± 0.16 0.66 ± 0.06 0.05 ± 0.02*
M 41.4 ± 3.05 54.8 ± 5.22 92.6 ± 13.1 3.12 ± 0.12 0.67 ± 0.05 0.07 ± 0.02

 H 41.8 ± 2.17* 46.4 ± 2.07 71.2 ± 7.66 3.33 ± 0.08* 0.65 ± 0.04 0.06 ± 0.01
1C, control group, 0 mg/kg bw; 2L, low dose group, 0.1 mg/kg bw; 3M, mid dose group, 1.0 mg/kg bw; 4H, high dose group,
10 mg/kg bw
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8.2  Results

During the course of the study, animals showed no clinical signs of toxicity, except

for the high dose group and some individuals of the mid dose group, where introduction of

the tube for gavage was difficult due to a swollen esophagus. Irritation of the gastric tract

24 h after oral administration of 10 mg AA/kg bw has been reported in a previous study

[97]. Individual animals of the high dose group also showed hair loss on neck and chest,

probably due to excessive cleaning.

Clinical chemistry analysis of urine and plasma (Tab. 8.2.1) did not show any signs

of toxicity except a highly significant decrease in plasma glucose levels on day one, which

may be attributed to decreased feeding. The oral administration of AA causes an irritation

of the esophagus, which causes the animals to reduce their food uptake, and the reduced

plasma  glucose  levels  would  thus  reflect  fasting.  During  the  course  of  the  study,  the

animals seemed to adapt, since no differences in plasma glucose levels were observed on

day five and day twelve. Other significantly altered clinical chemistry parameters did not

show any dose dependency and were not considered to be toxicity-related.

Although body weight gain showed a tendency to decrease in the high dose group on

day twelve, this decrease was not significant, and organ weights after necropsy on day

twelve  were unchanged except  for  an increase in  liver  weight  in  the  high dose group

(Tab. 8.2.1). Histopathological assessment of tissue sections from liver and kidney did not

show any changes upon AA administration.

In  total,  no  changes  related  to  systemic  toxicity  could  be  detected  by  clinical

chemistry analyses. This is in concordance with a previous study, where the same doses of

0.1, 1.0 and 10.0 mg AA/kg bw were administered orally for up to twelve months and no

changes in clinical chemistry parameters could be observed during the first three months of

the study. The same study showed atypical cells with giant nuclei in the tubular epithelium

after three months. No earlier time points were recorded [90].

Urine samples collected for all dose groups on day one, five and twelve after start of

treatment were subjected to GC/MS and 1H NMR analysis. Unsupervised and supervised

multivariate data analysis was performed on the data (Fig.  8.2.1).  Principal  component

analysis  (PCA)  of  GC/MS samples  of  all  time  points  revealed a  tendency  to  separate

samples along the first PC t[1] in a dose-dependent manner, however, the dose groups are

not well separated and only the controls and the high dose samples form distinguishable
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clusters (Fig. 8.2.1a). PCA of 1H NMR data revealed clear separation of day five and day

twelve high dose samples from the rest of the samples. High dose samples from day one

however  clustered with  the  controls  (Fig.  8.2.1b).  In  summary,  the  unsupervised PCA

showed effects only for the 10 mg/kg bw high dose group and only from day five onwards.

To further analyze these changes and to extract the metabolites responsible for the

differences in urinary composition, supervised orthogonal projection to latent structures

discriminant analysis (OPLS-DA) models were constructed with GC/MS and 1H NMR data

(Fig. 8.2.1c and d).  These  models  show  that  only  the  high  dose  samples  can  be

discriminated  from  the  rest  of  the  study  along  the  discriminating  component  t[1]P.

Controls, low dose and mid dose samples form a tight cluster on the left hand side of the

plot, while high dose samples are located on the right hand side of the plot. The orthogonal

component t[2]O does not contain any relevant dose- or time-related information, neither

for GC/MS nor for 1H NMR data.

Figure 8.2.1: Scores plots of multivariate models of urinary aristolochic acid 1H NMR and
GC/MS data. (a) PCA of GC/MS data, all time points. (b) PCA of 1H NMR data, all time
points. (c) OPLS-DA of GC/MS data, all time points. (d) OPLS-DA of  1H NMR data, all
time points. Model characteristics are (a) R2X(cum) = 0.63, Q2(cum) = 0.37, 6 significant
components;  (b)  R2X(cum)  =  0.81,  Q2(cum)  =  0.55,  7  significant  components;  (c)
R2X(cum)  =  0.26,   R2Y(P)  =  0.29,  R2Y(cum)  =  0.51,  Q2(cum)  =  0.05,  1  significant
component;  (d)  R2X(cum)  = 0.37,  R2Y(P)  =0.22,  R2Y(cum)  =  0.33 Q2(cum)  = 0.09,  1
significant component.
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S-plot analysis of the discriminating component [41] of the GC/MS-based OPLS-DA

model (Fig. 8.2.1c) found decreased urinary concentrations of 2-oxoglutarate and hippurate

and increased concentrations of 5-oxoproline, pseudouridine, gluconate, ribitol, gluconate,

hydrocinnamic  acid,  uric  acid,  and  3-  and  4-hydroxyphenylacetate  (Tab. 8.2.2).  In

concordance with the GC/MS-based model, the  1H NMR OPLS-DA model (Fig. 8.2.1d)

found resonances of 2-oxoglutarate, hippurate, citrate and creatinine to be decreased and

glucose,  N,N-dimethylglycine  and 4-hydroxyphenylacetate  to  be  increased (Tab. 8.2.3).

Additionally both GC/MS and 1H NMR models found various spectral features altered, to

which no metabolite could be assigned.

8.3  Discussion

AA toxicity in rats has already been investigated by metabonomics approaches using

GC/MS,  1H NMR and LC/MS techniques. One study, which was analyzed with all three

analytical methods, only administered a single oral dose of 50 mg/kg bw, which induced

weight loss, increased BUN and reduced urinary volume [132; 135]. Observed alterations

in  urinary  metabolite  profiles  include  increased  amino  acid  excretion,  alterations  in

aromatic  gutflora-derived  metabolites  and  decreased  excretion  of  Krebs  cycle

intermediates and various fatty acids and phospholipids. Chan et al. used LC/MS to study

AA nephrotoxicity  after  administering  oral  doses  of  2,  10  and  30 mg/kg bw for  three

consecutive days [133; 134]. Increased urinary volume and decreased body weight gain

together  with increased hippurate  and decreased kynurenate and citrate  excretion were

observed,  as  well  a  two  unidentified  metabolites  increasing  with  dose  [133;  134].  A
1H NMR-based study which investigated AA toxicity in relation to various known kidney

toxins  used  10 mg/kg bw AA intraperitoneally  (i.p.)  for  5  consecutive  days.  Increased

urinary  N,N-dimethylglycine,  TMAO,  glucose,  amino  acids  and  taurine  together  with

decreased creatinine and citrate levels in urine were observed [136].

In our study, the alterations observed in metabolite excretion were mainly a decrease

in the urinary excretion of the Krebs cycle intermediates (2-oxoglutarate and citrate) and

an alteration of gut microflora derived metabolites (hippurate, 3- and 4-hydroxyphenyl-

acetate).  Citrate  and  2-oxoglutarate  excretion  is  quite  variable  and  alterations  in  the

excretion of Krebs cycle intermediates are observed in almost any metabonomics study

[15]. The changes in aromatic gut flora metabolites are also described as common reaction

upon administration of toxins and thus are probably not directly related to the AA-induced
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kidney injury. The alterations of pseudouridine, 5-oxoproline and uric acid however can be

linked to AA kidney toxicity. Pseudouridine substitutes uridine in mRNA and is excreted

upon degradation of the mRNA. It is a marker of increased DNA synthesis and thus of cell

proliferation  [137;  138].  However,  this  is  more  probably  a  reflection  of  the  irritated

gastrointestinal  tract  than  of  the  renal  impairment.  Necrosis  of  the  mucosa  of  the

forestomache after  two days and onset  of regenerative hyperplasia  after  four  days was

reported for daily oral gavage of 10 mg AA/kg bw [97] and this regeneration, involving

cell  proliferation  and  consequently  increased  mRNA turnover,  may  be  responsible  for

increased pseudouridine excretion. In our study, no evidence of tubular cell proliferation

could be found by histopathological examination.

Table 8.2.2: GC/MS mass spectral features and the corresponding putative metabolite IDs
found to be significantly altered upon aristolochic acid treatment in urine. Mass fragments
and retention time in the GC/MS chromatogram is given. Changes in excretion levels are
marked  with  arrows,  (↑)  up  and  (↓)  down.  Metabolites  that  could  only  be  assigned
speculatively are marked with (?).

main fragments [m/z] RT [s] Change Identification

292 1084 ↑ 5-oxoproline 2TMS
74 1115 ↓ 2-oxoglutarate MO2TMS

164, 179, 252 1123 ↑ 4-hydroxyphenylacetate 2TMS
217 1222 ↑ ribitol 5TMS

177, 192, 205, 310 1232 ↑ 3-hydroxyphenylacetate 2TMS
179, 192, 310 1255 ↑ hydrocynnamic acid 2TMS
77, 105, 206 1315 ↓ hippurate 2TMS

333 1380 ↑ gluconate 6TMS
441, 442, 457 1486 ↑ uric acid 4TMS

217 1621 ↑ pseudouridine 5TMS
169, 257, 375 1628 ↑ (?)

Increased 5-oxoproline excretion is associated with increased GSH production and

thus with oxidative stress [114]. In the γ-glutamyl cycle responsible for GSH production,

GSH may act as a feedback-inhibitor for the production of 5-oxoproline [115]. Excessive

GSH  depletion  in  the  kidney  due  to  oxidative  stress  may  lead  to  induction  of  the

γ-glutamyl cycle. The consequence is increased 5-oxoproline production, exceeding the

capacity of the 5-oxoprolinase, leading to accumulation of 5-oxoproline. Oxoprolinuria in

rats is induced by several agents which induce GSH depletion [116; 117]. Oxidative stress

was evident in Wistar rats after daily subcutaneous administration of 10 mg AA/kg bw, as

reflected by an increase in the urinary excretion of nitric oxide metabolites and a decrease

in antioxidative enzyme activity [139]. Increased urinary uric acid excretion is associated

with renal failure [140; 141], thus the detection of an increased uric acid excretion in dosed

animals with GC/MS may be an early marker of AA-induced renal failure.
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Table 8.2.3: 1H NMR spectral bins and the corresponding putative metabolite IDs found to
be significantly altered upon aristolochic acid treatment in urine. Changes in excretion
levels  are  marked  with  arrows,  (↑)  up  and  (↓)  down.  Metabolites  that  could  only  be
assigned speculatively are marked with (?).

d [ppm] Cange Identification d [ppm] Change Identification

8.68 - 8.72 ↑ ? 3.92 - 3.96 ↓ hippurate
7.80 - 7.84 ↓ hippurate 3.48 - 3.52 ↑ glucose 
7.60 - 7.64 ↓ hippurate 2.96 - 3.00 ↓ 2-oxoglutarate
7.52 - 7.56 ↓ hippurate 2.88 - 2.92 ↑ N,N-dimethylglycine
7.00 - 7.08 ↓ ? 2.76 - 2.80 ↑ 4-hydroxyphenylacetate
6.88 - 6.92 ↑ ? 2.64 - 2.68 ↓ citrate
6.32 - 6.36 ↑ ? 2.60 - 2.64 ↓ citrate
6.24 - 6.28 ↓ ? 2.40 - 2.44 ↓ 2-oxoglutarate
3.96 - 4.04 ↓ creatinine 2.28 - 2.32 ?

A comparison to previous metabonomic studies of AA toxicity has to be carried out

carefully,  since  study  design  and  administered  doses  are  different  and  not  directly

comparable.  The  study  of  Chen  et  al. [132;  135] revealed  alterations  of  amino  acid

metabolism and phospholipid handling, which were not evident in our study. However, a

very high single dose of 50 mg AA/kg bw was administered, leading to clear signs of renal

toxicity in clinical chemistry parameters and histopathology which were not observed in

our study. Chan et al. did not report any clinical chemistry parameters or histopathology

scores.  Although their multivariate models separated controls from dosed animals, they

only  identified  decreased citrate  and  kynurenic  acid  as  well  as  increased  hippurate  as

markers  of  AA toxicity,  as  well  as  some unidentified mass  spectral  peaks  [133;  134].

Changes  in  serum and  urine  clinical  chemistry  parameters  after  i.p.  administration  of

10 mg AA/kg bw  were  found  to  be  related  to  increased  resonances  of  lactate,

dimethylamine, N,N-dimethylglycine, TMAO, glucose and hippurate as well as decreased

resonances  of  Krebs  cycle  intermediates  and  creatinine  [136].  This  is  generally  in

concordance with our observations of increased urinary excretion of N,N-dimethylglycine

and decreased excretion of Krebs cycle intermediates and creatinine. The other metabolites

observed by Zhang et al. probably occur only with the onset of the alterations in clinical

chemistry  parameters.  The  alterations  in  hippurate  and  other  aromatic  gut  flora

metabolites,  which are inconsistently up-  or  down-regulated across  all  studies,  may be

explained by a different  composition of  the microbial  gut  flora population in different

laboratories. Such variations have been described even for different rooms of the same

animal house [142].

The AA study demonstrates very well the problems associated with metabonomics

studies. In our study, it was not possible to attribute the observed alterations to early onset
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of kidney damage since it cannot be excluded that they may arise from the local irritation

of the gastrointestinal tract. A way to deal with this problem is i.p. administration, which

induces only kidney damage [139; 143]. However, i.p. administration does not follow the

normal exposure route by ingestion. Cross study comparison is difficult due to different

doses, duration of application and route of administration. Care has to be taken with the

postulation of biomarkers: alterations in metabolites found in a single compound study are

not  necessarily  specific  for  any  toxicity  or  compound,  but  only  discriminate  treated

animals from controls in the respective study. Mechanistic insight is necessary to evaluate

these markers.

The  weak  response  to  AA  toxicity  may  be  explained  with  the  different  toxic

potentials of AAI and AAII. AAII was found to be a much more potent renal toxicant in

female Wistar rats than AAI after p.o. administration of 10 mg/kg bw of either AA, AAI or

AAII [144] Therefore changes in the composition of the natural product AA may have

effects on the toxicity of a formulation used in a study. The AA composition in our study

was 27 % AAII and 65 % AAI; Mengs and Stolzem used material with a content of 21 %

AAII and 77 % AAI [129]. Contrary to the results in rats, a study in mice receiving 2.5 mg/

kg bw AAI or AAII i.p for 9 consecutive days showed that AAI was solely responsible for

nephrotoxicity, while both AAI and AAII formed DNA adducts [145].

These  findings  show  that  care  has  to  be  taken  when  associating  alterations  in

metabolite profiles with observed toxicity, especially when a mixture of natural products is

examined and the mechanism of toxicity is not yet fully elucidated.
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9  Furan

9.1  Introduction

Furan  is  a  product  of  the  Maillard  reaction  that  occurs  during  the  heating  and

browning of foodstuffs [146]. It is found in high concentrations in canned foods [92] and

has been shown to be carcinogenic in rodents [91]. The objective of this study, conducted

within the 6th Framework Programme of the European Union, was to assess furan toxicity

after repeated oral administration of furan at doses close to human exposure. Urine was

collected during a 28 day study in which male Fischer F344/N rats were treated with furan

at doses of 0, 0.1, 0.5 and 2 mg/kg bw by oral gavage for up to four weeks (five days per

week) [98].

9.2  Results and discussion

Treatment with furan had no effect on body weight and no clinical signs of toxicity

were evident throughout the study. Routine clinical chemistry analysis of urine and serum

of furan treated animals did not reveal any signs of hepatotoxicity, other than a mild, dose-

dependent increase in serum cholesterol after 28 days treatment with furan [98], possibly

indicating impaired hepatobiliary transport [147]. The liver and kidneys of treated animals

were unaltered as compared to controls upon histopathological examination.

Urine  analysis  was  carried  out  by  both  GC/MS  and  1H NMR,  followed  by

unsupervised and supervised multivariate data analysis, i.e. principal component analysis

(PCA) and orthogonal least squares discriminant analysis (OPLS-DA). Visual inspection

of GC/MS chromatograms and  1H NMR spectra did not reveal any differences in urine

composition of controls versus treated animals (Fig. 9.2.1).

PCA models using pareto-scaled data (Fig. 9.2.2 and 9.2.3) or unit-variance-scaled

data (data not shown) of both GC/MS,  1H NMR and LC/MS analysis could not separate

controls from treated animals. Likewise, OPLS-DA models constructed with GC/MS and
1H NMR data did not yield any significant components and thus could not discriminate

between controls and treated animals (data not shown).
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Figure  9.2.1:  GC/MS  chromatograms  (a)  and  1H NMR  spectra  (b)  of  representative
control and high dose urine samples collected on day 28 of the furan study. No differences
in urinary composition can be observed.

Figure 9.2.2: PCA models (pareto-scaled) of GC/MS data (a) and  1H NMR data (b) of
urine samples of all time-points and all dose groups did not reveal any differences between
controls and treated animals upon furan administration.
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Thus,  28 day  treatment  with  furan  did  not  induce  changes  in  the  biochemical

composition of urine that are indicative of liver toxicity, consistent with the absence of

significant effects on clinical chemistry parameters and histopathology.

The  results  of  the  metabonomic  analysis  show  that  comprehensive  screening

methods such as GC/MS or  1H NMR analysis are too limited in sensitivity to detect any

minor  changes  in  urinary  composition  induced  by  furan  treatment  in  the  doses

administered in this  study. An alteration in hepatobiliary transport  after  treatment  with

2 mg/kg bw furan for 28 days was indicated by a mild, dose-dependent increase in serum

cholesterol as well as a small increase in unconjugated bile acids in serum detected by LC/

MS analysis [98].

A targeted  bile  acid  screening  approach  in  urine  was  developed  using  full  scan

LC/MS data.  A bile  acid  standard  mix  was  analyzed with  the  same  full  scan LC/MS

method applied to all urine samples. Mass ratio and retention time of the characteristic ions

of the bile acid standards were then manually searched for in the peak lists extracted from

the  urinary  LC/MS  chromatograms  with  the  XCMS  software.  In  this  way,  the  data

obtained by the full scan LC/MS screening method could be mined for altered bile acid

excretion with urine. However, ions with the mass ratio/retention time characteristics of

bile acid standards could not be found in the XCMS generated peak lists obtained from

urinary LC/MS data of the furan study, thus indicating no alterations in urinary bile acid

profile.

Figure 9.2.3: PCA models (pareto-scaled) of LC/MS data using full scan positive (a) or
negative (b) electrospray ionization (ESI). Analysis of urine samples of all time points and
all dose groups did not reveal any differences between controls and treated animal upon
furan  administration.  Positive  ESI  only  revealed  time  dependent  differences  between
samples.
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10  Innomed PredTox

The  InnoMed  PredTox  project  is  part  of  the  European  Union  6th Framework

Programme. It is a joint Industry and European Commission collaboration to improve drug

safety.  The  consortium is  composed  of  14  pharmaceutical  companies,  three  academic

institutions and two technology providers. The project was designed to assess new methods

in  toxicology  such  as  genomics,  proteomics  and  metabonomics  in  comparison  to  the

traditional clinical chemistry and histopathology approaches with regard to early detection

of toxic lesions and better a predictivity, especially regarding preclinical safety testing of

new drug candidates. The work contributed to this project within the scope of this thesis

included the following:

● Analysis  of  urinary  1H NMR  data  of  the  studies  FP004BA,  FP005ME and

FP007SE showing bile duct necrosis

● Analysis of the BDN group urine samples with GC/MS

● Quantitation  of  putative  urinary  biomarkers  of  toxicity  found  by  statistical

analysis across all studies

The  work  contributed  to  the  InnoMed  PredTox  project  here  is  focused  on  the

metabonomic analysis of urine samples with 1H NMR, analyzing the spectral data supplied

by  the  industrial  partners.  Additionally,  in-house  GC/MS  experiments  have  been

performed. Single study metabonomic analysis was carried out with 1H NMR and GC/MS

for the studies FP004BA, FP005ME and FP007SE. These three studies showing bile duct

necrosis as common histopathological finding. Furthermore, quantitative 1H NMR analysis

was  carried  out  for  these  studies.  A  panel  of  around  20  metabolites  included  in  the

Chenomx NMR Suite database has been assigned and quantified.

The 16 studies (14 proprietary compounds + 2 reference compounds) were grouped

into  three  groups  according  to  their  histopathology:  bile  duct  necrosis  (BDN),

hepatocellular cell death (HCD) and hepatocellular hypertrophy (HCH). For confidentiality

reasons, structures and indications of the 14 proprietary compounds may not be disclosed,

therefore the internal abbreviations are used throughout the text.

In cooperation with Genedata (Genedata, Basel, Switzerland), a cross-study analysis

was  carried  out  with  urinary  1H NMR  data,  to  extract  markers  specific  for  these

histopathological endpoints. Two different multivariate statistics models were employed to
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obtain a list of 1H NMR bins characteristic for the histopathological endpoints of bile duct

necrosis (BDN), hepatocellular cell death (HCD), and hepatocellular hypertrophy (HCH).

Requirements  for  a  potential  marker  of  a  specific  histopathological  endpoint  were  the

following: the bins should be altered in all studies showing the respective histopathological

endpoint, and they should remain unchanged in the other studies. The cross study analysis

required a subtraction of the mean of each bucket of the control group of each study, so

that the variable levels of metabolites across the different studies could be leveled out.

Subsequently,  either  a  t-test  approach  corrected  for  multiple  variables  or  a  OPLS-DA

model was used for the identification of bins containing putative molecular markers of the

respective toxicology. These bins were annotated with the Chenomx NMR Suite and the

metabolites identified in the 1H NMR spectra were quantified whenever possible.

10.1  Single study analysis with 1H NMR

10.1.1  FP004BA

Initially, principle component analysis (PCA) was performed on all observations to

determine time- and dose-dependent separation of treated animals from untreated controls

(Fig. 10.1.1a). While low dose group samples only slightly separated from the controls,

day 13 high dose group samples could be completely separated from the controls.  The

three days high dose samples deviated strongly from the plot and thus required further

analysis (see below). In a subsequent PCA analysis, the day 3 high dose samples were

removed  from  the  model  to  obtain  a  more  homogeneous  data  set  for  supervised

multivariate analysis (Fig. 10.1.1b). No clear separation of control animals from treated

animals could be observed in this model, although treated animals, especially the high dose

group and at the day 13 time point cluster to the left. To further analyze the high dose day

3 samples, a separate PCA model using only high dose day 3 and high dose day 13 samples

was constructed (Fig. 10.1.1c).

To identify altered metabolites in urine samples, an orthogonal partial least squares

discriminant analysis (OPLS-DA) model was constructed using control and predose versus

low and high dose animals (Fig. 10.1.1d). The score plot shows that the day 3 high dose

samples deviate strongly from the rest of the treated animals along the second orthogonal

component t[2]O, thus requiring further analysis. To overcome this problem, an OPLS-DA

model excluding the outliers (all high dose day 3 samples) was constructed (Fig. 10.1.1e).

The model shows a clear dose-dependent separation of controls from treated animal along
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the first discriminating component t[1]P with controls and high dose animal on both sides

and the low dose animals clustering inbetween. This model was used for marker analysis

with the S-plot [41].

Qualitative S-plot analysis of the OPLS-DA model (Fig. 10.1.1e) revealed a decrease

in  citrate  and  2-oxoglutarate  excretion  in  dosed  animals  at  all  time  points.  Increased

excretion of compounds with resonances in the aromatic region of the 1H NMR spectrum

(around 7.0 – 8.0 ppm), which may represent drug metabolites, aromatic amino acids or

Figure  10.1.1:  Scores  plots  of  FP004BA  1H NMR  data.  PCA  of  all  time  points  (a),
showing high dose day 3 samples to differ substantially from the rest. PCA with high dose
day 3 samples excluded from the analysis, and PCA of high dose day 3 samples and high
dose day 13 samples (c) to find out how they differ from the rest. OPLS-DA of all samples
(d) and with high dose day 3 samples excluded (e). Model characteristics are (a) R2X(cum)
= 0.92, Q2(cum) = 0.73, 9 significant components; (b) R2X(cum) = 0.92, Q2(cum) = 0.72, 9
significant components; (c) R2X(cum) = 0.11 Q2(cum) = 0.63, 1 significant component; (d)
R2X(cum) = 0.23, R2Y(cum) = 0.09 Q2(cum) = 0.23, 1 significant component; (e) R2X(cum)
= 0.55, R2Y(cum) = 0.50 Q2(cum) = 0.39, 1 significant component.
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polyphenol degradation products originating from altered gut microflora, was observed.

Furthermore, resonances of CH2 and CH3 groups of aliphatic amino acids and short chain

fatty acids (around 1.0 – 2.3 ppm) were increased.

To gain further insight into the effects leading to the differentiation of the high dose

day 3 samples as outliers when modeling all samples, a separate OPLS-DA model was

constructed comparing only high dose day 3 with high dose day 12 samples (data not

shown).  Analysis  revealed  an  increase  in  bile  acid  and  amino  acid  resonances

(0.8 – 2.3 ppm)  while  citrate,  oxoglutarate,  betaine,  taurine  and  hippurate  excretion

Figure 10.1.2: Scores plots of multivariate models of PF005ME and FP007SE  1H NMR
data. (a) PCA of FP005ME, all time points. (b) PCA of FP007SE, all time points. The
outlier 41-4 showed renal inflammation. (c) PCA of FP007SE, all time points, outlier 41-4
excluded. (d) OPLS-DA of FP005ME, all time points with outliers 43-1 and 45-3 excluded.
(e)  OPLS-DA  of  FP007SE,  all  time  points  with  outlier  41-4  excluded.  Model
characteristics are (a) R2X(cum) = 0.57, Q2(cum) = 0.76, 2 significant components; (b)
R2X(cum) = 0.86, Q2(cum) = 0.43, 8 significant components; (c) R2X(cum) = 0.83 Q2(cum)
= 0.43, 8 significant components; (d) R2X(cum) = 0.54, R2Y(cum) = 0.61 Q2(cum) = 0.41,
2 significant components; (e) R2X(cum) = 0.41, R2Y(cum) = 0.72 Q2(cum) = 0.66, 1 + 1
significant components.
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decreased in high dose day 3 samples. The increase in bile acid excretion correlates well

with the bile duct necrosis observed with histopathology and was confirmed by a targeted

bile acid analysis with LC/MS [148].

Besides these qualitative data, the Chenomx NMR Suite data base with more than

250 endogenous compounds was used to quantify the major urinary metabolites based on

integration of 1H NMR signals. Table 10.1.1 summarizes the concentrations of 22 urinary

metabolites normalized to urinary creatinine in samples obtained from control, low and

high  dose  animals  at  all  time  points.  Consistent  with  the  qualitative  data  analysis,  a

decrease in urinary concentrations of 2-oxoglutarate and citrate was observed in treated

animals on day 1 and day 3, but not on day 12. 4-Hydroxyphenylacetate and phenylacetyl-

glycine (PAG) were increased on day 3 and day 12. Both metabolites may derive from

altered  gut  microflora,  although  PAG  has  previously  been  suggested  as  a  marker  of

phospholipidosis [65; 149]. Taurine, a putative marker of liver toxicity, was significantly

increased  in  high  dose  animals  on  day 12,  so  was  trimethylamine-N-oxide  (TMAO).

Lactate was also increased in high dose animals on day 3 and day 12.

10.1.2  FP005ME

Multivariate data analysis of the urine  1H NMR data of FP005ME shows a clear

separation  of  high  dose  animals  from  controls  at  all  time  points  in  the  PCA  model

(Fig. 9.1.2a).  While  low  dose  animals  on  day 1  are  indistinguishable  from  controls,

individual low dose day 3 animal start to separate from controls and only on day 12 the

complete low dose group clearly separates from controls. In subsequent OPLS-DA, the

outliers of the PCA model (one control A43-1 at the top center and one high dose animal

A45-4 at the lower left corner) were excluded from the model. In the OPLS-DA model,

low dose and high dose animals  separated from controls  at  all  time points  in  a  dose-

dependent manner along the discriminating component t[1]p (Fig. 10.1.2d). Additionally, a

strong contribution to the orthogonal component t[2]O separates the high dose animal from

the low dose animals. Inspection of the original 1H NMR spectra revealed that the former

were recorded badly and had an extremely high baseline. This may be the reason for this

orthogonal  contribution,  but  the  bad  quality  of  the  spectra  did  not  allow  any  further

investigation.

Qualitative analysis of the alterations with the S-plot  [41]  revealed a decrease in

citrate  and  2-oxoglutarate  and  an  increase  in  the  excretion  of  TMAO,  betaine  and
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creatinine at all time points. An increased excretion of compounds with resonances in the

aromatic region (around 7.0 – 8.0 ppm), which may represent drug metabolites, aromatic

amino acids or polyphenol degradation products originating from altered gut microflora,

was also observed. Resonances that may belong to CH2 and CH3 groups of aliphatic amino

acids and short chain fatty acids (around 1.3 – 2.3 ppm) were found to be increased as well.

With the spectral database of the Chenomx NMR Suite, 16 major urinary metabolites

were quantified in the  1H NMR spectra.  Table 10.1.1 summarizes  concentrations of 16

urinary metabolites normalized to urinary creatinine in samples obtained from control and

low dose animals at all time points and high dose animals on day 12. 1H NMR spectra of

high dose animals of day 1 and day 3 could not be quantified as the spectral baseline was

extremely  high.  Consistent  with  the  qualitative  data  analysis,  a  decrease  in  urinary

concentrations of the Krebs cycle intermediates 2-oxoglutarate and citrate was observed in

treated animals,  although these changes were not  always statistically significant  due to

large  variability  among  individual  animals.  Phenylacetylglycine  was  significantly

increased  on  day 12.  Methylamine,  formate,  1-methylnicotinamide  and  TMAO  were

significantly  increased  in  high  dose  animals  on  day 12.  1-Methylnicotinamide  is  a

metabolite of nicotinamide. It is derived from tryptophan-metabolism, which is responsible

for NAD+ production. An increase was previously observed with PPAR-α agonists [150].

10.1.3  FP007SE

In the PCA model of FP007SE 1H NMR spectra (Fig. 10.1.2b), a separation of high

dose animals from controls is visible, but the plot is dominated by an extreme outlier from

the high dose day 12 group. In a subsequent PCA, the outlier (A41-4) was removed from

the  model  to  obtain  a  more  homogeneous  dataset.  In  this  model,  a  dose-dependent

separation of treated animals from controls along the first  two principal components is

visible, with the high dose animals in the lower left corner of the plot and the controls in

the upper right corner with the low dose samples inbetween. (Fig. 10.1.2c). The OPLS-DA

model, which was constructed with control and predose animals (control group) versus low

and high dose animals (treated group) with the outlier A41-4 excluded, separated controls

from treated  animals  in  a  dose-dependent  manner  along  the  discriminating component

t[1]P (Fig. 10.1.2e).

Qualitative S-plot analysis of the OPLS-DA model [41] revealed decreased citrate

and 2-oxoglutarate excretion in treated animals and potential changes in the excretion of
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TMAO,  betaine  and  creatinine  at  all  time  points.  Upregulated  bins  include  aromatic

regions  of  the  1H NMR  spectrum  (around  6 – 8 ppm)  which  may  represent  drug

metabolites,  aromatic amino acids or polyphenol degradation products originating from

altered gut microflora, as well as spectral regions containing resonances of CH2 and CH3

groups of aliphatic amino acids and short chain fatty acids (around 1.3 – 2.5 ppm).

20  major  urinary  metabolites  were  quantified  with  the  spectral  database  of  the

Chenomx NMR Suite. Table 10.1.1 summarizes the concentrations of these metabolites

normalized to  urinary creatinine in  samples  obtained from control,  low and high dose

animals  at  all  time  points.  Consistent  with  the  qualitative  data  analysis,  a  decrease  in

urinary  concentrations  of  2-oxoglutarate  and  citrate  was  observed  in  treated  animals,

although these changes were not  always statistically significant due to large variability

among individual animals. In addition, malonate, which is also a Krebs cycle intermediate,

was  decreased.  4-Hydroxyphenylacetate  and  phenylacetylglycine  were  significantly

increased on day 1. Both metabolites may derive from altered gut microflora [67–69; 142],

although  phenylacetylglycine  has  previously  been  suggested  as  a  marker  of  phospho-

lipidosis [65; 149]. Taurine, a putative marker of liver toxicity, was significantly increased

in low and high dose animals on day 12. In contrast to the qualitative data analysis, no

significant changes in the excretion of TMAO were observed, which may be due to the

different normalization methods applied for multivariate (normalized to total integral) and

quantitative  (normalized  to  creatinine)  analysis.  A  prominent  feature  was  the  highly

significant increase of 3-indoxyl sulfate (3-IS) observed on day 1 and day 13 in both dose

groups, but not on day 3. 3-IS is formed in the liver from indole, which in turn is produced

by  the  gut  microflora  as  a  tryptophan  metabolite.  It  is  an  uremic  toxin  and  may  be

associated with the induction of oxidative stress [151].

Separate analysis of the 1H NMR spectrum of the outlier A41 day12, which showed

acute  renal  inflammation  grade  4  in  histopathological  assessment,  revealed  a  strong

increase in the excretion of alanine, glycine, lysine, 5-oxoproline, glutamate and creatine,

and a decrease in Krebs cycle intermediates.



Table 10.1.1:  Urinary metabolites  [µg/mg creatinine]  of  the BDN studies  FP004BA, FP005ME and FP007SE quantified with the
Chenomx NMR Suite. Values are given in mean ± SD, statistically significantly altered (ANOVA + Dunnett's post hoc test) metabolites
are marked with * (*, p<0.05; **, p< 0.01; ***, p<0.001). 

Krebs  cycle intermediates

Citrate 2-OG1 Succinate Malonate Glucose Alanine Formate Lactate 1-MNA2 3-IS3

FP004BA

day 1
C 2.94 ± 0.55    1.91 ± 0.42    0.20 ± 0.05 

n.d.4
0.44 ± 0.10 0.05 ± 0.01  0.07 ± 0.02 0.07 ± 0.02    0.007 ± 0.003  0.13 ± 0.05    

L 2.32 ± 0.43    1.30 ± 0.25    0.21 ± 0.04 0.26 ± 0.04* 0.04 ± 0.01  0.07 ± 0.01 0.07 ± 0.01    0.011 ± 0.007  0.12 ± 0.01    
H 1.94 ± 0.50*   0.87 ± 0.67*  0.17 ± 0.06 0.34 ± 0.10 0.06 ± 0.01  0.07 ± 0.01 0.08 ± 0.02    0.009 ± 0.004  0.14 ± 0.03    

day 3
C 2.26 ± 0.29    1.47 ± 0.43    0.19 ± 0.02 

n.d.
0.29 ± 0.10 0.05 ± 0.01  0.06 ± 0.01 0.07 ± 0.01    0.005 ± 0.002  0.11 ± 0.02    

L 2.25 ± 0.63    1.19 ± 0.34    0.23 ± 0.07 0.31 ± 0.09 0.05 ± 0.01  007 ± 0.03 0.07 ± 0.02   0.011 ± 0.006  0.15 ± 0.05    
H 0.99 ± 0.58** 0.11 ± 0.10*** 0.09 ± 0.06* 0.30 ± 0.30 0.06 ± 0.01  0.08 ± 0.02 0.11 ± 0.02*** 0.004 ± 0.004  0.11 ± 0.04    

day 14
C 1.64 ± 0.16    0.85 ± 0.31    0.14 ± 0.02 

n.d.
0.23 ± 0.06 0.04 ± 0.01  0.05 ± 0.01 0.05 ± 0.01    0.003 ± 0.001  0.11 ± 0.03    

L 1.28 ± 0.27    0.55 ± 0.11    0.15 ± 0.05 0.23 ± 0.05 0.04 ± 0.01  0.07 ± 0.03 0.06 ±0.01    0.007 ± 0.004* 0.11 ± 0.02    
H 1.81 ± 0.31    080 ± 0.21    0.13 ± 0.02 0.26 ± 0.05 0.06 ± 0.02** 0.09 ± 0.02* 0.11 ± 0.02*** 0.001 ± 0.003  0.17 ± 0.02** 

FP005ME

day 1
C 6.46 ± 0.53    4.12 ± 0.72    0.21 ± 0.04 

n.d. n.d. n.d.
0.07 ± 0.01 

n.d.
0.02 ± 0.01  0.17 ± 0.04    

L 5.81 ± 0.56    2.72 ± 0.66    0.18 ± 0.03 0.09 ± 0.02 0.03 ± 0.01  0.18 ± 0.05    
H n.d. n.d. n.d. n.d. n.d. n.d.

day 3
C 6.71 ± 0.90    3.88 ± 1.07    0.20 ± 0.03 

n.d. n.d. n.d.
0.07 ± 0.01 

n.d.
0.01 ± 0.01  0.18 ± 0.05    

L 6.32 ± 0.39    3.01 ± 0.80    0.20 ± 0.02 0.09 ± 0.01* 0.03 ± 0.02  0.19 ± 0.03   
H n.d. n.d. n.d. n.d. n.d. n.d.

day 14
C 4.59 ± 0.72   2.94 ± 1.07    0.19 ± 0.05 

n.d. n.d. n.d.
0.07 ± 0.01 

n.d.
0.01 ± 0.01  0.21 ± 0.05   

L 4.42 ± 0.27   1.91 ± 0.40    0.20 ± 0.04 0.07 ± 0.01 0.03 ± 0.02  0.19 ± 0.05    
H 5.18 ± 1.55   1.18 ± 0.41** 0.22 ± 0.06 0.40 ± 0.32* 0.08 ± 0.04** 0.32 ± 0.04    

FP007SE

day 1
C 0.55 ± 0.09    0.39 ± 0.09    0.18 ± 0.03 0.62 ± 0.04  0.11 ± 0.01 0.03 ± 0.01 0.08 ± 0.02 0.02 ± 0.02    0.006 ± 0.006  0.07 ± 0.05    
L 0.50 ± 0.06    0.31 ± 0.05    0.20 ± 0.07 0.62 ± 0.11  0.11 ± 0.01 0.03 ± 0.01 0.07 ± 0.01 0.04 ± 0.01    0.002 ± 0.001  0.21 ± 0.03***
H 0.31 ± 0.09*** 0.21 ± 0.06** 0.15 ± 0.03 0.37 ± 0.12** 0.06 ± 0.08 0.03 ± 0.01 0.05 ± 0.01* 0.02 ± 0.02    0.002 ± 0.002  0.36 ± 0.03***

day 3
C 1.26 ± 1.80    0.85 ± 1.08    0.37 ± 0.47 1.51 ± 2.08  0.20 ± 0.28 0.06 ± 0.08 0.19 ± 0.27 0.08 ± 0.11    0.007 ± 0.005  0.15 ± 0.02    
L 0.48 ± 0.10    0.31 ± 0.07    0.24 ± 0.10 0.61 ± 0.07  0.08 ± 0.05 0.03 ± 0.01 0.07 ± 0.01 0.04 ± 0.01    0.002 ± 0.001  0.23 ± 0.01    
H 0.35 ± 0.04    0.27 ± 0.06    0.20 ± 0.04 0.29 ± 0.20  0.03 ± 0.04 0.04 ± 0.02 0.05 ± 0.01 0.09 ± 0.08    0.002 ± 0.001  0.34 ± 0.12    

day 14
C 0.36 ± 0.05    0.28 ± 0.07    0.11 ± 0.03 0.54 ± 0.04  0.07 ± 0.04 0.02 ± 0.01 0.06 ± 0.01 0.01 ± 0.02    0.005 ± 0.006  0.05 ± 0.02    
L 0.41 ± 0.05    0.22 ± 0.07    0.17 ± 0.05 0.57 ± 0.09  0.04 ± 0.06 0.03 ± 0.01 0.07 ± 0.01 0.03 ± 0.03    0.001 ± 0.001  0.24 ± 0.02** 
H 0.30 ± 0.10    0.25 ± 0.14    0.10 ± 0.07 0.32 ± 0.19* 0.02 ± 0.04 0.07 ± 0.05* 0.21 ± 0.17* 0.18 ± 0.22    0.001 ± 0.001  0.28 ± 0.11***

12-OG, 2-oxoglutarate; 21-MNA, 1-methylnicotinamide; 33-IS, 3-indoxylsulfate; 4n.d., not determined;



Table 10.1.1 (continued): Urinary metabolites [µg/mg creatinine] of the BDN studies FP004BA, FP005ME and FP007SE quantified
with the Chenomx NMR Suite. Values are given in mean ± SD, statistically significantly altered (ANOVA + Dunnett's post hoc test)
metabolites are marked with * (*, p<0.05; **, p< 0.01; ***, p<0.001).

Osmolytes Gut flora metabolites

Betaine 1TMAO Taurine Trigonelline 24-HPA Hippurate 3PAG 4DMG Methylamine 5DMA

FP004BA

day 1
C 0.28 + 0.28 0.12 + 0.02    0.12 + 0.10   0.06 + 0.02   0.07 + 0.01   1.08 + 0.20 0.18 + 0.07    0.12 + 0.07  0.06 + 0.02    0.15 + 0.03 
L 0.27 + 0.16 0.11 + 0.02    0.11 + 0.13   0.06 + 0.01   0.05 + 0.01   0.91 + 0.08 0.16 + 0.04    0.10 + 0.03  0.06 + 0.01    0.12 + 0.01 
H 0.17 + 0.09 0.13 + 0.03    0.07 + 0.11   0.05 + 0.01   0.06 + 0.01   0.89 + 0.15 0.20 + 0.06    0.10 + 0.04  0.06 + 0.01    0.13 + 0.02 

day 3
C 0.28 + 0.20 0.10 + 0.02    0.14 + 0.11   0.06 + 0.01   0.04 + 0.01   0.96 + 0.13 0.09 + 0.02    0.13 + 0.07  0.06 + 0.01    0.13 + 0.02 
L 0.19 + 0.08 0.11 + 0.03    0.12 + 0.05   0.06 + 0.01   0.06 + 0.01** 0.95 + 0.12 0.15 + 0.04*  0.10 + 0.02  0.06 + 0.01   0.13 + 0.02 
H 0.07 + 0.02* 0.13 + 0.06    0.06 + 0.06   0.03 + 0.01** 0.06 + 0.01* 0.66 + 0.20* 0.15 + 0.05    0.07 + 0.02  0.06 + 0.06    0.13 + 0.01 

day 14
C 0.17 + 0.12 0.07 + 0.01    0.24 + 0.06   0.05 + 0.01   0.05 + 0.01   0.80 + 0.08 0.12 + 0.03    0.08 + 0.04  0.05 + 0.01    0.10 + 0.01 
L 0.11 + 0.04 0.06 + 0.01    0.37 + 0.10  0.04 + 0.01   0.04 + 0.01   0.67 + 0.10 0.14 + 0.04    0.06 + 0.01  0.04 + 0.01    0.09 + 0.02 
H 0.28 + 0.11 0.15 + 0.03*** 0.44 + 0.15* 0.05 + 0.01   0.07 + 0.01** 0.94 + 0.14 0.24 + 0.06** 0.13 + 0.04* 0.07 + 0.02*  0.12 + 0.01*

FP005ME

day 1
C 0.10 + 0.08 0.17 + 0.06    1.14 + 0.22   0.10 + 0.01     n.q.6 1.56 + 0.22 0.20 + 0.03    0.06 + 0.02  0.05 + 0.02    0.11 + 0.02 
L 0.14 + 0.10 0.18 + 0.02    1.31 + 0.40   0.10 + 0.01   0.11 + 0.01   1.56 + 0.25 0.23 + 0.03    0.11 + 0.03  0.05 + 0.01    0.14 + 0.04 
H   n.d.7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

day 3
C 0.11 + 0.06 0.19 + 0.06    1.31 + 0.22   0.10 + 0.01   n.q. 1.80 + 0.10 0.18 + 0.03    0.08 + 0.04  0.05 + 0.02    0.14 + 0.03 
L 0.20 + 0.16 0.18 + 0.03    1.37 + 0.25   0.10 + 0.02   0.10 + 0.01   1.60 + 0.17 0.21 + 0.03    0.12 + 0.04  0.04 + 0.02    0.14 + 0.02 
H n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

day 14
C 0.11 + 0.06 0.18 + 0.04    1.12 + 0.27   0.08 + 0.01   0.13 + 0.02   1.35 + 0.12 0.27 + 0.10    0.07 + 0.03  0.07 + 0.02    0.12 + 0.03 
L 0.18 + 0.12 0.18 + 0.05    1.15 + 0.23   0.09 + 0.01   0.14 + 0.07   1.06 + 0.52 0.20 + 0.02    0.11 + 0.03  0.05 + 0.01    0.12 + 0.01 
H 0.74 + 0.78 0.37 + 0.11** 1.36 + 0.30   0.09 + 0.01   0.17 + 0.04   0.98 + 0.47 0.41 + 0.03*  0.10 + 0.01  0.27 + 0.09*** 0.15 + 0.03 

FP007SE

day 1
C 0.26 + 0.08 0.18 + 0.02    1.10 + 0.18   0.08 + 0.01   0.14 + 0.04   0.60 + 0.22 0.14 + 0.03    0.17 + 0.03  0.07 + 0.02    0.07 + 0.07 
L 0.21 + 0.15 0.15 + 0.01    1.23 + 0.16   0.07 + 0.01   0.14 + 0.05   0.61 + 0.22 0.32 + 0.04** 0.14 + 0.04  0.07 + 0.01    0.11 + 0.06 
H 0.13 + 0.12 0.14+ 0.05    1.39 + 0.28   0.04 + 0.03** 0.25 + 0.04** 0.44 + 0.21 0.62 + 0.09*** 0.07 + 0.03** 0.09 + 0.03    0.09 + 0.05 

day 3
C 0.46 + 0.49 0.31 + 0.32    3.38 + 4.84   0.21 + 0.29   0.39 + 0.59   1.09 + 1.41 0.30 + 0.41    0.41 + 0.55  0.15 + 0.20    0.25 + 0.39 
L 0.18 + 0.14 0.15 + 0.03    1.45 + 0.18   0.07 + 0.01   0.17 + 0.08   0.42 + 0.24 0.32 + 0.02    0.12 + 0.05  0.10 + 0.02    0.12 + 0.02 
H 0.11 + 0.11 0.11 + 0.07    2.45 + 1.46   0.05 + 0.02   0.21 + 0.08   0.20 + 0.12 0.35 + 0.12   0.07 + 0.02  0.10 + 0.04    0.06 + 0.05 

day 14
C 0.16 + 0.04 0.12 + 0.03    1.12 + 0.05   0.07 + 0.01   0.10 + 0.03   0.54 + 0.20 0.12 + 0.01    0.10 + 0.02  0.06 + 0.02    0.08 + 0.03 
L 0.13 + 0.06 0.15 + 0.02    1.25 + 0.39   0.07 + 0.01   0.18 + 0.03* 0.36 + 0.11 0.32 + 0.09** 0.07 + 0.02  0.10 + 0.01    0.10 + 0.03 
H 0.19 + 0.06 0.21 + 0.21    3.01 + 1.41** 0.04 + 0.03   0.17 + 0.07   0.31 + 0.19 0.27 + 0.10*  0.07 + 0.01  0.18 + 0.09** 0.11 +0.03 

1TMAO,  trimethylamine-N-oxide;  24-HPA,  4-hydroxyphenylacetate;  3PAG,  phenylacetylglycine;  4DMG,  N,N-dimethylglycine;  5DMA,  dimethylamine;  6n.q.,  not  quantifyable;  7n.d.,  not
determined



86 10 Innomed PredTox

10.2  Single Study analysis with GC/MS

10.2.1  FP004BA

The PCA model of all animals at all time points showed a separation of day 3 and

day 12 high dose  samples  from controls  (Fig. 10.2.1a).  Especially  the  day 3 high dose

samples  were  distinctly  separated  from the  rest  of  the  plot.  A  subsequent  OPLS-DA

analysis  showed  a  separation  of  controls  from  dosed  animal  along  the  discriminating

component  t[1]p,  but  low  dose  samples  separated  from  high  dose  samples  along  the

orthogonal component t[2]O (Fig. 10.2.1d). S-plot analysis [41] revealed mainly a decrease

in urinary citrate and 2-oxoglutarate to be responsible for the separation of treated animals

from controls. Additionally, minor increases in short-chained alkylamines (propylamine,

n-butylamine, putrescine), gluconic acid and myo-inositol could be observed as well.

10.2.2  FP005ME

The PCA model of all animals at all time points clearly separated high dose samples

from controls  along  the  first  two PCs,  with  the  low dose  samples  situated  inbetween

(Fig. 10.2.1b).  The subsequent  OPLS-DA separated  controls  from treated  animals  in  a

dose-dependent  manner,  with the controls  and high dose samples on both sides of  the

scores plot and the low dose samples situated inbetween (Fig. 10.2.1e). S-plot analysis [41]

revealed the urinary excretion of the Krebs cycle intermediates citrate, 2-oxoglutatate and

malic  acid  to  be  decreased  while  concentrations  of  short-chained  alkylamines

(propylamine,  n-butylamine),  5-hydroxyindole,  hippurate  and  gluconic  acid  were

increased.

10.2.3  FP007SE

The  PCA model  partially  separated  controls  from dosed  animals,  but  the  model

contained a large variance, presumably introduced by sample work-up and derivatization

necessary for  GC/MS analysis  (Fig. 10.2.1.c).  The OPLS-DA model  separates controls

from treated animals, and a trend to a dose-dependent separation is visible (in general, the

high  dose  samples  are  situated  more  to  the  right  side  of  the  plot  than  the  low  dose

samples), however, the plot is still dominated by a large variance not reflecting any dose-

or time-dependent trends (Fig. 10.2.1f). S-plot analysis [41] revealed the separation to be

driven  by  a  decrease  in  urinary  citrate  and  2-oxoglutarate  in  dosed  animals.  Further
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analysis  after  removal  of  citrate  and 2-oxoglutarate  signals  from the model  revealed a

decrease in malic acid and  cis-aconitate, which are both Krebs cycle intermediates, and

gluconic  acid,  as  well  as  an  increase  in  the  excretion  of  5-hydroxyindole  and

4-hydroxyphenylacetate.

Separate  analysis  of  the  high  dose  day  13  sample  A41-4  showing  strong  renal

inflammation  revealed  a  strong  increase  in  urinary  concentrations  of  5-oxoproline,

glutamine, glycine, and creatine as compared to controls.

Figure 10.2.1: Scores plots of multivariate models of FP004BA, FP005ME and FP007SE
GC/MS data. (a) PCA of FP004BA, all time points. (b) PCA of FP005ME, all time points.
(c)  PCA of  FP007SE,  all  time points.  (d)  OPLS-DA of  FP004BA,  all  time points.  (e)
OPLS-DA of FP005ME, all time points. (f) OPLS-DA of FP007SE, all time points. Model
characteristics are (a) R2X(cum) = 0.84, Q2(cum) = 0.69, 3 significant components; (b)
R2X(cum) = 0.85, Q2(cum) = 0.43, 6 significant components; (c) R2X(cum) = 0.94 Q2(cum)
= 0.80, 8 significant components; (d) R2X(cum) = 0.77, R2Y(cum) = 0.46 Q2(cum) = 0.04,
1 significant component; (e) R2X(cum) = 0.64, R2Y(cum) = 0.68 Q2(cum) = 0.54, 1 + 1
significant components; (e) R2X(cum) = 0.80, R2Y(cum) = 0.73 Q2(cum) = 0.65, 1 + 2
significant components.
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10.3  Comparison of 1H NMR and GC/MS metabonomics for
single study analysis

GC/MS metabonomics is able to discriminate treated animals from controls in the

same manner as 1H NMR metabonomics. While 1H NMR is a fast and efficient screening

method for a quick overlook of data structure, it  is however limited to a maximum of

around 40 quantifiable metabolites. Even though GC/MS requires more extensive sample

work-up,  it  is  however  more  sensitive  and  allows  the  analysis  of  a  wider  range  of

metabolites.  Further  maturation  of  the  technology,  i.e.  the  combination  of  automated

sample preparation with GC/TOF-MS has great potential for metabonomics applications

[29].

Table 10.3.1: Comparison of urinary metabolites found to be changed upon treatment with
multivariate  analysis  of  1H NMR  and  GC/MS  data.↑  indicates  increased,  ↓  indicates
decreased excretion as compared to controls.

1H NMR GC/MS
FP004BA FP005ME FP007SE FP004BA FP005ME FP007SE

3-indoxylsulfate ↑ -- ↑ -- -- --
4-hydroxyphenylacetate ↑ -- -- -- ↑ ↑

5-hydroxyindole -- -- -- ↑ ↑ ↑
betaine -- -- ↓ -- -- --

butylamine -- -- -- ↑ ↑ ↑
cis-aconitate -- -- -- -- -- ↓

citrate ↓ ¯ ↓ ↓ ↓ ↓
creatinine ↑ -- -- ↑ -- --

gluconic acid -- -- -- ↑ ↑ ↑
glucose ↑ ↑ -- -- -- --

hippurate ↓ ↓ ↓ -- ↓ --
lactate ↑ -- -- -- -- --

malic acid -- -- -- -- ↓ ¯
methylamine -- ↑ -- -- -- --
oxoglutarate ↓ ↓ ↓ ↓ ↓ ↓

phenylacetylglycine ↑ ↑ ↑ -- -- --
propylamine -- -- -- ↑ ↑ ↑

taurine ↑ ↑ -- -- -- --
TMAO1 ↑ ↑ -- -- -- --

1TMAO, trimethylamine-N-oxide

Single study metabonomic analysis of three compounds inducing bile duct necrosis

(FP004BA, FP005ME, FP007SE, BDN group) revealed as main discriminating factor a

decrease  of  the  Krebs  cycle  intermediates  citrate  and  2-oxoglutarate.  Furthermore,

alterations  in  the  excretion  of  aromatic  metabolites  probably  originating  from  dietary

polyphenols degraded by the gut flora, as well as some other “usual suspects” [15] were

observed.  These  alterations  could  discriminate  between  treated  animals  and  controls,

however they are found in most toxicity-related metabonomics studies. Therefore, they

cannot be used as site- or mechanism-specific biomarkers. However, they appear useful as
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general  indicators  of  toxicity.  To  obtain  a  quick  overview  over  the  urinary  profiles,
1H NMR and GC/MS are equally well suited.

One problem with  single  study analysis  is  that  compound  metabolites  present  in

urine may strongly bias the results by contributing to group separation. This is especially

the case for novel compounds, where metabolism is not fully elucidated. Besides, effects

related  to  the  pharmacological  action  of  a  compound  or  to  adaptive  processes  can  be

distinguished from toxicity-related effects only with difficulty. For biomarker discovery,

therefore, a cross study analysis has to be performed, and only those alterations occurring

across all studies with the same toxicity should be considered. Moreover, the classification

of the samples  should be phenotypically anchored. Groups should not be classified by

“dose” and “control” but rather by “toxic lesion” and “no toxicity” as observed by the

reference procedure histopathology.

10.4  Cross study analysis with 1H NMR

One problem in single study analyses is the fact that the models differentiate between

treated and control animals in the respective study but may not necessarily be generally

predictive for the toxicity observed. To eliminate these problems of single study analyses,

a multivariate analysis across several studies showing the same histopathological endpoint

was  applied.  This  cross  study  analysis  was  carried  out  by  two  different  multivariate

statistical approaches, leading to two lists of 1H NMR buckets containing potential markers

for the respective toxicity endpoint. The identified bins had to be specific for the respective

toxicological endpoint, i.e they should be significantly altered only in the urine of those

animals showing the respective toxicity, but not in the others.

Three  liver  pathology  groups  were  defined  and  studies  showing  the  respective

pathology were assigned to these groups: Bile duct necrosis, hepatocellular cell death and

hepatocellular  hypertrophy.  Bile  duct  necrosis  (BDN, FP004BA,  FP005ME,  FP007SE)

was characterized phenotypically  by apoptosis  or  necrosis  of  bile  duct  epithelial  cells,

inflammation,  fibrosis  and  cholestasis.  Hepatocellular  cell  death  (HCD,  FP004BA,

FP014SC, FP015NN) was characterized by increased liver enzyme activity (AST, ALT),

inflammation,  apoptosis  or  necrosis  of  hepatocytes.  Hepatocellular  hypertrophy (HCH,

FP001RO,  FP003SE,  FP0008AL,  FP010SG,  FP011OR,  FP016LY)  was  characterized

phenotypically by an increased liver weight and microscopically observable hypertrophic

hepatocytes.  Mechanistically,  hepatocyte  hypertrophy  origins  from  an  extensive
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proliferation of the smooth endoplasmatic reticulum due to the induction of xenobiotic

metabolizing enzymes and peroxisome proliferation. These findings were also confirmed

by transcriptomics data.

One approach used a t-test corrected for non-independent variables on the data of

each pathology group (Genedata), and then selected the “ten best variables” which had the

lowest p-value and were only significantly altered in one histopathology group and not in

the other groups. The second approach used the shared and unique structure (SUS)-plot for

OPLS-DA [41]. This approach requires separate OPLS-DA models for each toxicity group

to begin with. Then, the correlations p(corr) of the predictive component t[1]p of each

model  are  plotted against  each other.  Variables that  are either  positively or negatively

correlated appear in the corners of the plot, while those variables associated uniquely with

the discrimination of one model are situated along the axes of the plot [41].

Table 10.4.1: Variables and putative markers specifically altered in the 1H NMR spectra
of  the  bile  duct  necrosis  (BDN)  group.  Altered bins  were  identified  either  by  SIMCA
analysis or by t-test corrected for non-independent variables. Changes in excretion levels
are marked with arrows, (↑) up and (↓) down as compared to controls. Metabolites that
could only be assigned speculatively are marked with (?).

BDN Variable ID
bin [ppm] Metabolite ID Change p-value (t-test) Ratio of

Medians

SIMCA
model

7.84 Hippurate ↓ 1.17 x 10-3 n.a.1

7.72 3-Indoxylsulfate ↑ 2.27 x 10-8 6.48
7.66 Hippurate ↓ 1.27 x 10-9 n.a.
7.38 Phenylacetylglycine ↑ 2.83 x 10-8 7.60
7.37 Phenylacetylglycine ↑ 3.25 x 10-7 5.36
7.36 Phenylacetylglycine ↑ 3.62 x 10-9 6.16
7.18 4-Hydroxyphenylacetate ↑ 5.72 x 10-11 3.80
7.17 4-Hydroxyphenylacetate ↑ 3.03 x 10-8 7.40
3.69 Phenylacetylglycine ↑ 1.39 x 10-9 3.79
3.68 Phenylacetylglycine ↑ 5.90 x 10-4 3.85
2.94 N,N-Dimethylglycine ↓ 5.33 x 10-9 n.a.
2.14 Bile acid(s) (?) ↑ 4.49 x 10-10 6.01

Best ten
(T-test)

8.85 Trigonelline ↓ 6.44 x 10-10 n.a.
7.43 Phenylacetylglycine ↑ 6.23 x 10-10 7.08
7.42 Phenylacetylglycine ↑ 7.88 x 10-10 5.94
7.29 3-Indoxylsulfate ↑ 4.57 x 10-10 3.42
7.18 4-Hydroxyphenylacetate ↑ 5.72 x 10-11 3.80
3.99 Hippurate ↓ 3.66 x 10-10 n.a.
2.79 5-Aminolevulinate (?) ↓ 3.57 x 10-12 n.a.
2.77 5-Aminolevulinate (?) ↓ 7.40 x 10-10 n.a.
2.55 Citrate ↓ 2.05 x 10-10 n.a.
2.49 5-Aminolevulinate (?) ↓ 1.42 x 10-12 n.a.

1n.a., not applicable

Both  approaches  resulted  in  two sets  of  1H NMR buckets  for  bile  duct  necrosis

(Tab. 10.4.1),  hepatocellular  hypertrophy  (Tab. 10.4.2)  and  hepatocellular  cell  death

(Tab. 10.4.3). These buckets were then assigned with the spectral database of the Chenomx
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NMR Suite. While for most buckets, the corresponding metabolites could be quantified,

for  some,  the  corresponding  metabolite  could  only  be  assigned  speculatively  by  the

concordant chemical shifts of the resonances of the compound.

Although  there  was  virtually  no  overlap  between  the  buckets  identified  by  the

different  statistical  analyses,  the  compounds  identified  in  these  bins  overlapped

substantially.  For  example,  hippurate  was  found  by  both  multivariate  approaches  as

putative marker of bile duct necrosis, but the aromatic resonances of hippurate were found

only  with  the  SUS-plot  analysis  and  the  resonance  at  3.99 ppm  only  with  the  t-test

approach (Tab. 10.4.1). This can probably be attributed to the arbitrarily set cut-off values

for bucket selection, were minor changes in rank cause the buckets to be included in the

analysis or not.

Table 10.4.2: Variables and putative markers specifically altered in the 1H NMR spectra
of the hepatocellular hypertrophy (HCH) group. Altered bins were identified with SIMCA
analysis and t-test corrected for non-independent variables. Changes in excretion levels
are marked with arrows, (↑) up and (↓) down as compared to controls. Metabolites that
could only be assigned speculatively are marked with (?).

HCH Variable ID
bin [ppm] Metabolite ID Change p-value (t-test) Ratio of

Medians

SIMCA
model

7.37 Phenylacetylglycine ↑ 2.59 x 10-02 3.72
7.36 Phenylacetylglycine ↑ 6.66 x 10-08 4.55
4.15 Proline (?), Gluconate (?) ↑ 8.87 x 10-18 17.03
3.94 Creatine ↑ 4.73 x 10-03 2.77
3.89 Glucose, Glycocholate ↑ 2.04 x 10-07 3.48
3.78 Glucose, Alanine ↑ 5.31 x 10-09 4.41
3.77 Glucose, Glycocholate, Phenylacetylglycine ↑ 5.63 x 10-14 6.08
3.76 Glucose, Alanine ↑ 1.13 x 10-29 9.42
3.75 Glucose, Glycocholate, Phenylacetylglycine ↑ 1.33 x 10-26 9.97
3.74 Glucose, Glycocholate, Phenylacetylglycine ↑ 6.25 x 10-26 7.84
3.73 Glucose, Glycocholate, Phenylacetylglycine ↑ 2.05 x 10-23 3.02
3.72 Glucose, Glycocholate ↑ 3.21 x 10-07 8.74
3.71 Glucose, N,N-dimethylglycine ↑ 7.43 x 10-07 3.87
3.7 Sucrose (?) ↑ 1.46 x 10-06 3.32

3.69 Glucose ↑ 1.19 x 10-07 4.57
3.68 Phenylacetylglycine ↑ 5.96 x 10-11 6.05
3.67 Phenylacetylglycine ↑ 2.08 x 10-26 6.02
3.66 Phenylacetylglycine ↑ 1.57 x 10-24 8.60
3.65 Isoleucine (?), myo-Inositol (?), Valine (?) ↑ 2.05 x 10-23 11.91
3.64 Isoleucine (?), myo-Inositol (?), Valine (?) ↑ 2.72 x 10-19 4.81
3.05 Creatinine, Creatine ↑ 5.70 x 10-02 1.07

Best ten
T-test

3.76 Phenylacetylglycine ↑ 1.13 x 10-29 9.42
3.75 Phenylacetylglycine, Glucose ↑ 1.33 x 10-26 9.97
3.74 Glucose (?) ↑ 6.25 x 10-26 7.84
3.67 Phenylacetylglycine ↑ 2.08 x 10-26 6.02
3.66 Isoleucine (?), myo-Inositol (?), Valine (?) ↑ 1.57 x 10-24 8.60
3.65 Isoleucine (?), myo-Inositol (?), Valine (?) ↑ 2.05 x 10-23 11.91
3.64 Isoleucine (?), myo-Inositol (?), Valine (?) ↑ 2.72 x 10-19 4.81
2.69 Citrate ↓ 1.82 x 10-20 n.a.1

2.55 Citrate ↓ 9.83 x 10-19 n.a.
1.83 Cholate, Glycocholate, 4-Hydroxybutyrate (?)

Glutarate (?)
↓ 1.56 x 10-19 n.a.

1n.a., not applicable
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Quantified  metabolite  data  is  summarized  in  tables  for  the  bile  duct  necrosis,

hepatocellular hypertrophy and hepatocellular cell death groups (Tabs. 10.4.4, 10.4.5 and

10.4.6  respectively).  Lack  of  time  and  human  resources  did  not  allow  the  complete

quantification of all putative metabolite markers across all studies with all dose levels and

time points. Instead, for the bile duct necrosis group, the seven putative metabolite markers

were quantified for all studies at the 13 day timepoint to assure that the concentration of

these metabolites was only changed in those studies showing bile duct necrosis but not in

the others. For the hepatocellular hypertrophy and hepatocellular cell death groups, only

control and high dose samples of the respective studies were quantified at the time point

showing the greatest effect in histopathology.

Table 10.4.3: Variables and putative markers specifically altered in the 1H NMR spectra
of the hepatocellular cell death (HCD) group. Altered bins were identified with SIMCA
analysis and t-test corrected for non-independent variables. Changes in excretion levels
are marked with arrows, (↑) up and (↓) down as compared to controls. Metabolites that
could only be assigned speculatively are marked with (?).

HCD Variable ID
bin [ppm] Metabolite ID Change p-value (t-test) Ratio of

Medians

SIMCA
model

3.82 ? ↑ 3.110 x 10-03 1.21
2.44 2-Oxoglutarate ↓ 2.710 x 10-03 1.09
2.20 ? ↑ 4.850 x 10-02 3.71
1.57 ? ↑ 1.147 x 10-03 2.90
1.56 ? ↑ 1.850 x 10-04 3.72
1.55 ? ↑ 2.995 x 10-05 3.74

Best ten
T-test

8.84 Trigonelline ↑ 1.87849 x 10-06 2.35
7.93 ? ↑ 2.60195 x 10-05 6.70
3.69 Phenylacetylglycine ↑ 3.08136 x 10-05 4.29
2.69 Citrate ↑ 1.12342 x 10-05 1.20
2.55 Citrate ↑ 7.39211 x 10-06 1.02
1.55 ? ↑ 2.99521 x 10-05 3.74
1.54 ? ↑ 1.80665 x 10-05 2.79
1.38 ? ↑ 1.2518 x 10-05 5.21
0.45 ? ↓ 2.38169 x 10-05 1/2.63
0.44 ? ↑ 2.14593 x 10-05 1.12

For further testing of the identified markers, PCA models were constructed for each

histopathology  endpoint  using  the  quantified  metabolite  concentrations  as  variables

(Fig. 10.4.1). Although the levels of the metabolite concentrations in urine varies strongly

between  the  control  groups  in  individual  studies,  control  and  high  does  animals  of

individual  studies  can  be  discriminated  with  multivariate  models  on  the  basis  of  the

selected putative markers.
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Table  10.4.4:  All  bile  duct  necrosis  (BDN)  markers  were  quantified  in  the  original
1H NMR spectra of the day 13 urine samples, using the Chenomx NMR Suite. Values are
given as mean ± SD in mM/mM creatinine, statistically significantly altered (ANOVA +
Dunnett's  post  hoc test)  metabolites are marked with * (*,  p<0.05; **,  p< 0.01; ***,
p<0.001). Studies showing BDN findings are marked in yellow.

3-IS1 4-HPA2 Citrate Hippurate DMG3 PAG4 Trigonelline

FP001RO
C 0.15 ± 0.07   0.11 ± 0.05 4.06 ± 0.79 1.08 ± 0.53 0.11 ± 0.06 0.16 ± 0.05 0.07 ± 0.01
L 0.22 ± 0.07   0.11 ± 0.01 4.61 ± 0.66 1.39 ± 0.24 0.07 ± 0.03 0.21 ± 0.06 0.08 ± 0.01
H 0.22 ± 0.09   0.13 ± 0.04 4.33 ± 1.10 1.13 ± 0.80 0.03 ± 0.03* 0.29 ± 0.15 0.07 ± 0.02

FP002BI
C 0.30 ± 0.06   0.11 ± 0.02 2.27 ± 0.75 1.14 ± 0.25 0.11 ± 0.02 0.49 ± 0.12 0.10 ± 0.02
L 0.25 ± 0.05   0.10 ± 0.01 3.06 ± 0.76 1.32 ± 0.14 0.14 ± 0.04 0.27 ± 0.18 0.11 ± 0.02
H 0.24 ± 0.17   0.10 ± 0.01 2.80 ± 0.81 0.86 ± 0.16 0.13 ± 0.02 0.46 ± 0.15 0.08 ± 0.01

FP003SE
C 0.07 ± 0.02   0.08 ± 0.02 3.96 ± 0.71 1.01 ± 0.06 0.11 ± 0.03 0.19 ± 0.03 0.09 ± 0.01
L 0.17 ± 0.01   0.11 ± 0.03 4.46 ± 1.20 1.00 ± 0.34 0.16 ± 0.03 0.36 ± 0.06 0.09 ± 0.01
H 0.24 ± 0.13*  0.11 ± 0.02 4.48 ± 1.29 1.10 ± 0.19 0.17 ± 0.03* 0.55 ± 0.26** 0.09 ± 0.01

FP004BA
day 03

C 0.11 ± 0.02   0.04 ± 0.01 2.26 ± 0.29 0.96 ± 0.13 0.13 ± 0.07 0.09 ± 0.02 0.06 ± 0.01  
L 0.15 ± 0.05   0.06 ± 0.01** 2.25 ± 0.63 0.95 ± 0.12 0.10 ± 0.02 0.15 ± 0.04* 0.06 ± 0.01  
H 0.11 ± 0.04   0.06 ± 0.01* 0.99 ± 0.58** 0.66 ± 0.20* 0.07 ± 0.02 0.15 ± 0.05 0.03 ± 0.01**

FP004BA
day 14

C 0.19 ± 0.04   0.08 ± 0.01 2.85 ± 0.27 1.38 ± 0.12 0.14 ± 0.06 0.22 ± 0.04  0.08 ± 0.01 
L 0.19 ± 0.04   0.08 ± 0.01 2.22 ± 0.62 1.16 ± 0.10* 0.11 ± 0.04 0.24 ± 0.03  0.07 ± 0.01*
H 0.22 ± 0.02** 0.11 ± 0.01*** 2.95 ± 0.77 1.49 ± 0.13 0.21 ± 0.04 0.38 ± 0.09** 0.08 ± 0.01 

FP005ME
C 0.08 ± 0.12 0.05 ± 0.07 4.59 ± 0.72 1.35 ± 0.12 0.07 ± 0.03 0.27 ± 0.10   0.08 ± 0.01
L 0.19 ± 0.05 0.08 ± 0.09 4.42 ± 0.27 1.06 ± 0.52 0.11 ± 0.03 0.20 ± 0.02   0.09 ± 0.01
H 0.16 ± 0.18 0.09 ± 0.10 4.83 ± 1.53 0.89 ± 0.50 0.10 ± 0.01 0.30 ± 0.20   0.09 ± 0.01

FP006JJ
C 0.14 ± 0.02 0.09 ± 0.03 1.34 ± 0.37 0.50 ± 0.07 0.04 ± 0.01 0.36 ± 0.07   0.02 ± 0.01
L 0.12 ± 0.02 0.08 ± 0.01 0.74 ± 0.26* 0.44 ± 0.09 0.04 ± 0.01 0.36 ± 0.07   0.02 ± 0.01
H 0.13 ± 0.03 0.09 ± 0.02 0.67 ± 0.23** 0.47 ± 0.15 0.04 ± 0.03 0.34 ± 0.10   0.02 ± 0.01

FP007SE
C 0.06 ± 0.02    0.13 ± 0.04 4.70 ± 0.31 0.70 ± 0.24 0.13 ± 0.03 0.16 ± 0.02   0.09 ± 0.01 
L 0.28 ± 0.05** 0.21 ± 0.03 4.92 ± 1.22 0.40 ± 0.04 0.09 ± 0.02* 0.36 ± 0.06** 0.08 ± 0.01 
H 0.35 ± 0.13*** 0.21 ± 0.09 3.74 ± 1.09 0.39 ± 0.22* 0.09 ± 0.02 0.34 ± 0.12** 0.05 ± 0.03*

FP008AL
C n.d.5 n.d. n.d. n.d. n.d. n.d. n.d.
L 0.30 ± 0.04   0.10 ± 0.01 1.82 ± 0.68 1.06 ± 0.11 0.11 ± 0.03 0.68 ± 0.06    0.08 ± 0.01
H 0.25 ± 0.08   0.16 ± 0.03* 0.78 ± 0.31 1.15 ± 0.12 0.08 ± 0.02 0.86 ± 0.30*** 0.08 ± 0.01

FP009SF
C 0.10 ± 0.10 0.11 ± 0.02   6.61 ± 0.88 1.48 ± 0.17  0.18 ± 0.02  0.19 ± 0.04 0.14 ± 0.01    
L 0.06 ± 0.02 0.21 ± 0.07** 8.20 ± 1.06* 0.91 ± 0.94  0.31 ± 0.09* 0.23 ± 0.06 0.17 ± 0.02***
H 0.09 ± 0.02 0.28 ± 0.03*** 8.09 ± 0.79* 0.10 ± 0.04** 0.32 ± 0.05** 0.22 ± 0.04 0.13 ± 0.01    

FP010SG
C 0.09 ± 0.03  0.10 ± 0.01     9.76 ± 1.23 1.97 ± 0.20 0.21 ± 0.05 0.20 ± 0.02 0.16 ± 0.01  
L 0.13 ± 0.04  0.12 ± 0.02     9.41 ± 1.58 1.71 ± 0.13 0.25 ± 0.06 0.25 ± 0.04 0.19 ± 0.02**
H 0.20 ± 0.04** 0.16 ± 0.02*** 10.44 ± 1.45 1.65 ± 0.22* 0.39 ± 0.15* 0.26 ± 0.05 0.19 ± 0.01 *

FP011OR
C 0.14 ± 0.02  0.07 ± 0.01 4.05 ± 1.14 1.13 ± 0.05  0.13 ± 0.02 0.19 ± 0.05   0.11 ± 0.01
L 0.14 ± 0.03  0.08 ± 0.01 4.47 ± 2.03 1.38 ± 0.09** 0.15 ± 0.02 0.22 ± 0.03   0.12 ± 0.01
H 0.25 ± 0.09* 0.09 ± 0.01* 3.88 ± 1.08 1.07 ± 0.11  0.14 ± 0.04 0.36 ± 0.11** 0.10 ± 0.01

FP014SC
C 0.13 ± 0.05 0.12 ± 0.05 6.69 ± 2.30 1.35 ± 0.19 0.32 ± 0.19 0.24 ± 0.10 0.14 ± 0.02 
L 0.13 ± 0.03 0.10 ± 0.01 8.63 ± 1.72 1.85 ± 0.40* 0.32 ± 0.11 0.28 ± 0.04 0.19 ± 0.04*
H 0.2 ± 0.06 0.11 ± 0.03 6.33 ± 0.48 1.62 ± 0.12 0.21 ± 0.03 0.27 ± 0.11 0.19 ± 0.02 

FP016LY
C 0.09 ± 0.03 0.10 ± 0.02 9.10 ± 1.12   1.44 ± 0.13 0.14 ± 0.31 0.16 ± 0.03  0.14 ± 0.01 
L 0.12 ± 0.03 0.11 ± 0.03 7.82 ± 0.73   1.41 ± 0.47 0.18 ± 0.06 0.25 ± 0.07  0.14 ± 0.01 
H 0.15 ± 0.07 0.09 ± 0.01 3.74 ± 2.54*** 0.95 ± 0.37 0.09 ± 0.02 0.37 ± 0.13** 0.09 ± 0.05*

13-IS, 3-indoxylsulfate; 24-HPA, 4-hydroxyphenylacetate; 3DMG, N,N-dimethylglycine; 4PAG, phenylacetylglycine; 5n.d., not
determined

For  the  bile  duct  necrosis  group,  increased  3-indoxylsulfate,  phenylacetylglycine

(PAG), and 4-hydroxyphenylacetate excretion as well as decreased N,N-dimethylglycine,

trigonelline and citrate  excretion were found,  as  well  as  a  putative increase in  urinary

levels of bile acids and 5-aminolevulinate (Tab. 10.4.1). For the hepatocellular hypertrophy
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group, increased phenylacetylglycine, glucose, alanine,  N,N-dimethylglycine and creatine

excretion as well as decreased citrate excretion were found, as well as putative alterations

in amino acid excretion (Tab. 10.4.2). For the hepatocellular cell death group, increased

phenylacetylglycine,  citrate  and  trigonelline  excretion  and  decreased  2-oxoglutarate

excretion were found, as well as an alteration of various buckets to which no metabolites

could be assigned with the Chenomx NMR Suite spectral database.

Table 10.4.5: All hepatocellular cell death (HCD) markers were quantified in the original
1H NMR spectra  using  the  Chenomx  NMR Suite.  Values  are  given  as  mean  ±  SD in
mM/mM  creatinine,  statistically  significantly  altered  (Student's  t-test)  metabolites  are
marked with * (*, p<0.05; **, p< 0.01; ***, p<0.001). Creatine occurred in individual
high dose samples (1x in FP004BA, 3x in FP014SC, 2x in FP015NN).

2-Oxoglutarate Citrate Glucose PAG1 Trigonelline Creatinine
[mmol]

FP004BA
day 13

C 1.48 ± 0.52 2.85 ± 0.27  0.40 ± 0.09 0.22 ± 0.04  0.08 ± 0.01  4.29 ± 1.34 
H 1.33 ± 0.55 2.95 ± 0.77  0.41 ± 0.09 0.38 ± 0.09** 0.08 ± 0.01  1.86 ± 0.26*

FP014SC
 day 1

C 5.57 ± 0.53 6.24 ± 1.04  n.q.2 0.27 ± 0.08  0.20 ± 0.02  3.41 ± 2.08 
H 4.69 ± 1.34 2.58 ± 1.22** n.q. 0.26 ± 0.07  0.11 ± 0.03** 1.51 ± 0.72 

FP015NN
day 1

C 7.87 ± 2.71 9.18 ± 2.53  n.q. 0.29 ± 0.10  0.19 ± 0.03  5.22 ± 1.49 
H 0.98 ± 0.59* 4.17 ± 1.33* 0.64 ± 0.75 0.56 ± 0.24  0.13 ± 0.02* 2.13 ± 0.76*

1PAG, phenylacetylglycine; 2n.q. not quantifiable

Considering  the  marker  panel  of  the  hepatocellular  cell  death  group,  the  results

should be regarded with care. First of all, since only three studies are belonging to this

group, the data base is very small for detection of a general marker of hepatocellular cell

death. Besides, the metabolites identified as putative markers of hepatocellular cell death

are probably not specific. Citrate and 2-oxoglutarate excretion are very variable and are

often found to be altered in metabonomics studies [15]. Phenylacetylglycine was found as

potential marker for all three histopathology groups and must thus be subjected to a closer

investigation. Trigonelline is part of the nicotinate metabolism responsible for NADH and

NADPH synthesis, but no mechanistic link to hepatocellular cell death is known.

The  situation  is  similar  for  the  hepatocellular  hypertrophy  group.  Besides  PAG,

glucose  was  found  to  be  increased  in  the  urine  of  animals  showing  hepatocellular

hypertrophy. However,  increased glucose excretion is used routinely as a biomarker of

nephrotoxicity in clinical chemistry analyses. Increased excretion of various amino acids

was observed as well, however, due to the inherent limit of sensitivity of 1H NMR analysis,

a quantitative analysis of urinary amino acid excretion is very difficult.
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Table 10.4.6: All bile hepatocellular hypertrophy (HCH) markers were quantified in the
original  1H NMR spectra of  the day 13 urine samples, using the Chenomx NMR Suite.
Values are given as mean ± SD in mM/mM creatinine,, statistically significantly altered
(Student's t-test) metabolites are marked with * (*, p<0.05; **, p< 0.01; ***, p<0.001).
Identity of glycocholate, leucine, isoleucine, proline, gluconate is based solely on 1H NMR
shifts and identity could not be confirmed based on 1H NMR spectra since peaks are lost in
the baseline.

4-HB1 Alanine Ascorbate Citrate Glucose Glutamine

FP001RO C n.q.2 0.031 ± 0.01  0.09 ± 0.04    4.06 ± 0.79 0.37 ± 0.88 0.32 ± 0.02 
H n.q. 0.048 ± 0.01  0.07 ± 0.08    4.33 ± 1.88 0.64 ± 0.20 0.34 ± 0.03 

FP003SE C 0.20 ± 0.02 0.041 ± 0.01  0.14 ± 0.02    3.96 ± 0.71 0.38 ± 0.09 0.36 ± 0.02 
H n.q. 0.049 ± 0.01  0.15 ± 0.01    4.48 ± 1.29 0.34 ± 0.15 0.39 ± 0.03 

FP008AL L 0.11 ± 0.02 0.059 ± 0.01  0.59 ± 0.15    1.82 ± 0.68 0.90 ± 0.31 n.q.
H 0.08 ± 0.07 0.085 ± 0.01** 0.40 ± 0.13    0.78 ± 0.31* 0.96 ± 0.39 n.q.

FP010SG C 0.33 ± 0.06 0.067 ± 0.01  0.36 ± 0.10    9.76 ± 1.23 0.85 ± 0.23 0.34 ± 0.19 
H 0.31 ± 0.12 0.092 ± 0.01* 0.23 ± 0.14   10.44 ± 1.45 1.03 ± 0.26 n.q.

FP011OR C 0.22 ± 0.03 0.056 ± 0.01  0.23 ± 0.06    4.05 ± 1.14 0.73 ± 0.13 0.35 ± 0.02 
H 0.21 ± 0.02 0.059 ± 0.01  1.85 ± 0.32***  3.88 ± 1.08 0.85 ± 0.07 0.36 ± 0.03 

FP016LY C 0.18 ± 0.07 0.041 ± 0.03 0.13 ± 0.02    9.10 ± 1.12 0.50 ± 0.09 0.45 ± 0.11 
H 0.06 ± 0.09 0.037 ± 0.01 0.21 ± 0.03**  3.74 ± 2.54* 0.40 ± 0.10* 0.33 ± 0.05 

DMG3 PAG4 Sucrose Trigonelline Valine Creatinine
[mmol]

FP001RO C 0.11 ± 0.06 0.16 ± 0.05 n.q. 0.069 ± 0.003  0.01 ± 0.011 5.06 ± 1.11  
H 0.03 ± 0.03* 0.29 ± 0.15 n.q. 0.065 ± 0.032  0.02 ± 0.013 5.04 ± 3.60  

FP003SE C 0.11 ± 0.03 0.19 ± 0.03 n.q. 0.09 ± 0.01  0.02 ± 0.002 3.59 ± 0.61  
H 0.17 ± 0.03* 0.55 ± 0.26 n.q. 0.09 ± 0.01  0.03 ± 0.004 2.81 ± 0.96  

FP008AL L 0.11 ± 0.03 0.68 ± 0.06 0.38 ± 0.11 0.08 ± 0.01  0.03 ± 0.002 5.04 ± 1.70   
H 0.08 ± 0.02* 0.86 ± 0.30 0.61 ± 0.21 0.08 ± 0.01  0.04 ± 0.006* 2.37 ± 1.07* 

FP010SG C 0.21 ± 0.05 0.20 ± 0.02 0.21 ± 0.07 0.16 ± 0.01  0.03 ± 0.004 2.68 ± 0.51  
H 0.39 ± 0.15* 0.26 ± 0.05 0.34 ± 0.10* 0.19 ± 0.01**    0.05 ± 0.004*** 1.63 ± 0.35**

FP011OR C 0.13 ± 0.02 0.19 ± 0.05 0.18 ± 0.05 0.11 ± 0.01  0.02 ± 0.012   7.62 ± 2.24  
H 0.14 ± 0.04 0.36 ± 0.11* 0.12 ± 0.08 0.10 ± 0.01  0.02 ± 0.012   6.76 ± 1.57  

FP016LY C 0.14 ± 0.03 0.16 ± 0.03 n.q. 0.14 ± 0.01  0.010 ± 0.009   4.27 ± 0.81  
H 0.09 ± 0.02* 0.37 ± 0.13* n.q. 0.09 ± 0.05* 0.02 ± 0.003 4.48 ± 2.33  

14-HB, 4-hydroxybutyrate; 2n.q., not quantifiable; 3DMG, N,N-dimethylglycine; 4PAG, phenylacetylglycine;

The bile  duct  necrosis  group marker  panel  is  the  most  promising that  may have

predictive value. All buckets could be assigned to specific compounds, and all compounds

except two can be quantified in urine. Variations in urinary hippurate, phenylacetylglycine

and 4-hydroxyphenylacetate  excretion  have  been associated  with  alterations  in  the  gut

microflora of rats [67; 69], which may be introduced by the altered bile flow into the colon

of the rats due to bile duct necrosis. 

Trigonelline is part of the nicotinate metabolism for NADH and NADPH synthesis

and increased excretion is associated with oxidative stress. Trigonelline is a byproduct of

the conversion of  S-adenosyl-methionine (SAM) to  S-adenosyl-homocysteine (SAH).  A

decreased urinary excretion of trigonelline may be related to a depletion of SAM as SAM
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is consumed for the regeneration of GSH stores which are consumed by the detoxification

of reactive oxygen species [49; 152].

3-Indoxyl sulfate origins from tryptophan metabolism. Tryptophan is a precursor for

a variety of biologically important metabolites such as the neurotransmitter serotonin, the

hormone  melantonin  and  the  NAD  precursor  nicotinic  acid  [153].  Tryptophan  is

metabolized to 3-indoxyl sulfate via indole and indoxyl. It is a circulating protein-bound

uremic toxin and associated with the induction of oxidative stress [151; 154]. The mode of

action of  3-indoxyl  sulfate  however  is  still  unclear.  Hepatocyte  damage  may  alter  the

tryptophan metabolism in the liver,  thus leading to altered urinary levels of tryptophan

metabolites.

5-Aminolevulinate is the first step in heme and bilirubin biosynthesis in the liver.

The  production  of  hepatic  heme  is  regulated  primarily  through  the  activity  of

Figure 10.4.1: Scores plots (a–c) and corresponding loadings plots (d–f) of PCA models
constructed with quantitative metabolite data for bile duct necrosis (BDN), hepatocellular
hypertrophy (HCH) and hepatocellular cell death (HCD). HCH and HCD models were
constructed with markers only, the BDN model contains all quantified metabolites with
BDN-specific markers highlighted in red.
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aminolevulinic acid synthase which is the first and usually rate-limiting enzyme of the

pathway.  This  is,  in  turn,  controlled  by  a  putative  regulatory  heme  pool.  The  liver

catabolizes heme to bilirubin through microsomal heme oxygenase activity and excretes

heme into bile along with porphyrins [155]. Bile duct damage may lead to altered heme

metabolism and synthesis leading to an increase in urinary 5-aminolevulinate levels.

A problem of the evaluation of the specificity biomarkers is the occurrence in the

samples.  On  one  hand,  no  putative  marker  is  altered  significantly  in  all  four  studies

belonging to the BDN group. On the other hand, several studies not showing bile duct

necrosis nonetheless have significantly altered levels of these metabolites.

Although  the  metabolites  determined  as  putative  markers  of  toxicity,  based  on

histopathological endpoints can be used to discriminate controls from animals showing the

pathologic lesions, the number of studies is probably not large enough and the induced

toxic lesions not strong enough to build models that are predictive for compounds with

unknown histopathology. Only a pattern of various metabolites may be useful for toxicity

prediction with 1H NMR. The metabolites accessible with 1H NMR are of such a general

nature  and  alterations  of  each  single  metabolite  have  been  associated  with  so  many

different clinical symptoms that monitoring of a single marker is probably not successful.

On the other hand, a purely pattern-based classification system carries the danger of

modeling  artificial  or  chance  correlations  between  samples,  especially  with  1H NMR,

where no chromatography exists, therefore a number of metabolites may contribute to the

same bin. Furthermore, the number of metabolites that can be detected is limited due to the

inherent  sensitivity  of  th  1H NMR  method.  The  danger  is  always  that  without  an

understanding of the mechanistic background of the putative marker metabolite, chance

correlations are modeled.
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11.1  Putative markers and biochemistry

In the course of this thesis, urine samples from seven studies were analyzed with a

GC/MS- and 1H NMR-based metabonomics approach. Both analytical methods performed

well  for  the  separation  of  controls  and  treated  animal  in  a  time-  and  dose-dependent

manner.  Good correlation  between alterations  in  urinary  profiles  and  histopathological

changes were observed. For each study, a panel of metabolites with altered excretion levels

upon toxin administration could be identified.

A comparison of all urinary metabolites found to be altered upon toxin treatment in

the studies analyzed in the course of this thesis reveals that no single one of the metabolites

identified is able to serve as an early non-invasive biomarker of toxicity. Comparing the

metabolites found to be altered across more than one study, one can conclude that there is

no single metabolite characteristic for a specific histopathology.

The  Krebs  cycle  intermediates  citrate  and  oxoglutarate  are  decreased  across  all

studies, but have been found to be generally quite variable in the course of the analysis of

the InnoMed predtox samples. The decrease of Krebs cycle intermediates is attributed to a

general sign of toxicity and not to any site-specific or mechanistic reasons [15]. This is an

important consideration since these molecules contribute strongly to the 1H NMR and GC/

MS analytical profile and thus influence the multivariate data analysis.

Pseudouridine has been found to be altered in the ochratoxin A and aristolochic acid

study, both studies that were associated with cell proliferation. This is further evidence that

increased urinary pseudouridine excretion may serve as a marker of proliferative processes.

Alterations in aromatic compounds such as hippurate, hydroxyphenylacetic acids and

phenylacetylglycine are indicative of altered gut microflora metabolism [68; 69; 156] and

therefore only indirectly related to the toxic mechanism. For the aminoglycoside antibiotic

gentamicin,  an  alteration  of  the  gut  microflora  is  clearly  a  pharmacological  effect  not

linked to  its  toxicity.  For  the  compounds  of  bile  duct  necrosis  group of  the  InnoMed

PredTox project, the alteration may only be a secondary effect of the primary lesion in the

bile duct region leading to an altered bile flux in the intestine and thereby to alterations of

the gut microflora. Correlation of the altered metabolite profiles in the InnoMed PredTox

studies  to  observed  toxicities  is  especially  challenging,  since  the  pharmacology  and
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metabolism of the study compounds is unknown, but may strongly influence the metabolite

profiles.

Table 11.1.1:  Summary of metabolites found to be altered across all studies analyzed in
the context of this thesis.

kidney proximal tubule liver bile duct necrosis

gentamicin OTA aristolochic
acid FP004BA FP005ME FP007SE

citrate ↓ ↓ ↓ ↓ ↓ ↓
2-oxoglutarate - ↓ ↓ ↓ ↓ ↓

lactate ↑ ↑ - ↑ - -
myo-inositol - ↑ - ↑ - -

creatinine ↓ ↑ - ↑ - -
hippurate ↓ - ↓ ↓ ↓ ↓

4-hydroxyphenylacetate - - ↑ ↑ ↑ ↑
phenylacetylglycine - - - ↑ ↑ ↑

pseudouridine - ↑ ↑ - - -
glucose ↑ ↑ ↑ ↑ ↑ -

5-oxoproline ↑ ↑ ↑ - - -
5-hydroxyindole - ↑ - ↑ ↑ ↑

1TMAO, trimethylamine-N-oxide

A finding common to all three kidney toxins was the disturbance of metabolites such

as myo-inositol related to osmolyte regulation and homeostasis of osmolytic pressure in the

kidneys. Alterations in these renal osmolytes could generally be observed quite early after

toxin  treatment  and  at  low doses.  This  may  be  an  approach  for  a  targeted  screening

method,  especially  with  GC/MS,  which  may  be  valuable  for  an  early,  non-invasive

detection of kidney toxicity.

A large part of the metabolites found to be altered upon toxin treatment, such as 5-

oxoproline,  N,N-dimethylglycine and various amino acids,  can also  be  associated with

oxidative stress and the detoxification of reactive metabolites via glutathione conjugation.

Although the participation of  oxidative  stress  is  discussed for  a  variety  of  compounds

analyzed in the studies of this thesis, the question remains whether oxidative stress should

be considered as a consequence of the toxic insult and the responding inflammation rather

than the initiating factor. There is also no clear mechanism- or site-specific information

obtained from the metabolites.  However, for a rapid non-invasive screening method of

toxicity,  mechanism  and  site-specificity  are  of  secondary  importance,  as  long  as  the

markers are sensitive enough.

The overall  conclusion from the altered metabolites  found by the comprehensive

metabolite  analyses  in  this  thesis  is  that  these  metabolites  can be  brought  well  into  a
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mechanistic context when the toxicity of the compound is known. However, the predictive

value of these markers, especially regarding site- or organ specificity is rather low, since

the biochemistry behind these metabolites is of a very basic nature common to all cell

types and organs. Although a classification and separation of controls from treated animals

with untargeted screening analyses and PCA-based multivariate data analysis works well,

mechanistic information requires further follow-up with targeted experiments.

11.2  Metabonomics for early noninvasive detection of toxicity

The studies analyzed in the context of this thesis show that metabonomics techniques

are able to indicate toxicity at the same time point as histopathology. Effects of compound

administration may be observed even before the onset of histopathologic lesions. However,

whether these effects are correlated to the adverse effects observed later on or at higher

doses,  or  are more a  result  of  the  pharmacological  effect  of  the  compound,  has  to  be

elucidated before these alterations are considered as toxicity markers. One way to address

Figure  11.1.1:  The  γ-glutamyl  cycle  is  responsible  for  the  production  of  glutathione.
Metabolites accessible by the GC/MS or  1H NMR analysis methods described here are
marked in red.
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this  problem is  the  inclusion of  histopathology scores  in  the  metabonomic  analysis  as

demonstrated with the OTA study. Especially the aristolochic acid study showed that it is

difficult to distinguish between local and systemic effects and to determine if the observed

effects  are  really  indicative  of  renal  damage  and  not  reflecting  the  irritation  of  the

forestomach mucosa.

These findings show that there is only limited predictivity to be achieved by single

compound studies. Even though the multivariate models are predictive for the changes in

urinary composition by a certain compound in a single study, this does not mean that this

model  may  predict  the  toxicity  of  the  compound  analyzed.  One  requirement  for  good

modeling in order to have predictive metabonomics methods is a large data base such as

attempted by COMET and COMET2 and the InnoMed PredTox project. The problem is

that due to the comprehensive screening method used, the marker metabolites found are of

a very basic nature, i.e. playing a role in a large number of processes or being part of very

basic biochemistry processes that are not toxin- or organ-specifically altered. For example,

the induction of oxidative stress  as observed by oxoprolineuria  fits  well  into the toxic

mechanisms of gentamicin and ochratoxin A and can be correlated with the onset of kidney

damage  in  the  respective  studies.  However,  increased  5-oxoproline  excretion  upon

administration of a test compound does not allow any prediction of site or mechanism even

if this effect has to be considered as adverse side effect for this compound. Therefore, the

need of a broader data base and probably the modeling of alterations upon toxic insults on

a pattern recognition level is necessary. On the other hand, analytical methods have to be

developed  to  access  more  than  the  forty  metabolites  available  by  standard  1H NMR

analysis. For this purpose, the development of sensitive GC/MS methods based on new

two-dimensional GC and TOF-detection. (GCxGC/TOF) as well as the development and

improvement of databases may be of great value.

The goal of using metabonomics for the early non-invasive prediction of toxicity

still  requires  extensive  research  by  a  variety  of  scientists  working  fieldsranging  from

informatics to veterinary pathology. However, the technology is still an emerging one and

its power increases with new advances in the fields of analytics and bioinformatics. For

future predictive applications, a greater database with large scale projects similar to the

COMET or InnoMed PredTox project has to be used.
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3-IS 3-indoxylsulfate

AA aristolochic acid

ALAT alanine amino transferase

ALP alkaline phosphatase

ASAT aspartate amino transferase

BDN bile duct necrosis

BrdU 5-bromo-2'-deoxyuridine

BSA bis-trimethylsilyltrifuoroacetamide

BUN blood urea nitrogen

bw body weight

C control group

DA discriminant analysis

GC/MS gas chromatography coupled to mass spectrometry

GGT gamma glutamyl transferase

GM gentamicin

GOT glutamate oxalate transaminase

GPT glutamate pyruvate transaminase

ESI electrospray ionization

H high dose group

HCD hepatocellular cell death

HCH hepatocellular hypertrophy

HILIC hydrophilic interaction liquid chromatography
1H NMR proton nuclear magnetic resonance

i.p. intraperitoneal(ly)

i.v. intravenous(ly)

L low dose group

LC/MS liquid chromatography coupled to mass spectrometry

M mid dose group

MO methoxime

MS mass spectrometry

PAG phenylacetyl glycine
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PC principal component

PCA principal component analysis

PLS partial least squares projection to latent structures

p.o. peroral

OPLS-DA orthogonal projection to latent structures discriminant analysis

OTA ochratoxin A

SAH S-adenosyl-homocysteine

SAM S-adenosyl-methionine

SPF specific pathogen free

TMAO trimethylamine-N-oxide

TMS trimethylsilyl

TOF time-of-flight detection

TSP d4-trimethylsilylpropionic acid sodium salt

wt weight
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15.1  Summary

Aim of this thesis was the assessment of metabonomics techniques for the early and

non-invasive  detection of  toxicity.  For  this  purpose,  the  urine collected  during various

repeated-dose studies of nephro- and hepatotoxins in rats was analyzed with 1H NMR and

GC/MS. The samples were obtained from four studies conducted in-house, three studies on

the nephrotoxins gentamicin (repeated s.c. administration of 0, 60 and 120 mg/kg bw twice

daily for 8 days), ochratoxin A (repeated p.o. administration of 0, 21, 70 and 210 µg/kg bw

five days per week for 90 days) and aristolochic acid (repeated p.o. administration of 0,

0.1, 1.0 and 10 mg/kg bw for 12 days), as well as one study on the hepatotoxin furan

(repeated p.o.  administration of  0,  0.1,  0.5 and 2.0 mg/kg bw for 28 days).  The urine

samples from 16 studies conducted in the course of the InnoMed PredTox project were

analyzed  as  well,  thereby  focusing  on  1H NMR  analysis  and  bile  duct  necrosis  as

histopathological endpoint.

The InnoMed PredTox project within the 6th framework programme of the European

Union is a joint industry and academia project which evaluates the combination of results

from omics  technologies  together  with  the  results  from more  conventional  toxicology

methods for more informed decision making in preclinical safety evaluation.

1H NMR analysis was carried out using the InnoMed PredTox protocol, i.e. urine

buffered with 1 M phosphate buffer, using D2O as shift lock reagent and D4-trimethylsilyl-

propionic acid as chemical shift  reference. The spectra were recorded using the bruker

noesygppr1d pulse sequence for water suppression. For multivariate data analysis, spectral

intensity was binned into 0.04 ppm wide bins.

GC/MS  analysis  of  urine  samples  was  carried  out  by  a  comprehensive

methoximation/silylation method. After protein precipitation with methanol, samples were

dried,  treated  with  methoxyamine  hydrochloride  in  pyridine  and  subsequently  with

methyl(trimethylsilyl)trifluoroacetamide.  GC/MS  analysis  was  carried  out  with

split/splitless inlet using a temperature gradient on a DB5-MS column and EI ionization.

The  chromatograms  were  prepared  for  multivariate  data  analysis  using  the  R-program

based peak picking and alignment software XCMS version 2.4.0.
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Multivariate  data  analysis  of  GC/MS  and  1H NMR  data  was  carried  out  using

SIMCA P+ 11.5.  Principal  component  analysis  (PCA) was used to detect  and visualize

time-point and dose-dependent differences between treated animals and controls. Potential

molecular markers of toxicity discriminating treated animals from controls were extracted

from  the  data  with  orthogonal  projection  to  latent  structures  discriminant  analysis

(OPLS-DA).  1H NMR-based markers were identified and quantified with the Chenomx

NMR  Suite,  GC/MS  based  markers  were  identified  using  the  NIST  Mass  Spectral

Database and by co-elution with authentic reference standards.

PCA of urinary metabolite profiles was able to differentiate treated animals from

controls at the same time as histopathology. An advantage over classical clinical chemistry

parameters regarding sensitivity could be observed in some cases. However, analysis of the

markers responsible for class separation revealed only alterations in the so called “usual

suspects” [15].  These metabolites are found to be altered in almost  any metabonomics

study.  They are  most  abundant  in urine and reflect  alterations in very general  toxicity

pathways.

Metabonomic analysis with GC/MS and 1H NMR revealed alterations in the urinary

profile of treated animals as soon as one day after start of treatment with 120 mg/kg bw

gentamicin, correlating with changes in clinical chemistry parameters and histopathology.

These  alterations  were  a  decrease  in  the  urinary  excretion  of  citrate,  2-oxoglutarate,

hippurate,  trigonelline  and  3-indoxylsulfate  as  well  as  an  increase  in  the  excretion  of

5-oxoproline, lactate, alanine and glucose.

Ochratoxin A (OTA) treatment caused changes in urinary profiles in single animals

observed as early as 2 weeks after start of treatment with 210µg OTA/kg bw, correlating

with changes in clinical chemistry parameters and histopathology. These alterations were a

decrease in the excretion of citrate, 2-oxoglutarate and hippurate and an increase in the

excretion  of  glucose,  myo-inositol,  N,N-dimethylglycine,  glycine,  alanine  and  lactate.

Integration  of  histopathology  scores  increased  confidence  in  the  molecular  markers

discovered.

Aristolochic  acid  treatment  resulted  in  decreased  urinary  excretion  of  citrate,

2-oxoglutarate,  hippurate and creatinine as well as increased excretion of 5-oxoproline,

N,N-dimethylglycine, pseudouridine and uric acid observable after 12 days of treatment
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with 10 mg aristolochic acid/kg bw. These changes were not accompanied by alterations in

clinical chemistry parameters or histopathology.

Treatment with 2.0 mg furan/kg bw for four weeks did not induce any alterations in

urinary profiles observable with the GC/MS and  1H NMR methods applied,  correlating

with unchanged clinical chemistry parameters and histopathology.

The alterations in metabolite profiles can be associated with mechanisms of toxicity.

Decrease in the excretion of hippurate is indicative of alterations in the gut microflora, an

effect  that  is  expected  as  pharmacological  action  of  the  aminoglycoside  antibiotic

gentamicin  and  that  can  also  be  explained  by  the  p.o.  administration  of  xenobiotica.

Decreases in the Krebs cycle intermediates citrate and 2-oxoglutarate and an increase in

lactate is associated with altered energy metabolism. Increased pseudouridine excretion is

associated with cell proliferation and was observed with aristolochic acid and ochratoxin

A,  for  which  proliferative  processes  were  observed  with  histopathology.  Various

metabolites,  such  as  5-oxoproline  and  N,N-dimethylglycine  can  be  associated  with

oxidative stress. Glucose, a marker of renal damage in clinical chemistry, was observed for

all three nephrotoxins studied.

Single study analysis with PCA of GC/MS chromatograms and 1H NMR spectra of

urine from three studies conducted within the InnoMed PredTox project showing bile duct

necrosis  revealed  alterations  in  urinary  profiles  with  the  onset  of  changes  in  clinical

chemistry  and  histopathology.  Alterations  were  mainly  decreased  Krebs  cycle

intermediates and changes in the aromatic gut flora metabolites, an effect that may result as

a secondary effect from altered bile flow.

A cross study analysis of all 16 InnoMed PredTox studies using urinary  1H NMR

spectra was applied to find specific markers for bile duct damage. Even though a marker

panel  was  extracted  from  the  data,  these  markers  were  not  altered  across  all  studies

showing bile duct damage, but also showed changes in studies not showing the respective

histopathology. These markers require further evaluation.

In conclusion, metabonomics techniques are able to detect toxic lesions at the same

time as histopathology and clinical  chemistry.  The metabolites  found to be altered are

common to most toxicities and are not organ-specific. A mechanistic link to the observed

toxicity has to be established in order to avoid confounders such as body weight loss,
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pharmacological  effects  etc.  For  pattern  recognition  purposes,  large  databases  are

necessary.

15.2  Zusammenfassung

Ziel  dieser  Dissertation  war  die  Bewertung  von  Metabonomics-Techniken  zur

frühen, nicht-invasiven Erkennung von Toxizität. Zu diesem Zweck wurde Urin, der im

Zuge mehrerer Studien mit wiederholter Gabe verschiedener Nephro- und Hepatotoxine in

Ratten  mit  1H NMR und  GC/MS analysiert.  Die  Urinproben  wurden  aus  vier  Studien

erhalten,  die  am  Institut  durchgeführt  wurden;  drei  Studien  mit  den  Nephrotoxinen

Gentamicin (wiederholte s.c.-Gabe von 0, 60 und 120 mg/kg Körpergewicht (KG) zweimal

täglich über 8 Tage), Ochratoxin A (wiederholte p.o.-Gabe von 0, 21, 70 und 210 µg/kg

KG fünf mal wöchentlich für 90 Tage) und Aristolochiasäure (wiederholte Gabe von von

0, 0.1, 1.0 und 10 mg/kg KG über 12 Tage), sowie eine Studie mit dem Hepatotoxin Furan

(wiederholte p.o.-Gabe von 0, 0.1, 0.5 und 2.0 mg/kg KG über 28 Tage). Die Urinproben

von 16 Studien, die im Zuge des InnoMed PredTox Projekts durchgeführt wurden, wurden

ebenfalls  analysiert.  Dabei  lag  der  Schwerpunkt  auf  der  1H NMR  Analytik  und  dem

histopathologischen Endpunkt Gallengangnekrose (BDN).

Das  InnoMed  PredTox  Projekt  innerhalb  des  „6th framework  programme“  der

Europäischen Union ist  ein gemeinschaftliches Projekt  von Industrie-  und Universitäts-

partnern, welche die Ergebnisse von omics-Technologien zusammen mit herkömmlichen

Methoden  der  Toxikologie  bewerten,  zur  besseren  Entscheidungsfindung  in  der

präklinischen Sicherheitsbewertung.

1H NMR-Analysen  folgten  dem  InnoMed  PredTox  Protokoll.  Urin  wurde  mit

1 M Phosphatpuffer  gepuffert,  D2O  wurde  als  shift  lock  Reagenz  verwendet  und  die

chemische  Verschiebung  auf  D4-Trimethylsilylpropionsäure  referenziert.  Die  Spektren

wurden  mit  Wasserunterdrückung  durch  die  noesygppr1d-Pulssequenz  der  Bruker-

bibliothek aufgenommen. Zur multivariaten Datenanalyse wurden die  1H NMR-Spektren

in 0.04 ppm große „bins“ unterteilt.

Zur  GC/MS-Analyse  der  Urinproben  wurde  eine  umfassende  Methoximierungs/

Silylierungsmethode  verwendet.  Nach  der  Proteinfällung  mit  Methanol  wurden  die

Urinproben getrocknet  und nacheinander  mit  Methoxyaminhydrochlorid  in  Pyridin und

Methyl(trimethylsilyl)trifluoracetamid derivatisiert. Zur GC/MS-Probenaufgabe wurde ein

split/splitless-Einlass  mit  verwendet.  Die  Trennung  der  Analyten  erfolgte  mit  einem
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Temperaturgradienten  auf  einer  DB5-MS-Säule.  Die  Ionisierung  zur  MS-Detektion

erfolgte mit Elektronenstoßionisierung. Die GC/MS-Chromatogramme wurden mit dem R-

Programm-basierten XCMS-Softwarepaket Version 2.4.0 zur multivariaten Datenanalyse

vorbereitet.

Zur  multivariaten  Datenanalyse  von GC/MS- und  1H NMR-Daten wurde  SIMCA

P+11.5 verwendet. Hauptkomponentenanalyse (PCA) wurde zur Visualisierung von zeit-

und dosisabhängigen Unterschieden zwischen Kontrollen und behandelten Tieren benutzt.

Potentielle Toxizitätsmarker wurden mit der „orthogonal projection to latent structures“-

Diskriminantenanalyse (OPLS-DA) herausgefiltert. Die Chenomx-NMR-Suite wurde zur

Identifizierung und Quantifizierung von  1H NMR-basierten Markern verwendet; GC/MS-

basierte Marker wurden mit der „NIST Mass Spectral Database“ und durch Koelution mit

Referenzstandards identifiziert.

Mittels PCA konnten Kontroll- von behandelten Tieren zum gleichen Zeitpunkt wie

mit  Histopathologie  unterschieden  werden.  Gegenüber  klinisch-chemischen  Parametern

zeigte sich Metabonomics in einigen Fällen empfindlicher. Eine genauere Betrachtung der

Metaboliten,  die  für  die  Trennung  zwischen  Kontroll-  und  behandelten  Tieren

verantwortlich  waren,  zeigte  jedoch,  dass  es  sich  dabei  hauptsächlich  um  die  sog.

„Üblichen Verdächtigen“ [15] handelt. Diese Metaboliten sind in fast allen Metabonomics-

studien  verändert.  Sie  liegen  im  Urin  in  der  höchsten  Konzentration  vor  und  zeigen

allgemeine Reaktionen des Organismus auf Toxizität an.

GC/MS-  und  1H NMR-Analyse  von  Urin  von  Tieren,  die  mit  120 mg/kg KG

Gentamicin  behandelt  wurden,  zeigten  bereits  nach  einem  Tag  Änderungen  in  der

Urinzusammensetzung an. Diese Beobachtung wurde von geringfügigen Änderungen in

klinisch-chemischen  Parametern  gestützt.  Während  die  Ausscheidung  von  Citrat,

2-Oxoglutarat, Hippurat, Trigonellin und 3-Indoxylsulfat im Urin erniedrigt war, war die

Ausscheidung von Lactat, Alanin, 5-Oxoprolin und Glucose erhöht.

Die durch die Gabe von 210 µg Ochratoxin A/kg KG verursachten Änderungen im

Metabolitenprofil  des  Urins  konnten  mit  Metabonomics-Techniken  bereits  nach  zwei

Wochen  in  einzelnen  Tieren  beobachtet  werden.  Diese  Beobachtungen  wurden  durch

Veränderungen in  klinisch-chemischen Parametern und in  der  Histopathologie  gestützt.

Die  beobachteten  Veränderungen  waren  eine  erniedrigte  Ausscheidung  von  Citrat,

2-Oxoglutarat und Hippurat sowie eine erhöhte Ausscheidung von Glucose, myo-Inositol,
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N,N-Dimethylglycin, 5-Oxoprolin, Glycin, Alanin und Lactat. Die Miteinbeziehung von

Histopathologiedaten in die multivariaten Modelle zur Markeridentifizierung erhöhte die

Konfidenz der Marker.

Nach  12 Tagen  der  Behandlung  mit  10 mg Aristolochiasäure/kg KG  konnte  eine

Erniedrigung in der Ausscheidung von Citrat, 2-Oxoglutarat, Hippurat und Creatinin sowie

eine Erhöhung der Ausscheidung von 5-Oxoprolin, N,N-Dimethylglycin und Pseudouridin

beobachtet  werden.  Diese  Veränderungen  des  Metabolitenprofils  im  Urin  wurden  von

keinerlei Veränderungen in klinisch-chemischen Parametern oder in der Histopathologie

begleitet.

Eine  Behandlung  mit  2.0 mg/kg  KG Furan  über  vier  Wochen  verursachte  keine

Veränderungen  im  Urinprofil,  die  mit  den  hier  beschriebenen  GC/MS-  und  1H NMR-

Methoden beobachtet werden konnten. Dies ist im Einklang mit unveränderten klinisch-

chemischen Parametern und der Histopathologie.

Die  beobachteten  Veränderungen  der  Metabolitenprofile  des  Urins  können  mit

verschiedenen  Mechanismen  in  Verbindung  gebracht  werden.  Eine  Erniedrigung  der

Ausscheidung von Hippurat weist auf eine Veränderung der Darmmikroflora hin; für das

Aminoglykosid-Antibiotikum Gentamicin ist dies ein pharmakologischer Effekt, und für

die perorale Gabe von Xenobiotica ist eine Veränderung der Darmflora zu erwarten. Eine

erniedrigte  Ausscheidung  von  Citrat  und  2-Oxoglutarat  zusammen  mit  einer  erhöhten

Ausscheidung  von  Lactat  wird  mit  einer  Veränderung  des  Energiestoffwechsels  in

Verbindung  gebracht.  Eine  erhöhte  Ausscheidung  von  Pseudouridin  ist  mit  Zell-

proliferation assoziiert und wurde nach der Gabe von Ochratoxin A und Aristolochiasäure

beobachtet.  Beide  Stoffe  sind kanzerogen und  es  wurden  proliferative  Prozesse  in  der

Histopathologie  beobachtet.  Verschiedene  Metaboliten  wie  5-Oxoprolin  und

N,N-Dimethylglycin  können  mit  erhöhtem  oxidativen  Stress  in  Verbindung  gebracht

werden. Erhöhte Glucose im Urin, ein Parameter zur Diagnose von Nierenschäden in der

klinischen Chemie, wurde in allen drei Studien mit Nephrotoxinen beobachtet.

Die  PCA von GC/MS- und  1H NMR-Daten  von drei  einzelnen  Studien  aus  dem

„InnoMed  PredTox“  Projekt,  welche  Gallengangnekrosen  als  histopathologischen

Endpunkt  aufwiesen,  zeigte  eine  Veränderung  der  Urinprofile  zur  gleichen  Zeit  wie

klinisch-chemische  Parameter  und  die  Histopathologie.  Die  Veränderungen  waren

hauptsächlich  eine  erniedrigte  Ausscheidung  von  Citratzyklusintermediaten  und
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Veränderungen bei Metaboliten, die mit der Darmflora assoziiert sind – ein Effekt, der

wahrscheinlich auf den veränderten Gallenfluss zurückzuführen ist.

Eine multivariate Datenanlyse, welche die  1H NMR Urinprofile aller 16 „InnoMed

PredTox“-Studien beinhaltete, wurde angewendet, um spezifische Marker für Gallengang-

nekrosen  zu  finden.  Obwohl  eine  Reihe  von  potentiellen  Markern  aus  den  1H NMR-

Spektren extrahiert  werden konnte,  waren diese Metaboliten nicht  in allen Studien mit

Gallengangsnekrosen  verändert  und  zeigten  außerdem  auch  Veränderungen  in  Studien

ohne Gallengangbefunde.

Zusammenfassend  konnte  gezeigt  werden,  dass  Metabonomics  prinzipiell  zum

gleichen Zeitpunkt wie klinisch-chemische Parameter und Histopathologie die Erkennung

von toxischen Veränderungen erlauben. Die veränderten Metaboliten sind jedoch zumeist

nicht  organspezifisch  und  können  mit  allgemeinen  Toxizitätsmechanismen,  wie

oxidativem  Stress  oder  Zellproliferation,  in  Verbindung  gebracht  werden.  Für  die

Bewertung der Ergebnisse von Metabonomics-Studien ist ein mechanistisches Verständnis

der Veränderungen im Urinprofil notwendig, um eine Trennung von toxischen Effekten

und  solchen,  die  auf  pharmakologische  Wirkung,  Körpergewichtsverlust  etc.

zurückzuführen  sind,  zu  erreichen.  Für  eine  Vorhersage  von  toxischen  Mechanismen

aufgrund der Urinprofile ist eine größere Datengrundlage notwendig.
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