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Chapter 1

Introduction

An important aspect of the characteristic properties of molecules is their behav-
ior during and after exposure to radiation, which includes structural changes,
emission of light or the ejection of electrons. As a result, emission properties
may be altered or chemical reactions such as isomerization or bond-breaking
induced.1 These light-induced processes can generally compete with each other
on ultra-fast timescales in the femto- and picosecond regime and the molecular
relaxation dynamics is therefore a topic of utmost relevance in modern natural
sciences.2 Although experimental data is the basis upon which all of the char-
acterization of molecules is rested, spectroscopic methods only provide indirect
access to molecular observables and the results need to (and often cannot with
certainty) be interpreted. Hence, theoretical methods need to be employed
which are able to describe the occurring processes on a molecular level. For
this reason, significant advances have been made over the years in the de-
velopment of static quantum-chemical methods describing molecular systems,
from ground state, vibrational and ionization energies to excited states and
properties such as transition moments,3,4 as well as nonadiabatic dynamics
simulations5–8 accounting for the coupled motion of electrons and nuclei.

Especially in the case of molecular anions however, being usually charac-
terized by small binding energies9, even the static description is theoretically
complicated, since the weak binding in anions generally leads to significantly
more diffuse distributions of the "extra" electron around the molecular core
as opposed to the neutral case.10 Many of these anionic systems support ex-
perimentally observable resonances, that is, metastable states with respect
to electron loss, that deactivate on femto- to microsecond timescales.11–13 In
principle there are three possible deactivation pathways a metastable anion
can go through14: Assuming a lower-lying, stable state exists, the first is ra-
diative decay, which does not chemically alter the molecular system, in con-
trast to the other two possibilities. Furthermore there is dissociative electron
attachment, in which the unbound anion decomposes into two stable frag-
ments. For example this is observed prominently in DNA bases15,16, DNA
strand breaks17,18 through radiation and DNA photolesion repair19. The last
deactivation option is autodetachment, meaning the ejection of an electron
after a finite lifetime. This process was first observed on the metastable ex-
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2 CHAPTER 1. INTRODUCTION

cited state of C−2 in 196820,21 and has been a growing research field ever since.
The autodetachment phenomenon can be used in the accurate determination
of anionic properties22–24 and characteristics of isomerization reactions25,26, to
name a few examples. While in many cases autodetachment is happening
due to an unstable electron configuration, some molecules possess bound elec-
tronic states with such low binding energies that even vibrational excitation
suffices to overcome the detachment threshold, therefore resulting in vibration-
induced autodetachment. It was observed that autodetachment can be highly
mode-specific27–29 and therefore the redistribution of vibrational energy and
the ensuing geometric changes in molecules are of great interest in the dy-
namics of molecular anions.30,31 Although experimentally well-observed, there
is still a need for theoretical methods in the description of the process of vi-
brational autodetachment in a time-resolved manner. The task of deriving an
efficient, accurate methodology for the simulation of autodetachment dynamics
is tackled in this thesis.

On the other hand are electron detachment experiments not only important
for metastable resonances, but photodetachment is also an established tool in
the understanding of bound-state dynamics32 and the combination with the-
oretical simulations is a standard, for example in ultrafast time-resolved pho-
toelectron spectroscopy experiments.33 These joint theoretical-experimental
studies are also able to resolve conformational changes in molecules which
can greatly alter their chemical characteristics such as radiative deactivation.

Of great relevance at the moment, for example, are so-called charge trans-
fer processes, in which after photoexcitation electron density is redistributed
in a way that is significantly different from the ground state, with a charge
separation between positively and negatively charged sites.34 Materials which
are able to support such charge-transfer processes are widely used as semi-
conductors,35 for example in solar cells36,37 and OLEDs38,39. A special case
is the intramolecular charge transfer (ICT), in which donor and acceptor are
within the same molecule.34 In the case of ICT a prominent example for the
importance of accurate theoretical models is the alteration of emission prop-
erties in the 4-(dimethylamino)benzonitrile (4-DMABN), which was the first
detected molecule that shows two distinct fluorescence bands with solvent-
dependent intensity distributions.40,41 Theoretical models suggested both an
energetic minimum in the first excited state close to the ground state equilib-
rium geometry as well as fast transition to a charge-transfer state at a twisted
geometry energetically separated by a solvent-dependent activation barrier.42

The occurrence of dual fluorescence is highly molecule specific in that even
the replacement of the nitrile group in 4-DMABN with an isoelectronic ethyne
group is sufficient to prevent this phenomenon,43 which calls for theoretical
approaches to the understanding of these intricate observations. In this case,
the theoretical simulation of molecular dynamics is able to disentangle the
experimental time-resolved signals in the photoelectron spectrum and draw
conclusions on the emission behavior.43

With respect to the two topics introduced above (autodetachment after
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vibrational or vibronic excitation and photodetachment after electronic exci-
tation), this cumulative thesis presents theoretical contributions to the under-
standing of ultrafast molecular processes during electron detachment, consist-
ing of four publications in scientific journals. All investigations were carried
out in the framework of the surface-hopping methodology, in which dynamic
processes are simulated in a quantum-classical manner, with the nuclear mo-
tion described as an ensemble of classical trajectories propagated in the field
of the quantum-mechanically obtained potential energy surfaces. Since a vari-
ety of different aspects of electron detachment dynamics is approached in this
work, it is useful to first give a quick overview of the overall structure of the
thesis:

In chapter 2 the theoretical foundation is laid for the understanding of the
following chapters. The surface-hopping methodology (section 2.1) as well as
the employed quantum-chemical methods (section 2.2) are explained briefly
and aspects are addressed that are skipped over in the theory sections of the
subsequent publications. Moreover a discussion of molecular anions and its
characteristic electronic properties (section 2.3) is given together with a look on
computational peculiarities concerning anions, which also necessarily includes
the consideration of resonance states as well as spectroscopic techniques.

Chapter 3 discusses the theory behind the newly developed methodology for
the theoretical description of vibration-induced autodetachment processes. A
formulation is developed in which the electronic detachment event is described
by nonadiabatic couplings to the discretized continuum states comprised of or-
thogonalized plane waves. The arising coupling terms are derived, which yields
formulae that are solved in the framework of the surface-hopping methodology.
The theory is validated by comparison of the obtained theoretical data with
experimental findings on the vinylidene anion molecule, thereby extending the
understanding of the vinylidene-acetylene isomerization process.

The publication in chapter 4 should be viewed complementary to chapter 3:
Whereas in the aforementioned chapter the theoretical ideas are presented, this
publication focuses on computational implementation within the HORTENSIA
program package. The underlying algorithms are discussed in more detail and
necessary approximations as well as general performance with respect to com-
putation time and resource usage are assessed. Furthermore another example
molecule is studied, the 2-cyanopyrrolide anion, to show the implemented ex-
tension of the methodology to electronically excited states.

While in chapters 3 and 4 the focus is on molecules in which a single bound
state plays the central role, the nitropropane anion presented in chapter 5
features an interplay between the ground and the dipole-bound excited state.
The simulation reproduces existing electron kinetic energy distributions to an
adequate degree and further analysis of geometric data allowed for the vali-
dation of experimentally predicted autodetachment pathways. The coupling
between the excited dipole-bound state to the initially populated ground state
is revealed to be of great importance in the autodetachment efficiency, with its
transient population effectively acting as a mediator of electron ejection on an
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ultrafast timescale.
In chapter 6 the ultrafast dynamics of the 4-(dimethylamino)benzethyne

molecule after electronic excitation is investigated. The joint theoretical and
experimental study revealed an ultrafast geometric change by partial twisting
of the dimethylamino group with respect to the molecular plane, leading to
vanishing electron intensity on the timescale of ∼100 fs in the experimental
time-resolved photoelectron spectrum.

These publications are followed by an overall discussion and conclusion in
chapter 7, after which a brief summary of this thesis is given in chapters 8 and
9 in English and German, respectively.

Finally it has to be noted that the publications used for this cumulative
dissertation (chapters 3-6) are reproduced from their original journal publica-
tions word by word. Changes were made only to achieve a uniform formatting
and citation throughout the thesis. Therefore it also has to be stressed that
the citation numbering in this work differs from the ones in the reproduced
publications.



Chapter 2

Theoretical Methodology

In the following the theoretical foundations necessary for the method develop-
ment presented in this thesis will be discussed.

2.1 Molecular dynamics simulations
The complete evolution of a molecular system, consisting of an arrangement of
nuclei and electrons, in time and space is given by its wavefunction Φ(r,q, t)
(r denotes the vector of all electronic coordinates, q the vector of all nuclear
coordinates and t time), which needs to satisfy the time-dependent Schrödinger
equation44

ih̄
d

dt
Φ(r,q, t) = ĤΦ(r,q, t) = (T̂ + V̂ )Φ(r,q, t), (2.1)

containing the Hamiltonian operator Ĥ comprised of the operators for the ki-
netic and potential energy, T̂ and V̂ , respectively. Separating the Hamiltonian
Ĥ in equation 2.1 with regards to nuclear (n) and electronic (e) contributions
yields

Ĥ = T̂n + T̂e + V̂ee + V̂nn + V̂en = T̂n + Ĥel, (2.2)

where Ĥel is called the electronic Hamiltonian. The terms V̂ij signify the
Coulomb potentials between all pairs of involved particles. Since equation 2.1 is
not analytically solvable in most cases because of the correlation of all electrons
and nuclei, it is necessary to introduce an approximation that, at least partly,
simplifies the search for a(n approximate) solution to the Schrödinger equa-
tion for the considered molecular system. The so-called Born-Oppenheimer
approximation45 proposes a separation ansatz based on the argument that the
masses of nuclei and electrons are magnitudes apart and therefore the velocities
of nuclei significantly smaller in comparison to those of the electrons. Within
this approximation one regards nuclear and electronic degrees of freedom as
separable and for the electron system the nuclear kinetic energy as negligible,
i.e. the nuclear coordinates to be fixed. This leads to the stationary eigenvalue
equation called the electronic Schrödinger equation

Ĥelψi(r;q) = (T̂e + V̂ )ψi(r;q) = Eel,i(q)ψi(r;q). (2.3)

5
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The complete orthonormal set of eigenfunctions to the electronic Hamiltonian
Ĥel are called the adiabatic eigenstates {ψi}, which only parametrically depend
on the nuclear coordinates q (indicated by a semicolon).2 Hence, since all {ψi}
form a complete basis of the system space, the total wavefunction Ψ(r,q, t)
can be constructed as a linear combination of these states,

Ψ(r,q, t) =
∑
i

χi(q, t)ψi(r;q), (2.4)

where {χi(q, t)} are called the nuclear wavefunctions. Substitution of equation
2.4 into 2.1, subsequent multiplication from the left with ψ∗j and integration
over the electronic coordinates leads to

ih̄χ̇j = (T̂n + Eel,j(q))χj

−
∑
i

∑
I

h̄2

2MI

(
2 ⟨ψj|∇I |ψi⟩ · ∇Iχi + ⟨ψj|∇2

I |ψi⟩χi

)
, (2.5)

the time-dependent nuclear Schrödinger equation. Here it was inserted that
T̂n = − h̄2

2MI

∑
I ∇2

I , with the mass MI and the gradient ∇I with respect to
nuclear coordinates for a nucleus I. The last term on the right includes the
so-called nonadiabatic coupling terms of first and second order arising from
the mutual dependence of electronic and nuclear motion, and the complete
neglect of these terms is called the Born-Oppenheimer approximation with the
expression

ih̄χ̇j = (T̂n + Eel,j(q))χj. (2.6)

One can see that the eigenvalues of the electronic Schrödinger equation, de-
pendent on the nuclear configuration q, appear as the potential energies in the
nuclear Schrödinger equation, hence the name potential energy surface.2

2.1.1 Classical nuclear dynamics

There are several approaches to finding a solution for the time evolution of the
nuclear wavefunction. One possibility is the explicit numerical integration of
the time-dependent nuclear Schrödinger equation, where operators and wave-
functions are represented on a spatial grid and time integration is performed in
discrete steps.46–48 These strictly quantum-dynamical methods are, however,
only applicable for a very small number of nuclear degrees of freedom, since
the size of the grid on which one numerically propagates the wavefunctions
scales exponentially with the nuclear coordinates.46 An entirely different ap-
proach that opens the possibility to describe far bigger molecular systems is to
assume the nuclei as classical and formally replacing the nuclear wavefunction
as χj(q, t) → cj(t)δ(q − q′(t)), meaning that the nuclear wavefunction is
substituted with moving point charges bearing an electronic probability am-
plitude.
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One possibility of this classical nuclear motion ansatz which is used in all the
work presented in the following chapters is based on such a quantum-classical
approach to molecular dynamics. This means that at a specific instant of time
for a set configuration of nuclear point charges at coordinates q the (quantum-
mechanical) electronic potential energy Eel(q) along with its gradient ∇q with
respect to all nuclear degrees of freedom is evaluated. The force acting on the
nuclei is then given as the gradient of the potential energy surface according
to Newton’s equations of motion,

Mq̈ = F = −∇qEel(q), (2.7)

with the diagonal matrix of the nuclear masses M. Subsequent integration
of these equations then leads to classical trajectories of point masses, q(t),
moving along quantum-chemically evaluated potential energy surfaces.2

Since ∇qEel(q) is calculated on the fly along the trajectory, equation 2.7
needs to be solved numerically at each time step. This can be done using a
Taylor expansion of q(t+∆t) around q(t) in a procedure called the Velocity-
Verlet algorithm49:

q(t+∆t) = q(t) + q̇(t)∆t+
1

2
q̈(t)∆t2. (2.8)

At the new nuclear geometries it is possible to evaluate a new potential energy
gradient ∇qEel(q(t+∆t)), resulting in the new accelerations q̈(t+∆t). From
this, velocities at the new time step are generated according to

q̇(t+∆t) = q̇(t) +
1

2
(q̇(t) + q̇(t+∆t))∆t. (2.9)

This algorithm is straightforward in that only the previous nuclear geometries
and velocities need to be known to propagate a trajectory in time. In addition
this means that initial conditions for these quantities need to be found that
realistically model the molecular starting state.

One widely used method for the generation of initial conditions is sampling
of a phase space distribution function, of which the Wigner function50 is the
most commonly used. It is given by

ρW (q,p) = (πh̄)−N
∫

⟨q − y|ρ̂|q + y⟩ e2ip·y dy (2.10)

= (πh̄)−N
∫
χ∗(q + y)χ(q − y)e2ip·y dy, (2.11)

where q and p are normal coordinates and momenta, respectively, of dimension
N . The transition from equation 2.10 to 2.11 is only correct for pure states,
which is assumed here. The Wigner function is defined so that∫

ρW (q,p) dp = |Ψ(q)|2 and
∫
ρW (q,p) dq = |Ψ(p)|2, (2.12)
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meaning that by integration over either spatial coordinates or momenta, the
probability density in the respective other space is obtained. Therefore the
most common case now is to sample phase space points from the Wigner
function of a harmonic oscillator for each normal mode, which for a canonical
(thermal) ensemble takes the form51

ρW (q,p) =
1

(πh̄)N

N∏
i=1

αi(T ) exp

(
−αi(T )

h̄ωi

(p2i + ω2
i q

2
i )

)
(2.13)

with

αi(T ) = tanh
h̄ωi

2kBT
. (2.14)

For T → 0, it follows that αi → 1 and the expression reduces to the ground
state of the oscillator corresponding to an average energy value of h̄ω/2. This
distribution was used in the generation of initial conditions for the 4-DMABE
dynamics in chapter 6. In the remaining publications another, more general
distribution function was used, specifically

ρvib(q,p) =
N∏
i=1

ρ(i)υ (qi, pi) =
N∏
i=1

|χ(i)
υ (qi)|2|χ̃(i)

υ (pi)|2, (2.15)

where χ
(i)
υ (qi) and χ̃

(i)
υ (pi) are the harmonic oscillator wavefunctions of the

normal mode νi in position and momentum space, respectively. Here υ is the
vibrational quantum number of each normal mode, which was chosen to be 1
for specific excited vibrations and 0 otherwise in chapters 3 to 5. Hence this
allows for the generation of initial conditions including vibrationally excited
states. In the special case of all υ being 0, equation 2.15 reduces again to the
Wigner distribution with all αi = 1.

Using the described Velocity-Verlet algorithm, one now propagates classical
trajectories on a single electronic potential energy surface, which can be suffi-
cient, for example if one wants to investigate ground state dynamics. However
more often than not the interest lies in the transition to other electronic states,
especially in the field of photochemistry. Hence it is necessary to incorporate
more than a single electronic state into the theoretical description of dynamic
processes.

2.1.2 Surface-hopping dynamics

Since to each adiabatic electronic state there corresponds a distinct potential
energy surface, the classical nuclear dynamics is naturally strongly dependent
on which electronic state is occupied and therefore what force the nuclei ex-
perience. Broadly speaking, in the field of experimental physical chemistry
the fundamental investigation method of molecular systems relies on inducing
state transitions through radiation. This has to be taken into account the-
oretically as well. One method to include multiple electronic states into the
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molecular dynamics simulation is the surface-hopping methodology introduced
by Tully52. Building upon the quantum-classical molecular dynamics discussed
before, it allows for transitions between adiabatic electronic states according
to the fewest-switches algorithm, which is based on the following: Considering
the time-dependent electronic Schrödinger equation

Ĥel |Ψ⟩ = ih̄
d

dt
|Ψ⟩ (2.16)

and with the requirement that some trajectory q(t) exists that describes the
nuclear motion in time, an ansatz for the solution of the above equation is
an expansion in terms of the eigenfunctions of the electronic Hamiltonian Ĥel

along the nuclear trajectory as

Ψ(r;q(t), t) =
∑
i

ci(t)ψi(r;q(t)), (2.17)

with the state expansion coefficients ci(t). This ansatz can be substituted into
equation 2.16, yielding

Ĥel

∑
i

ci |ψi⟩ = ih̄
∑
i

[
ċi |ψi⟩+ ci |ψ̇i⟩

]
. (2.18)

From here on the Dirac notation is used in this section to facilitate readability
and comprehensibility. Rearranging the result and multiplying on the left by
⟨ψj| results in

ih̄
∑
i

ċi ⟨ψj|ψi⟩ =
∑
i

ci
[
⟨ψj|Ĥel|ψi⟩ − ih̄ ⟨ψj|ψ̇i⟩

]
ċj = −

∑
i

ci

[ i
h̄
Hji +Dji

]
, (2.19)

so a differential equation for the electronic state coefficients. Using the chain
rule, the nonadiabatic coupling terms Dji can be expressed as

Dji = ⟨ψj|ψ̇i⟩ = q̇ · ⟨ψj|∇qψi⟩ = q̇ · dji. (2.20)

The equations derived so far all silently assumed the operator Ĥel to have
adiabatic eigenstates |ψi⟩ with discrete eigenvalues Eel,i. This implies these so-
lutions to be the bound electronic states of the system, which is often sufficient
in the study of excited state dynamics. However, since the main focus of this
thesis is on electron detachment processes, the states above the detachment
threshold which form a continuous spectrum,

|Ψ̃⟩ =
∑
n

∫
d3k c̃n(k, t) |ψ̃n(k)⟩ , (2.21)

also have to be considered. As an integration variable the wave vector k of the
unbound electron is introduced here already, since in the following chapters
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these continuum states will be constructed as a combination of a free single-
electron wavefunction and molecular "core systems" n (in the usual case of
anions, the core systems are the neutral molecules’ bound electronic states),
the details of which will be explained extensively later. The individual states
are chosen to satisfy

Ĥel |ψ̃n(k)⟩ = Eel,n(k) |ψ̃n(k)⟩ ,
⟨ψ̃n(k)|ψ̃n′(k′)⟩ = δnn′δ(k − k′), (2.22)

leading to the full expansion

|Ψ⟩ =
∑
i

ci(t) |ψi⟩+
∑
n

∫
d3k c̃n(k, t) |ψ̃n(k)⟩ (2.23)

of the electronic wavefunction in the basis of the discrete and continuous adi-
abatic eigenstates of the electronic Hamiltonian.2 To make the inclusion of
these continuum states in the dynamics simulations computationally feasible,
an approximative approach was pursued in this thesis which discretizes the k
space according to∫

d3k c̃n(k, t) |ψ̃n(k)⟩ ≈
∑
l

∆Vk c̃n(kl, t) |ψ̃n(kl)⟩

=
∑
l

[
(∆Vk)

1
2 c̃n(kl, t)

][
(∆Vk)

1
2 |ψ̃n(kl)⟩

]
=
∑
l

cn(kl, t) |ψn(kl)⟩ , (2.24)

with the approximative volume element ∆Vk. The expressions in equations
2.23 and 2.24 substituted into equation 2.16 then eventually yield the Schrö-
dinger equation for the electronic degrees of freedom in the basis of the bound
and discretized continuum states, analogous to equation 2.19.

It should be noted here that in the case of adiabatic eigenstates, the matrix
H (comprised of the elements Hji as defined in equation 2.19) is diagonal,
containing the eigenenergies of the electronic states. For the most part this
will not be the case in the following chapters, since for computational feasibility
approximations will have to be made for the electronic discretized continuum
states that result in wavefunctions which are no exact eigenfunctions of Ĥel.
The justification for this will be discussed in the following chapter.

When now starting a dynamics simulation in an electronic state of interest,
j, one sets the expansion coefficients to ci(t = 0) = δij and propagates the
nuclear degrees of freedom on the potential energy surface Eel,j. Alongside,
one evaluates c(t + ∆t) by integration of the electronic Schrödinger equation
2.19, for which the electronic wavefunctions ψi have to be calculated. Now
knowing how to obtain the time evolution of c, it has to be determined when
and how to "hop" on another potential energy surface, i.e. switch the electronic
state. This is done stochastically by calculating a hopping probability from
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the presently occupied state to every other state and deciding which event
occurs by generating a random number between 0 and 1 at every time step.
The hopping probabilities from state i to j are obtained from electronic state
populations ρii = |ci|2 as the product of the depopulation probability of i,

Pdepop,i = −Θ(−ρ̇ii)
ρ̇ii
ρii

∆t, (2.25)

and the population probability of j,

Ppop,j = Θ(ρ̇jj)
ρ̇jj∑

k Θ(ρ̇kk)ρ̇kk
, (2.26)

subsequently leading to

Pi→j = Pdepop,iPpop,j (2.27)

= Θ(−ρ̇ii)Θ(ρ̇jj)
−ρ̇iiρ̇jj∑

k Θ(ρ̇kk)ρ̇kkρii
∆t, (2.28)

with the Heaviside function Θ, which is unity for positive arguments and zero
otherwise. It follows that hopping probabilities are only non-zero if the state
population of i is decreasing and that of j is increasing.53 The occurring deriva-
tives ρ̇ii are obtained by a finite difference approximation from the populations
of two subsequent time steps

ρ̇ii(t+∆t) ≈ ρii(t+∆t)− ρii(t)

∆t
. (2.29)

In the case of a successful hopping event, the kinetic energy of the nuclei is
rescaled so that the total energy of the molecular system is constant and the
trajectory is then propagated in the field of the electronic state j which is now
occupied.

It is noteworthy that by also explicitly including an arbitrary laser field
in the electron dynamics, it is possible to simulate the complete molecular
dynamics from photoexcitation to relaxation.54 However, this was not done in
the presented work and will therefore not be discussed further.

Having presented the basic concept of quantum-classical dynamics, there
is a problem yet to be discussed: in Newton’s equations of motion (equation
2.7) describing the nuclear trajectories in the presented surface-hopping ap-
proach, the gradient of the electronic potential energy surface of a particular
electronic state is needed. Furthermore, in equation 2.19 couplings and elec-
tronic energies are required. As described before, in principle one "only" has
to solve the electronic Schrödinger equation 2.3 for the adiabatic eigenstates
of the molecule, from which the gradient as well as the coupling terms could
be computed. However solving equation 2.3 is not possible to achieve analyti-
cally for all but the simplest of systems because of electron correlation. Hence
methodologies have to be employed which permit the approximative solution
to the electronic eigenstates, a few of which relevant for this thesis shall be
presented in the following.
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2.2 Electronic structure calculations
In this thesis, two different quantum-chemical methods were employed in the
dynamics simulations, namely (time-dependent) density functional theory (TD-
DFT) in chapters 3-5 and the algebraic-diagrammatic construction scheme
through second order (ADC(2)) method in chapter 6. Since both these meth-
ods, the DFT approach at least in the here-employed Kohn-Sham ansatz, are
based on or related to the Hartree-Fock method and a significant amount of
integrals in the methodology of chapter 3 are derived from the ideas of Hartree-
Fock, it is useful to give an overview over this method first.

2.2.1 The Hartree-Fock method

One of the fundamental principles of quantum mechanics is the Pauli exclusion
principle, which states that two electrons in a quantum system cannot occupy
the same quantum state.55 From this it directly follows that an N-electron
wavefunction Ψ(x1, ...,xN) (with the electron spin coordinates xi = (ri, ω))
describing a quantum-mechanical system needs to be antisymmetric with re-
spect to interchange of electronic coordinates, i.e.

Ψ(x1, ...,xi, ...,xj, ...,xN) = −Ψ(x1, ...,xj, ...,xi, ...,xN). (2.30)

Since naturally determinants satisfy this principle, it leads to the wavefunction
ansatz of so-called Slater determinants defined as

Ψ(x) ≈ Φ(x) =
1√
N !

∣∣∣∣∣∣∣
χ1(x1) · · · χN(x1)

... . . . ...
χ1(xN) · · · χN(xN)

∣∣∣∣∣∣∣ = |χ1χ2...χN−1χN⟩ . (2.31)

The term on the right simply defines a short-hand notation. The functions {χi}
are one-electron wavefunctions, also called molecular orbitals (MOs), which can
be separated into spatial and spin components,

χi(xj) =

{
ψi(rj)α(ω)
ψi(rj)β(ω),

(2.32)

and that are eigenfunctions of an electronic Hamiltonian describing a system
of non-interacting electrons, i.e. with electron-electron repulsion terms ne-
glected.3

There is a set of rules that arise in the mathematics involving Slater de-
terminants, commonly referred to as the Slater-Condon rules. The first rule
concerns the scalar product of two Slater determinants, showing that

⟨χ1χ2...χi...χN−1χN |χ1χ2...χj...χN−1χN⟩ = δij, (2.33)

given an orthonormal MO basis {χi}, i.e. the determinants constructed from
this basis are also orthonormal themselves. Moreover, since the Hamilto-
nian is a linear operator in that the arising terms can generally be expressed
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as one-electron operators Ô1 =
∑

i ô1(i) and two-electron operators Ô2 =∑
i

∑
j>i ô2(i, j) =

1
2

∑
i,j ô2(i, j) it follows that

⟨Φ|Ô1|Φ⟩ = ⟨χ1...χi...χN |Ô1|χ1...χi...χN⟩ =
N∑
k

⟨χk|ô1|χk⟩

⟨Φr
i |Ô1|Φ⟩ = ⟨χ1...χr...χN |Ô1|χ1...χi...χN⟩ = ⟨χr|ô1|χi⟩

(2.34)

in the one-electron case. In the two-electron case it leads to

⟨Φ|Ô2|Φ⟩ = ⟨χ1...χiχj...χN |Ô2|χ1...χiχj...χN⟩

=
1

2

∑
m

∑
n

⟨χmχn|ô2|χmχn⟩ − ⟨χmχn|ô2|χnχm⟩

⟨Φr
i |Ô2|Φ⟩ = ⟨χ1...χrχj...χN |Ô2|χ1...χiχj...χN⟩

=
∑
m

⟨χmχr|ô2|χmχi⟩ − ⟨χmχr|ô2|χiχm⟩

⟨Φrs
ij |Ô2|Φ⟩ = ⟨χ1...χrχs...χN |Ô2|χ1...χiχj...χN⟩

= ⟨χrχs|ô2|χiχj⟩ − ⟨χrχs|ô2|χjχi⟩ .

(2.35)

In the above expressions |Φr
i ⟩ denotes a determinant where χi is replaced with a

virtual orbital χr as compared to |Φ⟩. Accordingly |Φrs
ij ⟩ differs by two orbitals

χr and χs from |Φ⟩. Besides, any more differences in two Slater determinants
than in the considered cases (0, 1, or 2 orbitals different) yield zero.56

Having established some calculation rules, the central idea of the Hartree-
Fock theory is then that an optimal Slater determinant needs to be constructed,
that is, the one which minimizes the eigenvalue of the time-independent Schrö-
dinger equation 2.3, the electronic energy E, according to the variational prin-
ciple. Therefore E is a functional of the molecular spin orbitals (E = E[{χi}]),
which are altered in the variation process, while still remaining orthonormal-
ity. In the following it is useful to divide the Hamiltonian in a part dependent
on two electronic coordinates each, i.e. electron-electron repulsion, and the
remaining terms only dependent on a single electron coordinate, denoted by ĥ
in the following. It then follows3 that the optimal orbitals satisfy

ϵi |χi(x1)⟩ = f̂(x1) |χi(x1)⟩ =
[
ĥ(x1) +

∑
j

Ĵj(x1)− K̂j(x1)
]
|χi(x1)⟩ , (2.36)

with the one-electron operator ĥ = −1
2
∇2

i −
∑

I
ZI

riI
, that is, the kinetic energy

and electron-nuclear interaction, and the so-called Coulomb and exchange op-
erators Ĵ and K̂, respectively, whose action on |χi⟩ is defined as

Ĵj(x1) |χi(x1)⟩ = ⟨χj(x2)|r−112 |χi(x1)χj(x2)⟩x2
(2.37)

K̂j(x1) |χi(x1)⟩ = ⟨χj(x2)|r−112 |χj(x1)χi(x2)⟩x2
. (2.38)

Equation 2.36 is an eigenvalue equation of the Fock operator f̂(xi) and ϵi is
called the orbital energy.3 The term

∑
j Ĵj(x1)−

∑
j K̂j(x1) is also called the
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effective Hartree-Fock potential. It treats the interaction of an electron with
all other electrons in an averaged way (which is the main cause of error in
comparison to the exact solution of the Schrödinger equation). The difference
between the system’s exact energy and the energy obtained with the Hartree-
Fock ansatz is commonly referred to as the electron correlation energy, whose
minimization is the goal of the so-called post-Hartree-Fock methods.3

The Fock operator itself is dependent on the solutions for {|χi⟩}, hence one
usually calls the equation a pseudo-eigenvalue problem, which directly leads to
fact that one has to find the solutions iteratively. In general one gets an infinite
number of eigenfunctions |χi⟩ in the construction of the total wavefunction, of
which one only considers a finite amount, namely the energetically lowest,
occupied N .

Here it is useful to introduce a notation convention: when multiplying the
two-electron terms from the left with ⟨χi(x1)|, this gives electron repulsion
integrals which can be abbreviated as

⟨χi(x1)χj(x2)|r−112 |χk(x1)χl(x2)⟩ = ⟨ij|kl⟩ (2.39)
⟨ij|kl⟩ − ⟨ij|lk⟩ = ⟨ij||kl⟩ , (2.40)

from which follows that the ground state energy can be written as

E0 = ⟨Φ0|Ĥel|Φ0⟩ =
N∑
i

⟨i|ĥ|i⟩+ 1

2

N∑
i

N∑
j

⟨ij||ij⟩ . (2.41)

Now focusing on spin, substitution of equation 2.32 into equation 2.36 and
multiplication by ⟨α(ω)| yields

⟨α(ω)|f̂(x1)|α(ω)⟩ |ϕi(r1)⟩ = ϵi |ϕi(r1)⟩
f̂α(r1) |ϕi(r1)⟩ = ϵi |ϕi(r1)⟩ . (2.42)

The operator f̂α(r1) contains same-spin terms as well as opposite-spin Coulomb
interaction:

f̂α(r1) = ĥ(r1) +
Nα∑
i

[
Jα
i (r1)−Kα

i (r1)
]
+

Nβ∑
i

Jβ
i (r1). (2.43)

Multiplying equation 2.36 with ⟨β| and subsequent evaluation yields the anal-
ogous formula for β spin.

It is not known how to solve equations 2.42 and the analogous equations
for β without further assumptions or approximations. Hence introduction of a
set of basis functions for which an analytical expression is known is necessary.
In practice this most commonly leads to a linear expansion of the MOs into a
(finite) set of well-defined atomic basis functions |ϕm⟩, so

|χα
i (x1)⟩ = |α(ω)⟩

∑
m

cαmi |ϕm(r1)⟩ , (2.44)

|χβ
i (x1)⟩ = |β(ω)⟩

∑
m

cβmi |ϕm(r1)⟩ . (2.45)
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For α orbitals, substitution of equation 2.44 in equation 2.42 and multiplication
with ⟨ϕn| from the left results in∑

m

cαmi ⟨ϕn(r1)|f̂α(r1)|ϕm(r1)⟩ = ϵαi
∑
m

cαmi ⟨ϕn(r1)|ϕm(r1)⟩∑
m

Fα
nmc

α
mi = ϵαi

∑
m

Snmc
α
mi. (2.46)

This can also be expressed in matrix form and, together with the analogous
formula for β spin, yields the Pople-Nesbet equations3

FαCα = SCαϵα

FβCβ = SCβϵβ.
(2.47)

Here F denotes the Fock matrix and S the overlap matrix between the AO basis
functions. A special case, called restricted Hartree-Fock, arises for ⟨α|χα

i ⟩ =
⟨β|χβ

i ⟩ and typically occurs for closed-shell systems, where pairs of α and β
electrons populate the spatial MOs. Thereby equations 2.47 reduce to the
Roothaan-Hall equations for the N/2 spatial orbitals. This is the assumed
case in the remainder of this chapter.

As implied before, it is possible to construct determinants consisting of
others than the energetically lowest N spin orbitals, which are normally de-
noted with respect to the ground state determinant, e.g. |Φr

i ⟩ is called singly-
excited, |Φrs

ij ⟩ is called doubly-excited, and so on. Since all spin-orbitals are
eigenfunctions of the Fock operator, so are all Slater determinants constructed
from them. An important note for the methodology in upcoming chapters
is the fact that a singly-excited determinant generated in this way is not an
eigenfunction of Ŝ2, i.e. this does not result in a spin eigenstate. However a
singlet eigenstate for example can be constructed from this determinant via
symmetry-adapted linear combination with the corresponding determinant of
opposite spin MOs:

|1Φr
i ⟩ =

1√
2

(
|χ2

1χ
2
2...χ

α
i χ

β
r ⟩+ |χ2

1χ
2
2...χ

β
i χ

α
r ⟩
)
=

1√
2

(
|Φr

i ⟩+ |Φr
i ⟩
)
, (2.48)

the result being called the configuration state function (CSF).57 Although not
particularly relevant in the context of ground state Hartree-Fock, excited de-
terminants are important in the construction of post-Hartree-Fock methods
such as configuration interaction (CI) based approaches, coupled cluster the-
ory, Møller-Plesset perturbation theory and excited-state methods and should
therefore be kept in mind in the following.

In solving the Hartree-Fock equations, only an approximative solution |Φ0⟩
for the ground state electronic wavefunction can be found. On the other hand,
|Φ0⟩ is an exact solution to the Hartree-Fock Hamiltonian3:

⟨Φ0|Ĥ0|Φ0⟩ = ⟨Φ0|
N∑
i

f̂(xi)|Φ0⟩ =
N∑
i

ϵi = E
(0)
0 . (2.49)
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Note here that E(0)
0 ̸= E0, i.e. the sum of orbital energies ϵi, is not the

Hartree-Fock ground state energy. Rather, the eigenvalue of the Hartree-Fock
Hamiltonian, E(0)

0 , can be interpreted as the zeroth order energy of an unper-
turbed Hamiltonian Ĥ0 as a starting point in the post-Hartree-Fock method
called Møller-Plesset perturbation theory, which is described in the following.

2.2.2 Møller-Plesset perturbation theory

The general problem of quantum chemistry, again, is that no exact solutions
|Ψi⟩ to the Schrödinger equation can be found. However, in the last paragraph
it was shown that exact solutions |Φi⟩ can be found for an approximative
Hartree-Fock Hamiltonian Ĥ0. If one is now to construct the exact electronic
Hamiltonian as the sum of this approximative ansatz (the unperturbed system
represented by Ĥ0) and a correction term, called the perturbation V̂ ,

Ĥel = Ĥ0 + V̂ , (2.50)

it follows that

V̂ =
∑
i

∑
j>i

1

rij
−
∑
i

∑
j

Ĵij − K̂ij (2.51)

is the discrepancy between the exact and Hartree-Fock Hamiltonian, so the dif-
ference between exact electron-electron interaction and the effective Hartree-
Fock potential.3 To connect the unperturbed and perturbed system, a param-
eter λ is introduced,

Ĥel = Ĥ0 + λV̂ , (2.52)

so that λ = 0 results in the Hartree-Fock case and λ = 1 in the exact Hamil-
tonian, now causing Ĥel and therefore |Ψi⟩ and Eel,i to depend on λ. One
could assume that if the perturbation is small, the eigenfunctions of Ĥ0 are
reasonable approximations to the eigenfunctions of Ĥel, |Ψi⟩, that reproduce
the exact eigenvalues Eel,i reasonably well. In this case it is possible to expand
the eigenfunctions and eigenvalues of Ĥel around λ = 0 in a power series as

|Ψi⟩ = |Ψi⟩
∣∣
λ=0

+
∂ |Ψi⟩
∂λ

∣∣∣∣
λ=0

λ+
∂2 |Ψi⟩
∂λ2

∣∣∣∣
λ=0

λ2

2!
+ ...

= |Φ(0)
i ⟩+ λ |Φ(1)

i ⟩+ λ2 |Φ(2)
i ⟩+ ... (2.53)

Eel,i = Eel,i

∣∣
λ=0

+
∂Eel,i

∂λ

∣∣∣∣
λ=0

λ+
∂2Eel,i

∂λ2

∣∣∣∣
λ=0

λ2

2!
+ ...

= E
(0)
i + λE

(1)
i + λ2E

(2)
i + ... . (2.54)

The superscript numbers in brackets denote the orders in λ, zeroth order being
the Hartree-Fock solutions. Since the resulting higher-order terms are not
known, the central idea is to express those terms in quantities that can be
evaluated through Hartree-Fock. If the eigenfunction of Hel is chosen to be
normalized with respect to the Hartree-Fock wavefunction, so ⟨Ψi|Φ(0)

i ⟩ = 1,
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called intermediate normalization, it immediately follows that all higher order
wavefunctions in equation 2.53 are orthogonal to |Φ(0)

i ⟩.57

By inserting equations 2.52, 2.53 and 2.54 into the electronic Schrödinger
equation 2.3, one is able to separate the result by orders of λ. Multiplying
each equation from the left with ⟨Φ(0)

j | and using ⟨Φ(0)
j |Φ(0)

i ⟩ = δji then yields
in particular for the terms up to second order:

⟨Φ(0)
j |Ĥ0|Φ(0)

i ⟩ = E
(0)
i δji (2.55)

⟨Φ(0)
j |V̂ |Φ(0)

i ⟩ = E
(1)
i δji + (E

(0)
i − E

(0)
j ) ⟨Φ(0)

j |Φ(1)
i ⟩ (2.56)

⟨Φ(0)
j |V̂ |Φ(1)

i ⟩ = E
(2)
i δji + E

(1)
i ⟨Φ(0)

j |Φ(1)
i ⟩+

(E
(0)
i − E

(0)
j ) ⟨Φ(0)

j |Φ(2)
i ⟩ . (2.57)

For j = i, this results in the n’th order energies

E
(0)
i = ⟨Φ(0)

i |Ĥ0|Φ(0)
i ⟩ (2.58)

E
(1)
i = ⟨Φ(0)

i |V̂ |Φ(0)
i ⟩ (2.59)

E
(2)
i = ⟨Φ(0)

i |V̂ |Φ(1)
i ⟩ . (2.60)

Remembering Hartree-Fock theory, the zeroth order energy is just the sum of
the occupied orbital energies, while including the first order yields the elec-
tronic energy of the Slater determinant, showing that the first contribution
beyond Hartree-Fock is the second order energy term.

The n’th order wavefunctions can be derived from equations 2.55 to 2.57
(and the following orders), if one considers that the eigenfunctions of Ĥ0 form
a complete basis into which the higher order wavefunctions can be expanded:

|Φ(n)
i ⟩ =

∑
j

a
(n)
ij |Φ(0)

j ⟩ with a(n)ij = ⟨Φ(0)
j |Φ(n)

i ⟩ . (2.61)

For the first order, using equation 2.56, it follows that

a
(1)
ij =

⟨Φ(0)
j |V̂ |Φ(0)

i ⟩
E

(0)
i − E

(0)
j

(2.62)

for the expansion coefficients, allowing one to construct |Φ(1)
i ⟩, with which one

is able to compute the energy up to second order. For every order n, the
corresponding energy E

(n)
i can be evaluated analogously from a lower-order

wavefunction, which in turn can always be expanded into the eigenfunctions
of the Hartree-Fock Hamiltonian.3

One variant of the second-order Møller-Plesset perturbation theory (MP2),
which is the only order actually employed in this thesis, that is commonly
used, is the spin-component scaled MP2 (SCS-MP2) method. Considering
the Slater-Condon rules and Brillouin’s theorem58 (which states that matrix
elements of the electronic Hamiltonian between a ground and singly-excited
Slater determinant is zero, i.e. ⟨Φ|Ĥel|Φr

i ⟩ = 0), the only non-zero coefficients
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for the construction of the MP2 wavefunction in equation 2.62 are between
the Hartree-Fock ground state and doubly-excited determinants. In general
the one-particle basis set correlation energy, i.e. the difference between exact
electronic and Hartree-Fock energy (Ec = Eexact - EHF ), can therefore be
expressed by expansion into the doubly-excited determinants and moreover,
separated into parallel (’triplet’) and antiparallel (’singlet’) spin components,
i.e. Ec = ES + ET with

ES =
∑
ab̄rs̄

ars̄ab̄ ⟨ab̄|rs̄⟩

ET =
1

2

[∑
abrs

(arsab − asrab) ⟨ab|rs⟩+
∑
āb̄r̄s̄

(ar̄s̄āb̄ − as̄r̄āb̄) ⟨āb̄|r̄s̄⟩
]
,

(2.63)

where a missing bar over AO indices denotes α spin and barred indices β
spin.59 Within MP2 the coefficients a are simply the ones derived in equation
2.62, since in this case ⟨Φ(0)

j | are the doubly-excited Slater determinants and
therefore

a
(1)
ij = arsab =

⟨ab|rs⟩
ϵa + ϵb − ϵr − ϵs

. (2.64)

In the SCS-MP2 variant, the singlet and triplet energy components are now
scaled separately using semi-empirical factors, so that

Ec ≈ Ec,SCS-MP2 = pSES + pTET (2.65)

with pS = 6/5 and pT = 1/3.59 Another variant of this approach is the so called
spin-opposite scaled MP2 (SOS-MP2), where pS = 1.3 and pT = 0.0, so com-
plete neglect of parallel-spin integrals for improved computational performance
at a small cost of chemical accuracy compared to SCS-MP2.60 These scaled
MP2 methods can be justified qualitatively as follows: In reality, Coulomb
interaction always leads to the repulsion of two electrons irrespective of spin,
i.e. the probabilities of finding electron one in a volume element dx1 and elec-
tron two in dx2 are not independent of one another. This is not the case in
the Hartree-Fock wavefunction for electrons in opposite-spin MOs, which are
therefore uncorrelated at this level of theory.3 For same-spin MOs the exchange
term leads to mutually dependent spatial probabilities, yielding the so-called
Fermi hole, where the probability of finding two electrons at the same point in
space is zero. The unbalanced description of same- and opposite-spin electron
correlation in the Hartree-Fock wavefunction, which is in turn carried over to
MP2, is now aimed to be reduced by semi-empirically weighting the respective
two-electron integrals in the aforementioned way.61

Since a strong focus of this thesis lies on photodynamic processes, electron-
ically excited states need to be considered in the theoretical approaches. Based
on Møller-Plesset perturbation theory, there exists an excited-state approach
called the algebraic-diagrammatic construction method, which was utilized in
chapter 6 and therefore will be presented in the following paragraph.
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2.2.3 The algebraic-diagrammatic construction method

The method known as the algebraic diagrammatic construction scheme of n’th
order (ADC(n)) is an excited-states method based on Møller-Plesset pertur-
bation theory and was originally derived from many-body Green’s functions /
propagators in the frame of diagrammatic perturbation theory.62 Fourier trans-
formation of the polarization propagator leads to its spectral representation,
in which excitation energies were found as poles. Transition moments were
accessible using this approach as well.62 However, since no discrete expres-
sion of excited state wavefunctions was yielded, most excited state properties
could not be evaluated. In recent years another derivation of the methodology
arose, called the intermediate state representation (ISR)63, which overcomes
these limitations. It is the default implementation in commercial quantum
chemistry program packages and shall therefore be presented here.

Beginning from the electronic Schrödinger equation for an excited state
|Ψn⟩ and denoting its excitation energy from the electronic ground state as
ωn = En − E0, the following equation holds:

(Ĥel − E0) |Ψn⟩ = ωn |Ψn⟩ . (2.66)

The total electronic wavefunctions of the excited states are normally not known,
so, as already mentioned in the past paragraphs, they can be written as a linear
combination of a complete set of orthonormal basis functions in the respective
Hilbert space which are more accessible either computationally or analytically,

|Ψn⟩ =
∑
i

yni |ψ̃i⟩ , (2.67)

where |ψ̃i⟩ are called the intermediate states. One should note that in general
these need not be eigenstates of the electronic Hamiltonian. This results in a
Hermitian matrix representation of the electronic Hamiltonian,

H̃ij = ⟨ψ̃i|Ĥ|ψ̃j⟩ , (2.68)

which leads to the eigenvalue equation

(H̃ − E01)Y = YΩ

MY = YΩ, Y†Y = 1, (2.69)

with the diagonal matrix Ω containing the excitation energies ωn = En − E0

and the matrix of eigenvectors Y in the basis of the intermediate states.56

The intermediate states can be generated through a set of excitation ope-
rators

{Ĉi} = {ĉ†aĉr, ĉ†aĉ
†
bĉrĉs, ...}, (2.70)

as a combination of annihilation and creation operators as defined in the realm
of second quantization, so accordingly the first given terms correspond to single
excitations of a state from orbital a to r, the second term to double excitation
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from a, b to r, s, and so on. In direct analogy to the CI expansion in the case of a
ground state Hartree-Fock wavefunction (although in the CI case orthogonal),
action of these operators on the MPn ground state wavefunction then yields
the non-orthogonal, so-called correlated excited states

|ψ0
i ⟩ = Ĉi |Ψ0⟩ , (2.71)

from which subsequently the intermediate states are constructed using Gram-
Schmidt orthogonalization.64 The matrix M, which also needs to be expanded
in perturbation orders analogously to the ground state wavefunction and en-
ergy,

M = M(0) + M(1) + M(2) + ... , (2.72)

can then be evaluated and solution of equation 2.69 thus yields the excitation
energies Ω.

Moreover, one is often also interested in transition moments, which are
given by

tn = ⟨Ψn|D̂|Ψ0⟩ , (2.73)

with the operator D̂ representing the quantity of interest (usually the dipole
operator, thus yielding transition dipole moments). Now, since explicit expres-
sions for excited state wavefunctions are available, transition moments can be
calculated with eigenvectors yn of Y

tnm = ⟨Ψn|D̂|Ψm⟩ =
∑
i

∑
j

yniymj ⟨ψ̃i|D̂|ψ̃j⟩ , (2.74)

or in matrix notation
T = Y†F̃Y, (2.75)

with F denoting the matrix of transition moments between all intermediate
states (and the ground state). In the case of the dipole operator for example,
one can directly calculate the transition dipole moments (for n ̸= m) and the
static dipole moments of all states (for n = m). Moreover, if in equation
2.70 the operators are considered to act on spin orbitals and the reference
wavefunction |Ψ0⟩ is an unrestricted MPn ground state, this directly yields
unrestricted ADC(n) equations.65

In the description of the 4-(dimethylamino)benzethyne molecule presented
in chapter 6 the ADC(2) method, which is obtained by using the MP2 ground
state wavefunction as |Ψ0⟩ in equation 2.71, was used in its SCS variant. This
is obtained by replacement of the first-order amplitudes in the construction
of the ground state MP2 wavefunction with SCS-MP2 analogues derived from
the spin-component scaled approach (cf. equations 2.62 and 2.65),66 or alter-
natively in analogy to SCS-CC2 as developed by Hättig et al.67

2.2.4 Density-functional theory

Most modern quantum-chemical methods have their roots in the Hartree-Fock
approach. The main issue with this is that to describe the electronic system



2.2. ELECTRONIC STRUCTURE CALCULATIONS 21

completely, the electronic wavefunction is dependent on 3N spatial and N spin
coordinates, i.e. |Ψ⟩ = |Ψ(x1,x2, ...xN)⟩, which makes even approximative so-
lutions computationally expensive. However, there is another ansatz that does
not, or at least did not in the beginning, use wavefunctions as the fundamental
quantity. Since its foundation is the electron density of a system, it is called
density functional theory (DFT).

Ground state density functional theory

The electron density of a system is given by68

ρ(r) = N

∫
...

∫
dω dx2 dx3... dxN |Ψ(x,x2,x3, ...,xN)|2. (2.76)

To understand how this expression is useful in the description of a molecular
system, one has to start again from the electronic Schrödinger equation 2.3, but
inserting an arbitrary trial wavefunction |Ψtrial⟩. Multiplication with ⟨Ψtrial|
from the left results in

Eel =
⟨Ψtrial|Ĥel|Ψtrial⟩
⟨Ψtrial|Ψtrial⟩

, (2.77)

showing that Eel = Eel[Ψtrial], so the energy is a functional of the wavefunction.
If |Ψtrial⟩ is expanded into the orthonormal eigenstates of Ĥel (see equation 2.4),
the above equation yields

Eel[Ψtrial(q)] =
∑

i |χi(q)|2Eel,i(q)∑
i |χi(q)|2

, (2.78)

which directly suggests that there is a lower boundary for the energy of this
system (Eel[Ψtrial] ≥ Eel,0).68 When considering equation 2.2, it is also evident
that if the number of electrons N is given, the electronic Hamiltonian, exclud-
ing nuclear-nuclear repulsion, is universally defined by N for arbitrary molec-
ular systems. One can therefore also conclude that the energy is a functional
of the number of electrons and the electron-nuclear repulsion (E = E[N, Vne]),
which is why the latter is commonly referred to as the external potential v(ri)
in DFT.68

In 1964 Hohenberg and Kohn69 were able to prove that the ground state
electron density in fact uniquely defines the number of electrons and, apart
from an additive constant, the external potential, which in turn define the
energy and the wavefunction of the system. Moreover they were able to show
that there exists a unique ground state density corresponding to the ground
state wavefunction, which therefore minimizes the electronic energy of the
system. These two principles form the so-called Hohenberg-Kohn theorem.
They theoretically reduced the problem of finding a 4N -parameter wavefunc-
tion to a quantity only dependent on three spatial coordinates, although it is
not known how to construct either an electron density without knowledge of
a wavefunction first, nor is it known how the energy is calculated from the
electron density.57
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To solve the issue, Kohn and Sham70 proposed the ansatz to equate the
real ground state electron density of a molecule, ρ0, to that of a fictitious one
ρs for a system of non-interacting electrons moving in an external potential
vs(r), thereby choosing vs(r) in a way that ρ0 = ρs (also all quantities relating
to the non-interacting system are denoted with a subscript s in the following).
In the non-interacting case, the Hamiltonian is a linear operator comprised of
a sum of the one-electron Kohn-Sham Hamiltonians

Ĥs =
N∑
i

[
− 1

2
∇2

i + vs(ri)
]
=

N∑
i

ĥKS
i . (2.79)

Analogous to the one-electron Fock operator in Hartree-Fock theory, eigenfunc-
tions to the one-electron operators ĥKS

i are Slater determinants of the so-called
Kohn-Sham spin orbitals χKS

i (xj) = σ(ωj)ψ
KS
i (rj) so that

ĥKS
1 ψi(r1) = ϵiψi(r1), (2.80)

which are again constructed to be orthonormal. It then follows that the elec-
tron probability density of such a Slater determinant is

ρs = ρ0 =
N∑
i

|ψKS
i |2. (2.81)

One solves for the Kohn-Sham MOs using the variational principle, but since
the electron density is directly dependent on the MOs through equation 2.81,
one can vary the orbitals directly instead with the restriction of orthonormality.
It can be shown that the respective Kohn-Sham MOs need to satisfy the so-
called Kohn-Sham equation[

− 1

2
∇2

r1−
∑
I

ZI

r1I
+

∫
dr2

ρ(r2)
r12

+
δExc[ρ(r1)]
δρ(r1)

]
ψKS
i (r1) = ϵKS

i ψKS
i (r1), (2.82)

which by comparison with equations 2.79 and 2.80 in turn also gives a definition
for vs and ĥKS

i , respectively.68 In the last term of the operator one finds the
so-called exchange-correlation functional

Exc[ρ] = ∆T [ρ] + ∆Vee[ρ]

= T [ρ]− Ts[ρ] + Vee[ρ]−
1

2

∫∫
dr1 dr2

ρ(r1)ρ(r2)
r12

, (2.83)

which contains the differences in the electronic kinetic energy and electron-
electron interaction terms between the interacting and non-interacting sys-
tem. Furthermore, comparison with the Hartree-Fock equation 2.36 shows the
direct analogy between the Fock and Kohn-Sham operators, with the differ-
ence that the exchange term in Hartree-Fock is replaced with the potential
vxc =

δExc[ρ(r1)]
δρ(r1)

including exchange and electron correlation treatment.68
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Subsequently one then finds for the total energy functional that

E0[ρ0] = Ts[ρ0] +

∫
drρ0(r)v(r) +

∫∫
dr1 dr2

1

2

ρ0(r1)ρ0(r2)
r12

+ Exc[ρ0]

= − 1

2

N∑
i

⟨ψKS
i |∇2

r1|ψ
KS
i ⟩ −

∑
I

ZI

∫
dr1

ρ0(r1)
r1I

+
1

2

∫∫
dr1 dr2

ρ0(r1)ρ0(r2)
r12

+ Exc[ρ0], (2.84)

meaning that the energy of the real molecular system can be expressed as
a sum of the non-interacting system’s energy and the difference between the
two, contained within the exchange-correlation functional, the only quantity
in equation 2.84 that is not known.57 Its approximation is the key of modern
DFT method development and since there is no way to analytically derive
expressions for the mathematical form of Exc, DFT is not systematically im-
provable in the sense of CI or perturbation theory. However there are differ-
ent methods of obtaining exchange correlation functionals, namely the local-
density approximation (LDA) suggested by Kohn and Sham70, which assumes
slowly varying electron densities with respect to r (which, when considering
open-shell systems, can be expanded to the local-spin-density approximation
(LSDA)), generalized gradient approximations (GGA) which also includes the
density gradients (and second derivatives for meta-GGA) to allow for greater
variations in electron density, and so-called hybrid functionals, which are a
combination of GGA and Hartree-Fock exchange terms.57 The latter, includ-
ing for example (CAM)-B3LYP, ωB97XD and PBE0, are arguably the most
widely used functionals in modern quantum chemistry.

DFT calculations are carried out in a similar fashion to Hartree-Fock calcu-
lations in that one first guesses an electron density, from which the exchange-
correlation potential is calculated in some way. One then solves equation 2.82
for the Kohn-Sham MOs, which yields a new electron density with equation
2.81, i.e. the DFT method is iterative. The Kohn-Sham orbitals are again built
as linear combinations of (atomic orbital) basis sets, a discussion of which will
be given more in depth in subsection 2.3.4.

Here it also has to be noted that although the Kohn-Sham orbitals are
technically just arbitrary functions whose sole purpose is to construct a Slater
determinant of a fictitious, non-interacting system, they are still successfully
used in the discussion of molecular properties, since in reality they are usu-
ally reasonably close to the molecular orbitals in Hartree-Fock theory.57 Some
literature even suggests that Hartree-Fock orbitals, which are technically also
unphysical since they represent eigenfunctions of a system of electrons in po-
tentials of averaged electron-electron interaction far away from reality, are less
suited for qualitative analysis of properties than their Kohn-Sham analogs.71,72
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Density-functional theory for excited states

Up to this point, the formulation of DFT only concerns the ground state of a
molecular system. However in photochemistry electronically excited states ob-
viously play a fundamental role, be it in dyes, fluorescence phenomena, charge-
transfer processes, etc. Naturally, the theoretical descriptions in DFT also
need to be extended to account for electronic excitation, resulting in a method
known as time-dependent density functional theory (TD-DFT).

The basis of all types of TD-DFT formulations is rooted in the work of
Runge and Gross73, who, in an analogous fashion to Hohenberg and Kohn,
were able to prove that in a system obeying the time-dependent Schrödinger
equation, the time-dependent electron density ρ(r, t) and the initial wavefunc-
tion Ψ(t0) fully determine the external potential and therefore the time evolu-
tion of the system up to an additive function of time. Furthermore they again
introduced a Kohn-Sham formulation, that is, a Slater determinant ansatz of
MOs in a non-interacting electron system producing the same electron density
as the interacting system, which is calculated according to equation 2.81.

The starting point is the time-dependent Schrödinger equation with a
Hamiltonian comprised of a time-independent part as known from ground state
DFT, Ĥ0(r), and a time-dependent perturbation, V̂ (r, t) =

∑N
i v(ri, t), yield-

ing in total Ĥ(r, t) = Ĥ0(r) + V̂ (r, t). It can be shown that from a time-
dependent analogue to the variational principle the time-dependent Kohn-
Sham equations for the MOs of the non-interacting system can be derived,
which read

i
∂

∂t
ψKS
i (r, t) = ĥKS(r, t)ψKS

i (r, t), (2.85)

with

ĥKS(r, t) = −1

2
∇2

r + v(r, t) +
∫

dr′
ρ(r′, t)
|r − r′|

+
δAxc

δρ(r, t)
. (2.86)

Here, the action integral in the frame of the Kohn-Sham formalism,

A[ρ] =

∫ t1

t0

dt

〈
Ψ[ρ](r, t)

∣∣∣∣ i ∂∂t − Ĥ(r, t)
∣∣∣∣Ψ[ρ](r, t)

〉
=

∫ t1

t0

dt

〈
Ψ[ρ](r, t)

∣∣∣∣ i ∂∂t − T̂ (r, t)
∣∣∣∣Ψ[ρ](r, t)

〉
− Axc[ρ]

−
∫ t1

t0

∫
dr dtρ(r, t)v(r, t)− 1

2

∫ t1

t0

∫∫
dr dr′ dt

ρ(r, t)ρ(r′, t)
|r − r′|

, (2.87)

is introduced, of which the functional derivative of the so-called exchange-
correlation part with respect to the electron density, Axc, is needed.4 Analogous
to Exc in ground state DFT, Axc contains all terms that are not known and has
to be approximated, with the difference thatAxc is now time-dependent. Runge
and Gross first suggested a local approximation in time called the adiabatic
approximation of TD-DFT,73 which is now widely in use and enables the use
of the standard ground state DFT functionals for Axc.
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Assuming the perturbations v(r, t) to be weak, the orbitals will change only
slightly with time. Therefore usually only first-order terms of time-dependent
perturbation theory are considered, leading subsequently to the Casida equa-
tions74, a non-hermitian eigenvalue problem yielding the excitation energies
and transition amplitudes as eigenvalues and eigenvectors:[

A B
B∗ A∗

] [
X
Y

]
= ω

[
1 0
0 −1

] [
X
Y

]
(2.88)

in the Kohn-Sham molecular orbital basis with the matrices

Aia,jb = δijδab(ϵa − ϵi) + ⟨ij|ab⟩+ ⟨ij|fxc|ab⟩ (2.89)
Bia,jb = ⟨ib|aj⟩+ ⟨ib|fxc|aj⟩ . (2.90)

This approximative approach is called linear-response TD-DFT.4 In the adia-
batic approximation, the operator fxc in the last term in equations 2.89 and
2.90 is given as the second functional derivative of the exchange-correlation
energy (cf. equation 2.83), so

⟨ij|fxc|ab⟩ =
∫∫

dr dr′ψ∗i (r)ψ
∗
j (r
′)

δ2Exc

δρ(r)δρ(r′)
ψa(r)ψb(r′). (2.91)

It can be noted here that replacing the Kohn-Sham orbitals in this formalism
with Hartree-Fock orbitals and replacing the term in equation 2.91 with the
Hartree-Fock exchange terms directly yields the working equations of time-
dependent Hartree-Fock theory (analogous to equation 2.88). Since the ele-
ments of B are usually small, a widely used approximation is to set B = 0,
the so-called Tamm-Dancoff approximation, in which case the left matrix in
equation 2.88 becomes block-diagonal.75 In the corresponding case in TD-HF
this approach is called configuration interaction with singles (CIS).

2.2.5 Scattering theory

An electron detachment process generally results in an ejected electron and a
molecule with an N − 1 electron system. In the paragraphs before, various
quantum-chemical methods were presented for the characterization of bound
molecular systems, but since the main focus of this thesis is on detachment
phenomena, it is necessary to consider both products of the process, i.e. also
the description of the ejected electron. From an electron’s perspective, de-
tachment can be viewed as a scattering process on a potential created by the
molecule core that it is leaving behind.

In a sense, the easiest example of electron scattering is the case of an elec-
tron free of any interaction, that is, an unscattered electron with a wavefunction
that satisfies a special case of the time-independent Schrödinger equation 2.3,
the Helmholtz equation

∇2
i |ψ⟩ = −k2 |ψ⟩ . (2.92)
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Solutions to this equation are the so-called plane waves of the form

ψ(k, r) = eik·r (2.93)

with eigenvalues

Ek =
h̄2k2

2m
(2.94)

to the system’s Hamiltonian.76

Although an unrealistic scenario (since no real system is completely with-
out interaction of any kind), one could argue that this can still be a valid
approximation of electronic behavior for example in the region far away from
a neutral molecule, where no Coulomb interaction is present.

If one does not neglect the scattering center, one can construct solutions of
the form

ψ(k, r, θ, ϕ) ≈ N

(
eikz + f(θ, ϕ)

eik·r

r

)
, (2.95)

with the scattering amplitude f and the scattering angles θ and ϕ. This rep-
resents the sum of an incoming plane wave and the outgoing, scattered par-
ticle function, which is represented by a spherical wave modulated by the
angle-dependent scattering amplitude.77 The square of the absolute value of
f subsequently defines the angle-dependent differential cross section, which
is usually the quantity of interest in scattering experiments.76 Traditionally
there are two approaches to solving such problems that both rely on solutions
to the time-independent Schrödinger equation at distances far away from the
scattering center: partial wave analysis and the Born approximation.

The basis of the first method, the partial wave analysis, is the fact that
the Laplace operator in spherical coordinates can be expressed through the
squared angular momentum operator, L̂2,

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− L̂2

h̄2r2
, (2.96)

whose solutions, the spherical harmonics, can be readily used in a separation
ansatz, ψ(r, θ, ϕ) = Rl(r)Ylm(θ, ϕ), if the potential is spherically symmetric,
i.e. V (r) = V (r). The resulting radial equation[

1

r

∂2

∂r2
r − l(l + 1)

r2
− 2m

h̄2
(V (r)− E)

]
Rl = 0 (2.97)

is the fundamental equation which has to be solved in this approach. In the
case where the potential V asymptotically approaches zero faster than r−2,
that is, the second term in the above equation, the asymptotic solutions for Rl

can be constructed as a linear combination of spherical Bessel and Neumann
functions:

spherical Bessel functions: jl(r) = (−r)l
(
1

r

d

dr

)l
sin r

r
(2.98)

spherical Neumann function: nl(r) = −(−r)l
(
1

r

d

dr

)l
cos r

r
, (2.99)
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where hl = jl + inl ∼ Rl are known as the spherical Hankel functions.76 This
prerequisite is in principle fulfilled for anions with an electron far away from
the molecular core (on the supposition that the molecule is not dipole-bound,
the meaning of which will be discussed later in subsection 2.3.3). It should
be noted that the above formulation is equivalent to a description using plane
waves.

In the Born approximation on the other hand, one starts by rewriting
the Schrödinger equation as an inhomogeneous analogue to the Helmholtz
equation,

∇2ψ + k2ψ =
2m

h̄2
V (r)ψ = Q(r), (2.100)

and shows that the solution is comprised of a sum of the general solution to
the homogeneous Helmholtz equation and a particular solution to the inho-
mogeneous equation, which are both Green’s functions to the equation above.
This results in the Lippmann-Schwinger equation

ψ = ψ0 −
m

2πh̄2

∫
dr′

eik|r−r′|

|r − r′|
V (r′)ψ(r′)

≈ ψ0 −
m

2πh̄2
eikr

r

∫
dr′eik·r

′
V (r′)ψ(r′). (2.101)

In the Born approximation for the wavefunction in the integral one utilizes
ψ(r′) ≈ ψ0(r′) = eik

′·r′ , resulting in a scattering amplitude (see equation 2.95)
of

fBorn(θ, ϕ) = − m

2πh̄2

∫
dr′ei(k−k′)·r′V (r′). (2.102)

It also has to be noted that this result only holds true in the case of elastic
scattering. In the general case of inelastic scattering, the initial and final state
of the scattering center, i.e. the molecule (with an electronic wavefunction φ),
also needs to be considered. This results in terms of the form ⟨φf , ψf |V |φi, ψi⟩
in the scattering amplitude, which now requires a full description of the molec-
ular system.

All approaches so far neglected the complex structure of molecules with
all electrons and nuclei interacting with the scattered electron. Therefore,
up to this point only solutions for the electronic wavefunction far away from
the scattering center were yielded, which nevertheless suggests plane waves
as a legitimate starting point in the approximation of the scattered electron’s
wavefunction. If one is interested in molecular dynamics however and tries
to describe electron detachment through nonadiabatic transitions as described
before, these wavefunctions at large distances are not sufficient, since the actual
functions are important for the evaluation of all coupling terms in equation
2.19. Hence, another ansatz needs to be considered, namely, approximating
the wavefunctions of a free electron by including, to an extent, dependence on
the molecular electronic structure. For this one again starts with solutions to
the unscattered electron wavefunctions, i.e. plane waves, as in equation 2.93.
The wavefunctions can then be approximated by orthogonalizing the free states
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with respect to occupied molecular orbitals (as done firstly for the calculation
of photodetachment cross sections78–80), so

ψ̃(ki) = (2π)−3/2Northo

(
eiki·r −

occ∑
m

⟨ϕm|eiki·r⟩ϕm

)

= Northo

(
ψ(ki)−

occ∑
m

⟨ϕm|ψ(ki)⟩ ϕm

)
, (2.103)

where the normalization constant is given as

Northo =

(
1−

occ∑
m

∣∣ ⟨ϕm|ψ(ki)⟩
∣∣2)−1/2 . (2.104)

The factor of (2π)−3/2 is the normalization constant of the plane wave in a
spatial box of length L = 2π/∆k, such that orthonormality between the dis-
cretized continuum functions is given (see equation 2.22). This serves two
purposes: firstly, it incorporates a dependence of the (approximate) scattering
functions on the molecular system where the electron density of the neutral
core is high and the plane wave ansatz therefore qualitatively wrong.80 And
secondly, it yields (augmented) plane waves that are orthogonal to the bound
state orbitals of the molecular core system. Although this suggests orthogo-
nalization to the neutral core MOs, in the methodology presented in chapter
3 the plane waves are chosen to be orthogonal to the occupied anionic MOs.
This is done based on the assumption that anionic and neutral orbitals are
very similar in a Koopmans’-like argument,80 the main reason for this being
the simplification of arising integrals, that is the computational saving of time,
within the developed methodology.

With the basics of the theory and methods behind all upcoming simulations
presented, it is now necessary to also take a closer look at the systems that
will be described, namely, molecular anions.

2.3 Molecular anions
The addition of an extra electron to a neutral molecule produces a bound
molecular anion, if the resulting system is stable with respect to electron-loss.
These systems are often characterized by small detachment energies and dif-
fuse distributions of the extra charge around the neutral molecular "core",
since the electron only experiences charge-multipole interactions (as opposed
to a Coulomb potential in the case of a cationic core) at large separations from
the molecule. These weakly-bound anions, "weakly" in this case referring to
the usual observation that the AEAs are significantly lower than the IEs in the
neutral molecule81, are therefore prone to electron detachment (or other reac-
tion pathways such as dissociation of fragments after bond-break) by addition
of sufficient energy to overcome the ionization potential barrier, for example
with the kinetic energy of the captured electron or by radiation.10
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In the case of formation of a metastable state, one then observes a deactiva-
tion of this system on a finite timescale. Therefore, to understand the ultrafast
dynamics of such metastable anions, one first has to take a closer look at what
so-called resonances are and what different types thereof can occur.

2.3.1 Types of resonances

In the most general sense, resonances in the field of scattering theory are
states that are metastable with respect to some kind of dissociation of the
form AB∗ → A + B, the star indicating that the state is metastable. In this
thesis one can restrict oneself to anions and therefore the cases of

(AB−)∗ → A+B−. (2.105)

One can firstly differentiate between different dissociation products B−.
If B− is an atom or molecular fragment, (AB−)∗ is called a heavy-particle
resonance. They play a role for example in predissociation or dissociative
electron attachment phenomena and are experimentally observable with (time-
resolved) mass spectrometry. In the case where B− is an electron, one calls
(AB−)∗ an electronic resonance and the relaxation process is autodetachment,
yielding the molecular core A after some time, usually in the range from femto-
to microseconds.11–13

Furthermore a resonance can be formed two different ways when focusing
on the neutral core: Firstly by addition of an electron to a molecular core in
its electronic ground state, called a ’single-particle resonance’. If the anion
in its electronic, vibrational and rotational ground state is a bound molecule,
resonances can then be observed by vibrational or rotational excitation. One
example would be the vinylidene anion25,26,82, whose vibration-induced au-
todetachment dynamics are discussed in chapter 3. The second possibility of
resonance generation is by attaching an extra electron to a molecule and in
that process exciting the neutral core (or generating a bound anionic molecule
in its ground state and subsequently exciting the system above the ioniza-
tion threshold), thus creating an electronically excited anion, which is called
a ’core-’ or ’target-excited resonance’.10,83 An example for this would be the
2-cyanopyrrolide anion84,85 discussed in chapter 4.

A third (and for this thesis arguably the most important) distinction can be
made with respect to the combined potential energy of the fragments, i.e. the
dissociation potential: In a so-called ’shape resonance’ the energy lies above
the dissociation potential and the state is trapped by a potential energy bar-
rier. An example is shown in Figure 2.1a), in which after dissociation the
excess energy of the system, Ekin, is redistributed to the kinetic energy of the
fragments. The deactivation pathway, in this case, is tunneling through the
barrier and the lifetime of such states is determined mainly by the tunneling
probability dependent on the height and width of the barrier.86 If the resonance
energy lies below the dissociation potential of the occupied state but above the
dissociation potential of a lower-lying state, a ’Feshbach resonance’ is present.
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Figure 2.1: a) Schematic depiction of a shape resonance (red). The state is unstable with
respect to dissociation, but trapped behind a repulsive potential energy barrier. The system
deactivates by tunneling through the barrier. b) Schematic depiction of an excited Feshbach
resonance (red). The orange and green lines represent two different potential energy curves
of electronic states. The current system is stable with respect to dissociation, but couples
to the lower-lying state and eventually deactivates by state transition with a kinetic energy
of the fragments of Ekin as depicted.

An exemplary schematic depiction of an electronic Feshbach resonance is given
in Figure 2.1b), in which two potential energy curves are shown as a function
of the molecule-electron distance. In this case the system is able to deactivate
by coupling of the resonance state to the lower-lying green electronic state,
resulting in ejection of an electron with the kinetic energy Ekin. The lifetime
of this state is determined by the coupling strength to the lower-lying state.86

Shape and Feshbach resonances can have lifetimes of the same magnitude and
can therefore be competing phenomena in deactivation, especially on ultra-
fast timescales. However generally speaking, Feshbach resonances tend to be
decaying slower.10 Also noteworthy is that the character of a resonance can
change as a result of solvation effects, for example from shape to Feshbach
character in polar solvents, resulting in a drastically increased lifetime.87

These different types of resonances are naturally not mutually exclusive in
a specific molecule, resulting in multiple simultaneously accessible deactivation
pathways for example autodetachment and dissociative electron attachment in
DNA strand breaks.17,18

2.3.2 Experimental characterization of molecules

Although experiments were not part of the author’s work in this thesis, theoret-
ical simulations are generally validated by their agreement with experimental
data. Hereof, it also follows that to develop new theoretical methods and be
able to interpret the yielded results reliably, it is necessary to also understand
the associated experiments. Therefore, a short overview of the most important
experimental methods related to the theoretical methodology in this thesis as
well as a historical summary of the discovery of molecular anions shall be given
in this paragraph.
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Before being able to characterize molecular gas-phase anions, one has to
produce them first. This bears some difficulties arising from the small electron
attachment energies, often prohibiting direct electron collision which produces
electronically excited or vibrationally hot products, as the excess energy could
be enough to ionize the molecule again.9 Therefore possible other generation
methods include fragmentation from a dissociative electron attachment pro-
cess of more complex metastable anions, where the yield is diminished by
autodetachment of the parent anion, gas-phase chemical reactions, collision
of neutral species with highly excited atoms or molecules with detachment
energies matching the electron affinity of the neutral, and so-called spray tech-
niques.9 The last method, in which a desired anion contained in a stabilizing
liquid solution is sprayed in the gas phase under high voltage88, was used, for
example, in the experimental study of the 2-cyanopyrrolide anion84 which has
been theoretically investigated in chapter 4.

One of the defining characteristics of a molecular anion is the adiabatic de-
tachment energy (ADE) or alternatively the adiabatic electron affinity (AEA)
of the corresponding neutral system, i.e. the energy difference between the neu-
tral and anionic molecule in both their electronic, vibrational and rotational
ground state. One has to be careful with the nomenclature here: although in
this case the AEA is the released energy upon addition of an electron to the
neutral molecule and ADE the energy one has to put into the anionic system
to extract an electron, the energy of both processes are often simply referred
to as "the AEA" in this field of research. For clarity it should further be noted
that all mentioned quantities (ADE/AEA) are only semantically different, the
actual values are equal and defined as positive if the considered molecule is
stable with respect to electron detachment. Another important characteristic
is the vertical detachment energy (VDE). It describes the potential energy dif-
ference between neutral and anionic system at the same nuclear geometry. For
a non-specific, more general detachment energy, the abbreviation DE will be
used from now on.

For a bound molecule stable with respect to electron loss, the AEA is
positive, otherwise negative. Consequently the knowledge of a molecule’s AEA
is of great concern for the stability of molecular anions. For bound anions a
possible way to obtain accurate electron affinities is through photodetachment
experiments.89,90 The basic idea thereof is the removal of an electron through
radiation:

A− + hν → A+ e−. (2.106)

In principle there exist two possibilities to investigate electron affinities,91

namely threshold photodetachment, among this especially zero-electron ki-
netic energy (ZEKE) spectroscopy, and photoelectron spectroscopy (PES),
which should be described briefly, since these methods are used to gain all
experimental data that have been simulated using the theoretical approaches
presented in this thesis.

The first method records the reaction yield of equation 2.106 as a function
of the tunable photon energy. This is in direct analogy to the photoelectric
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effect and the work function of solid state surfaces, from which this method is
derived. A signal is then detected either by capturing of photoelectrons/neutral
molecule species or the decrease in anion concentration, and one therefore finds
the DE directly at the threshold laser energy. Especially popular, since it allows
for even higher-resolved data, is ZEKE spectroscopy, in which a weak current is
applied in the reaction chamber at the detachment threshold after an amount
of time to separate the produced electrons by kinetic energy, only counting
those with an initial EKE of zero.92 The resolution of such experiments is
in general far higher than for PES,93 on the other hand tunable laser setups
have to be used. This leads not only to technical inconveniences, also the
intensity of measured signals can change with the photon energy, complicating
the analysis.32

The latter method of photoelectron spectroscopy is not only one of the
leading techniques in the characterization of molecular anions, but in general
throughout the whole field of molecular physics. Accordingly it is also the
main source of experimental data in all studies presented in chapters 3 to 6,
which is why it should be discussed in a bit more detail in the following. In
PES radiation of specific photon energies higher than the ADE is used and
ejected electrons are measured as a function of particle kinetic energy (in the
following chapters this quantity is referred to as "electron kinetic energy" or
EKE). One can then draw conclusions on the DE (or in the special case of
starting molecules in their ground state: ADE) considering conservation of the
total energy of the system including the ejected electrons:

DE = hν − EKE = hν − me

2
ṙ2e. (2.107)

Although rather limited in resolution compared to threshold photodetachment
spectroscopy, there is a major advantage: Since the whole range of photoelec-
trons is detected energy-resolved, PES is able to provide information about
the electronic structure of the ionized molecule as well.94 This includes not
only electronic state differentiation, but also vibrational analysis of the start-
ing molecule as well as the ionized species, allowing for conclusions on the
molecular geometries. Moreover, angular-resolved detection of photoelectrons
provides direct information about the electron detachment continuum wave-
functions and photodynamics in contrast to the aforementioned threshold pho-
todetachment spectrum.32 By combining all of the above methodology with
ultrashort laser pulses, one is able to not only resolve energetically (and an-
gularly), but also in the time domain with a resolution of down to a few
femtoseconds. On these timescales molecular vibrations as well as nonadia-
batic electronic relaxation processes take place. Particularly the possibility to
track nuclear rearrangement to produce different isomers, especially after prior
photoexcitation, should be noted. Application of this so-called (femtosecond)
time-resolved photoelectron spectroscopy (TRPES) directly reveals ultrafast
dynamic relaxation processes in molecules experimentally. These findings can
then be built upon using theoretical approaches to connect this data with
dynamical processes at the molecular level. Together with surface-hopping
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simulations, femtosecond pump-probe TRPES experiments after initial excita-
tion into an excited electronic state are the basis of the combined theoretical-
experimental approach presented in chapter 6.

Sometimes one finds a combination of both methodologies, meaning exper-
iments where the laser photon energy is tunable in a desired energy range and
one still detects the photoelectrons energy-resolved. This leads to 2D data, in
which one finds specific ionization transitions along a diagonal in the spectrum,
i.e. with an EKE linearly increasing with photon energy. This combines all
the advantages of both described methods (but also the disadvantages such as
reduced resolution), but facilitates interpretation of experimental data. Sum-
mation of the signal over the EKE range of 0 to ∼50-100 meV yields the so-
called slow photoelectron spectrum with improved signal-to-noise ratios when
compared with threshold photodetachment spectroscopy.32

It is no surprise that the first interest in molecular anions arose mainly
from the desire to determine electron affinities of neutral systems, but on
the other hand also because of their role in a variety of chemical gas-phase
reactions.95 Their generally diffuse electron densities lead to strong interac-
tion with the molecular surrounding (for example in solution or solid state)
and therefore easily available reaction pathways, enabling the observation of
their immediate vicinity by probing anions,9,81 an example of which are the
completely different photoelectron spectra found in the uracil anion upon dif-
fering experimental preparations.96,97 The earliest detected molecular anion
was found in 1968 by Herzberg and Lagerqvist20, who assumed characteris-
tic features in their emission spectrum to be the C−2 anion, which was later
confirmed by Lineberger et al.21 in one of the very early uses of resonance-
enhanced multiphoton ionization (REMPI) spectroscopy, which at the time
was still restricted by the problems in the generation of higher-energy pho-
tons at the necessary intensities.98 Other early examples are the OH−/OD−
and the O−2 molecules99,100, and small hydrocarbons such as the CH− and
CH−2 molecules101,102, the latter of which being able to establish spectroscopy
on molecular anions in the determination of singlet-triplet energy splitting of
corresponding neutral molecules. In 1983 Lineberger et al.103 first measured
the AEA of vinylidene to be 0.47 eV, which induced a variety of experimental
studies on the vinylidene anion25,82,104. Because of the excellent availability of
data on this molecule, it eventually served as the first working example for the
developed autodetachment dynamics methodology26 presented in this thesis.

2.3.3 Valence-bound and dipole-bound anions

To differentiate between the characteristics of anionic bound states, it is useful
to first take a look at the general electric potential created by an arbitrary
electrostatic charge density ρ(r) given in atomic units as

V (r) =
∫

d3r′
ρ(r′)
|r − r′|

. (2.108)
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For positions r sufficiently far from regions of large charge density the term
|r − r′|−1 can be expressed through a Taylor expansion around r′ = 0,

1

|r − r′|
=

1

r
+

r′ · r
r3

+
3(r′ · r)2 − r′2r2

2r5
+ ... . (2.109)

This result and the definitions

total electric charge: q =

∫
d3r′ρ(r′) (2.110)

dipole moment: µ =

∫
d3r′ρ(r′)r′ (2.111)

quadrupole moment: Qij =

∫
d3r′ρ(r′)(3r′ir

′
j − r′2δij) (2.112)

substituted into equation 2.108 then yield

V (r) =
q

r
+

r · µ
r3

+
1

2

∑
i,j

Qij
rirj
r5

+ ... , (2.113)

the so-called multipole expansion of the electrostatic potential.105 Due to the
increasing power in r for each subsequent term, in turn leading to faster con-
vergence to zero, the long-range effect of the potential on a charged particle is
mainly dominated by the first non-zero term of the expansion.

In the case of anions, when viewing the molecular system as an electron
in the field of the neutral molecular core, the first term in equation 2.113
disappears, since q = 0, leaving higher multipole potentials responsible for
long-range binding effects. Solving the Schrödinger equation for an electron
in the field of a point dipole results in an infinite number of bound states for
dipole moments that are greater than 1.625 D106,107 without considering any
electronic molecular structure. It can be shown that in the case of a finite
dipole, this critical value does not change.108 Further critical dipole moments
are found much higher (9.6375 D, 19.101 D, ...), and the spatial shape of the
dipole-bound electronic wavefunctions can be associated with the solutions of
H+

2 and the order of the respective critical moment (1.625 D → σ, 9.6375 D
→ π, ...).108 Later it was found by Garrett109 that in the field of a rotating
finite dipole the number of bound states reduce to only a handful, even only
one, depending on the considered system. Also the critical dipole moment
was found to depend strongly on the system’s moment of inertia and charge
separation, i.e. there is no set critical value at which electron binding can be
expected. Generally, the first critical moment is often observed to be around
2.4 D.108

Of course only considering multipole potentials is not a valid approach in
the case of real molecular anions anymore due to valence-type contributions
arising from direct, strong interaction of the extra electron with the molecule’s
other individual electrons and nuclei. Nevertheless it can still be useful to dis-
tinguish electronic states by their main contribution leading to electron bind-
ing, that is, multipole-bound and valence-bound anions, valence-bound gen-
erally meaning electron distributions that are more confined in space around
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the molecular core,10 recognizing that the last remark is in itself a vague dis-
tinction. The main difference lies in how localized the electron density of the
extra electron is and in its actual spatial shape. Commonly valence states are
recognized by their resemblance to typical orbitals in neutral molecules, e.g.
σ- or π-type distributions, albeit more diffuse due to the missing long-range
Coulomb interaction, and rather large VDEs. Multipole-bound states on the
other hand usually resemble very diffuse electron densities and shapes anal-
ogous to Rydberg states in neutral molecules and are characterized by small
VDEs, resulting from the limited influence of the extra electron on the nuclear
geometry, i.e. anion and neutral have almost the same equilibrium geome-
try. Consequently one would also expect the binding energy of an electron to
shrink for higher multipoles. A good example for the breaking of this rule is
the (BeO)−2 anion, classified as quadrupole-bound, with a VDE of 1.1 eV110,
well above the usual values of below hundreds of meV.

Experimentally, photoelectron spectroscopy can help in the differentiation
between valence and multipole-bound character: Since the equilibrium geom-
etry of the neutral species and the multipole-bound anion are virtually the
same, one can expect similar vibrational wavefunctions and therefore a strong
0 → 0 peak in the photoelectron spectrum. In contrast to this in the case
of valence states one expects a more pronounced vibrational progression with
the brightest peak most likely not being the 0 → 0 transition. This can be
observed nicely in the uracil anion, which possesses both a valence- and dipole-
bound state and shows two very different photoelectron spectra depending on
the preparation of the system.96,97

There is a variety of molecules that possess both valence and dipole-bound
states, and interaction between the two types can lead to interesting behav-
ior. In the nitropropane molecule for example it was shown that electron
capturing can be achieved by population of the dipole-bound state, which can
subsequently stabilize the resulting anion by coupling to the valence ground
state.108,111 The inverse effect, the mediation of autodetachment of vibra-
tionally excited nitropropane by transient population of a dipole-bound state
can be seen in the work presented in chapter 5.

2.3.4 Computational challenges of molecular anions

As is always the case in computational chemistry, in practice the accuracy of
the description of molecular anions is limited by the temporal effort of the com-
putations, especially if, as already implied in subsection 2.1.2, two quantum-
chemical calculations (for the anion and neutral molecule) have to be carried
out per nuclear dynamics time step. As a consequence, one has to carefully
choose the level of theory for an acceptable accuracy-efficiency compromise,
which normally involves two aspects: the actual quantum-chemistry method
and the atomic basis set, from which molecular orbitals are constructed.

Considering quantum chemistry methods, one has to be aware that since
electronic energies (AEAs, excitation energies, etc...) are rather small in anions
and relative errors therefore larger, electron correlation cannot be neglected
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(i.e. Hartree-Fock is unusable), nor should it be described poorly. This ef-
fectively leaves post-Hartree-Fock methods such as MPn, (MR-)CI, MCSCF
and coupled cluster theory, or DFT.9 In principle post-Hartree-Fock methods
should yield the most reliable and accurate results, since they are systemati-
cally improvable in that they give exact solutions to the electronic Schrödinger
equation in their respective method limit. In practice it is highly debatable
if this limit is even remotely reached in the current state of approximations.
Furthermore the enormous computational effort of these methods makes them
very impractical in quantum-classical dynamics simulations. This is the reason
why in this thesis most results were obtained using the DFT method, which
of course bears its own difficulties. As described before in subsection 2.2.4,
no expression is known for the exchange-correlation functional and plenty of
different functionals have been developed that try to approximate it. Unfortu-
nately with most functionals the Kohn-Sham orbitals of anions show incorrect
behavior for large distances away from the molecule, as they contain terms
that arise from the improper cancellation of self-interaction in the electron-
electron interaction (third term in the operator of equation 2.82).9 To un-
derstand this, one needs to consider the operator in equation 2.82: The first
term is the electron’s kinetic energy operator, the remaining three define the
potential energy, consisting of electron-nuclear attraction, electron-electron re-
pulsion and the exchange-correlation potential containing all corrections from
the non-interacting electron gas to the real molecule. In the asymptotic case
of very large r away from the molecule, one can show that in the exact case
vxc ∼ −r−1 and therefore for large r

vKS(r) = −Z −N + 1

r
, (2.114)

where Z denotes the sum of all atomic numbers. This means that for anions,
where the number of electrons is N = Z + 1, vKS(r) → 0. The problem now
arises from the fact that in DFT the electron-electron repulsion term describes
the interaction of an electron with the total electron density (including the
very electron itself) instead of the density of an N − 1 electron system, which
is called the self-interaction error. In the approximative case, most functionals
rely on local derivations of the potential vxc, which fail to fully cancel this error
and fall off exponentially, therefore leading to vKS(r) → r−1 for an anion, that
is, a repulsive potential for large separations using standard approximative
functionals.10 One could argue that this phenomenon could not be too big of a
problem in the case of valence-bound anions with compact electronic structure,
but it should lead to systematically wrong description for diffuse dipole-bound
states. It is evident that the problem of self interaction has to be tackled one
way or another to yield useful results. The most prominent solution is the use
of long-range corrected functionals. These functionals split the two-electron
operator into a long-range and short-range part, mostly according to

1

r12
=

1− erf(−µr12)
r12︸ ︷︷ ︸

short-range

+
erf(−µr12)

r12︸ ︷︷ ︸
long-range

, (2.115)
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where µ denotes a tunable, so-called range separation parameter.10 Consid-
ering exchange-correlation functionals that are separable into their respective
exchange and correlation part, the long-range part is normally considered with
exact Hartree-Fock exchange terms, since they provide correct behavior for
large r and do not rely on local approximations, and the short-range part is
used in a combination of Hartree-Fock and GGA exchange, so

ELC
xc = Ec + cHFE

SR
x,HF + (1− cHF )E

SR
x,GGA + ELR

x,HF (2.116)

where SR and LR denote quantities that include the short- and long-range
terms of equation 2.115, respectively, and cHF is the proportion of Hartree-Fock
exchange in the total short-range exchange term. This means that the result-
ing functionals are hybrid functionals with correct long-range performance.10

Examples of such are ωB97XD, CAM-B3LYP or LC-ωPBE, which were used
in all the publications of chapters 3-5.

The second leverage point are atomic basis sets. In the general valence
case, bases need to be able to both describe the varying extent of anionic
and neutral systems sufficiently well, while also allowing for the inclusion of
electron correlation effects. This is done by inclusion of additional diffuse as
well as polarization functions, that is, basis functions of higher l quantum
number. Since (spatially) wide-spread electron densities are to be expected in
multipole-bound states, the used basis sets need to reflect this characteristic by
employing extra-diffuse basis functions.9 Usually these are build by extension
of standard basis sets, generating new function exponents through a geometric
progression based on the most diffuse function of the underlying "default"
basis, α0, so

αn =
α0

cn
, n = 0, 1, 2, ... (2.117)

with c usually in the range of 3-5.10 As described before, a finite dipole with a
dipole moment smaller than 9.6375 D only supports s-type bound states, so the
dipole-bound states of a molecular anion with a not too large dipole moment
can also be expected to possess s-type character. It follows that s-type basis
functions should in principle be sufficient to accurately describe the electronic
distribution, however also in this case polarization functions can be necessary
to account for electron correlation or errors arising in the actual spatial center-
ing of the additional functions. Although from an intuitive point of view the
extra electron binds more to the positive end of the molecular dipole and the
basis functions should therefore be centered there, either on the closest atom
or a ghost center112, it can be shown that the actual positioning of additional
extra-diffuse functions barely has any effect on the shape of the electronic dis-
tribution and therefore on the energies within quantum-chemical calculations
of small anions (small in comparison to the extent of the diffuse MO).10 In
their study on several molecules up to 5 atoms, Morgan and Fortenberry even
state that "the placement of the additional functions [...] should be a non-
consideration", as long as the center of the functions is reasonably within the
extent of the molecule.113
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Chapter 3

Quantum-classical dynamics of
vibration-induced autoionization
in molecules

Reproduced from

Kevin Issler, Roland Mitrić and Jens Petersen,
"Quantum–classical dynamics of vibration-induced

autoionization in molecules",
J. Chem. Phys. 158 (3) (2023) 034107.
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with the permission of AIP Publishing.

Abstract

We present a novel method for the simulation of the vibration-induced autoion-
ization dynamics in molecular anions in the framework of the quantum-classical
surface hopping approach. Classical trajectories starting from quantum ini-
tial conditions are propagated on a quantum-mechanical potential energy sur-
face while allowing for autoionization through transitions into discretized con-
tinuum states. These transitions are induced by the couplings between the
electronic states of the bound anionic system and the electron-detached sys-
tem composed of the neutral molecule and the free electron. A discretization
scheme for the detached system is introduced and a set of formulae is derived
which enables the approximate calculation of couplings between the bound and
free-electron states.

We demonstrate our method on the example of the anion of vinylidene, a
high-energy isomer of acetylene, for which detailed experimental data is avail-
able. Our results provide information on the time scale of the autoionization
process and give an insight into the energetic and angular distribution of the
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ejected electrons as well as into the associated changes of the molecular geom-
etry. We identify the formation of structures with reduced C-C bond lengths
and T-like conformations through bending of the CH2 group with respect to
the C-C axis and point out the role of autoionization as a driving process for
the isomerization to acetylene.

3.1 Introduction

Molecular anions are often characterized by small electron binding energies,
and it is not uncommon that the additional electron(s) are not strictly bound
at all, the anionic molecular system thus being in a metastable or "quasi-
bound" state that after a finite lifetime decays by ejecting an electron in a
process termed autoionization.9,10 This seemingly quite exotic process is in
fact relevant in a variety of areas. Notably, the capture of slow electrons
by biological molecules such as nucleobases may populate metastable states
that decay by autoionization, accompanied by chemical transformations of the
molecule.15,16,114,115 In DNA, electron attachment and subsequent autoioniza-
tion can occur both at nucleobases and the phosphate-deoxyribose backbone,
causing single and, through consecutive reaction of fragments, double strand
breaks.17,18,115 Since the electrons can, e.g., be produced by primary ioniza-
tion due to nuclear radiation, this makes autoionization processes a key step
in the radiation damage of biological systems. Furthermore, low-energy elec-
tron generation via intermolecular coulombic decay, first discovered in noble
gas clusters116 and liquid water117, occurs in biology at the FADH− cofactor
where it enables the mechanism of photolesion repair in DNA by photolyases.19

Autoionization is also an important part of the manifold generation and dissi-
pation mechanisms in solvent clusters with excess electrons,118,119 which in turn
play a significant role in processes such as nucleation and aerosol formation in
the upper atmosphere120 or in the formation of solvated electrons in living
organisms upon UV irradiation of riboflavin and its derivatives.121 Moreover,
the formation of anions that can undergo autoionization is also an important
mechanism in the creation of complex molecules in interstellar space.122

The metastable states or resonances from which autoionization takes place
can be classified as rotational, vibrational, or electronic. While for the latter,
electronic excitation is responsible for reaching the ionization continuum, in the
two former cases it is an excess of nuclear rotational or vibrational energy that
brings the system above the ionization threshold. The autoionization process
itself can then be viewed as a nonadiabatic transition (internal conversion)
between the initial rotationally or vibrationally excited N -electron molecule
and the final system ofN−1-electron molecule and free electron, where theN−
1-electron molecule bears a reduced internal energy. Vibrational autoionization
has been identified over the last decades in a variety of molecules, ranging from
small anionic diatomics,123,124 Rydberg-excited states of neutral molecules30 to
dipole- or quadrupole-bound states of polyatomic anions27,28,31,84,114,125–130 and
has been utilized to measure highly resolved photodetachment spectra. In
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some cases, vibrational autoionization from valence states has been observed
as well.25,104,131 Real-time access to the dynamics of such processes could be
recently gained via pump-probe experiments.29,130,132

Theoretical considerations of vibrational autoionization have been origi-
nally outlined by Berry133 and later formulated for anions by Simons, who es-
tablished propensity rules for such transitions for model cases134 and computed
autoionization rates for several small molecules using time-independent135 as
well as time-dependent pictures.136 Going beyond the calculation of rates and
fully simulating the real-time dynamics of such processes for complex molecules
is highly desirable, but a completely quantum mechanical treatment, including
the full dimensional nuclear motion and the description of electron scattering
states, is computationally prohibitive. However, given the great success of
mixed quantum-classical approaches to describe the bound-state nonadiabatic
dynamics5–7,54,137–139 as well as time-resolved spectroscopic observables33,140,141

of a large variety of molecules, it suggests itself to consider such an ansatz
as well for vibration-induced autoionization. Recently, the dynamics of elec-
tronically metastable anion states has been addressed by combining classical
trajectory simulations with quantum mechanically calculated ionization prob-
abilities based on the width of the electronic resonance.142,143 In the present
work, we will introduce a novel methodology for the dynamics of vibrationally
metastable anions which is based on Tully’s trajectory surface hopping,52 treat-
ing the nuclear motion classically, while retaining the quantum mechanical de-
scription of the electronic system. The energy exchange between the electronic
and nuclear subsystems will be described by nonadiabatic transitions between
the bound and continuum electronic states, accompanied by an associated
change of the classical vibrational energy of the molecule.

After presenting the theory we will illustrate our method on the example of
the vinylidene anion, C2H−2 . Neutral vinylidene is a high-energy isomer of the
well-known acetylene molecule, HCCH, to which it readily isomerizes.144–146

As an anion, however, vinylidene is stable on the time scale of seconds,147

while the acetylene anion is electronically unbound.146,148 Vinylidene anions
can be produced in the gas phase e.g. by injection of electrons in a precur-
sor gas mixture containing ethylene and N2O, where the reaction proceeds via
intermediately formed O−.104 Using photodetachment and photoelectron spec-
troscopy techniques, the vinylidene anion has been utilized to gain information
about the electronic and vibrational states of neutral vinylidene.103,146,149 In
this way, it could be established that neutral vinylidene represents a local
minimum on the C2H2 potential energy surface with several clearly assignable
vibrational states, while with higher vibrational energy, the distinction be-
tween the vinylidene and acetylene isomers gets lost. Therefore, as shown by
quantum dynamics simulations, isomerization to acetylene readily occurs on
a sub-picosecond time scale upon vibrational excitation, while for the vibra-
tional ground state much larger lifetimes of several hundred picoseconds can
be expected.150–152 In fact, experiments employing Coulomb explosion imag-
ing provided even more evidence for the presence of vinylidene on the much
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longer time scale of several microseconds after its initial generation.153 With
the help of classical molecular dynamics simulations, it could be shown that
this finding is due to frequent forth- and back-formation of vinylidene after
initial isomerization provided the vibrational energy is sufficient to overcome
the isomerization barrier.154

With regard to the ionization process itself, photoelectron spectroscopy
studies have enabled the determination of vinylidene’s adiabatic electron affini-
ty (AEA), with the current most precise value being 0.4866(8) eV (3935 cm−1).82

Employing vibrational predissociation spectroscopy of Ar-tagged vinylidene
anions, the vibrational structure of the anionic ground state has been inves-
tigated, revealing prominent spectral features around 2600 and 4000 cm−1.104

As the latter value lies above the AEA, it is also visible as a resonance in pho-
todetachment spectroscopy, indicating that the respective vibrational states
couple to the ionization continuum. Interestingly, also the lower-energy band
around 2600 cm−1 appears prominently in photodetachment, although under
the experimental conditions used in Ref.104 one-photon ionization is domi-
nant and thus direct detachment should be improbable. This finding could
be attributed to the presence of molecules that are initially occupying excited
vibrational states due to thermal energy and are further photoexcited above
the AEA, followed by vibrational autoionization. The photoelectron spectra
resulting from such detachment processes allow for conclusions on the vibra-
tional structure of the neutral species as well as on the initially populated an-
ion vibrational states. In addition, recent experiments employing slow electron
velocity imaging (SEVI) photoelectron spectroscopy provided highly resolved
spectra (<10 cm−1) that allowed one to disentangle further structures in the
photoelectron spectra obtained from the vibrational resonances just above the
ionization threshold.25 Specifically, two types of spectral features were found:
(i) peaks with electron kinetic energies shifting proportionally to the incident
photon energy, as is expected from a direct photodetachment process, and (ii)
peaks of constant electron kinetic energy over a range of photon energies, cov-
ering a region up to 100 cm−1. This finding can be explained by intermediate
excitation of rovibrational states of the anion that are resonant to the photon
energy that decay via autoionization to the neutral species. In this process
the rotational quantum numbers remain unchanged, hence the occurrence of
constant-energy photoelectrons. These findings provided direct evidence for
vibration-induced autoionization processes following the excitation of anion
vibrational states above the ionization threshold. What has remained undis-
closed until now, however, are their time scales. The present paper aims to
shed light on this dynamical process by simulating directly the autoionization
dynamics in full dimensionality.

Our paper is organized as follows: In section 3.2 the theoretical methodol-
ogy will be presented and in section 3.3 the computational details are given.
This is followed by the results and discussion provided in section 3.4. Finally,
conclusion and outlook are given in section 3.5.
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3.2 Theoretical Approach

In the frame of the Born-Oppenheimer approximation, a vibrational resonance
can be described by a product of a vibrational and an electronic wavefunc-
tion, χvib(ε)Φ

N
el (E), with vibrational energy ε and electronic energy E, where

the total energy E + ε exceeds the ionization threshold while the electronic
portion is still below it. The autoionization process can then be viewed as
the internal conversion to an isoenergetic state χvib(ε

′)ΦN
el (E

′) in which part
of the vibrational energy has been transformed into electronic energy, leading
to an electronic state with increased energy E ′ that is unbound with respect
to single-electron loss and can be described as an antisymmetrized product of
an N − 1 electron bound state and a free electron continuum state with wave
vector k, ΦN

el (E
′) = A(ΦN−1

el ψ(k)).
Since we aim to establish a method that is applicable for complex molecules,

instead of a fully quantum mechanical description of the autoionization dynam-
ics a mixed quantum-classical picture is desirable, in which only the quantum
nature of the electronic part is retained while the nuclear motion is described
classically. For nonadiabatic processes between bound electronic states, the
surface hopping method52 has proven to be a very versatile approach. In this
framework, the nuclear degrees of freedom are propagated classically by solving
Newton’s equations of motion,

MR̈ = −∇REi(R), (3.1)

for an ensemble of initial conditions, thereby giving rise to nuclear trajectories
R(t) moving on an electronic potential energy surface Ei(R). The quantity
M denotes a diagonal matrix containing the nuclear masses. In parallel, along
each trajectory an electronic time-dependent Schrödinger equation is solved,
which most generally reads

ih̄
d

dt
Ψ(r, t;R[t]) = ĤelΨ(r, t;R[t]), (3.2)

with Ĥel being the electronic Hamiltonian of the system. The electronic wave-
function can be expanded with respect to a set of orthogonal basis states as

Ψ(r, t;R[t]) =
∑
i

ci(t)Φi

(
r;R[t]

)
, (3.3)

leading to the following set of coupled differential equations for the coefficients
ci:

ih̄ċi(t) =
∑
j

[Hij(R[t])− ih̄Dij(R[t])] cj(t), (3.4)

where Hij = ⟨Φi|Ĥel|Φj⟩ denotes the matrix elements of the electronic Hamil-
tonian. The Dij represent the nonadiabatic couplings that arise from the
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parametric dependence of the wavefunction on the nuclear trajectory and can
be written as

Dij = ⟨Φi|Φ̇j⟩ = Ṙ · ⟨Φi|∇R|Φj⟩ (3.5)

where the last expression makes clear the dependence on the nuclear velocities
Ṙ. Thus, the coupling between electronic states is mediated by the nuclear
motion. The time-dependent coefficients ci(t) are employed in the surface
hopping approach to devise probabilities for each nuclear trajectory to switch
its electronic state, and the time-dependent properties of the nonadiabatically
evolving system are obtained by averaging the quantities of interest over the
entire ensemble that typically contains up to hundreds of trajectories.

In the following, we will develop a surface-hopping methodology for the
description of molecular autoionization dynamics. For a system that can be
ionized, the expansion of the electronic state given in equation 3.3 has to be
extended by the set of continuum eigenstates:

Ψ
(
r,R[t], t

)
=
∑
m

cm(t)Φm

(
r,R[t]

)
+
∑
n

∫
d3k c̃n(k, t)Φ̃n(k, r,R[t]), (3.6)

where the first sum includes the N -electron bound states of the molecule,
while the second sum and integral encompass the set of singly ionized states
characterized by the discrete quantum number n of the bound N − 1-electron
system and the continuously varying wavevector k of the free electron. Bound
and continuum eigenstates are mutually orthogonal in the sense

⟨Φm|Φm′⟩ = δmm′ (bound-bound) (3.7)

⟨Φm|Φ̃n(k)⟩ = 0 (bound-continuum) (3.8)

⟨Φ̃n(k)|Φ̃n′(k′)⟩ = δnn′δ(k − k′). (continuum-continuum) (3.9)

In the following, we will specifically consider the ionization of a negatively
charged molecule, thus our N -electron system is an anion (a), the N − 1-
electron system is neutral (n). In order to simulate the dynamics of the au-
toionization process on similar grounds as bound state nonadiabatic dynamics,
several approximations have to be introduced.

3.2.1 Discretized continuum approximation for ionized
states

We discretize the set of continuum states as∫
d3k c̃n(k, t)Φ̃n(k, r,R[t]) (3.10)

≈
∑
i

(∆Vk)
1
2 c̃n(ki, t)(∆Vk)

1
2 Φ̃n(ki, r,R[t]) (3.11)

≈
∑
i

cn(ki, t)Φn(ki, r,R[t]) (3.12)
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Figure 3.1: (a) Snub cube arrangement of 24 points on a spherical surface. A selected
spherical sector (grey) is slightly lifted for illustrative purposes. (b) Cut through the spherical
sector with assignment of several k-space distances discussed in the text.

where ∆Vk is the approximate volume element in k-space, and the continuum
and discretized versions of coefficients and wave functions are related according
to cn(ki, t) = (∆Vk)

1
2 c̃n(ki, t) and Φn = (∆Vk)

1
2 Φ̃n.

For the discretization of k-space, different approaches can be employed.
Most simply, the Cartesian components of the k-vector can be discretized
evenly, leading to the approximation of the volume element in k-space as

d3k ≈ ∆Vk = ∆kx∆ky∆kz. (3.13)

While being conceptually straightforward (especially if the same spacing is
used for all three spatial directions), this approximation may be considered not
optimal if one aims at analyzing the free electrons in terms of directions and
kinetic energies (the latter depending on the length of the k-vector). Therefore,
we employed an alternative discretization scheme where the absolute values of
the k-vectors were discretized such that a given energy region was evenly cov-
ered. For each energy value, the orientations of the k-vector were discretized
by distributing points approximately uniformly on the corresponding spherical
surface. This is equivalent to the well-known Thomson problem of finding the
optimal placement of electrical charges on a sphere so as to minimize their
repulsion energy. For the case of 24 points, the optimal distribution is exactly
known and results in a snub cube as depicted in Figure 3.1a. For an arbitrary
number of surface points, the optimal distribution can be approximately deter-
mined using, e.g., the Fibonacci sphere algorithm.155 To determine the volume
element covered by each point ki, we consider the volume difference of two
spherical sectors with k-space radii k+ and k− (cf. Figure 3.1b) corresponding
to the energies E± = E(ki)± ∆E

2
, where ∆E is the fixed discretization width

for the energies, such that

k± =

√
k2i ±

me∆E

h̄2
(3.14)

and hence
d3k ≈ ∆Vk = V+ − V− =

2π

3
(k2+h+ − k2−h−) (3.15)
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The height h± of the spherical cap can be expressed using the cap radius a±
and the sphere radius k±:

h± = k± −
√
k2± − a2±, (3.16)

leading to

∆Vk =
2π

3

(
k2+
(
k+ −

√
k2+ − a2+

)
− k2−

(
k− −

√
k2− − a2−

))
(3.17)

The cap radius a± is linearly dependent on the k-space radius k±, a± = ãk±,
with ã being independent of the radius, which results in

∆Vk =
2π

3

(
1−

√
1− ã2

)(
k3+ − k3−

)
= c
(
k3+ − k3−

)
. (3.18)

The diameter 2a± of the spherical cap is taken as the average distance between
a specific point on the sphere and the six points surrounding it. For the snub
cube, this corresponds to a universal ã value of ≈ 0.39779. The sum of spherical
cap surfaces obtained in this way results in a surface area deviating from the
actual spherical surface by less than 3 % for the Fibonacci algorithm and only
1 % for a snub cube, and in a sphere volume of similar accuracy, therefore
justifying the approximation.

As a next step, the discretized continuum state expansion obtained this
way is inserted into the time-dependent Schrödinger equation 3.2 to derive the
equations of motion for the electronic degrees of freedom, as detailed below.

3.2.2 Time-dependent Schrödinger equation in the dis-
cretized continuum approximation

After insertion into the time-dependent Schrödinger equation 3.2, the dis-
cretized continuum state expansion is projected on the electronic basis states,
resulting in a set of coupled equations of motion for the bound and continuum
state coefficients completely analogous to equation 3.4. In the expressions be-
low, m,m′ denote the bound electronic states of the anion, n, n′ the bound
electronic states of the neutral molecule, and i is the index counting the dis-
cretized scattering states of the detached electron:

(bound) ih̄ċm(t) =
∑

m′,anion

[
Hmm′(R[t])− ih̄Dmm′(R[t])

]
cm′(t)

+
∑

n′,neutral

∑
i,free

[
Hmn′(ki,R[t])

− ih̄Dmn′(ki,R[t])
]
cn′(ki, t) (3.19)

(continuum) ih̄ċn(ki, t) =
∑

m′,anion

[
Hnm′(ki,R[t])

− ih̄Dnm′(ki,R[t])
]
cm′(t) (3.20)
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with the diabatic and nonadiabatic couplings between two bound anion states,

Hmm′ = ⟨Φm|Ĥ|Φm′⟩ (3.21)

Dmm′ = ⟨Φm|Φ̇m′⟩, (3.22)

and between a bound and a discretized continuum state,

Hnm′(ki) = (∆Vk)
1
2 ⟨Φ̃n(ki)|Ĥ|Φm′⟩ (3.23)

Dnm′(ki) = ⟨Φn(ki)|Φ̇m′⟩ = (∆Vk)
1
2 ⟨Φ̃n(ki)|Φ̇m′⟩. (3.24)

The coupling among the discretized continuum states has been neglected in
the above equations.

3.2.3 Plane-wave approximation for continuum states

As we treat the electron detachment from anions, the continuum states Φ̃n(ki)
correspond to an antisymmetrized linear combination of a bound state of the
neutral molecule and a molecular scattering state of the free electron,

Φ̃n(ki) = A
(
Φ(n)

n · ψ(ki)
)

(3.25)

The simplest approximation to the scattering continuum, with asymptotic
wave vector ki, is provided in such a case by using plane waves,

ψ(ki) ≈ N eiki·r. (3.26)

We set N = (2π)−3/2 such that for Φ̃n(ki) the normalization condition 3.9 is
fulfilled. For the discretized state Φn(ki), this corresponds to normalization
within a spatial box of length L = 2π

∆k
, such that ⟨Φn(ki)|Φn′(kj)⟩box = δnn′δij.

The free electron state obtained this way bears no dependence on the molecular
structure, which is a strong simplification. In order to include this dependence
at least to a certain extent, we consider plane waves orthogonalized with respect
to the occupied molecular orbitals (MOs) ϕm(r,R[t]) of the anion,

ψ̃(ki) = (2π)−3/2

(
eiki·r −

occ∑
m

⟨ϕm|eiki·r⟩ϕm

)
(3.27)

= ψ(ki)−
occ∑
m

⟨ϕm|ψ(ki)⟩ϕm, (3.28)

as has been also frequently done in the past for the calculation of photoioniza-
tion cross sections.78–80 The energy of such a discretized continuum state can
be approximated as

En(ki) = E(n)
n +

k2i
2me

(3.29)

with E
(n)
n as the electronic energy of the neutral molecule and k2i

2me
as the

asymptotic kinetic energy of the free electron.
Employing this orthogonalized plane wave approximation, the matrix ele-

ments for the electronic couplings between the bound and continuum states
can now be constructed as will be outlined in Sec. 3.2.4.
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3.2.4 Electronic coupling

The molecular electronic wavefunctions employed in our approach are based
on separate quantum chemical calculations for the anionic and the neutral
molecule. Therefore, they are approximations to the bound eigenfunctions of
the N - or N − 1-electron Hamiltonian, respectively, and thus the bound-state
N - or N − 1-electron Hamiltonian matrices are considered diagonal. However,
the N -electron continuum states are not determined self-consistently but con-
structed from the MOs of the neutral molecule and an orthogonalized plane
wave approximating the free electron. Therefore, the Hamiltonian matrix el-
ements between N -electron continuum and bound states are non-zero, i.e., a
diabatic coupling appears due to the use of approximate continuum state wave-
functions. Additionally, dynamical nonadiabatic couplings due to the change
of the electronic wavefunctions with the nuclear geometry occur as well in
the time-dependent Schrödinger equation, in complete analogy to the case of
bound-state dynamics. Below, we outline our approach to calculate these cou-
plings in an approximate way.

Diabatic coupling

In the following, we consider ionization transitions between the electronic
ground states of both the anionic and the neutral species. As a shorthand
notation, we label by Φ0 the electronic ground state of the anion, and by Φi

the discretized continuum state where the neutral molecular core is also in the
ground state and the free electron has wave vector ki. Thus, we can write the
diabatic matrix element between these states as

H00(ki) ≡ ⟨Φi|Ĥ|Φ0⟩ ≡ (∆Vk)
1
2 V dia

i0 (ki). (3.30)

We assume the two ground-state wavefunctions Φ0 and Φi to be represented
by single Slater determinants. For the bound anionic system, these are as
usual constructed from the occupied anion molecular orbitals (MOs) ϕp. For
the ionized system, the Slater determinant is formed from the orthogonalized
plane wave ψ̃(ki) and the occupied neutral MOs χn. The two wavefunctions are
thus constructed by two mutually non-orthogonal sets of MOs. The derivation
of matrix elements between such wavefunctions has been performed first by
Löwdin.156 Along these lines, we show in Appendix 3.6.1 that expansion with
respect to the MOs leads to the following expression for the diabatic coupling:

V dia
i0 (ki) =

∑
p

⟨ψ̃|ĥ|ϕp⟩(−1)p+1detSi,p

+
∑
n

⟨ψ̃χn|v̂|
∑
q,p<q

(ϕpϕq − ϕqϕp)⟩

× (−1)n+p+q−1detSin,pq, (3.31)

where ĥ and v̂ denote the usual one- and two-electron parts of the electronic
Hamiltonian, detSi,p is the minor determinant obtained from the overlap ma-
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trix

S =


⟨ψ̃|ϕ1⟩ ... ⟨ψ̃|ϕp⟩ ... ⟨ψ̃|ϕN⟩
⟨χ1|ϕ1⟩ ... ⟨χ1|ϕp⟩ ... ⟨χ1|ϕN⟩
... ... ... ... ...

⟨χn|ϕ1⟩ ... ⟨χn|ϕp⟩ ... ⟨χn|ϕN⟩
... ... ... ... ...

⟨χN−1|ϕ1⟩ ... ⟨χN−1|ϕp⟩ ... ⟨χN−1|ϕN⟩

 , (3.32)

between bound- and continuum state orbitals by deleting the row of the plane
wave ψ̃(ki) and the column of the anion MO ϕp, while detSin,pq denotes the
minor determinant obtained by deleting the rows of the plane wave and the
neutral MO χn as well as the columns of the anion MOs ϕp and ϕq.

By expanding the neutral molecule’s MOs with respect to the occupied
and virtual anion MOs it can be shown that the one-electron contributions
and those two-electron contributions associated with the occupied anion MOs
vanish, as detailed in Appendix 3.6.1. Therefore, the final MO form of the
diabatic coupling only includes electron-electron interactions between the plane
wave and the virtual anion MOs on the one hand and the occupied anion MOs
on the other hand:

V dia
i0 (ki) =

occ∑
n

virt∑
u

⟨χn|ϕu⟩⟨ψ̃ϕu|v̂|
occ∑

q,p<q

(ϕpϕq − ϕqϕp)⟩

× (−1)n+p+q−1detSin,pq, (3.33)

where ⟨χn|ϕu⟩ denotes the overlap integral between an occupied neutral and a
virtual anion MO. Inserting the definition of the orthogonalized plane waves
and expansion of the MOs with respect to the atomic orbital (AO) basis, as
described in detail in Appendix 3.6.2, finally leads to working equations for the
diabatic coupling that involve overlap and electron-electron repulsion integrals
between basis functions and/or plane waves:

V dia
i0 (ki) =

∑
λµν

[
Aλµν

(
⟨kiλ||µν⟩ −

∑
σ

Bσ⟨σλ||µν⟩
)
+

Āλµν

(
⟨kiλ|µν⟩ −

∑
σ

Bσ⟨σλ|µν⟩
)]

(3.34)

where the Greek indices denote AO basis functions and ⟨ab||cd⟩ = ⟨ab|cd⟩ −
⟨ab|dc⟩ is an antisymmetrized electron-electron repulsion integral. The pref-
actors Aλµν , Āλµν and Bσ are computed from AO expansion coefficients and
overlap integrals as detailed in Appendix B, equations 3.78-3.80. As the appro-
priate basis functions for molecular calculations we employ Cartesian Gaussian
functions of the form

φν(r) =
∏

j=x,y,z

(rj − Aν,j)
nν,j e−αν(r−Aν)2 , (3.35)
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where Aν denotes the center of the Gaussian (usually an atomic position), and
the nν,j are angular momentum quantum numbers.

The calculation of the diabatic coupling according to equation 3.34 thus
involves four types of integrals:

Overlap integrals between MOs These can be reduced to overlaps be-
tween Gaussian basis functions which are analytically calculated according to
Ref.157

Overlap integrals between a Gaussian and a plane wave These corre-
spond to inverse Fourier transforms of the basis functions and are analytically
calculated as

⟨k|ν⟩ = 1

(2π)3/2

∫
d3r e−ik·rφν(r) (3.36)

=

(
1

2αν

) 3
2

e−ik·Aν− k2

4αν

×
∏

j=x,y,z

(
−i

2
√
αν

)nν,j

Hnν,j

(
kj

2
√
αν

)
, (3.37)

where the Hnν,j
are the Hermite polynomials of order nν,j.

Electron-electron repulsion integrals between Gaussian basis func-
tions For these integrals, efficient analytical expressions have been derived
in the literature and used in quantum chemical programs. In the present con-
tribution, we employ the Rys quadrature method158,159 as implemented in the
libcint160 library.

Electron-electron repulsion integrals between a plane wave and Gaus-
sian basis functions Analytical formulae for these integrals have been re-
ported,161,162 but are not commonly available in molecular quantum chemistry
codes. As an efficient alternative, we instead employ approximate formulae
based on the observation that, for most of the Gaussian functions in our basis
set, the plane waves under consideration do not strongly change within the
width of the Gaussian. Therefore, in the integral ⟨kiλ|µν⟩ it is reasonable to
replace the plane wave by the first terms of its Taylor expansion around the
center Rµ of the Gaussian φµ(r1) according to

e−iki·r1 ≈ e−iki·Rµ [1− iki · (r1 − Rµ)] (3.38)

In this way, the integrals reduce to common Gaussian three-center two-electron
integrals, which are also used as implemented in libcint. Systematic tests
of the approximation are summarized in Table 3.1. We find good accuracy
for small values of the plane wave energy, with discrepancies increasing with
growing energies. Up to 0.5 eV, which represents the range most relevant for
the present study, the errors are still moderate.
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Table 3.1: Average values (in EH) and errors (in %) of hybrid Gaussian-plane wave electron
repulsion integrals ⟨kiλ|µν⟩ for vinylidene employing the d-aug-cc-pVDZ basis set. The
molecular structure has been optimized at the DFT/ωB97XD/d-aug-cc-pVDZ level. Iex
denotes the exact integral, Iap the approximate value according to equation 3.38. For each
plane wave energy E, the average has been taken over all distinct integrals provided by the
basis set as well as over 24 different k-vectors corresponding to the direction vectors of the
vertices of a snub cube.

E/eV ⟨|Iex|⟩ ⟨|Iex−Iap|⟩
⟨|Iex|⟩

〈
|Iex−Iap|
|Iex|

〉[a]
0.0015 0.249 1 · 10−3 13.0

0.1 0.276 9 · 10−2 19.7
0.5 0.275 0.5 31.3

[a] Average computed for all integrals with |Iex| > 10−16 EH .

Nonadiabatic coupling

The molecular wavefunctions Φ0 and Φi of the bound anion and the continuum
state are not strictly diabatic but still bear a dependence on the nuclear ge-
ometry. Therefore, in addition to the diabatic coupling, there is also residual
nonadiabatic coupling

Di0(ki) = ⟨Φi(t)|
d

dt
Φ0(t)⟩ (3.39)

present, which we calculate employing a finite-difference approximation for the
time derivative similar to the procedure presented in Ref.163:

Di0 ≈
1

2∆t

(
⟨Φi(t)|Φ0(τ)⟩ − ⟨Φi(τ)|Φ0(t)⟩

)
with τ ≡ t+∆t. The quantity ⟨Φi(t)|Φ0(τ)⟩ reduces to a one-electron integral
of the form

(
√
N)−1⟨ψ̃(ki, t)|ψD(t, τ)⟩, (3.40)

involving the function

ψD(t, τ) =
√
N⟨ΦN−1

0 (t)|ΦN
0 (τ)⟩1...N−1. (3.41)

which can be regarded as an analog to a molecular Dyson orbital, but with
the N - and N − 1-electron wavefunctions taken at different time steps, i.e.,
different molecular geometries. Inserting the definition of the orthogonalized
plane wave ψ̃(ki, t), equation 3.28, into expression 3.40 leads to

⟨Φi(t)|Φ0(τ)⟩ = (
√
N)−1

[
⟨ψ(ki)|ψD(t, τ)⟩

−
∑
n

⟨ψ(ki)|ϕn(t)⟩⟨ϕn(t)|ψD(t, τ)⟩
]
. (3.42)
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For the nonadiabatic couplings, this gives rise to the final expression

Di0(ki) =
(∆Vk)

1
2

2
√
N∆t

[ 〈
ψ(ki)|ψD(t, τ)

〉
−
∑
n

⟨ψ(ki)|ϕn(t)⟩

×
〈
ϕn(t)|ψD(t, τ)

〉
−
〈
ψ(ki)|ψD(τ, t)

〉
+
∑
n

⟨ψ(ki)|ϕn(τ)⟩
〈
ϕn(τ)|ψD(τ, t)

〉 ]
(3.43)

The Dyson orbitals ψD are constructed following the procedure outlined
by Humeniuk et al.,140 which eventually leads to their representation as linear
combinations of atomic basis functions,

ψD(t, τ) =
∑
ν

cDν (t, τ)φν(τ), (3.44)

where the coefficients cDν are computed from overlap integrals between the basis
functions of the N - and N − 1-electron systems at the respective time steps.

The integrals in equation 3.43 involving plane waves ψ(ki), which corre-
spond to inverse Fourier transforms of the respective Dyson or anion molecular
orbitals, can thus be reduced to integrals of the type given in equation 3.37,
e.g.,

⟨ψ(ki)|ψD(t, τ)⟩ =
∑
ν

cDν ⟨ki|ν⟩, (3.45)

while the overlap integrals ⟨ϕn|ψD⟩ between anion MOs and Dyson orbitals
reduce to overlaps between Gaussian basis functions.

3.2.5 Quantum-classical surface hopping dynamics

Having established the equations of motion for the nuclear and electronic de-
grees of freedom, equation 3.1 and equations 3.19/3.20, as well as the necessary
energies and couplings, the coupled electron-nuclear dynamics can be described
using the surface hopping methodology. Solving equations 3.19/3.20 along the
nuclear trajectories provides us with the time-dependent electronic state coef-
ficients ci(t). These are employed in a stochastic process to decide if a switch
from the anionic state in which the trajectories are propagated to any of the
states of the discretized ionization continuum occurs. Specifically, in every
nuclear time step a hopping probability is calculated which depends on the
electronic state populations ρii = |ci|2 according to

Pi→j = − ρ̇ii
ρii

ρ̇jj∑
k ρ̇kk

∆t, (3.46)

for ρ̇ii < 0 (decrease of initial state population) and ρ̇jj > 0 (increase of final
state population).53,164 The sum over k in the denominator extends over all
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possible final states with a growing population. For all other cases, the hopping
probability is set to zero.

As a result of the hopping procedure, we are provided with the instant of
time in which the autoionization takes place, as well as with the specific kinetic
energy and k-vector of the generated free electron.

To ensure the energy conservation of the system, a hop is performed only
if the total energy of a given trajectory (the anion’s electronic energy E

(a)
i

plus kinetic energy T (a)) is at least equal to the final state electronic energy
(potential energy E(n)

j of the neutral molecule plus kinetic energy Eel(ki) of the
free electron), and the kinetic energy of the neutral molecule, T (n) is rescaled
accordingly such that

T (n) = E
(a)
i + T (a) − E

(n)
j − Eel(ki). (3.47)

Finally, from the hopping times of the individual trajectories a time-depen-
dent anion population is generated by averaging over the full ensemble of tra-
jectories.

3.2.6 Approximate description of adiabatic ionization

While the main focus of the present work lies on the description of vibration-
induced autoionization, which is a nonadiabatic process, the possibility of a
purely electronic mechanism without the exchange of energy between the elec-
tronic and nuclear degrees of freedom needs to be considered as well. Such
mechanism, which we term adiabatic in the following, implies that during the
course of a trajectory the electron detachment energy may become negative
as a result of gradual changes of the nuclear geometry, i.e. the system gets
unstable with respect to electron loss. In this situation, one of the system’s
electrons will form a free wavepacket which will rapidly spread in space, giv-
ing rise to a decreasing electron density near the cationic core. In order to
obtain an approximate measure of the time scale of this ionization process,
we have employed the following procedure for several sample trajectories: For
each occurence of a negative VDE in the given trajectory, we take the HOMO
of the last step where the electron was still bound (tinitial) and consider it as
the initial free electron wavepacket. The latter is then propagated freely, and
the expectation value of r̂2 (electronic spatial extent) as a function of time is
calculated as a measure of the wavepacket spreading as detailed in Appendix
3.6.3. To relate this quantity in a simple way to a gradual population loss
due to ionization, we consider the following model: The actual wavepacket is
replaced by a 1s-like spherically symmetric electron distribution giving rise to
the same value of ⟨r̂2⟩. At tinitial, for this distribution the radius of a sphere
containing 99% of the probability is calculated. Subsequently, for each time
step the integrated probability within the sphere is computed for the broaden-
ing distribution. As a result, a population decay curve is obtained, from which
a half-life is determined. The average half-life obtained in these calculations is
then employed in the actual simulations of the trajectory ensemble as a time
constant to model an exponential population decay due to adiabatic ionization.
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3.3 Computational Details

The electronic structure of vinylidene was described using density functional
theory (DFT). Although the molecule is in principle small enough to afford the
use of more accurate ab initio methods, our goal of simulating the dynamics
over long time durations in the picosecond regime, as well as the potential
applicability of our method to larger molecules, requires the use of a compu-
tationally efficient method. In order to serve this purpose in the optimal way,
various combinations of the long-range-corrected functionals ωB97XD166, LC-
ωPBE167 and CAM-B3LYP168 and the basis sets 6-311++G**169,170, (d)aug-
cc-pVDZ171–173 and (d)aug-cc-pVTZ171–173 were employed to calculate the ge-
ometries, energetics and harmonic normal modes of both the anion and the
neutral molecule within the Gaussian 09 program package174. The detailed re-
sults are presented in Table 3.2 together with data obtained with CCSD175,176/
(d-)aug-cc-pVDZ171–173 and experimental and CCSD(T) data from the litera-
ture.104,146,165 Inspection of Table 3.2 makes clear that among the DFT func-
tionals, ωB97XD provides the best agreement to the experimental and higher-
level theoretical data. In an attempt to balance computational cost and the
capability of the employed method to properly describe the spatially diffuse
electron distribution of the vinylidene anion, we chose to combine ωB97XD
with the d-aug-cc-VDZ basis set173 for use in the trajectory calculations. The
initial conditions for all dynamics simulations have been obtained by sampling
a quantum phase space distribution. Since the autoionization takes place af-
ter vibrational excitation of the molecule, we determined the initial condi-
tions from harmonic normal mode displacements according to the distribution
function P ν

υ (Qν , Pν) = |χν
υ(Qν)|2|χ̃ν

υ(Pν)|2, where χν
υ(Qν) and χ̃ν

υ(Pν) are the
harmonic oscillator wavefunctions of normal coordinate ν in position and mo-
mentum space, respectively. We set υ = 1 for selected normal modes according
to the experimental findings, and υ = 0 otherwise. Specifically, we considered
the situation where both a single quantum of the C-C stretching (ν2) and of
the antisymmetric C-H stretching mode (ν5) are excited, corresponding to the
most intense autoionization resonance K observed by DeVine et al25,82, and
propagated 100 trajectories for a total simulation time of 3 ps using the d-aug-
cc-pVDZ basis set.
The propagation of the nuclei was performed by numerically solving Newton’s
equations of motion using the velocity Verlet algorithm49 with a time step of
0.2 fs. By solving the time-dependent Schrödinger equation in the manifold
of the electronic ground state of the vinylidene anion and a large number of
discretized continuum states corresponding to the neutral ground state and
the detached electron (as detailed below) the electronic degrees of freedom
were propagated using Adams’s method as implemented in the ode class of
Python’s scipy.integrate module177 with a time step of 2 · 10−3 fs. For the
description of the continuum states, an evenly spaced grid of kinetic energies
between 0.0 and 1.5 eV was employed. For each kinetic energy, the spatial
orientations were chosen to evenly cover a spherical surface according to the
Fibonacci sphere distribution. The quality of different discretization schemes
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Table 3.3: Discretization parameters used for a sample trajectory. The boxed "x" indicates
the choice of parameters used for the ensemble of trajectories.

Different Orientations per energy
energies 24 48 96 192 384

500 x x x x x
1000 x x x x
2000 x x x
4000 x x
8000 x

Figure 3.2: Anion populations for a sample trajectory run with different numbers of dis-
cretized continuum states according to Table 3.3. The colors represent the discretization
scheme as follows: Blue, orange, green, red, and violet correspond to 24, 48, 96, 192, and
384 orientations, while the number of energies in each group increases from darker to lighter
colors.

was assessed by running a sample trajectory with identical initial conditions
for various total numbers of kinetic energies and orientations, as summarized
in Table 3.3. The outcome in terms of anion populations are shown in Figure
3.2 and make clear that generally, very similar results are obtained for the
tested parameters. The largest population difference is less than 1 % between
the settings employing the most vs. the least number of plane waves. Besides
the settings with 24 orientations, which stand a bit off (blue curves in Figure
3.2), the population differences for the other cases are even smaller, around
0.4 %. As a compromise between a reasonable number of plane waves and
computational efficiency, we finally chose a total of 1000 energies and 96 ori-
entations per energy, thus a number of 96000 k-vectors, for the simulation of
the complete trajectory ensemble. This corresponds to the middle green curve
in Figure 3.2.

Employing the respective discretization scheme the system of coupled equa-
tions 3.19 and 3.20 was set up, the diabatic and non-adiabatic couplings were
evaluated and the state coefficients calculated. The hopping probabilities were
determined in each nuclear time step from the rate of change of the electronic
populations according to equation 3.46.
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Figure 3.3: Autoionization of vinylidene anions for excitation of the C-C stretching and the
antisymmetric C-H stretching vibration (2151) using the d-aug-cc-pVDZ basis set. Upper
panel: Time-dependent anion population. Left panel: Time-integrated electron kinetic en-
ergy distribution. Middle panel: Time-resolved kinetic energy spectrum.

Since our interest is focused on the course of the ionization process rather
than on the fate of the resulting neutral species, we do not propagate the
trajectories in the neutral state once a hop has occurred. This in turn allows
us to employ a modification of the surface hopping scheme to improve the
hopping statistics: Each trajectory is propagated in the anionic state over the
full simulation time, and initially, a "trajectory population" of 1000 is assigned
to it. In each nuclear time step, hopping is attempted as many times as given
by the actual trajectory population, which is then reduced according to the
number of successful hops. This procedure is actually equivalent to propagating
each set of initial conditions 1000 times. If desired, sequel trajectories in the
neutral state could be run nonetheless in order to study the dynamics after
the ionization has taken place.

3.4 Results and Discussion

Experimentally, autoionization of vinylidene can be induced by infrared excita-
tion of specific normal modes featuring energies above the electron detachment
threshold.25,104 For vibrationally cold molecules, this applies notably to com-
binations of the C-C stretching and the C-H stretching vibrations, which are
visible as pronounced resonances in the photodetachment spectrum.25 In our
dynamics simulations, we model this situation by sampling initial normal co-
ordinates and momenta from a phase space distribution function accounting
for the vibrational excitation as described in the Computational Section. The
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coupled electron-nuclear dynamics is then simulated employing equation 3.1
for the nuclei and equations 3.19 and 3.20 for the electronic degrees of freedom.

In the following, we consider excitation of the modes ν2 (C-C stretch) and ν5
(antisymmetric C-H stretch), which corresponds to the photodetachment peak
K in Ref.25 and is henceforth abbreviated as 2151. The simulation gives rise to
autoionization events producing free electrons of specific kinetic energies which
can be arranged in a two-dimensional time-resolved kinetic energy spectrum
as presented in Figure 3.3. The plot shows the highest intensity in the time
range below 500 fs with energies mostly between 0.0-0.04 eV and a maximum
at 0.01 eV. For later times the intensity is weaker and remains maximal around
0.01 eV with almost no intensity above 0.02 eV. Integration over the energies
yields the total time-dependent ionization intensity, corresponding to the anion
population shown in the upper part of Figure 3.3, which exhibits a decrease
by 50 % within 3 ps. The time-integrated energy distribution of the ejected
electrons presented in the left part of Figure 3.3 exhibits a maximum around
0.01 eV.

These results can be confronted with the experimental data from Ref.25,
where electrons with a constant kinetic energy of about 115 cm−1 (0.0143 eV)
were reported to result from excitation of the 2151 peak in the photodetach-
ment spectrum. Our kinetic energies are in very good agreement with the
experimental data, although more broadly dispersed. This can be expected
due to the classical description of the vibrational motion, where no discrete
vibrational energy level structure is included in our simulations. Nonetheless,
our approach provides for the first time data on the expected time scales of
the autoionization (which is discussed in more detail below) and allows us to
analyse the underlying dynamical mechanism.

For this purpose, in the first place we investigate how the molecular struc-
tures have changed at the time of the ionization transitions compared to the
initial conditions. These changes can be visualized by the distribution of struc-
tural parameters (bond lengths, angles) for the whole ensemble of trajectories,
as presented in Figure 3.4 for the bond lengths and in Figure 3.5 for sev-
eral angles. With regard to bond lengths, ionization preferably takes place
for shorter values of the C-C bond (Figure 3.4a). This is consistent with the
finding that the equilibrium C-C bond length is shorter in neutral vinylidene
(anion: 1.34Å, neutral: 1.30Å), and this situation is even more pronounced
in actetylene (1.21Å), whose anion is not bound at all (values obtained us-
ing DFT, ωB97XD/d-aug-cc-pVDZ). For the C-H bonds there is a tendency
avoiding very large and, to a lesser extent, very small values, thus approaching
the value for the equilibrium structure (cf. Figure 3.4b and c). For the angles
(Figure 3.5), there is a clear increase of the larger C-C-H angle (α), and a
decrease of the smaller one (β), while the H-C-H angle (γ) only marginally
increases. This can be conceived as the whole CH2 group bending with respect
to the C-C bond axis, leading to a T-shaped structure.

The correlation between the two parameters most distinctly deviating from
the initial values, the C-C distance and the C-C-H angle β, is illustrated more
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Figure 3.4: Distribution of bond lengths at the transition to the ionized state (orange bars)
and at t = 0 (blue curve). The values for the minimum energy structure are given as thick
red bars. (a) C-C bond, (b) the longer of the two C-H bonds, (c) the shorter of the two C-H
bonds. Notice, that the blue curves do not maximize at the equilibrium values due to the
use of vibrationally excited initial conditions.

Figure 3.5: Distribution of bond angles at the transition to the ionized state (orange bars)
and at t = 0 (blue curve). The values for the minimum energy structure are given as thick
red bars. (a) larger C-C-H angle, (b) smaller C-C-H angle, (c) H-C-H angle.
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Figure 3.6: Correlation of C-C distance and the smaller C-C-H bond angle β, shown both at
the ionization events (orange) and at all instants of time during the dynamics (blue). More
intense color indicates more occurrences of the respective bond length/angle combination.
The blue dotted curve represents a contour line with 1 % of the maximum value of the blue
distribution.

explicitly in Figure 3.6, where the blue area marks the full range of values
reached throughout the dynamics simulation while the red area indicates the
distribution at the ionization events. The data shows that ionization occurs
preferably at geometries with shortened C-C bonds and decreased C-C-H angle.
This implies the formation of structures approaching a T-shaped geometry
with short C-C bonds, which is known to be the first step in the isomerization
from vinylidene to linear acetylene.154 Since anionic acetylene is unstable with
respect to electron loss, it is clear that such a process will be accompanied by
autoionization.

Furthermore, the angular distribution of ejected electrons can be analysed
from our simulation data. In Figure 3.7, this has been accomplished in the
form of a Mollweide projection,178 which is an equal-area, pseudocylindrical
map projection of a sphere onto a plane. Each point on the plane corresponds
to a direction characterized by the polar and azimuthal angle, θ and φ. In the
Figure, regions of high electron intensity are marked by bright yellow color,
regions of low intensity by dark color. A distinct anisotropy can be observed
with electrons primarily ejected at φ values around 90o and 270o, i.e., within
the molecular plane. Also for θ, an anisotropy is discernible, with preferred
values around 45o and 150o. This distribution is paralleled by a Dyson orbital
calculated for an "average ionization" structure, which has been obtained by
averaging all structures at which ionization transitions occurred (see Figure
3.7b). The corresponding electron distribution is similar to a d-type orbital
situated in the molecular plane. Electron ejection preferentially takes place in
the directions of the orbital lobes within the molecular plane, while relatively
few electrons leave perpendicular to this plane.

Having established some structural features promoting autoionization, the
question remains at which time scales these are exhibited and how they influ-
ence the energetics and couplings governing the ionization efficiency. To this
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Figure 3.7: (a) Mollweide projection of the angular distribution of ejected electrons summed
over all energies. The bright yellow regions indicate large, the dark ones low electron in-
tensity. Overall, the darkest areas feature about 2/3 of the intensity of the brightest ones;
(b) Probability density of the Dyson orbital for a mean "ionization geometry" obtained by
averaging all structures at which ionization transitions occurred. The electron distribution
has been integrated up to 10 Å from the center of mass of the molecule. (c) Surface plot of
the Dyson orbital obtained with a cutoff value of 0.01; the molecular plane represents the
yz-plane, to which the direction given by (θ, φ) = (90o, 0o) is perpendicular.

end, we analyse in the following the temporal evolution of two sample trajec-
tories in terms of geometric changes and electronic couplings. The trajectories
have been chosen such that one exhibits a moderate, the other a strong ioniza-
tion efficiency. For the moderately efficient trajectory presented in Figure 3.8,
the dynamics is characterized by small-amplitude nuclear vibrations without
significant structural deformations. Ionization events, which are manifest by a
dropping anionic population (cf. Figure 3.8a), preferably occur at small C-C
distances and low VDEs, as indicated by the grey bars at 80 and 1340 fs. In
these particular regions, the coupling (which is presented as a running average
for better comprehensibility) between the bound and ionized states exhibits
broad maxima, exceeding the average coupling present at other times. One
can also see an overall increased coupling strength with larger times, leading
to a gradual increase in population loss for this trajectory. The final anionic
population reaches about 40 %.

For the strongly ionizing trajectory illustrated in Figure 3.9, the situation
is different insofar as large-amplitude nuclear motion takes place. Specifically,
the C-H bonds exhibit intense vibrations from 300 fs onwards, until ultimately
at 1200 fs a geometry is adopted in which one of the hydrogens migrates from
one carbon atom to the other, giving rise to an acetylene-like structure. Since
anionic acetylene is electronically unstable, this means that the system should
now be actually composed of a neutral acetylene molecule and a free electron.
Ionization is achieved efficiently by an "adiabatic" electronic mechanism in this
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Figure 3.8: Analysis of a moderately ionizing trajectory. (a) anion population, (b) C-C
bond length, (c) average coupling into the ionization continuum, (d) vertical detachment
energy (VDE).

Figure 3.9: Analysis of a strongly ionizing trajectory. (a) anion population, (b) C-H bond
length, (c) average coupling into the ionization continuum, (d) vertical detachment energy
(VDE).
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Figure 3.10: Stacked column chart showing the kinetic energy distribution in terms of hop-
ping events pertaining to the vibrational (positive VDE, blue bars) and adiabatic (negative
VDE, orange bars) ionization mechanisms.

case, i.e. the continuous change in nuclear configuration gradually lowers the
VDE until a negative value is reached. The use of a doubly-augmented Gaus-
sian basis set allows for an approximate modelling of this process, although
the ultimately the localized nature of the basis set prevents a full description
of an electron moving away from the molecule. Instead, an artificial rebound
of the electron would be observed for sufficiently long simulation times. What
should happen in reality, though, is a fast dispersion of the unbound electron
wavefunction, leaving behind neutral acetylene. To grasp an approximate time
scale of this ionization mechanism, we have modelled the wavepacket disper-
sion according to the procedure described in Section 3.2.6, which results in a
very fast decay of the anionic population once a negative VDE occurs. Having
reached zero population, the respective trajectories are aborted (e.g., at 1200 fs
for the trajectory shown in Figure 3.9. It should be noted in these cases two
different autoionization mechanisms are observed: On the one hand the nona-
diabatic vibration-induced autoionization, which is induced by the electronic
couplings discussed in Section 3.2.4 and is accompanied by energy redistribu-
tion between the electronic and nuclear degrees of freedom, and on the other
hand the aforementioned purely electronic adiabatic mechanism which is ac-
tive as soon as molecular geometries with a negative VDE are reached (at, e.g.,
around 330 fs, 630 fs and 1200 fs in Figure 3.9). In this situation, the electron
configuration itself becomes unstable, and the excess electron can move away
without the need of energy gain from the nuclear system. This mechanism
occurs in 25 of 100 trajectories and is responsible for 35 % of all ionization
events in the present simulation. The time scale of free electron dispersion
is around 1 fs on average. The decomposition of the kinetic energy spectrum
with respect to the two mechanisms is illustrated in Figure 3.10, showing that
the adiabatic mechanism preferably results in low energy electrons.

The presence of two autoionization mechanisms together with the fact that
individual trajectories may ionize on different time scales necessitates a more
comprehensive analysis of the temporal characteristics of the ionization pro-
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Figure 3.11: (a) Decomposition of the total anion population (red) according to the speed
of ionization of the underlying trajectories. Fast trajectories (orange) lose 50% of their
population within 500 fs, medium ones (green) within 1500 fs and slow ones (blue) need
more than 1500 fs. (b) Group-averaged energy distribution of the initial conditions in terms
of normal mode vibrational quanta.

cess. To this end, the population curve from Figure 3.3 is replotted in Figure
3.11a (red curve). Inspection of this curve already hints at different underly-
ing time scales, as within the first 500 fs the it decreases more steeply than
afterwards.

This finding can be made more quantitative by arranging the trajectories
into groups according to the speed of the ionization process. Specifically, we
define three groups by asking when the individual trajectory population has
decreased below 50 %: For the fast group, this occurs within the first 500 fs of
the dynamics, for the medium group between 500 and 1500 fs, and for the slow
group at times beyond 1500 fs. The resulting decomposition of the anionic
populations is presented in Figure 3.11a, proving that the initial drop of the
total population (red curve) within the first 500 fs is indeed due to only a
small fraction of trajectories (orange curve). Besides another part that ionizes
in an intermediate time range (green curve), the largest subgroup consists of
trajectories ionizing only slowly within the simulation time (blue curve).

With regard to adiabatic ionization, we find that it is exhibited mostly by
trajectories of the fast group (64%), while the medium and slow groups only
amount 24 and 12 %, respectively. Within the groups, the mechanism occurs
in a large majority of the fast trajectories (84%), while it is much rarer in the
medium (46%) and slow (4%) groups.

To explain the different behavior of the three groups, we analysed the initial
energy distribution of the trajectories in terms of averaged harmonic normal
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mode quantum numbers as shown in Figure 3.11b. The general appearance of
the plotted average quanta per normal mode and trajectory group reflects the
fact that the employed initial conditions feature vibrational excitation (i.e. 2
quanta) in modes 2 and 5, while for the others the vibrational ground state
was populated (1 quantum). Overall, for the two excited modes 2 and 5 as
well as for mode 1, the slow group clearly exhibits the lowest average quantum
numbers. For mode 5, the differences are most pronounced, with the fast
group being excited on average by about 3 quanta, while for the slow group an
average quantum number well below two is observed. However, for the other
excited mode (2), differences between the groups are smaller, and the highest
average quantum number is observed for the "medium" group, although both
the medium and fast groups exhibit average quantum numbers above two.
Generally, higher initial quantum numbers correlate with faster ionization,
and for mode 2 (C-C bond stretching), this can be directly linked to the fact
that for elongated C-C bonds the VDE is reduced. Even stronger reduction
of the VDE would be expected for motion towards T-shaped or acetylene-like
structures, as promoted by the CH2 rocking mode (mode 6). This mode is
not directly excited at the beginning, but seems to be sufficiently strongly
coupled to modes 5 and 1 (antisymmetric and symmetric C-H stretch) such
that excitation of the latter also contributes to faster ionization time scales.

3.5 Conclusion

We have presented a generally applicable method for the simulation of vibration-
induced autoionization dynamics in molecules. Our approach is based on the
mixed quantum-classical surface hopping scheme where the nuclei are propa-
gated classically while the electronic degrees of freedom are treated quantum
mechanically. The electronic states considered include (i) the bound states of
the molecular anion, which are described using quantum chemical methods em-
ploying sufficiently diffuse basis sets, and (ii) the ionized system composed of
the neutral molecular core (also treated by standard quantum chemical meth-
ods) and the free electron, which is approximated by orthogonalized plane
waves. The ionization continuum is discretized and represented by a large
set of individual discrete box-normalized states. The electronic couplings nec-
essary to describe the transitions between the bound and ionized molecular
states consist of two contributions: (i) the nonadiabatic couplings due to the
change of the anion and neutral electronic wavefunctions as a function of the
nuclear coordinates, and (ii) a diabatic coupling between anionic and neutral
states which results from the fact that the ionized-state wavefunction is not
obtained self-consistently, but is constructed from individually computed neu-
tral molecular and free electron wavefunctions. In addition to the ionization
mechanism mediated by these couplings, we also include in our treatment a
purely electronic effect which occurs when due to the nuclear motion the an-
ionic wavefunction "adiabatically" becomes unbound without direct coupling
to the nuclear degrees of freedom.
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We have illustrated our approach by simulating the autoionization dynam-
ics of the vinylidene anion following vibrational excitation. Our results provide
for the first time an estimate for the time scale of this process which has been
previously studied experimentally25 and allow us to link the ionization effi-
ciency to specific geometrical deformations of the molecules as well as to the
choice of initial conditions in terms of vibrational excitation. Our methodol-
ogy can be straightforwardly applied to more complex molecules, providing a
means to assess the autoionization dynamics for cases well beyond the reach
of full quantum wavepacket based simulations.
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3.6 Appendix

3.6.1 Derivation of diabatic coupling

In the following, the diabatic coupling elements between a bound anion ground
state, |Φ0⟩, and a singly-ionized continuum state, |Φi(ki)⟩, which are both ap-
proximated by a single Slater determinant will be derived. The two determi-
nants read:

|Φ0⟩ =
1√
N !

∣∣∣∣∣∣
ϕ1(1) ... ϕN(1)
... ... ...

ϕ1(N) ... ϕN(N)

∣∣∣∣∣∣ (3.48)

|Φi(ki)⟩ =
1√
N !

∣∣∣∣∣∣
ψ̃(ki, 1) χ1(1) ... χN−1(1)
... ... ... ...

ψ̃(ki, N) χ1(N) ... χN−1(N)

∣∣∣∣∣∣ , (3.49)

where ϕi denotes anion MOs, χi neutral MOs, and ψ̃(ki) is the orthogonalized
plane wave describing the free electron. For later convenience, we also define
the overlap matrix between the two sets of orbitals:

S =


⟨ψ̃|ϕ1⟩ ... ⟨ψ̃|ϕN⟩
⟨χ1|ϕ1⟩ ... ⟨χ1|ϕN⟩
... ... ...

⟨χN−1|ϕ1⟩ ... ⟨χN−1|ϕN⟩

 . (3.50)

The diabatic coupling can then be written as

V dia
i0 (ki) = ⟨Φi(ki)|Ĥ|Φ0⟩

=
N∑
a=1

⟨Φi(ki)|ĥ(a)|Φ0⟩+
N∑
a=1

N∑
b=a

⟨Φi(ki)|v̂(a, b)|Φ0⟩

≡ V dia,1 + V dia,2, (3.51)

where ĥ(a) = −1
2
∇2

a+vne(a)+vnn(a) denotes the one-electron part of the Hamil-
tonian pertaining to electron a and comprises the kinetic energy as well as the
potential energies of the electron-nuclear (vne) and the internuclear interactions
(vnn). The potential energy operator for the interaction between electrons a
and b is denoted as v̂(a, b). In the last row of equation 3.51 the coupling has
been formally decomposed into one- and two-electron contributions. For the
one-electron part, it can be shown that the matrix element reduces to a form
only involving the plane wave ψ̃ and the Dyson orbital ψD =

√
N⟨ΦN−1

0 |ΦN
0 ⟩

for the ionization transition:

V dia,1 = ⟨ψ̃|ĥ(1)|
∑
p

(−1)p+1detSi,p|ϕp⟩ (3.52)

= ⟨ψ̃|ĥ|ψD⟩. (3.53)
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Before turning to the two-electron part, for brevity we introduce a short-hand
notation for the electron-electron interaction integrals,

⟨ψ̃(ki)(1)χn(2)|v̂(1, 2)|ϕp(1)ϕq(2)⟩ ≡ ⟨k̃in|pq⟩, (3.54)

and further, for their antisymmetrized versions,

⟨k̃in|pq⟩ − ⟨k̃in|qp⟩ ≡ ⟨k̃in||pq⟩. (3.55)

The two-electron part can be reduced to integrals involving up to four different
MOs:

V dia,2 =
∑
n

∑
q,p<q

⟨k̃in||pq⟩ · (−1)sdetSin,pq, (3.56)

with s = n + p + q − 1 and detSin,pq as the minor determinant of matrix S
where the rows i and n as well as the columns p and q have been deleted. In
order to further simplify this expression, we expand the neutral MOs χn with
respect to the anionic ones, ϕu, which leads to

V dia,2 =
occ∑
n

all∑
u

⟨χn|ϕu⟩
occ∑

q,p<q

⟨k̃iu||pq⟩(−1)sdetSin,pq (3.57)

=
all∑
u

occ∑
q,p<q

⟨k̃iu||pq⟩
occ∑
n

Snu(−1)sdetSin,pq (3.58)

If ϕu is an occupied orbital, the last sum in equation 3.58 can be further
simplified:

occ∑
n

Snu · (−1)n+p+q−1detSin,pq (3.59)

=


(−1)q detSi,q u = p

(−1)p−1 detSi,p u = q

0 u ̸= p, q

(3.60)

With this, the two-electron part of the coupling can be decomposed into
an occupied and a virtual part as

V dia,2
occ =

occ∑
q,p<q

(
⟨k̃ip||pq⟩(−1)q detSi,q

+⟨k̃iq||pq⟩(−1)p−1 detSi,p

)
(3.61)

V dia,2
virt =

virt∑
u

occ∑
q,p<q

⟨k̃iu||pq⟩
occ∑
n

Snu · (−1)sdetSin,pq (3.62)
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The occupied part can be reformulated by setting
∑

q,p<q → 1
2

∑
pq and

interchanging the indices p and q in the first summand, giving rise to

V dia,2
occ =

1

2

occ∑
pq

(
⟨k̃iq||qp⟩(−1)p detSi,p

+⟨k̃iq||pq⟩(−1)p−1 detSi,p

)
(3.63)

=
occ∑
pq

⟨k̃iq||pq⟩(−1)p+1 detSi,p (3.64)

=
occ∑
p

⟨k̃i|
occ∑
q

(Ĵq − K̂q)|ϕp⟩(−1)p+1 detSi,p (3.65)

Together with the one-electron part we get

V dia,1 + V dia,2
occ =

occ∑
p

⟨k̃i|ĥ+
occ∑
q

(Ĵq − K̂q)|ϕp⟩(−1)p+1 detSi,p (3.66)

=
occ∑
p

⟨k̃i|f̂ |ϕp⟩(−1)p+1 detSi,p, (3.67)

where f̂ denotes the Fock operator. If the ϕp are Hartree-Fock orbitals,
f̂ |ϕp⟩ = εp|ϕp⟩ and the complete expression V dia,1 + V dia,2

occ becomes identically
zero due to the orthogonality between the free electron wavefunction ψ̃(ki) and
the MOs ϕp. In our case, by contrast, the ϕp are Kohn-Sham orbitals. This
means that we approximate the wavefunction of the system by the Kohn-Sham
reference determinant, which is similar to the use of a CIS-like wavefunction
expansion for excited states in TDDFT as proposed by Casida.74 In our sim-
ulations, we find the Kohn-Sham orbitals to be very close to the Hartree-Fock
orbitals obtained using the same basis set, thus the following relation still holds
approximately:

V dia,1 + V dia,2
occ ≈ 0. (3.68)

Therefore, the expression for the diabatic coupling in the MO basis, as also
given in equation 3.33 of the main text, reads

V dia
i0 (ki) =

virt∑
u

occ∑
q,p<q

⟨k̃iu||pq⟩
occ∑
n

Snu(−1)sdetSin,pq. (3.69)

If the N -electron system is a spin doublet anion and the electron ejected in
the ionization process has α spin, the p sum in the above formula becomes re-
stricted to α orbitals only. In addition if q represents a β orbital all exchange
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terms in the electron-electron repulsion integrals are also zero. Inserting sub-
sequently the expression for the orthogonalized plane wave,

⟨k̃i| = ⟨ki| −
occ,α∑
r

⟨ki|r⟩⟨r|, (3.70)

with r denoting occupied anion orbitals, yields

V dia
i0 (ki) =

occ,α∑
p

[
occ,α∑
n

occ,α∑
q>p

(−1)sdet Sin,pqK

+

occ,β∑
n̄

occ,β∑
q̄

(−1)s̄det Sin̄,pq̄K̄

]
(3.71)

with

K =

virt,α∑
u

Snu

(
⟨kiu||pq⟩ −

occ,α∑
r

⟨ki|r⟩⟨ru||pq⟩
)

(3.72)

K̄ =

virt,β∑
ū

Sn̄ū

(
⟨kiū|pq̄⟩ −

occ,α∑
r

⟨ki|r⟩⟨rū|pq̄⟩
)

(3.73)

where ⟨ki| is the pure plane wave of wavevector ki.
A final technical simplification can be achieved by noticing that there are

usually many more virtual than occupied orbitals. Therefore, we use the ex-
pansion of the neutral MOs ⟨n| with respect to the anionic ones, ⟨u|, to set

virt∑
u

Snu⟨u| = ⟨n| −
occ∑
u

Snu⟨u|, (3.74)

thus avoiding the summation over all virtual anion MOs:

K = ⟨kin||pq⟩ −
occ,α∑
r

⟨ki|r⟩⟨rn||pq⟩−

occ,α∑
u

Snu

(
⟨kiu||pq⟩ −

occ,α∑
r

⟨ki|r⟩⟨ru||pq⟩
)

(3.75)

K̄ = ⟨kin̄|pq̄⟩ −
occ,α∑
r

⟨ki|r⟩⟨rn̄|pq̄⟩−

occ,β∑
ū

Sn̄ū

(
⟨kiū|pq̄⟩ −

occ,α∑
r

⟨ki|r⟩⟨rū|pq̄⟩
)

(3.76)

3.6.2 Calculation of diabatic coupling in terms of basis
functions

For the actual computation of the diabatic coupling, the MOs appearing in
the electron-electron repulsion integrals in equation 3.71 are further expanded
with respect to the AO basis, giving rise to
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V dia
i0 (ki) =

occ,α∑
n

occ,α∑
p

occ,α∑
q>p

(−1)sdet Sin,pq

∑
λµν

(
c
(n)
λ −

occ,α∑
u

c
(u)
λ Snu

)
c(p)µ c(q)ν

×
[
⟨kiλ||µν⟩ −

occ,α∑
r

∑
ρσ

c(r)ρ c(r)σ ⟨ki|ρ⟩ ⟨σλ||µν⟩
]

+

occ,β∑
n̄

occ,α∑
p

occ,β∑
q̄

(−1)s̄det Sin̄,pq̄

∑
λµν

(
c
(n̄)
λ −

occ,β∑
ū

c
(ū)
λ Sn̄ū

)
c(p)µ c(q̄)ν

×
[
⟨kiλ|µν⟩ −

occ,α∑
r

∑
ρσ

c(r)ρ c(r)σ ⟨ki|ρ⟩ ⟨σλ|µν⟩
]

(3.77)

where the Greek indices indicate Gaussian-type atomic basis functions.
Reordering the summations with respect to MO and AO indices, and defin-

ing

Aλµν =

occ,α∑
n

occ,α∑
q,p<q

(−1)sdet Sin,pq

×

(
c
(n)
λ −

occ,α∑
u

c
(u)
λ Snu

)
c(p)µ c(q)ν (3.78)

Āλµν =

occ,β∑
n̄

occ,α∑
p

occ,β∑
q̄

(−1)s̄det Sin̄,pq̄

×

(
c
(n̄)
λ −

occ,β∑
ū

c
(ū)
λ Sn̄ū

)
c(p)µ c(q̄)ν (3.79)

Bσ =

occ,α∑
r

∑
ρ

c(r)σ c(r)ρ ⟨ki|ρ⟩ (3.80)

leads to the working equation

V dia
i0 (ki) =

∑
λµν

([
⟨kiλ|µν⟩ −

∑
σ

Bσ⟨σλ|µν⟩
](
Aλµν + Āλµν

)
−
[
⟨kiλ|νµ⟩ −

∑
σ

Bσ⟨σλ|νµ⟩
]
Aλµν

)
. (3.81)

3.6.3 Spreading of a freely propagated LCAO-wavepacket

For the approximate description of adiabatic ionization processes as discussed
in subsection 3.2.6, we consider the HOMO ϕ(r) of anionic vinylidene as the
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initial free-electron wavepacket and compute its r̂2 expectation value during
free propagation,

⟨r̂2⟩(t) = ⟨ϕ(r, t)|r̂2|ϕ(r, t)⟩ =
∑
µν

cµcν⟨φµ(r, t)|r̂2|φν(r, t)⟩, (3.82)

where φµ,ν denote the time-propagated Gaussian atomic basis functions. Em-
ploying the free propagator K(r, r′, t, 0) = ⟨r|exp(−ip̂2t/2meh̄)|r′⟩ these can
be calculated as

φµ(r, t) =

∫
d3rK(r, r′, t, 0)φµ(r, 0). (3.83)

For Cartesian basis functions of s, p and d type at the center A, with the angu-
lar momentum quantum numbers l, m and n for the three spatial dimensions,
the following analytic expressions are obtained:

φµ(r, t) = Nlmne
− 3iπ

2 (1 + iβt)−(l+m+n+ 3
2
)e−

α
1+iβt

r2

× (x− Ax)
l(y − Ay)

m(z − Az)
n (3.84)

if l, m, n assume values of 0 or 1 and

φµ(r, t) = Nlmne
− 3iπ

2 e−
α

1+iβt
r2
[
−iβt
2α

(1 + iβt)−
5
2

− (1 + iβt)−
7
2 (x− Ax)

l(y − Ay)
m(z − Az)

n
]

(3.85)

if one of the numbers l, m, n equals 2 and the others are zero. In the above
expressions, α denotes the basis function exponent and β = 2h̄α

me
. The basic AO

integrals occuring in equation 3.82 can be calculated with common algorithms
such as the McMurchie-Davidson scheme.179
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Abstract

We present a program package for the simulation of ultrafast vibration-induced
autoionization dynamics in molecular anions in the manifold of the adia-
batic anionic states and the discretized ionization continuum. This program,
called HORTENSIA (Hopping real-time trajectories for electron-ejection by
nonadiabatic self-ionization in anions), is based on the nonadiabatic surface-
hopping methodology, wherein nuclei are propagated as an ensemble along clas-
sical trajectories in the quantum-mechanical potential created by the electonic
density of the molecular system. The electronic Schrödinger equation is nu-
merically integrated along the trajectory, providing the time evolution of elec-
tronic state coefficients, from which switching probabilities into discrete elec-
tronic states are determined. In the case of a discretized continuum state, this
hopping event is interpreted as the ejection on an electron. The derived dia-
batic and nonadiabatic couplings in the time-dependent electronic Schrödinger
equation are calculated from anionic and neutral wavefunctions obtained from
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quantum chemical calculations with commercially available program packages
interfaced with our program.

Based on this methodology, we demonstrate the simulation of autoioniza-
tion electron kinetic energy spectra that are both time- and angle-resolved. In
addition, the program yields data that can be interpreted easily with respect
to geometric characteristics such as bonding distances and angles, which facili-
tates the detection of molecular configurations important for the autoionization
process.

Furthermore, several useful extensions beyond the dynamics simulation are
included, namely tools for the generation of initial conditions (based on phase
space distribution sampling) and input files as well as for the evaluation of
output files, all of this both through console commands and a graphical user
interface.

4.1 Introduction

After generation of a temporary molecular anion through electron attachment,
there are three possible competing relaxation mechanisms.14 These are a) ra-
diative deactivation, assuming that there is a lower-lying anion state that is sta-
ble with respect to ionization, b) dissociative electron attachment, in which the
captured electron induces geometric change in the molecule resulting in frag-
mentation into more stable products, a neutral and an anionic subsystem. And
lastly, c) autoionization, in which after a finite period of time the metastable
state decays via electron ejection. The process of dissociative electron attach-
ment is observed for example in DNA, where capture of low-energy electrons
leads to single and double strand breaks17,18, or in a variety of substances in
nanoscale thin films180. Prominent examples for autoionization include excited
dipole- and quadrupole-bound anions with binding energies slightly below the
ionization threshold27,84,126,128, intermolecular Coulombic decay at the FADH−
cofactor involved in DNA-photolesion repair19 and autoionization induced by
vibrational excitation in organic molecules25,28,31,82,127,129. Generally the fi-
nite lifetime of a metastable state with respect to autoionization can vary
strongly from only a few femtoseconds11,12 up to milliseconds11,13. Recently,
several experiments have provided insights into the dynamics of such pro-
cesses in dipole- and quadrupole-bound organic anions on a (sub-)picosecond
timescale.28,29,127,131,132,181

Although the process of autoionization is well-known and -observed exper-
imentally by a multitude of methods, as can be seen in the references given
above, the theoretical description of autoionizing systems is challenging10, es-
pecially if one is interested in the mechanistic details of the intricate ultra-
fast relaxation dynamics. Autoionization processes can follow different general
mechanisms, depending on how energy is redistributed among the system’s
degrees of freedom. Besides a purely electronic variant, where already the
electronic energy of the system lies above the ionization threshold and electron
ejection may proceed via tunneling, there is also the possibility of a nonadi-
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abatic mechanism in which rotational or vibrational energy of the nuclei is
transformed into the kinetic energy of the ejected electron.

In the following, we focus on the case of vibrational autoionization. This
process can thus be viewed as a nonadiabatic transition between a vibrationally
excited bound N-electron system and continuum electronic states consisting of
an N-1 electron molecular core and a free electron. Early theoretical treat-
ments have focused on the computation of ionization rates86,133,136 as well
as on establishing propensity rules for the ionization transitions134. While
a full dynamical treatment of vibrational autoionization is highly desirable,
an entirely quantum-dynamical approach is computationally prohibitive. As
an alternative, a mixed quantum-classical ansatz can be considered, further
motivated by the success of this type of methodology in the description of
bound-state nonadiabatic processes and the simulation of time-resolved spec-
troscopic signals.5,7,33,139,140 Although to date there have been several imple-
mentations of mixed quantum-classical dynamics simulations for bound-state
problems made publicly available182–184, no program addressing the simulation
of vibration-induced autoionization processes has been published so far.

Therefore, in this work we present the program package implementing our
approach to describe vibrational autoionization through quantum-classical dy-
namics in the framework of the surface-hopping methodology in the manifold
of bound and continuum electronic states as described recently26. Therein,
nuclear motion is considered classically, while the electronic system is treated
quantum-mechanically. Nonadiabatic transitions between electronic states ac-
companied by change of the classical vibrational energy of the molecule de-
scribe the energy exchange between the two subsystems. With this program
package and the underlying methodology, one is able to gain insight into the
geometric and electronic evolution in the course of the autoionization process
as well as to calculate the time-, energy- and angle-distribution of the gen-
erated free electrons, which serve as experimental observables for monitoring
autoionization dynamics.

We illustrate our program on the example of the 2-cyanopyrrolide anion,
which bears a dipole-bound excited state slightly below the electron detach-
ment threshold while the vibrationally excited states are metastable and decay
via autoionization.84

In the following section a brief theoretical description of the method is
given. In section 4.3 an overview of the actual implementation is provided.
The subsequent section 4.4 details performance-related issues, namely quality
of approximations in the theory and runtime and memory optimization within
the program, as well as a dynamics simulation example for the 2-cyanopyrrolide
anion. Finally in section 4.5 a conclusion and outlook are given.

4.2 Theory

Our methodological framework is based on the surface-hopping procedure as
proposed by Tully52, in which the coupled electron-nuclear dynamics of molec-
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ular systems is approached in a quantum-classical fashion. Specifically, the
nuclei are propagated classically according to Newton’s equations of motion,

MR̈(t) = Fi(R[t]) ≡ −∇REi(R[t]), (4.1)

where the force Fi(R[t]) is obtained as the negative gradient of the electronic
potential energy surface (PES) Ei(R[t]). In the above equation, M denotes
a diagonal matrix containing the nuclear masses. For an ensemble of initial
conditions, this leads to trajectories R(t) moving on the given PES. Simulta-
neously, the electronic time-dependent Schrödinger equation

ih̄Ψ̇(r;R[t]) = ĤelΨ(r;R[t]), (4.2)

with the electronic Hamiltonian Ĥel is solved. The electronic wavefunction
can be expanded into a set of orthonormal basis states, which in the case of
autoionization includes bound states Φm′ (denoted with a primed index) as
well as continuum states Φ̃m′′ (denoted with a double-primed index):

Ψ
(
r,R[t], t

)
=
∑
m′

cm′(t)Φm′
(
r,R[t]

)
+

∑
m′′

∫
d3k c̃m′′(k, t)Φ̃m′′(k, r,R[t]), (4.3)

where k denotes the continuously varying wave vector of the free electron,
while m′′ is the quantum number of the remaining neutral state. We assume
the wavefunctions Φm′ and Φ̃m′′ to be single Slater determinants (ground state)
or an expansion of singly excited Slater determinants (excited state).

4.2.1 Discretized continuum states

In the frame of the presented methodology we discretize the continuum states,
leading to ∫

d3k c̃m′′(k, t)Φ̃m′′(k, r,R[t])

≈
∑
i

(∆Vk)
1
2 c̃m′′(ki, t)(∆Vk)

1
2 Φ̃m′′(ki, r,R[t])

≈
∑
i

cm′′(ki, t)Φm′′(ki, r,R[t]), (4.4)

where ∆Vk denotes the volume element in k-space and the discretized and
continuum state expansion coefficients are related according to cm′′(ki, t) =

(∆Vk)
1
2 c̃m′′(ki, t). The actual determination of the wave vectors and the im-

plementation of the discretization procedure are explained in detail in the next
chapter.

Insertion of equation 4.3 into the time-dependent Schrödinger equation 4.2,
multiplication from the left by an eigenstate ⟨Φn| and evaluation of the arising
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terms leads to a set of coupled differential equations for the electronic state
coefficients cn:

ċn(t) =
∑
j

[
− i

h̄
Hnm(R[t])−Dnm(R[t])

]
cm(t), (4.5)

with the matrix elements of the electronic Hamiltonian Hnm = ⟨Φn|Hel|Φm⟩
and the nonadiabatic couplings Dnm = ⟨Φn|Φ̇m⟩ = Ṙ · ⟨Φn|∇R|Φm⟩. These
can be divided into separate expressions for the bound and continuum states,
resulting in the diabatic and nonadiabatic couplings between two bound anion
states,

Hn′m′ = ⟨Φn′|Ĥ|Φm′⟩ (4.6)

Dn′m′ = ⟨Φn′|Φ̇m′⟩ , (4.7)

and between a bound and a discretized continuum state,

Hn′′m′(ki) = (∆Vk)
1
2 ⟨Φ̃n′′(ki)|Ĥ|Φm′⟩ (4.8)

Dn′′m′(ki) = ⟨Φn′′(ki)|Φ̇m′⟩ = (∆Vk)
1
2 ⟨Φ̃n′′(ki)|Φ̇m′⟩ . (4.9)

In the above equations, the approximation to neglect the coupling terms be-
tween the continuum states has been introduced. The discretized continuum
states consist of an antisymmetrized product of a bound N−1 electron neutral
state and a molecular scattering state of the free electron

Φ̃n′′(ki) = A
(
Φ

(n)
n′′ · ψ(ki)

)
. (4.10)

The simplest approximation to the free electron states in the presence of a
neutral molecular core are plane waves

ψ(ki) ≈ N eiki·r (4.11)

with a normalization constant N = (2π)−3/2 to satisfy the orthonormality de-
manded in equation 4.3. Since this function would be completely independent
on the electronic and nuclear configuration of the molecular core, which is a
strong simplification, the plane waves are orthogonalized with respect to the
anion’s molecular orbitals (MOs) ϕm to include (at least to a certain degree)
dependence on the molecular structure according to

ψ̃(ki) = (2π)−3/2Northo

(
eiki·r −

occ∑
m

⟨ϕm|eiki·r⟩ϕm

)

= Northo

(
ψ(ki)−

occ∑
m

⟨ϕm|ψ(ki)⟩ ϕm

)
, (4.12)

with the normalization constant

Northo =

(
1−

occ∑
m

∣∣ ⟨ϕm|ψ(ki)⟩
∣∣2)−1/2 (4.13)
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arising from the orthogonalization.
Notably, the summation over m includes the occupied MOs in all ’relevant’

Slater determinants of all considered electronic states, that is, we considered all
determinants which are needed to sufficiently represent the ground state and
full CIS wavefunction of the excited state. Beginning from the highest contri-
bution to a wavefunction, determinants are included until a specific percentage
or a user-adjusted maximum number of configurations per electronic state is
reached (95 % / 10 configurations in the case of vinylidene26). Considering
for now the special case where only the anion’s ground state is included, the
used MOs are simply the energetically lowest ones up to the highest-occupied
molecular orbital (HOMO).

The overlap integral between a plane wave and an MO present in equation
4.13, ⟨ϕm|ψ(ki)⟩, can be computed analytically by expanding the MO into the
Gaussian atomic orbital (AO) basis, with the integral involving a single AO
|ν⟩ given by

⟨ν|ψ(k)⟩ = (2π)−3/2
∫
d3r eik·rφν(r)

= (2αν)
−3/2 exp

(
ik · Aν −

k2

4αν

)
×
∏

j=x,y,z

(−i
√
4αν)

−nν,jHnν,j

(
kj√
4αν

)
, (4.14)

where the Hnν,j
are the Hermite polynomials of order nν,j.

4.2.2 Electronic coupling terms

There are anionic systems, for example the vinylidene anion26, that do not sup-
port a bound excited state, in which case the consideration of only the ground
state and the continuum in the process of autoionization is sufficient. Besides
that, for example in molecules exhibiting dipole-bound excited states84,108,185,
several bound anionic states and the interaction among them are relevant as
well. Nonetheless, to keep the formalism concise, if not noted otherwise we
discuss in the following the electronic coupling terms for the special case of
both anion and neutral molecule being in their respective electronic ground
states, which in turn are represented by a single Slater determinant. The
generalization to excited states and/or multideterminantal wavefunctions is
straightforward.185 We denote the bound anionic ground state wavefunction
by |Φ0⟩ and the continuum wavefunctions by |Φi⟩, the latter being constructed
as an antisymmetrized product of the neutral ground state and a free electron
state function with wave vector ki, similar to equation 4.10.

Diabatic couplings

In the case of two adiabatic bound anion states, the coupling matrix elements
Hn′m′ given in equation 4.6 yield zero for all n′ ̸= m′ since these states are
orthonormal eigenstates of the electronic Hamiltonian.



4.2. THEORY 79

On the other hand, since in our methodology the bound and continuum
state wavefunctions are constructed using separate quantum-chemical calcula-
tions for the anion and neutral, and the free electron wavefunction is taken as a
plane wave, the continuum state functions are crude approximations to the ac-
tual adiabatic eigenfunctions of the electronic Hamiltonian for the N -electron
system and therefore, diabatic couplings between the bound and continuum
electronic states arise.

As elaborated in detail in Ref.26, according to equation 4.8 and defining
V dia
i0 (ki) as

Hi0(ki) ≡ ⟨Φi|Ĥ|Φ0⟩ ≡ (∆Vk)
1
2 V dia

i0 (ki), (4.15)

the diabatic coupling between a bound and a continuum state can be written
in terms of the AO basis as

V dia
i0 (ki) =

∑
λµν

[
Aλµν

(
⟨kiλ||µν⟩ −

∑
σ

Bσ ⟨σλ||µν⟩
)
+

Āλµν

(
⟨kiλ|µν⟩ −

∑
σ

Bσ ⟨σλ|µν⟩
)]
. (4.16)

In this formula the Greek letters denote the AO basis functions, ⟨kiλ|µν⟩ is
an electron-electron repulsion integral and ⟨kiλ||µν⟩ = ⟨kiλ|µν⟩− ⟨kiλ|νµ⟩ its
antisymmetrized variant. The prefactors Aλµν , Āλµν and Bσ comprise AO ex-
pansion coefficients and overlap integrals and are defined as follows (assuming
that the extra electron of the anion has α spin):

Aλµν =

occ,α∑
n

occ,α∑
q,p<q

(−1)n+p+q−1det Sin,pq

×

(
c
(n)
λ −

occ,α∑
u

c
(u)
λ Snu

)
c(p)µ c(q)ν (4.17)

Āλµν =

occ,β∑
n̄

occ,α∑
p

occ,β∑
q̄

(−1)n̄+p+q̄−1det Sin̄,pq̄

×

(
c
(n̄)
λ −

occ,β∑
ū

c
(ū)
λ Sn̄ū

)
c(p)µ c(q̄)ν (4.18)

Bσ =

occ,α∑
r

∑
ρ

c(r)σ c(r)ρ ⟨ki|ρ⟩ , (4.19)

where the indices (including their variants with an overbar) p, q, r refer to anion
MOs, n, u to neutral MOs, and det Sin,pq denotes the minor determinant of the
overlap matrix between continuum and bound state orbitals where the rows of
the free electron orbital ψ̃(ki) and neutral orbital χn as well as the columns
of anion orbitals ϕp and ϕq have been deleted. For the full derivation of these
equations the reader is referred to Ref.26.
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Nonadiabatic couplings

The nonadiabatic coupling terms given in Eqs. (4.7) and (4.9) could in princi-
ple be computed from the scalar product of nuclear velocities and nonadiabatic
coupling vector, Dnm = ⟨Φn|Φ̇m⟩ = Ṙ · ⟨Φn|∇R|Φm⟩. A commonly used and
more efficient alternative, which avoids the computation of wavefunction gra-
dients, consists in using the finite-difference approximation for the time deriva-
tive163,186,187, which results in the scalar nonadiabatic coupling to be obtained
from wavefunction overlaps at neighboring time steps:

Di0(t) = ⟨Φi(t)|
d

dt
Φ0(t)⟩ (4.20)

≈ 1

2∆t

(
⟨Φi(t−∆t)|Φ0(t)⟩ − ⟨Φi(t)|Φ0(t−∆t)⟩

)
(4.21)

Notice that both approaches rely on the numerical approximation of the time
derivative, either by using electronic wavefunctions at consecutive time steps
or by the inherent approximative nature of the nuclear velocities obtained
from the numerical solution of Newton’s equations of motion. However, this
accuracy is well controllable by appropriately adjusting the nuclear time step.
In the case of two anionic bound states, these terms are evaluated according
to Refs.137,163,188.

One can simplify the arising terms by integrating over all but one electron
coordinate. For the first term of equation 4.21 this yields

⟨Φi(t
′)|Φ0(t)⟩ = N−1/2 ⟨ψ̃(ki, t

′)|ψD(t′, t)⟩ , (4.22)

where we have abbreviated t′ = t − ∆t and have defined the one-electron
function ψD(t′, t), which is an analog to a molecular Dyson orbital with the N -
and N − 1- wavefunctions taken at different time steps and geometries. Using
equations 4.12 and 4.22 the resulting nonadiabatic coupling terms read

Di0(ki, t) =
(∆Vk)

1
2Northo

2
√
N∆t

[
⟨ψ(ki)|ψD(t′, t)⟩ − ⟨ψ(ki)|ψD(t, t′)⟩

−
∑
n

⟨ψ(ki)|ϕn(t)⟩ ⟨ϕn(t
′)|ψD(t′, t)⟩

+
∑
n

⟨ψ(ki)|ϕn(t)⟩ ⟨ϕn(t)|ψD(t, t′)⟩
]
. (4.23)

4.2.3 Adiabatic ionization and electronic decay

The main focus of the above presented methodology lies on describing the
nonadiabatic process of vibrational autoionization. However, in the course of
the molecule’s dynamical evolution instances can occur where the occupied
anionic state becomes unbound as the result of changes in nuclear geometry.
In this case, ionization is possible as an exclusively adiabatic electronic pro-
cess without coupling to the nuclear motion. This process can be included
approximately in our method by simulating the temporal spread of the ejected
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electron as a wavepacket evolving freely in space. As a quantitative measure,
the electronic spatial extent, i.e., the expectation value of r̂2, is calculated as
a function of time.

Specifically, once a time step is reached where the VDE has become nega-
tive, the highest-occupied orbital of the last bound geometry, ϕ(r, t0), is used as
the initial free electronic wavepacket. In the case where one only considers the
anionic ground state, this corresponds to the HOMO. If also an excited state is
involved, natural transition orbitals (NTOs)189 are calculated and the highest-
occupied and lowest-unoccupied NTO (HONTO and LUNTO) are used for the
anionic ground and excited state, respectively. Such an electronic wavepacket
is then propagated in time and its spatial extent is evaluated according to

⟨r̂2⟩ (t) = ⟨ϕ(r, t)|r̂2|ϕ(r, t)⟩

=
∑
µν

cµcν ⟨φµ(r, t)|r̂2|φν(r, t)⟩ . (4.24)

Here φµ,ν denote the Gaussian atomic basis functions freely propagated in
time:

φµ(r, t) =

∫
d3r′K(r, r′, t, 0)φµ(r

′, 0) (4.25)

with the free electron propagator

K(r, r′, t, 0) =
〈
r
∣∣∣ e−ip̂2t/2meh̄

∣∣∣ r′〉 . (4.26)

Using Cartesian Gaussian basis functions of s, p and d type one obtains the
following analytic expression for the electronic wavepacket:

φµ(r, t) = Nlxlylze
− α

1+iβt
r2
[
−Λ

iβt

2α
(1 + iβt)−

5
2+

(1 + iβt)−
3
2
−
∑

j lj
∏

j=x,y,z

(rj − Aj)
lj

]
, (4.27)

where A is the spatial center of the respective basis function, li denotes the
angular momentum quantum number for the i’th spatial direction and Λ is a
constant that is unity if one of the li = 2 and zero if all li < 2. The AO integrals
in equation 4.24 are calculated with an implementation of the McMurchie-
Davidson scheme179. To relate the spatial extent in a simple way to the lifetime
of the unbound state, an auxiliary spherically symmetric electron distribution
is considered which within the initially determined radius r0 =

√
⟨r2⟩ (t0)

contains a probability of 99%. Subsequently, with ⟨r2⟩ increasing with time,
the probability within r0 decreases, giving rise to a population decay curve
which can be related to a time constant τ . The latter is incorporated into the
propagation of the electronic wavefunction given by equation 4.5 by adding an
imaginary component to the electronic state energy,

E(a) → E(a) − ih̄

2τ
, (4.28)
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which leads to an exponential population decay due to adiabatic ionization in
regions where the VDE is negative for the given electronic state. We wish to
emphasize that the above described approach represents only a crude approxi-
mation of the adiabatic ionization mechanism. Therefore, inclusion of this op-
tion should be handled with care in actual simulations and should only be used
after thorough benchmarking. In particular, it does not include the possible
presence of electronic resonances, for which our code would need to be coupled
with specifically designed quantum chemistry methods, e.g., those employing
complex absorbing potentials.190,191 Although at present, this is beyond the
scope of our program, it may be possible in the future in view of promising
ongoing development of efficient methods for the simulation of electronically
metastable states and their inclusion in molecular dynamics simulations.143

4.2.4 Surface-hopping procedure

Solution of the set of equations 4.5 along a nuclear trajectory yields the
time-dependent electronic state coefficients cn(t). Within the surface-hopping
methodology, a switch from the occupied bound electronic state n to any other
state m is determined by the hopping probability depending on the electronic
state populations ρnn = |cn|2, which is

Pn→m = − ρ̇nn
ρnn

ρ̇mm∑
k ρ̇kk

∆t (4.29)

for ρ̇nn < 0 and ρ̇mm > 0 and zero in any other instance. In the above
expression, the sum over k includes all states with ρ̇kk > 0. In case a surface
hop occurs, to ensure energy conservation the nuclear velocities are rescaled
such that for kinetic energies T and electronic potential energies En of anion
(a) and neutral (n) the following conditions are fulfilled:

T ′(a) = T (a) + E(a)
n − E(a)

m (4.30)

for a hop between anionic bound states and

T ′(n) = E(a)
n + T (a) − E(n)

m − Eel(ki) (4.31)

for a hop into the continuum (i.e. autoionization). For a more detailed de-
scription of the hopping procedure the reader is referred to Ref.164.

4.3 Program implementation

In the following chapter a detailed account of how the theory is actually imple-
mented in the program package will be provided. For an easier understanding,
in Figure 4.1 the program flow is displayed schematically, with a color code
indicating the module handling the respective task.
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Starting from the generation of an ensemble of nuclear coordinates R(t)
and velocities Ṙ(t) at the time t = tinitial using the wignerEnsemble mod-
ule in the wigner folder (red), a first quantum-chemical calculation is per-
formed by an external quantum-chemistry program - to date these include
Gaussian09/Gaussian16192 and QChem193 (blue) - which yields the forces from
which the accelerations R̈(t) of the nuclei are computed. The nuclei are then
propagated by integration of Newton’s equations of motion for one nuclear
time step using the nuclearDynamics module (orange). With the new nuclear
coordinates R(t+∆t), a new set of quantum-chemical calculations can be per-
formed, yielding the new energy gradients necessary for the evaluation of the
velocities Ṙ(t+∆t). With the quantum-chemical calculations at t and t+∆t,
one is now able to construct the electronic continuum states (cf. Section 4.2.1)
as well as the coupling matrices of the diabatic and nonadiabatic couplings
(cf. Section 4.2.2) using the populationDynamics module (green). From this
point, the electronic state coefficients c(t) are propagated in parallel to the
nuclear dynamics by integrating the electronic Schrödinger equation, yielding
c(t + ∆t). These are utilized to compute hopping probabilities from the oc-
cupied bound state to all other (bound and continuum) states. The switching
between the states is induced stochastically according to the respective hop-
ping probabilities given in equation 4.29. After writing the results into the
various output files time is shifted to t = t+∆t, thereby completing one time
step.

To make this initial overview more specific, in the following the underlying
algorithms are explained in more detail.

4.3.1 Electronic structure calculation

All electronic structure and energy gradient calculations can be performed us-
ing the Kohn-Sham (TD)-DFT level of theory as implemented within the Gaus-
sian09, Gaussian16 or QChem program packages. Notice that special care must
be taken when choosing appropriate functionals for the description of weakly
bound anions. In particular, it is recommended to employ range-separated
functionals to ensure the correct long-range behavior of the Kohn-Sham po-
tential, which is crucial given the spatially diffuse electron distributions of
anions. In addition, especially when describing multipole-bound systems, an
appropriate description of dispersion interactions is needed. For more compre-
hensive guidance on the proper choice of the adequate DFT model, the reader
is referred to Ref.10 and the literature cited therein. The AO basis set needs to
be defined explicitly in a separate input file, thus also allowing for additional
augmentation of basis sets, which is of utmost importance when describing
molecular anions.10,112 The handlerG09 and handlerQChem modules provide
an interface to the external programs by creating input files and calling the
respective programs. The dysonG09 and dysonQChem modules contain classes
that parse the external output files and organize the data into the form needed
in the program.
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4.3.2 Generation of initial conditions

The initial nuclear coordinates and velocities are determined by stochastic
sampling of an appropriate probability distribution function for the harmonic
normal modes of the system. These can be computed from the electronic Hes-
sian matrix at an optimized geometry of the studied molecule. For molecules
in the vibrational ground state as well as for a thermal ensemble of molecules,
the Wigner function

ρW ({Qi, Pi}) =
1

(πh̄)N

N∏
i=1

αi(T ) exp

(
−αi(T )

h̄ωi

(P 2
i + ω2

iQ
2
i )

)
(4.32)

with

αi(T ) = tanh

(
h̄ωi

2kBT

)
(4.33)

is employed, where {Qi, Pi} denote the normal coordinates and momenta, ωi

is the angular frequency of normal mode νi and T the thermodynamic temper-
ature.

Besides these cases, in experiments investigating vibration-induced autoion-
ization another type of initial conditions is often important in which one or
more normal vibrations of the system are excited by laser irradiation. In
principle, the respective initial conditions could be also generated by using a
Wigner function. However, Wigner functions for excited vibrational states can
assume negative values and can thus not be directly identified with a probabil-
ity distribution. This issue might be addressed by sampling the positive and
negative parts of the Wigner function separately, propagating the respective
ensembles and calculating the final properties of the system by averaging in due
consideration of the positive or negative sign associated with each trajectory.

An alternative which gets on with only a single ensemble would be to
use a positive definite probability distribution constructed from the product
of squared wavefunctions in position and momentum space for the excited
vibrational state,

ρ(i)υ (Qi, Pi) = |χ(i)
υ (Qi)|2|χ̃(i)

υ (Pi)|2, (4.34)

where χ(i)
υ (Qi) and χ̃

(i)
υ (Pi) are the harmonic oscillator wavefunctions for the

desired excited quantum state υ of normal mode νi in position and momentum
space, respectively. For the specific case of a singly excited normal mode
(υ = 1), this distribution function reads

ρ
(i)
1 (Qi, Pi) =

4

πh̄3
Q2

i P
2
i exp

(
− 1

h̄ωi

(P 2
i + ω2

iQ
2
i )

)
. (4.35)

As we have demonstrated in Ref.185, due to the occurrence of differences in
the averaging procedure, employing an excited-state Wigner functions leads
to slower convergence of ensemble averages with respect to the number of
trajectories compared to using the product of squared wavefunctions, while
the ensemble average as such does not differ much. Therefore, we chose to
account for vibrational excitation by using equation (4.35).
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4.3.3 Nuclear dynamics

Given Newton’s equations of motion 4.1, the nuclei are propagated by numer-
ical solution using the velocity Verlet algorithm49 for a user-defined time step.
Within this algorithm, the nuclear coordinates at t +∆t are obtained from a
Taylor series expansion around the coordinates at t:

R(t+∆t) ≈ R(t) + Ṙ(t)∆t+
1

2
M−1F(t)∆t2, (4.36)

where in the last term the acceleration has been formulated using the force F
given by the electronic potential energy gradient (cf. equation 4.1). With the
new nuclear coordinates, the force at t + ∆t can be evaluated, giving rise to
the new nuclear velocities

Ṙ(t+∆t) = Ṙ(t) +
∆t

2
M−1 [F(t) + F(t+∆t)] . (4.37)

Due to the approximative nature of the algorithm above and the accuracy of
the calculated energy gradients, it is possible that the velocities develop small
overall translational or rotational components although the initial conditions
were determined with these degrees of freedom set at rest. These numerical
inaccuracies are detected, in the case of translational velocity by the shift of
the center of mass away from the origin of the coordinate system, in the case
of rotation by the calculation of the angular velocity according to

ωrot = I −1L (4.38)

with the moment of inertia I and the angular momentum L. The translational
and rotational portions of the nuclear velocities are then subtracted from the
total velocity and the remaining vibrational part is rescaled to ensure energy
conservation.

After each nuclear dynamics step, the new nuclear coordinates and ve-
locities are written into separate output files, the coordinates in a format of
consecutive xyz files which can be visualized easily by external software (for
example with the VMD program package194, which is warmly recommended).

4.3.4 Electronic dynamics

Since the evaluation of electronic coupling terms in equation 4.5 is, apart from
the external quantum-chemistry calculations, the computationally most ex-
pensive step in the dynamics, several approximations need to be implemented,
which will be discussed in the following

Calculation of coupling terms

Before calculating the coupling terms, the discretization procedure for the
generation of wave vectors needed to construct the continuum state wavefunc-
tions will be discussed. To uniformly discretize angular orientation and kinetic
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energy of ejected electrons, it is natural to discretize angular and energetic
distribution separately. Since the kinetic energy of a plane wave is

Ekin(ki) =
h̄2|ki|2

2me

(4.39)

and therefore proportional to the length of the wave vector squared, this length
is discretized such that the desired energy range is covered evenly. For a given
energy, the vector orientations are approximately evenly distributed accord-
ing to the Fibonacci sphere algorithm155. The volume elements ∆Vk needed
for calculating the bound-continuum couplings in equations 4.8 and 4.9 are
constructed as the difference of spherical caps around the corresponding wave
vectors with the base diameter as an average over the six nearest points on the
sphere surrounding the vector.

In the diabatic coupling terms in the AO basis (equation 4.16) two types of
four-center integrals are present: (i) such involving four Gaussian-type atomic
orbitals (GTOs), ⟨σλ|µν⟩. These are evaluated by using the libcint library160

within the PySCF program package195,196. (ii) integrals involving a plane wave
of wave vector ki and three GTOs, ⟨kiλ|µν⟩. These terms can in principle be
calculated analytically as outlined, e.g., in Ref.162, but this is computationally
unfeasible for the present purpose since an immense number of plane waves has
to be included for a proper discretization of the ionization continuum. Instead,
the plane waves are approximated by their Taylor expansion around the center
of basis function |µ⟩, Rµ. As will be discussed in the Performance Section
later on, for sufficient accuracy in the approximation it is necessary to include
not only the zero’th order term (assuming the plane wave to be constant in
the vicinity of the molecule), but also the first-order term, resulting in the
approximation

eik·r = eik·Rµeik·(r−Rµ)

≈ eik·Rµ [1 + ik · (r − Rµ)] . (4.40)

This leads to two terms for the two-electron integrals as follows:

⟨kiλ|µν⟩ ≈ eik·Rµ [⟨λ|µν⟩+ ik ⟨λ|µ̃ν⟩] . (4.41)

In the above expression, |µ̃⟩ is an AO basis function with an angular momen-
tum quantum number by one higher than |µ⟩ while having the same Gaussian
exponent. This heavily reduces the amount of two-electron integrals to be
computed from n3

AOnPW to n2
AO[nAO +n′AO], with nAO being the total number

of AO basis functions, n′AO the total number of basis functions with increased
quantum number and nPW the total number of plane waves. For instance,
in the case of vinylidene in Ref.26, this amounts to a reduction by a factor
of ∼30000. These terms are again evaluated using the PySCF module. The
prefactors A, Ā and B present in equation 4.16 are straightforwardly imple-
mented in Python according to equations 4.17, 4.18 and 4.19. Evaluation of
the Dyson orbitals needed for the calculation of the nonadiabatic couplings
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is implemented as described before in Ref.140 for arbitrary basis sets for the
anion and the neutral molecule. After construction of the Dyson orbitals from
all bound anionic states to the neutral ground state the nonadiabatic cou-
pling terms are then calculated according to equation 4.23. To ensure that the
wavefunctions of bound states do not switch their arbitrary signs (which can
happen, since the external quantum-chemistry calculations are independent
of each other), the overlap of electronic wavefunctions of all bound states are
tracked throughout the trajectories and accounted for in all formulae involving
the respective states.

Calculation of electronic state coefficients

The electronic degrees of freedom are propagated by solving the time-dependent
Schrödinger equation 4.5 in the manifold of all considered bound anion and
continuum electronic states using Adams’ method as implemented in the ode
class of Python’s scipy.integrate module177 with a user-defined integration
time step. For increased computational stability the equations are beforehand
transformed into the interaction picture, introducing the new electronic state
coefficients

an(t) = cn(t) e
i
h̄
Hnnt. (4.42)

Inserting this into equation 4.5 leads to the actually implemented electronic
equation of motion

ȧn(t) =
∑
m

[
− i

h̄
H̃nm −Dnm

]
am(t)e

− i
h̄
(Hmm−Hnn)t (4.43)

where H̃nm denotes the Hamiltonian matrix of the system with zeros on the
diagonal.

Hopping procedure

Hopping probabilities are directly evaluated according to equation 4.29 from
the state coefficients: A random number between 0 and 1 is generated using the
random function in the numpy.random module and hopping is conducted ac-
cordingly. Once a trajectory hops into a continuum state, it could in principle
be straightforwardly continued on the potential energy surface of the neutral
molecule. Although this can be quite insightful if one is interested in the subse-
quent geometric changes of the ionized system, we follow a different approach
and stop the trajectories after electron detachment since our focus is set on the
actual autoionization process. This allows us to implement a modification of
the surface-hopping procedure that leads to a great improvement of the hop-
ping statistics. The idea is to divide a single trajectory into ’sub-trajectories’,
i.e. to evaluate if a trajectory hops a number nsubtraj of times (see Figure 4.1).
Every time a sub-trajectory hops into the continuum, nsubtraj is reduced by one
and once it reaches zero, the underlying nuclear dynamics is stopped. It has
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to be noted that this procedure is only followed for hops into the continuum,
while for hops between bound anionic states only a single hopping event per
trajectory and time step is possible due to the need to continue the nuclear
dynamics on an unambiguously determined potential energy surface.

4.3.5 Graphical user interface

Our program package comes with a graphical user interface (GUI) for the input
generation as well as an analysis tool for trajectories. An example of the former
is displayed in Figure 4.2. In the input generator, which is started with

$ ho r t en s i a −−gui

in addition to all relevant settings for the actual simulation, the user may find
options for the generation of a complete folder structure for the trajectories as
well as bash submit scripts to be used with the Slurm Workload Manager197.
Furthermore, the above mentioned Wigner ensemble scripts can be used and
initial conditions can be generated. Therefore it is highly recommended to use
the GUI feature.

Additionally, through the command

$ ho r t en s i a −−ana l y s i s

one can open the analysis tool which is able to read output files and visualize
them in a sub-window using the matplotlib program package198.

4.3.6 Installation

The most convenient way to install the program package is downloading or
cloning the repository on our Github page 199. In the main folder, execute

$ python cysetup . py bui ld_ext −−i np l a c e
$ pip i n s t a l l .

to first compile the Cython modules and then install the program. The pro-
gram package requires (and will automatically pip install)

• python >= 3.8

• cython - for faster summation of large arrays, mainly in the calculation
of the two-center integrals in equations 4.16 and 4.41

• scipy - mainly in the integration of the electronic Schrödinger equation
as outlined in subsection 4.3.4

• pyscf - for the calculation of the two-electron integrals in equations 4.16
and 4.41

• joblib - for the parallelization of diabatic couplings

• matplotlib - for the plots in the sub-window of the analysis tool de-
scribed before

https://github.com/mitric-lab/HORTENSIA_LATEST.git
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Figure 4.3: Comparison of the actual surface area of a unit sphere (Asphere = 4π, blue line)
and the approximated surface area as described in subsection 4.3.4 for up to 104 vector
orientations (orange). The relative error is given in green.

and all dependencies thereof. Using the command

$ pip u n i n s t a l l h o r t en s i a_ l a t e s t

will uninstall the program package.

4.4 Discussion
In this section we will quantify aspects of the program related to overall perfor-
mance. This includes the quality of approximations within the methodology as
well as optimization of time consumption and computational resources. More-
over the exemplary autoionization dynamics of the 2-cyanopyrrolide anion is
discussed.

4.4.1 Accuracy of k-vector discretization and integral ap-
proximations

The accuracy of the Fibonacci sphere algorithm for angular discretization in
k -space is illustrated in Figure 4.3 by the covered surface area of a unit sphere
using a given number of distributed points. The total surface area (orange
graph) is presented with the relative error |Afib−Asphere|/Asphere (green graph)
to the exact surface area 4π ≈ 12.566 (blue line). The approximated area
rapidly converges to a value of ∼12.243, which corresponds to a relative error
of ∼2.575 %. Since in the coverage of k-vector lengths no additional approx-
imation is introduced and for their respective volume elements the k-space
is divided energetically evenly (thus covered exactly with respect to vector
length), the error in the surface area for specific vector lengths equates to the
overall error of the volume elements. Therefore the sum of these volume ele-
ments results in a total volume that deviates by less than 3 % from the actual
sphere for arbitrary numbers of vector orientations ns ≥ 30 and lengths nE

(giving a total number of wave vectors nk = nE · ns).
The approximation of the plane wave by the first terms of its Taylor expan-

sion as introduced in equation 4.41 relies on the assumption that the amplitude



92 CHAPTER 4. HORTENSIA PROGRAM PACKAGE

Figure 4.4: Errors (in %) of hybrid Gaussian-plane wave electron repulsion integrals ⟨kiλ|µν⟩
for 2-cyanopyrrolide employing the 6-311++G** +3s2p basis set. The molecular structure
has been optimized in the dipole-bound excited state at the TDDFT/ωB97XD level using the
same basis set. Two types of error measures are reported: a) ϵap1 = ⟨|Iex − Iap|⟩ / ⟨|Iex|⟩ and
b) ϵap2 = ⟨|Iex − Iap| / |Iex|⟩a, where Iex denotes the exact integral, Iap the approximate
value either according to equation 4.41 (linear, red bars) or assuming the plane wave to
be constant (orange bars). For ϵap2 the average has been computed for all integrals with
|Iex| > 10−16 EH . To compute the average the integrals are grouped according to the
exponent α of basis function µ as core (α > 10 a−2

0 ), valence (10 a−2
0 < α < 0.1 a−2

0 ),
and diffuse (α < 0.1 a−2

0 ). For each plane wave energy (E1 = 0.0015 eV, E2 = 0.1 eV,
E3 = 0.2 eV), the average has been taken over all distinct integrals provided by the basis set
as well as over 24 different k-vectors corresponding to the direction vectors of the vertices
of a snub cube. In a), the core and valence error bars are multiplied by a factor of 100 and
10, respectively, to enhance visibility.

of the plane wave only changes marginally within the extent of the AOs. Fig-
ure 4.4 shows a comparison between the approximation with linear terms, an
even simpler constant-wave approximation where eikr ≈ eikRµ and the exact
integrals for selected plane wave vectors for 2-cyanopyrrolide, which serves as
an example molecule illustrating the applicability of the program (see section
4.4.3 below). Two error measures are compared: a relative value of average
deviations (ϵ1) in Figure 4.4a) and an average value of relative deviations (ϵ2)
in Figure 4.4b), which differ insofar as in ϵ1, the deviations between exact and
approximate integrals are averaged first and then divided by the overall aver-
age value of the exact integrals, while in ϵ2, first for each individual integral
the relative error is computed, followed by averaging the results. The averages
are reported for three illustrative plane wave energies and grouped according
to the Gaussian exponent of the basis function sharing its electron coordinate
with the plane wave as "core", "valence" and "diffuse" with decreasing size
of the exponent (for details see Figure 4.4). Overall, it becomes evident that
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for both error measures, the linear approximation of the plane wave is clearly
superior to the constant approximation. The values of ϵ1 are always much
smaller than those of ϵ2, which is due to the fact that the relative errors of
smaller integrals tend to be larger than those of larger ones, and the definition
of ϵ1 partially compensates for this fact. Errors larger than a few percent only
occur for ϵ2 calculated for diffuse basis functions at larger plane wave energies.
Since in the actual computations, the approximate integrals are employed to
calculate the diabatic couplings and for this, the sum over the entire basis set
is taken (cf. equation 4.16), especially the smallness of error ϵ1 encourages the
use of the linear approximation.

4.4.2 Optimization of program performance

Where computationally advantageous, we separate the time-dependent and
-independent parts of the underlying equations and pre-calculate the time-
independent terms at the beginning of the simulation. This results in higher
overall memory usage, however of only several hundred MB to a few GB (de-
pending on the molecular system), but leads to significant time-saving, which
is still a desirable trade-off when calculating on CPU clusters but may limit
the use of the program on single desktop computers.

Furthermore, for increased performance the summation over the four-center
integrals in terms 2 and 4 on the right side of equation 4.16 is implemented
as follows: one first pre-calculates the terms A, Ā and B given in equations
4.17-4.19 for all AOs. Then the calculation of the four-center integrals using
the PySCF program package is divided into nproc smaller terms, nproc being
the user-defined number of processors, and then evaluated in parallel utilizing
the joblib200 library by explicit summation over all AO combinations im-
plemented in a Cython201 module, therefore reducing the memory usage by
ridding oneself from massive arrays while also improving the runtime perfor-
mance of this time bottleneck through parallelization.

Together with the calculation of coupling terms, the most time-consuming
step of the simulation is the two external quantum-chemical calculations needed
in each time step. There are a few options to improve the performance of these
calculations, the easiest of which are to increase the number of utilized pro-
cessors and to reduce convergence time by loading the results of the last time
step as an initial guess for the new calculation. Another possibility is in the
choice of basis sets. Finding a basis set for anions prone to autoionization
can be challenging due to the small ionization energies and the diffusity of the
states that comes with it. Therefore one has to consider basis sets augmented
with enough diffuse basis functions to reasonably describe the properties of the
system10. Although popular basis sets such as doubly and triply augmented
Dunning-style basis sets (daug-cc-pVDZ, taug-cc-pVDZ) are (generally speak-
ing) a potentially good choice for the description of loosely-bound anions, the
size of these basis sets is computationally prohibitive if one aims to run dy-
namics simulations and therefore thousands of consecutive quantum-chemical
calculations. A good alternative can be the usage of smaller basis sets (such
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as 6-311++G**169,170) augmented with additional diffuse functions generated
by geometric progressions of the Gaussian exponents as outlined in Ref.112.

Considering the overall time consumption, no real performance benchmarks
exist with which to compare our program package, since the theory behind it
is rather novel. Therefore we will briefly discuss the specific case of vinylidene
from our work presented in Ref.26 and the 2-cyanopyrrolide example discussed
in detail in section 4.4.3 below.

The vinylidene dynamics was performed for a total time of 3 ps in 15000
nuclear dynamics time steps at the ωB97XD166/d-aug-cc-pVDZ level of theory,
which consists of 146 primitive Gaussian basis functions and 96000 plane waves,
amounting to ∼460 million 2-electron integrals per time step to be solved (cf.
equations 4.16 and (4.41)). Using 6 Intel Xeon E5-2660 (v3) processors per
trajectory, the average computation time was around 11 days and 14 hours
with a peak memory usage of ∼9 GB. Of the total time, around 5 days (or
43 %) were needed for the external quantum-chemistry calculations with the
Gaussian09 program package. It also has to be noted that of the remaining
time ∼30 % can be attributed to the calculation of the 2-electron integrals
in the diabatic couplings running on a single processor, which has since been
parallelized for improved performance.

In the simulation of the 2-cyanopyrrolide dynamics, the 6-311++G**+3s2p
basis set consists of 297 primitive Gaussian basis functions which results in
∼7.8 billion 2-electron integrals to be summed over per time step. The average
computation time amounted to 13 days and 12 hours on 10 Intel Xeon E5-2660
(v3) processors per trajectory, for a total time of 200 fs in 1000 nuclear time
steps. The inclusion of an excited state leads to a massive increase in time
consumption in the quantum-chemical calculations (which account for ∼47 %/
6.4 days of the total computation time) as well as the evaluation of diabatic
couplings, where the summation of all integral terms (cf. equation 4.16) is now
also conducted on 10 processors using the joblib module.

4.4.3 Illustrative example: Autoionization of the 2-cya-
nopyrrolide anion

To illustrate the scope of our program, we simulated the vibration-induced
autoionization dynamics of the example anion 2-cyanopyrrolide. Experimen-
tally, this molecule was measured to have an adiabatic electron affinity of
3.0981 eV and possesses a Rydberg-s type dipole-bound state 29.8 meV be-
low the ionization threshold.84 As can be seen in Table 4.1, which compares
several quantum-chemistry methods and basis sets with the data measured by
Wang et al., the experimental data is reproduced quite well using the ωB97XD
functional and large, diffuse basis sets such as triply augmented pVDZ/pVTZ.
Moreover, although the description of the molecule with standard Pople-type
basis sets is fairly inaccurate, further augmentation with extra diffuse basis
functions (see Ref.112), in this case placed on the nitrogen atoms, also leads to
good agreement with the experimental values. At the same time this approach
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Figure 4.5: HONTO and LUNTO of 2-cyanopyrrolide at the optimized geometry of the
dipole-bound first excited state at the ωB97XD/ 6-311++G** + 3s2p level of theory with
an isovalue of 0.003

Figure 4.6: a) Overlay of all initial molecular structures used in the dynamics simulation of
2-cyanopyrrolide, b) distribution for 10000 initial conditions as a function of distance (in Å)
between the nitrogen (1) and carbon (3) atom as marked in a), showing a bimodal structure.
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Figure 4.7: a) Mollweide projection of the angular distribution of ejected electrons in the
2-cyanopyrrolide dynamics, summed over all energies. The x-axis (φ = 0, θ = 90 degrees)
is aligned with the cyano group and the molecule lies within the xy-plane (θ = 90 degrees);
b) Slices through the Mollweide projection at φ angles of 0 (positive x direction, blue), 180
(negative x direction, orange), 90 (positive y direction, green) and 270 (negative y direction,
red) degrees.

retains a significantly smaller total number of basis functions, therefore keeping
computational effort manageable. Figure 4.5 shows the HONTO and LUNTO,
visualizing the spatial distribution of the excess electron in the ground and
excited state at the optimized geometry of the dipole-bound first excited state
employing the ωB97XD functional and the 6-311++G** basis set augmented
with three diffuse s- and two diffuse p-functions on each nitrogen atom (hence-
forth abbreviated as 6-311++G** + 3s2p). The shape of the excess electron’s
probability distribution in the dipole-bound state is of s-type, showing that
employing additional higher polarization functions (d-/f-type) would lead to
no further improvement in the description of the system. This is in complete
agreement with a dipole moment of the neutral species of 5.02 D, well be-
low the second critical dipole moment of ∼10 D needed for the binding of an
electron in a p-type orbital,108 consequently resulting in an s-type distribution
centered around the positive end of the molecular dipole vector.

Using the 6-311++G** + 3s2p basis set with the ωB97XD functional, we
simulated the vibration-induced autoionization dynamics in the first excited
state with the normal mode at 946 cm−1 of A’ symmetry (ν11 when sorted by
increasing mode energy irrespective of symmetry) excited by one vibrational
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Figure 4.8: a) Simulated electron kinetic energy distribution of all hopping events after
excitation of mode ν11 and propagation for 200 fs (orange histogram) and running average
over 5 points/7.5 meV (red curve), b) time-dependent population of all bound anion states
(dark green) and exponential fit with a time constant of τ = 500 fs (light green).

quantum. The initial conditions were generated as described in subsection
4.3.2. Mode ν11 involves a symmetric stretching of the C-H bonds at carbon
atoms 4 and 5 as well as a ring breathing motion affecting mostly the ring
N and carbon 3. The numbering of atoms is provided in Figure 4.6a), which
illustrates the resulting set of initial conditions by the superposition of all ini-
tial structures. In Figure 4.6b), the distance between the ring nitrogen and
the carbon 3 is depicted, which exhibits a bimodal distribution typical for an
excited vibrational state. The particular choice of vibrational excitation cor-
responds to the experimentally observed resonance 7 of the photodetachment
spectrum in Ref.84. The simulation was carried out propagating an ensemble of
53 trajectories for a total of 200 fs (1000 nuclear time steps) with a discretized
continuum of 400 plane wave energies evenly spaced from 0.0 eV to 0.138 eV
and 96 orientations per energy. The maximum allowed kinetic energy of the
plane wave is the sum of the vibrational excitation energy and the difference in
zero-point energies of anion and neutral system, that is, the maximum excess
energy available upon ionization.

Notice that due to the very low electron binding energy of the dipole-bound
state and the approximative nature of the quantum chemically determined en-
ergies, it is challenging to precisely reproduce subtle binding energy differences
on the meV scale along the trajectories. Thus, some instances of negative VDE
occur in the dynamics. However, the experimental data from Ref.84 only fea-
ture a peak attributed to vibrational autoionization. Therefore, we only include
the latter in our simulation and neglect adiabatic ionization.

The nuclear dynamics following the vibrational excitation is characterized
by relatively small amplitude motion. This is due to the overall low internal
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energy of the molecule and its rigidity as a cyclic system. In the course of the
dynamics, the molecular dipole moment associated with the neutral core, which
is responsible for electron binding in the excited state, exhibits slight oscillatory
behavior while being approximately situated in the molecular plane. This
leads to an anisotropic ejection of electrons predominantly in the molecular
plane along the axis containing the cyano group, as can be inferred from the
Mollweide projection of the angle-dependent distribution of k-vectors, summed
over all k values shown in Figure 4.7a). The resulting electron distribution is
thus p-shaped, with maxima along the x-(cyano group) axis and minima in the
yz-plane exhibiting only about 20% of the maximal intensity, as can be seen
in Figure 4.7b). This observation is in line with the qualitative considerations
of nonadiabatic autoionization from dipole-bound states outlined in Ref.202.
No transitions to the anionic ground state are observed in our simulation due
to a large energy gap regardless of geometry, therefore the angular electron
distribution is solely due to ionization from the s-type dipole-bound state.

Regarding the electron kinetic energies, the distribution displayed in Fig-
ure 4.8a) is obtained, exhibiting a broad peak near the maximally possible
energy of 0.138 eV. This can be attributed to a transition in which the vibra-
tional energy of the excited mode is transferred completely to the outgoing
electron, i.e., the vibrational energy of the molecule is reduced by one quan-
tum in line with the propensity rules for vibrational autoionization established
by Simons134. Further analysis of the peak shape should be taken with care,
since for conceptual reasons vibrational resolution is not within the scope of
quantum-classical dynamics.

Besides the spatial and energetic distribution of the ejected electrons, our
simulation provides access to the timescale in which the ionization process
takes place. Figure 4.8b) shows the time-dependent population of the bound
anionic states, which exhibits a rapid decay that can be fit to an exponential
function with a time constant of 500 fs. This value corresponds to a spectral
width of around 70 cm−1, which is of comparable size to the observation made
in Ref.84.

Overall this example calculation shows the applicability and scope of the
method in the context of small to medium sized molecular anions, provid-
ing a means to gain molecular-level insight into the spatio-temporal dynamics
of vibration-induced autoionization processes complementary to experimental
measurements.

4.5 Conclusion

We have presented the Python program package HORTENSIA (Hopping real-
time trajectories for electron-ejection by nonadiabatic self-ionization in anions)
for the simulation of vibration-induced autoionization processes in molecular
anions. The program implements our recently introduced extended surface
hopping approach for the quantum-classical description of nonadiabatic au-
toionization dynamics, where the electronic degrees of freedom are treated
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quantum-mechanically, while the nuclear motion is represented by classical
trajectories. The electronic states included in the dynamics simulation com-
prise the bound adiabatic anionic states and discretized ’ionized system’ states
composed of a neutral core and a free electron wave function, between which
nonadiabatic transitions are simulated in a stochastical manner from hopping
probabilities obtained from changes in electronic state coefficients according to
Tully’s fewest-switches algorithm. The time-dependent state coefficients are
calculated by solution of the electronic Schrödinger equation containing the
nonadiabatic as well as diabatic couplings between the considered electronic
states according to our presented methodology.

As shown in the example of 2-cyanopyrrolide, time- and angle-resolved
electron kinetic energy signals are obtained directly from the surface-hopping
trajectories. Since no deactivation to the ground state is observed in our
simulation, autoionization with a time constant of 500 fs is identified as the only
available deactivation pathway in the dipole-bound state of 2-cyanopyrrolide on
the simulated timescale, with an anisotropic, p-like ejection of electrons along
the cyano-axis. Moreover, with our program geometric data is yielded which
allows for the structural analysis of molecules throughout the autoionization
dynamics, providing easy access to geometric characteristics of the considered
system, as demonstrated extensively in the example of the vinylidene26 and
1-nitropropane185 anions.

Furthermore, the implementation and internal structure of our program
package was discussed, which also consists of secondary functionalities such
as an input generator and a routine for the creation of initial conditions for
nuclear coordinates and velocities within an easy-to-operate graphical user in-
terface (GUI). Moreover, the program package provides the user with an addi-
tional GUI for the analysis and graphical representation of the most important
dynamics results.

In the future, it may be interesting to study systems for which the au-
todetachment dynamics has recently been studied experimentally, such as the
phenoxide132 or 4-cyanophenoxide29 anions. Useful extensions of the method-
ology could be the implementation of neutral molecules to be ionized, which
requires the description of scattering states interacting with a cationic core, as
well as the inclusion of laser field coupling (analogous to the FISH method54)
to describe photoionization beyond the perturbative limit, thereby providing
an extension of the approach developed in Ref.140. In addition, the treatment
of electronically adiabatic autoionization could be combined with an ab inito
computation of the electronic resonance lifetimes, e.g., along the lines presented
in Ref.143.

Data availability

The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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Abstract
In this study we investigate the autodetachment dynamics of the 1-nitropropane
anion after vibrational excitation of the energetically lowest C-H stretching
mode using our recently developed extended quantum-classical surface hop-
ping approach including the detachment continuum. Therein the detachment
from an electronic bound anion state is treated as a nonadiabatic transition into
discretized detachment continuum states for an ensemble of classical nuclear
trajectories propagated on quantum-mechanical potential energy surfaces. The
initial ensemble is obtained by sampling a phase space distribution accounting
for the vibrational excitation of the C-H stretching mode of the molecule to
match the experimental conditions.

The simulated kinetic energy distribution of the ejected electrons repro-
duces characteristic features of the available experimental data. Analysis of
the nuclear dynamics points out that the approach to neutral-like geometries
with decreased pyramidalization angle of the NO2 group and reduced the N-O
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bond lengths are the crucial factors enhancing the ultrafast autodetachment
process in vibrationally excited 1-nitropropane. This is facilitated when the
dipole-bound first excited state of the anion is populated, which is structurally
similar to the neutral system. Although only a small transient population
of this state is observed, it acts as an efficient doorway to the detachment
continuum and is responsible for a significant amount of the ejected electrons.

5.1 Introduction

Molecular anions have been of great interest for many years to both theoreti-
cal and experimental researchers because of their widespread occurrence in a
wide variety of contexts such as, e.g., surface chemistry203, lower-atmosphere
chemical reactions95,204, nucleophilic substitution reactions95,205, molecular bi-
ology17,114,206, or acid-base chemistry207, and simultaneously for the arising
difficulties in observing and describing these systems accurately.9,14 An early
spectroscopic method targeting the detection of negative ions for high-resolu-
tion data was autodetachment spectroscopy, in which anions were excited into
a metastable resonance state high above the detachment threshold, enabling
drastically increased signal resolution by measuring the ejected electrons rather
than observing the anionic molecules directly.23 The necessity of this detection
method arises from the fact that bound molecular anions, in contrast to neutral
molecules, seldom have more than a handful of bound electronic states, if any
other than the ground state at all. Therefore, the use of ionizing transitions
represents a valuable spectroscopic alternative for these systems.91

Nevertheless, molecular anions with bound excited states are known since
the discovery of the excited state in C−2 ,20,123 and the study of such systems
has since developed into an active area of modern research. Notable examples
include their involvement in the formation of DNA strand breaks17,114, in a
competing deactivation process to E→Z isomerization in biochromophores206,
or the binding of electrons in the field of molecular multipoles128,208–211, espe-
cially in the case of dipole-bound anion states27,127,209,212,213, which are formed
when an electron is bound by the strong permanent dipole moment of a neutral
molecular core with very small binding energies usually in the range of only a
few up to at most some hundred meV.108 Possible deactivation paths of such
systems include the transition to vibrationally excited states of the electronic
ground state, subsequently resulting in autodetachment on time scales as short
as hundreds of femtoseconds.28,131,214

Some molecular anions feature detachment energies that are small enough
that even vibrational excitation of the electronic ground state is sufficient to
eject electrons after a finite amount of time, which is a special case of vibration-
induced autodetachment.30,124 There are several examples where the excita-
tion of a vibrational mode induces electron loss215, as, for instance, recently
observed in the isomerization process of the vinylidene anion (whose neutral
system is a high-energy isomer of acetylene).25,82

The comprehensive theoretical treatment of this phenomenon is challeng-
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ing due to a number of reasons: The low binding energies in weakly-bound
anions result in very diffuse electron distributions of the extra electron, re-
quiring the inclusion of sufficiently large and diffuse basis sets in the quan-
tum chemical treatment. Furthermore, the wavefunction of the ionized system
requires the description of an unbound electron scattered at the molecular
core, which poses a computationally very demanding problem that can only
be tackled be introducing a number of approximations. Finally, the simulation
of time-dependent processes requires an accurate treatment of the detachment
continuum to define appropriate occupation probabilities for the continuum
states. In an effort to gain more insight into the intricate dynamical processes
of weakly-bound anions upon vibrational excitation, we recently presented a
novel surface-hopping-based methodology for the quantum-classical descrip-
tion of ultrafast vibration-induced autodetachment dynamics in such systems26

and illustrated it on the example of the vinylidene anion, allowing us to con-
tribute to the understanding of its autodetachment dynamics. We were able
to establish a reasonable connection between the dynamic geometrical defor-
mations ultimately leading to acetylene formation upon excitation of specific
vibrational modes of anionic vinylidene and the efficiency of electron ejection,
obtaining good agreement with the experimental data.

Our method has been implemented in a software package called HORTEN-
SIA (Hopping Real-time Trajectories for Electron-ejection by Nonadiabatic
Self-Ionization in Anions) that has been recently published on the GitHub
platform.85,199

Opposite to vinylidene, whose anion does not have electronically excited
states below the detachment threshold, the group of nitroalkane anions129,216,217

exhibits a dipole-bound excited state involved in the autodetachment dy-
namics after vibrational excitation111,218. Extensive research, experimental as
well as theoretical, is available for the two smallest nitroalkane anions, nitro-
methane31,218–226 and nitroethane219,227–231. For the next larger homologue
1-nitropropane theoretical data is much scarcer, but there are several exper-
imental studies available, namely by Tsuda et al.219 on the formation of the
anion, and by Weber et al., who recorded photoelectron spectra217 and inves-
tigated the characteristics of the autodetachment process induced by infrared
excitation of C-H stretching vibrations in comparison to other nitroalkanes.129

Remarkably, in stark contrast to nitromethane, no vibrational structure was
visible in the ejected electron distributions for the higher homologues, which
was attributed to fast energy randomization following the population of the
metastable vibrational state.129

In the present contribution, we aim to deepen the molecular-level under-
standing of this process by investigating the autodetachment dynamics of
1-nitropropane following vibrational excitation of the energetically lowest-lying
C-H stretching mode, employing our above-mentioned quantum-classical sur-
face-hopping approach. The remainder of the paper is structured as follows: In
Section 5.2, the theoretical methodology is presented. Computational details
are provided in Section 5.3, which is followed by the presentation and discus-
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sion of results in Section 5.4. Finally, conclusions are given in Section 5.5.
On the present occasion, we take the liberty to point out that our work

in the field of quantum-classical dynamics has over the years been profoundly
inspired by seminal works of Maurizio Persico, such as, e.g., Refs.5,232–235.

5.2 Theoretical Approach
The theoretical methodology employed here for the simulation of the autode-
tachment dynamics of anionic nitropropane has been presented in detail in
Ref.26 and will here be only sketched briefly. Our approach is based on the
trajectory surface-hopping method52, which describes the nuclear motion clas-
sically while maintaining a quantum mechanical treatment of the electronic
population dynamics. To account for detachment processes, we augment the
manifold of bound electronic states by approximate continuum states and and
include the coupling between both manifolds. Specifically, we expand the gen-
eral time-dependent molecular wavefunction, which is given along the classical
trajectory R(t), into a basis of discrete and continuous states as

Ψ
(
r,R[t], t

)
=
∑
m′

cm′(t)Φm′
(
r,R[t]

)
+

∑
m′′

∫
d3k c̃m′′(k, t)Φ̃m′′(k, r,R[t]). (5.1)

The continuum part of the wavefunction is subsequently discretized according
to ∫

d3k c̃m′′(k, t)Φ̃m′′(k, r,R[t])

≈
∑
i

cm′′(ki, t)Φm′′(ki, r,R[t]), (5.2)

and the continuum state wavefunctions Φ̃m′′ are obtained approximately as an
antisymmetrized product of the electronic wavefunction of the neutral molec-
ular core (with N − 1 electrons) and a scattering state of the free electron:

Φ̃n′′(ki) = A
(
Φ

(n)
n′′ · ψ(ki)

)
, (5.3)

where A denotes an antisymmetrization operator and the free electron states
can be approximated by a plane wave. The discrete bound states are obtained
from quantum chemical calculations.

The wavefunction basis constructed in this particular way is not strictly
adiabatic: The bound states are only approximations to the adiabatic eigen-
states of the anionic system, and this approximation deteriorates with de-
creasing electron binding energy of the system because of the limited ability
of the Gaussian basis sets commonly employed in quantum chemical calcula-
tions to mimic the increasingly diffuse electron distribution of a more and more
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weakly bound system. Moreover, also the continuum states are not adiabatic
since they are constructed from plane waves rather than from true scattering
states. Therefore, when inserting the discretized expansion 5.2 into the time-
dependent Schrödinger equation, in the arising coupled set of equations for the
expansion coefficients cm,

ċn(t) =
∑
m

[
− i

h̄
Hnm(R[t])−Dnm(R[t])

]
cm(t), (5.4)

besides the nonadiabatic couplings Dnm = ⟨Φn|d/dt|Φm⟩ = Ṙ · ⟨Φn|∇R|Φm⟩
also nondiagonal matrix elements Hnm of the electronic Hamiltonian remain
to be present in general. For the sake of compact terminology, we refer to the
latter as diabatic couplings, although we stress that they are not the result of
an adiabatic-to-diabatic transformation of the electronic basis states. We note
however that a similar structure of the coupled equations is obtained when
constructing a quasi-diabatic basis from adiabatic states, where besides the
diabatic couplings also residual nonadiabatic couplings persist, the inclusion
of which is necessary to obtain accurate results.236

Using the above described basis implies that the electronic states consid-
ered as "bound" contain a certain amount of the true continuum states and the
continuum states have partial bound character. The extent of this depends on
the actual deviation of the states from the strictly adiabatic states and should,
at least for the bound states, be the smaller the more strongly the system is
bound, i.e., the larger the vertical electron detachment energy. Therefore, we
assume that it is justified to take the initial bound state wavefunction obtained
from a quantum chemical calculation as a good approximation to the actual
adiabatic state, which subsequently, when the energy gap to the detachment
continuum closes, gets more mixed with continuum states and thus less adi-
abatic in character. This effect will be less pronounced the more diffuse the
basis sets employed in the bound-state calculation are, and consequently, the
importance of the diabatic couplings can be smaller or bigger. To substanti-
ate these general considerations, we include in the Appendix numerical results
obtained for an exactly solvable model system, where the exact adiabatic case
can be compared with an approximate treatment and conditions can be found
under which either the nonadiabatic or the diabatic couplings are dominant.
It should be noted that when the approximate states are very similar to the
adiabatic ones, the diabatic couplings are found to be small.

Although beyond the scope of the present paper, it might be valuable to
further examine the relation between the strictly adiabatic and the approxi-
mate treatment also for the molecular case and to investigate if conditions can
be identified under which the computationally expensive diabatic couplings
could be safely neglected.

While the nonadiabatic couplings are calculated employing a finite-diffe-
rence approximation for the time derivative following Ref.163, the diabatic ones
can be shown to depend entirely on two-electron integrals involving molecular
orbitals of the neutral and anionic species as well as the unbound electron wave-
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function. Specifically, if we assume detachment from an anionic wavefunction
given by the configuration interaction expansion

Φ(a)
m =

∑
I

C
(m)
I ΘI , (5.5)

where ΘI represents an individual Slater determinant formed from the anion’s
molecular orbitals (MOs), to an ionized continuum state in which the neutral
core is represented by the ground-state Slater determinant Φ

(n)
0 , the diabatic

couplings can be written as

H0m(ki) = ∆Vk

∑
I

Cm
I ⟨Φ̃0(ki)|Ĥ|ΘI⟩ (5.6)

≡ ∆Vk

∑
I

Cm
I V

dia
im (ki) (5.7)

In this expression, ∆Vk is a discretized volume element in k-space, and V dia
im (ki)

denotes the part of the diabatic coupling due to the interaction between the
Slater determinants of the neutral ground state and the I’th Slater determinant
contributing to the anion state m.

These terms are computed approximately, employing orthogonalized plane
waves as the one-electron scattering states and approximating the molecular
integrals involving plane waves based on a Taylor series expansion, as outlined
in detail in Ref.26, which results in

V dia
im (ki) =

occ∑
n

virt∑
u

⟨χn|ϕu⟩⟨kiϕu|v̂|

×
occ∑

q,p<q

(ϕpϕq − ϕqϕp)⟩

× (−1)n+p+q−1detS0n,pq, (5.8)

where v̂ is the operator for electron-electron interaction, |ϕi⟩ and |χi⟩ denote
the MOs of the anion and neutral molecule, respectively, while |ki⟩ is the or-
thogonalized plane wave describing the free electron and detS0n,pq denotes the
minor determinant of the overlap matrix between bound and continuum state
orbitals obtained by omitting the rows 0 and n (corresponding to the plane
wave ki and the neutral MO χn) as well as the columns p and q (correspond-
ing to the anionic MOs ϕp and ϕq). Expansion of the above equation into the
atomic basis functions (denoted by Greek indices) subsequently leads to

V dia
im (ki) =

∑
λµν

[
Aλµν

(
⟨kiλ||µν⟩ −

∑
σ

Bσ⟨σλ||µν⟩
)

+Āλµν

(
⟨kiλ|µν⟩ −

∑
σ

Bσ⟨σλ|µν⟩
)]
, (5.9)
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where ⟨ab|cd⟩ denotes an electron-electron repulsion integral and ⟨ab||cd⟩ its
antisymmetrized variant. The prefactors Aλµν , Āλµν and Bσ read (cf. Ref.26):

Aλµν =

occ,α∑
n

occ,α∑
q,p<q

(−1)sdet S0n,pq

×

(
c
(n)
λ −

occ,α∑
u

c
(u)
λ Snu

)
c(p)µ c(q)ν (5.10)

Āλµν =

occ,β∑
n̄

occ,α∑
p

occ,β∑
q̄

(−1)s̄det S0n̄,pq̄

×

(
c
(n̄)
λ −

occ,β∑
ū

c
(ū)
λ Sn̄ū

)
c(p)µ c(q̄)ν (5.11)

Bσ =

occ,α∑
r

∑
ρ

c(r)σ c(r)ρ ⟨ki|ρ⟩ (5.12)

where c(n)λ denotes the expansion coefficient of atomic orbital λ in MO n.
During the course of the simulation, vibration-induced autodetachment is

described by non-adiabatic transitions (surface hops) into the continuum states
in a stochastic manner after obtaining hopping probabilities from the changes
of the electronic state coefficients as described in more detail in Refs.26,53,164.

In addition, during the dynamics situations may arise in which the potential
energy of the anionic state increases above that of the neutral state, i.e., the
electronic system of the anion becomes unstable with respect to immediate
electron loss. This would lead to an evolving free electron wavepacket spreading
rapidly in space. We model this adiabatic detachment process by including a
gradual population loss determined from the 1s-type of a spherical electron
distribution having the same electronic spatial extent ⟨r2⟩ as the MO from
which the electron is ejected. For the free-time propagation of an MO composed
of Cartesian Gaussian basis functions of s, p and d type, the following analytic
expression is obtained:

φµ(r, t) = Nlxlylze
− α

1+iβt
r2
[
−Λ

iβt

2α
(1 + iβt)−

5
2+

(1 + iβt)−
3
2
−
∑

j lj
∏

j=x,y,z

(rj − Aj)
lj

]
. (5.13)

Here li denotes the angular momentum quantum number for the ith spatial
direction, A is the center of the basis function and β = 2h̄α

me
. The constant

Λ is unity if one of the li = 2 and zero if all li < 2. The population loss is
then monitored within a sphere initially containing a population of 99% for
the 1s-type electron distribution dispersing in time according to the evolution
of the MO’s electronic spatial extent. This rather coarse procedure accounts



110 CHAPTER 5. AUTODETACHMENT OF 1-NITROPROPANE

for the finite lifetime of the electronically metastable anion state, leading to
irreversible population decay and taking also into consideration that the elec-
tron ejection rate varies as a function of time within periods during which the
anion state is electronically unbound.

More sophisticated approaches based on ab initio calculation of the decay
lifetime have been presented recently, but are at the moment only available for
the electronic ground state in the frame of the Hartree-Fock method.143 The
electronic decay lifetime is then used within the surface hopping procedure to
model the irreversible population decay of the anion states within time periods
during which they are electronically unbound.

5.3 Computational
The quantum-chemical calculations on which the dynamics simulations are
based are carried out using time-dependent density functional theory (TD-
DFT) with the the Gaussian09 program package174 at the ωB97XD level of
theory, employing the 6-31+G** basis set augmented with 2 additional s- and
p-functions each, located at the N atom. The exponents of these additional ba-
sis functions are generated from the most diffuse s- and p-functions within the
underlying basis set with the geometric progression for a factor of 3.5 accord-
ing to Ref.112. Table 5.1 provides a comparison of several quantum-chemical
methods for the electronic structure of the molecule carried out using the Gaus-
sian16 program package192. Specifically the TD-DFT method employing the
ωB97XD166, CAM-B3LYP168 and LC-ωPBE167 functionals, as well as the cou-
pled cluster approach using single and double excitations (CCSD)175,176 and
additional perturbational treatment of triple excitations (CCSD(T))237, using
the 6-31+G**170, 6-311++G**169 (with further addition of basis functions) as
well as the aug-cc-pVDZ171,172, d-aug-cc-pVDZ173 and d-aug-cc-pVTZ173 basis
sets are shown. It is evident that the CAM-B3LYP and LC-ωPBE function-
als either provide systematically too high electron affinities or are unable to
produce a bound excited state and are therefore not suitable for the simula-
tion. For the ωB97XD functional one can see that the system is described
a lot more consistently with experimental data and the chosen combination
of a small basis set augmented with diffuse basis functions is a good compro-
mise between the accurate reproduction of experimental observables and the
resource efficiency needed to carry out computationally expensive dynamics
simulations. Furthermore, this type of basis set augmentation is a popular ap-
proach that has yielded good results in the description of weakly-bound anions
before.209,212

The initial conditions for our dynamics simulations were obtained by sam-
pling a phase space distribution function in terms of harmonic normal modes
according to

P ν
υ (Qν , Pν) = |χν

υ(Qν)|2|χ̃ν
υ(Pν)|2 (5.14)

with the harmonic oscillator wavefunctions of normal coordinate ν in position
space, χν

υ(Qν), and momentum space, χ̃ν
υ(Pν). For υ = 0, this corresponds
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Figure 5.1: Average absolute value of the dipole moment of neutral nitropropane along
trajectory ensembles propagated in the anionic ground state. For normal mode ν27, excita-
tion by a single quantum is taken into account by employing either the harmonic Wigner
function for the first excited state (blue curve) or the product of squared wavefunctions
in position and momentum space (orange curve, cf. equation (5.14)). A total number of
180 initial conditions of the lowest-energy conformer (cf. Fig. 5.2) is propagated at the
ωB97XD/6-31+G**+2s2p level of theory, and a standard deviation is computed by calcu-
lating the average of four disjoint sub-ensembles of 45 trajectories for each set of initial
conditions (areas shaded in light color).

to the common Wigner function. In the example studied here, υ = 1 for the
experimentally excited lowest-energy C-H stretching vibration (mode 27 when
enumerating all modes by increasing energy), while υ = 0 for all remaining
normal modes. Notice, that our choice for distribution function for υ = 1 differs
from the Wigner distribution. However, when integrated over positions or
momenta, it gives rise to the same marginal distributions and, at the same time,
allows for higher computational efficiency since a single ensemble can be used
to sample the distribution. For the excited-state Wigner function, by contrast,
due to the existence of positive and negative parts, two ensembles would need to
be propagated in parallel, and for the calculation of observables the difference
of the averages obtained for these two ensembles has to be taken, which means
that for a similar quality of the statistics, a higher number of trajectories is
necessary. This is illustrated in Fig. 5.1 for the ensemble averages of the dipole
moment of the neutral core along sets of anion trajectories propagated over
100 fs with vibrational excitation either incorporated by using the Wigner
function for v = 1 or the product of squared wavefunctions in position and
momentum space, equation (5.14). For both simulations, the averages are
very similar (blue and orange curve). However, when calculating the standard
deviation of the averages obtained for several smaller sub-ensembles, much
larger values result for the Wigner ensemble (blue-shaded area) than for the
ensemble generated by equation (5.14) (orange-shaded area).

After the generation of initial conditions, the nuclear trajectories were sub-
sequently obtained by integration of Newton’s equations of motion using the
velocity Verlet algorithm49 with an integration time step of 0.2 fs over a total
of 1 ps.
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Concerning the electronic degrees of freedom, we included the bound an-
ionic ground and first excited state as well as the detachment continuum dis-
cretized as outlined in section 5.2 and initiated all trajectories in the anionic
ground state. For the detachment continuum, we employed 96000 discretized
states, with the k-vectors chosen to account for 1000 evenly spaced kinetic
energies between 0.0 and 1.5 eV and 96 different spatial orientations for each
energy, generated using the Fibonacci sphere algorithm155 to evenly cover a
spherical surface in k-space. To include the impact of the molecular core on
the wavefunction of the extra electron at least approximately, in each nuclear
dynamics time step the plane waves were orthogonalized with respect to all
occupied anionic molecular orbitals (MOs) using Gram-Schmidt orthogonaliza-
tion, as has been done successfully in the past.78–80 ’Occupied’ refers here to all
MOs included in electronic configurations with significant contribution to the
overall wavefunction of an electronic state. For the first excited state, which
within TDDFT is described by a CIS-like expansion into excited Kohn-Sham
determinants, we considered all determinants, beginning from the highest con-
tribution, which are needed to represent the full CIS wavefunction by 95 % (or
until a maximum of 10 configurations was reached). The resulting orthogonal-
ized plane waves were then renormalized.

Within the manifold of the electronic ground and first excited bound anion
state as well as 96000 discretized continuum states, the electronic Schrödinger
equation 5.4 was solved along the classical trajectories utilizing Adams’s me-
thod as implemented in the integrate.ode class of the scipy Python mod-
ule177, including the nonadiabatic and diabatic couplings between the consid-
ered states. The time-dependent electronic state coefficients obtained this way
were subsequently used to evaluate the hopping probabilities at each nuclear
time step. In order to prevent an unphysical loss of zero-point energy due to
electron ejection, all hops were suppressed in which the free electron’s kinetic
energy Ekin was larger than the vibrational excess energy h̄ω27 + Ea

ZP − En
ZP,

where h̄ω27 is the energy of one vibrational quantum of mode 27 and Ea/n
ZP are

the zero-point energies of anion (a) and neutral (n).

For the decay of electronically unstable anion states, a gradual population
loss modelled from free wavepacket dispersion as described in Sec. 5.2 (cf.
equation (5.13)) was taken into account.

Since our interest lies in the dynamics of the anion, the trajectories were
not propagated further in the neutral state in the event of a hop into the
continuum. This allows us to improve the hopping statistics by assigning
to each nuclear trajectory a number of individual "hoppers", for which the
stochastic hopping process is performed individually in each time step. For
each instance of a successful hop, the actual number of hoppers, nsub(t), is
reduced by one. Starting with nsub(t0) = 1000, hopping is then checked nsub(t)
times at a given time step, and the hopping procedure is terminated when the
number of hoppers has reached zero.
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5.4 Results

Figure 5.2: Optimized geometries of the 1-nitropropane anion (at the ωB97XD/6-31+G**
+ 2s2p level of theory) in its most stable conformers. The relative energies with respect to
the global minimum and the Boltzmann populations at 250 K are given.

In the experiment, electron detachment of the 1-nitropropane anion can be
achieved by vibrational excitation of specific normal modes, in particular, the
infrared-intensive lowest-lying C-H stretching mode (ν27), which involves the
C-H bond closest to the NO2 group.129,216 To account for this experimental sit-
uation, we modelled the vibrational excitation by sampling initial coordinates
and velocities from a phase space distribution as outlined in the Computational
Details section. In addition, it has to be taken into account that 1-nitropropane
exhibits several energetically close-lying conformers that can be obtained by
rotation around the C-N and the first C-C axis. We considered the energeti-
cally lowest three of them, which are shown in Figure 5.2 with their respective
state populations according to a Boltzmann distribution at a temperature of
250 K (taken from Ref.129) with a partition function only taking into account
these three conformers. In the energetically lowest conformer the dihedral an-
gle ̸ CCCN amounts to 60◦. The second conformer is linear in the sense that
̸ CCCN is 180◦ and the third conformer differs from the first by a NO2 group
rotated by 60 degrees around the CN axis. The dynamics simulation was per-
formed with a total of 100 trajectories, with the initial conditions sampled from
these three different conformers, amounting to 78 trajectories for the first one,
14 for the second and 8 for the third. Using equation 5.14 and setting υ = 1
for the C-H stretching mode closest to the NO2 group (ν27 in the case of the
most stable conformer at the ωB97XD/6-31+G** + 2s2p level of theory) and
υ = 0 for all other modes then results in initial conditions corresponding to
the experimental realization by Weber et al.129.
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Figure 5.3: a) Experimental electron kinetic energy distribution of the 1-nitropropane anion
after excitation of the energetically lowest C-H stretching mode at 2922 cm−1 (reproduced
from Ref.129), b) simulated electron kinetic energy distribution of all hopping events after
excitation of the lowest C-H streching mode and propagation for 1 ps (orange histogram)
and running average over 5 points/7.5 meV (red curve), c) time-dependent population of all
bound anion states (dark green) and exponential fit with a time constant of τ = 795 fs (light
green).
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In the dynamics simulation autodetachment events are observed, which are
analyzed in terms of the kinetic energy of the ejected electrons, which for a
nonadiabatic hop is obtained as Ekin =

h̄2k2
i

2me
from the k-vectors of the contin-

uum state occupied in the hop, or, in the adiabatic case of an electronically
unbound anionic state, from the energy difference between the anionic and the
neutral state. The histogram obtained for all hopping events observed dur-
ing the simulation represents the kinetic energy distribution shown in Figure
5.3b). The signal exhibits its highest values between 0.01 and 0.02 eV, both
decaying towards 0 eV as well as towards higher energies. Above 0.25 eV, most
hopping events are suppressed by the condition of zero-point energy conser-
vation. These theoretical findings share several important characteristics with
the experimentally observed spectrum of Weber et al.129 which is reproduced
in Fig. 5.3a), such as the position of the signal maximum and the decreasing
signal strength for higher and lower energies. However, the simulated signal is
broader than the experimental one, approaching zero only at higher energies.

Furthermore, the ultrafast autodetachment time scale can be estimated
from the dynamics simulation. From the population of bound anionic states,
a fast exponential decay with a time constant of 1105 fs is revealed, as shown
in Figure 5.3c), with approximately 40% of the total population remaining in
a bound anion state after the simulation time of 1000 fs.

In addition to revealing the time scale, our simulations offer the possibility
to analyze the molecular geometries for characteristic changes connected with
detachment transitions. Two distinct parameters can be identified in which the
structure differs from the average at all instants of time, as shown in Figure
5.4. In a) the pyramidalization of the NO2 group, which is quantified as the
angle between the O-N-O plane and the C-N axis, at the hopping events and
at all time steps is shown in green and blue, respectively. It can be seen
that throughout the dynamics, the pyramidalization angle is centered around
30◦, which is also found as the equilibrium angle in the anionic ground state.
At the instances where surface hops occur this angle is significantly reduced,
indicating a planarization of the NO2 group similar to the case of neutral
nitropropane. This is in accordance with the expectation that for very weakly
bound anions, the extra electron is so far away from the molecular core that
the molecule assumes a geometry more resemblant of the neutral equilibrium
geometry. Furthermore, the N-O atomic distances are shifted to smaller values,
as shown in Figure 5.4b) and c) for both the larger and smaller of the two
bonds. In blue, the distribution for all time steps is provided, exhibiting an
average value of 1.33 Å and 1.28 Å. At the hopping events, these values are
shortened to ∼1.26 Å and ∼1.23 Å for the longer and shorter of the N-O
distances, respectively.

Interestingly, the initially excited C-H stretching mode ν27 is not directly
responsible for enhancing the detachment efficiency, as can be seen from the
histograms in Figure 5.5b) and c) showing the distribution of the associated
C-H distance both at the hopping events and at all time steps. The distri-
butions are rather similar, which indicates that the C-H bond distance is no
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Figure 5.4: a) Pyramidalization angle of the NO2 group at all hopping events into a free
electron state for the whole ensemble of trajectories (green histogram) and for the whole
ensemble at all time steps (blue curve), b) and c) larger and smaller of the two N-O atomic
distances at all hopping events (orange histograms) and at all time steps (blue curves) of
the whole ensemble, respectively.
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Figure 5.5: C-H distance for the initially excited mode ν27 a) at the hopping events, b) for
all time steps of the dynamics (blue) as well as the initial distribution at t = 0 (green), c)
Kinetic energy as a function of time for mode ν27 averaged over the ensemble of trajectories.
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relevant factor in the detachment process. Instead, the main role of mode ν27
is to absorb the energy provided by the infrared irradiation, which is facilitated
by its quite large oscillator strength (152 km

mol
at the DFT/ωB97XD/6-31+G**

+ 2s2p level of theory). The absorbed energy is rapidly redistributed as can
be inferred from the quickly decreasing kinetic energy of the mode, dropping
below 50 % of the initial value after less than 100 fs. No single modes were
found that were excited particularly strongly in the energy redistribution pro-
cess, instead the excess energy deposited in the C-H stretching mode is quickly
dispersed over all vibrational degrees of freedom in accordance with the in-
terpretation of Weber et al.129 for their experimental findings. This process
eventually allows the molecule to assume also geometries with a planar NO2

moiety. Consequently, since in this way the structure of the neutral species
is approached, the electron binding energy of the anion gets strongly reduced,
leading to an increased autodetachment rate.

In our simulation, we also included the anion’s first excited electronic state,
which is of dipole-bound character. Although at a given instant of time, only
a small population of this state is reached, which never exceeds ∼3% and,
on average, amounts to about 0.4% throughout the whole simulation time,
it is striking that it is the source of about 56% of the detachment events.
This is because the equilibrium structure of the dipole-bound state closely
resembles that of the neutral molecule, and the two lie very close in energy,
thus increasing the tendency of the system to ionize. In addition, the dipole-
bound state gets populated predominantly when the nonadiabatic couplings
to the anionic ground state are large, which also is the case in regions of low
VDE. Therefore, the dipole-bound state can be regarded as a mediator strongly
enhancing autodetachment.

5.5 Conclusion

We have simulated the autodetachment dynamics of the 1-nitropropane anion
following vibrational excitation of a CH stretching mode using our recently
developed surface hopping approach augmented by the inclusion of discretized
continuum states and their coupling to the bound states. Our simulations
allow us to infer some general features of the autodetachment dynamics and
unravel its mechanism. The additional vibrational energy upon excitation is
quickly redistributed throughout the molecule, enabling access to regions on
the potential energy surface where the vertical detachment energy (VDE) of
the anion is sufficiently small that autodetachment takes place. The geometric
structures at which transitions into the detachment continuum mostly occur
are characterized mainly by reduced N-O bond lengths and planarization of
the NO2 group, thus bearing similarity to the equilibrium structure of the neu-
tral nitropropane. This is strongly mediated by the dipole-bound first excited
state, which is transiently populated in these regions, followed by rapid popu-
lation decay of the bound anion. The timescale on which these processes take
place was found to be ∼1 ps. Overall, we were able to gain detailed insight into
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the intricate dynamics leading to autodetachment and could therefore not only
reproduce the available experimental data very well, but also extend the un-
derstanding of the ultrafast deactivation processes after vibrational excitation
of the 1-nitropropane anion.

Appendix
In this section we present calculations of bound-to-continuum couplings and
detachment probabilities on an exactly solvable one-dimensional model system,
namely, the attractive one-dimensional delta potential. The Hamiltonian is
given by

Ĥ = − h̄2

2m

d2

dx2
+ v0δ(x). (5.15)

For v0 < 0, this system bears a single bound state,

ψb(x) =
√
κ e−κ|x|, (5.16)

of energy Eb = − h̄2κ2

2m
(κ = −mv0/h̄2), and has scattering states of the form

ψsc(x) =
N (k, κ, L)√
κ2 + k2

(k cos kx− κ sin k|x|) . (5.17)

When the continuum is discretized within a spatial box of length L, the nor-
malization constant N is determined such that

∫ L

−L |ψsc(x)|2dx = 1.
For the approximative solution, we construct the bound state as a linear

combination of Gaussian functions,

ψ̃b(x) =
∑
i

Ci bi(x), (5.18)

with

bi(x) =

(
2αi

π

)1/4

e−αix
2

, (5.19)

where the Ci and the approximate energy Ẽb are obtained variationally by
constructing the Hamiltonian matrix in the orthogonalized basis of the Gaus-
sian functions and determining eigenvalues and eigenvectors. The approximate
scattering states are constructed as

ψ̃sc =
1√

1− S2

(
Ñ (k, L) cos kx− Sψ̃b(x)

)
, (5.20)

with Ñ as the box normalization constant for the cosine function and S as
the overlap integral between the normalized cosine and ψ̃b, resulting in the
scattering states being orthogonal to the bound state. The exact bound state
energy is shown in Fig. 5.6a) together with two approximate energies ob-
tained employing (i) a basis set of 8 Gaussian functions with exponents of
αi = 0.005, 0.01, 0.1, 0.5, 1.0, 5.0, 10.0, and 50.0 (in the following termed
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Figure 5.6: a) Bound-state energies for the attractive delta potential as a function of the
potential strength v0. Blue dots: exact energy, red lines: approximate energies (solid: large
basis, dashed: small basis, for the basis definition see text). b) Overlap integral between the
exact and the approximate wavefunctions (solid line: large basis, dashed line: small basis).

"small basis", all values in a−20 ) and (ii) another one with the same functions
plus two additional Gaussians with exponents of 0.0002 and 0.001 a−20 (hence-
forth termed "large basis"). Evidently, for the large basis (solid red line) the
energy closely follows the exact value (blue dots), while for the small basis
(dashed red line), a markedly larger value is obtained which even crosses the
line of zero energy. This behavior is due to the inability of the small basis
set to properly reproduce the exact wavefunction for small potential strengths
(v0 values approaching zero), since the latter becomes more spatially diffuse
than the fixed-width Gaussian functions contained in the basis set allow. This
fact is further quantified by the overlap integral S̃ between the exact and the
approximate wavefunctions depicted in Fig. 5.6b), which shows that for the
large basis set, the overlap is close to unity for almost all values of v0 except
the very smallest ones, while for the small basis set, notable deviations already
occur for intermediate potential strengths of about 0.04 EHa0.

Both for the exact and the approximate wavefunctions, we calculate a nona-
diabatic coupling with respect to changes in the parameter v0:

d = ⟨ψsc|
d

dv0
|ψb⟩ (5.21)

=
2m

h̄2
⟨ψsc| |x| |ψb⟩ (5.22)

d̃ = ⟨ψ̃sc|
d

dv0
|ψ̃b⟩ (5.23)

=
∑
i

dCi

dv0

(
Ñ ⟨cos kx|bi⟩ − S

∑
j

Cj⟨bj|bi⟩

)
. (5.24)
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In addition, for the approximate solutions also nondiagonal matrix elements
of the Hamiltonian (diabatic couplings) are considered:

Hdia = ⟨ψ̃sc|Ĥ|ψ̃b⟩ (5.25)

=

(
h̄2k2

2m
− Ẽb

)
S + v0Ñ ψ̃b(0) (5.26)

In Fig. 5.7, panels a)-d), the values of these couplings are presented for two
different continuum states, one bearing an energy of 0.0085 EH (1 meV, left
column), the other one corresponding to 0.085 EH (100 meV, right column).
In addition, in panels e)-h), the transition probability following from these
couplings is exemplified under the assumption that only the bound and a single
discretized continuum state of the aforementioned energy are present. For a
general coupling V , this probability is calculated as

P =
|V |2

|V |2 + (Eb − Esc)2
. (5.27)

In the calculation, a discretization parameter of ∆k = 10−5a−10 is employed,
which determines the normalization constants of the discretized continuum
states. The effective nonadiabatic coupling is calculated as Vna = h̄ v̇0 d, and
for the "velocity" v̇0, a value of 6 · 10−4E

2
Ha0
h̄

is assumed. This corresponds
roughly to the maximal change of v0 when the bound state energy oscillates
with a frequency corresponding to a typical molecular vibration of 1000 cm−1
around an energy of −0.5 eV with an amplitude of 0.49 eV, i.e., within an
energy range of roughly 1 eV.

The following main observations can be made from inspecting Fig. 5.7:
The diabatic couplings shown in a) and b) are larger for the approximate
wavefunctions obtained with the small basis set (dashed green lines) than for
those employing the large basis set (solid green lines), since the former de-
viate more from the exact solution. Vice versa, the nonadiabatic couplings
presented in c) and d) are smaller for the small basis set (dashed orange lines),
while for the large basis set (solid orange lines) they are comparable to the
exact couplings (blue lines). Consequently, the approximate transition prob-
abilities including both nonadiabatic and diabatic couplings are for the large
basis set (e) and f), red dots) dominated by the nonadiabatic contribution
(orange) while the diabatic contribution (green) is almost negligible. At the
same time, they are close to the exact probabilities (blue) due to the bound
states being good approximations to the exact adiabatic states. Still persist-
ing deviations can be attributed to the fact that approximate continuum-state
functions are used. Notice that in order to increase visual comparability of the
probabilities changing over several orders of magnitude with varying v0, their
decadic logarithm is actually shown in Fig. 5.7.

For the transition probabilities obtained with the small basis set (Fig.
5.7g)/h)), the situation changes. Now the approximate wavefunctions are less
adiabatic in character for small potential strengths. Therefore, notable devia-
tions from the nonadiabatic couplings obtained in the exactly adiabatic picture
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arise. At the same time, the relevance of the diabatic couplings increases, such
that, e.g., for the case depicted in panel h) it is the diabatic coupling (green
line) that dominates the total transition probability (red dots). Additionally,
for small continuum state energies, the occurence of energy crossings leads to
marked maxima in the transition probabilities (cf. the peak in panel g)).

Overall, it can be clearly seen that the different types of couplings are
complementary to each other: if one of them is large, the other tends to be
smaller and vice versa. The correct quantum mechanical treatment of our
system requires both of them to be present, however, cases can be found in
which one or the other is dominant.
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Abstract

We investigated the excited-state dynamics of 4-(dimethylamino)benzethyne
(4-DMABE) in a combined theoretical and experimental study using surface-
hopping simulations and time-resolved ionisation experiments. The simula-
tions predict a decay of the initially excited S2 state into the S1 state in only
a few femtoseconds, inducing a subsequent partial twist of the dimethylamino
group within ∼ 100 fs. This leads to drastically reduced Franck-Condon factors
for the ionisation transition to the cationic ground state, thus inhibiting the ef-
fective ionisation of the molecule, which leads to a vanishing photoelectron sig-
nal on a similar timescale as observed in our time-resolved photoelectron spec-
tra. From the phototoelectron spectra, an ionisation energy of 7.17 ± 0.02 eV
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Figure 6.1: Structure of the 4-(dimethylamino)benzethyne (4-DMABE) molecule with la-
belling of heavy atoms (blue numbers).

was determined. The experimental decays match the theoretical predictions
very well and the combination of both reveals the electronic characteristics of
the molecule, namely the role of intramolecular charge transfer (ICT) states
in the deactivation pathway of electronically excited 4-DMABE.

6.1 Introduction

Intramolecular charge transfer (ICT) is a fundamental process in which elec-
tron density is redistributed from a donor to an acceptor site within the same
molecule, thus significantly changing the charge distribution with respect to
the ground state.34,42 Therefore, ICT has been a topic of remarkable interest
to experimental and computational chemists for many years, considering the
possible applications in organic electronics and photovoltaics.36,238–241 In some
organic molecules it is possible to observe a phenomenon in which an excited-
state ICT leads to a second fluorescence band, as first observed by Lippert
et al.40,41 in the 4-(dimethylamino)benzonitrile (4-DMABN) molecule. This
motivated a large amount of work on the electronic structure and character of
the relevant excited states in this molecule. Numerous time-resolved experi-
ments, ranging from transient absorption on the pico- and femtosecond time
scale242–245 to time-resolved Raman246,247 and gas-phase spectroscopy248,249

have been conducted in 4-DMABN. While Lippert suggested the additional
band to be due to emission from the 1La state that is shifted to lower ener-
gies in polar solvents, Grabowski and coworkers proposed the TICT (twisted
intermolecular charge transfer) model.42 In this model, the emissive state is sta-
bilised by a 90° twist of the dimethylamino group with respect to the phenyl
ring of the molecule in the excited electronic state. Although the charge-
transfer character as well as some geometry distortion of the emissive state
seem to be established, the TICT model is still debated. As an alternative,
a central role of the amino inversion mode was suggested, which couples the
S1 and S2 states.250 Sobolewski et al. found a πσ∗ state with a bent cyano
group as a minimum on the S1 surface and proposed this state, termed "rehy-
bridised ICT" (RICT) state, as the origin of the CT emission band.251 Later
studies proposed a sequential mechanism in which the RICT state is formed
initially, followed by formation of the TICT state on a longer time scale.243
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In this context, 4-(dimethylamino)benzethyne (4-DMABE), which is depicted
in Figure 6.1 and isoelectronic to 4-DMABN, became an interesting reference
point. Theory initially proposed a strong tendency for ICT,251–253 but initial
experiments did not observe dual fluorescence.254,255 Later it was concluded
from time-correlated single photon counting experiments that ICT does occur
at least in strongly polar solvents, but the ICT state is not fluorescent.256 More
recently, time-resolved transient absorption spectra of both molecules in vari-
ous solvents have been recorded243,257 and the photophysics was characterised
computationally employing multireference perturbation theory.258 Based on
these investigations, it was proposed that the photodynamics in polar solution
is characterised by two parallel paths, in which either a locally excited (LE)
state which is structurally similar to the ground state, or, alternatively, the
bent πσ∗ state, are populated. In 4-DMABN, formation of the TICT state pro-
ceeds as a second step, while the respective pathway is blocked for energetic
reasons in 4-DMABE.

For a systematic comparison of experiments with high-level theory it seems
necessary to study isolated molecules in order to separate the intrinsic molec-
ular dynamics from solvent motion. Experimentally, 4-DMABN itself in the
gas phase has been investigated with high resolution spectroscopy259,260 as
well as femtosecond time-resolved spectroscopy,249 and the initial steps of the
photodynamics have been simulated using the surface-hopping dynamics ap-
proach.261,262 In contrast, no studies have been reported for 4-DMABE that
would permit the comparison of computations with gas phase data.

We therefore initiated a combined experimental and computational study
of 4-DMABE in the gas phase to better understand the photophysics of the
isolated molecule. To this end, we employed surface-hopping dynamics simu-
lations52 in combination with time-resolved photoelectron spectroscopy (TR-
PES).263 It has been shown that this approach makes it possible to disen-
tangle contributions from different electronic states to the ionisation signal
and thus allows one to follow nonradiative intramolecular dynamics in real
time.33,140,163,264–266 TRPES has been also successfully employed to study a
few related isolated molecules exhibiting ICT,267 indicating its applicability.

6.2 Methods

The picosecond time-resolved experiments have been conducted in Würzburg
with a setup depicted in Figure S1 in the electronic supporting information
(ESI) and described in detail recently.268,269 It consists of a 10 Hz Nd:YLF laser
and an optical parametric amplifier. The laser system has a time-resolution of
4-5 ps and a bandwidth of around 20-25 cm−1.

The femtosecond time-resolved experiments were carried out at the ATTO-
lab laser platform at LIDYL,270 Université Paris-Saclay, using a setup combin-
ing velocity map imaging (VMI) and time-of-flight mass spectrometry (TOF-
MS) that has been described before33, and is also given in Figure S2 in the ESI.
4-DMABE, commercially obtained from Sigma-Aldrich, was held at room tem-



128 CHAPTER 6. 4-(DIMETHYLAMINO)BENZETHYNE

Table 6.1: Vertical excitation energies and ionisation energies in eV, oscillator strengths [in
brackets] and state characters (in brackets) for 4-DMABE.

S1 S2 S3 IEad IEvert

ADC(2)
4.31 [0.02] 4.61 [0.39] 4.89 [0.22]aug-cc-pVDZ (ππ∗) (ππ∗) (s-Ryd) 8.27 10.02

daug-cc-pVDZ 4.31 4.58 4.83
EOM-CCSD

aug-cc-pVDZ 4.50 [0.02] 4.74 [0.17] 5.09 [0.43] 6.97 7.33
CAM-B3LYP

aug-cc-pVDZ 4.55 [0.04] 4.67 [0.26] 4.81 [0.37] 7.01 7.16
6-311++G** 4.62 [0.04] 4.73 [0.30] 4.88 [0.33] 7.05 7.21

ωB97XD
aug-cc-pVDZ 4.55 [0.04] 4.78 [0.57] 5.03 [0.07] 7.00 7.15
6-311++G** 4.62 [0.04] 4.82 [0.58] 5.11 [0.07] 7.03 7.20
Experiment
(adiabatic) 3.95 4.34 7.17

perature, seeded in 1.1 bar of helium and expanded into a differentially-pumped
vacuum chamber by a 100 µm nozzle. The source chamber was operated at a
pressure of 3.5× 10−4 mbar. The resulting jet then passed a 1 mm skimmer,
expanding into the detection chamber held at a pressure of 1.8 × 10−6 mbar.
Around 15 cm into the detection chamber, the pump and probe laser beams
crossed the molecular beam in the center of the ion optics. The ion and elec-
tron spectrometers were oriented perpendicular to the laser/jet plane. By
applying different voltage gradients, VMI of the electrons/ions were collected
on one detector. The VMI detector consists of two microchannel plates and
a phosphor screen, with a sCMOS camera imaging the spatial distribution of
the charged particles. In addition, time-of-flight mass spectra were recorded
on a dual-stage microchannel plate detector in the opposite direction, but are
not discussed in the present manuscript.

The tripled fundamental of a Ti:Sa laser (1 kHz, 23 fs) operated between
265 and 272 nm was used as the pump pulse (43 µJ at most). For the probe
pulse, either the fundamental of the Ti:Sa laser (794 nm, 1.18 mJ at most) or
its second harmonic (397 nm, ≈ 200 µJ at most) was employed. At least two
photons at 794 nm or one photon at 397 nm are necessary to ionise 4-DMABE
from its excited states. Both laser beams enter the detection chamber from the
same side with a small crossing angle and are softly focused (f=750 mm lens)
in the interaction region with the molecular beam. The distances to the focal
points were chosen to minimise one-colour ionisation. The probe pulse was
delayed with respect to the pump pulse using a computer-controlled stepper
motor. The time intervals between the points varied between 10 fs close to
the pump-probe overlap and up to 167 fs far away from it, the points being
measured randomly. Each delay trace consists of at least 4 individual delay
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scans. The photoelectron spectra were integrated over 3750 laser shots for each
point. The polarisation of the pump laser was rotated for each point between
parallel and perpendicular with respect to the probe laser.

For the theoretical description of the vertical electronic excitation ener-
gies several computational methods were compared as summarised in Ta-
ble 6.1. Specifically, the algebraic diagrammatic construction through sec-
ond order (ADC(2))62,271,272 method in its spin-component scaling (SCS) vari-
ant59,67 together with the aug-cc-pVDZ171,172 and d-aug-cc-pVDZ171–173 ba-
sis sets was used in the framework of the Turbomole program package273 .
Furthermore, employing the Gaussian16 program package,192 time-dependent
density functional theory (TDDFT) was employed using the long-range cor-
rected CAM-B3LYP168 and ωB97XD166 functionals and the aug-cc-pVDZ and
6-311++G**169,170 basis sets, as well as the equation-of-motion coupled clus-
ter approach with single and double excitations (EOM-CCSD)175,176,274,275 with
the 6-311++G** basis set. The excited states of 4-DMABE are well described
within the ADC(2)/aug-cc-pVDZ level of theory, which therefore was subse-
quently employed for the surface hopping simulations. It needs to be men-
tioned, though, that the ground state is treated at the second-order pertur-
bation theory (MP2) level within this approach, which does not provide rea-
sonably accurate ionisation energies. These are adequately described within
the (EOM-)CCSD and (TD-)DFT methodologies, which, however, give rise to
systematically too high excitation energies.

In addition to the vertical excitation energies, geometry optimizations in
the excited state have been performed for several isomers employing the TD-
DFT/ωB97XD/aug-cc-pVDZ level of theory in the frame of the QChem pro-
gram package.193 The nature of the stationary points has been examined by
calculating the vibrational frequencies and normal modes. Vibronic Franck-
Condon progressions have been calculated based on the obtained normal modes
using the ezFCF program.276,277

For the quantum-classical dynamics simulations, the surface-hopping me-
thodology as proposed by Tully52 was utilised, coupled to quantum-chemical
calculations at the ADC(2)/aug-cc-pVDZ level of theory using the Turbomole
program package. From those results scalar non-adiabatic couplings and elec-
tronic transition dipole moments were evaluated using a procedure explained
in detail in Refs.137,163,188. The classical nuclear dynamics was simulated by
integration of Newton’s equations of motion using the velocity Verlet algo-
rithm49 with an integration time step of 0.2 fs. Considering the ground and the
three energetically lowest excited states, the electronic population dynamics
was determined along the classical trajectories by solving the time-dependent
Schrödinger equation including the non-adiabatic couplings between all elec-
tronic states. This yields time-dependent electronic state populations from
which surface-hopping probabilities are evaluated. The ensemble of 100 initial
conditions was sampled from a harmonic Wigner distribution function for the
vibrational ground state and the dynamics was started with the population
in the second excited electronic state, simulating the relaxation after initial
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Figure 6.2: a) Experimental one-color REMPI spectrum of 4-DMABE obtained using a
ps-laser. The displayed energy ranges of b) and c) are indicated in orange and green,
respectively. b) Lower-energy region of the recorded [1+1’] REMPI spectrum with λprobe
= 351 nm. Three bands marked in grey represent the S1 origin at 31854 cm−1 and two
vibrationally excited states. c) Higher-energy region of the one-color REMPI spectrum
(green) and simulated Franck-Condon progression at T=200 K for vibronic transitions from
the S0 to the LE state (red), shifted +930 cm−1 to match the experimental progression.
The individual transition lines (not shown) have been broadened by a Lorentzian width of
100 cm−1. The spectrum has been obtained at the TDDFT/ωB97XD/aug-cc-pVDZ level of
theory. The spectra in b) and c) are shifted so that the S1 origin is at 0 cm−1.

vertical excitation.

6.3 Results and Discussion

In a first series of experiments one-color REMPI spectra were recorded with
a ps-laser in the energy region covering the two lowest electronically excited
states, as depicted in Figure 6.2a. Consistent with the theoretical predictions,
a lower-lying weak band and a higher-lying strong one are present, which can
be identified with the Lb (S1) and La (S2) states of ππ∗ character251 found at
the ground state geometry (cf. Table 6.1). For an interpretation of the vibra-
tional structure, the possible excited state isomers have to be discussed first.
Four distinct isomers in the lowest excited state have been described in the lit-
erature258: the locally excited (LE) state whose geometry only slightly differs
from that of the ground state, the fully twisted TICT and the partially twisted
pTICT state, as well as the πσ∗ or RICT state characterized by a bent acetylene
group. We have optimized these states at the TDDFT/ωB97XD/aug-cc-pVDZ
level of theory and illustrate their geometries in the ESI, Figure S3, while the
excitation energies and transition dipole moments are summarised in Table
6.2. In our calculations, the specific twisting angles for the TICT and pTICT
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structures are 86◦ or 18◦, respectively, while the CCC bending angle of the πσ∗
state amounts to 127◦. It should be noted that the stationary points repre-
senting the above-mentioned states all lie on the S1 electronic potential energy
surface, although they may correlate with higher-lying states at the ground
state geometry. In particular, the LE state correlates with the bright La (S2)
state. Based on the theoretical data, we identify the weak experimental band
with the pTICT and the strong one with the LE state. The low-energy weak
band has been additionally investigated in a [1+1’] experiment, which provides
a better signal-to-noise ratio. For ionisation, the 3rd harmonic of Nd:YLF laser
at 351 nm has been employed. The data are presented in Figure 6.2b and allow
the identification of several vibronic bands. A band with moderate intensity
appears at 31854 cm−1, corresponding to 313.9 nm or 3.95 eV and is assigned
to the vibronic origin (marked as S1 in 6.2b). A further band at +772 cm−1
could be assigned to a phenyl deformation mode computed at 809 cm−1 in
the pTICT state. In ps-time-resolved experiments both the origin transition
and the band at +772 cm−1 exhibit a ns-lifetime (see ESI, Figure S4b and c),
confirming that the state giving rise to the weak band is long lived. A further
recognizable band appears around +1200 cm−1. Theoretically, there are a lot
of different vibrational modes to be found in this energy region, so given the
broadness of the peak it is not possible to assign this band to a specific mode.

To further investigate the first excited state, we also recorded photoelec-
tron spectra via the two lower identified bands in Figure 6.2b (S1 origin,
+772 cm−1), presented on the left-hand side of Figure 6.3. Ionisation with
a probe wavelength of 351 nm via the S1 origin leads to electrons with an
electron kinetic energy (EKE) of 0.31 eV. When this value is subtracted from
the total photon energy of 7.48 eV, we deduce an adiabatic ionisation energy
IEad = 7.17 eV. This is in good agreement with the value of 6.97 eV, computed
at the CCSD/aug-cc-pVDZ level of theory as well as with the values obtained
using DFT (cf. Table 6.1). The two spectra exhibit a similar shape, which in-
dicates that transitions preserving the respective vibrational quantum number
are dominant. This indicates a molecular structure that changes only slightly
upon ionisation, which is in accordance with the theoretically obtained ground
state geometries for the neutral and cationic molecule. The right-hand side
of Figure 6.3 shows the spectra as a function of vibrational excess energy in
the ion. A band at +900 cm−1 is visible, which suggests a vibrational energy
increase of ∼ 130 cm−1 upon ionisation. The spectrum recorded via the ex-
cited vibrational state is broadened due to transitions into additional cationic
vibrational states.

The strong band seen in the REMPI spectrum is identified with the transi-
tion to the LE state. The simulated vibrationally broadened absorption spec-
trum is presented together with the experimental data in Figure 6.2c . The
calculated 0-0 transition at 35004 cm−1 (4.34 eV) at the ωB97XD/aug-cc-pVDZ
level of theory matches well the first experimental peak around 36000 cm−1.
The characteristic bands of the experimental progression are also reproduced
reasonably, as can be seen in Figure 6.2c. The observed dip in signal strength
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Table 6.2: Adiabatic (∆Ead) and vibronic 0-0 (∆E00) transition energies as well as squared
transition dipole moments (|µ01|2) for transitions from the ground state to several stationary
points of the S1 state and the cation, obtained at the TDDFT/ωB97XD/aug-cc-pVDZ level
of theory.

Structure ∆Ead/eV ∆E00/eV |µ01|2/e2a20
LE a 4.542 4.340 5.606

pTICT 4.366 4.199 0.355
πσ∗ 3.734 3.700 0.045

TICT 4.308 4.149 0.009
Cation D0 7.000 7.014

a the LE structure exhibits 1 imaginary vibrational frequency
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Figure 6.3: [1+1’] photoelectron spectra recorded via the origin and one vibrational band
indicated in Figure 6.2. From the EKE an IE of 7.17 eV is derived.

between 37930 cm−1 and 38130 cm−1 is due to a drop in laser intensity within
this small energy region and does not impact the surrounding data. Compared
to the situation for the weak band, the time-delay traces recorded after exci-
tation in the bright band change markedly (see ESI Figure S4d and e). They
show two components, a fast one that is below the time-resolution of the setup
and a second one with a long time constant in the ns region. Hence, contrary
to the S1 state, the dynamics in the S2 state cannot be fully resolved with the
ps-setup. Therefore, in order to unveil the ultrafast processes taking place after
excitation into the S2 state, a combined approach of surface-hopping dynamics
and fs-TRPES was employed.

Accordingly, we initiated our nonadiabatic dynamics simulations in the La

(S2) state, and also included the next higher state, which is situated at 4.89 eV
in the ground state geometry and can be classified as an s-type Rydberg state.
With changing molecular geometry, the character of the states may change,
though. In particular, it should be noticed that with our choice of the number
of excited states also all of the states given in Table 6.2 are covered, as these all
belong to the S1 potential energy surface, albeit at different geometries. From
the population dynamics depicted in Figure 6.4a it is clear that very rapidly
about 70% of the population flows into the S1 state, while only a small fraction
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Figure 6.4: a) Time-dependent electronic state populations of 4-DMABE during the ADC(2)
surface-hopping simulation initiated in the S2 state. b) Time-dependent population of char-
acteristic 4-DMABE conformers during the ADC(2) surface-hopping simulation. Both pop-
ulations are averaged over 100 trajectories. The time axis was shifted to match the experi-
mental pump-probe delay.

resides in the higher states for the simulation time of 250 fs. With regard to
the time-dependent ionisation energies, most part of the trajectories should be
photo-ionisable by using 397 nm photons in the entire time range. However,
as detailed below, in the experiment the time-resolved photoelectron signal
quickly disappears within about 100 fs after initial excitation. As a reason, we
propose the geometrical deformations of the molecules taking place in the S1

state.
To this end, we have classified the structures occurring during the dynamics

simulations according to their similarity to the excited state isomers discussed
before. As a prerequisite, we define the following angles (in the expressions
below, ei,j denotes a unit vector pointing in the direction of the line connecting
atoms i and j according to the numbering given in Figure 6.1):

α = arccos(e3,4 · (e1,3 × e2,3))−
π

2
(6.1)

β = arccos(e9,10 · e10,11) (6.2)
γ = arccos(e1,2 · e5,6), (6.3)

where α can be interpreted as a measure for pyramidalisation at the amino
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Figure 6.5: Vibronic Franck-Condon spectra for the ionisation transitions between the in-
dicated neutral 4-DMABE S1 state conformations and the cationic ground state. As the
horizontal axis, the photoelectron kinetic energy (EKE) for a 3.12 eV (397 nm) probe step
has been chosen. The individual transition lines (not shown) have been broadened by a
Lorentzian width of 0.01 eV. Areas shaded in grey correspond to formally negative kinetic
energies, thus, intensities in these regions are not observable. Notice the drastically different
ranges of the y-axis for the three spectra.

group nitrogen atom, β describes the CCC bending at the acetylene group
and γ measures the torsion of the dimethylamino moiety with respect to the
phenyl ring. For the assignment to any of the 4-DMABE isomers, we require
α < 45◦. Furthermore, for the bent structure of the πσ∗ state, β > 20◦ and
γ < 15◦, while for the ground state (GS) and the twisted structures, β < 20◦

must be fulfilled. A GS-like structure is then characterised by γ ≤ 15◦, pTICT
by 15◦ < γ ≤ 45◦ and TICT by γ > 45◦.

The resulting time-dependent structural populations are presented in Fig-
ure 6.4b and make clear that although the excited state remains S1 in most
trajectories during the entire simulation time, the geometry deviates from the
original ground state structure very quickly, in about 50% of the cases becom-
ing pTICT-like, while other structures also occur to a smaller extent. This
has profound implications on the Franck-Condon factors and thus the signal
intensities for the ionisation transitions.

To make the point more quantitative, we have computed the Franck-Condon
spectra for the photoionisation to the cationic ground state starting from the
LE, pTICT and πσ∗ excited state structures, as depicted in Figure 6.5. As
the energy axis, the photoelectron kinetic energy obtained when using a single
397 nm probe photon was chosen in order to meet the experimental conditions.
In this way, parts of the spectrum appear at negative energies (emphasised by
grey background), corresponding to the fact that the ionisation energy in this
region is higher than the photon energy, and thus no intensity would be exper-
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imentally observed. Two significant observations can be made from the figure:
(i) Only molecules at the LE or pTICT, but not at the πσ∗ geometry can be
ionised with one photon, (ii) the signal intensity for ionisation from the LE
geometry is more than three orders of magnitude higher as compared to the
pTICT geometry. This clearly indicates that a structural change from the LE
(which itself is close to the ground state geometry) to the pTICT geometry
should be accompanied by a drastic decrease of ionisation signal intensity.

In the following, the connection between these theoretical findings with the
results of femtosecond time-resolved experiments will be made. The exper-
iments were conducted using time-resolved photoelectron spectroscopy (TR-
PES). Pump pulses with a central wavelength between 265 nm and 272 nm
were employed, but no differences were observed between them. For ionisation,
probe wavelengths of 397 nm and 794 nm were employed.

A TRPES recorded using 397 nm probe is provided in Figure 6.6. A struc-
tureless band is visible, peaking at low EKE. The cutoff at around 0.5 eV is in
excellent agreement with a [1+1’] ionisation process, considering the 7.66 eV
total photon energy and the ionisation energy of 7.17 eV, as determined above.
The signal decays rapidly to zero and exhibits a half-life of about 50 fs. This
confirms a fast dynamics on the excited state potential energy surface. As
discussed above, the theoretical findings suggest that on a time scale of several
hundred fs, the system stays in the S1 state (cf Figure 6.4a). The decisive
point, however, is the structural dynamics of the molecule. While the ionisa-
tion threshold hardly changes upon slight twisting of the initially planar struc-
tures (cf. Figure 6.5), the formation of pTICT-like geometries quickly leads
away from the Franck-Condon region, thus reducing the ionisation probability
to the cationic ground state due to smaller Franck-Condon factors. This is
clearly discernible from the comparison of the decaying signal for pump-probe
delays between -30 and 220 fs (Figure 6.6b) with the time-dependent amount of
ground-state-like geometries in the dynamics simulation (Figure 6.6c), which
show a very similar temporal behaviour.

In a second set of experiments, the probe wavelength was shifted to 794 nm.
At least two probe photons are now required to reach the ionisation thresh-
old. Due to the higher laser power available, such multiphoton processes
are straightforward. As visible in Figure 6.7, the appearance of the spec-
trum changes conspicuously. The 2D map now shows two components, one at
low EKEs between 0 and 0.5 eV, labelled A, with maximal intensity around
t = 0 ps, and a second one, labelled B, that is slightly shifted in time and
maintains considerable intensity at EKE < 1.2 eV at all delay times. The ex-
perimental data show a strong rotational anisotropy (cf. ESI, Figure S8) that
was corrected in the Figure 6.7 by taking the appropriate ratio from parallel
and orthogonal polarization278 (I∥ + 2I⊥). From the photoelectron spectrum
at the left-hand side of the figure we conclude that this component is due to a
three-photon ionisation in the probe step. Component A shows a rapid decay
to about 2/3 of its maximal intensity, again with a half-life of ∼ 50 fs similar to
the observations for the 397 nm experiments. In contrast to the experiments
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Figure 6.7: Time-resolved photoelectron spectrum of 4-DMABE photoexcited at 272 nm,
recorded with 794 nm probe. The rotational anisotropy was removed (see text and ESI,
Figure S8). Left panel: Total time-integrated photoelectron spectrum (blue) and short-time
spectrum (orange) integrated over the time span indicated by C in the 2D plot. Upper panel:
Total signal intensity integrated over the energy regions A (green) and B (red) indicated in
the 2D plot. For each set of data points the maximum signal was set to 1. The rapid decay
of the initially excited state gives rise to an electronic state that remains excited for > 10 ps.
The photoelectron spectrum shows that it is associated with electrons of high kinetic energy
that originate from a [1+3’] ionisation. Notice that this figure is reprinted as Figure S6
in the ESI employing a perceptually uniform, sequential colormap for the 2D-plot (middle
panel) in order to ease interpretation in greyscale.
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at 397 nm probe, it does not decay to zero but retains a considerable, almost
time-independent offset that is similar to the observations for component B.
The latter increases with a delay also on the order of 50 fs and stays at constant
level at least for about a ps. Its appearance can be understood as a stepwise
process through intermediate states, enabling an ionisation pathway that was
energetically possible but previously not accessible due to the molecule moving
out of the Franck-Condon region. Note that the πσ∗ geometry can be ionized
by three 794 nm photons, but the computed signal intensity is several orders
of magnitude smaller, so we do not expect this process to be relevant.

Therefore, the theoretical and experimental data suggest a sequential model,
in which the initially excited S2 state first decays to the S1 state on a time
scale faster than the experimental time resolution. This state can be ionised
by one photon of 397 nm (or two of 794 nm). On a time scale of 50 fs, the
corresponding electron signal vanishes completely in the case of 397 nm probe
wavelength, while a weak, nearly constant offset remains with 794 nm probe,
which is attributed to three-photon ionisation. The presence of two ultra-
fast time scales finds its parallels in experimental time-resolved ionisation data
of the 4-DMABN molecule where two sub-ps time constants could be identi-
fied.248 This behaviour seems to be caused by the geometrical change of the
molecules to a slightly twisted (pTICT) structure on the S1 potential energy
surface, for which the one-photon ionisation probability is strongly diminished.
These findings are quite similar to previous ADC(2)-surface-hopping results of
Kochman et al.261,262 on the 4-DMABN molecule in the gas phase where a
sub-10-fs internal conversion from the initial S2 to the S1 state is followed by
structural deformation to a slightly twisted geometry. Notice, that the final
conclusion of the aforementioned work is the absence of TICT formation in
the gas phase, although in Ref.261 a fair amount of full twisting was observed.
This was attributed to the energetic underestimation of the TICT structure
within the ADC(2) method, in contrast to its spin-opposite scaled (SOS) vari-
ant which was employed in Ref.262. In our simulations, we used the more
general spin-component scaling (SCS) ADC(2) method which is however very
similar to SOS-ADC(2).59,67 Therefore, also in our simulations no appreciable
TICT formation occurred. This is in agreement with experimental data where
for 4-DMABE neither dual fluorescence256 nor transient absorption features
that could be attributed to a TICT state243 were observed. Interestingly, we
only find a very small contribution of structures with bent acetylene group
(the πσ∗ or "rehybridized" intramolecular CT structure, RICT, of Sobolewski
and Domcke251–253) which was inferred to play a key role in the photophysics of
4-DMABE by Lee et al.243 and Segarra-Martí and Coto.258 One reason for that
may be that the πσ∗ structure is strongly polarised and thus much less stable
in the gas phase than in polar solvents, similar to the TICT structure. Besides
that, for 4-DMABN very recently the assignment of those features in the mea-
sured transient absorption (TA) spectra that were previously attributed to the
πσ∗ state has been challenged by Kochman et al.,279 who have simulated the
TA spectrum based on surface-hopping dynamics and have found the afore-
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mentioned TA signal to be due to excited state absorption of the LE state. A
similar situation might also exist in the case of 4-DMABE.

6.4 Conclusions

We conducted a joint theoretical and experimental study on the excited state
dynamics of 4-(dimethylamino)benzethyne (4-DMABE). The first excited state
(S1) was observed to be stable with respect to deactivation on a ns-time scale
and therefore investigated using photoelectron spectroscopy (PES), pumping
various (vibrational) states observed in REMPI experiments conducted be-
forehand. An adiabatic IE of 7.17 eV was determined for 4-DMABE. The
second excited state (S2) was observed to deactivate on a timescale unresolv-
able with a picosecond setup. Therefore this ultrafast photorelaxation dy-
namics of 4-DMABE after optical excitation at 272 nm was investigated using
time-resolved photoelectron spectroscopy (TRPES) on a fs-timescale. Theoret-
ically, starting in the second excited state after vertical excitation we simulated
the relaxation of the system using the surface-hopping approach, revealing a
fast deactivation in less than 10 fs into the first excited state, which is stable
with respect to electronic relaxation on the observed timescale. The initial
deactivation is followed by a change in geometry to a structure with a par-
tially twisted dimethylamino group out of the molecular plane (pTICT) on
the timescale of ∼ 100 fs. Twisting of the amino group is accompanied by
a drastically decreasing transition dipole moment for the ionisation process
due to diminishing Franck-Condon factors. Hence the structural change of
the molecule can directly be linked to the photoelectron intensity, which is in
perfect agreement with our TRPES experiments showing a matching temporal
intensity evolution. In our TRPES using a probe wavelength of 794 nm, a
quasi-constant non-zero intensity was also observed. Although the underly-
ing complex multi-photon process is theoretically not accessible, we observed
that in our simulations 4-DMABE is energetically ionisable at all times from
its excited states. This suggests the involvement of intermediate states in the
multiphoton ionisation, making the process more feasible in comparison to
single-photon ionisation, where the small Franck-Condon factors inhibit effec-
tive ionisation.

Overall we were able to bring to light the deactivation pathway after exci-
tation and resolve the role of twisted structures in the characteristic ionisation
properties of 4-DMABE. While a prolonged dispute was found in the literature
whether after excitation the molecular structure remains planar or changes to
a perpendicularly twisted geometry in 4-DMABE and related molecules, in
this case we found that the truth may lie between the two extremes.
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Chapter 7

Discussion & Conclusion

The work presented in this thesis aimed at the understanding of electron de-
tachment processes and the theoretical description of the underlying coupled
electron-nuclear dynamics. This very broad topic was divided into two aspects:
firstly the development of a new quantum-classical dynamics methodology for
the description of ultrafast autodetachment in molecular anions, amounting to
the biggest part of this thesis in the form of three publications describing the
method and the implementation of the HORTENSIA program package, vali-
dated by three different example molecules. And secondly the investigation of
bound-state nonadiabatic dynamics after excitation of neutral molecules and
its effect on the experimentally detected photoelectron signal in a case study
on the 4-(dimethylamino)benzethyne (4-DMABE) molecule.

The development of a novel methodology for the simulation of autodetach-
ment dynamics was the main achievement of this thesis. Thereby, for the first
time, the problem of describing the time- and angle-resolved ejection of elec-
trons induced by vibrational motion was addressed on a molecular level beyond
a model-system based approach. By extending the quantum-classical surface-
hopping dynamics method to a discretized continuum, electron detachment
is described as nonadiabatic transitions to the ionized electronic states. The
continuum electronic wavefunctions are approximated by orthogonalized plane
waves, from which the ionized molecular system states are constructed as an
antisymmetrized product with the bound neutral core wavefunction. Analyt-
ical expressions for the arising coupling terms between involved states were
derived, thereby introducing sensible approximations to keep computational
efforts manageable. These couplings are evaluated from results of quantum-
chemical calculations and the electronic degrees of freedom propagated by nu-
merical integration of the electronic Schrödinger equation, while the nuclear de-
grees of freedom are propagated classically according to Newton’s equations of
motion. This newly-developed methodology was implemented into the HORT-
ENSIA program package (written in the Python programming language and
publicly available in the respective GitHub repository).

To validate the developed methodology, the dynamics of several example
molecules was simulated and compared with experimental results:

Firstly the vinylidene anion was studied, in which (with an electron detach-
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ment energy of only 0.4866 eV) vibrational excitation of the electronic ground
state can already be enough to overcome the detachment threshold. Since it is
readily ionized, experimentally, the vinylidene anion was found to be a good
starting molecule in the investigation of the prototypical 1,2-hydrogen shifting
reaction from neutral vinylidene to acetylene.82 From that the question natu-
rally arises if the autodetachment and isomerization process are connected or
facilitated by one another. By including the electronic continuum in theoretical
consideration, this was studied in the frame of the presented autodetachment
dynamics approach. Starting the simulation in the electronic ground state
vibrationally excited with one quantum in the C-C stretching and C-H an-
tisymmetric stretching mode made electron ejection energetically accessible,
resulting in nonadiabatic transitions into the continuum via autodetachment.
Indeed it was found that isomerization and autodetachment are closely inter-
twined. The initially excited C-C stretching mode as well as the CH2 rocking
mode, into which vibrational energy is rapidly redistributed, were identified as
the main drivers to T-like geometries with elongated C-C bonding distances.
At these structures, which can be viewed as transition states in the vinylidene-
acetylene isomerization, the vertical detachment energy (VDE) is significantly
reduced, leading to a large amount of detachment events in the dynamics simu-
lation. The angular distribution of ejected electrons, which is explicitly yielded
as a result of the discretized description of continuum states, showed a charac-
teristic, anisotropic pattern with most electrons ejected in the molecular plane,
roughly along the C-H bonds as well as the gap originating from an increasing
C-C-H angle during the formation of T-like structures. From these results it
could be concluded that already in the anionic species (with energetically high
enough vibrational excitation) geometric regions are reached that directly lead
to isomerization, accompanied by electron ejection on a timescale of only a few
picoseconds.

With such a small detachment energy, no electronically excited, bound state
is supported in the vinylidene anion. Contrary to that, the 2-cyanopyrrolide
anion supports an s-type dipole-bound state (DBS) 29.8 meV below the elec-
tron detachment threshold, which is prone to autodetachment after vibrational
excitation. This called for the extension of the autodetachment dynamics sim-
ulation methodology to include electronically excited states. Experimentally,
photoelectron spectra are found for the resonant excitation into vibrationally
excited states of the DBS.84 The coupled electron-nuclear dynamics was sim-
ulated after creation of initial conditions for the excitation of a specific mode
in the electronically excited state. Electron ejection was found to occur in a p-
shaped pattern along the axis of the molecules dipole moment with a maximum
electron signal at the total excess energy of the molecule upon vibrational exci-
tation, in agreement with the propensity rules for vibrational autodetachment
with a vibrational quantum reduced by one. An exponential time-constant
of ∼500 fs is found for this process. The 2-cyanopyrrolide anion showed no
population transfer back to the ground state on the simulated timescale, re-
sulting in autodetachment as the only available deactivation pathway of the
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dipole-bound state.

However, in the investigation of the last autoionizing system in this thesis,
regarding the 2-nitropropane anion, which also supports a dipole-bound state,
it was found that the energy separation between the ground and first excited
state becomes small when the molecule comes close to the neutral equilibrium
geometry, leading to relevant nonadiabatic coupling between both bound an-
ion states. The simulation was carried out after excitation of the energetically
lowest-lying C-H stretching mode in the electronic ground state. By redis-
tributing the vibrational excess energy in the initially excited mode rapidly
throughout the molecule, geometric changes towards the neutral equilibrium
structure were possible. Specifically, this means that shorter N-O distances
and a planar NO2 group were assumed, which correspond to regions on the
potential energy surface that are characterized by both small excitation ener-
gies and VDEs leading to strong coupling of the anionic ground state to all
other electronic states. A rapid decay in the anionic bound population was
observed on the timescale of ∼1100 fs, with the detachment efficiency strongly
facilitated by the transiently populated dipole-bound state.

Apart from autodetachment, the aim of this thesis was also to extend the
understanding of the influence of molecular motion on photoionization signals
(that is, the time-dependent decrease in photoelectron signal after electronic
excitation). Therefore in the 4-DMABE molecule, surface-hopping dynamics
simulations were carried out after vertical excitation into the second excited
state in the manifold of the ground and three lowest excited electronic states.
Induced by rapid transition into the first excited state in under 10 fs, still in the
vicinity of the equilibrium ground state geometry, the vibrational excess energy
predominantly lead to partial twisting of the dimethylamino group (pTICT
state) on a timescale of ∼100 fs. On a similar timescale as the theoretically
predicted conformeric geometry change, a decreasing experimental photoelec-
tron signal could be observed. This correlation could be explained by the di-
minishing Franck-Condon overlap of the pTICT state with the ionized species,
effectively closing the ionization channel to the cationic ground state. In con-
trast to the isoelectronic 4-(dimethylamino)benzonitrile (4-DMABN) showing
dual fluorescence, no geometric change to a structure with the amino group
twisted by 90 degrees (TICT state), which was found to be responsible for
the second fluorescence band, was observed. The methodology with which the
experimental photoelectron spectrum was understood and explained theoreti-
cally was based on geometric attribution of the trajectory ensemble to known
local minima of the first excited state (termed locally-excited (LE), πσ∗ (with
a bent in the C-C triple bond), pTICT and TICT state), validated with static
photoelectron spectra.

Overall it was shown in this thesis that the complex dynamic processes
in molecules after excitation, be it vibrationally or vibronically, call for an
in-depth theoretical description on a molecular level, for which the quantum-
classical surface-hopping approach provides a computationally manageable sim-
ulation scheme. Utilizing this methodology, it was possible to reveal the in-
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fluence of isomerization on electron detachment behavior, in one case through
diminishing photoelectron yield upon twisting of an amino group, in the other
case through increased autodetachment efficiency by 1,2 hydrogen shifting.
Furthermore the role of higher-lying bound states was investigated. It was
shown that in the case of the 4-DMABE molecule, excitation into the S2 state
solely lead to rapid transition into the first excited state (with the S2 and S3

state not involved in the dynamics after that), by which enough vibrational en-
ergy was available to overcome the isomerization barrier. In the nitropropane
anion it was revealed how the large coupling of the electronic ground state
with the energetically close-lying dipole-bound state (around the neutral equi-
librium) can lead to transient population of the excited state, which acts as
a mediator in the subsequent autodetachment resulting in an ultrashort life-
time of the nitropropane anion after vibrational excitation. It was therefore
shown that the utilized surface-hopping-based approaches are able to provide a
molecular view of the dynamic processes upon excitation, and that moreover,
the newly-developed autodetachment dynamics methodology is able to pro-
vide the time-resolved electron kinetic energy distribution, where the angular
distribution of electron ejection is explicitly described.

In addition to photochemical findings, the implementation of the dynamics
methodology into the openly available HORTENSIA program package allows
for easy conduct of future studies on molecular anion dynamics. It contains
the numerical implementation of the theory presented in chapters 3 to 5. To
perform quantum-chemical calculations, HORTENSIA provides an interface
to the Gaussian09174, Gaussian16192 and QChem193 program packages and
calculations can be carried out using arbitrary DFT functionals and basis sets.
The user is able to easily generate initial ensemble conditions as described
in detail in chapter 4 using the implemented graphical user interface (GUI),
and to quickly analyze the results of dynamics simulations with respect to
common quantities (such as electron kinetic energies or geometric parameters
at hopping instances) using the aforementioned GUI.

In the future, two possible extensions to the methodology are imaginable:
firstly, an implementation for the ionization of neutral molecules. This poses
significant challenges: Since the molecular core in these cases is a cation, the
continuum functions cannot be approximated with plane waves anymore and
different approximation scheme need to be developed and implemented. Sec-
ondly, laser field coupling could be implemented to better account for exper-
imental conditions and preparations. On the one hand this would include
excitation of electronically-excited (bound) states from the ground state (such
as done experimentally in the 2-cyanopyrrolide example in chapter 4) and on
the other hand direct photodetachment, as compared to only include autode-
tachment phenomena.



Chapter 8

Summary

In this thesis, theoretical approaches for the simulation of electron detach-
ment processes in molecules following vibrational or electronic excitation are
developed and applied. These approaches are based on the quantum-classical
surface-hopping methodology, in which nuclear motion is treated classically as
an ensemble of trajectories in the potential of quantum-mechanically described
electronic degrees of freedom.

The main focus of this thesis lies on the description of autodetachment
processes on the femto- to picosecond timescale. The central idea of the newly
developed methodology, which is the main achievement of this thesis, is to
extend the surface-hopping approach to the anionic detachment continuum,
thereby allowing for autodetachment to be described as a nonadiabatic tran-
sition. The detachment continuum is handled in a discretized manner and the
electronic wavefunctions are constructed as an antisymmetrized product of the
neutral "core" wavefunction and plane waves, employing the Fibonacci sphere
algorithm to evenly distribute k-vectors in a given energy range. Furthermore,
these plane waves are orthogonalized with respect to anionic molecular orbitals.
The nonadiabatic coupling between bound anionic and discretized continuum
states is evaluated, where it is shown that the arising terms can be converted
to essentially yield Fourier transforms of Dyson orbitals between the respective
bound anionic and neutral states, which can be solved analytically. Since the
resulting wavefunctions are only approximations to the actual eigenfunctions
of the anionic Hamiltonian, non-vanishing diabatic coupling terms also arise,
for which approximative solutions are derived.

As an example, the autodetachment dynamics of the vinylidene anion
(CCH−2 ), the neutral being a high-energy isomer of acetylene, is simulated after
vibrational excitation of the C-C stretching and C-H antisymmetric stretching
mode. A characteristic geometric deformation to T-like structures resulting
in anisotropic electron-ejection can be observed on the timescale of a few pi-
coseconds, enabling the linking between autodetachment and the isomerization
from vinylidene to acetylene.

Moreover, the developed methodology has been implemented in a program
package called HORTENSIA (Hopping real-time trajectories for electron-ejec-
tion by nonadiabatic self-ionization in anions), developed as a part of this
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thesis. This open-source Python program package provides, in addition to the
implementation of the described methodology, an interface to commercially
available quantum-chemistry programs, with which the bound state wavefunc-
tions as well as two-electron integrals between atomic orbital basis functions
are calculated. From this data all coupling terms are evaluated, followed by
the numerical integration of the electronic Schrödinger equation to yield the
time-dependent electronic state coefficients, from which hopping probabilities
are computed.

The methodology is developed further to include electronically excited
bound anionic states and applied to the autodetachment dynamics of the 2-
cyanopyrrolide anion. The simulation is conducted starting in a vibrationally
excited state of the first electronically excited dipole-bound state, resulting
in a lifetime of ∼410 fs with a characteristic electron kinetic energy distribu-
tion around the maximum excess energy of the system. On this timescale it is
shown that relaxation into the electronic ground state is not a probable process
because of the large energy gap between the states and thus autodetachment
is the only feasible deactivation mechanism on the simulated timescale.

As an example for (autodetaching) molecular anions where bound states
are strongly coupled, the 1-nitropropane anion is studied. Here the simulation
is conducted beginning with vibrational excitation of the energetically lowest-
lying C-H stretching mode in the electronic ground state, also including the
first excited dipole-bound state in the dynamics. In this molecule the ener-
getic separation between the electronic states is small at geometries close to
the neutral equilibrium (reduced N-O distances and planar NO2 group), re-
sulting in considerable coupling between the two bound states. Consequently,
the dipole-bound state is transiently populated and acts as a mediator for
autodetachment on the timescale of ∼1100 fs.

To extend the understanding of ionization processes even further, the influ-
ence of ultrafast dynamics on photoionization signals is studied as well. This is
presented in a combined theoretical and experimental time-resolved study on
the 4-(dimethylamino)benzethyne molecule using photoelectron spectroscopy.
The experimental signal shows an ultrafast decay, which is explained by char-
acteristic geometric changes evident in the theoretical findings. In contrast
to the previous studies, only the bound electronic states are considered in a
surface-hopping simulation beginning in the vertically excited S2 state, which
readily deactivates into the S1 state in less than 10 fs. The additional vibra-
tional energy gained upon relaxation suffices to reach structures with a partially
twisted dimethylamino group ("partially twisted intramolecular charge trans-
fer" or pTICT state). The assumption of a pTICT state is accompanied by a
severe decrease in Franck-Condon factors to the cationic groundstate, explain-
ing the loss of ionization efficiency. Therefore population of the pTICT state
is identified as the cause of the experimental decay in photoelectron intensity
on the similar timescale of 100 fs.

Overall the presented surface-hopping based methods are shown to be valu-
able approaches in the understanding of electron detachment processes at a
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molecular level, enabling the analysis of ultrafast changes in geometries and
electronic configurations. This provides a versatile means to interpret experi-
mental data and guide future experiments based on theoretical predictions.
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Chapter 9

Zusammenfassung

Im Rahmen dieser Arbeit werden theoretische Verfahren zur Simulation von
molekularen Ionisierungsprozessen nach elektronischer oder Schwingungsanre-
gung entwickelt und angewendet. Diese Verfahren basieren auf der quanten-
klassischen Surface-Hopping-Methode, in welcher die Kernbewegung durch ein
Ensemble klassischer Trajektorien im Potenzial quantenmechanisch beschrie-
bener Elektronen behandelt wird.

Der Schwerpunkt dieser Dissertation liegt auf der Beschreibung von Autoio-
nisationsprozessen auf der Zeitskala von Femto- bis Pikosekunden. Die Haupt-
leistung der Arbeit besteht in der Neuentwicklung einer Simulationsmethode,
deren grundlegende Idee die Erweiterung des Surface-Hopping-Ansatzes um
das anionische Ionisationskontinuum ist, was die Beschreibung der Autoio-
nisierung als nicht-adiabatischen Prozess erlaubt. Das Ionisationskontinuum
wird diskretisiert und die elektronischen Wellenfunktionen werden als antisym-
metrisiertes Produkt aus neutraler Wellenfunktion und ebenen Wellen kon-
struiert, wobei die k-Vektoren letzterer gleichmäßig mithilfe des Fibonacci-
Algorithmus in einem gegebenen Energiebereich, d.h. auf einer Kugelober-
fläche gleicher k-Länge, verteilt werden. Darüber hinaus werden diese ebe-
nen Wellen in Bezug auf die anionischen Molekülorbitale orthogonalisiert. Die
nicht-adiabatische Kopplung zwischen gebundenen Anionen- und diskretisier-
ten Kontinuumszuständen wird abgeleitet, wobei gezeigt werden kann, dass
die auftauchenden Terme dergestalt umformuliert werden können, dass letzt-
lich Fourier-Transformierte der Dyson-Orbitale zwischen den entsprechenden
gebundenen Anionen- und neutralen Zuständen bleiben, welche analytisch be-
rechnet werden können. Da die resultierenden Wellenfunktionen nur Näherun-
gen der tatsächlichen Eigenfunktionen des anionischen Hamiltonoperators sind,
entstehen diabatische Kopplungsterme, für welche näherungsweise Lösungen
hergeleitet werden.

Beispielhaft wurde die Autodetachmentdynamik des Anions des höherener-
getischen Isomers von Ethin, des Vinyliden-Anions (CCH−2 ), untersucht, be-
ginnend mit Anfangsbedingungen mit angeregter C-C- und antisymmetischer
C-H-Streckschwingung. Eine charakteristische Geometrieänderung zu T-artigen
Strukturen mit anisotropem Elektronensignal kann auf der Zeitskala von we-
nigen Pikosekunden beobachtet werden, was klar die räumliche und zeitliche
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Verbindung zwischen Autodetachment und Isomerisierung von Vinyliden zu
Ethin ermöglicht.

Des Weiteren wurde diese neuentwickelte Methode in einem Programmpa-
ket mit dem Namen HORTENSIA (Hopping real-time trajectories for electron-
ejection by nonadiabatic self-ionization in anions) implementiert, welches auch
als Teil dieser Promotion entwickelt wurde. Dieses Python-Programmpaket,
welches quelloffen verfügbar ist, stellt, neben der Implementierung der beschrie-
benen Methodik, ein Interface zu kommerziell erhältlichen Quantenchemie-
Programmen zur Verfügung, welche die Berechnung der Wellenfunktionen ge-
bundener Zustände sowie der Zwei-Elektronen-Integrale zwischen Atomorbital-
Basisfunktionen übernehmen. Aus den so erhaltenen Daten werden alle Kopp-
lungsterme berechnet, gefolgt von der numerischen Integration der elektroni-
schen Schrödingergleichung. Die erhaltenen zeitabhängigen Zustandkoeffizien-
ten ergeben letztlich Übergangswahrscheinlichkeiten zu allen anderen elektro-
nischen Zuständen.

Darüber hinaus wird in dieser Arbeit die Methodik auf gebundene, elek-
tronisch angeregte Zustände erweitert und am Beispiel des 2-Cyanopyrrolid-
Anions präsentiert. Die Simulation ergibt eine Lebensdauer von ∼410 fs für
einen spezifischen angeregten Schwingungszustand des ersten elektronisch an-
geregten, dipol-gebundenen Zustands, mit einer charakteristischen Verteilung
der kinetischen Elektronenenergien um die maximale Überschussenergie des
Systems. Es kann gezeigt werden, dass auf dieser Zeitskala keine Relaxation in
den elektronischen Grundzustand stattfindet, bedingt durch die große Energie-
differenz zwischen beiden Zuständen, und damit Autodetachment der einzige
zugängliche Deaktivierungsmechanismus auf der simulierten Zeitskala ist.

Zusätzlich wird als Beispiel eines (Autodetachment zeigenden) Moleküls
mit stark gekoppelten elektronisch gebundenen Zuständen das 1-Nitropropan-
Anion untersucht. Hierbei wird, beginnend im elektronischen Grundzustand
mit Schwingungsanregung der energetisch niedrigsten C-H-Streckschwingung,
die Simulation unter Berücksichtigung des ersten angeregten, dipol-gebundenen
Zustands durchgeführt. Bei diesem Molekül ist bei Strukturen nahe der neu-
tralen Gleichgewichtsstruktur (verringerte N-O-Bindungsabstände und planare
NO2-Gruppe) eine stark verringerte Energiedifferenz der elektronischen Zu-
stände zu beobachten. Dies führt zu großen Kopplungen zwischen beiden Zu-
ständen, wodurch der nur transient populierte dipol-gebundene Zustand eine
Rolle als Vermittler des Autodetachments auf einer Zeitskala von ∼1100 fs
einnimmt.

Um noch weiter zum Verständnis von Ionisationsprozessen beizutragen wird
zudem der Einfluss ultraschneller Dynamik auf Photoionisierungssignale unter-
sucht. Dies wird im Rahmen der theoretisch-experimentellen Gemeinschafts-
studie des 4-(Dimethylamino)benzethin-Moleküls auf Basis von Photoelektro-
nenspektroskopie präsentiert. Das experimentelle Signal zeigt einen schnellen
Intensitätsabfall, was durch theoretische Simulationen auf charakteristische
Geometrieveränderungen des Systems zurückgeführt werden kann. Im Gegen-
satz zu den vorherigen Molekülen wurden nur die gebundenen elektronischen
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Zustände in der Surface-Hopping-Simulation berücksichtigt, die nach vertikaler
Anregung in den S2-Zustand durchgeführt wurde, welcher zunächst in weniger
als 10 fs in den S1-Zustand relaxiert. Die durch diesen Übergang zusätzliche
vorhandene Schwingungsenergie ist ausreichend, um zu einer Struktur mit teil-
verdrehter Dimethylamino-Gruppe (ein sogenannter "partially twisted intra-
molecular charge transfer oder pTICT-Zustand) zu gelangen. Im Zuge dieser
Geometrieveränderung werden die Franck-Condon-Faktoren zum kationischen
Grundzustand drastisch verringert, was die Verringerung der Ionisierungseffizi-
enz erklärt. Damit wird die Populierung des pTICT-Zustands klar als Ursache
des verschwindenden Photoelektronensignals auf der gleichen Zeitskala von
100 fs identifiziert.

Zusammengefasst konnte in dieser Arbeit gezeigt werden, dass die vor-
gestellten Surface-Hopping-basierten Methoden wertvolle Ansätze zum Ver-
ständnis von Ionisierungs- und Elektronendetachmentprozessen auf molekula-
rer Ebene liefern. Dies erlaubt die Untersuchung von ultraschnellen Änderun-
gen in Geometrie und elektronischer Konfiguration. Hierdurch wird die Mög-
lichkeit eröffnet, experimentelle Daten verlässlich zu interpretieren und Anstö-
ße für zukünftige Experimente auf Basis theoretischer Vorhersagen zu geben.
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