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Supplementary Note 1: Vibronic polariton Hamiltonian 

To simulate our experimental observation, we adopted a vibronic polariton Hamiltonian [1], 
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Here EX, EC, and EV are the energies of the pure exciton, the cavity photon, and the phonon, 

respectively. In the matrix of H, we assume three excitonic states, |GC; X; 𝑣𝑣⟩, with phonon 

quantum number v = 0, 1, 2, one pure cavity photon state, |EC; G; 0⟩, and two other phonon-

dressed photon states, |EC; G; 1⟩ and |EC; G; 2⟩, which possess energies of EC+ v EV (v = 1, 2). 

The phonon-dressed photon states consist of one photon plus v phonons of a particular mode. 

We truncated the Hamiltonian at the phonon quantum number v = 2 (hence the 6×6 matrix), 

because this is the lowest number that allows us to simulate the three polariton branches in the 

energy-momentum-resolved PL map [Fig. 3(a) of the main text]. Here, the energy of the pure 

exciton EX = 1.656 eV is known from the absorption spectrum of the DML region before 

capping the structure with the top DBR [2]. 

Off-diagonal terms gij (i, j = 0, 1, 2) are the interaction potentials between the cavity photon 

and the excitonic states, which can be calculated by [1] 

gij = ⟨i|j⟩ ℏ𝛺𝛺
2

. (S2) 

Here, 𝛺𝛺 is the Rabi frequency and ⟨i|j⟩ represents the vibrational overlap integral (Franck–

Condon factor) that depends on the Huang–Rhys factor S [3],  

⟨i|j⟩ = 𝜇𝜇𝑋𝑋exp(−𝑆𝑆/2), (i = 0, j = 0) (S3) 

⟨i|j⟩ = 𝜇𝜇𝑋𝑋�𝑆𝑆/i × ⟨i − 1|j⟩, (i ≠ 0, j = 0)  (S4) 
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⟨i|j⟩ = −𝜇𝜇𝑋𝑋�𝑆𝑆/j × ⟨i|j − 1⟩, (i = 0, j ≠ 0)  (S5) 

⟨i|j⟩ = −𝜇𝜇𝑋𝑋�𝑆𝑆/j × ⟨i|j − 1⟩ + 𝜇𝜇𝑋𝑋�i/j × ⟨i − 1|j − 1⟩. (i ≠ 0, j ≠ 0) (S6) 

Here, 𝜇𝜇𝑋𝑋 is an “overall” transition dipole moment of the exciton, which is set as 1 in this work. 

Diagonalization of Supplementary Eq. (S1) allows us to obtain eigenstates |Pk⟩, with k = 0, 

1, …, 5. The resulting eigenstates are linear combinations of the collective states |L⟩ =

|GC; X; v⟩ or |EC; G; v⟩ with v = 0, 1, 2, 3,  

|Pk⟩ = ∑ 𝑐𝑐kL|L⟩L , (S7) 

with appropriate mixing coefficients 𝑐𝑐kL. 

In a first step, let us assume that the phonon-dressed photon states do not couple to the 

excitonic states, hence, gij = 0 (for all terms with j ≠ 0). Then the 6×6-sized Hamiltonian can 

be reduced to 4×4 entries, 
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Under this premise, we consider a varying magnitude of S. If S = 0, then g00 = 𝛺𝛺/2 and g10 

= g20 = 0, the Hamiltonian reduces to the widely employed two-coupled-oscillators model [4], 

leading to two polariton branches, i.e., the upper (green) and lower (black) polariton branches 

as depicted in Fig. 1(b) of the main text . However, the simulated results obviously cannot 

explain the observed multiple polariton dispersion curves in the energy-momentum-resolved 

PL map. Next, we set S to be 0.3, and show the simulated dispersion curves of the resulting 

eigenstates in Fig. 1(c) of the main text. As S increases, new polariton branches (with curved 

dispersion) are found. These new polariton states are formed due to a threefold coupling 

between the exciton, the photon, and the phonon. However, from the nature of the mathematical 



4 

model, it follows that the first excited state in Fig. 1(c) of the main text, i.e., the second 

simulated curve as counted from the bottom, will always appear above the line of E = 1.656 eV, 

whereas experimentally we observe polariton dispersion curves emerging from 1.605, 1.630 

and 1.643 eV [Fig. 3(a) of the main text] for the combined system of heterostructure and cavity. 

Thus, independent of the particular choice of parameters in the simplified Hamiltonian, the 

experimentally observed energy structure cannot be explained by the model without including 

the coupling of phonon-dressed photon states to excitonic states. 

Thus, as the next step, we activate the coupling terms between the phonon-dressed photon 

states and the excitonic states and calculate the dispersion curves of the resulting eigenstates 

[Fig. 1(d) of the main text]. The inclusion of coupled phonon-dressed photon states introduces 

additional polariton states after diagonalizing the Hamiltonian. Most importantly, the 

appearance of the polariton branches emerging from 1.630 eV and 1.643 eV at k|| =0 in the 

energy-momentum-resolved PL map shown in Fig. 3(a) of the main text can be reproduced by 

the simulation.  

Supplementary Note 2: Sample fabrication 

Our microcavity is composed of a bottom distributed Bragg reflector (DBR), which consists of 

10 pairs of SiO2/TiO2 with a central Bragg wavelength of 750 nm. The embedded van-der-

Waals heterostructure was prepared by the Scotch tape method combined with a dry PDMS 

transfer. We utilize high-quality, vapor-phase-grown WSe2 crystals to implement a layer 

sequence of WSe2/hBN/WSe2 on top of the bottom DBR. Our top DBR is composed of 9 

repetitions of SiO2/TiO2, which is deposited on top of the structure utilizing a gentle low-

temperature technique (more details can be found in Ref. [5]).  The quality factor of the sample 

is 𝑄𝑄 = 4760 ± 370. 
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Supplementary Note 3: 2D micro-spectroscopy setup 

Supplementary Figure 1 schematically illustrates the setup of the 2D micro-spectroscopy. Four 

laser pulses in one collinear beam were generated by a 4f-based pulse shaper and, then, focused 

on the double-monolayer region by a high-numerical-aperture (NA = 1.4) objective. The PL 

signal was collected by the same objective and detected by an avalanche photodiode (APD). A 

low-energy-blocking aperture (LEBA, Supplementary Figure 1) was inserted into the light path 

in front of the spatial light modulator (SLM, Supplementary Figure 1) in the pulse shaper, 

removing the low-energy part (below 1.615 eV) of the laser spectrum [Fig. 2(c) of the main 

text]. This ensures that the low-energy transmission filter in the detection path (LETF, 

Supplementary Figure 1) blocks any scattered or reflected excitation light and leaves only PL 

to be detected by the APD. The pulse duration was compressed down to ~20 fs at the sample 

position by a PRISM procedure [6,7], as indicated by the second-order interferometric 

autocorrelation curve (Supplementary Figure 2). Additionally, the positon of the LEBA was 

adjusted for a second 2D measurement with the excitation laser spectrum below 1.685 eV 

blocked, such that the 2D spectrum in Fig.3(c) of the main text was measured.  

 

Supplementary Figure 1.  Experimental setup. Four collinear laser pulses are generated by a 4f-based 
pulse shaper and focused by a high-numerical-aperture objective. PL is collected by the same objective 
and its intensity detected as a function of the time delays (τ , T, and t) between pulses and as a function 
of their phases ( 1ϕ , 2ϕ , 3ϕ , 4ϕ ).  
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Supplementary Figure 2. second-order interferometric autocorrelation measured by a two-photon 
photodiode at the sample position. 

Supplementary Note 4: Data acquisition 

The data acquisition of coherent 2D micro-spectroscopy has been detailed previously [8]. In 

this work, we obtained 2D spectra by scanning the coherence times τ and t in steps of 15 fs each 

from 0 to 210 fs, for a given waiting time T, using the spectral modulation function imposed on 

the pulse shaper, 

𝑀𝑀(𝜔𝜔) = exp�𝑖𝑖�𝜔𝜔 − 𝜔𝜔0(1− 𝛾𝛾)�(−𝜏𝜏 − 𝑇𝑇)� + exp�𝑖𝑖�𝜔𝜔 − 𝜔𝜔0(1 − 𝛾𝛾)�(−𝑇𝑇) + 𝑖𝑖𝜑𝜑12� +

exp[𝑖𝑖𝜑𝜑13] + exp�𝑖𝑖�𝜔𝜔 − 𝜔𝜔0(1 − 𝛾𝛾)�𝑡𝑡 + 𝑖𝑖𝜑𝜑14�, (S10) 

at a center frequency of 𝜔𝜔0 = 2.513 × 1015 s-1. We employed a rotating frame by setting the 

parameter γ = 0. The third pulse was fixed at time 0, so that when 2D spectra were measured at 

a certain waiting time T, only the first and fourth pulses were delayed.  

By setting the phase of the first pulse to 0, we scanned three relative phases 𝜑𝜑12, 𝜑𝜑13, and 

𝜑𝜑14 , where 𝜑𝜑1𝑗𝑗 = 𝜑𝜑𝑗𝑗 − 𝜑𝜑1  for individual pulse phases 𝜑𝜑𝑗𝑗 , in a 64-step phase-cycling (PC) 

scheme so that each relative phase took values of 0, 𝜋𝜋
2

, 𝜋𝜋 , and 3𝜋𝜋
2

. One particular phase 

combination can thus be presented as [𝜑𝜑12, 𝜑𝜑13, 𝜑𝜑14]. Supplementary Figure 3 shows four 2D 

maps with PL intensity plotting against the coherence times τ and t for phase combinations of 

[0, 0, 0], [𝜋𝜋
2
, 0, 0], [𝜋𝜋, 0, 0], and [3𝜋𝜋

2
, 0, 0], as examples. The data were normalized at the pixel 

locating at τ = 210 fs and t = 210 fs, that is, we divided the values of all pixels by the value of 
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the chosen pixel. The reason is that due to the short dephasing time of the studied sample, the 

fourth-order nonlinear contributions at long coherence time averaged out, leaving only linear 

contribution at these positions. Therefore, the adopted normalization procedure can help us to 

eliminate the scaling effect of the linear signal. In addition, owing to the employment of rotating 

frame, no high-frequency oscillation occurs when plot a line cut along either the τ axis or the t 

axis, such that we can use relatively large scan step of 15 fs to monitor the envelope evolution. 

At every T, we measured 64 2D maps with different phase combinations. Then, for a certain 

signal, e.g., the rephasing or the nonrephasing signal, a weighted summing of the 64 2D maps 

has to be conducted using 

𝑝𝑝�(𝑛𝑛)(𝛽𝛽, 𝛾𝛾, 𝛿𝛿 ) = 1
𝐿𝐿𝐿𝐿𝐿𝐿

∑ ∑ ∑ 𝑝𝑝(𝜑𝜑12,𝜑𝜑13,𝜑𝜑14)𝐿𝐿−1
𝑙𝑙=0

𝑀𝑀−1
𝑚𝑚=0

𝑁𝑁−1
𝑛𝑛=0 × exp[−𝑖𝑖(𝛽𝛽𝜑𝜑12 + 𝛾𝛾𝜑𝜑13 + 𝛿𝛿𝜑𝜑14)]

 (S11) 

where L, M , N are the numbers of steps we scan within a 2π range for the phase of each pulse, 

𝛽𝛽, 𝛾𝛾, 𝛿𝛿 are integers used to define one specific nonlinear signal. For the rephasing signal, 𝛽𝛽 =

1, 𝛾𝛾 = 1, and 𝛿𝛿 = −1, whereas for the nonrephasing signal, 𝛽𝛽 = −1, 𝛾𝛾 = 1, and 𝛿𝛿 = −1. 

After the weighted summation, time-domain 2D maps can be obtained. E.g., Supplementary 

Figures 4a and 4b show the time-domain 2D maps of the rephasing and nonrephasing signals 

for T = 50 fs, respectively. Subsequent 2D Fourier transformations of these two figures against 

τ and t result in the 2D spectra shown in Figs. 4(b,c) of the main text. The 64-step PC ensures 

that there is no sixth-order nonlinear signal mixing with the fourth-order rephasing signal 

observed in the 2D spectra. This is crucial for our TMD microcavity, for which the amplitudes 

of sixth-order nonlinear signals are comparable to those of the rephasing signal and could 

seriously affect its 2D lineshape.  

Due to the finite response time of the liquid crystals of the employed pulse shaper, we waited 

for 500 ms after changing the phase mask before taking data. The laser spectrum was confined 

by the LEBA, which acted as a short-pass filter at 768 nm wavelength (1.615 eV). The LETF 
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with a cutoff wavelength of 773 nm (1.604 eV) was placed before the APD. Photoluminescence 

was averaged over 1 ms for each acquisition period of the APD. Including additional averaging 

(4000 times for each pulse shape), the total measurement time for one 2D map was ~10 h. The 

group delay dispersion at the sample position was compensated by adding an additional phase 

to the modulation function. 

  

Supplementary Figure 3. Four 2D maps with normalized PL intensity plotting against the coherence 

times τ and t for phase combinations of [0, 0, 0, 0], [0, 𝜋𝜋
2

, 0, 0], [0, 𝜋𝜋, 0, 0], and [0, 3𝜋𝜋
2

, 0, 0]. 

 

Supplementary Figure. 4. Time-domain 2D maps of the rephasing (a) and nonrephasing (b) signals for 
T = 50 fs. 
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Supplementary Note 5:  Full set of energy-momentum-resolved PL map 

For the momentum-resolved PL measurements, a standard back-Fourier-plane imaging 

configuration is used, as schematically shown in Fig. 2(c) of the main text. The first lens on top 

of the sample is Thorlabs C105TMD-B (NA=0.6), and its back-focal plane carries the 

momentum-dependent information of the sample. A second lens collects the back-focal-plane 

information of the first lens, and a third lens projects the information into the focal plane (slit) 

of a spectrometer (model A-SR-500i-B2-SIL). The CCD camera (model iKon-M DU934P-

BEX2-DD-9FL) attached to the spectrometer is operated in the regime for highest sensitivity 

(50 kHz A/D rate, pre-amplifier setting x4, and sensor cooling temperature of -80°C). 

Supplementary Figure 5 shows the energy-momentum-resolved PL map of a double-monolayer 

(DML) region. 

 
Supplementary Figure 5. Energy-momentum-resolved PL map of a double-monolayer (DML) region. 
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Supplementary Note 6: 2D spectra for different T 

Supplementary Figures 6 and 7 show the rephasing and the nonrephasing 2D spectra at different 

T, respectively. 

 

Supplementary Figure 6.  Rephasing 2D spectra at various T. 

 

Supplementary Figure 7.  Nonrephasing 2D spectra at various T. 

Supplementary Note 7: Determination of the diagonal peak positions 

We fit the diagonal slices from rephasing and nonrephasing 2D spectra with a sum of Gaussians. 

The fitting results for different T are shown in Supplementary Figures 8 and 9, respectively. 

Specifically, the positions and the amplitudes of five Gaussian peaks are scanned in certain 

ranges to search for the minimum deviation between the sum of the five Gaussian functions and 

the experimental data. Retrieved energy positions of the five components are listed in 
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Supplementary Tables 1 and 2 for the rephasing and the nonrephasing signals, respectively. 

Owing to the nature of rephasing and nonrephasing 2D spectra, the nonrephasing 2D spectra 

show narrower peaks along the diagonal direction such that the two bands with lowest energies 

are spectrally separated (Supplementary Figure 8), while the two bands are merged into one 

peak in the rephasing spectra (Supplementary Figure 9). 

Supplementary Table 1. The energy positions of the five components of the rephasing signal retrieved 
from the fitting procedure. 

T  20 fs 50 fs 80 fs 110 fs 140 fs 170 fs 200 fs 230 fs 260 fs 290 fs 

Com. 
1 

1.6340 
eV 

1.6340 
eV 

1.6335 
eV 

1.6365 
eV 

1.6355 
eV 

1.6365 
eV 

1.6320 
eV 

1.6360 
eV 

1.6330 
eV 

1.6350 
eV 

Com. 
2 

1.6540 
eV 

1.6550 
eV 

1.6520 
eV 

1.6550 
eV 

1.6550 
eV 

1.6550 
eV 

1.6500 
eV 

1.6540 
eV 

1.6530 
eV 

1.6520 
eV 

Com. 
3 

1.6805 
eV 

1.6820 
eV 

1.6740 
eV 

1.6820 
eV 

1.6820 
eV 

1.6720 
eV 

1.6720 
eV 

1.6805 
eV 

1.6720 
eV 

1.6720 
eV 

Com. 
4 

1.7000 
eV 

1.7000 
eV 

1.6900 
eV 

1.7025 
eV 

1.7050 
eV 

1.6900 
eV 

1.6925 
eV 

1.7025 
eV 

1.6900 
eV 

1.6900 
eV 

Com. 
5 

1.7325 
eV 

1.7350 
eV 

1.7225 
eV 

1.7400 
eV 

1.7450 
eV 

1.7200 
eV 

1.7425 
eV 

1.7350 
eV 

1.7250 
eV 

1.7325 
eV 

 

Supplementary Table 2. The energy positions of the five components of the nonrephasing signal 
retrieved from the fitting procedure. 

T 20 fs 50 fs 80 fs 110 fs 140 fs 170 fs 200 fs 230 fs 260 fs 290 fs 

Com. 
1 

1.6295 
eV 

1.6295 
eV 

1.6305 
eV 

1.6305 
eV 

1.6305 
eV 

1.6320 
eV 

1.6305 
eV 

1.6305 
eV 

1.6305 
eV 

1.6315 
eV 

Com. 
2 

1.6560 
eV 

1.6540 
eV 

1.6530 
eV 

1.6540 
eV 

1.6530 
eV 

1.6530 
eV 

1.6530 
eV 

1.6530 
eV 

1.6520 
eV 

1.6520 
eV 

Com. 
3 

1.6835 
eV 

1.6790 
eV 

1.6805 
eV 

1.6770 
eV 

1.6855 
eV 

1.6790 
eV 

1.6770 
eV 

1.6785 
eV 

1.6750 
eV 

1.6755 
eV 

Com. 
4 

1.7075 
eV 

1.6975 
eV 

1.7125 
eV 

1.6975 
eV 

1.7200 
eV 

1.6975 
eV 

1.6925 
eV 

1.7000 
eV 

1.6950 
eV 

1.6975 
eV 

Com. 
5 

1.7350 
eV 

1.7400 
eV 

1.7425 
eV 

1.7275 
eV 

1.7475 
eV 

1.7475 
eV 

1.7250 
eV 

1.7250 
eV 

1.7225 
eV 

1.7475 
eV 
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Supplementary Figure 10 shows the fitted positions of the five diagonal peaks from the 

rephasing and the nonrephasing 2D spectra for T = 20, 50, 80, …, 290 fs. Firstly, we found that 

the rephasing and the nonrephasing results are in line with each other, both clearly showing a 

five-peak band structure. Therefore, to reduce the errors, we combine the rephasing and the 

nonrephasing results by calculating the mean value of the retrieved peak positions from the 

rephasing and the nonrephasing 2D spectra for every individual T, with the combined results 

shown in Fig. 3(c) of the main text. From that, we found that the four high-energy bands show 

red-shift behavior as T increases, as indicated by the linear fitting lines with negative slopes. 

The error bar of each band can be determined by the standard deviation of the fluctuations 

calculated from the differences between the measured values (marked by squares in Fig. 3c of 

the main text) and the linear fit results (solid lines in Fig. 3c of the main text) at each T. The 

fitting slopes of the five bands are plotted in Fig. 3(d) of the main text, with the error bars 

depicting 95% confidence bounds from the fitting. It can be seen that for bands 2 and 3 the 

whole 95% regions are below the line of zero, for band 4 most part of the 95% region is below 

the line of zero, whereas for band 5 the probability of the slope to be negative is reduced because 

of the large uncertainty. 

  

Supplementary Figure 8. Fitting (black solid) of the diagonal slices (black squares) from rephasing 2D 
spectra using a sum of Gaussians (red, blue, green, orange, and cyan dashed).  
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Supplementary Figure 9. Fitting (black solid) of the diagonal slices (black squares) from nonrephasing 
2D spectra using a sum of Gaussians (red, blue, green, orange, and cyan dashed). 

 

Supplementary Figure 10. Fitted positions of the five diagonal peaks of the rephasing (a) and the 
nonrephasing (b) 2D spectra at different T. 

Supplementary Note 8: 2D spectra from different positions 

We measured 2D spectra at different DML regions (marked as Pos. A, B, and C in 

Supplementary Figure 11) and show the rephasing (a,b,c) and the nonrephasing (d,e,f) 2D 

spectra in Supplementary Figure 12. On top of each 2D spectrum is the slice along the diagonal 

line of the corresponding 2D spectrum (black squares). The slices are fitted by five Gaussian 

functions (colored dashed curves), the sum of which shown as the black curve. The retrieved 

peak positions of the five components are illustrated in Supplementary Figure 13 for different 

spatial positions within the DML of the sample, where squares are employed for the rephasing 
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and circles for the nonrephasing signals. We observe the same five-peak energy structure for 

all three positions, indicating reproducibility of our results throughout the DML regions. 

  

Supplementary Figure 11. Three different positions (Pos. A, B, C marked by black crosses) where 2D 
spectra were collected. 

 

Supplementary Figure 12. Rephasing (a,b,c) and nonrephasing (d,e,f) 2D spectra collected at position 
A (a,d), position B (b,e), and position C (c,f). Top: Slices through the 2D spectra along the diagonal lines 
(squares) and the fitting results (black solid curves) using five Gaussian functions (colored dashed 
curves). 
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Supplementary Figure 13. Retrieved peak positions of the five components for different positions, 
where squares indicate rephasing and circles nonrephasing data. 

Supplementary Note 9:  Positions of off-diagonal peaks 

We plotted the line cuts at ωτ = 1.655 eV for the rephasing (Fig. 4b) and the nonrephasing (Fig. 

4c) 2D spectrum for T = 50 fs, as shown in Supplementary Figure 14. The peak positions are 

retrieved from the line cuts by locating the maximum positions and are listed in Supplementary 

Table 3. The retrieved off-diagonal peak positions all lie within the errors of the experimentally 

determined diagonal peak positions, indicating the same five-peak energy structure.  

 

Supplementary Figure 14. Line cuts at ωτ = 1.655 eV for the rephasing (red curve) and the 
nonrephasing (blue curve) 2D spectrum for T = 50 fs. 
 

Supplementary Table 3. Retrieved positions of off-diagonal peaks of the line cuts through the 
rephasing 2D (Row 2) and nonrephasing (Row 3) 2D spectra for T = 50 fs. 

 Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 
Rephasing 1.627 eV 1.655 eV 1.682 eV 1.705 eV 1.741 eV 

Nonrephasing 1.629 eV 1.653 eV 1.679 eV 1.708 eV 1.734 eV 
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Supplementary Note 10: 2D measurements with higher excitation energies 

To highlight the relatively weak (i.e., the fourth and the fifth) diagonal peaks located on the 

high-energy side of 2D spectra, we performed an additional 2D measurement at T = 50 fs with 

the laser spectrum moved to higher excitation energies and total intensity increased to keep the 

linear PL signal intensity at the same level. As a result, the peaks inside the black dashed box 

of Supplementary Figure 15b are strongly enhanced compared to Supplementary Figure 15a, 

verifying the existence of these two peaks.  

 

Supplementary Figure 15. Bottom: Measured rephasing 2D spectrum (absolute value) at T = 50 fs, with 
the excitation laser spectrum blocked below 1.615 eV (a) and below 1.685 eV (b). We cut off energies 
below the quoted values by inserting a low-energy-blocking aperture (LEBA) in front of the spatial light 
modulator (SLM, Supplementary Figure 1) and adjusting its position correspondingly. Top: Slices 
through the 2D spectra along the diagonal lines (black solid curves), laser spectrum (blue shaded areas), 
and energies of the components 5-1E  (vertical dashed lines) as determined from the fitting of the 

curves with sums of Gaussians (individual contributions in colored dashed lines). 

Supplementary Note 11:  Quantifying the vibronic Hamiltonian 

From the energy-momentum-resolved PL map, we obtain the energies at k|| = 0 for three 

polariton branches, which are 1.605, 1.630, and 1.643 eV. The coherent 2D spectra reveal three 

additional higher branches. Since the 2D micro-spectroscopy measures momentum-integrated 

signals, we cannot precisely determine the energies at k|| = 0 for these three branches. We thus 

take the lowest peak positions obtained from the diagonal slices among all the different T (1.672, 
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1.690 and 1.720 eV) approximately as the zero-momentum values, such that we have the six-

point energy structure (listed in the first row of Supplementary Table 4) to deduce the vibronic 

Hamiltonian. Although such an approximation will induce certain errors, the simulated vibronic 

polariton dispersion relations can explain the experimental results of both the energy-

momentum-resolved PL and spatially resolved 2D spectroscopy, as indicated in Fig. 4 of the 

main text. 

Specifically, to fit the experimentally determined energy positions, we used Ev, EC, 𝛺𝛺, and 

S as fitting parameters. For each set of [EV, EC, 𝛺𝛺 , S], we conducted a diagonalization of 

Supplementary Eq. (S2) and obtained six eigenenergies Ek (k = 0, …, 5). We calculated the 

mean-square deviation, 𝐷𝐷 = �∑ �𝐸𝐸k − 𝐸𝐸�k�
25

k=0 , with 𝐸𝐸�k being the measured energy positions 

(the first row of Supplementary Table 4) and Ek being the calculated eigenenergies of six 

polariton states at k|| = 0. The minimum deviation can be found with EV = 0.020 eV, EC = 1.623 

eV, S = 0.02, and Ω = 0.06 eV. The calculated energy positions for this parameter set can be 

found in Supplementary Table 4 (row 2). The phonon energy is determined to be 20 meV, close 

to that of the E″  phonon mode (21.8 meV) [9]. The small Huang–Rhys factor signifies 

relatively weak coupling between the exciton and the phonon mode. This differs from most 

vibronic polaritons observed in organic microcavities, in which the vibronic coupling between 

excitons and phonons competes in strength with the exciton–photon coupling. There may be 

two reasons for this particular phonon mode to contribute significantly to the exciton polariton 

formation in the studied system. First, because of the low energy of the phonon, many phonons 

are initially populated on their excited state at room temperature. Second, the likely long 

lifetime for this phonon mode both on the ground and the excited electronic states facilitates 

that the vibrational relaxation is slower than coherent Rabi exchange, prompting the 1–1 and 

the 2–2 transitions to interact strongly with the cavity photons.  
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Supplementary Table 4. Band positions obtained from experimentally measured energy positions 
(Row 1) and their fitting results using the vibronic polariton model in Supplementary Note 1 (Row 2). 

𝑬𝑬�𝒌𝒌 1.605 eV 1.630 eV 1.643 eV 1.672 eV 1.690 eV 1.720 eV 

𝑬𝑬𝒌𝒌 1.605 eV 1.625 eV 1.646 eV 1.674 eV 1.794 eV 1.713 eV 
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