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Summary
Introduction. Mobile health (mHealth) integrates mobile devices into healthcare, en-
abling remote monitoring, data collection, and personalized interventions. Machine
Learning (ML), a subfield of Artificial Intelligence (AI), can use mHealth data to confirm
or extend domain knowledge by finding associations within the data, i.e., with the goal
of improving healthcare decisions. In this work, two data collection techniques were
used for mHealth data fed into ML systems: Mobile Crowdsensing (MCS), which is a
collaborative data gathering approach, and Ecological Momentary Assessments (EMA),
which capture real-time individual experiences within the individual’s common environ-
ments using questionnaires and sensors. We collected EMA and MCS data on tinnitus
and COVID-19. About 15 % of the world’s population suffers from tinnitus.
Materials & Methods. This thesis investigates the challenges of ML systems when using
MCS and EMA data. It asks: How can ML confirm or broad domain knowledge? Do-
main knowledge refers to expertise and understanding in a specific field, gained through
experience and education. Are ML systems always superior to simple heuristics and
if yes, how can one reach explainable AI (XAI) in the presence of mHealth data? An
XAI method enables a human to understand why a model makes certain predictions.
Finally, which guidelines can be beneficial for the use of ML within the mHealth domain?
In tinnitus research, ML discerns gender, temperature, and season-related variations
among patients. In the realm of COVID-19, we collaboratively designed a COVID-19
check app for public education, incorporating EMA data to offer informative feedback on
COVID-19-related matters. This thesis uses seven EMA datasets with more than 250,000
assessments. Our analyses revealed a set of challenges: App user over-representation,
time gaps, identity ambiguity, and operating system specific rounding errors, among
others. Our systematic review of 450 medical studies assessed prior utilization of XAI
methods.
Results. ML models predict gender and tinnitus perception, validating gender-linked tin-
nitus disparities. Using season and temperature to predict tinnitus shows the association
of these variables with tinnitus. Multiple assessments of one app user can constitute a
group. Neglecting these groups in data sets leads to model overfitting. In select instances,
heuristics outperform ML models, highlighting the need for domain expert consultation
to unveil hidden groups or find simple heuristics.
Conclusion. This thesis suggests guidelines for mHealth related data analyses and
improves estimates for ML performance. Close communication with medical domain
experts to identify latent user subsets and incremental benefits of ML is essential.
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Zusammenfassung
Einleitung. Unter Mobile Health (mHealth) versteht man die Nutzung mobiler Geräte
wie Handys zur Unterstützung der Gesundheitsversorgung. So können Ärzt:innen z. B.
Gesundheitsinformationen sammeln, die Gesundheit aus der Ferne überwachen, sowie
personalisierte Behandlungen anbieten. Man kann maschinelles Lernen (ML) als System
nutzen, um aus diesen Gesundheitsinformationen zu lernen. Das ML-System versucht,
Muster in den mHealth Daten zu finden, um Ärzt:innen zu helfen, bessere Entschei-
dungen zu treffen. Zur Datensammlung wurden zwei Methoden verwendet: Einerseits
trugen zahlreiche Personen zur Sammlung von umfassenden Informationen mit mo-
bilen Geräten bei (sog. Mobile Crowdsensing), zum anderen wurde den Mitwirkenden
digitale Fragebögen gesendet und Sensoren wie GPS eingesetzt, um Informationen in
einer alltäglichen Umgebung zu erfassen (sog. Ecologcial Momentary Assessments). Diese
Arbeit verwendet Daten aus zwei medizinischen Bereichen: Tinnitus und COVID-19.
Schätzungen zufolge leidet etwa 15 % der Menschheit an Tinnitus.
Materialien & Methoden. Die Arbeit untersucht, wie ML-Systeme mit mHealth Daten
umgehen: Wie können diese Systeme robuster werden oder neue Dinge lernen? Funktion-
ieren die neuen ML-Systeme immer besser als einfache Daumenregeln, und wenn ja, wie
können wir sie dazu bringen, zu erklären, warum sie bestimmte Entscheidungen treffen?
Welche speziellen Regeln sollte man außerdem befolgen, wenn man ML-Systeme mit
mHealth Daten trainiert? Während der COVID-19-Pandemie entwickelten wir eine App,
die den Menschen helfen sollte, sich über das Virus zu informieren. Diese App nutzte
Daten der Krankheitssymptome der App Nutzer:innen, um Handlungsempfehlungen
für das weitere Vorgehen zu geben.
Ergebnisse. ML-Systeme wurden trainiert, um Tinnitus vorherzusagen und wie er mit
geschlechtsspezifischen Unterschieden zusammenhängen könnte. Die Verwendung von
Faktoren wie Jahreszeit und Temperatur kann helfen, Tinnitus und seine Beziehung zu
diesen Faktoren zu verstehen. Wenn wir beim Training nicht berücksichtigen, dass ein
App User mehrere Datensätze ausfüllen kann, führt dies zu einer Überanpassung und
damit Verschlechterung des ML-Systems. Interessanterweise führen manchmal einfache
Regeln zu robusteren und besseren Modellen als komplexe ML-Systeme. Das zeigt, dass
es wichtig ist, Experten auf dem Gebiet einzubeziehen, um Überanpassung zu vermeiden
oder einfache Regeln zur Vorhersage zu finden.
Fazit. Durch die Betrachtung verschiedener Langzeitdaten konnten wir neue Empfehlun-
gen zur Analyse von mHealth Daten und der Entwicklung von ML-Systemen ableiten.
Dabei ist es wichtig, medizinischen Experten mit einzubeziehen, um Überanpassung zu
vermeiden und ML-Systeme schrittweise zu verbessern.
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1

Introduction

In recent years, the begun convergence of computer science and medicine has led to a
transformative paradigm shift in healthcare delivery, leading to a research field known as
Digital Medicine. At the same time, an Artificial Intelligence (AI) winter has been over-
come by increasingly faster, cheaper, and more readily available computational power,
which has led to an exponential increase in interest from the general public and academics
in machine learning [1]. The advantages of merging computer science and medicine
into digital medicine are apparent. Digital medicine can offer personalized healthcare
through remote monitoring, data-driven insights, and patient empowerment, leading to
early detection, reduced costs, and improved clinical decision-making. Its potential to
bridge healthcare disparities, support research, and prioritize patient-centered outcomes
underscores its transformative impact on healthcare delivery. Until now, however, many
of these benefits have remained theoretical.
With Machine Learning (ML) as a subfield of Artificial Intelligence (AI), one has the
tool to build high-dimensional early detection systems that can predict critical events
regarding patient care, driven by data. However, this requires data, and the interplay
of data generation, processing, interpretation, and prediction, especially in a clinical
workflow, is not trivial. Fortunately, collecting data has become easier nowadays due to
the high availability of mobile devices. There is the concept of Mobile Crowdsensing, a
collaborative data collection approach that leverages the ubiquity of mobile devices to
gather real-time information from a large and distributed group of individuals. If these
individuals fill out assessments (synonym: questionnaires) about their current status,
such as feelings, pain, thoughts, then these assessments are called Ecological Momentary
Assessments (EMA). They add dimensions to the collected data, and if filled out over a
longer period, and combined with sensor data from the mobile devices, such as the global
positioning system (GPS), or microphone data, they form a high potential, longitudinal,
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and multi-modal dataset.
ML can then help to utilize that data by finding new or confirm known associations
between input and output, or predict future outputs based on current inputs. If one
can show that an ML system can add value by meaningfully predict something, the
system needs to be robust, confident, reliable, transparent, and trustful, among others.
Explainable Artificial Intelligence (XAI) can help to reach these requirements by en-
abling humans to understand how a model makes certain predictions.
Digital Medicine, Mobile Crowdsensing, the challenges of using and analyzing mobile
collected data with machine learning, and the explanation of these ML systems are issues
addressed in this thesis. Chapter 1 provides a theoretical overview of the key concepts,
formulates the research questions, and gives a brief introduction to the medical domains
touched upon in the course of this thesis. Chapter 2 then establishes the theoretical
foundations in machine learning and its evaluation, introduces a taxonomy for machine
learning explainability with commonly used XAI methods, and explains the necessity of
feedback loops with domain experts to collect multi-modal and longitudinal data. The
thesis-contributing papers are subsequently listed in Chapter 3 and address the research
question that are stated in the introduction. Chapter 4 summarizes the results of the
research questions, discusses limitations, and provides suggestions for future research.
Finally, a conclusion is given.

1.1 | Explanation of key concepts of this work
In this section, key concepts of this work are quickly introduced and defined. Some of
them are defined citing related work, others are defined within this work here. This work
embraces a total of six key concepts. To avoid confusion, note than in this work we use
the terms questionnaires and assessments interchangeably.

Ecological Momentary Assessments In contrast to retrospective global self-reports,
Ecological Momentary Assessments (EMA) are in real time and within the subjects
natural environment [2]. The repeated sampling of a subject’s natural environment aims
to minimize recall bias and maximize ecological validity. It further allows for a long-term
analysis of a subject’s behavior change over time. Following the definition of Shiffman et.
al., one can state that EMA are methods using repeated collection of real-time data on subjects’
behavior and experience in their natural environments [2]. Key features of EMA are [3]:

■ The ecological aspect of EMA means that the data is collected in real-world envi-
ronments of the subject’s lives. This allows for generalization of ecological validity.

2



Chapter 1. Introduction 1.1. Explanation of key concepts of this work

■ Moments are selected by random sampling at random points of time, or they are
selected strategically based on events of interest, i.e., a relapse of mental illness.

■ Assessments (i.e., questionnaires filled out using mobile devices) focus on the
subject’s current feelings, i.e., What is your mood right now? as proposed in the daily
questionnaire within the TrackYourTinnitus project [4].

■ Individuals (Depending on the study, this can be patients or app users) complete
multiple assessments of time which provides an impression of a individuals’ change
of behavior on a longitudinal axis.

Early studies making use of the advantages of EMA include smoking relapse processes [5;
6], or more recent studies, the tracking of stress, tinnitus symptoms [7] or psychological
health during the pandemic [8].

Mobile Health Nowadays, EMA are mainly collected using mobile devices. If, addi-
tionally, EMA are subject of medical studies, we are in the field of Mobile Health (mHealth).
mHealth uses portable devices to create, store, retrieve, and transmit data for the purpose
of improving quality of care [9]. mHealth apps mainly have the purpose of assisting,
monitoring, informing, and educating, where the former two are implemented more
often than the latter [10]. Diseases addressed by mHealth applications include diabetes,
asthma, depression, hearing loss, low vision, osteoarthritis, anemia, and migraine [10].
During the pandemic, the coronavirus was the most trending topic within mHealth
applications [11]. The combination of collecting EMAs using smartphones with wearable
devices like smartwatches allows for a potential powerful creation of both multitudinal
(across different sources, synonym: multi-modal) [12] and longitudinal (for a longer
period) data sources [13]. Using different methods such as statistics, and machine
learning, combined with the knowledge of subject matter experts (synonym: Domain
experts), these data sources can then be applied to learn more about the disease and its
individual-based branches. However, as [12] points out, most of these approaches still
lack experience in deploying and maintaining these models.

Mobile Crowdsensing Mobile Crowdsensing (MCS) describes the collection of data
with many mobile sensors from different mobile devices [14], often with contribution
of many individuals that constitute a crowd. Two main differences from mHealth are
the primer purpose of the collection: Firstly, mHealth is located within a health domain
whereas MCS is not necessarily, and, secondly, the way the data is collected: Within the
mHealth domain, users of mobile devices might create the data manually whereas in

3



Chapter 1. Introduction 1.1. Explanation of key concepts of this work

MCS, data is collected automatically using sensors. MCS devices can sense, compute,
and communicate, i.e., by sending aggregated data to a database. Within a personal
sensing application, which can be seen as an overlap to the mHealth domain, data from
a single individual or device is collected. In contrast, community sensing (synonym:
participatory, or opportunistic sensing) has the aim to track large-scale use cases where
multiple mobile devices are necessary, i.e., when determining the air pollution within a
city. MCS applications can be limited by energy, i.e., the battery of a mobile device, and
the computation capability, i.e., when data is aggregated on-edge before being sent to a
server. Due to the large variety of mobile devices and operating systems, the quality of
data or the way it is saved might also vary within a use case, even when the same sensor,
i.e., GPS, is utilized [15].

Supervised Machine Learning Say one has an Input A which shall be mapped to an
Output B. In Non-machine-learning systems, it requires Domain Expert knowledge to
map A to B. One would need to bring the expert knowledge into the system which is why
these systems are referred to as expert systems [16] or symbolic artificial intelligence [17].
On the contrary, when utilizing machine learning (ML), the system itself learns the
A-to-B mapping if labels for the target are provided. In statistics, the target is also
referred to as the outcome, or endogenous variable. Within the ML community, the
target is also referred to as label. However, precisely spoken, a label is the value that
the target can have, i.e., "female" and "male" for a classification task. As an example,
a label could be an answer to a question within an assessment or the score of a PHQ
depression questionnaire. If a ML use case is provided with labels, we refer to this use
case as supervised ML [18]. Vice versa, we refer to unsupervised ML for unlabeled use
cases [17].
ML algorithms can learn non-parametric A-to-B mappings. By non-parametric we mean
that there is no assumption about the underlying distribution of the data or in other
words, we do not make any assumptions about the connection of output B and input A.
Because these underlying functions are non-parametric, this is referred to as a bias-free
estimate of the target. Most of the use cases from this work has been addressed using
non-parametric ML algorithms. Not every ML algorithm is non-parametric. Well known
algorithms that are parametric would be Logistic Regression, Linear Regression, and
Naive Bayes [17].

Machine Learning Explainability The ability of ML algorithms to learn complex A-
to-B mappings make them opaque for those developing and applying them. At this
point, Machine Learning Explainability, or Explainable Artificial Intelligence (XAI) comes

4
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in. We define a XAI methods as follows: XAI methods enable humans to understand
why a model makes certain predictions [1]. They can be either local (explain a certain
prediction) or global (explain the whole modal behavior), and model-specific or model-
agnostic [19; 20; 21; 22]. Model-specific XAI methods can be applied to specific kinds of
algorithms only, whereas model-agnostic XAI methods are not limited to certain kinds
of algorithms. To give examples, two widely adopted XAI methods are Shapley Value
Explanations (SHAP) [23], mostly applied as a model-agnostic tool for tabular data, and
Gradient-weighted Class Activation Mapping (GRAD-cam) [24], a post-hoc XAI method
for image data that can be applied to neural networks to highlight pixels that have been
relevant for the output of the model. XAI, its applications and limitations are explained
in more detail in section 2.5 of this work and in the context of a literature review in
section 3.4.

Domain Expert As the name suggests, domain experts are specialists in the domain
the methodology is applied to. They are sometimes referred as subject matter experts [25].
Within the Cross Industry Standard Process for Data Mining (CRISP-DM), which is
explained in more detail in subsection 2.3.1, the methodology expert and domain expert
iterate multiple times to clarify the use case and data issues before further analysis can
happen. When applying ML algorithms, domain experts often know causal relations
between input A and output B which can be valuable starting points when developing
an algorithm. Good and close communication between domain and methodology expert
also favors progress in the use case [26]. When using XAI methods, domain experts
can process specialist explanations, whereas the methodology expert works more with
technical explanations to improve the algorithm.

1.2 | Problem statement and motivation
After having introduced the key terms of this work, we would like to motivate key
challenges that are related to the key concepts that are described above. EMA in com-
bination with MCS allows for multi-modal and longitudinal data collection, and the
creation of large data sources. Without going into more detail about the term "large" in
this context, we would like to discuss more about the inherit complexity that multiple
data sources, once unified, have. This inherit complexity brings us to the first subsection
of this chapter.
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Concept Drift A deployed model is mostly trained with historical data. As described
earlier, the model has learned the mapping of input A to output B. Within this paragraph,
we refer to this mapping as concept, also sometimes referred to as posterior probability.
This concept can then be described as a joint probability distribution with P denoted as
the probability, input A and output B: P(A, B) = P(B)P(A|B) = P(A)P(B|A). Techni-
cally spoken, concept drift happens if the probability of B given A changes such that
Pt1(B|A) ̸= Pt2(B|A) with an older timestamp t1 and a younger timestamp t2. Concept
drift sometimes is referred to as concept shift or model drift [32]. Typically, real-world
examples for such concepts are weather predictions or customer preferences [33]. Closely
related to concept drift is data drift. In data drift however, the distribution of the input
A changes over time but not necessarily the mapping from A to B. Given that A is a set
of covariates, an example for data drift could be a covariate shift where the relationship
of two features (synonym: covariates) changes within A. To give a real-world example,
the unit measurement of a sensor could be changed after an update from inch to cm, or
the sensor measuring accuracy decreases over time. Note that this does not change the
mapping from A to B but the relationship within A.
Specifically, for the mHealth studies involved within this work, we potentially face
both challenges, concept and data drift. We distinguish here between within-study and
within-user concept drift. Since some power users stay in a study for several hundreds
of assessments, they might change their mobile device in between which causes sensor
measurements such as microphones to change, which states an example for within-user
concept drift. Also, ecological circumstances might change over time. The mental health
study of the Corona Health project, i.e., asks users about their feelings. Since the lock-
down bylaws of the government changed within very short periods of time, this caused
within-study concept drift.

Missing values Values can be missing in several sources. The most nearby might be
non-filled out questions from assessments. If a question is not required to be filled out to
finish filling out the whole questionnaire, users might skip this question. Another source
are blocked GPS tracking or app tracking. Sometimes, i.e., research questions need this
multi-modal data source to be correlated to the score of a patient health questionnaire.
Regarding non-answered questions, there exist several methods how to treat these [34].
For GPS or app-usage-data however, these assessments must be excluded from the
analysis which sometimes substantially decreases sample size.

Measuring inaccuracy As described earlier, measuring inaccuracy can happen if the
sensor’s quality decreases over time. However, there is also a problem with comparabil-
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ity of measured values [35]. Different mobile device manufactures assemble different
microphones or other sensors such that the exact same value will have different values
once stored into the database. Even if the identical mobile device is used, one might be in
a user’s pocket while the other is in the user’s hand which causes the same environment
to be differently evaluated. Measuring inaccuracy also occurs when using wearable
devices [36]

Different user behaviour Within the same project and study, users might answer, i.e., a
question about their mood differently even if they felt the same. Although an admittedly
subjective question, which is one reason for different filling-out behavior, another reason
is the anchor bias [37]. The anchor bias is a cognitive bias in which irrelevant information
is used as a fixed reference point (synonym: anchor) for future decisions.

User identity The true user identity is not confirmed when filling out the questionnaires.
This is partly due to design reasons, such as in the Corona Check study [38], and partly
due to inherent reasons. The Corona Check study has one question "Do you fill out this
questionnaire for yourself or another person?". Within this assessment, there are further
socio-demographic questions which are, as a pool, identity terminating such as sex, age,
and nationality. Now, there are users in the dataset that filled out the questionnaire
for themselves, but have different ages, sexes, and nationalities. The user identity thus
is not a user identity anymore but rather a device identity. User-related analyses are,
consequently, harder to address and one needs to make specific assumption when a
device identity refers to a single individual. An inherent reason that obfuscates user
identity is the fact that we do not know who is actually in possession of the mobile device
while data is being recorded.

1.2.2 | Why is machine learning beneficial for evaluation?
Among the relatively younger machine learning approaches that can be used to address
use cases and research questions, there are well studied statistical and mathematical
methods that can be used to investigate. So, the question arise why one would prefer a
ML approach compared to a simple heuristic or a rather complicated statistical method.
Since the implementation and maintenance of an ML algorithm in production can be
very elaborately, it is important to weigh whether the added value of the output of an
ML algorithm exceeds the effort of implementation.
This depends on multiple factors. First, what is the type of input data. If the input data is
image data, the effort with classical computer vision is also large, since features must be
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derived manually from the images and programmed into an expert system. Here, modern
deep learning methods with their end-to-end approach are advantageous. End-to-End
in this context means that there are no requirements for feature engineering [39]. When
the input data is tabular, simple heuristics may induce a bias in the A-to-B mapping, but
they are robust, easier to understand, and require less maintenance. In some contexts,
these heuristics are considered as baseline models [40] which is discussed in more detail
in section 3.5. A ML approach can be considered promising, if its performance is strictly
better than the baseline model, and if the costs of implementation and maintenance are
lower than the benefits of the predicting algorithm.

Potential benefits of ML models In this paragraph, we would like to point out the
potential advantages of ML techniques when evaluating use cases that have EMA data
as input. In short, these points are:

1. Complexity | High dimensional and multi-modal data might be too complex for
parametric models.

2. Automation | Potential value added in case of deployment of a model, e.g., for
semi-automated clinical decision support systems.

3. Impartiality | Bias-free search for associations and correlations using non-
parametric models.

4. Novelty | High demand from Domain Experts to address known problems with
new methodologies like ML.

Complexity The preceded advantage of simple heuristics implies a high bias to the A-to-
B mapping. The bias-variance-trade-off implies the balance of over- and underfitting the
data. The model shall be complex enough to learn the A-to-B-mapping and yet simple
enough to avoid fitting on noise or over-represented groups [41]. Simple heuristics,
following the bias-variance-trade-off, thus have a high risk of being too simple to meet
the complexity of the use case. When it comes to image data, simple heuristics within
classic computer vision approaches further require a high expertise in feature engineering
and standardization of processing image data.
This brings us to the second point, the potential value added of a deployed model, i.e.,
for clinical decision support systems. A major problem in clinics is the lack of staff time
to provide care. Automation can relieve the workload of clinical staff by, for example,
prioritizing patients according to their medical status, creating pre-diagnoses or classify
x-ray images [42; 43].
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Automation As described earlier, one induces a bias when using simple heuristics. A
simple heuristic ("The diagnosis of this week equals the diagnosis of the next week") as
well as some simpler ML models, such as exponential distributions, poisson distributions,
normal distributions, the Weibull distribution, and linear regressions, are also referred
to as parametric models. The mathematical formula of such parametric models is pre-
defined, only the parameters are tuned during training. When using a parametric model,
the ML engineer automatically must make an assumption about the underlying A-to-B
mapping. However, when using non-parametric models, there is no need to make such
an assumption. The task for the algorithm then is to find the underlying A-to-B mapping
without having any parameters set before. Examples for non-parametric models are
k-Nearest Neighbors [44], any kind of tree-based algorithm such as CART [45], C4.5 or
Random Forests [46], as well as Support Vector Machines [47].

Impartiality The non-parametric models further allow for a bias-free search for poten-
tially unknown associations and correlations from features within the set of input A to
output B. Note that we did not use the word causality. Association is given, if a change of
a variable x leads to a change of any property of y, i.e., the variance of y increases. Corre-
lation, however, is given, if an increase of x leads to an increase or decrease in y. Because
of spurious associations, causality can be confused with associations. As an example,
one might drink 4 cups of coffee each day and has a decreased risk in developing skin
cancer. There is an association between these two features. However, the true reason for
the decreased probability of developing skin cancer might be that people who drink 4
cups of coffee per day work in the office many hours and thus are less exposed to the
sun, which is a known risk factor for developing skin cancer [48]. Using ML algorithm
and evaluating them using ML explainability and a hold-out test set, one can show that
there is a correlation of input A and output B. However, this does not imply causality.
However, deriving causality using ML is still under research investigation within the
community [49; 50; 51].

Novelty Within the medical domain, many research questions are unsolved to date.
At the same time, ML methodology is still a reasonable young research fields with
exponentially growing interest within recent years. This leads to a high demand from
domain experts to try out new methods on unsolved research questions, i.e., within the
TrackYourTinnitus project, which will be explained in more detail in section 2.1. For
example, using ML explainability, the ML algorithm might detect a unknown association
of input A and output B might then cause a change of the focus of future work [52].
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1.2.3 | Why is machine learning explainability needed?
After having motivated the key concepts of this work and the potential benefits that
come with the usage of ML, we would like to motivate the need of machine learning
explainability within the medical domain in general and, using tabular data and EMA
within a supervised ML use case, in particular. In short, factors that motivate the use of
ML explainability are as follows:

1. Reconciliation of the ML findings

■ with the knowledge of the domain experts [53],

■ against the models themselves (cross-validation) [54], and

■ against simple (non-ML) heuristics [55].

2. Model debugging and model performance improvement [56].

3. Black box character for big ensemble methods: building trust for the system [57].

4. Compliance with regulatory restrictions [58].

5. Confirmation of the finding of new correlations through traceability of the predic-
tive behavior.

Reconciliation of the ML findings Given that the ML model finds an association be-
tween input A and output B, which is generally the case if model performs significantly
better than a baseline model or heuristic, one can affirm the found association with
different stakeholders. One of these stakeholders is the domain expert, who can affirm a
given output of the model if feature importance is provided by a explainability method.
To give a concrete example, a feature importance method may detect the number of
pregnancies of a patient for a diabetes-detection algorithm [59]. The domain expert can
than certify that the number of pregnancies is indeed a contributing factor for developing
diabetes which in turn means that the model has learned something meaningful.
Using cross-validation, which is explained in more detail in section 2.3.2, one will get dif-
ferent performance scores of an algorithm within each validation fold. If the performance
scores’ variation is above a certain threshold, this is an indication of overfitting [60]. One
can also apply global machine learning explainability methods to derive what the model
has learned in each training fold. Analogous to the performance scores in the validation
folds, a high variance in the feature importance ranks can be used to infer overfitting of
the model.
A third option is to validate the rather complex ML models against simple heuristics
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using ML explainability. If the ML explainability methods extends the simple heuristic,
this can also be interpreted as a sign that the model as learned something meaningful. To
give a concrete example, a simple heuristic for a weather forecast could be: "The weather
of tomorrow equals the weather of today". If a machine learning explainability method
states "today’s weather" and some humidity and airflow features as the most important
contributing features, it has extended the complexity of the heuristic to improve model
performance and further confirms the heuristic which is based on domain expertise.

Model debugging and model performance improvement A method to systematically
improve model performance is to carry out error analysis. A neural network may be
trained to classify dog breeds. Carrying out error analysis, one may find that the network
confuses huskies with wolfs. If now additionally a ML explainability method such as
Grad-CAM [24] is applied, there might be highlighted snow in a saliency map which
means that the model associates both wolfs and huskies with white pixels. This finding
now implies to collect more images of wolfs and huskies in a non-white setting to help
the model generalizing further. With the error analysis alone, one might have understood
that there is a problem with wolfs and huskies, but not why.

Building trust for the system There are scenarios where ML explainability is not
required, for instance, in a logistics center, where packages are classified according to
the place of shipment. If the model performs well in a deployed scenario and might
misclassify one in one thousand packages in average, the Chief Executive Officer would
not care why as the benefits of the model exceeds costs caused by rare errors by far. Within
the medical domain however, stakeholders, which are listed in more detail in section
2.5, have a great interest of why a model makes certain predictions for various reasons.
Addressing the correct depth and technical level of explainability to the stakeholder
of interest can increase trust of the ML system and thus increase the likelihood of
software integration [61; 62; 63]. One keyword to mention here is the human-in-the-loop
approach. Through the black box character of most clinical decision support systems
that are ML-based, clinicians need to provide feedback for the ML system and correct
false outcomes or confirm predictions not only to improve future predictions, but also to
increase the trust in the system.

Compliance with regulatory restrictions So far, regulations for AI systems are still
emerging worldwide, such as the Promoting the Use of Trustworthy Artificial Intelligence
in the Federal Government (US Executive Order 13960) [64], the White House Blueprint for
an AI Bill of Rights [65], and the AI principles, issued by the Organization for Economic
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Cooperation and Development (OECD) [66]. The regulations are partly being formulated
with the help of expert groups and in feedback loops with the scientific community [67].
Since the definitions of AI and ML as well as the areas of application are very heteroge-
neous and also change with great dynamism, the conflicting goals of regulations are to
provide concrete specifications without limiting the potential of the systems and, above
all, protecting the individuals. Among other key aspects, all these regulations have in
common that they address transparency and explainability.
Regarding regulation within the medical domain, for the United States of America (USA)
the competent authority is the Food and Drug Administration (FDA), for the European
Union (EU) it is the EU commission. Both authorities refer to AI in a broader context as
software as a medical device [58; 68]. So, what is software as a medical device? The FDA
defines this as "software intended to be used for one or more medical purposes that perform
these purposes without being part of a hardware medical device" [69]. The EU commission
uses a very similar term medical device software (MDSW) and defines it as "software
that is intended to be used, alone or in combination, for a purpose as specified in the definition of
a “medical device” in the Medical Devices Regulation (MDR) or In Vitro Diagnostic Medical
Devices Regulation (IVDR)". A medical device is then defined as "(...) any instrument, appara-
tus, appliance, software (...) intended by the manufacturer to be used (...) for human beings for
one or more (...) specific medical purposes (...)". Differences of older version of the USA and
EU regulations have been summarized and discussed [70; 71] about 10 years ago. With
recent dynamically growing interest of a broader public, as well as new regulations to
be published in 2024 [68], one expects more comparative work on this in future related
work since this is out of scope of this thesis. The fact that all these drafted regulations
and recommendations mention explainability highlights the importance of XAI methods.

Confirmation of the findings This paragraph has an overlap with the reconciliation
of the ML findings. In a feedback loop with an algorithm-applying user, the domain
expert can confirm a prediction of an algorithm based on his or her own knowledge with
respect to the current case. This not only builds trust for the deployed system but has
the potential to increase domain knowledge if a trusted system correctly predicts an
outcome with an explanation (detail) that the domain expert did not expect.

We now have seen three major questions that motivate the research direction of this
thesis: The EMA and MCS specific challenges, the benefit of using machine learning
when working with this kind of data, and the necessity of XAI methods to explain and
understand model predictions. After this introduction to the methodological topics of
the thesis, we give an overview of the domains from medicine that are touched upon.
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1.3 | Introduction to thesis-related domains

This section gives an introduction into the two domains of data that this thesis works
with: Tinnitus, and the coronavirus. Sections 3.1, 3.2, and 3.5 work with a multi-modal
and longitudinal dataset that contains mHealth tinnitus data from the TrackYourTinnitus
research project which is introduced in section 2.1. The tinnitus data was also used to
answer Main RQ 1 (How can machine learning help confirming or broaden domain knowledge
within mHealth data?), and Main RQ 2 (How can one reach explainability in the presence of
mHealth data when using Machine Learning?) Sections 3.3 and 3.5 work with data that was
collected using the Corona Check mHealth app. The app was launched in an early stage
of the COVID-19 pandemic in 2020 to help overburdened coronavirus hotlines and track
the course of the pandemic using MCS and EMA. The dataset of the Corona Check app
was then used to answer Main RQ 3 (Which guidelines can be beneficial for the use of ML
within the mHealth domain ?).

1.3.1 | Tinnitus
Tinnitus, often referred to as "ringing in the ears", is a widespread auditory sensation
characterized by the perception of sounds in the absence of external acoustic stimuli.
It is estimated to affect approximately 10-15 % of the world’s population [72]. While
tinnitus is most described as ringing, it can also manifest as buzzing, hissing, clicking,
or other phantom sounds. Tinnitus is a complex and multifaceted condition that can
significantly affect a person’s quality of life, leading to stress, sleep disturbances, and
difficulty concentrating. Furthermore, this clinical picture exhibits a high degree of
heterogeneity with many, sometimes unknown, influencing factors. The underlying
mechanisms of tinnitus involve intricate interactions within the auditory system and the
central nervous system [73]. However, tinnitus perception is also influenced by central
auditory processing, neuronal plasticity, and emotional factors [74]. Furthermore, gender-
related psychological and socio-cultural factors might contribute to variations in tinnitus
reporting. This hypothesis is further investigated in section 3.1. Also, seasonal tinnitus
was reported among tinnitus patients. That is, does tinnitus vary within a year’s course
based on temperature or season? This question is asked in [75] and further investigated
in section 3.2.
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1.3.2 | Severe Acute Respiratory Syndrome Coronavirus 2
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, short: Coronavirus), the
causative agent of coronavirus disease 2019 (also known as COVID-19), emerged in late
2019 and rapidly escalated into a global pandemic, challenging public health systems,
healthcare infrastructures, and societies worldwide. Characterized by a diverse range
of symptoms, COVID-19 has exhibited an array of clinical presentations, varying from
mild or asymptomatic cases to severe respiratory distress and multi-organ dysfunction.
The coronavirus presents a wide range of symptoms that can manifest in diverse
combinations and severity levels. While the most reported symptoms include fever, dry
cough, and fatigue, other clinical manifestations have been identified. These symptoms
encompass, among others: Shortness of breath, chest pain, persistent cough, diarrhea,
loss of taste and smell, headaches, and muscle pain [76]. In section 3.3, we investigate,
among others, whether the distribution of the symptoms differ between countries.

In this introduction, three essential things were shown. First, we have defined the six
key concepts of this thesis (Ecological Momentary Assessments, Mobile Health, Mobile
Crowdsensing, Supervised Machine Learning, Machine Learning Explainability, and
Domain Expert) , distinguished them from homonyms and synonyms, and illustrated
them with examples.
Second, we delineated the problem field and put it into context. Seven challenges that
are not limited to EMA applications but may arise when working within this field were
introduced and explained. We further answered the question why ML is beneficial
for evaluation of data that is introduced in section 2.1 (potential benefits, complexity,
automation, impartiality, and novelty). Finally, we explained the need of XAI within
the mHealth domain. Analogously to the benefits of ML, these aspects (reconciliation
of findings, model debugging, trust, compliance, and confirmation) do not necessarily
apply in the mHealth domain only.
And third, we gave a short introduction to the thesis related domains, tinnitus, and the
coronavirus, and how the related to the three main research questions. Within the tinnitus
domain, this thesis investigates the heterogeneity picture of the tinnitus syndrome by
investigating into gender- and season related differences. Regarding the coronavirus, we
examine, among other things, the different distributions of reported symptoms among
mHealth Corona Check app users.
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2

Materials & Methods

In this chapter, we give an overview of the datasets and methods that are used in the
papers that contribute to this cumulative thesis. The chapter is subdivided into three
sections. Section 2.1 describes and summarizes the EMA datasets that are involved in all
papers for direct or meta analyses. The section also briefly discusses how the technical
pipeline runs in the background (subsection 2.1.1) to communicate with both Domain
Experts and Back-end Developers to minimize information leakage regarding Domain
Expert implementation requests and technical feasibility. Once the data is stored in a
database, it can then be exported and visualized on a dashboard which will be explained
in more detail in subsection 2.1.2. Section 2.2 introduces the three major subfields or
machine learning: Supervised, unsupervised and reinforcement learning. As this thesis
operates within the supervised ML field only, this field is explained in more detail. Also,
major issues such as the bias-variance trade off or overfitting, and concepts like ML
pipelines are explained. As this thesis uses random forests for prediction, tree-based
ensemble methods are also explained. The chapter closes with a section about XAI
(section 2.5). Here, a taxonomy for local and global explainability methods is given,
as well as a list of common explainability methods with explanations, applications,
advantages, and disadvantages for each method.

2.1 | EMA mHealth datasets
This thesis incorporates data from four research projects. Each research project has its
own mobile app, developed on both iOS and Android. The Corona Health (CH) research
project, for example, further includes several studies, and each study can have several
questionnaires which we refer to as assessments in this work.
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their current mood and current tinnitus perception. Before being able to fill out the daily
questionnaire, users must fill out the TSCHQ. Third, the Worst Symptom questionnaire
which asks the user to report the worst symptom. This worst symptom is then asked for
in the follow-up daily questionnaire "Do you perceive your worst symptom right now?".
During the evaluation of this study, we had to be careful caused by unconventional
data encoding to avoid creating outliers in the data. For example, missing values in
the question about date of birth were coded as ’??.??.????’. In addition, there were no
plausibility checks for age information, so that some users were well over 100 years old,
which is rather implausible when filling out an electronic questionnaire via smartphone.
The time gap of two assessments from the same users is supposed to be 24 hours, on
average.

Unification of Treatments and Interventions for Tinnitus Patients (UNITI) This study
is also related to TYT because the same scientists were involved in its design, such as Prof.
Rüdiger Pryss and Prof. Winfried Schlee. The questionnaire involved in this thesis from
the UNITI project contains over 32,000 assessments filled out by 763 users. The questions
within this assessment are highly correlated with the daily questionnaire from TYT, i.e.,
UNITI asks How loud is your tinnitus at the moment? and TYT asks How loud is your tinnitus
right now?. A phenomenon already mentioned in the introduction is the large standard
deviations of the users when filling out the assessments, the procrastination of answering.
On average, users complete questionnaires every day, but the standard deviation is
4.6 days, which means that a good third of all questionnaires completed by a user are
completed after 4.6 days. We will see in the main section that other studies have even
larger standard deviations.

Corona Health (CH) The previous two projects mainly addressed the tinnitus disease
whereas the next two projects address the COVID-19 pandemic and its psychological and
physiological consequences caused by lock-downs and isolation, as well as the fear of a
COVID-19 infection. Within this thesis, we included four studies from the CH project
that are all hosted within the CH app. Three of these studies are psychological (mental
health for adults, mental health for adolescents, stress), one is physiological (physical
health for adults). 2,912 users filled out a total of 21,217 assessments. Each study consists
of two questionnaires, a baseline and a follow-up questionnaire with time gaps between
two follow-up questionnaires of one or two weeks. Exponential dropout rates as well
as large standard deviations in the perceived time gaps between two assessments of
one users make this data challenging to evaluate. The app design and the challenges
of the app development are explained by Vogel et. al. [77]. The Mental health for adults
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study was translated into 7 languages to enable as many people as possible to fill in
the questionnaires in their native language. Since the network of scientists and thus
the level of awareness of the study was greatest in Germany, also due to advertising
and involvement of the Robert Koch Institute, the studies were mainly downloaded and
completed in Germany. More details of the studies of the CH project are given section
3.5, app screenshots are given in Figure 2.3.

Figure 2.3: Three screenshots of the Corona-based EMA projects. The screenshot in
orange colors is from the Corona Check project. Within this assessment, users can report
symptoms which are used to provide recommendation for action such as self-isolation or
the consultation of a physician. The screenshots in purple belong to the Corona Health
project. The middle picture shows three of the four studies and gives users the option to
enroll in one or more of these. The picture on the right is a screenshot of the Mental health
for adolescents study. The apps were developed by Vogel et. al. [77].

Corona Check (CH) The goal of the Corona Check app is partly in its name, namely
an initial heuristic check of potential Corona infection based on - at the time - known
symptoms that correlated with infection of the virus which rules can be seen in Figure
2.4. The app could be downloaded from common app stores without further ado, and
without creating a profile, the Corona Check questionnaire could be completed. At the
time of the User-Assessment paper (see section 3.5) there were approximately 13700 users
with a total of over 89,000 questionnaires.

22







Chapter 2. Materials & Methods 2.1. EMA mHealth datasets

2.1.2 | The dashboard
The dashboard2 is a follow-up project of the Excel Loop and has the goal to inform
the domain experts of a study about key figures of the incoming assessment on a daily
basis. In addition, graphics with various groupings and aggregations are given for core
questions from the studies. For example, the current mood, grouped by age or gender or
severity of illness. The dashboard project is presented in this project video on YouTube3.
A screenshot of the dashboard is given in Figure 2.6.

Figure 2.6: Screenshot of the dashboard project with data aggregation of the Corona
Health project. The data can be aggregated by sex, age, and country. If the figure fits the
users’ needs, it can be downloaded as a PDF or PNG file.

.

2https://mhealth-dashboard.de/
3https://www.youtube.com/watch?v=Dj7sU2vhelc
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In this section, we introduced the data used in this thesis on a meta-level, gave facts and
statistics about it, and explained the studies and mobile app integration for it. We also
introduced the Excel loop that reduces the communication gap between programmers
and domain experts of the medical and psychological apps by turning unstructured data
into structured data and automating the conversion of the Domain Experts’ information
and requests regarding questionnaire design. Last but not least, we presented the
dashboard that aggregates the study data generated by the Excel loop and redisplays
it in graphs to keep the Domain Experts informed about the study progress on a daily
basis.

2.2 | Supervised Machine Learning
Although this thesis uses Machine Learning in almost every contributing paper, it is not
about Machine Learning. Nevertheless, in this section we want to give a brief introduction
tree-based algorithms. The topic of machine learning has grown exponentially since the
beginning of my thesis, not least due to the release of newer version of large language
models like GPT-3.5 and GPT-4 by the company OpenAI [79] with early work starting
in the late 1950s from Samuel [80]. Among supervised Machine Learning (ML), there
exist two other types, unsupervised ML and Reinforcement Learning as shown in Figure
2.7. The most popular by far, however, are supervised use cases where model is given
an input A and an output B as shown in section 3.4. Within supervised ML, the model
has the task to learn the mapping from A to B. This is a substantial difference to classic
programming, where an input A and a set of rules is given to determine B. Within
the ML jargon, the output B is referred to as targets or labels. For unsupervised ML
use cases, these labels are not given and the model task is either clustering analyses or
dimensionality reduction. For this work and with the current state of the art, we would
like to define Machine Learning as follows: Machine Learning (ML) learns from an
input A to an output B. Within supervised ML, we differentiate between classification
and regression tasks. Classifications are outputs on a concrete scale, i.e., pneumonia vs.
not-pneumonia would be a binary classification task. The prediction of blood pressure,
however, is on a continuous scale and therefore a regression task. There are algorithms
that can only classify or regress, depending on how they are structured. One of the
standard books in AI give a deeper introduction of these concepts [17].
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complexity for the problem at hand, often by comparing the performance of different
models on validation data.

2.2.2 | Tree-based ML methods
Tree-based machine learning methods are powerful and widely used techniques for both
classification and regression tasks. These methods build decision trees or ensembles
of decision trees to make predictions based on input features. Quinlan introduces the
concept of decision trees and outlines the ID3 algorithm for inducing decision trees
from labeled training data [88]. He discusses attribute selection criteria and pruning
techniques, such as Gini impurity, Entropy and Information Gain. These concepts
measure the disorder of the data based on the target and try to maximize the order
such that the target distribution has minimum entropy. Tree-based methods are widely
adopted because they are interpretable and non-parametric, meaning one has not to
make an assumption about an underlying distribution. Disadvantages of decision trees
have been partly addressed by Breiman in his paper Random Forests [46]. He creates a
ensemble of multiple decision trees, each tree trained with a slightly different subsample
of the training data using a technique called boot strapping. Because decision trees are
greedy, each tree is built slightly different and thus creates different predictions for the
same given input. Another difference of random forests compared to decision trees is the
random feature selection. That is, not only a subset of the training data is given to each
tree, but also a subset of the available features. Random forests are much more robust
than decision trees because of the variance of the trees within a forest. The boot strapping
process of the random forests has been optimized in a follow up algorithm called gradient
boosting machine (GBM) [89]. Random forests build each tree independently without
considering the errors of previously built trees. In contrast, GBMs iteratively construct
trees by focusing on the residuals or gradients of the loss function, aiming to reduce the
overall prediction error at each iteration. GBMs further use all training data but weighted
on the errors the previous tree made. Random forests, in contrast, always use a subset
of the training data to construct a new tree. Although GBMs generally achieve a higher
performance than random forests, random forests still remain popular because of their
interpretability and their insensitivity to outliers. GBMs however, can be sensitive to
outliers since they focus on misclassified data points during training.
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the data preparation must be slightly changed to increase model performance, or an
increasing data understanding leads to new questions addressed to the domain expert.
CRISP-DM therefore has one outer loop and three inner loops. The inner loops are the
communication between domain expert and data scientists (1 and 2), the iterative process
of developing a model (2, 3, 4), and evaluating a model (4, and 5), the outer loop includes
the steps 1 to 5, without deployment. Ending the loop at step 6 is a simplification that is
made by CRISP-DM. In a real-world scenario, challenges like concept drift (section 2.4),
data drift, and continuous integration must be addressed.

Alternatives to CRISP-DM CRISP-DM is not the only framework that helps to guide
through ML projects and pipelines. Verma et. al. propose a 3-phase framework that
can be used to describe the implementation and prior development of machine-learned
solutions [93]. Phase 1 is the exploration phase, where the use case and domain have
to be understood, outcomes defined, workflows understood, data feasibility clarified.
Phase 2 is the ML solution design phase, where a model developed and tested. Phase
3 is the implementation and evaluation phase where the solution is implemented
iteratively, where a team steps back to phase 1 and 2 before landing to phase 3 again.
This three-phases framework has with CRISP-DM in common that it is iterative and
includes multiple disciplines like data scientists, software and ML engineers, physicians,
project managers, and users. However, there is a larger focus on subject matter experts in
the three-phase framework, and CRISP-DM does not include project managers in turn.
Also, CRISP-DM ends after deployment whereas this framework contains an iterative
deployment.

2.3.2 | Cross-Validation
When at stage 4 (modeling) and 5 (evaluation) of the CRISP-DM cycle, one of the main
questions during the project is: How well performs the model after deployment? One of
the major challenges of ML projects is the problem of overfitting. A model, that performs
very good on train data might have a big performance decrease on test data because it
was overfitted. Another one might claim that the test data is not representative for the
real-world data and might contain a bias: Too many men, too easy to classify, or only a
part of the search space is represented in this dataset. One widely adopted tool to address
these challenges is to cross-validate [86]. In cross-validation, one splits up the data into k
approximately equal sized folds. In the next step, the model is then train on k − 1 folds
and validated on the remaining. There exist several ideas which samples (=rows of all
available data) should constitute a fold. One can split along a time-axis, along users,
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between users, or randomly. Depending on the data and the use case, this can lead to
better or worse estimates of the model’s performance and generalization ability after
deployment. Details about cross-validation are given in section 3.5.

2.3.3 | Scores on Classification and Regression
In an earlier phase of a ML project and when using cross-validation to evaluate your
model, there can be several metrics on the evaluation dashboard. For regression tasks, the
types of evaluation metrics can be divided into two fields. One field tries to report how
far away the model’s prediction is from the ground truth. These are metrics like Mean
Squared Error, Root Mean Squared Error, Mean Absolute Error, or Median Absolute
Error. There is also literature that discusses pros and cons of using one or the other [94].
The other field tries to explain the model’s fit on a meta level, like R2 or the Explained
Variance Score. As this thesis mostly train classification models rather than regression,
we would like to set the focus more on classification metrics. There are many metrics
out there, and sometimes they are confused because of homonyms, i.e., if someone asks
"How accurate is your model?" or "How precise is your model?". There are metrics like
accuracy and precision that would be the literal answer to these questions, but here can
assume that the opponent wants to ask how good the model is. And the answer to this
question depends on the use case and the aims of the project. One of the best-known
metrics is the accuracy score. Given a binary classification task, there are four possible
outcomes for a prediction: True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN). For most clinical datasets, the data is skewed in a sense that
there are many healthy patients (target=0) and only very few with a positive disease.
(target=1). If the prevalence is 1 % in your dataset, your model has an accuracy of 99
% if you write code that states print 0. That’s why an accuracy score can be used if
the target distribution is balanced in the test set or if the consequences of predicting a
FP are the same as predicting a FN. In the medical domain however, this is generally
not the case. If your only goal is to detect the positive cases in your dataset, you would
optimize the Recall (synonym: sensitivity, true positive rate, hit rate) (TP/P) with P as
the number of positive instances. Now again, if you write code that states print 1 you
have successfully optimized your recall, but the model would be obviously useless.

2.3.3.1 | Balanced Accuracy vs F1-Score
Two approaches of handling the precision-recall tradeoff are represented by the balanced
accuracy and the F1-Score. The balanced accuracy equally weights true positive and true
negative rates: (TPR + TNR)/2, with TPR = TP/P and TNR = TN/N with N as the
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number of negative instances. The F1-Score, however, does not count for True Negatives
at all, meaning it focuses more on the detected positives: 2TP/(2TP + FP + FN) which
is the harmonic mean of Precision and Recall. Within this thesis, we mostly optimized
the F1-Score when training a ML model.

2.3.3.2 | Concordance Index and Brier Score
One of the disadvantages that all previous mentioned classification metrics have in
common is that there a sensitive towards a specific threshold. A classification model
predicts not integers but floats, meaning a classification is not 0 but 0.3, for instance. For
binary classification tasks, the threshold would be on 0.5, meaning the model predicts 1
if the final value is 0.5 or higher. Now if one wants to optimize the recall of a model, he
or she can lower the threshold to 0.4. This shifts the distribution of predictions towards
more positive cases. Vice versa, one can increase the threshold to 0.6 which shifts the
distribution of predictions towards more negative cases. One number that catches the
performance of the model when all thresholds are tried on a test set is the area under the
receiver operating characteristic curve (AUC-ROC), or Concordance index (C-index or
C-statistic). The ROC curve is a graphical representation of the model’s true positive rate
(sensitivity) against the false positive rate as the classification threshold varies. It is robust
to class imbalance and threshold selection and provides a single number. 0.5 means
random guessing and 1 is a perfect model. The Brier-Score (BS) is defined as the squared
differences between the ground truth Y and the raw prediction value p. It ranges from 0
to 1, with 0 referring to a perfect and 1 to a most poor model. If the prevalence in the
dataset is 50 %, a non-informative model’s BS is 0.25, however, if the prevalence is only 10
%, the maximum score is 0.09 (Y(1− p)2 + (1−Y)p2 = 0.1(1− 0.1)2 + (1− 0.1)0.12) [95].
The brier score is suitable if one wants to assess the goodness of the calibration of the
model. For instance, if a model constantly predicts 0.6 at a threshold of 0.5 for positive
cases, this would lead to a good F1-score but a bad BS as the distance to Y is 0.4 for each
prediction. In this case, the model has a good discrimination but poor calibration.
In summary, there is no one metric for optimizing a model. It always depends on the use
case, the prevalence in the data, the goals in the project and the consequences of false
positive or false negative classifications.

2.4 | Concept Drift
Thinking within the CRISP-DM framework, concept drift is most important at the deploy-
ment stage 6. So, if stakeholders agreed on implementing a model in a live environment,
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it is very likely that an abrupt concept or data drift occurs. Concept, in this context and
with our definition of Machine Learning, is a synonym to the word mapping. In other
words, if the mapping between input A and output B changes, the concept changes.
What will happen then is that the performance of the model decreases because the
inherently learned concept is no longer valid. Concept drift can occur due to various
reasons such as changes in user behaviour, shifts in the underlying distribution of the
data, or external factors affecting the data generation process [96]. There are generally
two kinds of drift: Steady and abrupt drifts. The latter, i.e., can happen because of an
external abrupt event like a lockdown from the government causing customer behaviour
to change abruptly. Steady drifts can happen because of degradation of sensor quality,
or a disease progression that causes previously made assumption to hold no longer
true. One effective way to address concept drift is a continuous integration system with
version control over data, the model, and the code. If the performance of the model
decreases over time, a threshold can be set to automatically update the model with the
latest x samples from the collected data. The model can then be updated with the latest
A to B mapping. The consequence of not having a monitoring system that keeps track
of the model’s performance can be read in recent work of Lyons et. al., and Wong et.
al. [97; 98]. The authors showed that a sepsis model widely used in the United States
performed far worse than the manufacturer actually claimed. If we now assume that the
manufacturer did not report EPIC to have a higher performance than the model ever had
from the beginning, we have to assume that the model had an abrupt drift immediately
after implementation due to poor external validity, or that the model became worse over
time (steady drift), or a combination of both.

Preliminary Summary In this section, so far, we have introduced the basic concepts
of supervised ML, major problems like the bias-variance tradeoff, overfitting, and the
mainly used algorithm in the papers (tree-based methods). We have differentiated
between ML pipelines in a wider and narrow sense, explained the differences of a wider
ML pipeline to a CRISP-DM cycle, we introduced the concept of cross-validation, some
major classification and regression scores, and explained the difference of steady and
abrupt concept drift. For further reading, all these topics are explained in more detail
in the references that we cited, and in the methods sections of the papers in the main
part of this thesis. We close this chapter with a more detailed introduction into ML
explainability with some in depth introduction of common ML explainability methods,
their application area, and a quick discussion of pros and cons of each of these methods.
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2.5 | Machine Learning Explainability
Machine learning explainability or explainable artificial intelligence (XAI) refers to the
ability for humans to understand the predictions made by ML models. In our literature
review from section 3.4, we define a ML explainability method as a method that enables
humans to understand why a model makes certain predictions.

2.5.1 | Taxonomy
ML explainability methods can generally be classified in two categories [99]. The first
category is: Is the method specific or agnostic? Model agnostic methods, which can be
applied to any model regardless its architecture, and model specific methods, which are
limited to certain model architectures such as neural networks or tree-based methods.
The category is: Does the explanation method provide local or global explanations? Local
explanations explain a single predicted instance of a model whereas global explanations
generally give insights to feature importances and the model behaviour as a whole. Some
authors also bring in a third, complexity-related category to differentiate if the method is
intrinsic or post-hoc interpretable. Classic examples for intrinsic interpretable methods
are linear regressions or decision trees, which is a reason for the popularity of these
methods. Post-hoc explainability methods are mostly agnostic methods and are applied
to random forests, support vector machines, and neural networks, among others. A
graphical overview of this concepts if given in the mind map in Figure 2.10.

2.5.2 | Explainability methods
The literature review in section 3.4 gives a more detailed introduction into the taxonomy
of ML explainability. This section here, on the other hand, introduces a subset of the
most common explainability methods for tabular, image, and text data. The subset
was carefully chosen by the amount of Google citations as of December, 23 in 2021, it’s
open-source ability in either Python or R, or because they solve an issue of a previously
published explainability method. In the next paragraphs, each explainability method is
dedicated an own paragraph, and within each paragraph, we try to explain the core idea
of this explainability method, where it can be applied, its advantages, and limitations.
The methods are ordered by their year of publication. As the ML field is highly dynamic
and the number of papers published grows exponentially, this list might be outdated
by the time you read this. A good introduction to the general topic of XAI is given by
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Partial Dependence Plots (PDP) [89] A G No No Yes 2001 15545 R and C Yes
Permutation Importance [101] A G No No Yes 2010 15545 R and C Yes
Mean Decrease Impurity [102] S G No No Yes 2013 823 R and C Yes
Individual Conditional Expectation [103] A L Yes No Yes 2013 571 R and C Yes
DeepLIFT (Deep Learning Important FeaTures) [104] S L Yes Yes No 2016 1629 C Yes
Layer-Wise Relevance Propagation [105] S L Yes Yes No 2016 2160 C Yes
Maximum Mean Discrepancy - Critic [106] A G Yes Yes No 2016 445 C Yes
Gradient-weighted Class Activation Mapping [24] S L Yes Yes No 2016 6758 C Yes
Integrated Gradients [107] S L Yes Yes No 2017 2017 C Yes
Local Interpretable Model-agnostic Explanation (LIME) [108] A L Yes Yes Yes 2017 5020 R and C Yes
SHapely Additive exPlanations (SHAP) [109] A L and G Yes Yes Yes 2017 5020 R and C Yes
Leave One Covariate Out [110] A L No No Yes 2017 274 R Yes
Influence Functions [111] A L Yes Yes No 2017 1377 C Yes
Soft Decision Trees [112] S G Yes No No 2017 357 C Yes
SmoothGrad [113] S L Yes Yes No 2017 867 C Yes
Testing Concept Activation Vectors [114] S L and G Yes Yes No 2018 583 C Yes
Anchors [115] A L Yes Yes Yes 2018 922 R and C Yes
Representer Point Selection [116] S L Yes Yes No 2018 105 C Yes
Automatic Concept-based Explanations [117] S G Yes Yes No 2019 157 C Yes

Table 2.1: Overview of interpretability methods relevant to tabular and computer vision
tasks, ordered by year of publication. Method relevance to neural networks, computer
vision, and tabular data is indicated in the respective columns. The number of citations
was derived from Google Scholar as of December 23rd, 2021. Links to the source code
are provided via hyperlinks. We included methods that had more than 100 citations on
Google Scholar, whose source code was publicly available, and that were optionally used
in the review articles. An explanation of each method with advantages and limitations
can be found in the supplementary material on GitHub. Regr = Regression, Classif =
Classification.
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Partial Dependence Plots
Explanation Partial dependence plots (PDP) is a global, model agnostic method that
shows the marginal effect of a feature on the target. In principle, PDP answers the
question "What is the relation of these features to the target given that other features are held
constant?". Application The plots are applicable on any type of features (categorical
and continuous) as well as to classification and regression problems. Advantages Since
this method is detached from the ML model, one is independent of the algorithm and
primarily looks at the data itself. An implementation can be seen here. Limitation
However, PDP makes the naive assumption that features have no correlation with each
other. Averaging many data points further results in loss of information regarding the
heterogeneity of features.

Permutation importance
Explanation Permutation importance is a model agnostic and global method to estimate
how important a feature for a given trained model is [101]. It can be used for both
regression and classification tasks. Permutation Importance is defined as the absolute
difference in the performance score when a feature is replaced by a dummy feature.
The more the performance drops, the more important this feature is for the model. A
little-noticed variance of permutation importance is the perturbation rank, in which the
values within a feature are shuffled [118]. The advantage of this method is that statistical
properties of feature and dummy feature remain identical. Application For Python
users, there is an implementation of the method in scikit-learn. The method can be used
whenever tabular data is used, regardless of the model. Advantages An advantage
of the method is its intuitive comprehensibility to stakeholders and the open-source
implementation by scikit-learn. Limitation A disadvantage is that the Permutation
Importance depends on the model and the selected performance score. A modification
of the performance scores can mean a change in the feature rankings. In addition, this
method cannot take into account co-variances between features.

Mean Decrease Impurity
Explanation Mean Decrease Impurity (MDI) is a global and model specific method for
explaining feature importance of ensembles of trees [102]. It aims to identify irrelevant
features for the target and attributes a relevance to each feature. For each feature, it
calculates the importance (i.e., Gini or Shannon [119]) as the sum over the number of
splits for all trees with that feature, proportionally the total number of samples it splits.
Application Conceivable applications are classification tasks with categorical variables
as input, although according to the authors, regression tasks are also conceivable if
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one varies the method used to measure impurity. Advantages The methodology is
mathematically sound within the paper. Limitation However within the paper, MDI is
shown using categorical input and output variables, which limits potential use cases.
At the same time, on the documentation side of permutation importance, scikit-learn
criticizes a bias of MDI towards categorical variables. Perturbation Ranking, introduced
by Jeaff Heaton shuffles the values within one feature, however, the statistical property
of the feature (min, max, mean, std) remains the same.

Individual Conditional Expectation
Explanation Individual Conditional Expectations (ICE) are a refinement of Partial De-
pendence Plots and address the heterogeneity of individual data points [103]. It is a
local, model agnostic and post-hoc method which simply disaggregates PDPs to shed
light on individual conditional expectations. Application It can be applied to supervised
applications and is essentially used to illustrate up to 3 variables. There is an imple-
mentation in R and Python. Advantages In classical PDPs, averaging results in a loss of
information. Disaggregation can reverse this loss of information. Limitation ICEs can
become confusing if there are too many heterogeneous data points. Although this shows
the heterogeneity of the problem, it also makes it difficult to derive concise statements.

DeepLIFT
Explanation Deep Learning Important FeaTures [104] is a local and model specific
method using to explain individual predictions of neural networks. It can also be used
for computer vision applications. DeepLIFT looks at how much each neuron in a neural
network is activated relative to a reference input for an individual input. The reference
input is neutral foil, whereas the individual input can be described as fact. Application In
the paper, DeepLIFT is applied to MNIST dataset and for classification of DNA sequences.
Advantages Other methods like [120; 121; 122] also need a forward propagation to
for each perturbation and might therefore be computationally inefficient. Limitation
DeepLift itself has the limitation that it is difficult to generate a suitable reference input
(foil) from the data to explain the individual input relative to the reference input.

Layer-Wise Relevance Propagation
Explanation Layer-Wise Relevance Propagation (LRP) [105] produces relevance scores
for the input pixels by iteratively distributing the final score across the neural network’s
layers, starting from the output layer and proceeding backwards to the input layer. Values
greater than zero indicate that a particular pixel is relevant for the chosen class. There
are several variants of LRP; while LRP was not originally described as a gradient-based
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explanation method, it was later shown [123] that ϵ-LRP is a variant of the Gradient ∗
Input method in which the gradient calculation is modified based on the ratio between
the output and input at each nonlinearity. Application LRP has been applied to image
classification models, bag-of-words models [124], and Fisher Vectors [125].

Maximum Mean Discrepancy - Critic
Explanation Maximum Mean Discrepancy MMD-Critic is a global model agnostic
method that distinguishes representative samples of a class from outliers [106]. Typical
representative samples are called prototypes, the outliers are called criticism. Samples in
a distribution with high sample density are seen as good prototypes. By detecting the
criticisms, a higher interpretability of black-box models should be achieved. Application
Typical applications are examples of computer vision models, but tabular applications
are also conceivable. The source code is freely available on GitHub. Advantages MMD-
Critic works for any data type and any model. It is therefore maximally flexible. It
can help people when labeling images to recognize untypical images of a class more
reliably. Limitation A criticism is not necessarily harder to classify from the model. As an
alternative, a classical error analysis of misclassified samples can help to detect difficult
samples systematically by examining these images for concepts.

Gradient-weighted Class Activation Mapping (Grad-CAM) and Guided Grad-CAM
Explanation Gradient-weighted Class Activation Mapping (Grad-CAM) is a model
specific, local and post-hoc explainability method for computer vision tasks and rein-
forcement learning [24]. It calculates a linear combination of neuron importance weights
and feature map activations for the last convolutional layer as this layer has the best
compromise between spatial information and high-level semantics. Grad-CAM basically
answers the question: Which part of an image is important for a specific classification?
Application Grad-CAM can be used to explain computer vision models solving object
detection, image classification and visual question answering tasks. The model has been
evaluated on datasets like ImageNet, COCO, Visual Question Answering and Places.
The source code is freely available on GitHub. Advantages Although we categorize the
method as model specific, it is applicable to a variety of CNN model families such as fully
connected ones, multi-modal inputs for visual question answering or structured outputs
such as captioning. Unlike the older CAM algorithm [126], the Grad-CAM method is
a generalization in that it does not require a specific model architecture. Limitation A
potential limitation could be the "Guided Grad-Cam" variation presented in the paper.
Guided back-propagation acts more like an edge detector than providing insights into
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the model behavior [127; 128]. Solutions for this could lie in further developments of
CAM, such as Grad-CAM++[129].

Integrated Gradients
Explanation Integrated gradients calculates step by step the difference of a neutral input
(a baseline, i.e., a black image) to a given input [107]. The gradient provides an estimator
of which value weights most strongly for prediction. Application Integrated gradients
was demonstrated by the authors on image models, text models, and a chemistry model.
The method has even the ability to debug a model. Advantages The method does
not require any modification to the model of interest and can directly be applied to the
standard gradient operator. The paper presents two axioms that, according to the authors,
should be fulfilled for an attribution method, namely sensitivity and implementation
invariance. Sensitivity is given when a different feature between input and baseline is
non-zero. Implementation invariance is given if a neural network always outputs the
same prediction for a given input, regardless of its architecture. According to the authors,
DeepLIFT, i.e., breaks both of these axioms. Integrated gradients can be applied to any
differentiable model. Limitation The limitation of this (and other image attribution
methods) is that interactions between features as well as the logic of the network are not
addressed.

Local Interpretable Model agnostic Explanation
Explanation Local Interpretable Model agnostic Explanation (LIME) is a popular, open-
source, and post-hoc method that learns an interpretable model around a single predic-
tion. Using data points close to the individual predictions, LIME trains an interpretable
model to approximate the predictions of the real model. The new interpretable model is
then used to interpret the result, which is also called local fidelity. Application LIME
can locally explain text-models from tree-based algorithms as well as computer-vision
models, such as deep neural networks. Advantages LIME breaks the complexity of a
global model by taking samples that are locally close to a prediction. Limitation It has
been shown that a random generation of noise results in an instability of the generated
explanations by LIME [130; 131]. This results in modifications of the originally posted
LIME approach, i.e., S-LIME [132] or DLIME [131].

Shapley Additive exPlanations
Explanation SHapley Additive exPlanations (SHAP) is a model agnostic method that
allows both global and local explanations and also addresses structured as well as un-
structured data [109]. SHAP is the contribution of a feature value to the difference

41



Chapter 2. Materials & Methods 2.5. Machine Learning Explainability

between the actual prediction and the mean prediction. The popularity of SHAP is not
least explained by the freely available source code on GitHub. SHAP builds on Shapley
values from game theory [133], propagation activation features [134], and model-intrinsic
approaches from tree-based methods, among others. Application SHAP is written in
Python and can be applied to models from Tensorflow, Keras, Pytorch and scikit-learn.
The built-in visualization functions facilitate the interpretation of the methods. Advan-
tages By combining different methods on a high-level API, SHAP is also available to a
wider audience. This is a decisive advantage over other methods. Limitation However,
there is also the danger that SHAP is applied without questioning the limitations of the
underlying methods.

Leave One Covariate Out
Explanation Leave One Covariate Out (LOCO) is a model agnostic, global and local
feature importance method similar to feature importance in random forests [110]. In con-
trast to feature importance in random forests, however, the feature under consideration
is not replaced by a dummy variable, but simply dropped. Application The authors
themselves describe regressions as a use case, although classification is also conceivable.
There is also a GitHub repository freely available in R. Advantages One advantage of
this method is its simple implementation. Although there is a GitHub repository for R,
you can also implement LOCO yourself with a for loop. Limitation It remains unclear
whether LOCO offers a real advantage over Breimann’s older feature importance.

Influence Functions
Explanation Influence Functions is a local, model agnostic explainability method for
providing training points most responsible for a given test sample [111]. An Influence
Functions treats the model as a function of the training data. It gives more weight to a
single sample and examines the change in output when that sample is changed. Appli-
cation In the paper, the Influence Functions are applied to animal images. The authors
also show the outlier sensitivity of a model when noise is applied to important images
and added to the training set. The source code is available on GitHub. Advantages The
method can be applied to all machine learning models whose 2nd degree derivative
exists. Limitation However, the method is very computationally expensive because the
model must be re-trained when the training data changes. In addition, the boundary of
an influencing or non-influencing training example is unclear.

Soft Decision Trees
Explanation Soft Decision Trees is a model specific and global interpretability method
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which uses a decision tree to mimic the input-output function of a neural network [112].
In a soft decision tree, all the leave nodes contribute to the final decision with different
probabilities [135]. Application The authors demonstrate the soft decision tree using the
MNIST dataset. Inner nodes of a soft decision tree represent learned filters of the neural
network. The code was re-implemented by third parties on GitHub. Advantages For
some leave nodes, the soft decision tree allows the visual interpretation of the neural
network. The simplification of the complex network architecture results in a leaner model
with relatively low performance loss. Limitation Not all learned filters are interpretable
to the human eye. The explainability of this method is therefore limited.

SmoothGrad
Explanation SmoothGrad is a model specific, local and post-hoc explainability method
that tries to reduce noise in saliency maps (also called sensitivity maps or pixel attribution
maps) for model explanation [113]. In the neighborhood of an input image x, random
examples are generated and blended with the sensitivity map by averaging. Application
The authors apply the method to their own input images and parts of the MNIST
dataset. The source code is freely available on GitHub. Advantages For some input
images this method works better than comparable ones like Integrated Gradients [136] or
Guided Backpropagation [137]. The method can also be combined with other methods.
Limitation It remains unclear for which type of images the method works better than
others. There is no discernible pattern for the examples shown in the paper.

Testing Concept Activation Vectors
Explanation Testing Concept Activation Vectors (TCAV) is a model specific, global and
local explainability method for computer vision models and tabular, discrete data [114].
TCAV gives an explanation (i.e., a concept) that generally applies to a class which is
beyond one image. It learns the concept from examples. The concepts are learned
through delineation examples. For example, to learn the concept feminine, some images
of feminine must be shown in differentiation from non-feminine. Application The source
code is freely available on GitHub. In order to apply TCAV, two data sets must be
provided. One representing the concept and a random dataset for delineation. We then
train a binary classifier to distinguish between the concept and the random data. The
coefficient vector of the classifier is then called a concept vector. Advantages Since people
think in concepts and not in numbers, this method is also applicable for non machine
learning experts. Limitation The concept datasets need additional labels and therefore
could be expensive to create. Also, abstract (i.e., sadness) or too general concepts are
difficult to learn.
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Anchors
Explanation Anchors is a model agnostic local explanation method developed by the
LIME authors [115]. Based on a prediction, relevant features are determined. If a marginal
change in other features does not change the prediction, then the rule is anchored. The
outputs of the anchors approach are IF-THEN rules. Application Anchors can be applied
to structured predictions, tabular classification, image classification, and visual question
answering. The source code is freely available in Python and Java. Advantages By
generating if-then rules, the output of this explanation method is easy to understand
even for non machine learning experts. In addition, Anchor offers a very wide range of
applications. Limitation Rules for rare classes or near the boundary of decision functions
can become complex and sometimes ambiguous. With complex output, different rules
can also become the same prediction. In high dimensional spaces also every small change
can lead to a change of the prediction, which makes the coverage of the rule very low.

Representer Point Selection
Explanation Representer Point Selection is a model specific, local explainability method
for computer vision applications [116]. For a given test image, representer points are
similar images from the training set and are close to the decision boundary. Positive
representer points belong to the same class as the test image, negative ones to a different
class. Application The method can be applied to any image classification task. The source
code is available on GitHub. Advantages By showing these images, the method helps
in error analysis and model understanding. Within the paper, examples are also shown
which demonstrate an improvement to the Influence Functions method. Limitation It
is questionable whether the method has advantages over a classical error analysis. By
displaying the misclassified images, one can look for systematic errors by clustering
them. This is in essence also what Influence Functions and Representer Point Selections
do.

Automatic Concept-Based Explanations
Explanation Automatic Concept-Based Explanations (ACE) is a global, model specific
interpretability method to cluster and visualize segments of an image that are important
for a particular class [117]. Multiple images for one class are segmented using the
activation space of a layer of a pre-trained neural network as a similarity score. Similar
segments of the images are then pooled together. Finally, each pool is assigned a TCAV
importance score. Application The method can be applied for any computer vision
classification model. The source code is written in Python and available on GitHub.
Advantages By pooling multiple images, this method can also be considered as a global

44



Chapter 2. Materials & Methods 2.5. Machine Learning Explainability

explanation method for computer vision use cases. Limitations The explanation method
only works if the concepts are present in the form of groups of pixels. Abstract concepts
do not work.

In this last section 2.5 of the materials and methods chapter, we tried to give an overview
of commonly known explainability methods. You will see in the main part (section 3.4)
that in the medical domain mainly SHAP and Grad-Cam are used, because they are well
known and generically applicable. In the discussion of the literature review and in the
discussion section of this thesis, we also address the limitations of these explainability
methods.
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3

Results

This cumulative dissertation follows a structured arrangement where the thesis contribut-
ing papers are presented in a sequential and thematic order. The arrangement of these
papers is determined both by their chronological progression and the nature of their
content. The focal point of the research revolves around the medical domain of tinnitus,
which is primarily investigated in sections 3.1 and 3.2. Another domain explored is the
coronavirus, discussed comprehensively in section 3.3. The exposition begins with a
comprehensive literature review concerning machine learning’s interpretability within
the medical domain. This review serves as the foundation for the subsequent contribu-
tion, which provides a taxonomy of explainable artificial intelligence (XAI) methods,
expounded upon in section 3.4. The chapter closes in the amalgamation of all datasets
involved in this thesis, explored comprehensively in section 3.5. This final paper scruti-
nizes the intricate interplay between the challenges posed by EMA and MCS data and
their subsequent impact on the accuracy of machine learning performance estimation. It
is pertinent to note that not every research question is exhaustively addressed in every
section, as each section is dedicated to a specific aspect of the overall research endeavor.
To facilitate seamless navigation and comprehension, a mapping between each research
question and its corresponding paper is provided.

■ Main RQ1 (How can machine learning help confirming or broaden domain knowledge
within mHealth data?) is addressed in section 3.1, section 3.2, and section 3.5.

■ Main RQ2 (How can one reach explainability in the presence of mHealth data when using
Machine Learning?) is addressed in section 3.1, section 3.2, and section 3.4, and

■ Main RQ3 (Which guidelines can be beneficial for the use of ML within the mHealth
domain?) is addressed in section 3.4, and 3.5.
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Abstract

Tinnitus is an auditory phantom perception in the absence of an external sound
stimulation. People with tinnitus often report severe constraints in their daily life.
Interestingly, indications exist on gender differences between women and men both
in the symptom profile as well as in the response to specific tinnitus treatments. In
this paper, data of the TrackYourTinnitus platform (TYT) were analyzed to inves-
tigate whether the gender of users can be predicted. In general, the TYT mobile
Health crowdsensing platform was developed to demystify the daily and momentary
variations of tinnitus symptoms over time. The goal of the presented investigation
is a better understanding of gender-related differences in the symptom profiles of
users from TYT. Based on two questionnaires of TYT, four machine learning based
classifiers were trained and analyzed. With respect to the provided daily answers,
the gender of TYT users can be predicted with an accuracy of 81.7%. In this context,
worries, difficulties in concentration, and irritability towards the family are the three
most important characteristics for predicting the gender. Note that in contrast to
existing studies on TYT, daily answers to the worst symptom question were firstly
investigated in more detail. It was found that results of this question significantly
contribute to the prediction of the gender of TYT users. Overall, our findings indi-
cate gender-related differences in tinnitus and tinnitus-related symptoms. Based on
evidence that gender impacts the development of tinnitus, the gathered insights can
be considered relevant and justify further investigations in this direction.

3.1.1 | Introduction
Many people experience a long-term noise in their ears, which is widely known as
tinnitus, also described as a whistling or ringing sound [138] in the ears. About 10 -
15% of the worldwide population report this kind of symptoms [139; 140]. Although
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many people perceiving tinnitus do not experience a considerable burden, about 2.4%
of the worldwide population severely suffers from tinnitus on a daily basis [141]. In
most of these cases, tinnitus is a subjective perception that can only be perceived by the
affected person. Inversely, rare forms of tinnitus exist, for which the perceived sound
is caused by a source in the body that can be objectively measured (e.g., blood flow or
muscle contractions). As an important consequence of the discussed aspects, no general
treatment, which is able to effectively reduce tinnitus symptoms like loudness and its
related fluctuation, exists yet. On the individual basis, tinnitus can be reduced, for
example, by the use of cognitive behavioral therapies [142]. To characterize the general
status of available treatments with respect to the well-known heterogeneity of tinnitus
patients [143; 144], they are rare and their development is difficult.
To better and more effectively deal with this heterogeneity, researchers often focus on
the identification of subgroups of tinnitus patients. Identified subgroups might be used
for investigations on treatments for an identified subgroup instead of a general treat-
ment for all tinnitus patients. However, the clustering of tinnitus patients through the
identification of subgroups is not an entirely new research question. Hitherto, several
approaches aimed at the clustering of tinnitus patients depending on their symptom
profiles [145; 146], or depending on neuroimaging data [147]. Furthermore, the authors
of [148] developed the Tinnitus Primary Function Questionnaire to examine the ef-
fect of tinnitus on thoughts and emotions, hearing, sleep, and concentration. The authors
established correlations between these four effects and derived secondary limitations for
the individuals in their daily life. The consideration of potential differences in gender
are another approach on subgroup research. A recent special issue shows the latter kind
of interest in research [149]. In the already published articles of this special issue, for
example, one work deals with gender differences of chronic tinnitus patients [150]. All of
the presented works show that gender differences are a valuable research direction in
particular and with respect to research on subgroups of tinnitus patients in general. In
addition, research evidence exists that the gender impacts the development of tinnitus
and the response to treatments. For example, in this recent work [151], the authors
investigated treatments of 316 patients and found significant treatment differences be-
tween males and females. For instance, females improved better in orofacial therapies.
Or, in the work of [152], it was found, among other findings, that stress was positively
correlated with tinnitus severity only in males. These and other findings clearly show
that gender-related differences are relevant for investigations of tinnitus patients and
their symptom profiles.
In the discussed context, the use of mobile applications to monitor health symptoms is
becoming more and more popular, also denoted by mobile and digital health (mHealth).
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With respective mHealth solutions, the collection of data becomes easily possible, espe-
cially on a daily basis. Furthermore, data can be collected close to the user’s daily life
with the goal to foster self-monitoring and eventually may support health care in clinical
practice [153]. For example, the authors of [154] monitored and investigated mental
health conditions by using a mHealth solution, while the authors of [10] showed the
general potential and impact of mHealth applications. For TrackYourTinnitus (TYT), the
daily use, among other reasons, enables individuals to be better deal with the variations
of the tinnitus over time. On the flip side, mHealth solutions also revealed drawbacks,
which are discussed by many recent works. For example, potential discrepancies of app
developers and patients of mHealth apps are investigated more in-depth by [155], while
general challenges are discussed by [156]. In the discussed setting, it should always be
kept in mind that a daily smartphone usage might also worsen the individual tinnitus
situation as users are reminded about their problems on a frequent basis. However,
research works exist that have shown that the daily use of mobile technology does not
aggravate the overall health condition, see for example [157]. Despite such findings, the
daily focus on a disease when using mHealth solutions should always be considered
carefully.
For the identification of tinnitus subgroups, the collection of longitudinal ecologically
valid data sets based on mHealth solutions has been recognized by several researchers.
Technically, mobile crowdsensing techniques [158] or Ecological Momentary Assess-
ments [30] are mainly utilized to gather the required data sets. For tinnitus research,
these technologies have already shown that they can collect valuable data [159; 160]. To
identify subgroups of tinnitus patients, data sources established by the use of mHealth so-
lutions have also revealed to be appropriate [161]. Several of these works have presented
their findings on data of the TrackYourTinnitus platform (TYT), which was developed
to evaluate daily symptom fluctuations of tinnitus patients. TYT comprises two mobile
native (developed without using frameworks) applications (an Android and an iOS
app), a website (www.TrackYourTinnitus.org), and a server application that stores the
data generated by the apps. The platform was developed by an interdisciplinary team
of computer scientists, medical doctors, and psychologists. It can be freely used by
interested users, the apps can be downloaded through the official app stores from Apple
and Google. In essence, the following complete the following procedure: First, they have
to fill out three registration questionnaires after downloading the app. After that, they
decide on the number of daily notifications. Each notifications reminds the user to fill out
a daily questionnaire, comprising so-called EMA questions, which aim at the momen-
tary tinnitus situation of a user. In addition, the environmental sound level is collected
through the microphone of the used smartphone when filling out the daily questionnaire.
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In terms of feedback, the app visualizes the gathered data and through the website,
interested users can download their collected data. TYT does not offer further features.
Although the platform aims at data for research and it could be assumed that this is of
less interest, so far, the platform has gathered more than 100,000 daily questionnaires by
more than 3,000 users from all over the world. We learned that despite the fact that TYT is
an open research project in the sense of a long-running observational study, two aspects
are of importance for users to participate. First, the project is without any commercial
interest. Second, data is collected anonymously except one reason. If users want to reset
their password, they have to provide their mail address. In general, the secure handling
of data collected by the use of a smartphone is an important aspect since smartphones
provide a lot of opportunities to gather data that indirectly might reveal the user. For
example, when GPS data is collected and the location of a user is sent to a central server.
In general, works exist that have developed complex configurations with which users
can control the provision of mHealth-related, see for example [162]. Interestingly, such
works show that users are less interested to control much themselves, therefore it is
important that a mHealth solutions tries to secure data and privacy in the best possible
way by design. In the case of TYT, only questionnaire data and the environmental sound
level are gathered, which might be also one reason to use it frequently by many users.
To conclude, the TYT project is running since 2014 and revealed various investigation
opportunities, including those, which were initially not planned [161; 163]. Beyond TYT,
other mHealth solutions have been developed and presented to support diagnosis and
therapy of tinnitus patients [142; 164; 165], which emphasizes the potential of mHealth
in this context.
Moreover, the combination of mHealth and machine learning has become very popular
recently. The directions followed in this context are manifold. On the one hand, consid-
erations on sparse mHealth data are subject to research when using machine learning
methods in the given context [166; 167]. On the other hand, large mHealth data sets
exist that are investigated by the use of machine learning methods [168]. Moreover, the
development of new machine learning methods and the evaluation of existing ones is
also considered presently [169; 170].
In this work, gender-related differences of TYT users are investigated, hereby based on
the following thoughts: Existing insights on TYT, existing works on machine learning
methods to identify subgroups of TYT users, and the amount of existing data of TYT
users distributed between females and males. Further note that TYT is technically based
on mobile crowdsensing techniques [4] and utilizes Ecological Momentary Assessments
(EMA) to capture ecologically valid data sets of tinnitus patients. Since 2014, the TYT
mHealth platform has gathered more than 100,000 completed questionnaires from its
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users. With respect to the identification of subgroups, machine learning based inves-
tigations on the TYT source already exist. For example, in [15], the differences of TYT
Android and iOS users were investigated, while in [171], entity (i.e., individual TYT
users) similarity was investigated to label the future observations referring to an entity.

For the investigation at hand, two prerequisites are important: First, it must be defined
which type of gender differences are addressed in this work. The authors of [149]
define the following important differences: the (1) biological classification encoded in the
DNA and the (2) understanding of the respective social roles, behavior, and expressions.
In this work, we refer our considerations to the latter type of difference. Second, it
must be defined which gender-related aspects of TYT users shall be investigated. The
answer to this question is that our goal is to predict the gender of the user of a provided
daily assessment. A daily TYT assessment, in turn, is based on the filled-out daily
questionnaire, which comprises 8 EMA questions (users can opt which questions they
actually want to fill out; in addition, 1 question varies among users based on an answer
given to the perceived worst symptom provided through one baseline questionnaire) that
capture the current situation of a TYT user (see this work for a detailed explanation [172]).
Note that TYT users have two options to fill out this questionnaire. The first option
entails receiving up to 12 random notifications per day, which then remind users to fill
out the questionnaire, while the second option allows users to determine fixed points in
time to receive the notifications. Furthermore, baseline questionnaires, which must be
answered when using the smartphone app for the first time, provide the information on
the gender of a TYT user. Based on this information, 15 features were identified - out of
the 8 daily questions - for the gender prediction task, covering aspects like stress, worries,
arousal, depression, mood, or the loudness of the momentarily perceived tinnitus. A
detailed explanation of the features is provided in Table 3.3.

Given these two prerequisites, the overall goal of the work at hand is the prediction
of the gender of the user of a given daily TYT assessment based on machine learning
methods. A binary classification is therefore accomplished that deals with the following
detailed questions (note that for the classification task, technically, scikit-learn[173] has
been used):

i Is it possible to learn a mapping function from X to y of TYT individuals, for which
X are questions that the user answered daily, and y is a binary target representing
the gender of the respective TYT user?

ii Which machine learning model is mostly suitable for this task and has a high predic-
tion power?
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iii Which are the features with the highest importance to predict the gender?

It is briefly discussed whether other approaches have trained binary classifiers on
mHealth related data with respect to research questions on gender-related differences.
In general, works exist that have trained a binary classifier on mHealth data. For ex-
ample, the authors of [174] used such a classifier for respiration disorders of mHealth
applications. Furthermore, approaches exist that investigated gender differences in the
general context of mHealth solutions. However, their focus is different to the one that is
investigated in this work. More specifically, other works [175; 176] investigate differences
when using mHealth technologies from a general point of view. That means that they
investigate whether there is a difference between men and women when addressing
medical issues while using mHealth solutions. Yet, the focus of these works is different to
the presented work: they start with the gender and try to establish which bias this might
generate on the use of a solution. In contrast, this work starts from the data source and
tries to predict the gender. Although these two perspectives address the same overall
research context and are therefore intertwined, the research questions they are addressing
are different. Still, to the best of the authors‘ knowledge, similar works that present a
binary classifier on mHealth data with respect to results on gender-related differences do
not exist yet.

3.1.2 | Results
In this section, the three research questions are discussed subsequently. First, it is dis-
cussed whether it is generally possible to solve the gender prediction task by using
machine learning with relevant results. Next, the hyper-parameters of the chosen classi-
fiers must be fine-tuned. Finally, by using the knowledge from Research Questions i and
ii, the question must be answered, which of the features are mostly suitable to classify
the gender. A summary of this section is provided in Table 3.1.

3.1.2.1 | Research Question i
In this study, gender is considered to be binary as there is no data for diverse tinnitus
patients. Given that the target classes are uniformly distributed, random guessing for
a binary classification task leads to an accuracy of 50% on average. Consequently, a
mapping from X to y is adding information if the accuracy of a classifier is higher than
50%. If it is significantly higher than 50%, it must be decided based on the achieved
accuracy whether it is actually relevant or useful. X was used as the (sub)set of features
and y as the target for gender, with {male, female} as possible classes.
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No. Research question
Machine learning algorithm Results

SVM Tree RF NN
i Is it generally possible to learn a mapping 

function from X to y where X are questions 
that the user answered daily and y is a binary 
target representing the gender of a user? ✓ ✓ ✓ ✓

Precision on average:
Male:          81.5 %
Female:      84.3 %

ii Which machine learning model is most 
suitable for this task and a high prediction 
power? ✓ ✓ ✓ ✓

Mean accuracy on a 5-fold cross validation set: 
Random Forest classifier (81.7%)

iii Which are the features with the highest 
importance to predict the gender?

✓

Most important features are:
q8_4: Worries about the tinnitus
q8_5: Difficulties in following a conversation

Table 3.1: Overview of the three Research Questions i-iii, the used classifiers and the
results. SVM = Support Vector Machine, Tree = Decision Tree, RF = Random Forest, NN
= Multilayer Perceptron Neural Network. A checkmark means that this classifier has
been used to answer the research question.

The classification task was accomplished using Python, as this is one of the most used lan-
guages for Machine Learning [177], which enables comparisons to many other research
results. Four classifiers from the scikit-learn library were used for the investigations:
A Support Vector Machine, a Multilayer Perceptron Neural Network, a Decision Tree,
and a Random Forest. All of them were able to guess the gender with a significantly
higher accuracy than 50%. These classifiers were selected as they are well known to get
high accuracy scores for high dimensional classification tasks on small to middle-sized
datasets [178; 179; 180; 181].
Note that the more features were added to the classifiers, the higher was the accuracy.
For the testing set, a 5-fold cross-validation was used to avoid overfitting. As can be
seen from Table 3.2, the random forest classifier had the highest prediction power in this
distribution.

Classifier Precision Male Precision Female F1-score
Support Vector Machine 0.80 0.86 0.83

Decision Tree 0.81 0.80 0.81
Neural Network 0.82 0.83 0.83

Random Forest 0.83 0.88 0.85

Table 3.2: Comparison of the four used classifiers in terms of precision per gender and
F1-score. Number of examples is denoted by m = 1702. Used features: {q1, q2, ...,
q7, q8_5}, test size 20%. Note that the feature labels qx are further explained in Table
3.3.
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3.1.2.2 | Research Question ii
As there is no other satisfying metric such as training time or minimal false positives
rates, it was decided to further investigate the classifiers accuracy.
To do so, a fine-tuning of the hyper-parameters of the Random Forest classifier was
performed. This tuning is also known as a grid search [182; 183]. Therefore, the hyper-
parameters of interest were selected, which can be seen in Fig. 3.1. Then, one of the
hyper-parameters was varied while keeping all others constant. The resulting parameters-
dictionary was passed to the Random Forest classifier into the same training and testing
set of the approaches of Research Question iii, again with a 5-fold cross-validation
[184; 185; 186]. Here, a 5-fold split was used instead of a 10-fold split for the purpose
of having a sufficient testing size. Additionally, this allows to speed up training and
testing time as well as to vary more hyper-parameters within the grid search. The cross-
validation further prevents the Random Forest from overfitting of the training set [60].
For each possible combination of the parameters dictionary, the accuracy was saved.
After trying all variations, the variation with the highest accuracy determined the final
parameters set up of the Random Forest classifier in the testing set.

Figure 3.1: Set of hyper-parameters for a grid search in order to improve the forest’s
accuracy. Note that not all hyper-parameters have been varied, such as n_jobs, oob_-
score or verbose. Only hyper-parameters were varied that have a higher impact on the
accuracy score. However, static parameters are listed for the purpose of integrity.

The number of decision trees in the random forest was increased up to 1,000 for a slight
improvement of the overall accuracy. However, a further increase of n_estimators did
not improve the score in the testing set. If the max_depth parameter was lowered to
10, the lowest standard deviation of 2% within the 5-fold cross-validation was attained.
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The best ranked Random Forest classifier received an accuracy of 87% in the first cross-
validation set. The average cross-validated test score is 81.65%, with a standard deviation
of 4%.

3.1.2.3 | Research Question iii
There exist several techniques to determine feature importance, such as random, heuristic,
or complete approaches [187]. In order to answer the third Research Question iii, three
strategies were pursued. Before the strategies were accomplished, a sub-dataframe was
created that contains the feature of interest and the target gender. This sub-dataframe
was then filtered, so that it equally contains 50% men and 50% women.
As the first strategy, a closer look was put on the random forest approach. Importantly, it
has no bias in terms of the underlying distribution of the mapping function. The forest
simply measures the impact in accuracy. The higher the accuracy score for a mapping
from a feature to the target is, the higher its impact on the target is. The second approach
tried to measure the impact of single features using correlations with the target gender.
The correlation matrix also helps the authors to get a more detailed insight into the
cross-correlation between the features and a single-viewed impact of a feature on the
target. The higher the correlation is, the higher the impact to the target is. Note that the
correlation method varied with the scaling (binary, discrete, continuous) of a feature. For
a univariate classification on gender, a rise in accuracy was expected if the correlation
rises. Third, the permutation importance for a univariate Random Forest classification
per feature was calculated [188] as follows: First, the classifier was trained on a training
set. Then, using cross-validation, a baseline metric was evaluated on a testing set. The
permutation importance was then defined as the difference of the baseline metric with
the trained feature and the baseline metric with a completely random, artificial feature.
All approaches have different units to measure the impact (Accuracy, r-value, and per-
centage improvement). In order to make these three approaches comparable, a ranking
of the results of the three approaches was created (see Fig. 3.2), and statistics for the
two gender groups added, respectively. The dynamic questions q_i, with i = 0, 1, ..., 8
have on average a better ranking than the questions q_1, q_2, ..., q_7. Throughout
all three approaches, strong worries (ranked first) and difficulties in following a conversation
(ranked second) are the two most important features in order to predict the gender. The
p-value column shows that these gender differences are all significant. From a statistical
point of view, the mean difference between the two groups male and female generally
supports the hypothesis that male individuals experience tinnitus differently than female
individuals.
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Question Label Correlation RF 
Importance

Permutation 
Importance

Mean male Mean female Mean diff. Std. male Std. female T-test P value Effect size

Did you perceive the tinnitus right now? question1 9 13 11 0.79 0.69 0.10 0.41 0.46 t(20692) = -23.46 <.001 0.23
How loud is the tinnitus right now? question2 14 6 5 0.46 0.46 0.01 0.30 0.28 t(20692) = -1.82 0.068 0.02
How stressful is the tinnitus right now? question3 15 12 10 0.35 0.36 -0.01 0.28 0.27 t(20692) = 2.66 0.008 -0.03
How is your mood right now? question4 6 8 8 0.56 0.57 -0.01 0.21 0.22 t(20692) = 5.57 <.001 -0.05
How is your arousal right now? question5 8 14 9 0.25 0.29 -0.03 0.22 0.23 t(20692) = 15.46 <.001 -0.15
Do you feel stressed right now? question6 11 9 7 0.27 0.30 -0.03 0.24 0.23 t(20692) = 12.29 <.001 -0.12
… concentrate on the things you are doing right now? question7 12 5 3 0.58 0.60 -0.03 0.31 0.30 t(20692) = 8.54 <.001 -0.08
… it is hard for me to get to sleep. question8_0 7 10 12 0.38 0.29 0.09 0.49 0.45 t(2461) = -7.43 <.001 0.21
I am feeling depressed… question8_1 10 11 15 0.21 0.32 -0.10 0.41 0.47 t(1398) = 7.62 <.001 -0.29
I find it harder to relax… question8_2 13 15 14 0.44 0.46 -0.02 0.50 0.50 t(4578) = 2.52 0.012 -0.05
I have strong worries… question8_4 1 1 1 0.26 0.43 -0.18 0.44 0.50 t(1023) = 9.45 <.001 -0.42
... difficult to follow a conversation… question8_5 2 2 2 0.39 0.22 0.17 0.49 0.42 t(4253) = -16.65 <.001 0.36
...difficult to concentrate. question8_6 5 3 13 0.37 0.54 -0.17 0.48 0.50 t(2211) = 12.15 <.001 -0.37
...I am more irritable with my family… question8_7 4 4 4 0.35 0.20 0.15 0.48 0.40 t(694) = -6.30 <.001 0.34
... I am more sensitive to environmental noises. question8_8 3 7 6 0.07 0.17 -0.10 0.25 0.37 t(2533) = 10.95 <.001 -0.31

Univariate feature ranking StatisticsFeatures

Figure 3.2: Comparison of three approaches to determine the most important feature
for gender prediction. A ranking value of 1 means that this feature is most important to
predict the gender.

3.1.3 | Discussion
The authors are aware of the fact that by including the dynamic question q8 (The follow-
up questions about the worst tinnitus symptom), only a smaller subset of TYT users
could be investigated (out of all individuals), which is predestined to have a higher
bias. Instead of 80,966 examples, the subsets had sizes between 3,400 (4%) and 14,000
(17%) user examples. The different sizes of male and female individuals by gender can
also be seen in Fig. 3.4. That means., if q8_5 (Difficulties in following a conversation)
is chosen, it means that 10.9% of the women are included in the dataset. These subsets
decrease in size again once an equal split for the target (50% men and 50% women) is
performed. As a conceivable result, these subsets could not be representative anymore for
the underlying distribution that has a size of m = 80,966. Consequently, the distribution of
the chosen subset was compared with and without feature q8_5 (Difficulties in following
a conversation). Note that the features q1, q2, ..., q7 were always included. For
both female and male individuals, the null hypothesis cannot be rejected, namely that
these samples are drawn from the same distribution, as can be seen in Fig. 3.3. Grouped
by gender, the distribution of the whole dataset and the sub-dataset for the features
handedness and family history of tinnitus complaints was also compared. For these gender-
grouped features, no significant differences between the samples could be revealed.
We further compared the baseline characteristics of those individuals that only filled
out the baseline characteristics and those that filled out both, baseline and follow-up
questionnaires (see Table 3.4). These two groups also show no significant differences
in distribution. In addition, the completion for the daily questionnaire differs at a
gender-based level and a user-based level. More specifically, most users fill out the
daily questionnaire between 1 and 10 times, while others fill it out 100 times or more.
The filling-out behavior can be seen in Fig. 3.5. This means that some users are more
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represented in the training and testing set than others. However, this does not lead to a
different distribution of the baseline characteristics.

Figure 3.3: The dashed lines denote the age distribution for the all individuals, whereas
the solid lines indicate the subset of individuals used for the machine learning calcula-
tions. This subset has a size of m = 11,877, and contains 238+94 individual users. For all
users, m equals to 80,969. Note that the high p-values for both groups indicate equality
of the age distribution.

Less notably, the gender classification accuracy increases if q_8 (worst symptom) is
added. That is due to the fact that there are gender differences in the worst symptom of a
tinnitus patient. If a closer look is taken at Fig. 3.4, striking differences can be seen in
the distribution of the worst symptom. Women tend to have more difficulties in falling
asleep, whereas men tend to suffer relatively more by having difficulties in following a
conversation. The authors of [189] revealed similar symptoms of individuals in their
work on tinnitus problems. Understanding speech and sleep problems were ranked as
the most challenging ones without grouping by gender. The symptom sensitive to

environmental noises could be biased by hyperacusis. Individuals with sensitive noise
perception would tend to report higher scores here. Since hyperacusis is not assessed in
the baseline questionnaire, we cannot consider it. In addition, more factors might bias
the discussed symptom (e.g., if one of the parents worked in a noisy factory for a longer
period of time, which is not captured by TYT).

When taking a closer look to the correlations of features q4 (Mood of user) and q8_7

(Depressed because of tinnitus), which is depicted in Fig. 3.6, a negative value can be
seen. It is evident why these features should be negatively correlated. An observation
with a strong positive correlation appears for the features stressfulness and loudness of
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The authors are aware of the trade-off between the depth of a tree within the forest and
the standard deviation of the accuracy for a cross-validation set. A higher accuracy could
be achieved for a single cross-validation set by increasing the depth of a tree. However,
by increasing the depth, a higher variance must be expected between the cross-validation
sets, which is an indicator for overfitting of the training set.
For Research Question iii (Which is the most important feature?), the result in the lower-
ranked features is ambiguous. For the top three most important features, all three
methods rank strong worries and difficulties in following a conversation firstly and secondly,
respectively. For the non-changing questions q1, q2, ..., q7, however, it is not clear
which one could be ranked in the middle or lower for a univariate feature importance. In
summary, it can be said that the dynamic question q_8 is rated more important than the
non-changing ones.
The results of the presented investigation are both clinically relevant as well as helpful
for users of the TYT platform. Regarding clinical relevance, as profound indicators
exist that gender differences exist for tinnitus patients [190], TYT can be a valuable
alley to learn more about daily fluctuations of tinnitus patients with respect to their
gender. As our result show that the answers of the daily questionnaires can predict the
gender of TYT users, inversely, the daily answers can be indicators for the symptom
differences of men and women. As we further found out that the worst symptom is an
important feature, we are in line with other research works beyond the scope of mHealth
data [150; 191; 192; 193]. Furthermore, studies that have found gender-related differences
in tinnitus patients without using mHealth solutions might particularly benefit from the
use of mHealth. For example, in the work presented by [194], it is shown that gender-
related differences exist for insomnia. As built-in sensors of smartphones can be used
in the context of insomnia [195], mHealth solutions might leverage findings like shown
in [194]. Due to the gender-related differences we have found in TYT, it is likely that for
other research questions like insomnia mHealth solutions can be helpful as well or even
leverage already revealed results. We therefore conclude that in the context of gender-
related differences of tinnitus patients, data that were collected with the use of mHealth
solutions like TYT are relevant for medical research and clinical practice. Regarding the
aspect of helping users with the findings shown here, consider, for example, the work
of [191]. One outcome of the latter work describes that anxiety is only associated with
bothersome tinnitus in men. Anxiety, in turn, can be easily monitored using a solution
like TYT. In this particular case, the gender-related differences can be used to help, for
example, men in coping with their anxiety syndrome by learning more about their daily
fluctuations (if such fluctuations exist) when using TYT on a daily basis. Inversely, TYT
can be used to figure out more variables that are associated with the gender and tinnitus,
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which might lead to the development of focused measures that may help to mitigate
the tinnitus of men or woman more effectively. To conclude from a tinnitus perspective,
TYT has gathered a lot of data and with this data source we were able to reveal that
the question on the worst symptom (answered daily) has a high prediction power of
the gender of TYT users. Since TYT asks about several worst symptoms, we consider
this type of daily questions important. On the other hand, the combination with the
other daily questions lead to the final result to predict the gender of TYT users, which we
consider as a new outcome of TYT data and research on mHealth in this context.
Overall, the question was investigated whether the answers of male and female tinnitus
patients are useful to gain a gender-based differentiation. Therefore, three research
questions were investigated: (i) Is it possible to learn a mapping from X to y for the
daily tinnitus questionnaire, (ii) which is the most suitable classifier for this task, and (iii)
which are the most important features? Four different classifiers of the scikit-learn [173]
library from Python were trained to classify the gender of a patient. The most important
feature cannot be clearly determined. This result is ambiguous for different feature
importance approaches. However, increasing the number of features resulted in a higher
classification accuracy. Although the utilization of the possible features showed different
results, the gender of the user from a provided daily questionnaire could be revealed
with a relevant accuracy. The findings thus might be a valuable basis for the development
of more individualized tinnitus treatments, even beyond the scope of TYT.

3.1.4 | Materials and Methods
The study was approved by the Ethics Committee of the University Clinic of Regensburg
(ethical approval No. 15-101-0204). All users read and approved the informed consent
before participating in the study. The study was carried out in accordance with relevant
guidelines and regulations.

The Features For the gender prediction task, two linked data sets were used. The
first one, named Tinnitus Sample Case History Questionnaire (TSCHQ), is only provided
to an individual once, and asks questions like date of birth, handedness, family history of
tinnitus complaints, the target variable gender, and the worst symptom that is related with
tinnitus. Baseline characteristics from this questionnaire can be seen in Table 3.4. Note
that this table only contains individuals that filled out both, the baseline, and the daily
questionnaire. The worst symptom thereby can be one of the following:
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■ I am feeling depressed because of the
tinnitus.

■ I find it harder to relax because of the
tinnitus.

■ I have strong worries because of the
tinnitus.

■ Because of the tinnitus it is difficult
to follow a conversation, a piece of
music or a film.

■ Because of the tinnitus it is hard for
me to get to sleep.

■ Because of the tinnitus it is difficult to
concentrate.

■ Because of the tinnitus I am more ir-
ritable with my family, friends, and
colleagues.

■ Because of the tinnitus I am more sen-
sitive to environmental noises.

■ I don’t have any of these symptoms.

The second data set, named daily questionnaire, contains daily given answers of a regis-
tered individual. This daily questionnaire includes eight questions about the current
tinnitus state, i.e., the tinnitus situation and the feelings of the individual right now.
However, the eighth dynamic question depends on the worst symptom of the individual
from the TSCHQ questionnaire and asks whether the individual has this specific worst
symptom right now or not. If an individual user answered I don’t have any of these symp-
toms in the beginning, no question appears in the daily questionnaires. As a consequence,
the number of answers for question 8 depends on the number of individuals that have
selected this worst symptom in the questionnaire TSCHQ. On the other hand, the number
of answers for questions one to seven equals each other. These questions are seen by
every individual and are as follows:

1. Did you perceive the tinnitus right
now?

2. How loud is the tinnitus right now?

3. How stressful is the tinnitus right
now?

4. How is your mood right now?

5. How is your arousal right now?

6. Do you feel stressed right now?

7. How much did you concentrate on
the things you are doing right now?

8. This question depends on the worst
symptom selected in the questionnaire
TSCHQ.

Depending on the features that are selected for the classification task, the number of
examples m depends on the eighth dynamic question.
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3.1.4.1 | Data Preparation
The raw data set with the daily answers had the size (m = 83349, n = 19), where m
denotes the number of samples, and n the number of columns. The columns of interest are
individual_id, q1, q2, ..., q7, q8_1, q8_2, ..., q8_8. In total, the preparation
of the data set needed many efforts, namely the following considerations and steps:

The individual_id is crucial to merge TSCHQ with the daily questionnaire in order to
get the gender for a sample of answers. As a consequence, all rows where individual_id
is NULL were dropped. This affected 1.2% of the samples, i.e., 82,351 samples remained.
In the next step, values for q4(mood right now) and q5(arousal right now) were replaced
that have been reported incorrectly from Android devices. For these questions, an
individual user can select a position in a self-assessment manikin individual interface
feature to represent his or her mood with 9 different steps (i.e., the granularity). However,
the Android implementation rounds the values to tenths, which leads to incorrect values.
For example, 0.13 has to become 0.125, or 0.88 has to become 0.875.

Missing value treatment As every question is optional, sometimes app users skipped
questions. Therefore, the imputation module from the scikit-learn library was used to fill
in missing values. In order not to change the data distribution, the data set per individual
was calculated. If any of the values for questions 1, 2, ..., 7 was NULL, the missing value
treatment was performed. Therefore, the non-null values per column were counted.
If there are two or more non-null values, an individual-specific KNN imputation for
slider questions with range(0,1) and Boolean questions [196] was performed. In case
an individual user always skipped a specific question, there is no reference how this
individual user usually would have answered this question. In such cases, a simple
imputation was performed with a median value of the whole data set for slider questions
and a most frequent replace for Boolean questions, respectively. An iterative imputation
approach was not used as suggested by the authors of [197], because then it would be
required to round the estimation of Boolean questions to integer values and fit respective
answers to a valid value in {0, 0.125, ..., 1}. For the dynamic variable question8, missing
value treatment does not make sense, as the questions are different. For example, if an
individual user has selected feeling depressed as a worst symptom, his or her question eight
is "Are you feeling depressed right now?". For all the other linked questions, the individual
has never seen another dynamic question like "Are you sensitive to environmental noises
right now?", as the individual did not report this as the worst symptom. Consequently,
these NULL values were left untreated.
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meaning scaling implementation count mean std

question1 Did you perceive the tinnitus right now? binary YesNoSwitch 80969 0.76 0.43
question2 How loud is the tinnitus right now? continuous Slider in range (0,1) 80969 0.46 0.3
question3 How stressful is the tinnitus right now? continuous Slider in range (0,1) 80969 0.36 0.28
question4 How is your mood right now? discrete SAM from 0 to 1 with step size 0.125 80969 0.56 0.21
question5 How is your arousal right now? discrete SAM from 0 to 1 with step size 0.125 80969 0.26 0.22
question6 Do you feel stressed right now? continuous Slider in range (0,1) 80969 0.28 0.24
question7 How much did you concentrate on the things you are doing right now? continuous Slider in range (0,1) 80969 0.58 0.31

question8_0 Because of the tinnitus it is hard for me to get to sleep. binary YesNoSwitch 7919 0.35 0.48
question8_1 I am feeling depressed because of the tinnitus. binary YesNoSwitch 10361 0.23 0.42
question8_2 I find it harder to relax because of the tinnitus. binary YesNoSwitch 13904 0.45 0.5
question8_3 I don’t have any of these symptoms. NULL NULL NULL NULL NULL
question8_4 I have strong worries because of the tinnitus. binary YesNoSwitch 10839 0.27 0.45
question8_5 Because of the tinnitus it is difficult to follow a conversation, a piece of music or a film. binary YesNoSwitch 11877 0.33 0.47
question8_6 Because of the tinnitus it is difficult to concentrate. binary YesNoSwitch 8220 0.42 0.49
question8_7 Because of the tinnitus I am more irritable with my family, friends and colleagues. binary YesNoSwitch 3391 0.32 0.47
question8_8 Because of the tinnitus I am more sensitive to environmental noises. binary YesNoSwitch 9179 0.09 0.29

gender 0 = Male, 1 = Female binary Single Choice 80969 0.26 0.44

Table 3.3: Description of the data frame used for the machine learning approaches. Note
that the count for the questions 8_0, 8_1, ..., q_8 is dependent on the number of
individuals that selected this answer in the baseline questionnaire. If an individual
selected I don’t have any of these symptoms, no follow-up question appeared, so that these
values are NULL. SAM = Self-Assessment Manikin [198].

Calculation of the Correlation Matrix The values of Fig. 3.6 were calculated using three
different methods depending on the scaling of the features. Note that it is not possible to
calculate the correlations of the q8 questions to each other as they are pairwise disjoint. If
both features are continuous, the Pearson correlation has been used [199]. If one feature
is either discrete or binary and the other is continuous, the Pointbiserial correlation was
calculated [200]. Finally, if both features are discrete or binary, the Corrected Cramer’s V
correlation has been calculated [201]. Further note that Cramer’s V correlation is defined
for a range of (0,1), whereas Pearson and Pointbiserial for a range of (-1,1).

Questions q1 q2 q3 q4 q5 q6 q7 q8_0 q8_1 q8_2 q8_4 q8_5 q8_6 q8_7 q8_8 gender
Did you perceive the tinnitus right now? q1 1 0.33 0.29 0.17 0.05 0.13 -0.05 0.13 0.19 0.21 0.25 0.28 0.02 0.18 0.05 0.10

How loud is the tinnitus right now? q2 0.33 1 0.66 -0.28 0.08 0.32 0.05 -0.12 0.37 -0.09 0.45 0.20 -0.13 0.24 0.02 -0.01
How stressful is the tinnitus right now? q3 0.29 0.66 1 -0.34 0.23 0.57 -0.13 -0.07 0.46 -0.03 0.51 0.37 -0.14 0.32 0.41 0.01

How is your mood right now? q4 0.17 -0.28 -0.34 1 0.39 -0.44 0.12 0.13 0.48 0.21 0.43 0.27 0.23 0.52 0.27 0.11
How is your arousal right now? q5 0.05 0.08 0.23 0.39 1 0.46 -0.01 0.18 0.35 0.14 0.25 0.14 0.10 0.37 0.24 0.09
Do you feel stressed right now? q6 0.13 0.32 0.57 -0.44 0.46 1 -0.02 -0.03 0.49 -0.04 0.31 0.16 -0.02 0.29 0.35 0.05

How much did you concentrate on the things you are doing right now? q7 -0.05 0.05 -0.13 0.12 -0.01 -0.02 1 -0.01 -0.19 0.27 0.01 0.04 0.40 -0.22 -0.15 0.04
Because of the tinnitus it is hard for me to get to sleep. q8_0 0.13 -0.12 -0.07 0.13 0.18 -0.03 -0.01 1 0.09

I am feeling depressed because of the tinnitus. q8_1 0.19 0.37 0.46 0.48 0.35 0.49 -0.19 1 0.08
I find it harder to relax because of the tinnitus. q8_2 0.21 -0.09 -0.03 0.21 0.14 -0.04 0.27 1 0.02

I have strong worries because of the tinnitus. q8_4 0.25 0.45 0.51 0.43 0.25 0.31 0.01 1 0.12
Because of the tinnitus it is difficult to follow a conversation, a piece of music or a film. q8_5 0.28 0.20 0.37 0.27 0.14 0.16 0.04 1 0.17

Because of the tinnitus it is difficult to concentrate. q8_6 0.02 -0.13 -0.14 0.23 0.10 -0.02 0.40 1 0.15
Because of the tinnitus I am more irritable with my family, friends and colleagues. q8_7 0.18 0.24 0.32 0.52 0.37 0.29 -0.22 1 0.13

Because of the tinnitus I am more sensitive to environmental noises. q8_8 0.05 0.02 0.41 0.27 0.24 0.35 -0.15 1 0.15
Gender gender 0.10 -0.01 0.01 0.11 0.09 0.05 0.04 0.09 0.08 0.02 0.12 0.17 0.15 0.13 0.15 1

Figure 3.6: Heatmap for feature-gender cross-correlations. The last column (resp. the
last row) shows the correlation of the whole data set (without equal splits for male and
female individuals) with the target gender. Depending on the feature scaling, different
correlation approaches (Cramer’s V, Pointbiserial and Pearson) have been used. The
matrix reveals strong positive correlations between stressfulness and loudness of the
tinnitus or negative correlations between mood and stressfulness of an individual user.
The heatmap was formatted using MS Excel 365. Correlation metrics were calculated
using SciPy 1.5.0 within a Python 3.7 environment.
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Univariate Feature Classification For this classification task, a random forest classifier
was used as proposed by the authors of [46]. In order not to get a biased estimation of
the feature importance, a grouped data set per feature was calculated. As can be seen in
Table 3.3, the number of examples n varies per feature. Therefore, the feature was taken
with the smallest training examples (q8_7), and randomly 50% men and 50% women
from the target gender were selected. In the next step, X was defined as the feature space
of shape (m, n), with m = number of examples, and n = 1, as only one feature was used.
Then, a Random Forest classifier from scikit-learn was instantiated, including 80% of
randomly chosen examples, which denotes the training set. Next, the accuracy on the
remaining 20% of the examples was calculated, which denotes the testing set. Note that
there is no development set for this subtask, as hyper-parameter tuning is not performed
initially. For each feature, this procedure was repeated 10 times and the mean of those 10
accuracies were determined. The features q8_4, q8_5 (worries, difficulties in following a
conversation) and q8_6 (difficulties in concentration) reach accuracy values greater than
0.58, which is significantly better than random guessing. Consequently, these features
are ranked top three.

Comparison Comparing the results of the three feature importance approaches, the
result for the top two features is unambiguous. However, the correlation approach ranks
sensitivity on environmental noises on a third place, whereas the permutation and random
forest approach difficulties in concentration have different results on this rank place.

3.1.4.2 | Supervised Machine Learning Application
Feature Selection After determining which variables were more and which less impor-
tant for a univariate approach, the best set of features (multivariate approach) had to be
identified in order to find a mapping from X to y, where X is a subset of all features and
y is a binary gender prediction with male and female individuals. However, an arbitrary
combination of features is only possible within the feature set of {q1, q2, ..., q7}. Only one
out of the features from question 8 can be added optionally. This constraint leads to 1,143
valid subsets of the data set. In order to get the best feature list, every single combination
of valid subsets to an 80-20 training-testing-split of the data set was applied, before
storing its accuracy and the corresponding feature list to a Python dictionary. Given a
Random Forest classifier, it can be simply said that a feature list is superior to another if
its accuracy on average in the testing set is higher. Without any of the dynamic questions
from {q8_0, q8_1, ..., q8_8}, the best set contains the features {q2, q3, ..., q7}.
Note that q1 is not included. This set leads to an accuracy of 72.7%, with a testing size
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of n = 8276. If one of the q8-questions is added to the feature set, the most promising
combination contains {q1, q2, ..., q7, q8_5}, with an accuracy of 81.7% on average, and a
test size of n = 1702.

Classifier Comparison This section covers aspects to address Research Question ii:
Which machine learning model is most suitable for predicting the gender of an individual
user and has a high prediction power? More specifically, four supervised machine
learning classifiers were investigated: A Support Vector Machine [202], a Multilayer
Perceptron Neural Network (MLP) [203], a Decision Tree [204] and a Random Forest [46].
With the same testing size from the previous section of n = 1702, the following results
were obtained. The Decision Tree reached the lowest accuracy with 79%, followed by
the Support Vector Machine with 80%, and the Multilayer Perceptron with 81%. The
Random Forest classifier reached 86% in accuracy in the best cross-validation set. The
ROC curve in Fig. 3.7 affirms the superiority of the Random Forest classifier for this
specific classification. The Support Vector Machine and the Multilayer Perceptron have a
very similar performance. The Decision Tree contains only pure subsets in its final leaves,
which leads to a triangled ROC curve and in this case, eventually meaning the lowest
performance.

Hyper-parameter Set-up In a first approach, the four classifiers have been used mainly
with a default set from the Python scikit-learn library [173]. Then, several hyper-
parameters were slightly adjusted, i.e., the number of neurons per layer for the Multilayer
Perceptron Regressor, and the splitter criterion for the Decision Tree classifier. The details
of the hyper-parameters can be seen in Listing 3.2.

1 SVC (C=1.0 , b reak_ t i e s=False , cache_s i ze =200 , c l a s s_we ight=None , coef0 =0.0 ,
2 dec i s ion_ funct ion_shape= ’ ovr ’ , degree =3 , gamma= ’ s ca l e ’ , ke rne l= ’ rb f ’ ,
3 max_ i ter =−1 , p r ob ab i l i t y =False , random_state=1994, sh r i nk i ng=True ,
4 t o l =0.001 , verbose=Fa l se )
5
6 Dec i s i onT r eeC l a s s i f i e r ( ccp_alpha =0.0 , c l a s s_we ight=None , c r i t e r i o n = ’ g i n i ’ ,
7 max_depth=None , max_features=None , max_leaf_nodes=None ,
8 min_ impur i ty_decrease =0.0 , m i n _ impu r i t y _ sp l i t =None ,
9 min_samples_ leaf =1 , m in_samp les_sp l i t =2 ,

10 min_we igh t _ f r ac t i on_ l ea f =0.0 , p resor t= ’ deprecated ’ ,
11 random_state=1994, s p l i t t e r = ’ best ’ )
12
13 MLPClass i f i e r ( a c t i v a t i o n = ’ tanh ’ , a lpha =0.0001 , ba tch_s i ze= ’ auto ’ , beta_1 =0.9 ,
14 beta_2 =0.999 , ea r l y _ s topp ing=False , eps i l on=1e−08 ,
15 h idden_ l aye r _ s i z e s = (8 , 16 , 32 , 2 ) , l e a r n i n g _ r a t e = ’ adapt ive ’ ,
16 l e a r n i n g _ r a t e _ i n i t =0.001 , max_fun=15000, max_ i ter =500 ,
17 momentum=0.9 , n_ i ter_no_change =10 , nesterovs_momentum=True ,
18 power_t =0.5 , random_state=1994, s hu f f l e =True , so l ve r= ’ adam ’ ,
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Supplementary Information
The Python code to replicate the Machine Learning classifiers, figures and tables is
available on Github.
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Abstract

Tinnitus is a phantom auditory perception without external sound stimulations. The
chronic perception of tinnitus can severely impact the quality of life. As tinnitus is
characterized by a heterogeneity of the patient’s symptoms, researchers often use
a multi-modal data fusion approach to reveal new insights. However, differences
across countries and seasons based on mobile health data have been not presented
so far. Therefore, data of the TrackYourTinnitus (TYT) mHealth platform were
investigated to see whether season-related differences in the symptom profiles of TYT
users exist. In addition, differences based on the country origin were investigated.
The conducted analyses address three major research questions. First, it was analyzed
whether the momentary tinnitus can be related to the season or country origin.
We used a gradient boosting machine (GBM) to binarily classify the momentary
tinnitus on the assessment level with an accuracy of 94.03 %. Second, another
GBM was trained to regress the tinnitus loudness on a scale from 0 to 100. On
the daily assessment level, the tinnitus loudness can be regressed with a mean
absolute error rate of 7.9 %-points. Both results indicate differences in tinnitus of
TYT users with respect to the season and country origin. Third, country- and season-
specific differences were analyzed. It could be revealed that tinnitus varies with the
temperature in certain countries. The considered perspectives, in turn, have been
derived through the inspection of the TYT data set and its possibilities. The presented
results show that the season and the country origin seem to be valuable features
when being combined with longitudinal mHealth data on the daily assessment level.

3.2.1 | Introduction
Tinnitus is widely known as a long-term noise in the ears, which is described by patients
through heterogeneous sound manifestations [138]. Economically, tinnitus induces a
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high burden, as about 10 - 15% of the worldwide population [139; 140] is affected by
this chronic disorder. 2.4% of these affected patients severely suffer from tinnitus day by
day [141], while one to two percent experience a reduction in their quality of life due to
tinnitus, including insomnia, anxiety, hearing difficulties, or depression [205; 206; 207].
At present, no general treatment exists, which is able to effectively reduce tinnitus loudness
and related fluctuations. Consequently, many patients are confronted with a complex
healthcare situation, which often reduces the quality of life significantly. The mentioned
heterogeneity of tinnitus symptoms also complicates the development of new and more
general treatment methods [143; 144]. However, on an individual basis, tinnitus can be
reduced, for example, by the use of cognitive behavioral therapies [142].
Various efforts are constantly made to learn more about the heterogeneity of symptom
profiles of tinnitus patients. However, data sources are often missing to investigate
aspects with respect to this heterogeneity of symptom profiles that seem to be interesting.
As the proliferation of smartphones has led to powerful mobile health solutions (denoted
as mHealth solutions) that are able to establish data sources with opportunities to better
deal with differences of symptom profiles, in this paper, such mHealth data source
is investigated for tinnitus patients. Although respective investigations have gained
attention recently, many opportunities are still not utilized. For example, a comparison
of mHealth data of tinnitus users across countries does not exist to the best of our
knowledge. In addition, detailed insights based on season differences are also less
considered in the context of collected mHealth tinnitus data so far. Therefore, these two
questions on differences across seasons and the country origin have been selected for
further investigations on symptom profiles of tinnitus patients using a mHealth platform.
In the context of the mentioned differences, only little research has been presented. In
addition, these presented works are all beyond the scope of mHealth. There is one study
on seasonal changes in tinnitus symptomatology, which concludes that searches for
tinnitus aspects are higher in winter than in summer in some countries [208]. Another
work suggests an association of depression, a common comorbidity of tinnitus, and
season. It provides Internet-based evidence for the epidemiology of seasonal depression.
The results suggest that Internet searches for depression by people at higher latitudes are
more affected by seasonal changes, while this phenomenon is faded out in tropical areas
[209]. However, already more than 70 years ago, it was clinically observed that tinnitus
increases during the winter months [210; 211]. Seasonal affective disorders (SAD), in
turn, were studied by the authors of [212]. They conclude that SAD are present when a
symptom occurs during the winter months and disappear completely in summer.
When aiming at mHealth solutions to investigate these differences, at first, the type of
collected data must be taken into account as mHealth solutions can be based on different
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methods, strategies and concepts. In this work, Ecological Momentary Assessments
(EMAs) are the basis for the investigations as they are particularly appropriate for the
investigations at question [2]. However, EMA only defines the strategy how participants
of a study (usually, longitudinal studies) will be questioned. Three aspects are the main
pillars of the EMA strategy: EMAs must be carried out in real life (opposed to a clinical
environment) and at arbitrary points in time (to capture the moment of a participant).
Third, a concrete measurement (e.g., though a questionnaire) must be accomplished. If
EMAs are now performed through the boundaries of a year and across countries, a data
source can be established through such measurements that enables a powerful basis
to investigate country- and season-specific differences. Recall that EMA only defines
the strategy. In the context of mHealth, digital phenotyping techniques[213] express
an important trend to use smartphones to practically enable Ecological Momentary
Assessments (EMAs). Digital phenotyping quantifies the human phenotype in a moment-
to-moment fashion using active and passive data from mobile devices. As smartphones
are present in daily life of almost anyone, the performance of EMAs through smartphones
can effectively capture the daily life of users over time. Respective evaluations based
on mHealth data, in turn, have been recognized as potential alleys for a better support
of patients [214]. mHealth apps, in turn, are the major instrument to operationalize
digital phenotyping and EMAs. Many mHealth apps have been presented in this context
[10; 154; 161]. Although valuable data sources have been established by the use of digital
phenotyping, mHealth data comes also with drawbacks [155], which must be considered
carefully. For example, in EMA settings, in which users fill out several questionnaires
each day over a longer period of time, it must be ensured that the data was provided
in a meaningful way. To get a better impression regarding the meaningfulness, the
following example shows emerging challenges through EMA. If users have to fill out a
lot of questionnaires through EMAs more than once a day, then they could tend to fill
out only to accomplish the task itself, without providing the actual momentary situation.
In the context of tinnitus, the TrackYourTinnitus platform (TYT), which is based on mo-
bile crowdsensing techniques [158] as well as EMAs [30], puts digital phenotyping into
practice. Crowdsensing, in turn, connects a group of people, who have mobile devices
with sensing and computing capabilities, collectively sharing data, and extracting infor-
mation to measure, map, analyze, and estimate any processes of common interest. TYT
was initially developed to investigate questions about the aforementioned heterogeneity
of symptom profiles of tinnitus patients [159; 160; 161]. The procedure how users are
walking through TYT is described in [172]. In essence, users register to the platform
(website or mobile apps), then they have to fill out three baseline questionnaires asking
about demographic data and tinnitus characteristics. The users have to fill out these
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questionnaires before they are able to start with the EMA procedure. The latter is applied
through two native apps, which are available for iOS and Android in the official app
stores. The EMA procedure consists of a daily questionnaire with up to eight questions.
This questionnaire is applied using two strategies. The first one is based on the idea
that users can fill out the questionnaire whenever they want. The second strategy is
based on notifications. Up to 12 random notifications or a fixed schema are used (can
be chosen by users, which schema they prefer) to remind the users to fill out the EMA
questionnaire. The mainly used schema are the random notifications [163]. As this
selection follows the idea of in situ measurements in the sense of digital phenotyping,
many investigations and analyses become possible. Of further importance, until today,
this setting has motivated over 8000 users from all parts of the world to provide more
than 100,000 questionnaires. The use of mHealth in this context, apart from TYT, has been
proposed by many other mHealth projects [142; 164; 165], which indicates that strategies
like EMA or digital phenotyping are promising in the context of tinnitus research.
The mentioned investigations on differences across seasons and the country origin have
been identified to be possible on the TYT data source [163]. For the concrete analyzes,
we have decided to work on the following three major research questions (RQ):

■ RQ1: Can the momentary tinnitus (Question 1 of the daily EMA questionnaire;
yes/no answer options) of TYT users be predicted (i.e., a binary classifier be trained
using machine learning based classifiers) using the features country, season, age,
and sex as well as the daily EMA questionnaire and its questions on mood, arousal,
stress, concentration, and the worst symptom perception?

■ RQ2: Can the reported tinnitus loudness of TYT users (Question 2 of the daily
EMA questionnaire; slider question) be predicted (i.e., a regressor be trained using
machine learning based classifiers) based on the same features like for RQ1?

■ RQ3: Based on inferential statistics, are we able to reveal country- and season-
specific differences for the reported momentary tinnitus based on the daily EMA
questionnaires of TYT users?

Regarding RQ1 and RQ2, we will present results from two machine learning analysis.
As TYT was able to gather more than 100,000 EMA questionnaires since 2013, which are
comprised of many dimensions, we decided to answer RQ1 and RQ2 based on machine
learning algorithms. As we already revealed interesting results on TYT EMA-data based
on machine learning [167] as well as the use of machine learning has been generally
recognized in the context of mHealth data in the last years with much attention and
valuable results [166; 168; 169; 170], the following paper links up with these findings.
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Regarding RQ3, we will present descriptive statistics about the identified country-
and season-specific differences. We have detailed the research question into four sub-
questions due to the following reason: Based on the two main goals to investigate country-
and season-specific, which represent the two categories of differences, we were able to
derive further promising questions. RQ33 is a combined perspective of the country and
the season, while RQ34 is inspired by medical experts. The following list presents the
four sub-questions:

i RQ31: Are there country-specific differences for the momentary tinnitus?

ii RQ32: Are there season-specific differences for the momentary tinnitus?

iii RQ33: In the light of a combination of country- and season-specific differences, the
question arose, whether the momentary tinnitus varies within the year and across
countries.

iv RQ34: Another question arose, whether country- and season-specific differences of
the reported worst symptom can be identified.

Three additional notes are important regarding RQ31-RQ34. First, the last sub-question
was set up due to the involved medical experts as severe symptoms play an important
role in the context of tinnitus research. As TYT asks about nine possible worst symptoms,
we investigated how the worst symptom differs across countries and seasons. As the
combined perspective taken for RQ33 was useful, this combined perspective was also
accomplished for RQ34. Second, in the context of season-specific differences, we added
an additional dimension, the temperature course throughout the year, which is inspired
by the results of [209].

Finally, for the prediction tasks in RQ1 and RQ2, we excluded features of TYT that are
highly correlated with the target, such as tinnitus loudness, tinnitus stress, and momentary
tinnitus. However, we included features that are known to be correlated with tinnitus,
such as sex and age [215].

3.2.2 | Materials and Methods
The study was approved by the Ethics Committee of the University Clinic of Regensburg
(ethical approval No. 15-101-0204). All users read and approved the informed consent
before participating in the study. The study was carried out in accordance with relevant
guidelines and regulations.
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The questionnaires For the tinnitus prediction task, three linked data sets were used.
The first (1) one refers to the baseline questionnaire named Tinnitus Sample Case History
Questionnaire (TSCHQ). The second one (2) is the daily questionnaire and asks for in-
formation about the user’s current sense of well-being. The third data set (3 contains
information on the temperatures of a country in the annual cycle.
The first (1) TSCHQ questionnaire is completed by each TYT user once when starting the
app for the first time. In this questionnaire, demographic data as well as data about the
individual course of the tinnitus are collected, such as the onset of the tinnitus, or the
worst symptom that is related to tinnitus.

When logging in into the TYT platform, users are asked for their worst tinnitus symptom.
This symptom can be one of the following.

■ I am feeling depressed because of the
tinnitus.

■ I find it harder to relax because of the
tinnitus.

■ I have strong worries because of the
tinnitus.

■ Because of the tinnitus it is difficult
to follow a conversation, a piece of
music or a film.

■ Because of the tinnitus it is hard for
me to get to sleep.

■ Because of the tinnitus it is difficult to
concentrate.

■ Because of the tinnitus I am more ir-
ritable with my family, friends and
colleagues.

■ Because of the tinnitus I am more sen-
sitive to environmental noises.

■ I don’t have any of these symptoms.

As we also record fill-in dates of answers to this questionnaire, and the country of the
user, we can link the worst symptom to both the season and country. To assign the
fill-in date to a season, we used the astronomical seasons as a guide. More specifically,
spring starts on March 21st, summer in June 21st, autumn in September 23rd, and winter
in December 21st. For countries of the southern hemisphere, the seasons are opposite,
i.e., spring becomes autumn, summer becomes winter. etc. 3.2 % of the collected data
comes from countries in the southern hemisphere. The correction of the seasons concerns
only the analysis for the worst symptom. For the machine learning part (RQ1, RQ2),
countries in the southern hemisphere were not involved due to the insufficient number
of completed questionnaires.

The second (2) data set refers to the daily questionnaire. It includes eight questions about
the current tinnitus state, i.e., the tinnitus situation and the feelings of the individual
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right now. However, the eighth dynamic question depends on the worst symptom of
the individual from the TSCHQ questionnaire and asks whether the individual has this
specific worst symptom right now or not. If an individual answered I don’t have any of
these symptoms in the beginning, no eighth question appears in the daily questionnaire.
Consequently, the amount of data for question 8 depends on the number of individuals
that have selected this worst symptom in questionnaire TSCHQ. On the other hand, the
number of answers for questions one to seven equals each other. These questions are
seen by every individual in the same way and are as follows:

1. Did you perceive the tinnitus right
now?

2. How loud is the tinnitus right now?

3. How stressful is the tinnitus right
now?

4. How is your mood right now?

5. How is your arousal right now?

6. Do you feel stressed right now?

7. How much did you concentrate on
the things you are doing right now?

8. This question depends on the worst
symptom selected in the questionnaire
TSCHQ.

Depending on the features that are selected for the classification task, the number of ex-
amples m depends on the dynamic question eight. The questions for mood and arousal are
questions using a self-assessment scale (SAM) [172], with 9 possible values. Depending
on a user’s operating system, the answer is stored with different accuracy. Therefore,
rounding errors can occur in the hundredths range on Android phones. We neglected
these rounding errors in pre-processing considering the amount of 18 other features
(countries, seasons, sex, age, mood, arousal, stress, concentration, worst symptom perception.
Note that countries and seasons are categorical and thus one-hot encoded features.), as
described in Table 3.5.
The third (3) dataset contains information about the temperature in the country per
season. The dataset was crawled from Wikipedia and is originally a list of cities with
their average monthly temperatures. The respective country is noted for the cities, which
means that many countries are represented by several cities. In this case, the data was
grouped by country and averaged again. The weather data in the cities themselves are
taken from various weather services in the respective countries, which sometimes results
in temporal differences in the data, which we consider negligible, however, due to the
slow climate change. The temperature dataset can directly be found here. The mapping
of the country names with the iso2 country codes (i.e., Federal Republic of Germany: DE)
was done using this list.
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3.2.2.1 | Data preprocessing
The raw data comes from three .csv files, which, in turn, are extractions from the TYT
database [163]. The first file is a data frame containing meta information from all reg-
istered users (number of users = 8685 by Feb. 2021). This meta data includes, among
others, the country, nationality, and mobile platform. The second file is the baseline
questionnaire and contains 3700 users that filled out the initial questionnaire. The daily
questionnaire is the last file with 3044 users that answered 98,074 daily questionnaires.
We can see from this, that of the registered users, about one in three completes the daily
questionnaire at least once.

The user_id is mandatory to merge the three data sets. As a consequence, all rows where
user_id equals NULL, we dropped that row. We further removed the 25 test-users with
known user IDs to reduce bias and noise in the data. The remaining merged data frame
had 97,742 rows and 65 columns. This data frame has been used for the statistical analyses
provided in the results section.

Machine Learning Preprocessing For the machine learning task, a further preprocess-
ing was required. Gradient boosting machines can only handle numerical data with
no missing values. We therefore dropped rows that contained missing values, which
affected about 24 % of the data. We then needed to convert categorical features into
numbers. As decision trees split data in binary groups, we used the pandas.get_dummies()
method to convert the countries and seasons into several columns. The column name
is then the category. A 1 indicates that this category applies, i.e., autumn = 1, which, in
turn, means that the other seasons must be zero. In order not to increase the number of
columns unnecessarily, we used the drop_first = True keyword argument. This means,
we get k-1 dummies out of k categorical levels by removing the first level. The last step
considered the imbalanced distribution of the target variable tinnitus occurrence. About
79 % of the assessments state yes. Any naive machine learning classifier would therefore
simply always predict yes, regardless of the input of features and would still get 79 %
accuracy on average. Using the F1 accuracy score, the performance can be measured
better, but the classifier would still be overfitted on positive examples. We therefore
bootstrapped negative examples with replacement until we had a balanced dataset. The
final dataset had 118,054 samples with 22 features each.

Estimation of feature importances The values of Table 3.6 were calculated using three
different methods, the Gini importance, the permutation importance, and the correlation
metric. Depending on the feature scaling, two different correlation metrics have been
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variable name variable meaning mean std scaling

AT Austria 0.02 0.13

CA Canada 0.03 0.16

CH Switzerland 0.08 0.27

DE Germany 0.62 0.49

GB Great Britain 0.05 0.21

IT Italy 0.01 0.10

NL Netherlands 0.07 0.25

NO Norway 0.02 0.13

RU Russia 0.02 0.14

US United States 0.09 0.29

spring 0.26 0.44

summer 0.24 0.43

autumn 0.25 0.43

winter 0.25 0.44

Male Sex 0.74 0.44

age Age in years 49.71 12.98 integer

question4 How is your mood right 

now?

0.58 0.20

question5 How is your arousal right 

now?

0.25 0.22

question6 Do you feel stressed right 

now?

0.26 0.23

question7 How much did you 

concentrate on the things 

you are doing right now?

0.59 0.31

question1
(target RQ1)

Did you perceive the 

tinnitus right now?

0.50 0.50
binary

question2
(target RQ2)

How loud is the tinnitus 

right now?

0.47 0.30 Slider in 

range (0, 1)

binary

SAM from 0 to 1

with stepsize 

0.125

Slider in 

range (0, 1)

season

Table 3.5: Overview of the features and the targets used to train the gradient boosting
machines for RQ1 and RQ2. Most of the features are binary, age has the highest cardinality.
The whole dataset had the shape (118054, 22) after re-balancing for the target momentary
tinnitus. For the ML feature, the average age is higher as some users completed the
questionnaire over several years and age was calculated at the time of completing the
daily questionnaire.

applied. If the input feature was categorical, Corrected Cramer’s V [201] was applied. If it
was continuous, the Point Biserial method [200] was used. Cramer’s V is defined in range
(0, 1), whereas the Point Biserial correlation is defined in range (-1, 1). Nevertheless, to be
able to order the results within the column, we took the absolute value from the Point
Biserial result. Although all results are in percentages, it is not possible to compare them
line by line. This is due to the different units of measurement. Therefore, we have created
the ranking. For the Gini and the permutation importances, both methods are used
using the trained gradient boosting machine. The Gini importance is an impurity-based
method. The higher it is, the more important the feature is. Notably, within this column,
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all values add up to 100 %. The importance of a feature is calculated as the reduction
of the impurity caused by this feature. For the permutation importance, the percentage
values are an estimate for the increase of the error rate on average, if that feature would
have been replaced by a random feature. That means, if the variable gender would be
replaced with a random variable, the error would increase by 6.43 %-points. That column
does not necessarily add up to 100 %.

3.2.2.2 | Gradient Boosting Machines for classification of momentary tinnitus
and regression of tinnitus loudness

Why did we choose the Gradient Boosting Machine? It is a tree-based Machine Learning
algorithm and related to Random Forests. Machine Learning contests on the Kaggle
platform have recently shown that this algorithm is superior to most state-of-the-art
Deep Learning methods when it comes to tabular data, such as house pricing prediction
problems. Both, Random Forests and Gradient Boosting Machines use several trees to
predict the outcome. However, one of the main differences between those two algorithms
is the time aspect. That is, the Gradient Boosting algorithm learns from previous miss-
classified samples by putting more weight on those. Furthermore, it does not easily tend
to overfitting like decision trees do.
We used the Python implementation from scikit-learn [173] to apply the Gradient Boost-
ing machine to the dataset. We then defined the 20 features (10 countries, 4 seasons,
sex, age, mood, arousal, stress, concentration level) and the targets (momentary tinnitus,
tinnitus loudness. The whole dataset was divided into three sets: Training, development,
and testing. Training plus development got 70 % of the data, testing 30 %. To avoid a
selection bias within the classification problem, we stratified on y. Setting a random_state
(also known as seed) ensured that the results are reproducible. For the tuning of the hy-
perparameters, we used a gridsearch approach. Within that, we varied the learning_rate,
the max_depth of each tree, the sizes of the subsamples, the minimum number of samples
per leaf, and the fraction of randomly chosen features per tree. 1,280 combinations of
the hyperparameters have been evaluated systematically, the final chosen setup can be
seen in Listing 3.2 for the classifier and Listing 3.3 for the regressor, respectively. Each
combination was cross-validated within the training set using a 5-fold split. This means
that the 70 % of the training data was further divided into 5 folds. Four of each were
used for training and one for validation.
For the classification task, the mean test accuracy score on validation was 91.1 % (std =
.002). On the test dataset, an even higher accuracy of 94.03 % was achieved.
When leaving out the features sex and age, the mean test score dropped to 88.9 % using
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the same hyperparameters. Using only the binary features seasons and countries leads
to a decrease of the accuracy on the test set down to 58 %. This is caused by the low
dimensional feature space.
For the regression task, a mean absolute error of 8.1 % was achieved on the validation set
(std = .0006) and a 7.9 % error on the test set.

1 # Gr idsearch setup
2 params_gb = { ’ l e a r n i n g _ r a t e ’ : ↘

[ 0 . 1 , 0 .2 , 0 .3 , 0 .5 , 1 ] ,
3 ’ max_depth ’ : [ 3 , 4 , 5 , 10] ,
4 ’ verbose ’ : [ 1 ] ,
5 ’ random_state ’ : [ 42 ] ,
6 ’ subsample ’ : [ 0 .25 , 0 .5 , 0 .75 , 1 ] ,
7 ’ m in_samples_ leaf ’ : [ 1 , 2 , 3 , 10] ,
8 ’ max_features ’ : [ 0 .25 , . 5 , . 75 , 1]
9 }

10
11 # Chosen hyperparameters
12 Grad i en tBoos t i ngC l a s s i f i e r ( l o s s = ’↘

deviance ’ , l e a r n i n g _ r a t e =0.5 , ↘
n_est imators =100 , subsample↘
=1.0 , c r i t e r i o n = ’ friedman_mse ’↘
, m in_samp les_sp l i t =2 , ↘
min_samples_ leaf =1 , ↘
min_we igh t _ f r ac t i on_ l ea f =0.0 , ↘
max_depth=10 , ↘
min_ impur i ty_decrease =0.0 , ↘
min_ impu r i t y _ sp l i t =None , i n i t =↘
None , random_state =42 , ↘
max_features =0.5 , verbose =0 , ↘
max_leaf_nodes=None , ↘
warm_start=False , ↘
v a l i d a t i o n _ f r a c t i o n =0.1 , ↘
n_ i ter_no_change=None , t o l↘
=0.0001 , ccp_alpha =0 .0 )

Listing 3.2: Hyperparameter set up for
the Gradient Boosting Classifier

1 # Gr idsearch setup
2 params_gb = { ’ l e a r n i n g _ r a t e ’ : ↘

[ 0 . 1 , 0 .2 , 0 .3 , 0 .5 , 1 ] ,
3 ’ max_depth ’ : [ 3 , 4 , 5 , 10] ,
4 ’ max_features ’ : [ 0 .25 , . 5 , . 75 , ↘

1 ] ,
5 ’ random_state ’ : [ 42 ] ,
6 ’ subsample ’ : [ 0 .25 , 0 .5 , 0 .75 , 1]
7 ’ verbose ’ : [ 1 ]
8 }
9

10 # Chosen hyperparameters
11 GradientBoost ingRegressor (
12 l e a r n i n g _ r a t e =0.5 ,
13 max_depth=10 ,
14 max_features =0.75 ,
15 random_state =42 ,
16 subsample =1 ,
17 verbose =1)
Listing 3.3: Hyperparameter set up for
the Gradient Boosting Regressor

3.2.3 | Results
In this section, the results for the research questions are presented subsequently. At first,
we focus on the first question of the daily TYT questionnaire (Did you perceive the tinnitus
right now?). We refer to this question as the momentary tinnitus in the following. Second,
we consider the tinnitus loudness (How loud is your tinnitus right now?) and refer to this
question as tinnitus loudness. Third, we analyze these two targets momentary tinnitus
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and tinnitus loudness in a global context by relating them to the country, season, and
temperature.

Features for RQ1 and RQ2 We used four different groups of features. The first group of
features are dummy features indicating whether an individual comes from that country
or not. As 111 countries would lead to an unnecessary increase in the size of the features,
we only took those 10 countries with the most filled out daily questionnaires. These
countries are [’DE’, ’US’, ’NL’, ’CH’, ’GB’, ’CA’, ’RU’, ’AT’, ’IT’, ’NO’]. The second group
of features are the four seasons, which are also coded as dummy features. The third
group contains age and sex. Note that we did not include the questions tinnitus loudness,
momentary tinnitus and tinnitus stress level as features as they are highly correlated with
the respective target.
The age is calculated from the date of the completed daily questionnaire and the date of
birth. Sex contains two unique values, male and female. The last group of features is a
subset of questions of the daily questionnaire. This subset contains information about the
momentary mood, arousal, stress level, and concentration. This results in a data frame
with 20 features, 1 binary target, and 74,360 samples from 2,179 users.

3.2.3.1 | RQ1: Is the momentary tinnitus of TYT users predictable using the fea-
tures country, season, age, sex, and from the daily EMA questionnaire,
mood, arousal, stress, concentration, and worst symptom perception?

Data preparation From previous research works, we already knew that the dataset is
imbalanced regarding the target. This means that about 75,000 answers are tinnitus = yes,
but only 20,000 tinnitus = no. A classifier that has guessed randomly the outcome would
get 50 % accuracy on average, a naive classifier would simply always predict Tinnitus=yes
and would get 78.95 % accuracy on average. We therefore draw randomly 54,566 times
a sample from the Tinnitus=no group, add it to the data frame, and finally shuffle the
samples. This forces each naive classifier to an accuracy down to 50 %. This, in turn,
means that any improvement in the accuracy can be attributed to the learning of the
classifier.

Machine Learning The machine learning task at hand is a binary classification task.
We wanted to know whether it is possible to predict the occurrence of tinnitus for an
individual of the TYT platform. We used a Gradient Boosting Machine [89], which builds
an additive model and learns subsequently from prior classification trees. We further
divided the data into three sets: Two for cross-validation (the training and the validation
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Conversely, the countries have a lower importance (average rank = 13.6), since they have
only a low cardinality with low variance.

Feature Gini Permutation Correlation Gini

Rank

Perm. 

Rank

Corr.

Rank

Gini Permutation Correlation Gini 

Rank

Perm.

Rank

Corr. 

Rank

AT 0.4% 0.2% 2.9% 20 20 14 0.4% 0.9% -3.6% 16 16 16

CA 0.6% 0.9% 4.4% 19 16 11 0.2% 0.5% -4.7% 19 20 11

CH 1.6% 1.3% 9.4% 14 13 5 0.9% 2.7% -8.8% 14 14 7

DE 2.4% 2.0% 3.6% 9 9 13 2.0% 8.0% 10.0% 7 7 6

GB 0.9% 0.8% 0.0% 16 17 20 1.1% 3.0% 4.9% 11 12 9

IT 0.6% 0.3% 7.6% 18 19 7 0.2% 0.7% -1.4% 18 18 20

NL 0.9% 1.0% 0.3% 15 15 17 0.7% 1.9% -10.3% 15 15 5

NO 0.8% 0.4% 7.5% 17 18 8 0.3% 0.6% -3.7% 17 19 14

RU 2.2% 1.1% 13.4% 10 14 3 0.2% 0.7% -1.7% 20 17 19

US 2.1% 2.3% 7.8% 11 7 6 1.0% 3.4% 4.1% 13 11 12

spring 1.9% 1.3% 0.1% 12 12 18 1.1% 3.5% -4.8% 12 10 10

summer 1.9% 1.7% 1.6% 13 11 16 1.3% 2.8% -3.1% 10 13 17

autumn 2.5% 1.9% 3.9% 7 10 12 1.3% 4.0% 5.0% 9 9 8

winter 2.5% 2.2% 5.2% 8 8 10 1.6% 4.6% 2.8% 8 8 18

age 24.9% 29.8% -11.6% 1 1 4 30.6% 93.3% 12.0% 1 1 4

Male 3.8% 4.4% 6.4% 6 6 9 3.3% 15.2% -4.1% 6 5 13

mood 9.1% 11.4% -18.4% 4 4 1 7.4% 24.6% -24.0% 4 4 2

arousal 6.7% 8.3% 0.1% 5 5 19 4.7% 12.5% 12.4% 5 6 3

stress 17.4% 16.5% 17.8% 2 3 2 27.3% 48.8% 38.4% 2 2 1

concentration 16.7% 17.3% -2.3% 3 2 15 14.4% 29.8% -3.7% 3 3 15

Did you perceive the tinnitus right now? - Classification How loud is the tinnitus right now? - Regression

Table 3.6: Feature importances of the Gradient Boosting Machines (both classifier and
regressor) of univariate features with the two targets momentary tinnitus and tinnitus
loudness. To get a better estimate of the feature importance, three different methods
have been used: Gini importance, permutation importance, and correlation. The Gini
importances within one column add up to 100 %, the permutation importance indicates
the absolute increase of the error rate if that feature was left out. Since the percentages
cannot be compared between columns, but only within a column, the ranks of the feature
importances are also given. The greener a cell is, the more important the feature for the
target (momentary tinnitus or tinnitus loudness) is. The features themselves are grouped
in countries, seasons, demographics, and daily questions. As age is a feature with high
cardinality, it clearly helps the tree-based Gradient Boosting Machines to predict the
targets. The high feature importance for the variable age could also be an indication of
an overfitting of users who have completed very many assessments.

If we firstly divide the features into their groups (country, season, demographics, daily
EMA-questions), we can see that the EMA features (questions 4 (mood), 5 (arousal), 6
(stress), and 7 (concentration)) and the demographic features (sex, age) seem to be the
most important feature groups on average. The third most important feature group is
the season, followed by the countries. Age is a very important feature for the Gradient
Boosting Machine for two reasons. First, it has a high cardinality (many different values)
and second, it has a moderate correlation with current tinnitus. The permutation impor-
tance of 29.7 % suggests that the accuracy becomes 29.7 % percentage points worse when
the age is replaced by a random variable. For example, almost all Russian users have
consistently answered the question about current tinnitus in the affirmative. Within the
countries feature, Russia therefore has a high correlation with current tinnitus. However,
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3.2.3.3 | RQ3: Are we able to reveal country- and season-specific differences for
the reported momentary tinnitus based on the daily questionnaire of TYT
users?

To answer this question, there are 97,742 responses from 3,691 users from a total of 111
countries for the period from April 2014 to February 2021. For the further analysis, we
restricted ourselves to the countries at least represented by more than 30 users with
more than 300 questionnaires in total. For this subset, with 15 countries, 3,163 users
remain with a total of 88,049 filled out daily questionnaires. Most responses are from
Germany, with 51,804 completed questionnaires, generated by 1,410 users, whereas the
fewest completed questionnaires come from the Federative Republic of Brazil, with
334 completed questionnaires, generated by 50 users. The mean number of filled out
questionnaires per country is 5870 (std = 13,058). The mean number of users is 210 (std =
357). For the question of interest, Did you perceive the tinnitus right now? (question1), mean
for ’Yes’ is 78.97 % (std = 12.21 %), an interquartile range of 15.73 %, with a maximum
value of 95.58 % from Italy, and a minimum value of 48.66 % from Norway, were found.

RQ31: Are there country-specific differences for the momentary tinnitus? A chi-square
test of independence showed that there are significant differences between the countries,
χ2(14, N = 85933) = 2441.44, p < .001. 105 post-hoc χ2 tests were performed to compare
pairwise differences. Using corrected p-values, 91 pairs of countries were rejected (p =
.05). 14 pairs could not be rejected at p = .05, i.e., the pair Germany-Great Britain, and
Germany-Sweden. This indicates that these countries have a similar pattern in momentary
tinnitus occurrence. A detailed overview of the answers of question1 (Did you perceive the
tinnitus right now?) is given in Table 3.7. To ensure comparability between the countries
under consideration, we have looked at the demographic variables in detail in Table 3.8.

RQ32: Are there season-specific differences for the momentary tinnitus? To answer
this question, we again analyzed only countries represented by more than 30 users with
more than 300 completed questionnaires per season. This filter setting holds True for
Switzerland, Germany, the United States, Great Britain, and the Netherlands. The largest
sample is again for Germany, with 51,534 completed questionnaires, the smallest sample
is for the UK, with 3,684 completed questionnaires.
If we do not group by country, it can be seen that the greatest probability for momentary
tinnitus is in summer with 83.4% (std = 8.6%). In contrast, the lowest probability for
momentary tinnitus is in winter, with 71.0 % (11.8 %). The interquartile range is 14.5
% for winter, and 11.8 % for summer. If we group by country, the highest probability
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Country_Name No Yes n_questionnaires n_users
14.5% 85.5% 666 77
29.6% 70.4% 1321 68
28.6% 71.4% 972 44
8.7% 91.3% 344 50

13.9% 86.1% 2341 126
16.6% 83.4% 467 72
21.0% 79.0% 51804 1410
4.4% 95.6% 1220 81

33.1% 66.9% 7268 180
51.3% 48.7% 1178 42
9.3% 90.7% 517 82

18.2% 81.8% 362 38
32.8% 67.2% 5139 122
20.5% 79.5% 3713 210

Australia
Austria

Belgium
Brazil

Canada
France

Germany
Italy

Netherlands
Norway

Spain
Sweden

Switzerland
United Kingdom

United States of America 12.8% 87.2% 10737 561

Table 3.7: Momentary tinnitus by country for individuals of the TYT platform grouped by
country. When filling out a questionnaire, most users state that they perceive the tinnitus
at that moment. The chance for this is 78 %, with a standard deviation of 12 percent.

for momentary tinnitus is in summer in Great Britain (95.7 %), the lowest in winter in
Switzerland (60.7 %). The ratios of yes-no-responses are shown in Fig. 3.10. Considering
not only these five countries, but all 111 countries in the present data set without setting
a questionnaires or user threshold, the probability of momentary tinnitus perception is
80.6 % in summer, 80.1 % in fall, 78.6 % in spring, and 75.1 % in winter. A χ2 test
of independence showed that there was a significant association between season and
momentary tinnitus for all countries without a user or questionnaire threshold, χ2(3, N =

95446) = 216.19, p < .001. Overall user reporting for tinnitus is thus most likely in
summer.

Baseline characteristics from this questionnaire for the five countries (CH, DE, GB, NL,
US), as well as all other countries, can be seen in Table 3.8. These five countries are
the subject of our RQ32. To ensure comparability between countries, we considered
other demographic data in more detail. For the characteristics handedness and family
history of tinnitus complaints, a χ2 test was performed. The χ2 test showed that there
was no significant association within the country groups, χ2(8, N=2319) = 6.64, p=0.58
for handedness, and χ2(4, N=2314) = 4.33, p=0.36, for family history. To compare the age
distributions between the countries, a one-way ANOVA was performed with F(4, 2267) =
5.17, p < 0.001. A post-hoc pairwise Tukey test revealed differences between DE and US
(mean diff. = 2.36, p < 0.05), and GB and US (mean diff. = 5.07, p < 0.01). The remaining
eight pairwise groups had no significant differences in their means.

In a slightly different approach, we considered months instead of seasons. Therefore, we
increased the granularity of the x-axis. In addition, we examined the respective average
temperature per month in relation to tinnitus occurrence for the countries considered
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Figure 3.10: Distribution of the momentary tinnitus (Did you perceive the tinnitus right
now?) by country and season for Switzerland (CH), Germany (DE), the United States of
America (US), the United Kingdom of Great Britain & Northern Ireland (GB), and the
Netherlands. n denotes the number of filled out daily questionnaires per country for all
seasons.

Country Sex Count Mean Std Min 25% 50% 75% Max Left Both Sides Right No Yes

Female 32 48.38 13.84 31 37 47 62 74 0.0% 9.1% 90.9% 69.7% 30.3%

Male 78 49.94 13.95 21 39 50 59 78 12.5% 17.5% 70.0% 71.3% 28.8%

Female 414 44.36 13.80 8 33 46 55 79 10.5% 13.1% 76.4% 74.3% 25.7%

Male 851 49.15 13.83 10 39 50 58 87 10.6% 13.1% 76.3% 79.3% 20.7%

Female 91 41.81 12.33 17 32 42 51 70 8.8% 15.4% 75.8% 74.7% 25.3%

Male 106 46.12 13.13 13 37 46 57 71 13.2% 7.5% 79.2% 78.5% 21.5%

Female 25 50.76 12.07 29 43 47 61 73 5.9% 14.7% 79.4% 73.5% 26.5%

Male 95 45.79 14.12 18 34 50 57 73 14.0% 8.1% 77.9% 73.5% 26.5%

Female 242 47.71 13.19 12 38 49 57 84 14.9% 8.9% 76.2% 69.6% 30.4%

Male 284 51.58 12.68 16 43 54 60 81 11.5% 12.8% 75.7% 78.9% 21.1%

Female 1102 44.46 13.60 8 33 45 55 84 11.2% 13.4% 75.3% 72.7% 27.3%

Male 2231 47.15 13.95 1 37 48 57 114 12.9% 15.7% 71.4% 78.2% 21.8%

Age
F(4, 2267) = 5.17, p < 0.001

Handedness

X²(8, N=2319) = 6.64, p=0.58

Family History

X²(4, N=2314) = 4.33, p=0.36

CH

DE

NL

US

all*

GB

Table 3.8: Statistical comparison of the five countries CH, DE, GB, NL, and US with all
users. Additionally, the data is grouped by gender. For the χ2 tests, the N differs from
the Count column, as some data is missing. The χ2 for handedness and family history is not
significant. For the comparison of the age distributions, the post-hoc Tukey test shows
significant mean differences for Germany with the United States (p < 0.05), and Great
Britain with the United States (p < 0.01). The table supports the comparability of the five
countries that are mainly discussed in RQ3. *The five countries CH, DE, GB, NL, and US
are included in all countries.

(i.e., Switzerland, Germany, U.S., Great Britain, and the Netherlands). When multiple
temperature data points from different cities were available for a country, they were
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aggregated with the average.
In this context, a positive correlation means the higher the temperature, the more likely
is the momentary tinnitus. A high positive correlation can be obtained for the Netherlands
(r(10) = .83, p < .001), for Great Britain (r(10 = .86, p < .001), and for Switzerland (r(10) = .72,
p = .009). On the contrary, the U.S. shows a non-significant medium negative correlation
(r(10) = -.41, p = .18). For Germany, however, the correlation between temperature and
tinnitus occurrence can be considered uncorrelated (r(10) = -.09, p = .78). The cyclical
temperature pattern associated with tinnitus over the year for the various countries is
shown in Fig. 3.11. There was a statistically significant difference between the countries
as determined by one-way ANOVA (F(4, 55)= 6.69 , p < .001). A post-hoc Tukey test
indicates that the annual course of momentary tinnitus is different between the country
pairs Netherlands-U.S. (p < .01) and Switzerland-U.S. (p < .01).

Figure 3.11: Cyclical temperature pattern associated with tinnitus for Switzerland (CH),
Germany (DE), the United States of America (US), the United Kingdom of Great Britain &
Northern Ireland (GB), and the Netherlands. The x-axis shows the month, the y-axis the
temperature in degrees Celsius. The larger the circle is, the higher the average probability
for a momentary tinnitus for this country in this month is. The size and color of the cycles
indicate the chance of momentary tinnitus. The bigger the cycle, the higher the chance.

RQ33: In the light of a combination of country- and season-specific differences, the
question arose, whether the momentary tinnitus varies within the year and across
countries. In contrast to the previous section, we have ignored temperature in this
question. Instead, we examined the following: For each of the countries considered,
and for each individual month of the year, we calculated the probability of tinnitus
by dividing the number of yes responses by the sum of responses. In the following
step, we examined the probability of tinnitus over the course of the year. To increase
comparability, we additionally calculated the average of the tinnitus probability for all
available data on a monthly basis.
Since most of the data comes from Germany, this country has a correspondingly large
influence on the average values. Accordingly, the curve for Germany is very similar to
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the curve of all data (statistic = .17, p = 1.00). On the contrary, the Netherlands, the U.S.,
and Switzerland reveal a different distribution of the tinnitus with p-values < 0.01. For
Great Britain, the distribution can be considered to be slightly different as p-value is
.10. An overview of the distributions compared with the average is given in Fig. 3.12. A
summarizing statistical overview, in turn, is given in Table 3.9.

Figure 3.12: Course of occurrence of tinnitus over the year for Switzerland (CH), Germany
(DE), the United States of America (US), the United Kingdom of Great Britain & Northern
Ireland (GB), and the Netherlands. The x-axis shows the month, the y-axis the probability
for tinnitus occurrence. The dashed grey lines show the average of tinnitus occurrence
for all data except the country plotted on this axis. The graph indicates that people of
different nations perceive tinnitus differently throughout the year.

country count mean std min 25% 50% 75% max

CH 12.00 0.68 0.08 0.53 0.64 0.67 0.74 0.79
DE 12.00 0.79 0.04 0.73 0.76 0.78 0.82 0.87
GB 12.00 0.80 0.16 0.52 0.69 0.81 0.94 0.99
NL 12.00 0.71 0.13 0.59 0.61 0.66 0.76 0.95
US 12.00 0.87 0.05 0.76 0.85 0.89 0.91 0.94

Table 3.9: Statistics for the occurrence of tinnitus throughout the year grouped by country.
Count simply represents the number of months in a year. For this data set, momentary
tinnitus occurred least in Switzerland in March (53 %), and most in the UK in August (98
%).

The highest probability for tinnitus is in the US with an average chance of 87 %, the
lowest probability in Switzerland with 68 %. The largest variance occurs in Great Britain,
with 16 % standard deviation, the smallest in Germany, with 4 %. For this data set,
tinnitus occurred least in Switzerland in March (53 %), and most in the UK in August (98
%).

RQ34: The question arose, whether country- and season-specific differences of the
reported worst symptom can be identified. To answer this research question, we
again focused on the five countries [CH, DE, GB, NL, US]. When registering on the TYT
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platform, the question about the worst tinnitus symptom is asked once. For each country
and season, we calculated the relative number of answers within a country to compare
which symptom is more likely in which season. Each column adds up to 100 %. The
1,310 users from Germany had the lowest standard deviation (.94 std). The Netherlands
with 175 users had the largest standard deviation (2.01 std). I find it harder to relax is
the most likely symptom in the Netherlands in fall, with 8.57 %, and, at the same time,
with a global maximum. Feeling depressed ranks second for the UK and the Netherlands.
For the U.S., the two worst symptoms are difficulty following a movie or conversation and
concentration problems. For the U.S., however, there is little variation between seasons
within these two worst symptoms. None of these symptoms ranks second for Switzerland.
Irritability with friends and family is the least indicated worst symptom for all countries. A
chi-square test was performed between distribution of the worst symptom and country.
There was no statistically significant relationship between worst symptom and country,
χ2(40, N=6) = 0.53, p=1.0.
In a similar approach, we disregarded countries and investigated the evolution of the
worst tinnitus symptom between seasons. Thus, we examined whether there are different
worst symptoms per season. Because of the tinnitus I am more irritable with my family, friends
and colleagues is the most unlikely symptom (mean = 5.9 %, std = 1.0 %. The most likely
symptom constitutes I find it harder to relax because of the tinnitus (mean = 17.7 %, std = 1.9
%). Details are given in Fig. 3.13. Difficulties in relaxing is the worst symptom across all
seasons. The data further indicates that feelings of depression are stronger in the months
of autumn and winter. Difficulties in following conversations are more pronounced in
summer. Irritability with colleagues or family is the least selected symptom. However, a
chi-square test of independence showed that there was no significant association between
worst symptom and season, χ2(24, N = 3458) = 30.86, p = .16.

3.2.4 | Discussion
The present work investigated the differences of momentary tinnitus and tinnitus loudness
in relation to seasons and countries.

■ To summarize the results for RQ1, we found that we can predict the momentary
tinnitus with an accuracy of 94.03 % on the assessment level.

■ For RQ2, we found that the tinnitus loudness can be regressed with a mean absolute
error rate of 7.9 %-points on a scale from 0 to 100 %.

■ For RQ31 (country specific differences for the momentary tinnitus), we found that
most of the countries report the momentary tinnitus differently.
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worst_symptom season CH 

(n=114)

DE 

(n=1310)

GB 

(n=201)

NL 

(n=175)

US 

(n=537)

spring 0.00% 1.91% 0.50% 1.14% 0.93%

summer 0.00% 1.37% 1.00% 1.14% 1.86%

autumn 1.75% 1.68% 0.50% 2.29% 2.23%

winter 0.88% 1.53% 1.00% 0.57% 0.93%

spring 4.39% 2.67% 1.99% 1.14% 1.49%

summer 0.88% 1.83% 1.00% 1.71% 2.23%

autumn 4.39% 2.90% 0.50% 4.00% 2.61%

winter 2.63% 2.14% 1.00% 0.00% 1.68%

spring 0.88% 3.44% 2.49% 2.86% 4.66%

summer 2.63% 2.90% 1.99% 1.14% 2.79%

autumn 0.88% 3.66% 1.49% 6.29% 5.21%

winter 1.75% 2.60% 1.00% 3.43% 2.79%

spring 2.63% 3.36% 3.48% 1.14% 4.28%

summer 2.63% 2.98% 5.97% 3.43% 4.66%

autumn 3.51% 4.12% 2.49% 3.43% 3.17%

winter 2.63% 3.59% 2.49% 1.71% 3.91%

spring 4.39% 2.60% 2.99% 1.14% 3.54%

summer 1.75% 1.98% 2.99% 0.57% 2.98%

autumn 0.88% 3.36% 4.98% 5.14% 3.17%

winter 3.51% 2.67% 5.47% 1.71% 4.10%

spring 3.51% 1.91% 2.99% 3.43% 0.93%

summer 0.88% 2.14% 4.48% 2.86% 2.05%

autumn 4.39% 2.14% 4.48% 5.14% 3.91%

winter 1.75% 1.60% 6.47% 2.86% 2.79%

spring 6.14% 2.67% 1.00% 0.00% 1.68%

summer 1.75% 2.37% 1.00% 1.71% 1.68%

autumn 4.39% 3.05% 1.00% 2.29% 2.42%

winter 7.89% 2.37% 1.99% 2.29% 2.42%

spring 4.39% 5.19% 6.97% 5.71% 4.47%

summer 7.89% 3.44% 2.49% 4.57% 3.54%

autumn 3.51% 5.57% 4.48% 8.57% 3.91%

winter 3.51% 3.28% 7.96% 2.86% 2.23%

spring 3.51% 2.21% 2.99% 0.00% 2.79%

summer 0.88% 2.60% 1.49% 4.57% 1.49%

autumn 1.75% 3.59% 3.48% 6.29% 1.68%

winter 0.88% 2.60% 1.49% 2.86% 2.79%

I don't have any of these 

symptoms.

I find it harder to relax because of 

the tinnitus.

I have strong worries because of 

the tinnitus.

Because of the tinnitus I am more 

irritable with my family, friends 

and colleagues.

Because of the tinnitus I am more 

sensitive to environmental noises.

Because of the tinnitus it is 

difficult to concentrate.

Because of the tinnitus it is 

difficult to follow a conversation, 

a piece of music or a film.

Because of the tinnitus it is hard 

for me to get to sleep.

I am feeling depressed because of 

the tinnitus.

Table 3.10: Distribution of the worst symptom for each country and season. We only
considered countries with more than 300 questionnaires from more than 30 users. Each
column adds up to 100 %. n denotes the number of users from this country.

■ Furthermore, for RQ32, we also found season-specific differences for the momentary
tinnitus. If we do not group the data by country, momentary tinnitus is most likely
to occur in the summer. This is in contrast to the results of [208]. When we group
our data by country, an ambiguous picture emerges between countries for the most
likely season for tinnitus.

■ Regarding RQ33, we found that the momentary tinnitus does vary within the year
and within one country. We also found that this momentary tinnitus variance within
one country is different to other countries, i.e., if we compare Great Britain with
the US.
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might lead to a selection bias. Third, although our research results indicate different
seasonal trends for the momentary tinnitus for different countries, there may be indi-
viduals who perceive tinnitus seasonally quite differently, possibly even completely
in the opposite direction. This means that these findings are not applicable to individuals.

For the worst tinnitus symptom per country and season, comparability between countries
and seasons may also be biased by the selection due to the low number of users per
category. For Switzerland, for example, we would expect 3.17 individuals per symptom
per season (i.e., 2.8 % per line), if symptoms and seasons were equally distributed. In this
respect, it is surprising for Switzerland, for example, that relaxation is more difficult in
summer (7.89 %) than in winter (3.51 %). The situation is different with Germany. Here,
we have a large number of users of 1,310 and would expect 36.4 individuals per category,
if the symptoms were equally distributed among all seasons. This argument is supported
by the fact that the variance in Germany is lower than in Switzerland. Nevertheless, we
can observe for Germany that relaxation is more difficult for spring and autumn (about 5
% ) than for summer or winter (about 3 %).

The accuracy depends on which level we split: Assessment level vs user level. By
stratifying at the assessment level (i.e., on the level of filled out questionnaires), one can
ensure that the distribution of the target between test and training data remains the same.
The specific problem at hand is that several users have filled out different numbers of
assessments. There are many users with only one or two assessments, and a few users
with several hundred or thousand assessments (so-called power users), as you can see in
Fig. 3.14. These power users are highly likely to be present in the training, validation,
and testing data. Any model is therefore predestined to an overfitting on these power
users. One can address this problem by excluding users that are in the training set from
the test set and vice versa. We then no longer evaluate at the assessment level, but at the
user level. However, the accuracy in the test set then drops from 94 % to around 50-60
%, depending on different test sets with different power users. That is, the model can
hardly predict assessments from users it has never seen before and should be considered
for practical implications.
There are features that are user-dependent and therefore reduce the number of learnable
parameters in the model when splitting the data at user level. These include, for example,
country, gender, age, and season. If by chance there are only German users in the training
data, but English users in the test data, then the feature country has no more variance
and therefore no prediction power for the model. As another example, if a male user
who is 43 years old reports the momentary tinnitus as "Yes", several hundred times, then
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the model learns that 43 year old males always have tinnitus. However, this would
have nothing to do with the dynamic assessments and therefore contradicts the idea of
Ecological Momentary Assessments. This would partially explain the drop in accuracy
between the training and test sets. We therefore took a subset of the features that we
know retain their variance, even when split at the user level. These features are mood,
arousal, stress and concentration. If we now split at the assessment level, i.e., allow the same
users in the training and test data, we get an accuracy of 84 % in the test set, which is
significantly better than guessing. If we now additionally split on user level, the accuracy
drops again to 50-60 %, which suggests an overfitting of the training users. Thus, the
model cannot predict assessments of users that it has not yet seen, or to put it in another
way: The completion behavior of the individual user varies so much between the users
that one can hardly conclude from user A to user B.

The bias in the selection of users remains: A user who has completed many assessments is
represented in both the train and test data, which raises doubts about the generalizability
of the model, since one may have trained a user-specific model. On the other hand, if
one tries to stratify for users, the distribution of the target, and demographic data, no
more data remain and one would have to collect a large amount of more data, which is
expensive and time consuming. Any stratification technique eventually creates a bias.
We decided for the user bias to be able to stratify correctly for the target. This also
allowed us to use more data to train our models. The generalizability of the model to
users from a different population is not known. However, it is known that the model can
make predictions at the assessment level for users who come from a known population.
This is shown by the high accuracy of the test set at the assessment level. In current
investigations, we evaluate these differences more in-depth.

Feature Importance High cardinality features such as age and the daily questions are
assigned with a higher importance as these features can be easily split up into multiple,
potentially pure subsets. For binary features, the tree classifier can only split up the
data once. However, for features with high cardinality, the tree can potentially split up
the data n_unique - 1 times. Feature importance does not establish causality between
input variables and target. It is rather an estimator of which variable has the greatest
predictive power for the Gradient Boosting Machine. Any other classifier, such as a
neural network, would potentially produce a different ranking for feature importance.
Among the percentages, the 93.3 % permutation importance for age in the regressor
model is prominent. The 93.3 % induces that the model loses almost all its predictive
power without the age feature. However, since the model was trained and evaluated with
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Figure 3.14: Number of users by range of filled out questionnaires. If we take only users
that filled out one single assessment, we also automatically split on a user level. That
means, the model predicts only on users it has never seen before. However, if we include
users that have filled out the questionnaire more than 10 times, the likelihood that users
are represented in both the train and test set is very high.

the mean absolute error, this percentage value cannot be easily transferred to the mean
absolute error but is only an indicator for the importance for the model.

The temperature dataset Although the more than 300 different sources of the individual
figures are very well referenced within Wikipedia, there could be noise in the data
because, for one thing, only a few cities in a country are a limited representation of
the temperature across the country. Second, noise may occur because the temperatures
come from different years, some of which were also recorded before the EMA data were
collected. Nevertheless, we believe in the reliability of the temperature data because
temperatures hardly change significantly within a decade in a country.

Worst Season for Tinnitus We define one season as worse than another if the proba-
bility of the momentary tinnitus is higher on average. This question cannot be answered
unambiguously and conclusively. Related work on tinnitus and seasonality does suggest
winter as the worst season [208; 210; 211]. However, 41.8 % of individuals (n = 100)
report perceiving summer as the second worst season, which argues against the theory of
seasonal affective disorders [75]. In the study, which aggregated tinnitus search requests
from online platforms by season and country, the winter was also highlighted as a more
frequent season. In the study, which aggregated tinnitus search requests from online plat-
forms by season and country, the winter was also highlighted as a more frequent season
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[208]. However, the results are different, even for countries with similar longitudes. For
example, this is the case for Sweden and the United Kingdom. The noise in the results
could be due to confounders, or the mentioned selection bias.

Outlook In future work, we are heading into two research directions. At first, we plan
to compare the results of TYT to other data sources that have similar characteristics.
Second, a more in-depth inspection of the user- and assessment perspective of TYT in
particular will be considered.

3.2.5 | Data availability
According to the GDPR, the data to replicate these results are available upon request to
the corresponding author. Any code to replicate the results, numbers, figures, and tables
is publicly available on github.com/joa24jm/tinnitus-country.

Supplementary Information
The Python code to replicate the Machine Learning classifiers, figures and tables is
available on github.com/joa24jm/tinnitus-country.
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Abstract
At the beginning of the COVID-19 pandemic, with a lack of knowledge about the
novel virus and a lack of widely available tests, getting first feedback about being
infected was not easy. To support all citizens in this respect, we developed the mobile
health app Corona Check. Based on a self-reported questionnaire about symptoms
and contact history, users get first feedback about a possible corona infection and
advice on what to do. We developed Corona Check based on our existing software
framework and released the app on Google Play and the Apple App Store on April 4,
2020. Until October 30, 2021, we collected 51,323 assessments from 35,118 users with
explicit agreement of the users that their anonymized data may be used for research
purposes. For 70.6% of the assessments, the users additionally shared their coarse
geolocation with us. To the best of our knowledge, we are the first to report about
such a large-scale study in this context of COVID-19 mHealth systems. Although
users from some countries reported more symptoms on average than users from
other countries, we did not find any statistically significant differences between
symptom distributions (regarding country, age, and sex). Overall, the Corona Check
app provided easily accessible information on corona symptoms and showed the
potential to help overburdened corona telephone hotlines, especially during the
beginning of the pandemic. Corona Check thus was able to support fighting the
spread of the novel coronavirus. mHealth apps further prove to be valuable tools for
longitudinal health data collection.

3.3.1 | Introduction
At the beginning of the COVID-19 pandemic, there was a lot of uncertainty about the
novel coronavirus SARS-CoV-2 and knowledge about it was sparse. Quickly, healthcare
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systems were overstrained, and telephone hotlines overburdened. There was a huge
demand for getting a quick first assessment about the probability of being infected and
support in case of a possible infection.

We designed and developed an mHealth (mobile health) app called Corona Check that
allows users to answer a questionnaire to get a first assessment about their symptoms/si-
tuation with regards to being infected with SARS-CoV-2. We released Corona Check on
April 4, 2020, on Google Play and the Apple App Store. As of October 30, 2021, there
were almost 90 thousand assessments from more than 50 thousand users. While similar
systems have been proposed before [216; 217; 218], to the best of our knowledge, we are
the first to report about a large-scale deployment.

The first main benefit of our system was that it gave users immediate individualized
feedback and behavioral recommendations based on their symptoms and contact history.
Moreover, the users received general hygiene behavior tips. The system thus alleviated
pressure from, e.g., telephone hotlines. The second main benefit of Corona Check was
that, with the consent of the users, we were able to collect age- and sex-specific data for
research about the occurrence and regional spread of corona symptoms.

Our main contribution is the introduction of our system Corona Check, highlighting
how a quickly developed mHealth system aimed at the average user can support vast
amounts of users in the beginning as well as during the COVID-19 pandemic. In section
3.3.2, we give an overview about related work. In section 3.3.3, we present the technical
details of Corona Check, including the user perspective as well as the system architecture
and special requirements for apps in the medical field. Section 3.3.4 presents an overview
of the data collected so far and age- and sex-specific results. In section 3.3.5, we discuss
the limitations of our system. In section 3.3.6, we discuss our results, draw conclusions,
and point out future work.

3.3.2 | Related Work
Information technology and methods from computer science have been used from the
very beginning of the COVID-19 pandemic in a variety of ways and for a variety of
purposes. With vast amounts of data being quickly available, artificial intelligence and
especially machine learning is often applied in COVID-19-related research. In their
survey paper, Khan et al. distinguish between diagnosis, screening, prediction of COVID-
19, and drug research [219]. Research related to COVID-19 that is employing machine
learning, for example, is about analyzing x-ray images [220; 221; 222; 223; 224; 225]
and cough sounds [226; 227], or about making predictions about the spread of the
virus [228; 229; 230]. What the mentioned research has in common is that the users of
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these systems were doctors, epidemiologists, researchers etc. – but not laypersons from
the general public.

In contact tracing apps, the average user interacts with a system related to COVID-19.
After Alice has been in close physical proximity with someone called Bob who later tested
positive for SARS-CoV-2, typically measured by Bluetooth signal strength of smartphones
nearby, she can receive a notification and get herself tested. Software system architectures,
privacy concerns, and public perception of contact tracing apps have been discussed
extensively [231; 232; 233; 234].

Another related category of apps is that of symptom tracking. Menni et al. reported
about an app that tracks potential symptoms [235]. A fraction of the app users has
undergone a COVID-test, revealing that loss of smell and taste was higher in those who
tested positive. Klaser et al. [236] used the same app for tracking levels of anxiety and
depression in the UK, finding small associations between SARS-CoV-2 infection and
anxiety and depressive symptoms. An updated version of the app was used to track
symptoms of infected people to compare symptoms between the delta and omicron
variants of SARS-CoV-2 [237].

Much less attention was spent on mHealth or expert systems that regular users can use in
order to get a first feedback based on their own symptoms. Especially in the early phases
of the pandemic, there was a high level of uncertainty in the population about how to
behave if there was a suspicion of infection. At this stage, expert recommendations were
offered by telephone hotlines from the public health system. These recommendations
were primarily based on symptoms, contact history and travel history, as laboratory tests
were not yet widely available.

An app-based expert system which provides individualized recommendations based
on symptoms, contact and travel history has many advantages: It can provide impor-
tant individualized information in an efficient way, can be easily updated in the rapid
changing situation (e.g., the emergence of new high-risk areas) and scales easily. By
providing easy access to an accurate and up-to-date individualized recommendation, an
app-based expert system can importantly contribute to inform the population how to
best behave in order to protect themselves and others, which is an essential aspect in
the early management of the pandemic. Moreover, the app-based expert system has the
potential to relieve pressure of overloaded telephone hotlines or overwhelmed experts.

At the very beginning of the pandemic (publication in March and April 2020), two
papers were published sketching the idea of mHealth expert systems for the diagnosis
of infections with the novel coronavirus [216; 217]. Both papers present PC software
prototypes based on the idea of having a rule-based system and checklists of symptoms
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that the user fills out. There are no reports of deployment nor detailed evaluations of the
developed prototypes.
Hakim et al. also developed an Android expert system for diagnosing COVID-19 based
on a rule-based system [238]. The input is a questionnaire about symptoms and travel
and contact history. The authors reported about a small user study with 12 participants.
Banjar et al. reported about the development of a prototype of a COVID-19 diagnosis and
management expert system [239]. The target audience are doctors in Saudi Arabia. The
expert system handles the patients’ data, their Electronic Health Records (EHRs), and
processes current COVID-19 guidelines in order to classify the patients by their medical
condition.
Mufid et al. developed an Android app that consists of an expert system for early
detection of having COVID-19 and an information module that displays current news
about the spread of the virus [240]. The app was tailored specifically for Indonesia. The
expert system is based on a 16-item questionnaire about symptoms and contact with
infected people. The system returns a risk status from "very low", over "medium", to
"high risk". The authors reported about a usability study with several participants (exact
sample size not specified).
A related field to expert systems is chatbots. Battineni et al. developed a chatbot asking
the user about symptoms and refer the user to a doctor if a certain threshold is met
with the answers. In their evaluation, the authors compared their approach to other
existing chatbots. Erazo et al. developed a web-based chatbot to alleviate the pressure on
the health care system [218]. A small-scale user study (exact sample size not specified)
showed that the users found the system useful. Almalki et al. cover more about chatbots
related to the COVID-19 pandemic in their survey paper [241].
There are some works on using wearables or other small devices for trying to detect SARS-
CoV-2 infections. Mukhtar et al. developed a device based on Arduino hardware that
measures heartbeat, cough severity, temperature, and blood oxygen level for detecting
COVID-19 [242]. In contrast to questionnaire-based solutions that the average user can
perform on his/her smartphone, this solution is rather targeted at use in hospitals or to
monitor patients at home. Astriani et al. presented a smart mirror measuring heart rate
and temperature in order to warn about possible infections [243].
There is some work that proposed designs, frameworks, or methodologies for systems
that detect an infection with the novel coronavirus. Skibinska et al. proposed a methodol-
ogy for early-stage detection of COVID-19 based on data from wearables [244]. Maghded
et al. proposed a design for a framework that uses the smartphone’s sensors to detect
an infection with the coronavirus [245]. They proposed using a variety of sensors from
the smartphone, including, e.g., measuring the temperature or taking photos of CT scan
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images of the lung. Belkacem et al. proposed a hypothetical end-to-end-pipeline for
detecting different respiratory infections [246]. What these approaches have in com-
mon is that they all rely on study results and/or machine learning models that contain
knowledge about SARS-CoV-2 infections gained during the ongoing pandemic. Similarly,
Li et al. developed a mobile system capable of analyzing x-ray images of COVID-19
patients [247]. Imran et al. developed an app that records coughing sounds, analyzes
them in the cloud, and returns a preliminary diagnosis of COVID-19 [248].
Overall, COVID-19 related research is being conducted in many directions. The amount
of related work specifically in the domain of mobile mHealth systems or expert systems
is sparse. What the existing related work in the domain has in common is that a lot of the
work was preliminary. To the best of our knowledge, we are the first to report about a
large-scale deployment of a mobile system in this context.

3.3.3 | Technical Details
In this section, we present the technical details of Corona Check. Corona Check is based
on the TrackYourHealth platform and API [249; 250; 251; 252]. The TrackYourHealth
platform proved as a valuable base for several other questionnaire-based health-related
apps [253; 254]. The backend is based on PHP and serves to native mobile apps for
Android and iOS. For technical details of TrackYourHealth, please refer to the cited
papers. In this work, we highlight the parts that are specific to Corona Check. In
section 3.3.3.1, we show Corona Check from the user perspective, while in section 3.3.3.2,
we detail the core functionality of Corona Check and the feedback system that gives
the user immediate feedback after filling out the COVID-19 evaluation questionnaire.
Section 3.3.3.3 describes the tips module of Corona Check, which provides the user
with additional information about the ongoing pandemic. In section 3.3.3.4, we give an
overview of the data we collected, and in section 3.3.3.5, we briefly highlight the specific
requirements that were necessary for publishing an app related to the coronavirus.

3.3.3.1 | User Perspective
Corona Check was released on Google Play and the Apple App Store in German and
English on April 4, 2020. Figure 3.15 shows the general user journey when using the
app. (1) The user can start a questionnaire that is filled out for himself/herself or another
person. This is shown in Fig. 3.15 on the top left. (2) After starting the questionnaire,
the next screen will ask for additional information, for example, as shown in the figure,
information about travels. (3) Next, the questionnaire screen is shown where the user
answers COVID-19-specific questions and demographic questions. If the user agrees, a
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# Question Answer Options

1 Which symptoms have you had in the last 24
hours? (if you had no symptoms, please continue
with fthe next question)

"fever (at least 37.5C or 99.5F)",
"cough",
"shortness of breath",
"sore throat",
"stuffy or runny nose (not allergic)",
"disturbed sense of smell",
"disturbed sense of taste",
"headache",
"muscle or joint pain",
"general weakness"

2 Did you have close contact* with a confirmed
corona case in the last 14 days before the onset
of symptoms OR If none of the above symptoms
are present: Have you had close contact* with a
confirmed corona case in the last 14 days (as of
today)?
*Close contact with a confirmed corona virus case
is defined as: contact at a distance of less than 2
meters for a total of 15 minutes or more e.g., dur-
ing a conversation, or if the person lives in the
same household or by direct contact with body
fluids of this person (e.g., by coughing, sneezing,
kissing, contact with vomit, mouth-to-mouth res-
piration).

"Yes",
"No"

3 Age "0-9 years",
"10-19 years",
"20-29 years",
"30-39 years",
"40-49 years",
"50-59 years",
"60-69 years",
"70-79 years",
"80 years and older"

4 Sex "female",
"male",
"diverse",
"no comment"

5 How many years did you go to school (or how
many years do you intend to go to school)?

"9 years or less",
"10 to 11 years",
"12 years or longer",
"no comment"

6 For whom are you filling out the questionnaire? "for myself",
"for another person",
"no comment"

7 May we use your data for research purposes? "Yes",
"No"

Table 3.11: Questions and answer options in Corona Check.
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knowledge at the time. Diarrhea was an additional symptom option to choose during
the first two months Corona Check was online. Questions 3, 4, and 5 on age, sex, and
education served two purposes for future studies with the Corona Check data. Firstly,
these variables can be used to check how representative the Corona Check user group is
of a general population. Secondly, we can analyze COVID-19 while controlling for these
variables. Educational level was used as a proxy for social status, which has been shown
to influence health [255].

The feedback and tips were developed in accordance with the recommendations by the
German federal agency for disease control and prevention (RKI, Robert Koch Institute).
Overall, there are four possible outcomes bound to the current symptoms and the
past contact with infected persons (note that Corona Check was released prior to the
availability of vaccinations): (a) no symptoms and no contact, (b) no symptoms and at
least one contact, (c) at least one symptom and no contact, (d) at least one symptom
and at least one contact (also see Fig. 3.15). The color-coding of the results immediately
indicates the level of concern. Each result gives a detailed answer about the situation with
advice for the next steps. The feedback algorithm lies at the core of the Corona Check
expert system. It fulfills the role that typically humans fulfill at the end of a telephone
hotline. Corona Check asked the questions that the human operator would and gives the
advice that the person would.

3.3.3.3 | Corona Tips
Corona Check users were provided with 30 different tips1 on how to safely deal with the
pandemic. The 30 tips have been developed by our medical and public health experts.
For example, they explain the importance of proper hand washing or complying with
contact restrictions. Besides explaining the importance, the tips also contain practical
advice for concrete behavior. The tips were displayed unrelated to symptoms entered by
the user. All tips were displayed for all users.

3.3.3.4 | Database
The user-generated as well as the operational data of the server application are stored and
managed in a relational database, since data integrity and consistency mechanisms (e.g.,
constraints and ACID transactions) are integrated and well-tested. Moreover, it is easier
to create and maintain highly interrelated data models with this type of database system.
In addition, relational databases provide a sophisticated query language suitable for

1Note that in the results section, section 3.3.4, all tips are listed in the context of their evaluation.
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cal or psychological questionnaires meeting requirements for a variety of studies. The
submitted answers for a questionnaire are serialized and stored in JSON in the entity
Answer Sheets (n = 86,912). The entity also stores sensor data (e.g., location) and client
device information (e.g., operating system) in the same table.
In addition, Corona Check provides tips (see section 3.3.3.3). Tips can also be managed
and stored in different languages. A like feature allows users to rate the provided Corona
tips. Tips were rated by 970 unique users. In order to give the user feedback immediately
after submission of a questionnaire, such a questionnaire may reference to one or more
key-rule pairs that are stored in the entity Feedback. Rules, evaluated on the client side,
can be managed and adjusted dynamically.

3.3.3.5 | Medical Device Regulation
Recently, the requirements specifically for mHealth-related (mobile health) apps have
been increasing. When we released Corona Check, we had to comply with the medical
device regulation (MDR). With the MDR, strict rules have to be met regarding the
validation and documentation of each software module. Especially in situations like the
beginning of the coronavirus pandemic, when software solutions were required in as
short a time as possible, such requirements can pose a risk for timely app releases. For
more details refer to our publications related to the topic [252; 253; 260]. We were among
the few apps that adhered to the MDR in the beginning of the COVID-19 pandemic
with our mHealth system Corona Check. On top of the medical device regulation, the
app stores of Google and Apple were especially cautious about allowing apps related to
COVID-19 into their stores, likely to prevent allowing malicious apps. Overall, when
releasing Corona Check, complying with all necessary regulations took time before the
app could be found by the average user. Additionally, to all the regulations mentioned
above, this study was approved by the ethics committee of the University of Würzburg
with ethical approval no. 71/20-me on April 4, 2020.

3.3.4 | Results
To show that our mHealth system is a feasible solution that is able to reveal meaningful
results, we present selected results using descriptive statistics. Therefore, we analyzed
the users’ self-reported data. Overall, at the time of data extraction, from all 145,223
users in the database, 52,267 (36%) filled out at least one assessment. From those 52,267
users, there were 86,912 assessments. To obtain the final dataset, we filtered the data
set twice. First, we removed all assessments without a research release. Users could
explicitly state if they agree to their data being used for research purposes (see question
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Table 3.13: Age by sex and symptoms. Each line adds up to 100%. An ANOVA test did
not reveal any differences between the symptom distributions per group.

Age Sex n Fever
Sore

throat

Runny

nose
Cough

Loss

smell

Loss

taste

Shortness

breath
Headache

Muscle

pain
Diarrhea

General

weakness

female 1119 14.9% 9.4% 13.1% 14.6% 6.4% 5.7% 7.2% 11.0% 8.0% 0.4% 9.1%

male 1610 16.1% 9.2% 12.9% 14.8% 6.2% 6.3% 7.8% 9.7% 8.2% 0.4% 8.3%

diverse 109 15.6% 9.2% 10.1% 10.1% 10.1% 8.3% 11.0% 9.2% 8.3% 0.9% 7.3%

no answer 152 14.5% 7.9% 9.2% 13.2% 7.2% 6.6% 7.9% 11.8% 9.9% 2.0% 9.9%

all 2990 15.6% 9.2% 12.7% 14.5% 6.5% 6.2% 7.7% 10.3% 8.2% 0.5% 8.6%

female 9038 9.3% 10.3% 11.6% 13.6% 5.9% 5.1% 7.4% 16.1% 9.1% 0.3% 11.5%

male 15421 12.4% 9.2% 10.1% 14.5% 6.6% 5.9% 8.0% 12.6% 9.2% 0.2% 11.3%

diverse 136 8.1% 11.8% 8.1% 14.0% 8.1% 7.4% 9.6% 13.2% 10.3% 0.0% 9.6%

no answer 430 13.3% 8.6% 10.0% 14.9% 7.7% 6.5% 9.3% 11.6% 8.8% 0.0% 9.3%

all 25025 11.3% 9.6% 10.6% 14.2% 6.4% 5.6% 7.8% 13.9% 9.1% 0.2% 11.3%

female 10520 9.2% 10.4% 10.2% 12.6% 6.3% 6.2% 7.0% 15.9% 10.1% 0.3% 11.9%

male 21658 13.7% 9.0% 9.2% 12.1% 7.3% 7.0% 7.9% 11.6% 9.8% 0.2% 12.2%

diverse 161 12.4% 11.8% 8.1% 11.2% 6.8% 7.5% 8.7% 11.2% 9.3% 1.2% 11.8%

no answer 386 14.2% 9.6% 9.6% 10.9% 8.5% 7.8% 9.3% 9.8% 9.3% 0.0% 10.9%

all 32725 12.3% 9.4% 9.5% 12.3% 7.0% 6.7% 7.6% 13.0% 9.9% 0.2% 12.1%

female 7571 8.0% 11.2% 11.1% 12.5% 5.2% 5.5% 6.9% 15.9% 11.5% 0.4% 11.8%

male 13005 11.3% 9.6% 9.1% 12.9% 6.8% 6.5% 7.5% 12.4% 11.4% 0.4% 12.3%

diverse 66 15.2% 10.6% 9.1% 9.1% 9.1% 7.6% 7.6% 12.1% 9.1% 0.0% 10.6%

no answer 186 16.1% 9.7% 10.2% 11.3% 7.5% 7.0% 8.6% 9.7% 8.1% 0.0% 11.8%

all 20828 10.2% 10.2% 9.9% 12.7% 6.2% 6.1% 7.3% 13.6% 11.4% 0.4% 12.1%

female 4217 7.8% 10.4% 10.3% 12.7% 4.5% 4.7% 6.4% 17.1% 12.7% 0.4% 13.0%

male 6439 10.4% 9.4% 9.7% 13.9% 5.2% 5.2% 7.4% 13.4% 11.4% 0.5% 13.5%

diverse 97 13.4% 11.3% 9.3% 12.4% 8.2% 8.2% 8.2% 11.3% 9.3% 0.0% 8.2%

no answer 96 9.4% 9.4% 8.3% 11.5% 9.4% 10.4% 8.3% 10.4% 8.3% 0.0% 14.6%

all 10849 9.4% 9.8% 9.9% 13.4% 5.0% 5.1% 7.0% 14.8% 11.9% 0.4% 13.3%

female 2378 6.5% 10.4% 11.3% 13.8% 3.7% 4.5% 7.5% 15.8% 13.4% 0.6% 12.6%

male 3265 7.8% 8.5% 11.0% 15.1% 3.4% 3.7% 8.3% 12.4% 14.3% 0.9% 14.6%

diverse 54 13.0% 9.3% 9.3% 11.1% 9.3% 7.4% 9.3% 13.0% 9.3% 1.9% 7.4%

no answer 18 33.3% 16.7% 5.6% 5.6% 0.0% 0.0% 5.6% 11.1% 5.6% 0.0% 16.7%

all 5715 7.4% 9.4% 11.1% 14.5% 3.6% 4.0% 8.0% 13.8% 13.8% 0.8% 13.7%

female 1300 5.9% 6.7% 7.4% 12.8% 2.5% 3.3% 6.9% 23.2% 21.2% 0.5% 9.5%

male 1708 7.4% 7.0% 11.8% 15.0% 4.0% 3.6% 10.0% 11.1% 15.2% 1.1% 13.8%

diverse 55 12.7% 10.9% 9.1% 12.7% 9.1% 9.1% 10.9% 9.1% 9.1% 0.0% 7.3%

no answer 40 10.0% 10.0% 15.0% 5.0% 7.5% 7.5% 7.5% 10.0% 17.5% 0.0% 10.0%

all 3103 6.9% 7.0% 9.9% 13.9% 3.5% 3.6% 8.7% 16.1% 17.6% 0.8% 11.9%

female 348 9.2% 8.0% 10.1% 12.9% 3.4% 4.0% 12.1% 11.8% 15.2% 0.3% 12.9%

male 1445 6.9% 6.4% 12.3% 12.4% 10.6% 10.2% 9.1% 8.6% 12.5% 0.7% 10.4%

diverse 50 12.0% 8.0% 10.0% 8.0% 10.0% 10.0% 8.0% 12.0% 10.0% 0.0% 12.0%

no answer 22 13.6% 9.1% 9.1% 13.6% 4.5% 4.5% 13.6% 13.6% 13.6% 0.0% 4.5%

all 1865 7.5% 6.8% 11.8% 12.4% 9.2% 9.0% 9.7% 9.3% 13.0% 0.6% 10.8%

female 411 13.1% 8.8% 8.8% 11.2% 8.5% 9.2% 10.0% 9.2% 11.2% 0.7% 9.2%

male 1178 12.8% 8.8% 9.9% 10.5% 8.7% 8.2% 9.9% 9.8% 10.1% 1.1% 10.0%

diverse 185 12.4% 8.6% 9.2% 10.3% 9.2% 10.3% 10.8% 9.7% 9.2% 0.5% 9.7%

no answer 384 12.8% 9.9% 9.1% 9.9% 9.4% 9.1% 9.6% 9.6% 10.2% 0.8% 9.6%

all 2158 12.8% 9.0% 9.5% 10.5% 8.9% 8.8% 10.0% 9.6% 10.2% 0.9% 9.8%
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at 0.38 per assessment. Users from Uganda reported the most symptoms at 4.03 per
assessment. The average number of reported symptoms per assessment per country is
shown in Table 3.14. Although the completion of the questionnaire differed between
countries, the distributions of symptoms seemed to be rather similar.

Corona Check overall contains 31 general tips on hygiene, see section 3.3.3.3. A total of
3,538 ratings were submitted with an average rating of 3.7 out of 5 stars (SD = 1.67). The
top-rated tips were (in descending order): (i) protecting wounds, (ii) how to behave in
daily life, (iii) when to wash hands, (iv) masks that cover the nose and mouth, and (v)
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Country Ø* fever sorethroat runnynose cough losssmell losstaste shortnessbreath headace musclepain diarrhea generalweakness

Arab Emirates 2.63 12.9% 9.7% 10.2% 13.1% 7.1% 6.8% 8.1% 12.8% 8.7% 0.8% 9.7%

Austria 1.57 5.6% 8.3% 16.7% 10.2% 6.5% 0.9% 7.4% 22.2% 10.2% 0.9% 11.1%

Bangladesh 3.15 16.5% 7.9% 7.9% 11.5% 6.6% 6.5% 8.1% 10.8% 11.0% 0.5% 12.6%

Belgium 1.28 1.3% 16.9% 14.3% 19.5% 1.3% 2.6% 11.7% 10.4% 6.5% 5.2% 10.4%

Canada 0.45 5.3% 10.5% 15.8% 10.5% 7.0% 5.3% 5.3% 12.3% 19.3% 5.3% 3.5%

Switzerland 1.32 5.3% 12.0% 17.3% 13.3% 2.7% 2.7% 6.7% 15.3% 8.0% 0.7% 16.0%

Germany 1.27 4.5% 10.7% 13.7% 14.5% 3.7% 3.6% 7.6% 16.2% 12.5% 1.0% 11.9%

Egypt 4.01 7.7% 11.4% 10.6% 11.0% 6.6% 7.0% 7.0% 16.1% 10.6% 0.4% 11.7%

Ethiopia 2.86 15.3% 7.5% 8.3% 12.0% 8.2% 7.9% 8.8% 10.8% 9.9% 0.4% 11.0%

France 0.38 5.2% 7.8% 15.6% 18.2% 1.3% 2.6% 10.4% 14.3% 18.2% 1.3% 5.2%

United Kingdom 1.53 11.0% 12.6% 11.5% 19.2% 6.0% 6.6% 5.5% 10.4% 7.7% 0.0% 9.3%

Ghana 2.74 9.8% 8.6% 10.8% 13.5% 5.9% 4.9% 6.4% 19.1% 9.3% 0.2% 11.5%

India 2.81 14.1% 8.3% 8.1% 12.7% 7.3% 7.1% 7.9% 11.3% 9.9% 0.1% 13.1%

Kenya 2.83 9.1% 8.1% 9.6% 11.2% 7.5% 8.3% 6.8% 17.1% 13.0% 0.5% 8.8%

Sri Lanka 3.43 11.9% 9.2% 6.9% 11.9% 7.2% 7.2% 10.6% 14.7% 11.1% 0.8% 8.3%

Malaysia 3.31 15.1% 7.3% 8.6% 11.6% 7.8% 7.8% 8.2% 10.3% 12.1% 0.4% 10.8%

Nigeria 2.22 8.9% 12.2% 6.5% 11.4% 8.1% 6.9% 4.5% 16.3% 12.6% 0.0% 12.6%

Netherlands 1.39 8.0% 13.0% 12.2% 15.9% 4.2% 3.6% 8.7% 16.1% 8.9% 2.4% 7.1%

Nepal 3.31 12.9% 8.4% 8.7% 10.8% 6.8% 6.4% 8.2% 13.5% 10.2% 0.5% 13.5%

Oman 2.97 14.2% 9.0% 8.4% 11.6% 6.7% 7.8% 8.7% 11.6% 11.3% 0.3% 10.2%

Philippines 2.31 5.8% 8.2% 9.9% 16.4% 8.8% 7.6% 9.4% 14.6% 12.9% 0.6% 5.8%

Pakistan 3.72 12.4% 9.2% 8.8% 11.9% 6.7% 6.9% 8.8% 10.9% 10.4% 0.3% 13.6%

Qatar 1.93 14.5% 10.0% 6.4% 7.3% 6.4% 6.4% 10.0% 14.5% 11.8% 3.6% 9.1%

Saudi Arabia 2.96 18.2% 7.5% 9.1% 10.4% 7.4% 7.2% 7.4% 11.0% 10.8% 1.0% 10.2%

Uganda 4.03 11.6% 10.5% 9.9% 13.9% 7.8% 5.4% 7.8% 12.6% 8.8% 0.0% 11.6%

USA 1.17 7.7% 11.6% 11.1% 14.3% 4.6% 4.8% 8.8% 14.8% 11.6% 0.0% 10.8%

South Africa 1.60 8.6% 10.6% 10.9% 14.1% 6.6% 6.3% 6.3% 16.5% 10.7% 0.0% 9.4%

Zambia 2.84 9.8% 8.8% 9.3% 14.5% 8.3% 5.2% 7.8% 14.0% 10.4% 0.5% 11.4%

Table 3.14: Distribution of reported symptoms of assessments stratified by country. The
analysis is only applied to countries represented by at least 51 users. *Average number
of reported symptoms per assessment.

handling surfaces and objects. The following tips received the lowest ratings: (i) How
to cover sneezing or coughing, (ii) tissues, (iii) smear infection, (iv) shaking hands and
hugging, and (v) traveling. An overview of all tips and the distribution of their ratings
is given in Fig. 3.19. We further analyzed who rated the tips. Table 3.15 shows the age
distribution for all users compared to those who rated at least one of the tips. We found
that older users rated more often than younger users. While the most common age group
for all users was 20-29 years, the one for users who rated the tips was 60-69. Table 3.16
shows the location distribution of all users compared to those who rated the tips. The

Age
Users

who rated
All users

00-09 2.1% 2.2%

10-19 10.7% 20.6%

20-29 8.6% 25.8%

30-39 8.8% 17.9%

40-49 13.0% 11.6%

50-59 13.4% 8.5%

60-69 26.6% 7.4%

70-79 14.3% 4.5%

80+ 2.5% 1.7%

Table 3.15: Age distributions of users that rated compared to all users.
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3.3.5 | Limitations
Several limitations of Corona Check have been revealed during its practical use. We
quickly encountered the need to adapt the questionnaire and its feedback texts in frequent
cycles as an important feature due to changing recommendations and new findings
regarding COVID-19-related symptoms. However, providing a robust mechanism that
does not confuse or distract users with respect to different questionnaire versions and
frequent changing feedback texts is important, but not simple. As any change to the app
must be considered in the context of the medical device regulation (and time matters
during COVID-19), we decided to show only the most recent version of the questionnaire
as well as the most recent feedback texts, which mitigated measures for the medical device
regulation and saved us time. Although we had not complaints about our approach,
possibly, a more fine-grained approach might fit the users’ needs and the phases of the
pandemic better.

In addition to the provided questionnaire, we quickly saw the need to display further
information in a smart way when filling out the questionnaire. For example, by the
time certain regions have been declared risk regions, it was important to update this
information as well as letting travelers know about possible consequences when traveling
to or returning from these regions. However, the provision of the information was
necessary in a way that the existing questionnaire-procedure can be distinguished from
this new information.

Another limitation that we encountered was that for users who filled out questionnaires
multiple times, it had to be checked, whether all completed questionnaires can be used
for evaluation or if the users just wanted to ’play’ with all the combinations of filling out
the questionnaire to see what feedback is possible. The gambling behavior, in turn, might
affect the validity of the data. Corona Check was provided in German or English. More
languages could increase its use in more countries and multilingual societies and thus
increase the number of filled-out questionnaires. This may be helpful for better insights
into the development of the pandemic in a rather short period of time.

3.3.6 | Discussion
To the best of our knowledge, we are the first to report about a large-scale deployment of
a mHealth system for assessing potential COVID-19 symptoms. Corona Check provided
specific symptom-related advice as well as general tips for behavior and hygiene. We
highlighted the technical details of Corona Check and analyzed the collected data.
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First of all, we note that Corona Check was not as widely known as some contact tracing
apps, which received adoptions rates as high as 50% of the population (Germany) [233].
We did not advertise extensively for Corona Check, and self-assessment apps did not
receive as much media coverage as contact tracing apps.
We found that only 36% of the users filled out at least one assessment. Out of these,
80% only filled out one. There could be several reasons for this. Maybe the news and
tips sufficed for many users’ purposes. Maybe users just wanted to see what the app
does and then decided to not use it or to use it only once. Overall, we found that more
younger users used our app (see Table 3.12); most users are below 40 years of age. This
is in line with the idea that younger users tend to be more tech-savvy and more likely
to use an app instead of calling a hotline. For 65.2% of all Corona Check assessments,
the users agreed to their data being used for research purposes. In the final dataset,
we had geolocation information for 70.6% of the assessments. Thus, in line with some
of our previous studies, we found that most users are willing to share their data with
researchers [262].
We did not observe that the number of new confirmed cases influenced the number of
Corona Check assessments (see Figure 3.17). Likely, the two peaks in Corona Check
assessments in June 2020 and September 2020 are due to some news or social media
posts creating a brief period of increased public interest in Corona Check. A broader
active advertisement of mHealth systems like Corona Check might create a larger user
base. Then, we would expect to see some correlation between in-app-assessments
and new cases. After the two peaks, we observed a steady decline in the number of
assessments per day. There could be two reasons for that. First, existing users might
lose interest in the app and fewer new users were on-boarding. Second, with passing
time, public knowledge about corona increased, as well as the availability of testing
stations, minimizing the need for an app like Corona Check. Thus, our user data strongly
supports the notion that an app-based mHealth system for the population is particularly
important in the early stage of a pandemic. Note that testing was not widely available
during the beginning of the pandemic and Corona Check did not offer to register test
results. Hence, we were not able to investigate to what extent the high-risk warning
indicated a real infection.
Regarding the symptoms entered in Corona Check, we did not find statistically sig-
nificant differences between age groups, or between countries. This may indicate that
symptoms were independent of these variables. Regarding the general hygiene tips in
Corona Check, overall, the ratings indicated that they were perceived as helpful, see
Fig. 3.19. We observed that the proportion of older users rating the tips was higher than
the proportion of younger users (see Table 3.15). Raters from Germany were dispropor-
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tionately overrepresented among the raters of the tips (see Table 3.16). We presume that
users in Germany might have been aware that Corona Check was made in Germany,
leading to higher identification with the app or trust in the app, and thus, a prolonged
usage including rating the tips.
Overall, we have shown that an mHealth system such as Corona Check can help support
much of the functionality that a telephone hotline by, e.g., authorities or health insurances,
would serve. With increasing public knowledge about symptoms related to the new
virus and broadly available testing stations, the need for an mHealth system for detecting
coronavirus infections might be reduced. Thus, especially during the early phase of the
pandemic, Corona Check was a valuable contribution in fighting the global COVID-19
pandemic.
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Abstract

Background Medical use cases for machine learning (ML) are growing exponentially.
The first hospitals are already using ML systems as decision support systems in their
daily routine. At the same time, most ML systems are still opaque and it is not clear
how these systems arrive at their predictions.
Methods In this paper, we provide a brief overview of the taxonomy of explainabil-
ity methods and review popular methods. In addition, we conduct a systematic
literature search on PubMed to investigate which explainable artificial intelligence
(XAI) methods are used in 450 specific medical supervised ML use cases, how the
use of XAI methods has emerged recently, and how the precision of describing ML
pipelines has evolved over the past 20 years.
Results A large fraction of publications with ML use cases do not use XAI methods
at all to explain ML predictions. However, when XAI methods are used, open-source
and model-agnostic explanation methods are more commonly used, with SHapley
Additive exPlanations (SHAP) and Gradient Class Activation Mapping (Grad-CAM)
for tabular and image data leading the way. ML pipelines have been described in
increasing detail and uniformity in recent years. However, the willingness to share
data and code has stagnated at about one-quarter.
Conclusions XAI methods are mainly used when their application requires little
effort. The homogenization of reports in ML use cases facilitates the comparability
of work and should be advanced in the coming years. Experts who can mediate
between the worlds of informatics and medicine will become more and more in
demand when using ML systems due to the high complexity of the domain.
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3.4.1 | Introduction
Artificial Intelligence (AI) in healthcare holds many opportunities and risks and has
attracted great public interest. To date, however, experts involved in the development
of Machine Learning (ML) systems come from diverse backgrounds, and the gap be-
tween ML engineers and healthcare providers, and often also other researchers, is wide.
Methods that explain the predictions of complex algorithms in a user-friendly way can
increase adoption and trust [263]. The use of ML systems for appropriate medical use
cases has the potential to reduce costs, save time, increase treatment quality, and improve
patient care.

ML systems can be categorized based on whether they can replace or supplement a health-
care provider. To date, there are no ML systems capable of replacing a healthcare provider;
to the best of our knowledge, we did not find any system that appears to be sufficiently
powerful or interpretable to operate safely without human supervision. In a few cases,
ML systems are currently being used to supplement health care. Some of these are listed in
an online database [264]. However, the companies using these AI systems in hospitals do
not provide detailed information on their websites about whether these systems include
explainability methods.

The medical specialties with the most ML activity are radiology and pathology, as
they are both image-based and therefore ideally suited to recent advances in computer
vision techniques [265]. ML systems applied to radiology images have the potential to
reduce radiologist error rates from 3 - 5 % [266] by alerting radiologists to potentially
missed diagnoses, extend specialist expertise to under-supplied regions, where only one
radiologist may be available for millions of patients [267], or improve triage by bringing
scans with potentially urgent findings to the top of the physician’s queue for earlier
interpretation. In pathology, AI systems can speed up the interpretation of large slides by
automatically identifying the most important areas for the pathologist to examine [268].
There is also interest in developing AI systems for dermatology [269], cardiology [270],
genetics [271], intensive care [272], oncology [273], and gastroenterology [274]. In the
future, ML systems focused on augmentation may influence administrative or research
activities, such as chart review [275], in addition to clinical care. So, we see that there
are many approaches and good reasons to implement AI systems in the health care
context. But is it also necessary to make AI systems explainable in this context? And if
so, explainable to whom?

Is it necessary to make ML models explainable in medicine? Explainability of AI
systems is not always necessary, or if the benefits outweigh the costs of explainability
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too much, then perhaps it can be dispensed with. For example, in logistics, if a package
is occasionally misclassified, and therefore sent somewhere else, this need not be a
major problem. However, the situation is different for decisions involving the health
of patients. Explainability is therefore crucial for medical ML systems and benefits all
parties involved: patients, physicians, governments, ML engineers, and other decision
makers in the healthcare system. All these parties have a legitimate interest in fair,
unbiased, reliable, and reasonable AI based on medical properties rather than spurious
correlations [276]. Transparent AI that provides explanations for its predictions facilitates
these goals by enabling users to better understand the factors that contributed to a
prediction. Explanation methods also enable governments to more effectively regulate
AI systems through audits, and machine learning engineers to more easily maintain and
improve their models. Stakeholders expect decision support systems to be transparent
and to fit seamlessly into existing workflows [263; 277]. Above all, however, transparency
includes being explainable.
Unfortunately, explainability methods are underutilized in medical ML research. It is
already an immense amount of work to define a medical problem suitable for a ML
solution, obtain the necessary data, clean the data so that it can be used for modeling,
develop a model, and refine the model to achieve high performance. Therefore, once one
is past this hurdle, in many cases the inclusion of explainability is no longer considered
or was not planned for in the first place.
With this work, we hope to facilitate the incorporation of explainability methods into
medical ML through two main contributions. First, we provide a representative overview
of the major classes of ML interpretability methods and highlight the advantages and
limitations of the various approaches. Second, we analyze the extent to which previously
published papers in medical ML use explainability methods and quantify which methods
are used and how they are presented. We hope that this will allow researchers who have
not previously been familiar with explainable ML to select a method or class of methods
that are appropriate for their area of research and to integrate explainability in the future.
To achieve our goal, we conducted a comprehensive and systematic literature search.
Inspired by recent analyses (e.g., [31]) and several discussions with medical professionals,
we systematically searched PubMed using PRISMA guidelines. We have paid particular
attention to the following aspects, the combination of which has received little attention
to date:

■ Is there a concrete medical supervised ML use case that uses interpretability meth-
ods?

■ Who is potentially able to understand the XAI methods explained in the paper?
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■ Which kind of data is used, and how well is ML pipeline described?

■ Do authors provide their source code and data?

With these aspects in mind, our PubMed search found 2,568 papers, of which 450 re-
mained after applying exclusion criteria. In the following, we present our approach and
show that the field is changing dynamically.

3.4.2 | Related Work
This section is divided into three subsections. The first section deals with other work on
explainability methods and the description of the XAI taxonomy. The second section
deals with reviews from similar or related XAI areas that follow slightly different naming
conventions. The third section deals with cutting edge topics such as causal ML. Although
the topic of XAI is still young, even in medicine, we consider this subdivision already
important and discuss the related works along the categories.
There are other reviews of explainability methods, i. e., Ward prepared a summary table
of explainability methods, available here. Although this paper mentions essential XAI
methods, the methods are not classified according to their application to tabular data or
image data. In addition, some more recent methods are missing. This GitHub repository
contains a large Markdown table with hyperlinks to source code for explainability
methods organized by year. However, this repository is mainly focused on image
classification rather than medical data. Tjoa and Guan provide an overview of some
interpretability methods related to medicine. However, they follow a different taxonomy
for ML interpretability methods that we have not found in other works, which makes
comparability and classification difficult [278]. Another systematic review considers XAI
systems in the medical field [279]. The authors found that post-hoc methods were more
common than intrinsic methods in the papers reviewed, and they discuss human-in-
the-loop and inclusion of domain experts3. However, they did not examine why other
papers did not use XAI. Linardatos et al. [19] published a comprehensive collection of
existing methods of ML interpretation methods. They propose an alternative taxonomy
to allow a multi-perspective comparison between techniques. Methods are categorized
into four main groups by intended use: methods for explaining complex black-box models,
methods for building white-box models, methods for limiting discrimination and improving
fairness in models, and methods for analyzing the sensitivity of model predictions. In the group
of methods that explain black-box models, the authors further distinguish between

3By domain experts, we mean experts in the field to which the ML algorithm is applied. For example, in
healthcare use cases, this could be physicians.
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black box deep learning models and arbitrary black box models. The second category
contains methods that create easy-to-understand models, while the third class includes
techniques that focus exclusively on the discrimination, inequality, and impartiality of
an ML algorithm and evaluate it with respect to these properties. The methods in the
last group are applied to evaluate ML algorithms in terms of reliability and sensitivity
to ensure that their predictions are credible and consistent [19]. Linardatos et al. do
not address the medical application of the XAI methods presented, nor do they discuss
real-world use cases of the approaches. In the recent papers [280], [281], [282], [283],
and [284], the authors focus on XAI in a medical context. However, they each consider a
specific medical subspecialty rather than a general view of medicine. In these works, the
authors also did not analyze whether source code is provided, what stakeholders benefit
from the XAI, and for which data format the presented methods are suitable.
There are also reviews with different wordings, i. e., Antoniadi et al. performed a
systematic literature review for clinical decision support systems (CDSS). The main
finding was the absence of XAI in CDSS for tabular and image data.[285]. Quinn et al.
provide an overview of the current state of machine learning in healthcare and provide
an optimistic and pessimistic scenario for future diagnosis of AI systems in healthcare.
However, they do not go into detail about current explanatory methods, but rather trace
the historical development of ML in healthcare [286]. Other related work in the area
of XAI research include i. e. Holzinger et. al., who argue beyond explainability by
saying that the domain expert understands an ML system better because s/he knows
the causality of the relationships, but the system only knows the data [287]. In this
context, Holzinger et al. emphasize the importance of causality relations in XAI, but also
mention that so far these cannot be given by the algorithm but require domain knowledge.
Adida and Berrada provide an overview of XAI in general and classify common ML
interpretation methods using the taxonomy explained in the Methods section of this
paper. However, they do not do so in terms of medicine, nor do they rank the methods in
terms of their applicability to tabular data or neural networks [22]. Longo et al. address
the challenges and emphasize the relevance of XAI in sensitive sectors such as medicine
or law, but the focus is on XAI in general rather than medicine in particular [288].

While existing work has mostly examined the existing literature for XAI applications in
specific medical sub-specialties, to our knowledge, there has been no general literature
review of a similar scope to our work for XAI applications in the medical field overall.
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3.4.3 | Explainability Methods
By the word model, we generally mean the model learned by the system after performing
some learning algorithm. Some machine learning models are inherently explainable,
including linear regression, logistic regression, generalized linear models, or decision
trees. Other models, such as neural networks, are black box by default, but can be
augmented with explainability methods. These “add-on” explainability methods for
otherwise non-interpretable models are the focus of this section. For a more detailed
overview of the explainability methods we consider, see our supplementary material
at GitHub. Explainability is also referred to in the literature as interpretability, intelli-
gibility [289; 290], causability [287], or understandability [21]. There is a tendency for
“explainability” to refer to model-specific methods and “interpretability” to refer to inher-
ently interpretable ML models or model-agnostic methods, but there is no consensus
in the research community. We thus use the terms explainability and interpretability
interchangeably in this paper, under the following definition:
Explainability method (synonym interpretability method): A method that enables humans to
understand why a model makes certain predictions.

3.4.3.1 | Trustworthy vs. untrustworthy explainability methods
Some explainability methods are trustworthy, meaning that their explanations are prov-
ably guaranteed to reflect the model’s computations. A trustworthy explainability
method can be used to assess how a model performs and help distinguish between
performing and non-performing models. Models that do not perform should be tested
further, while models that do perform could be moved into a deployment process.
Whether a model performs or not depends on the use case and the chosen metrics to
optimize, such as Mean Squared Error for regression tasks or weighted F1-scores for
multi-class classification tasks. When a trustworthy explainability method is applied
to a non-performing model, the explanations may seem strange or unexpected - for
example, a neural network that uses metal tokens and postprocessing artefacts to predict
pneumonia from chest x-rays [276] or a neural network that highlights snow to explain
its classification of a wolf. The key is that the explanations can be used to conclude that
the model is non-performing, because the explanation method is trustworthy. When a
trustworthy explainability method is applied to a performing model, then the expla-
nations will make sense even under maximum scrutiny by a human domain expert. In
the ideal case, the explanation of a performing model will match the explanation of
a group of domain experts, and the performing model could then be considered for
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deployment in a real-world setting. Some explainability methods are not trustworthy
because they do not come with mathematical guarantees that they reflect the model’s
computations [55]. For example, the explainability method Grad-CAM is popular and
highly cited but has recently been shown to sometimes produce misleading explanations
that do not represent how the model makes predictions [291]. Grad-CAM is thus not
a trustworthy explainability method and cannot be used to draw conclusions about
whether a model is non-performing or good. Because of the flaw in Grad-CAM, a new
method called HiResCAM [291] was developed which does come with mathematical
guarantees that it accurately reflects the underlying model, and thus HiResCAM is a
trustworthy explainability method.
Is there a difference between the terms explainability and interpretability? We re-
view some definitions of interpretability and explainability in the literature. Sometimes
the definitions agree, and sometimes they contradict each other. We use these terms
interchangeably. Interpretability answers the question of how the models work, while
explainability answers the question of what else the model says according to [21]. [292]
defines interpretability as the ability to explain to a human in terms that can be un-
derstood. [55] in turn states that post hoc methods can be considered examples of
explainability, while intrinsic methods can be considered examples of interpretability.
[293] says that interpretability is the degree to which a human can understand the cause
of a decision. Explainability in the technical sense highlights decision-relevant parts of
the used representations of the algorithms and active parts in the algorithmic model
that [...] contribute to model accuracy [...] [287]. Interpretability, in turn, is the extent
to which a human can consistently predict the outcome of the model [106]. Gilpin et.
al. argue that explainable models are interpretable by default, but not vice versa. They
describe explainability as models that can summarize the reasons for neural network
behavior [294]. Glassboxmedicine states that interpretability means that the algorithm
is intrinsically designed to establish a relationship between input and output that is
understandable to humans, such as in linear regression, and counters that explainability
means that the algorithm’s decision making can be understood, even if it is abstractly
detached from a human logic. For example, a deep-learning algorithm can explain a wolf
by highlighting snow.
Explainability is not causality, algorithmic transparency, or simple input variables.
Explainability methods typically specify which parts of the input contribute to the output
of a model, but do not specify causal relationships or indicate how particular parts of the
input affect a prediction. Explainability is also distinct from algorithmic transparency,
which is a clear description of the algorithm’s implementation and training process. In
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Leave One Covariate Out (LOCO) and Maximum Mean Discrepancy Critic (MMD-Critic),
and Permutation Importance.

A partial dependence plot (PDP) illustrates the marginal effect of a feature on the tar-
get [89]. A PDP can be constructed for categorical and continuous features as well as for
classification and regression problems. However, the PDP assumes that the features are
uncorrelated, which can be problematic for multidimensional prediction problems.

Permutation feature importance [101] estimates the importance of a particular feature to
a trained model. It is the absolute difference in performance score when a real feature
is replaced by a dummy feature; the more performance degrades, the more important
that feature is to the model. The importance of the permutation depends on the model
and the performance score chosen; any change in the performance score can change
the ranking of the features. This method also cannot account for covariances between
features.

Leave One Covariate Out (LOCO) [110] is a model-agnostic global and local feature
importance method, similar to feature importance in Random Forests. However, unlike
feature importance in Random Forests, the feature under consideration is not replaced
by a dummy variable, but simply omitted. Both methods have in common that they ask
How good is the model without this feature? The assumption behind this is that a feature is
important for the model if the performance is significantly worse without this feature.

Maximum Mean Discrepancy (MMD-Critic) [106] distinguishes between representative
samples of a class and outliers. Typical representative samples are called prototypes,
and the outliers are called criticisms. The distinction between prototypes and outliers is
intended to provide additional insight into the model.

Other methods for global model-agnostic diagnostics include accumulated local effects
plots, H-statistics, and functional decomposition.

3.4.3.4 | Local Model-Agnostic Methods
Local model-agnostic methods explain individual predictions and are applicable to a
wide range of machine learning models. Popular examples of methods in this category
include Individual Conditional Expectation (ICE), Locally Interpretable Model-agnostic
Explanation (LIME), anchors (scaled rules), SHapley Additive exPlanations (SHAP), and
influence functions.

Individual conditional expectation (ICE) [103] is a refinement of PDP and accounts
for the heterogeneity of individual data points. ICE disaggregates PDPs to illuminate
individual conditional expectations from supervised models.
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Local Interpretable Model-agnostic Explanation (LIME) [108] trains an interpretable
model to approximate the predictions of the real model. LIME can locally explain
text models from tree-based algorithms as well as computer vision models, such as
deep neural networks. Later work has shown that random noise leads to instability in
LIME-generated explanations [130; 131], leading to the development of LIME variants,
including S-LIME [132] and DLIME [131].

Anchors (scoped rules) is another method developed by LIME authors [115]. In this
method, IF-THEN rules are created to indicate which feature values anchor a prediction.
Rules for rare classes or near the boundary of decision functions can become complex
and sometimes ambiguous.

SHapley Additive ExPlanations (SHAP) is a model-agnostic method that allows for both
global and local explanations and considers both structured and unstructured data [109].
SHAP indicates the contribution of a feature value to the difference between the actual
prediction and the mean prediction. SHAP is based on Shapley values from game
theory [133], dispersion activation features [104], and model intrinsic approaches from
tree-based methods.

Influence functions [111] trace a prediction through the model and back to the training
data to identify training points that are most responsible for a particular prediction. The
influence function method can be applied to any model for which a second derivative
exists. A derivative (synonym differentiation) exists, i. e., for neural networks. However,
it is computationally intensive because the model must be re-trained when the training
data changes.

Other local model-agnostic methods include individual conditional expectation curves
(which can be used to generate partial dependence diagrams) and counterfactual expla-
nations.

3.4.3.5 | Global Model-Specific Methods
Global model-specific methods describe the overall average behavior of a model for a
given class of models. Methods in this category include Mean Decrease Impurity (MDI),
Testing Concept Activation Vectors (TCAV), Soft Decision Trees, and TabNet. Mean
Decrease Impurity (MDI) [102] explains the importance of features for tree ensembles.
Testing Concept Activation Vectors (TCAV) is a global and local explanation method
for computer vision models and tabular discrete data [114]. Soft decision trees use a
decision tree to mimic the input-output function of a neural network [112]. In a soft
decision tree, all leaf nodes contribute to the final decision with different probabili-
ties [135]. For some leaf nodes, the soft decision tree allows a visual interpretation of
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the neural network. However, not all learned filters are interpretable to the human eye.
TabNet [295] uses sequential neural networks to mimic the logic of a decision tree on
tabular data. Feature meanings provide global explanations, while heat maps provide
local explanations. Instance-based feature selection can lead to confusion when local
and global feature meanings contradict each other. Other global model-specific methods
include Automatic Concept-Based Explanations (ACE) [117] and Deep Lattice Networks
(DLN) [296]. Related to Decision Trees, but bringing in the aspect of symbolic AI, is the
Trepan Reloaded method [297]. It uses ontologies to represent a network of information
with logical relations and thus brings Domain Expert knowledge directly into the XAI
system.

3.4.3.6 | Local Model-Specific Methods: Gradient-Based Explanations for Neural
Networks

Local model-specific methods explain a particular prediction of a particular class of
models. The most popular local model-specific methods are gradient-based neural
network explanations, which we consider in this section as an example of this class.

Gradient-based neural network explanation methods use the gradient of a model to
produce an explanation for a given input example and output class [123]. They are most
applied to neural networks for image classification, for which they provide a visualization
to highlight which regions of an input image were used to make a prediction.

Input-Level Gradient-Based Methods Gradient-based methods at the input level
involve gradients or gradient-like calculations that lead from the output layer back to the
input layer. So, the input layer refers to the level at input. Non-technical readers might
want to know that the gradient is a derivative vector for a multivariate function, and
the derivative of a function is the change of the function for a given input. Gradients
are used, i. e., to fit neural networks to a dataset. The resulting explanation has the
same number of pixels as the input image. Input layer approaches include saliency
mapping, Guided Backpropagation, Deconvolutional Networks, SmoothGrad, Gradient
× Input, Layer-Wise Relevance Propagation, and DeepLIFT. All these approaches are
computationally efficient but suffer from white noise caused by shattered gradients [298],
which sometimes prevents the resulting explanations from appearing class-specific in
practice. Saliency mapping is the original gradient-based explanation method for neural
networks. Saliency mapping computes the gradient of the class score with respect
to the input image [299]. DeconvNets [120] and Guided Backpropagation [137] are
explanation methods developed independently that happen to be identical to saliency
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mapping except for handling of the ReLU nonlinearities [128]. Saliency mapping passes
explanation method sanity checks, while Guided Backpropagation does not, and may in
fact function more like an edge detector than a model explanation [127]. SmoothGrad
is another variant of saliency mapping that aims to reduce noise in explanations [113]
but is not demonstrably more faithful to the model. The Gradient × Input method is
equivalent to Saliency Mapping, except that the saliency map is multiplied element
by element with the input image to create the final visualization. It has been shown
later that the Gradient × Input method fails sanity checks [127]. Layer-Wise Relevance
Propagation (LRP) [105] generates relevance values for the input pixels by iteratively
distributing the final value across the layers of the neural network, starting with the
output layer and working backwards to the input layer. Values greater than zero indicate
that a particular pixel is relevant to the selected class. There are several variants of
LRP. While LRP was not originally described as a gradient-based explanation method,
it was later demonstrated [123] that ϵ-LRP is a variant of the gradient-∗ input method,
in which the gradient calculation is changed based on the ratio of output to input at
each nonlinearity. Finally, Deep Learning Important FeaTures (DeepLIFT) [104] provides
explanations by estimating how much each neuron in a neural network is activated for an
individual input compared to a reference input. The reference input is neutral (foil), while
the individual input can be described as fact [300]. After the development of DeepLIFT,
it was proved [123] that DeepLIFT computes backpropagation for a modified gradient
function. Other input-level gradient-based methods include integrated gradients [107]
and EXplanation Ranked Area Integrals (XRAI) [301]. For all these gradient-based
methods one should keep in mind that the shattered gradients problem negatively affects
the quality of the pixel importance values.

Output-Level Gradient-Based Methods In gradient-based explanations at the out-
put layer, a gradient is computed that runs backwards from the output layer for only
one or a few layers of the neural network without going all the way back to the input
layer. Thus, the bare explanation has a smaller dimension than the input and must be
upsampled before it is overlaid with the input to create the final explanation. Such an
upsampling step is permissible because in a typical neural network the spatial relation-
ship between output and input is preserved. Output-level approaches include Class
Activation Mapping (CAM), Grad-CAM, and HiResCAM. Class Activation Mapping
(CAM) is the fundamental method in this class [126]. CAM is based on a particular
convolutional neural network architecture, where convolutional layers are followed by a
global average pooling and a single fully connected layer, which provide the final predic-
tions. A CAM explanation is obtained by multiplying the class-specific weights of the
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final fully connected layer by the corresponding feature maps before the global average
pooling step. CAM is a gradient-based method because these final weights represent
the gradient of the class score with respect to the feature maps. The CAM method is
trustworthy and guaranteed to highlight only regions the model used, but it has architec-
ture restrictions. Gradient-weighted Class Activation Mapping (Grad-CAM) [24] aims to
generalize CAM to other architectures. In Grad-CAM, the gradient of the class score is
computed with respect to a given set of feature maps. Then, the gradient is averaged per
feature and the averaged gradient is multiplied by the corresponding feature map. The
aggregation of these weighted feature maps is the Grad-CAM explanation. The paper
presenting Grad-CAM has been cited over 9,000 times, but unfortunately it has recently
been shown that Grad-CAM is not faithful to the underlying model due to the gradient
averaging step [291]. Grad-CAM’s explanations highlight irrelevant regions of the input
image that were not used for prediction, which can lead to misleading explanations that
deviate significantly from the true behavior of the model [302]. HiResCAM [291] is a
newer method that eliminates the inaccuracy of Grad-CAM. HiResCAM eliminates the
gradient averaging step in Grad-CAM. By retaining the detailed gradient information
and multiplying the gradients element by element with the corresponding feature maps,
the relationship between the model explanation and the class evaluation is provably
maintained, resulting in trustworthy class-specific explanations. The source code for
HiResCAM is publicly available here and as part of this package.

3.4.3.7 | Summary
Describing all the machine learning interpretability methods ever developed would
require an entire textbook. Therefore, this section is not comprehensive, but rather
is intended to provide representative examples of the major classes of interpretability
methods. Table 3.17 gives a brief overview of common interpretability methods and
summarizes the characteristics of each method.

3.4.4 | Materials and Methods
This section describes the search term, search results, inclusion and exclusion criteria,
and research questions answered for each of the papers in this literature review.

3.4.4.1 | Literature Selection
Since we focus on medical data, we deliberately chose PubMed as our search database.
Technical papers in this field, such as from the journal Artificial Intelligence in Medicine,
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Partial Dependence Plots (PDP)[89] A G No No Yes 2001 15545 R and C Yes
Permutation Importance[101] A G No No Yes 2010 15545 R and C Yes
Mean Decrease Impurity[102] S G No No Yes 2013 823 R and C Yes
Individual Conditional Expectation[103] A L Yes No Yes 2013 571 R and C Yes
DeepLIFT (Deep Learning Important FeaTures)[104] S L Yes Yes No 2016 1629 C Yes
Layer-Wise Relevance Propagation[105] S L Yes Yes No 2016 2160 C Yes
Maximum Mean Discrepancy - Critic[106] A G Yes Yes No 2016 445 C Yes
Gradient-weighted Class Activation Mapping[24] S L Yes Yes No 2016 6758 C Yes
Integrated Gradients[107] S L Yes Yes No 2017 2017 C Yes
Local Interpretable Model-agnostic Explanation (LIME)[108] A L Yes Yes Yes 2017 5020 R and C Yes
SHapely Additive exPlanations (SHAP)[109] A L and G Yes Yes Yes 2017 5020 R and C Yes
Leave One Covariate Out[110] A L No No Yes 2017 274 R Yes
Influence Functions[111] A L Yes Yes No 2017 1377 C Yes
Soft Decision Trees[112] S G Yes No No 2017 357 C Yes
SmoothGrad [113] S L Yes Yes No 2017 867 C Yes
Testing Concept Activation Vectors [114] S L and G Yes Yes No 2018 583 C Yes
Anchors [115] A L Yes Yes Yes 2018 922 R and C Yes
Representer Point Selection [116] S L Yes Yes No 2018 105 C Yes
Automatic Concept-based Explanations [117] S G Yes Yes No 2019 157 C Yes

Table 3.17: Overview of interpretability methods relevant to tabular and computer vision
tasks, ordered by year of publication. Method relevance to neural networks, computer
vision, and tabular data is indicated in the respective columns. The number of citations
was derived from Google Scholar as of December 23, 2021. Links to the source code
are provided via hyperlinks. We included methods that had more than 100 citations on
Google Scholar, whose source code was publicly available, and that were optionally used
in the review articles. An explanation of each method with advantages and limitations
can be found in the supplementary material on GitHub. Regr = Regression, Classif =
Classification.
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2,568 references were initially identified in the PubMed database on 2022-03-07. The
search was limited to the title and abstract of the paper, meaning that machine learning
and explainability had to be explicitly mentioned in these sections. After removing
4 duplicates, 2,564 references remained. Then, an author (J.A. or L.M.) applied the
inclusion and exclusion criteria described above to each title and abstract, resulting in
610 references that were eligible for full-text screening. A common reason for exclusion
at this stage was the lack of a true explainability method. For example, papers were
excluded that used a black-box model but claimed that their model was explainable
because a human could understand the dictionary definition of the input variable (e.g.,
"age"). We reviewed papers on time series data from electrocardiograms (ECGs) or
electroencephalograms (EEGs), but unfortunately had to exclude all of these time series
papers because none of them included an explainability method. Although our initial
search term included papers from 2002 onward, the oldest paper that met the inclusion
criteria was from 2008. The 610 references approved based on title and abstract were
then subjected to full-text screening. At this stage, 160 references were excluded for at
least one of the following reasons: no specific medical supervised ML use case (87), no
XAI method (64), or no image or tabular data as input (13). There were 450 references left
for data analysis with our 7 research questions. The Results section contains the analyses
performed on these 450 references. The full PRISMA flowchart is shown in Figure 3.21.

3.4.4.2 | Literature Review
We evaluated each of the 450 final papers individually. For each paper, we determined
which XAI methods were used and how they were described using 7 screening questions
listed in Table 3.18. We did not consider model confidence estimation or model uncer-
tainty as explanatory methods because they do not provide insight into how a model
arrives at a prediction.

Data Synthesis We used Microsoft Forms to collect responses to our research questions
and Python to aggregate the data according to our research questions. Each paper
was reviewed by an author (J.A. or L.M.). We analyzed the Microsoft Forms data for all
papers using Python 3.94. All source code and raw data is available on the supplementary
material on GitHub.
The ML pipeline was rated 1, 2, or 3 according to the following criteria, which were
agreed upon in advance:

■ 1 = not described;
4https://www.python.org/downloads/release/python-390/
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XAI Method 2008-2019 2020 2021 2022Sum
SHAP 1 20 73 25 119

Intrinsic interpretable 33 25 34 2 94
Class Activation Mapping or related 7 23 40 22 92
Random Forest Feature Importance 9 13 19 5 46

LIME 5 6 24 5 40
Partial Dependence Plots 2 10 2 14

Layer-Wise Relevance Propagation 1 3 4 1 9
Attention Weight 2 3 2 1 8

Saliency Map 0 2 5 1 8
Permutation Importance 1 1 3 0 5

DeepLift 2 0 1 0 3
Sum (incl. all methods) 75 106 244 65 490

Figure 3.24: XAI methods used by year. Due to the small number of papers per year
between 2008 and 2019, we have combined these years as one group. Note that for 2022,
only papers published through 2022-03-07 were included.

due to the increasing availability of labeled image data and the increased computing
power and availability of GPU clusters.

Who is potentially be able to understand the XAI method? On our opinion, patients
are an important stakeholder group for machine learning applications in medicine and,
on average, also have the greatest barriers to understanding due to their unfamiliarity
with machine learning or medicine. To assess patient understanding of explainable ML
models, we would ideally conduct a direct survey of patients. However, such a survey is
beyond the scope of this work, so we instead made a subjective assessment of whether
patients might be able to understand an XAI method. We considered a paper to be
potentially understandable to patients if it met all the following criteria:

1. The output of the explainability
method does not require a deeper
medical understanding.

2. If variables are the output, they must
be explained or self-explanatory.

3. If codes are the output (1=Female,
2=Male), they must be explained.

4. If color scales are the output, they
must be explained with a legend and
the meaning of the marginal values.

Only 16.4 % of the papers met all the above criteria to be considered potentially un-
derstandable by patients. A detailed overview of which of the explanatory methods
presented in the papers could be understood by patients is given in Figure 3.25. Figure
3.26 again shows that explanation methods with image data as input were generally
rated as better understood by patients, mainly due to the intuitive nature of heatmap
displays of pixel relevance.
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3.4.6 | Discussion
This paper has explored two main tasks. First, we have provided an overview of the
taxonomy of machine learning explainability and described representative methods. The
machine learning taxonomy has converged in recent years, although homonyms and
synonyms still exist, and some technical terms are not used consistently. Second, we
examined the last 20 years of medical machine learning publications in the PubMed
database for their use cases, input types, AI comprehensibility, code and data sharing,
and XAI methods used. The most popular methods are SHAP, LIME, and intrinsically
interpretable methods. Most input data is structured, tabular data (65 %) or images
(32 %). Text data is rare at 3 %, and we found no use case for our criteria for audio
data. We estimate that 16 % of the explanatory methods reported in publications can be
understood by patients. The description of machine learning pipelines has become more
detailed over time, while data and code sharing has stagnated.

In this discussion section, we address the limitations of our study, provide recommen-
dations on how to further improve the reproducibility and explainability of AI systems,
address the interdisciplinary nature of medicine and machine learning, and mention
challenges that may arise in the future and with the use of systems.

3.4.6.1 | Limitations of this review
We carefully discussed the search terms and the cases to be excluded before searching the
databases to obtain as many precise hits as possible. However, because of the variable
taxonomy in the ML community and the wide range of terms used in this inherently
interdisciplinary field, we may not have identified all the papers that would have been
relevant. We used the PubMed database because of our focus on medical use cases.
PubMed is the largest medical database available. Google Scholar, i. e., has a more
technical focus. In future work, we would like to extend our search on other databases.
However, we do not expect our main findings to change. The final selection of 450
studies does not include papers on medical time-series data (e.g., ECG, EEG) or papers
using support vector machines as a modeling framework because none of these papers
considered explainability. Despite these limitations, we believe that our selection of
relevant papers is large enough to derive representative conclusions. The results of our
review are not free of subjectivity, especially when it comes to the evaluation of ML
pipeline quality. Our assumptions regarding the comprehensibility of XAI methods to
patients are also debatable. By setting criteria for when it is presumably understandable,
a uniform assessment of the reviewed papers is ensured. However, the best estimator of
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understandability is admittedly obtained from a representative survey with examples
from the papers, which is out of scope as mentioned earlier.

3.4.6.2 | Recommendations to improvemedicalML explainability and reproducibil-
ity

In reviewing the literature, we found that not all papers that include an explainability
method explain it well. We have therefore developed several specific recommendations
to improve the comprehensibility of medical XAI research.
First, the ML pipeline often requires more information about the split between training,
validation, and testing. Some papers do not mention the data split at all, while others
do not distinguish between validation and testing. We recommend at least mentioning
the percentage split between training, validation, and test, and confirming that the
final model’s performance was calculated on the test set only. If cross-validation was
used, we recommend indicating the robustness of the model by reporting the standard
deviation of the performance metric across-validation folds. In some deep learning
literature [305], a validation set is mostly used to avoid overfitting during training which
is like maximizing robustness: Overfitting is indicated by a performance drop between
training and validation fold, low robustness is indicated by a high variance between
training and validation fold. We also recommend using the term "fold" when cross-
validation was used, and "split" or "set" otherwise. A graphical concept for this can be
seen in Figure 3.29. To give an example: there are 1,000 samples in a survey with 1,000
patients. We divide the samples into 800 for a training set and 200 for a test set. The
test set is not used until the final evaluation. The training set is divided into 5 parts for
5-fold-cross-validation. 4 folds (=640 samples) are used for the first training while the 5th
fold (160 samples) is tested. The average performance of the 5th folds is an estimator for
the performance in the test set. The standard deviation in the test set, which results from
the deviations between the test folds, is an estimator for the robustness of the model at
deployment.
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methods must be also investigated. It is also important to clarify the splitting direction
on the leaves. It is also relevant to consider the overall system of a use case with the three
elements of the use case, the AI system, and the explanation of the AI system, rather
than the XAI method separately. A suggestion from the community is to extend the
descriptions of the XAI methods with standardized metadata that are uniform for all
XAI methods and thus simplify the implementation and the technical access, analogous
to FAIR [306] (Findable, Accessible, Interoperable, Reusable) principle [307].
Finally, to facilitate replication and faster progress of medical ML research, we encourage
increased de-identification (anonymization of personal data) and sharing of datasets, as
it is often difficult to build directly on medical ML research when a new dataset needs to
be created from scratch.

3.4.6.3 | Understandability of an XAI method in medical ML is related to medical
knowledge

In medical ML applications, medical knowledge is often useful to understand the results
of an XAI method. Using image-based heatmap XAI methods as an example, we can
consider different degrees of understanding. A general reader can reach a basic level of
understanding, which we define as awareness that the highlighted pixels are relevant
to the prediction. A physician who is not a radiologist would be able to reach an
intermediate level of understanding, meaning that he or she is able to recognize organs
and major abnormalities in the underlying medical image and consider how these relate
to the relevance of the pixels. A radiologist would eventually be able to recognize even
subtle anomalies in the medical image and assess their relationship to XAI pixel relevance.
This means on the one hand that the degree of comprehensibility is essentially a subjective
assessment, and on the other hand that the potential of comprehensibility depends on the
background knowledge of the viewer. The more specific the AI application, the higher
the dependency on domain knowledge for the comprehensibility of the XAI system.

3.4.6.4 | Challenges
Some enthusiasts believe that the use of black-box ML systems is unproblematic [308],
while the most conservative work argues that not even existing explainable ML methods
are sufficiently understandable to justify the use of ML in a clinical setting, since explain-
able ML cannot confirm the correctness of a decision [309].
We take an intermediate perspective in which we believe that explainable ML has the po-
tential to improve clinical care in certain circumstances. In our opinion, any deployment
of a medical ML model should involve close collaboration between medical professionals,
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ML engineers, software developers, and computer security experts. Medical profession-
als have the deepest understanding of the model’s explanations and can confirm whether
a model’s behavior appears medically appropriate. Only explanatory methods that are
demonstrably faithful to the model should be used. Bias and fairness metrics should be
calculated to ensure that the models used do not exhibit discriminatory behavior. Further,
we think that the model must be protected from unauthorized access, and ML experts
must be available to update the model in the event of a concept or data mismatch. In
many countries, regulatory approvals are required for newly trained models.
Deploying a model is no guarantee that it will be used clinically. We think that the
likelihood that a model will impact clinical care is greatest when the program’s user
interface for using the model has been carefully developed with significant input from
medical professionals and when the model’s outputs can be seamlessly integrated into
existing software tools and workflows. Explainable ML methods with demonstrable
guaranteed fidelity to the underlying model have the potential to improve the quality of
medical ML models and prevent the use of possibly critical, biased, or ineffective models.
The more medical ML research incorporates explainable techniques, the more clinical
relevance it could achieve.

Supplementary Information
Supplementary materials, such as detailed descriptions of the XAI methods, as well as
the Python code to replicate numbers, figures and tables are available on
github.com/joa24jm/literature_review.
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Abstract

Background. Machine learning (ML) models are evaluated in a test set to estimate
model performance after deployment. The design of the test set is therefore of impor-
tance because if the data distribution after deployment differs too much, the model
performance decreases. At the same time, the data often contains undetected groups.
For example, multiple assessments from one user may constitute a group, which is
usually the case in mHealth scenarios.
Methods. In this work, we evaluate a model’s performance using several cross-
validation train-test-split approaches, in some cases deliberately ignoring the groups.
By sorting the groups (in our case: users) by time, we additionally simulate a concept
drift scenario for better external validity. For this evaluation, we use 7 longitudinal
mHealth datasets, all containing Ecological Momentary Assessments (EMA). Fur-
ther, we compared the model performance with baseline heuristics, questioning the
essential utility of a complex ML model.
Results. Hidden groups in the dataset leads to overestimation of ML performance af-
ter deployment. For prediction, a user’s last completed questionnaire is a reasonable
heuristic for the next response, and potentially outperforms a complex ML model.
Because we included 7 studies, low variance appears to be a more fundamental
phenomenon of mHealth datasets.
Conclusion. The way mHealth-based data are generated by EMA leads to questions
of user and assessment level and appropriate validation of ML models. Our analysis
shows that further research needs to follow to obtain robust ML models. In addition,
simple heuristics can be considered as an alternative for ML. Domain experts should
be consulted to find potentially hidden groups in the data.
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3.5.1 | Introduction
When machine learning models are applied to medical data, an important question is
whether the model learns subject-specific characteristics (not desired effect) or disease-
related characteristics (desired effect) between an input and output. A recent paper
by Kunjan et al. [310] describes this very well at the example of classification and EEG
disease diagnosis. In the Kunjan paper, this is discussed using different variants of cross-
validation. It is well shown that the type of validation can cause extreme differences.
Older work has evaluated different cross-validation techniques on datasets with different
recommendations for the number of optimal folds [86; 311]. We transfer and adapt this
idea to mHealth data and the application of machine-learning-based classification and
raise new questions about this. To this end, we will briefly explain the background.
Using simple, understandable models rather than complex black box models is a clamor
of Rudin et. al., which motivates us to evaluate simple heuristics against complex mod-
els [55]. The Cross-Industry Standard Process for Data Mining (CRISP-DM) highlights
the importance of subject matter experts to get familiar with a dataset [312]. In turn,
familiarity with the dataset is necessary to detect hidden groups in the dataset. In our
mHealth use cases, one app user that fills out more several questionnaires constitutes a
group.

We have developed numerous applications in mobile health in recent years (e.g., [8; 313])
and the issue of disease-related or subject-specific characteristics is particularly pro-
nounced in these applications. mHealth applications very often use the principles of
Patient-reported Outcome Measures (PROMs) or/and Ecological Momentary Assess-
ments (EMAs) [30]. EMAs have the major goal that users record symptoms several
times a day over a longer period. As a result, users of an mHealth solution generate
longitudinal data with many assessments. Since not all users respond equally frequently
in the applications (as shown by many applications that have been in operation for a
long time [314]), the result is a very different number of assessments per user. Therefore,
the question arises in the application of machine learning, how the actual learning takes
place. In learning, should we group the ratings per user so that a user only appears in
either the training set or the testing set, which is correct by design. Or, can we accept that
a user’s ratings appear in both the training and test sets, since users with many ratings
have such a high variance in ratings. Finally, individual users may undergo concept drift
in the way they answer questions in many assessments over a long period of time. In
such a case, the question also arises as to whether it makes sense to use an individual’s
ratings separately in the training and testing sets.
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In this context, we also see another question as relevant that is not given enough attention:
What is an appropriate baseline for a machine learning outcome in studies? As mentioned
earlier, some mHealth users fill out thousands of assessments, and do so for years. In this
case, there may be questions about whether a previous assessment can reliably predict
the next one, and the use of machine learning may be poorly targeted.

With respect to the above research questions, we use another component to further
promote the results. We selected seven studies from the pool of developed apps that
we will use for the analysis of this paper. Since a total of 7 studies are used, a more
representative picture should emerge. However, since the studies do not all have the
same research goals, classification tasks need to be found per app to make the overall
results comparable. The studies also do not all have the same duration. Even though the
studies are not always directly comparable, the setting is very promising as the results
will show in the end. Before deriving specific research questions against this background,
related work and technical background information will be briefly discussed.

3.5.1.1 | Existing train-test-split approaches
Within cross-validation, there exist several approaches on how to split up the data into
folds and validate them, such as the k-fold approach with k as the number of folds in
the training set. Here, k − 1 folds form the training folds and one fold is the validation
fold [184]. One can then calculate k performance scores and their standard deviation
to get an estimator for the performance of the model in the test set, which itself is an
estimator for the model’s performance after deployment (see also Fig. 3.31). In addition,
there exist the following strategies:

■ (Repeated) stratified k-fold, in which the target distribution is retained in each fold,
which can also be seen in Figure 3.30. After shuffling the samples, the stratified
split can be repeated [311].

■ Leave-one-out cross-validation [315], in which the validation fold contains only one
sample while the model has been trained on all other samples.

■ Leave-p-out cross-validation, in which (n
p) train-test-pairs are created with n equals

number of assessments (synonym sample) [316].

These approaches, however, do not always focus on samples that might belong to our
mHealth data peculiarities. To be more specific, they do not account for users (syn.
groups, subjects) that generate daily assessments (syn. samples) with a high variance.
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3.5.1.2 | Related Work
Cawley et. al. also address the question of how to minimize the error in the estimator
of performance in ground truth. Using synthetic data sets, they argue that overfitting
a model is as problematic as selection bias in the training data [317]. However, they
do not address the phenomenon of groups in the data. Refaeilzadeh et. al. give an
overview of common cross-validation techniques such as leave-one-out, repeated k-fold,
or hold-out validation [318]. They discuss pros and cons of each kind and mention an
underestimated performance variance for repeated k-fold cross-validation, but they also
do not address the problem with (unknown) groups in the dataset [318]. Schratz et. al.
focus on spatial auto correlation and spatial cross-validation rather than on groups and
splitting approaches [319]. Spatial cross-validation is sometimes also referred to as block
cross-validation [320]. They observe large performance differences in the use or non-use
of spatial cross-validation. By random sampling of train and test samples, a train and
test sample might be too close to each other on a geographical space, which induces a
selection bias and thus an overoptimistic estimate of the generalization error. They then
use spatial cross-validation. We would like to briefly differentiate between space and
group. Two samples belong to the same space if they are geographically close to each
other. They belong to the same group if a domain expert assigns them to a group. In
our work, multiple assessments belonging to one user form a group. Meyer et. al. also
evaluate using a spatial cross-validation approach, but also add a time dimension using
Leave-Time-Out cross-validation where samples belong to one fold if they fall into a
specific time range [321]. This leave-time-out approach is like our time-cut approach,
which will be introduced in the methods section. Yet, we are not aware of any related
approach on mHealth data like the one we are pursuing in this work.

3.5.1.3 | Research questions
As written at the beginning of the introduction, we want to evaluate how much the
model’s performance depends on specific users (syn. subjects, patients, persons) that are
represented several times within our dataset, but with a varying number of assessments
per user. From previous work, we already know that so-called power-users with many
more assessments than most of the other users have a high impact on the models training
procedure [31]. We would further like to investigate whether a simple heuristic can
outperform complex ensemble methods. Simple heuristics are interesting because they
are easy to understand, have a low maintenance requirement, and have low variance,
but also generate high bias.
Technically, across studies (i.e., across the seven studies), we investigate simple heuris-
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tics at the user and assessment level and compare them to tree-based non-tuned ML
ensembles. Tree-based methods have already been proven in the literature on the specific
mHealth data used, that is why we use only tree-based methods. The reason for not
tuning these models is that we want to be more comparable across the used studies.
With these levels of consideration, we would like to elaborate on the following research
questions:

■ RQ1: What is the variance in performance when using different splitting methods
for train and test set of mHealth data?

■ RQ2: In which cases is the development, deployment and maintenance of a ML
model compared to a simple baseline heuristic worthwhile when being used on
mHealth data?

3.5.2 | Materials and Methods
In this section, we first describe how Ecological Momentary Assessments work and
how they differentiate from assessments that are collected within a clinical environment.
Second, we present the studies and ML use cases for each dataset. Next, we introduce the
non-ML baseline heuristics and explain the ML preprocessing steps. Finally, we describe
the splitting approaches at the user- and assessment levels.

3.5.2.1 | Ecological Momentary Assessments
Within this context, ecological means "within the subject’s natural environment", and
momentary "within this moment" and ideally, in real time [2]. Assessments collected in
research or clinical environments may cause recall bias of the subject’s answers and are
not primarily designed to track changes in mood or behavior longitudinally. Ecological
Momentary Assessments (EMA) thus increase validity and decrease recall bias. They are
suitable for asking users in their daily environment about their state of being, which can
change over time, by random or interval time sampling. Combining EMAs and mobile
crowdsensing sensor measurements allows for multi-modal analyses, which can gain
new insights in, e.g., chronic diseases [30; 31]. The datasets used within this work have
EMA in common and are described in the following subsection.

3.5.2.2 | The ML use cases
From ongoing projects of our team, we are constantly collecting mHealth data as well
as Ecological Momentary Assessments [4; 8; 322; 323]. To investigate how the machine
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Table 3.20: Overview of the mobile applications and the studies involved in this project:
TrackYourTinnitus [4], Corona Check [324], Corona Health [8], and Unification of Treat-
ments and Interventions for Tinnitus Patients [323].

Dataset No. of users No. of assessments First assesment from Dataset span Ø Age (Std) Ratio m/f/d % rate of GER users

TYT 3303 110983 2013-07-18 9,20 45.0 (14.4) 67/33/00 n. A.

CC 13763 89659 2020-04-08 2,48 32.7 (18.0) 59/39/01 36

CHA 1474 11081 2020-07-21 2,19 41.2 (13.9) 54/45/01 98

CHP 953 5661 2020-07-28 2,17 41.8 (15.2) 63/37/00 98

CHY 111 630 2020-08-08 2,14 15.2  (1.6) 51/47/01 n. A.

CHS 374 3845 2020-12-19 1,78 40.7 (13.9) 65/34/01 98

UNITI 763 32443 2021-04-13 1,46 53.0 (12.7) 57/43/00 54

Table 3.21: Baseline statistics and overview of the datasets used. Ratio m/f/d is the
sex ratio of male, female and diverse users. The dataset span is given in years. GER =
German.
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happen several times a day (e.g., for the tinnitus study TrackYourTinnitus (TYT)) or at
weekly intervals (e.g., studies in the Corona Health (CH) app). Nevertheless, the analysis
happens on the recurring questionnaires, which collect symptoms over time and in the
real environment through unforeseen (i.e., random) notifications.
The TrackYourTinnitus (TYT) dataset has the most filled out assessments with more than
110,000 questionnaires as by 2022-10-24. The Corona Check (CC) study has the most users.
This is because each time an assessment is filled out, a new user can optionally be created.
Notably, this app has the largest ratio of non-German users and the youngest user group
with the largest standard deviation. The Corona Health (CH) app with its studies Mental
health for adults, adolescents and physical health for adults has the highest proportion of
German users because it was developed in collaboration with the Robert Koch Institute
and was primarily promoted in Germany. Unification of treatments and Interventions
for Tinnitus patients (UNITI) is a European Union wide project, which overall aim is to
deliver a predictive computational model based on existing and longitudinal data [323].

TrackYourTinnitus (TYT) With this app, it is possible to record the individual fluctua-
tions in tinnitus perception. With the help of a mobile device, users can systematically
measure the fluctuations of their tinnitus. Via the TYT website or the app, users can also
view the progress of their own data and, if necessary, discuss it with their physician.
The ML task at hand is a classification task with target variable Tinnitus distress at time
tnow and the questions from the daily questionnaire as the features of the problem. The
target’s values range in [0, 1] on a continuous scale. To make it a classification task,
we created bins with step size of 0.2 resulting in 5 classes. The features are perception,
loudness, and stressfulness of tinnitus, as well as the current mood, arousal and stress level of
a user, the concentration level while filling out the questionnaire, and perception of the worst
tinnitus symptom. A detailed description of the features was already done in previous
works [52]. Of note, the time delta of two assessments of one user at tnext and tnow varies
between users. Its median value is 11 hours.

Unification of Treatments and Interventions for Tinnitus Patients (UNITI) The overall
goal of UNITI is to treat the heterogeneity of tinnitus patients on an individual basis.
This requires understanding more about the patient-specific symptoms that are captured
by EMA in real time.
The use case we created at UNITI is like that of TYT. The target variable encumbrance,
coded as cumberness, which was also continuously recorded, was divided into an ordinal
scale from 0 to 1 in 5 steps. Features also include momentary assessments of the user
during completion, such as jawbone, loudness, movement, stress, emotion, and questions
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about momentary tinnitus. The data was collected using our mobile apps [313]. Here, of
note: on average, the median time gap between two assessment is 24 hours for each user.

Corona Check (CC) At the beginning of the COVID-19 pandemic, it was not easy to
get initial feedback about an infection, given the lack of knowledge about the novel virus
and the absence of widely available tests. To assist all citizens in this regard, we launched
the mobile health app Corona Check together with the Bavarian State Office for Health and
Food Safety [324].
The Corona Check dataset predicts whether a user has a Covid infection based on a list
of given symptoms [38]. It was developed in the early pandemic back in 2020 and helped
people to get quick estimate for an infection without having an antigen test. The target
variable has four classes:

■ Suspected coronavirus (COVID-19) case

■ Symptoms, but no known contact with confirmed corona case

■ Contact with confirmed corona case, but currently no symptoms

■ Neither symptoms nor contact

The features are a list of Boolean variables, which were known at this time to be typically
related with a Covid infection, such as fever, a sore throat, a runny nose, cough, loss of
smell, loss of taste, shortness of breath, headache, muscle pain, diarrhea, and general
weakness. Depending on the answers given by a user, the application programming
interface returned one of the classes. The median time gap of two assessments for the
same user is 8 hours on average with a much larger standard deviation of 24.6 days.

Corona Health | Mental health for adults (CHA) The last four use cases are all derived
from a bigger COVID-19 related mHealth project called Corona Health [8; 325]. The
app was developed in collaboration with the Robert Koch-Institute and was primarily
promoted in Germany, it includes several studies about the mental or physical health,
or the stress level of a user. A user can download the app and then sign up for a study.
He or she will then receive a baseline one-time questionnaire, followed by recurring
follow-ups with between-study varying time gaps. The follow-up assessment of CHA
has a total of 159 questions including a full PHQ9 questionnaire [326]. We then used
the nine questions of PHQ9 as features at tnow to predict the level of depression for this
user for tnext. Depression levels are ordinally scaled from None to Severe in a total of 5
classes. The median time gap of two assessments for the same user is 7.5 days. That is,
the models predict the future in this time interval.
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Corona Health | Mental health for adolescents (CHY) Similar to the adult cohort, the
mental health of adolescents during the pandemic and its lock-downs is also captured by
our app using EMA.
A lightweight version of the mental health questionnaire for adults was also offered to
adolescents. However, this did not include a full PHQ9 questionnaire, so we created
a different use case. The target variable to be classified on a 4-level ordinal scale is
perceived dejection coming from the PHQ instruments, features are a subset of quality
of live assessments and PHQ questions, such as concernment, tremor, comfort, leisure
quality, lethargy, prostration, and irregular sleep. For this study, the median time gap of
two follow up assessments is 7.3 days.

Corona Health | Physical health for adults (CHP) Analogous to the mental health of
adults, this study aims to track how the physical health of adults changes during the
pandemic period.
Adults had the option to sign up for a study with recurring assessments asking for their
physical health. The target variable to be classified asks about the constraints in everyday
life that arise due to physical pain at tnext. The features for this use case include aspects
like sport, nutrition, and pain at tnow. The median time gap of two assessments for the
same user is 14.0 days.

Corona Health | Stress (CHS) This additional study within the Corona Health app
asks users about their stress level on a weekly basis. Both features and target are assessed
on a five-level ordinal scale from never to very often. The target asks for the ability of
stress management, features include the first nine questions of the perceived stress scale
instrument [327]. The median time gap of two assessments for the same user on average
is 7.0 days.

3.5.2.3 | Baseline heuristics instead of complex ML models?
We also want to compare the ML approaches with a baseline heuristic (synonym: Baseline
model). A baseline heuristic can be a simple ML model like a linear regression or a small
Decision Tree, or alternatively, depending on the use case, it could also be a simple
statement like "The next value equals the last one". The typical approach for improving
ML models is to estimate the generalization error of the model on a benchmark data set
when compared to a baseline heuristic. However, it is often not clear, which baseline
heuristic to consider, i.e.: The same model architecture as the benchmark model, but
without tuned hyperparameters? A simple, intrinsically explainable model with or
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without hyperparameter tuning? A random guess? A naive guess, in which the majority
class is predicted? Since we have approaches on a user-level (i.e., we consider users
when splitting) and on an assessment-level (i.e., we ignore users when splitting), we also
should create baseline heuristics on both levels. We additionally account for within-user
variance in Ecological Momentary Assessments by averaging a user’s previously known
assessments. Previously known here means that we calculate the mode or median of
all assessments of a user that are older than the given timestamp. In total, this leads
to four baseline heuristics (user-level latest, user-level average, assessment-level latest,
assessment-level average) that do not use any machine learning but simple heuristics.
On the assessment-level, the latest known target or the mean of all known targets so
far is taken to predict the next target, no matter of the user-id of this assessment. On
the user-level, either the last known, or median, or mode value of this user is taken to
predict the target. This, in turn, leads to a cold-start problem for users that appear for
the first time in a dataset. In this case, either the last known, or mode, or median of all
assessments that are known so far are taken to predict the target.

3.5.2.4 | ML Preprocessing
Before the data and approaches could be compared, it was necessary to homogenize them.
In order for all approaches to work on all data sets, at least the following information
is necessary: Assessment_id, user_id, timestamp, features, and the target. Any other
information such as GPS data, or additional answers to questions of the assessment,
we did not include into the ML pipeline. Additionally, targets that were collected on
a continuous scale, had to be binned into an ordinal scale of five classes. For an easier
interpretation and readability of the outputs, we also created label encodings for each
target. To ensure consistency of the pre-processing, we created helper utilities within
Python to ensure that the same function was applied on each dataset. For missing values,
we created a user-wise missing value treatment. More precisely, if a user skipped a
question in an assessment, we filled the missing value with the mean or mode (mode =
most common value) of all other answers of this user for this assessment. If a user had
only one assessment, we filled it with the overall mean for this question.
For each dataset and for each script, we set random states and seeds to enhance repro-
ducibility. For the outer validation set, we assigned the first 80 % of all users that signed
up for a study to the train set, the latest 20 % to the test set. To ensure comparability,
the test users were the same for all approaches. We did not shuffle the users to simulate
a deployment scenario where new users join the study. This would also add potential
concept drift from the train to the test set and thus improve the simulation quality.
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We call one approach superior to another if the final score is higher. The final score to
evaluate an approach is calculated as:

f f inal
1 = f test

1 − 0.5σ( f train
1 )

If the standard deviation between the folds during training is large, the final score is
lower. The test set must not contain any selection bias against the underlying population.
The pre-factor of the standard deviation σ with 0.5 has been chosen arbitrarily. It should
be set higher the more important the generalization error of the model is, i.e., models
with high performance variance between validation folds during training will receive an
even lower final score.

3.5.2.5 | Splitting approaches related to EMA
To precisely explain the splitting approaches, we would like to differentiate between
the terms folds and sets. We call a chunk of samples (synonym: assessments, filled out
questionnaires) a set on the outer split of the data, for which we cut-off the final test set.
However, within the training set, we then split further to create training and validation
folds. That is, using the term fold, we are in the context of cross-validation. When we use
the term set, then we are in the outer split of the ML pipeline. Figure 3.33 visualizes this
approach. Following this, we define 4 different approaches to split the data. For one
of them we ignore the fact that there are users, for the other three we do not. We call
these approaches user-cut, average-user, user-wise and time-cut. All approaches have in
common that the first 80 % of all users are always in the training set and the remaining
20 % are in the test set. A schematic visualization of the splitting approaches is shown in
Fig. 3.34. Within the training set, we then split on user-level for the approaches user-cut,
average-user and user-wise, and on assessment-level for the approach time-cut.
In the following section, we will explain the splitting approaches in more detail. The
time-cut approach ignores the fact of given groups in the dataset and simply creates
validation folds based on the time the assessments arrive in the database. In this example,
the month, in which a sample was collected, is known. More precisely, all samples
from January until April are in the training set while May is in the test set. The user-cut
approach shuffles all user ids and creates five data folds with distinct user-groups. It
ignores the time dimension of the data, but provides user-distinct training and validation
folds, which is like the GroupKFold cross-validation approach as implemented in scikit-
learn [177]. The average-user approach is very similar to the user-cut approach. However,
each answer of a user is replaced by the median or mode answer of this user up to the point
in question to reduce within-user-variance. While all the above-mentioned approaches
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Figure 3.34: Four approaches of data splitting into train folds and validation folds within
the train set. Yellow means that this sample is part of the validation fold, green means it
is part of a training fold. Crossed out means that the sample has been dropped in that
approach because it does not meet the requirements. Users can be sorted by time to
accommodate any concept drift.

require only one single model to be trained, the user-wise approach requires as many
models as distinct users are given in the dataset. Therefore, for each user, 80 % of his or
her assessments are used to train a user-specific model, and the remaining 20 % of the
time-sorted assessments are used to test the model. This means that for this approach,
we can directly evaluate on the test set as each model is user specific and we solved the
cold-start problem by training the model on the first assessments of this user. If a user
has less than 10 assessments, he or she is not evaluated on that approach.

3.5.3 | Results
We will see in this results section that ignoring users in training leads to an underesti-
mation of the generalizability of the model, the standard deviation is then too small. To
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further explain, a model is ranked first in the comparison of all computations if it has the
highest final score, and last if it has the lowest final score.

3.5.3.1 | RQ1: What is the variance in performance when using different splitting
methods for train and test set?

Considering performance aspects and ignoring the user groups in the data, the time cut
approach has on average the best performance on assessment level. As an additional
variant, we have sorted users once by time and once by random. When sorting by time,
the baseline heuristic with the last known assessment of a user follows at rank 2, whereas
with randomly sorted users, the user cut approach takes rank 2. The baseline heuristic
with all known assessments on the user-level has the highest standard deviation in
ranks, which means that this approach is highly dependent on the use case: For some
datasets, it works better, for other it does not. The user-wise model approach has also
a higher standard deviation in the ranking score, which means that the success of this
approach is more use-case specific. As we set the threshold of users to be included into
this approach to a minimum of 10 assessments, we have a high chance of a selection
bias for the train-test split for users with only a few assessments, which could be a
reason for the larger variance in performance. Details for the result are given in Table 3.22.

Could there be a selection bias of users that are sorted and split by time? To answer
this, we randomly draw 5 different user test sets for the whole pipeline and compared
the approaches’ rankings with the variation where users were sorted by time. The
approaches’ ranking changes by .44, which is less than one rank and can be calculated
from Table 3.22. This shows that there is no easily classifiable group of test users.
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Average rank Std of average rank Average rank Std of average rank
time_cut 2,29 1,50 1,57 0,16
user_cut 3,57 1,72 3,06 0,11

BL user_based last 3,29 1,70 3,46 0,21
average_user 3,86 0,69 3,51 0,36

BL user_based all 3,57 2,37 4,43 0,18
user_wise 4,33 2,07 5,10 0,38

BL assessment_based last 6,86 0,69 6,80 0,12
BL assessment_based all 7,71 0,49 7,66 0,15

Users
sorted by time

Users
split randomly

Table 3.22: Rank comparison of the four splitting approaches with the four baseline
heuristics. Greener means better. Three splitting approaches are on user-level, one is
on assessment level. The standard deviation is calculated from the average ranks of 7
datasets. When users are not sorted by time, the approaches are more robust in their
rankings, which means that the user cut approach is more likely to work consistently
better than the baseline heuristic on user-level. BL = Baseline.

Cross-validation within the train helps to estimate the generalization error of the model
for unseen data. On assessment-level, the standard deviations of the weighted F1 score
within the train set for all datasets varies between 0.25 % for TrackYourTinnitus and 1.29
% for Corona Health Stress. On user-level, depending on the splitting approach, the
standard deviation varies from 1.42 % to 4.69 %. However, on the test set, the estimator
of the generalization error (i.e., the standard deviation of the F1 scores of the validation
folds within the train set) is too low for all 7 datasets on assessment-level. On user-level,
the estimator of the generalization error is too low for 4 out of 7 datasets. We define the
estimator of the generalization error as in range if its smaller or equals the performance
drop between validation and test set. Details for the result are given in Table 3.23.
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Assessment-Level

Score user cut average user time cut

1.42% 4.69% 0.54%

76.80% 72.50% 77.57%

67.54% 64.60% 67.98%

Std Train 
Avg. F1 Train
F1 Test

Performance -9.27% -7.90% -9.59%

4.95% 3.59% 1.29%

54.73% 51.19% 57.47%

51.32% 53.10% 53.15%

Std Train 
Avg. F1 Train
F1 Test

Performance -3.41% 1.91% -4.31%

1.80% 1.46% 0.71%

98.85% 98.28% 98.89%

97.63% 94.86% 98.18%

Std Train 
Avg. F1 Train 
F1 Test

Performance -1.21% -3.42% -0.71%

3.75% 3.79% 1.23%

65.80% 66.73% 69.87%

61.79% 62.24% 63.05%

Std Train 
Avg. F1 Train 
F1 Test

Performance -4.00% -4.48% -6.81%

2.24% 2.47% 1.06%

47.79% 43.70% 53.25%

45.38% 46.53% 45.97%

Std Train 
Avg. F1 Train 
F1 Test

Performance -2.40% 2.84% -7.28%

2.25% 3.78% 0.25%

54.88% 45.97% 58.70%

56.26% 40.57% 57.26%

Std Train
Avg. F1 Train 
F1 Test

Performance 1.38% -5.40% -1.44%

2.51% 1.62% 0.36%Std Train 
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User-Level

Corona Check

CC

Corona Health 

Stress

CHS

Corona Health 

Mental Health Adolescents

CHY

Corona Health 

Physical Health Adults 
CHP

Corona Health 

Mental Health Adults

CHA

Track Your Tinnitus

TYT

Study

Table 3.23: Performance scores and standard deviations of the seven use cases on user-
and assessment-level. For the user-level, there are two splitting approaches shown:
User-cut, with users sorted by time of sign-up, and average-user, where an answer given
by a specific user is averaged with the users’ previously given answers. Red numbers
indicate the performance drop from train to test. f train

1 conforms the average f1 scores of
the validation folds of the train set.

Both approaches, user- and assessment, overestimate the performance of the model
during training. However, the quality of estimator of the generalization error increases if
users are split on user-level.

3.5.3.2 | RQ2: In which cases is the development, deployment and maintenance
of a ML model compared to a simple baseline heuristic worthwhile?

For our 7 datasets, the baseline heuristics on a user-level perform better than those on
assessment-level. For the datasets Corona Check (CC), Corona Health Stress (CH), TrackY-
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ourTinnitus (TYT) and UNITI, the last known user assessment is the best predictor within
the baseline heuristics. For the psychological Corona Health study with adolescents
(CHY) and adults (CHA), and physical health for adults (CHP), the average of the historic
assessments is the best baseline predictor. The last known assessment on an assessment-
level as a baseline heuristic performs worse for each dataset compared to the assessment
level. The average of all so far known assessment as a predictor for the next assessment -
independent from the user - has worst performance within the baseline heuristics for
all datasets except CHA. Notably, the larger the number of assessments, the more the
all-instances-approach on assessment-level converts to the mean of the target, which has
high bias and minimum variance.

CC CHS CHY CHP CHA TYT UNITI

Last instance 0.604 (0.008) 0.567 (0.008) 0.626 (0.028) 0.580 (0.014) 0.671 (0.008) 0.250 (0.003) 0.515 (0.005)

All instances 0.555 (0.008) 0.558 (0.016) 0.687 (0.037) 0.660 (0.020) 0.698 (0.006) 0.190 (0.003) 0.504 (0.005)

Last instance 0.445 (0.008) 0.273 (0.004) 0.288 (0.040) 0.275 (0.012) 0.313 (0.013) 0.205 (0.003) 0.254 (0.007)

All instances 0.302 (0.006) 0.138 (0.018) 0.233 (0.022) 0.176 (0.018) 0.317 (0.011) 0.187 (0.003) 0.173 (0.011)

User-

Level

Assessment-

Level

Table 3.24: Results of the four baseline approaches on the 7 datasets. The first number of
a cell is the average f1 score with the standard deviation (std) in brackets: f1(std). For
each dataset, the top score is marked green while the lowest score is marked orange.

These results lead us to conclude that recognizing user groups in datasets leads to an
improved baseline when trying to predict future ones from historical assessments. When
these non-machine-learning baseline heuristics are then compared to machine learning
models without hyperparameter tuning, it is found that they sometimes outperform or
similarly outperform the machine learning model.

Kind of model ML Baseline Baseline ML ML ML Baseline Baseline

Approach name Time Cut User-Level

Last 

User-Level

All instances

User Cut  Average User User Wise Assessment-

Level

 

Assessment-

Level

 Average rank 2.29 3.29 3.57 3.57 3.86 4.33 6.86 7.71

Std average rank 1.50 1.70 2.37 1.72 0.69 2.07 0.69 0.49

Table 3.25: Average rank of the approach for all datasets, including the standard deviation
of the rank one line below. On average, the baseline heuristics on the user-level are ranked
slightly better than the ML model on a user-level. Best rank is left, worst rank is right.

The approaches ranking in Table 3.25 shows the general overestimation of the perfor-
mance of the time-cut approach as this approach is ranked best on average. It can be also
seen that these approaches are ranked closely to each other. Because we only subtract
0.5 of the standard deviation of the f1 scores of the validation folds, approaches with a
higher standard deviation are less punished. This means, in turn, that the overestimation
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of the performance of the splits on assessment-level would be higher if the pre-factor
of σ was higher. Another reason for the similarity of the approaches is that the same
model architecture has been finally trained on all assessments of all train users to be
evaluated on the test set. Thus, the only difference of the rankings results from the
standard deviation of the f1 scores of the validation folds.
To answer the question whether it is worthwhile to turn a prediction task into an ML
project, further constraints should be considered. The above analysis shows that the
baseline heuristics are competitive to the non-tuned random forest with much lower
complexity. At the same time, the overall results are an f1 score between 55 and 65 for a
multi-class classification with potential for improvement. Thus, the question should be
additionally asked, from which f1 score can be deployed, which depends on the use case,
and in addition it is not clear whether the ML approach can be significantly improved by
a different model or the right tuning.

3.5.4 | Discussion
The present work compared the performance of a tree-based ensemble method if the split
of the data happens on two different levels: User and assessment. It further compared
this performance to non-ML approaches that uses simple heuristics to also predict the
target on a user- or assessment level. We quickly summarize the findings and then
discuss them in more detail in the sections below.

■ Ignoring users in datasets during cross-validation leads to an overestimation of the
model’s performance and robustness.

■ For some use cases, simple heuristics are as good as complicated tree-based en-
semble methods. Within this domain, heuristics are more advantageous if they are
trained or applied at the user level. ML models also work at the assessment level.

■ Sorting users can simulate concept drift in training if the time span of data collection
is large enough. The results in the test set change due to shuffling of users.

3.5.4.1 | Limitations of our findings
The - still - small number of 7 use cases itself has a risk of selection bias in the data,
features, or variables. This limits the generalizability of the statements. However, it
is also arguable whether the trends found turn in a different direction when more use
cases are included in the analysis. We do not believe that the tendencies would turn. We
restricted the ML model to be a random forest classifier with a default hyperparameter
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set up to increase the degree of comparability between use cases. We are aware that
each use case is different and direct comparability is not possible. Furthermore, we
could have additionally evaluated the entire pipeline on other ML models that are not
tree-based. However, this would have added another dimension to the comparison and
further complicated the comparison of the results. Therefore, we cannot preclude that
the results would have been substantially different for non-tree-based methods, which
can be investigated further in future analyses.

Future research of this user-vs.-assessment-level comparison could include a hyperpa-
rameter tuning of the model on each use case, a change of model kind (i.e., from a random
forest to a support vector machine) to see whether this changes the ranking. The overar-
ching goal remains to obtain the most accurate estimate of the model’s performance after
deployment.

3.5.4.2 | Baseline heuristics
We cannot give a final answer to what can be chosen as a common baseline heuristic.
In machine learning projects, a majority vote is typically used for classification tasks,
and a simple model such as a linear regression can be used for regression tasks. These
approaches can also be called naive approaches since they often do not do justice to
the complexity of the use case. Nevertheless, the power of a simple non-ML heuristic
should not be underestimated. If only a few percentage points more performance can
be achieved by the maintenance- and development-intensive ML approach, it is worth
considering whether the application of a simple heuristic such as "the next assessment
will be the same as the last one" is sufficient for a use case. Notably, Cawley and Talbot
argue that it might be easier to build domain expert knowledge into hierarchical models,
which could also function as a baseline heuristic [317].

3.5.4.3 | The impact of shuffled users
To retain consistency and reproducibility, we kept the users sorted by sign-up date to
draw train and test users. The advantage of sorting the users is that one can simulate
potential concept drift during training. The disadvantage, however, is an inherent risk of
a selection bias towards users that signed up earlier for a study. From Table 3.22, we can
see that the overfitting of users increases when we shuffle them. We conclude this from
the fact that the difference between the average ranks of the approaches time cut and
user cut increases. The advantage of shuffling users is that the splitting methods seem to
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depend less on the dataset. This can be deduced from the reduced standard deviation of
the ranks compared to the sorted users.

3.5.4.4 | Performance drops from validation folds to test set
Regardless of the level of splitting (user- or assessment-level), one can expect a per-
formance drop if unknown users with unknown assessments are withheld from the
model in the test set. When splitting at the user-level, the performance drop is lower
during training and validation compared to the assessment-level. However, it remains
questionable why we see this performance drop in the test set at all, because both, the
validation folds and the test set contain unknown users with unknown assessments. A
possible cause could be simple overfitting of the training data with the large random
forest classifier and its 100 trees. But, also a single tree with max depth = number of
features and balanced class weights has this performance drop from the validation to
the test set. One explanation for the defiant performance drop could be that during
cross-validation information leaks from training folds to validation folds, but not to the
test set.

3.5.4.5 | Final thoughts and recommendations
A simple heuristic is not always trivial to beat by an ML model, depending on the use
case and the complexity of the search space. Thinking of the complexity that a ML model
adds to a project, a heuristic might be a valuable start to see how well the model fits into
the workflow and improves the outcome. A frequent communication with the domain
expert of the use case helps to set up a heuristic as a baseline heuristic. In a second
step, it can be evaluated whether the performance gain from an ML model justifies the
additional development effort.

3.5.5 | Data and Code availability statement
According to the General Data Protection Regulation of the European Union, the data to
replicate these results are available upon request to the corresponding author.
All code to replicate the results, models, numbers, figures, and tables is publicly available
to anyone on https://github.com/joa24jm/UsAs. Any supplementary material is also in
this repository.
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4

Discussion

After having presented the research papers subsequently and presented the results, we
would like to summarize the overall findings, and discuss limitations. In doing so, we
divided this chapter into five sections. The first section 4.1, labeled "Recap of the research
questions", revisits the research questions introduced in previous sections. This section
establishes connections between the research questions articulated in the introduction,
the thesis-contributing papers, and provides a concise overview of the principal findings
highlighted in Chapter 3. Following this, the subsequent section 4.2, titled "Overall inter-
pretation of results", offers a comprehensive analysis of the cumulative research outcomes.
The goal is to present a holistic perspective that highlights the broader implications and
significance of the research findings. Within the third section 4.3, "Discussion of Limita-
tions", the study’s inherent constraints are openly acknowledged. These limitations are
categorized into those arising from the employed models, limitations associated with the
utilized data sources, and constraints inherent to the specific domain of study. The fourth
section 4.4, "Future Research", suggests avenues for possible future investigation and
points to directions for further scientific exploration. The intent is to guide forthcoming
research endeavors in further elucidating the addressed research directions. Lastly, the
concluding section 4.5, "Concluding Summary", encapsulates the synthesized insights
gleaned from the entirety of the thesis. Serving as the conclusion, this section concisely
recaps the key takeaways and underscores the broader significance of the undertaken
research.

4.1 | Recap of the research questions
The mHealth domain is a specific subdomain in medicine. As a relatively new field,
it also brings the additional challenge of communication at points of intersection be-
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tween medicine and informatics. More particular, physicians and data scientists or ML
engineers have to discuss and to understand each other’s challenges and problem under-
standings. In doing so, they need a common language. With this background given, one
can derive the three research questions that are discussed in this thesis and also shown
in Table 4.1.
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Within the mHealth domain, how can ML help confirming or broaden domain knowledge
within mHealth data? (Main RQ 1). The second research question is derived from the first:
How can one reach explainability in the presence of mHealth data when using ML? (Main RQ 2).
And research question 3 asks, which guidelines can be beneficial for the use of ML within the
mHealth domain, which we refer to as Main RQ 3. The contributing papers of the main
section then address the main research question by sub-research questions, which are
briefly summarized in Table 4.1.
Within Main RQ 1, (How can machine learning help confirming or broaden domain knowledge
within mHealth data?), we show that in a balanced test set (balanced: uniformly distributed
target labels in the test set), the gender of a TYT user can be predicted with an accuracy
of 81.7 % for our given features, which is well beyond guessing, which would be 50 % as
the test set is balanced in this binary prediction task. By comparing the performance and
speed of different algorithm architectures, we also show that for tabular data, tree-based
ensembles models such as a random forest or gradient boosting machine still provide a
reasonable trade-off for speed and performance. They are comprehensible, fast to train,
and perform - within tabular data - only slightly worse than neural networks, which are
bigger in size and more difficult to comprehend.
In Main RQ 2, (How can one reach explainability in the presence of mHealth data when using
Machine Learning?), we then ask how explainability can be reached when using mHealth
data in ML problems. Use cases on the TYT dataset aimed to predict gender or tinnitus
perception using large ensembles of decision trees. These ensembles were explained
by enhancing feature importance methods (i.e., the random forest feature importance)
and partial dependence plots. Using these explainability methods, we then concluded,
together with domain experts, that reported epiphenomenons like stress or insomnia are
valuable features to predict gender. For tinnitus perception, the perceived perception
varies for different temperatures, seasons and it varies between countries. In showing
that gender can be meaningfully predicted, we confirmed the hypothesis of the tinnitus
research community that tinnitus varies based on gender using a new method from
the ML domain. In showing that we can predict tinnitus perception (section 3.2), we
broadened the tinnitus domain knowledge by showing that season and temperature
are valuable features and correlate with tinnitus perception. In other words, the non-
parametric ensemble model showed a correlation of input A (season, country) and output
B (tinnitus perception). For these papers in sections 3.1 and 3.2, we mainly used partial
dependence plots, statistics and feature importances to explain the models. On the
literature review, which was carried out in section 3.4, we then found that the most
common explainability methods in the medical are SHAP, LIME, and Grad-Cam. We did
not find a single paper that matched our inclusion criteria of using audio data within
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a medical ML use case among with an explainability method. Still, most of the papers
used tabular or image data for the ML input, with a slight tendency towards more
image data. We then further estimate that only 16 % of the methods reported could be
potentially understood by patients, which are an important stakeholder group for the
implementation of ML systems in the medical domain.
Main RQ 3, (Which guidelines can be beneficial for the use of ML within the mHealth domain?)
is then partly addressed in section 3.4, in which we asked about the code and data sharing
ratios of the ML explainability medical papers that have been included in the literature
review. On average, about one fifth (21 %) of the papers publish their code and one
quarter (27 %) publish their data. We also obtained a positive trend in the precision of the
description of ML pipelines to reproduce the reported results. We calculated an average
score of 2.15 on an ordinal scale from 1 to 3 where larger means better (section 3.4). We
then asked in section 3.5, how ML performance varies, given different train-test-split
techniques. We found two things: First, ignoring user groups in the data leads to an
overestimation of the external validity of the model. In other words, the model overfits
on strongly represented users (synonym: power users) and learns user patterns instead
of relevant features. Second, a simple heuristic ("The next value equals the last one")
sometimes outperform complex ML ensembles in both variance and performance. We
then state that the choice between a ML model and a simple heuristic depends on the
use case and external project contributing factors. To summarize, from what we saw in
the literature review in section 3.4, and the cross-validation evaluation in section 3.5, we
would like to suggest the following guidelines, which finally answers Main RQ3:

■ During data cleansing, the data understanding within CRISP-DM should not only
be validated with subject matter experts, but also with software engineers, who are
aware of how the data is technically received and stored to prevent rounding or
operating system related errors.

■ The report of the ML pipeline should not only include hyperparameters of the
model used, such as the detailed architecture of a neural network or random forest,
but also the pre-processing, standardization, normalization, and data cleansing
steps that were necessary to arrive from raw data to a ML-ready dataset.

■ Code and data should be easily accessible, and shared with documentation. If data
must not be shared publicly, it should always be available upon reasonable request
for research and reproducibility.

■ The data must have a codebook that contains at least variable name, variable
meaning, coding, coding meaning and optionally, a comment and unit section.
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■ The data collection process should be briefly documented. Who collected when,
where and with which purpose the data? This information could be beneficial later
to explain noise in the data or draw limitations.

■ The overall use of a ML algorithm should be evaluated against a context-aware
baseline model, which could be a simple heuristic such as "the next value is the last
one" or the mean of the target in the train set.

■ Hidden user groups should be detected and separated from each other during
training to improve external validity of the model.

■ Model explainability can be enhanced and used to improve model performance
and deepen stakeholder trust.

As in Table 4.1 shown, the research questions of the Corona Check paper in section
3.3 cannot be meaningfully linked to one of the main research questions stated above.
However, due to my contribution to the data building pipeline and my analyses, section
3.3 is part of this thesis and this section summarizes all results. So, we found that
there are no statistically significant differences between countries, age groups or sex for
self-reported Covid-19 symptoms, which means that these users have experienced the
coronavirus in a comparable way during this time based on their symptom distribution.
We also did not find a correlation between the overall app usage and the world-wide
Covid-19 development in 2021. However, this paper shows that mHealth apps are
valuable tools for multi-modal and longitudinal data collection, which, in turn, can be
used to potentially feed ML algorithms. By developing and launching this app in an
early stage of the pandemic, we helped relieve overloaded hotlines by giving people
information about the coronavirus through the app, and by filling out the questionnaire,
they got feedback on whether they should see a doctor or isolate themselves.

4.1.1 | What is the medical contribution?
In this subsection, we would like to succinctly point out the medical contribution of
this thesis. In doing so, we distinguish between a linking contribution, which shows the
relevance of bridging the gap between medicine and informatics, and a domain-specific
contribution for thesis-contributing papers that required subject matter experts from
both the tinnitus domain, and severe acute respiratory syndrome coronavirus type 2
domain. The whole medical contribution is summarized in Figure 4.2. On an abstract
level, this thesis aims to strengthen the field of Digital Medicine by developing an deeper
data understanding for mHealth related data science projects and reporting common
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information on the coronavirus, and thus supported overburdened coronavirus hotlines.
We further found that the virus was reported equally by users of different countries,
gender and age groups - we did not find statistically significant different distributions
between these groups which suggests people experienced the infection equally regardless
country, gender, or age.

Bridging the gap between medicine and informatics The CRISP-DM cycle from sub-
section 2.3.1 explains the feedback loop that should be carried out between subject matter
experts and the data analysts in a ML project. This feedback loop requires a basic mutual
understanding of each other’s domains as well as a common language that clarifies syn-
onyms and homonyms, which might hinder effective interdisciplinary communication.
The literature review from section 3.4 aims to do that: Strengthening the bridge between
medicine and informatics. It is a paper that is primarily addressed to physicians, written
by computer scientists. It captures and explains the state of the art of ML explainability,
provides a taxonomy that helps to overcome homonyms and synonyms, and it explains
limitations as well as possible applications of the provided XAI methods.
The user-assessment paper from section 3.5 highlights a potential importance of interdisci-
plinary communication between physicians and data scientists. By close communication,
subject matter experts can help data scientists to detect hidden groups in data. How-
ever, this has been studied in more detail in only two papers (section 3.4 and 3.5) so
far and needs more research for sharper limitations and more precise conclusions. This
information may then help to provide better estimates for model performance in out-
of-distribution data. In addition, the subject matter expert can also help in building
simple heuristics, which can be evaluated against a complex ML approach and thus help
to assess the effort of training and deploying a complex model. Again, this requires
interdisciplinary, and open communication with a common language. The literature
review (section 3.4) helps to find this common language.

4.1.2 | What is the informatics contribution?
The contribution for both medicine and informatics is partly mentioned in Table 4.1.
However, for the sake of clarity, we summarize the contribution of for the informatics
field in this subsection.

■ This thesis developed a deeper understanding of implementation challenges of ML
and XAI on mHealth data.

170





Chapter 4. Discussion 4.2. Overall interpretation of results

■ Another finding: SHAP, Grad-Cam and intrinsic interpretable methods are most
used tools for XAI. We think they are widely adopted, because they are easy to use
(using Python’s pip install), post-hoc and model-agnostic.

■ Audio data is still rarely used for medical use cases with XAI requirements.

■ We estimate that maximum 1 of 5 XAI methods can be understood by end users in
medicine (i.e., patients).

■ Ignoring groups in training data leads to overfitting and overestimation of model
performance.

■ Simple heuristics (“The next value equals the last one”) sometimes beat complex
ML models.

4.2 | Overall interpretation of results
Main RQ 1 (How can ML help confirming or broaden domain knowledge within mHealth data?)
is addressed in sections 3.1, 3.2 and 3.5. All of these three papers apply tree-based
ML algorithms on multi-modal mHealth data to detect A-to-B mappings in a multi
dimensional search space that is too complex for the human brain to comprehend. We
show in section 3.1 that tree-based models are still a valuable option among a large
variety of different ML architectures to address prediction tasks for tabular data. This
indeed answers the sub-research question Which ML architecture is most suitable for the
gender prediction task. By applying ML algorithms on multiple use cases within different
mHealth EMA datasets, we first show that these algorithms have higher performance
scores (such as F1, and Mean Absolute Error) than guessing or simple heuristics, and
further, they are able to learn A-to-B mappings of arbitrary complexity. This then answers
Main RQ 1. Machine Learning can indeed help to confirm or broaden domain knowledge
if

■ the model performs significantly better than heuristics or random guessing,

■ the subject matter expert is involved in a feedback loop using CRISP-DM while
developing the model and analyzing the training data,

■ challenges deriving from multi-modal data are appropriately addressed, and

■ hidden user groups are separated from each other during training for validation.
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Regarding Main RQ 2 (How can one reach explainability in the presence of mHealth data
when using Machine Learning?), we would argue from the results of section 3.2 that a
step-wise increase of the complexity - even when using explainability methods - helps
to comprehend and understand why a model makes a certain prediction. Rather less
complex interpretability methods are decision trees (as post-hoc explainability) or partial
dependence plots. If a partial dependence plot, i.e., shows that insomnia or sex are
valuable features to decrease entropy in the target distribution, then SHAP or LIME can
be used to verify or disprove this hypothesis in a multi-dimensional space while using a
completely different approach. Or similarly, if SHAP strongly suggests that insomnia is
an important feature, then a random forest feature importance should state something
similar. Different approaches are indeed another step to reach explainability. When
applying different explainability methods on the same model, i.e., to determine feature
importance, different methods may yield to slightly different results (see section 3.1,
table 3.6). While this can be explained by the model architecture and the approach of
the explainability method, the most important key take-away from Table 3.6 is that all of
methods used provide a tendency which feature is rather less or more important.
The last factor that contributes to explainability is the domain expert. According to
CRISP-DM, there should by an agile, open communication and knowledge transfer
between data scientist and domain expert. That is, if the ML engineer or data scientist
found a correlation between input A and output B, they should verify this in a discussion
with the domain expert. We would like to call this approach the domain expert in the
loop. To finally and briefly answers Main RQ 3: Explainability in the presence of mHealth
data when using ML can be reached if:

■ The complexity of the explanatory methods is gradually increased with concurrent
mutual verification of each others results,

■ different explainability methods rank the same feature similarly important, and

■ the domain expert in the loop should communicate agilely and openly with the
data scientist (and vice versa) to verify results around the development process.

Which guidelines can be beneficial for the use of ML within the mHealth domain, which is
addressed in Main RQ 3, is a question that cannot be fully answered in one paragraph.
The publications in the field of AI increase rapidly due to the large research community
and various branches such as computer vision, language models, and tabular or time
series data. In the following, we would like to summarize the guidelines that generally
apply for ML projects and add guidelines that apply for mHealth ML projects particularly.
General guidelines include:
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■ Ensure data quality together with domain experts [329]

■ Select given features, engineer new features or choose and end-to-end approach
using Deep Learning [330]

■ Design the model architecture and chose metrics that align with the project‘s desired
outcome [331]

■ Ensure model explainability for stakeholders such as ML engineers, physicians,
patients, users, authorities [287]

■ Consider ethical implications of the data, potential biases and impact on stakehold-
ers [332]

■ Ensure alignment with relevant regulations such as the EU AI Act, Software as a
medical device regulations, and the general data protection regulation.

MHealth ML project guidelines may include:

■ Correct your dataset for power users which may induce bias.

■ Ensure equidistant measurements by reminding users to fill out recurring assess-
ments - provide incentives to keep users using the app.

■ Think of the time axis of longitudinal studies and correct for concept drift.

■ Avoid optional questions in the assessments to avoid missing value treatment. If
you have missing values, you may preferably use user-wise imputation methods.

■ Correct for operating system specific measuring inaccuracies such as rounding or
cut-off errors. Consult app and backend developer for to find other potential data
issues that are not domain related.

■ Ensure user identity by providing secure logins to the study and remind users to
not pass their phone to other people when filling out the assessment.

■ Make the model complex enough to capture the heterogeneity of all users, but
simple enough to estimate out of distribution users (also known as the bias-variance
trade-off).

In this section, we answered the three main research questions briefly and provided an
overall interpretation of the results. The following section points out the limitation of
these results.
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4.3 | Limitations of this work
This section is subdivided into three subsections.
Model-related, data-related and domain-related limitations. Model-related limitations
discuss potential performance decrease due to overfitting and out-of-distribution data.
Data-related limitations refer to the challenges that naturally arise when working with
mHealth MCS data, such as unknown user identity or power users. In domain-related
limitations, we discuss the restrictions of the medicine-related results.

4.3.1 | Model-related limitations
Regarding sections 3.1 (Tinnitus Gender) and 3.2 (Tinnitus Country), we could not
evaluate the models on out-of-distribution data as they never got deployed. From ML
Operations, we know that there are many challenges when deploying a model and the
ML code itself is just a small part of the project. Some of these issues are concept drift,
data shift, and overfitting. That is, the reported performances of the models in both
papers may decrease after deployment. This, in turn, can lead to a re-engineering of the
features and thus slightly change the outcome regarding feature rankings and feature
importances. Another limitation that the models of these papers have in common: They
have been evaluated on assessment-level. From section 3.5, we know that this can lead to
overfitting and an overestimation of model performance. In particular, overfitting means
that the model might have learned filling out behaviour of power users (not desired)
instead of domain-relevant feature patterns (desired). From the introduction, we also
know that user identity is an issue. We never really know if a user passes his or her
mobile device to another person, asking to fill out the current assessment. This leads to
noise in the data, which limits our findings.

4.3.2 | Data-related limitations
In the introduction, we have addressed the problem of non-equidistant measurements.
From the analysis of section 3.5 (Figure 1.4), we know that there is a large variance
of the time gap of two filled out assessments of a user. If we then train a model to
predict the next assessment and the study design suggests a time gap of two weeks,
the model might predict a time gap of 18 or 22 days because of irregular filling out
behaviour, which is reflected in the train data. In section 3.5, we used different datasets
to better estimate the out-of-sample performance of our ML models after deployment.
The datasets that we used, however, might be limited in comparability because of the
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different user behavior in mHealth studies. The user behavior between studies can vary
because of time-related concept drift (early data was collected in 2014, other data was
collected during the pandemic in 2020). The user behavior can further vary because of
the different circumstances, in which these users fill out the assessment. A user with
severe tinnitus symptoms has a different motivation to complete the questionnaire than
a disinterested user from the Corona Health study during lockdown. Missing values
remain a problem for assessments with non-required, optional questions. Although there
exist many techniques for missing value treatment, such as user-based missing value
treatment or k-nearest-neighbor, these imputed values are estimates of non-existent values
and thus add noise to the train data. Operating system specific measuring inaccuracies
are one issue that we detected during our analyses. There might be more non-detected
issues that add noise or inaccuracies to the train data and thus limit the results, worsen
model robustness, or model performance.
The literature review from section 3.4 contains data until March 7 in 2022. The AI research
field, however, is an exponentially growing field and since 2022-03-07, there have been
published many more papers, which could lead to different rankings other than we
found. Also, even within the search time from 2008 to 2022, we could not cover all
available data bases for medical AI literature as we were limited in people to carry
out the review. However, we are confident that with over 2500 abstracts, we have a
representative sample from the literature to have reliable estimators of the true values. A
general characteristic of our mHealth studies is that they are convenience samples with
low barriers to entry and exit. For example, with the Corona Health and Corona Check
apps, anyone can download the app, sign up for the studies, and fill out assessments.
That leads to a risk of a selection bias in multiple directions. The Corona Check app,
i.e., was mostly filled out by Germans, followed by users from India and South Africa
(Figure 1.3). Thus, when we say that we did not find differences in the distributions of
reported symptoms between countries, we are referring primarily to these countries. If
we then look at the age distribution, we see that the average of our app users is not the
same as the average of the population: mainly younger people use these apps. The low
exit barriers then lead to a exponential drop out of the app users, which then leads to the
challenge of power users, which we described in paragraph 1.2.1.

4.3.3 | Domain-specific limitations
Regarding the tinnitus domain from section 3.2, observing significant seasonal and
geographical variations in momentary tinnitus, it’s essential to note that these differences
do not imply causality between features and the target. Although our findings offer
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valuable insights for tinnitus research, limitations should be acknowledged. Contributing
features beyond those observed, such as air pressure, stress, and sunlight exposure,
could contribute to tinnitus variability. Varying user counts among countries could
further introduce selection bias. Additionally, individual experiences of tinnitus may
differ from the identified trends. Thus, the applicability of these findings to individuals
is restricted.
Regarding the coronavirus domain, the virus is known to have mutated continuously
during our data collection phase and there were different variants (including the
well-known ones like Omicron O, and Delta ∆). The symptom distribution also varies
among the coronavirus variants, which we did not consider in the evaluation, because
we did not know whether the users were infected and if so, with which variant. The data
were not granular enough for this.
Also, one of our hypotheses from the Corona Check paper is that the app helped take
pressure off coronavirus hotlines because more people were getting information from the
app instead of calling the hotline. However, we were never able to investigate whether
and to what extent our app actually relieved hotlines. Nevertheless, we can cautiously
and logically conclude that the number of people calling a hotline will fall if more people
find out about an app with the same information content.

After giving model-, data-, and domain-specific limitations, we point out future research
directions in the next section.

4.4 | Future research
Because this work is placed at many intersections, there are many direction for further
research directions. We would therefore like to make suggestions here with an excerpt
that we consider promising.

Addressing the exponential user drop off Most of the user stop using the app after
one or two assessments. This stops us from creating user-wise longitudinal datasets,
which would be valuable in training robust models. Gamification could be one approach
to keep users using the app. But how promising is that? Which other approaches exist
and how effective are they? Another idea is to provide interaction using large language
models (LLM) such as Generative pre-trained transformer 4 (GPT-4) [333] or an app-
based social network, which allows users to get in contact with each other to exchange
about their disease experiences.
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Deepen explainability knowledge for large language models Some researchers con-
sider the new generation of LLMs as artificial general intelligence (AGI) [79]: An AI
system that can solve tasks it was not explicitly trained for. These system are also able to
explain their answers to an end user. The question that arises here is: How and to which
extinct can these systems explain themselves? Can the reason logically? Can they reason
causally? Or are they, as other scientists suspect, just stochastic parrots [334]?

Further tinnitus research using ML The tinnitus related outcomes of chapters 3.1
and 3.2 confirmed or extended the knowledge about tinnitus. Further studies could
investigate to what extent temperature, humidity, or a confounder variable such as
season have actual influence on tinnitus and what biological mechanisms are behind
it. Regarding sleep problems in women, the direction of the cause would be intriguing:
does tinnitus lead to sleep problems or does fatigue lead to tinnitus?

Increasing data quality and multi-modality in EMA and MCS using clinical studies
The anonymity and non-binding nature of EMA studies has the advantage of reaching
many different individuals. The disadvantage, however, is that the data obtained cannot
be linked to others where the identity of the patients is known, such as in clinical trials.
So, it would be exciting to see if EMA data could be augmented with biological data
such as blood counts or physical tests by the treating physician to get a holistic picture of
a disease process. Also, the exponential user drop off could be reduced, because there
would be more liability and more benefits for the patient.

Implementing AI in health Not excluding our studies, most ML papers are not
implemented. On the one hand, this is due to the lack of scope: the papers simply
do not aim to produce proof-of-concepts, but remain in theory. On the other hand,
it is also due to the fact that the implementation of AI systems is very complex and
requires additional domain experts from software development (backend, frontend,
full-stack developers) and IT security to make the systems secure against malicious
attacks. There are already frameworks that outline requirements for the system: They
should be purposeful, effective, safe, secure, private, fair, equitable, transparent, explain-
able, accountable, and monitored [335; 336]. That in mind, another dimension adds
complexity: Ethics. For instance, an informed consent. Who should be informed that AI
is working in the background? Which stakeholders have an interest in knowing? Which
rights of patients should be protected and how? These issues are partially touched
upon in the literature [337]. What is missing are guidelines and lessons learned for the
implementation of AI systems in German or European hospitals. Also, when it comes
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to practical implementation, the usefulness of a prediction might be questioned. For
instance, the prediction horizon should be discussed: Is it useful to predict something 10
years ahead? Or 1 year? Or 1 hour? It depends on the clinical workflow and whether
such a time window finally improves patient treatment. However, most of the research
papers do not take this clinical workflow into account. As workflows might differ
between hospitals, the implemented models differ and thus their will performance.
What ultimately matters, however, is the local validity of the models, so a test set
must ultimately be out-of-distribution and from the local clinic in order to assess the
implementability of a model. For high-stake decisions, there should be a domain expert
in the loop. But, when and how is this expert included? Is there a feedback loop to the
model that runs in production? What information should be displayed on a dashboard?
And does this ultimately improve the clinical workflow, or does it not stress the treating
physician because another duty is added?

These are some research directions that we consider promising and valuable for the
digital medicine community. In the last and final section, we would like to conclude this
thesis.

4.5 | Conclusion
This work is affiliated with the intersection of several disciplines and includes the
concepts of EMA, mHealth, Mobile Crowdsensing (MCS), Supervised Machine Learn-
ing, Machine Learning Explainability, and works with data from the Tinnitus Domain,
Psychology, and the coronavirus. EMA involves the repeated sampling of a user’s cur-
rent experience and in his or her natural environment in real time. mHealth refers to
medical procedures and private and public healthcare interventions delivered on mobile
devices. MCS means the measurement and collection of data through different types
of measurement devices (e.g., smartphones) by a large number of users. Supervised
Machine Learning is a non-parametric mapping of an input A to an output B with known
labels of B. Machine Learning Explainability describes methods that enable humans to
understand why a model makes certain predictions. And the domain expert is a person
with high level of expertise in the area of interest.
Within these fields, we originally asked how can we achieve XAI within the mHealth
domain and if yes, can we beneficially use XAI methods? I then asked, in general terms,
(1) what challenges are specific to EMA and MCS, (2) which value ML adds to the analy-
ses of this data, (3) and why XAI is needed in that context. The specific challenges that we
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found in the mHealth context (power user, no equidistant measurements, concept drift,
missing values, operating-system-related measuring inaccuracies, uncertain user identity,
different user behavior) are results of experience over time, and iterative communica-
tion with different domain experts from backend, app developers, application domain
and data scientists. ML is a great tool among others and has the power to confirm or
broad domain knowledge, increase workflow efficiency, and improve medical treatment
quality. However, its potential to add value depends on the use case and sometimes,
statistics or even simpler heuristics outperform complex ML models. XAI is needed to
improve model performance and robustness, and to build trust with stakeholders. The
granularity, language, and complexity of a useful XAI method depends on the recipient
of the explanation.
Altogether, one major lesson from this thesis is: The key of progression (gaining experi-
ence, finding and documenting pitfalls, meaningfully interpret data, and precisely draw
conclusions) is an open communication between the specialists involved in the research
project. For open communication, in turn, a common language during these projects
is required. This can finally lead to strong bridges between medicine and informatics,
resulting in new research areas like digital medicine, where people stand on the same
side of the challenges and working to address new research questions together.
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