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Signaling network analysis
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Introduction: Pro-thrombotic events are one of the prevalent causes of

intensive care unit (ICU) admissions among COVID-19 patients, although the

signaling events in the stimulated platelets are still unclear.

Methods: We conducted a comparative analysis of platelet transcriptome

data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate

these mechanisms. To surpass previous analyses, we constructed models of

involved networks and control cascades by integrating a global human

signaling network with transcriptome data. We investigated the control of

platelet hyperactivation and the specific proteins involved.

Results: Our study revealed that control of the platelet network in ICU

patients is significantly higher than in non-ICU patients. Non-ICU patients

require control over fewer proteins for managing platelet hyperactivity

compared to ICU patients. Identification of indispensable proteins

highlighted key subnetworks, that are targetable for system control in

COVID-19-related platelet hyperactivity. We scrutinized FDA-approved

drugs targeting indispensable proteins and identified fostamatinib as a

potent candidate for preventing thrombosis in COVID-19 patients.

Discussion: Our findings shed light on how SARS-CoV-2 efficiently affects

host platelets by targeting indispensable and critical proteins involved in the

control of platelet activity. We evaluated several drugs for specific control of

platelet hyperactivity in ICU patients suffering from platelet hyperactivation.

The focus of our approach is repurposing existing drugs for optimal control

over the signaling network responsible for platelet hyperactivity in COVID-19
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patients. Our study offers specific pharmacological recommendations, with

drug prioritization tailored to the distinct network states observed in each

patient condition. Interactive networks and detailed results can be accessed

at https://fostamatinib.bioinfo-wuerz.eu/.
KEYWORDS

signaling network, controllability, platelet, SARS-CoV-2, fostamatinib, drug
repurposing, COVID-19
1 Introduction

COVID-19 caused by SARS-CoV-2 has caused more than 769

million infections and 6.9 million death cases until August 2023, as

per World Health Organization (WHO). It is well known that

SARS-CoV-2 can cause pneumonia and acute respiratory distress

syndrome (ARDS), as well as several extrapulmonary

manifestations. Recent reports showed that it can also lead to

multiorgan failure and thrombosis, including myocardial

infarction and ischemic stroke (Connors & Levy, 2020). In

addition, while only 1.3% of non-COVID-19 intensive care unit

(ICU) patients develop thrombotic issues, the cumulative incidence

of thrombotic complications for ICU admitted COVID-19 patients

was 49% (1). According to large-scale studies, on admission, 18.8%

to 36.2% of patients (2, 3) exhibit thrombocytopenia. These studies

show the importance of platelet studies in COVID-19 patients (4),

especially in patients admitted to the intensive care unit (ICU) who

are at the highest risk of thrombosis. Platelets have an important

role in maintaining primary hemostasis and blood flow within the

vessel. Following the injury of a vessel, the platelets circulating in

the blood become activated, resulting in adhesion in the exposed

extracellular matrix and the formation and consolidation of a

thrombus. Following adhesion, signal transduction leads to

platelet activation, cytoskeletal changes (and change into dendritic

shape), and the activation of integrins that support adhesion and

aggregation of new platelets (5). During infection with a virus,

activated platelets adhere to the sub-endothelium, and their

hyperactivity causes thrombus formation, which can trigger

arterial ischemia and even pulmonary embolisms. Like many

other viruses such as the influenza virus (H1N1), human

cytomegalovirus (HCMV) (6), immunodeficiency virus (HIV) (7),

dengue virus (8, 9), hepatitis C virus (HCV) (10) and Ebola (11) and

many other viruses (12), SARS-CoV-2 (13–16) can also directly lead

to platelet hyperactivity.

Zhang et al. (2020) showed that platelets from COVID-19

patients express ACE2 and TMPRSS2, and the Spike protein of

SARS-CoV-2 can bind to platelet ACE2 and increase platelet

activation (13). In addition, Shen et al. (2021) revealed platelets

might take up SARS-CoV-2 mRNA independent of the receptor of

SARS-CoV-2, ACE2 (17). Further studies showed hyperactivity of

platelets in COVID-19 infection (18, 19), although other studies
02
published contradicting results with hypoactive platelets (20).

Manne et al. (2020) compared RNA-seq data from COVID-19

patients and healthy individuals, revealing differences in gene

expression related to protein ubiquitination, antigen presentation,

and mitochondrial function. COVID-19 patients had increased P-

selectin expression in resting platelets and upon activation. Platelet-

neutrophil, -monocyte, and -T-cell aggregates were significantly

higher in COVID-19 patients, along with increased platelet

aggregation and spreading of fibrinogen and collagen. These

changes were linked to heightened MAPK pathway activation and

thromboxane generation (19). Recently, Weiss et al. (2023) showed

platelet hypoactivity caused by reduced GPIIb/IIIa activation but

still procoagulant and more adhesive platelet function in COVID-

19 (21), while Denorme et al. observed less procoagulant platelet

formation in COVID‐19 patients (22). Despite the recent advances,

it is not known to a full extent how the signaling in platelets

operates during the SARS-CoV-2 infection. Which proteins in

platelets can be used to control cellular output during SARS-

CoV-2 infection or platelet hyperactivation under septic

conditions in general? To answer these questions, we first

modeled context-based signaling networks of platelets of COVID-

19 non-ICU and ICU patients, then applied control theory (23) to

analyze the networks. In control theory, the driver nodes (genes/

proteins) are defined as the minimum number of inputs that can

steer the system from any initial state to any final state in finite time

(24). We further used the node classification scheme proposed by

Vinayagam et al. (2016), i.e. indispensable, neutral, and dispensable

(25), and Jia et al. (2013), i.e. critical, intermittent, and redundant

(26) to classify the driver proteins in platelet networks.

Our methodology is focused on identifying the most suitable

pharmaceutical intervention for specific severe network

dysregulation, such as platelet hyperactivity in sepsis, with

particular emphasis on the context of COVID-19. The key

question for medical professionals, particularly in intensive care

units, is how to effectively treat the patient with the available drugs.

To answer this key point, we first reanalyzed the RNA-seq data (19)

of platelets isolated from healthy donors and SARS-CoV-2–infected

non-ICU and ICU patients. We further reconstructed the context-

specific signaling network of ICU and non-ICU platelets. By

applying the controllability theory, we classified the network

nodes and further connected the important nodes with drug
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targets present in the DrugBank database (27). Based on our

network analysis, we repurpose fostamatinib as a highly potent

drug that can be used to control platelet hyperactivity in COVID-19

patients. Overall, our study contributes to the understanding of

platelet biology during COVID-19.
2 Materials and methods

2.1 Data collection and differential
expression analysis

We reanalyzed raw original RNA-seq data [PRJNA634489;

published by Manne et al.2020 (19)] of platelets isolated from

healthy donors, SARS-CoV-2–infected non-ICU and ICU

patients. The quality of Illumina reads was assessed by using

FastQC (28). The quality-filtered reads were mapped against the

human genome reference (GRCh38.p19) using STAR (29).

FeatureCounts was used for assigning sequence reads to genomic

features (30). Following standard normalization procedures and

reducing batch effects, the BioConductor package DESeq2 (31) was

used to identify genes significantly differentially expressed between

the three conditions (healthy donors, non-ICU COVID-19 patients,

ICU COVID-19 patients). Genes with fold change ≥ |+/−1.5| and

padj< 0.05 were considered significantly differentially expressed.
2.2 Platelet gene annotation

We used Gene Ontology Resource (32) to annotate the known

platelet genes. GO categories platelet activation (GO:0030168), negative

regulation of platelet activation (GO:0010544), positive regulation of

platelet activation (GO:0010572), platelet aggregation (GO:0070527),

negative regulation of platelet aggregation (GO:0090331), positive

regulation of platelet aggregation (GO:1901731), platelet

degranulation (GO:0002576), blood coagulation (GO:0007596),

negative regulation of blood coagulation (GO:0030195) and positive

regulation of blood coagulation (GO:0030194) were used to annotate

differentially expressed genes. For simplification, we termed proteins

coded by these genes as Platelet Gene Set (PGS).
2.3 Signaling network reconstructions

To model the active signaling networks for non-ICU and ICU

patient platelets, we used SPAGI (33) and ViralLink (34) workflows.

In brief, we used the log2 fold change from healthy donors versus

SARS-CoV-2–infected non-ICU and from healthy donors versus

SARS-CoV-2–infected ICU patients in both the workflows to

construct the signaling networks which we named as non-ICU-s

and ICU-s (for SPAGI networks) and non-ICU-v and ICU-v (for

ViralLink networks) respectively. SPAGI uses its own classification

of signaling network components to identify the signaling

subnetworks that begin from cellular receptors by integrating

directed protein-protein interaction network and gene expression

data (33). ViralLink reconstructs the signaling pathways starting
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from intracellular SARS-CoV-2 proteins, leading to the host cell

receptor, signaling components, and downstream differentially

expressed genes (34). We wanted to add repurposed drugs at the

top layer of the reconstructed signaling network after controllability

analysis. Therefore, we removed the virus protein layer from the

ViralLink-based non-ICU-v and ICU-v networks and added drugs.

For further algorithmic details of the applied network building

workflows, we recommend the readers to consider references (33)

and (34).
2.4 Integrated network

We combined the non-ICU-s and non-ICU-v to construct the

integrated ‘non-ICU-sv’ network. After the merging, we deleted five

nodes (TYRO3, CLK3, CLK2, ATR, and RFX3) that were

disconnected from the largest component of the integrated

network. Similarly, we integrated ICU-s and ICU-v to construct

the integrated ‘ICU-sv’ network. Merge function of Cytoscape (35)

was used for the network integration. We noted that heparanase

(HPSE) was absent in our integrated network, although the high

activity of HPSE (36) has been reported in platelets during sepsis

(37) and in COVID-19 patients (36). To include HPSE in both the

integrated networks, we added three additional literature-curated

activation interactions that connects EGR1, RELA (38), and NFKB1

(39) to HPSE.
2.5 Controllability analysis and
node classification

To identify the driver nodes in the reconstructed active

networks, we implemented the concept of controllability and used

Minimum Dominating Set (MDS) (40, 41), a graph theory-based

approach for network analysis (35, 42). Non-linear systems, such as

complex biological networks, can be efficiently managed using the

MDS method (43). Since, for a given biological network, the MDS is

not unique, we utilized the node classification schemes

recommended by Vinayagam et al. (2016), i.e., indispensable,

neutral, and dispensable (25) and Jia et al. (2013), i.e., critical,

intermittent, and redundant (26) to identify the important driver

nodes. Since the indispensable nodes are evolutionary conserved,

essential, and act as key players for healthy to disease transition

(25), we further checked the network for indispensable proteins,

which are first to third downstream neighbors of critical proteins

and show significant changes in their expression in the

corresponding condition and are drug targets. We filtered

indispensable nodes down to these nodes and named them filt-ind.
2.6 Druggable network node identification

Food and Drug Administration (FDA) approved drugs, and

their target information was collected from the DrugBank database

(27). Thromboinflammation targeting drugs and their target

information were collected from a recent review (44). We further
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examined the collected drug’s interaction with the proteins that

have independently been classified as indispensable including the

filt-ind nodes in non-ICU-sv and ICU-sv networks.
2.7 High-scoring path calculations

The Transcripts Per Kilobase Million (TPM) values for all genes

were mapped onto the constructed non-ICU-sv and ICU-sv

networks in the form of node and edge weights.

The node weight Ni of gene I was given as

Ni DHð Þ = o
TPMi Dð Þ

n + 1

o TPMi Hð Þ
n + 1

(1)

where TPMi(D) represents the TPM value of gene i in condition

D (disease), n represents the number of samples, and TPMi(H)

represents the TPM value of gene i in condition H (healthy).

The edge weightWij between gene i and gene j was computed as

Wij DHð Þ = Inverse
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni � Nj

q
(2)

A lower edge weight is indicative of an active edge, wherein the

interacting nodes have high relative fold changes in two conditions.

The calculated weights were used to convert non-ICU-sv and

ICU-sv into weighted networks. Further, filt-ind proteins, which

were identified as known drugs modulated proteins, were kept as

‘source’ nodes, and along with classical platelet markers,

upregulated platelet proteins PGS were kept as ‘target’ nodes. To

identify the meaningful control space, we attempted to connect each

source with all the target nodes using the PathLinker (45)

application of Cytoscape (35). For this PathLinker analysis, the

parameter (k), which indicates the number of paths, was set to 221

for ICU and 70 for non-ICU networks (the number of filt-ind

multiplied by the number of upregulated platelet proteins in the

network). Additionally, for the ICU network, we computed the

lowest-cost paths between each source and target separately by

setting k=1 and selecting the PathLinker additive edge weights

option. Here, the path cost indicates the sum of edge weights.
2.8 Experimental validation:
platelet preparation

Wild type C57BL/6 mice were euthanized under isoflurane

anesthesia and then immediately bled into heparin (20 U/ml,

Ratiopharm), and blood was washed twice using Tyrode-HEPES

buffer. Platelet-rich plasma (PRP) was supplemented with 2 ml/ml

apyrase (0.02 U/ml; A6410, Sigma-Aldrich) and 5 ml/ml PGI2 (0.1

mg/ml; P6188, Sigma-Aldrich) and platelets were pelleted by

centrifugation for 5 min at 2800 g, washed once with Tyrode-

HEPES buffer (134 mMNaCl, 0.34 mMNa2HPO4, 2.9 mM KCl, 12

mM NaHCO3, 5 mM HEPES, 5 mM glucose, 0.35% BSA, pH 7.4)

containing 2 ml/ml apyrase and allowed to rest for 30 min prior

to experiments.
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2.9 Experimental
validation: immunoblotting

For testing the effect of R406 (active metabolite of fostamatinib)

on platelet signaling, washed platelets adjusted to a concentration of

5 x 108/ml were pre-incubated with 1 µM R406 or 0.1% DMSO in

vitro for 10 minutes. Afterwards, platelets were either left

unstimulated or were incubated with CRP (10 µg/ml) for 90s

under stirring conditions (1200 rpm, 37°C). Samples were

immediately lysed in IP buffer (15 mM TRIS HCl, 155 mM NaCl,

1mM EDTA. 0.005% NaN3, supplemented with 2% NP-40)

containing 1x Halt protease and phosphatase inhibitors for

10 min on ice. Samples were centrifuged for 10 min at 14000 rpm

at 4°C, and the supernatant was kept at -80°C until analysis. For

immunoblotting, samples were mixed with 4x reducing Laemmli

buffer and boiled for 5 min at 95°C. Denatured proteins were

separated by SDS-PAGE and blotted onto PVDF membranes.

Membranes were probed for Syk p-Y525/526 (#2711), SFK p-

Y416 (#6943), and GAPDH (#2118). All antibodies were

purchased from Cell Signaling Technology. Bound antibodies

were detected using horseradish-peroxidase-conjugated secondary

antibodies and enhanced chemiluminescence solution (JM-K820-

500, MoBiTec). Images were acquired with an Amersham Image

680 (GE Healthcare).
3 Results

3.1 Platelet transcriptome profile

SARS-CoV-2 infection dysregulates platelet function, which

contributes to COVID-19 pathophysiology. The significance of

platelets in viral infection–mediated thrombosis has previously

been established (46). Using platelet RNA sequencing, Manne and

colleagues (2020) revealed platelets contribute to thrombosis

formation in SARS-CoV-2 infection (19). However, though this

study provided unique raw data (PRJNA634489), the mechanisms

underlying platelet activation in COVID-19 patients remained

obscure. We used network biology and RNA-Seq integration to

explore platelet signaling in COVID-19 patients. We reanalyzed the

RNA-seq data and found 2,900 genes that were differentially

expressed in non-ICU patients compared to healthy donors. In

comparison, 2,254 genes were differentially expressed in ICU

patients compared to healthy donors. The numbers are very

similar to Manne and colleagues’ original study, and overall, there

was good overlap in analyzed genes in which 3090 and 2256

differentially expressed genes were found in non-ICU and ICU

patients, respectively (details in Supplementary Tables 1–3;

differences were only from normalization and cut-offs, compare

the two methods sections). However, starting from this gene

expression analysis, we did a detailed and new network analysis,

starting from pathway enrichment: among the known annotated

genes in the Gene Ontology (GO) category’ positive regulation of

platelet activation’ (GO:0010572), only ICU patients showed
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significantly higher expression of SELP (P-selectin). In contrast to

the study of Hottz and colleagues (47), increased CD63 expression

was found in non-ICU patients but not in ICU patients. As shown

in Figure 1, compared with healthy controls, COVID-19 patients

showed differential expression of many genes involved in platelet

activation and blood coagulation.

GO analysis of genes uniquely and differentially expressed in

non-ICU or ICU patients identified overrepresentation of NF-

kappaB signaling pathway (GO:0038061) and cell adhesion

(GO:0098609) in both non-ICU and ICU upregulated genes
Frontiers in Immunology 05
(Figure 2). Furthermore, upregulated genes in both conditions

were enriched in protein folding and stability-related processes,

some metabolic processes, several signaling pathways and, more

importantly, immunity-related processes, including MHC class I,

antigen presentation (GO:0002479), several virus responses, and

signaling processes initiated by interferon-b and T cell receptor

(GO:0035456, GO:0050852).

Commonly overrepresented processes in ICU and non-ICU

downregulated gene sets are comparably lower in number and

include processes like phagocytosis (GO:0006909), and cell cycle
FIGURE 1

Key gene expression differences for non-ICU and ICU patients in platelets. Heatmap of RNA-Seq expression z-scores computed for genes classified
under Platelet Gene Set (PGS) that are differentially expressed (p adj< 0.05, |log 2 (foldchange)| ≥ 0.58) between healthy donors (HD) vs. ICU or in
HD vs. non-ICU comparisons. In the right panel, annotations of genes are given. If the genes are classified under the mentioned category, it is
marked with orange color.
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(GO:0051726); and signaling pathways such as MAPK cascade

(GO:0043410 canonical Wnt signaling pathway (GO:0060828).

On the other hand, overrepresentation of positive regulation of

I−kappaB kinase/NF−kappaB signaling (GO:0043123) is specific to

ICU upregulated genes, while the ICU downregulated gene set has a

specific overrepresentation of antigen processing and presentation

of peptide or polysaccharide antigen via MHC class II

(GO:0002504), neutrophil-mediated immunity (GO:0002446),

positive regulation of leukocyte chemotaxis (GO:0002690), and T

cell co-stimulation (GO:0031295). Upregulated genes from non-

ICU patients show a specific overrepresentation of activation of

GTPase activity (GO:0090630), response to cytokine (GO:0034097),

and response to interferon−alpha (GO:0035455, while

downregulation of blood coagulation (GO:0007596), cell adhesion

mediated by integrin (GO:0033627), chemokine−mediated

signaling pathway (GO:0070098), cytokine production

(GO:0001816) , integr in−mediated s ignal ing pathway

(GO:0007229), intracellular signal transduction (GO:0035556),

leptin−mediated signaling pathway (GO:0033210), leukocyte

migration (GO:0050900), small GTPase mediated signal

transduction (GO:0007264), and transforming growth factor-beta

receptor signaling pathway (GO:0007179) are only observed in the

non-ICU patients.
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Looking at the overrepresented GO categories, we have found

processes involved mainly in immune-related processes, including

antigen presentation, NFKB signaling, interferon responses,

responses to virus, phagocytic responses, and neutrophil-mediated

immunity, along with general leukocyte responses, chemokine and

cytokine-mediated signaling pathways. In non-ICU patients, we

even observed an overrepresentation of blood coagulation as a

downregulated process, and in ICU patients, no direct platelet

process was overrepresented; instead, it reflected the platelets’

contribution to the activation of several immune responses from

both innate and adaptive immune cells, which can be the result of

hyperactive platelets. Indeed, similar genes were found in COVID-

19 to induces a hyperactive phenotype in circulating platelets (16).

Moreover similar platelet biomarkers as from our GO analysis were

already associated with coagulation dysfunction (15) and with the

composite outcome of thrombosis or death (14).
3.2 Platelet signaling networks

We created the final directed networks for both ICU and non-

ICU conditions by combining networks from SPAGI and ViralLink.

After final modifications (see details in material and methods), the
FIGURE 2

GO overrepresentation analysis of genes uniquely and differentially expressed in non-ICU or ICU patients. Overrepresented pathways are displayed
in four groups: ICU upregulated and downregulated, and non-ICU upregulated and downregulated.
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ICU final network has 1136 nodes and 7185 edges, while the non-

ICU network consists of 937 nodes and 4672 edges. These two final

networks share 4227 edges and 820 common nodes (Supplementary

Figure 1), including platelet activation genes, such as NFKB1

(nuclear factor kappa B subunit 1), RELA (RELA proto-oncogene,

NF-kB subunit), and HPSE (heparanase). We added edge weights to

both networks to represent the combined regulation of the two

nodes interacting. The edge weights were calculated using the fold

changes of the interacting nodes in each condition (Equations 1 and

2, Supplementary Tables 4, 5). A lower edge weight signifies a

higher regulation (positive or negative) of the interaction (see

details in material and methods).

The ICU network is more connected with ~6 edges per node

compared to the non-ICU network with ~5 edges per node.

Regarding connectivity of individual nodes, the ICU network has

a higher average number of neighbors of 12.338 than the non-ICU

network with 9.823. The characteristic path length, which describes

the shortest path between two nodes, is shorter in ICU, 3.987 than

in non-ICU, 4.114. The number of multi-edge node pairs shows

how often neighboring nodes are linked by more than one edge.

This value is 175 at ICU and only 73 at non-ICU and indicates

topological differences between the two networks (Supplementary

Tables 6, 7).
3.3 Control robustness: non-ICU-sv and
ICU-sv networks

We used two approaches to determine controllability. In the

first approach implemented by Vinayagam et al. (25), we define

MDS (minimum set of driver nodes) as a set of nodes through

which we can achieve control of the whole network. When a node is

eliminated and the size of the Minimum Dominating Set (MDS)

expands, it signifies the node’s indispensability. Its removal would

necessitate exerting control or influence over a greater number of

nodes to bring about state changes (e.g., PRKCD (protein kinase C

delta), RAC1 (Rac family small GTPase 1), or SRC (SRC proto-

oncogene, non-receptor tyrosine kinase) ; see https://

fostamatinib.bioinfo-wuerz.eu/icu.html). If altering the MDS size

is not observed, the node holds a neutral role. However, if the MDS

size diminishes, the node becomes dispensable. An alternative

approach stems from Ravindran et al. (48), employing two

distinct techniques to pinpoint driver nodes (1): the minimum

dominating set (MDS) and (2) the maximum matching approach.

In our study, we also adopted the MDSmethodology, which allowed

us to classify nodes into three categories: critical (ITGB1 (integrin

subunit beta 1), CSNK2A2 (casein kinase 2 alpha 2), IRF3

(interferon regulatory factor 3), encompassing those present in all

conceivable MDS; intermittent, signifying inclusion in some MDS;

and redundant, relating to nodes absent in any MDS configuration.

It is important to note that achieving comprehensive network

control can yield various MDS configurations, as demonstrated by

Liu et al. (49).

In the non-ICU network, 11.63% of nodes were indispensable,

32.87% were neutral, and 55.5% were dispensable. At the same time,

11.52% were critical, 56.46% were intermittent, and 32.02% were
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redundant. We observed no overlap between critical and

indispensable nodes as well as no overlap between redundant and

dispensable nodes (Supplementary Table 8).

In the ICU network, 16.55% of nodes were indispensable,

38.64% were neutral, and 44.81% were dispensable. At the same

time, 10.56% were critical, 56.69% were intermittent, and 32.75%

were redundant. Similarly, no overlap between critical and

indispensable and between redundant and dispensable nodes was

observed (Supplementary Table 9).

Furthermore, we observed differences in the degree (number of

connections) distributions of indispensable nodes compared to

neutral and dispensable nodes in both networks (Supplementary

Figure 2). While neutral and dispensable nodes are heavily

distributed in lower in- and outdegree numbers, indispensable

nodes are distributed over a wider range. We also found that

indispensable nodes have higher in- and outdegrees than neutral

and dispensable nodes on average. A comparison of both networks

showed an increase in the average indegree of dispensable and

indispensable nodes in the ICU network, while neutral nodes

decreased in their indegrees (Supplementary Figures 2A, C). On

the other hand, the average outdegree increased for neutral and

indispensable nodes in the ICU network compared to the non-ICU

network, while dispensable nodes decreased in their outdegree

(Supplementary Figures 2B, D). In summary, indispensable nodes

have the highest number of incoming and outgoing interactions in

both conditions. At the same time, these results show a generally

increasing pattern in the number of interactions for all node types

from non-ICU to ICU (with the two exceptions mentioned above).

Next, we performed the same comparison on nodes classified

according to their controllability (Supplementary Figure 3). Here, as

expected from nodes that are classified as driver nodes in all MDS,

we found that critical nodes have an average indegree of 0 in both

conditions (Supplementary Figures 3A, C). They also have the

lowest number of outgoing interactions compared to the non-

critical nodes (Supplementary Figures 3B, D). On the other hand,

redundant nodes, which do not act as drivers in any of the MDS,

have the highest average in- and outdegree in both networks,

followed by intermittent nodes [same average outdegree as critical

nodes in the non-ICU network (Supplementary Figure 3B)]. We

also observed an increase in average indegree and outdegree of

intermittent and redundant nodes during the transition from the

non-ICU to the ICU network, while critical nodes showed no

change in indegree and a decrease in average outdegree. These

results show the opposing nature of criticality to indispensability in

the way they react to the change in the control space with the non-

ICU to ICU transition.
3.4 Understanding non-ICU to ICU state
transition using network controllability

In the ICU network, the controllability analysis revealed 42

additional critical nodes to the ICU network, while 78 nodes

remained in critical status. Furthermore, during the non-ICU to

ICU transition, 30 nodes lost their critical status, with 8 becoming

intermittent, 6 redundant, and 16 becoming absent in the ICU
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network altogether. Among the 42 new critical nodes in ICU

network, 3 were intermittent, 2 were redundant in non-ICU, and

37 of these new critical nodes were not present in the non-ICU

network. Non-ICU to ICU state transition increases the number of

critical nodes in total; however, since the whole network is bigger

due to the transition, this increase only corresponds to a 0.96%

change. On the other hand, even smaller changes occur in

intermittent and redundant nodes, with a 0.23% and a 0.73%

increase upon transition, respectively (Figure 3A). Regarding

critical nodes between non-ICU and ICU networks this data

indicates a non-significant change in controllability.

On the other hand, the indispensability analysis revealed in the

ICU network 111 new indispensable nodes on top of the 77 nodes

that did not change their indispensable status. With non-ICU to

ICU transition, 32 nodes lost their indispensable status (22

becoming neutral, 4 dispensable, 6 not present). Among 111 new

indispensable nodes, 42 were dispensable, 58 were neutral in the

non-ICU network, and 11 were not present. Independent increase

in the total network size, the transition resulted in a 4.92% increase

in indispensable nodes mainly due to the status shift from

dispensable nodes that decreased by 10.69%. Neutral nodes also

showed a 5.77% increase during non-ICU to ICU transition. Our

data shows a significant increase between the non-ICU and ICU

networks regarding indispensable nodes (Figure 3A).
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We next compared the average control centrality (CC)

measures of critical and indispensable nodes in non-ICU and

ICU networks (Figure 3B). Critical nodes had an average control

centrality of 192.29, while it increased significantly to 283.27 in the

ICU network (p<.001, Mann-Whitney U test). A significant

increase in CC was also observed for indispensable nodes from an

average of 154.97 to 258.64 (p<.001, Mann-Whitney U test).

Moreover, critical nodes showed higher average control

centralities than indispensable nodes in both non-ICU and ICU

networks (p<.001, Mann-Whitney U test).

Although no change in the annotation of critical nodes was

observed upon non-ICU to ICU transition, there is a significant

increase in control centrality of critical nodes. The same is observed

for indispensable nodes, with an additional increase in the number

of indispensable nodes. Control centrality depicts the size of the

controllable downstream subnetwork of a driver node (50). For

critical nodes, although the proportion of drivers of the network did

not change in the ICU state, they had a higher average control

centrality, meaning they control a bigger subsystem, i.e., a similar

number of critical nodes that achieve a higher power of control on

the network. On the other hand, indispensable nodes cover a higher

proportion of the ICU network than non-ICU and their control

centrality increases. Therefore, the ICU network offers a higher

number of targets to obtain a larger control ability on the network.
A

B

FIGURE 3

Controllability in platelets comparing non-ICU and ICU. (A) Change in controllability (left) and dispensability (right) classification in non-ICU to ICU
transition. n: total number of nodes in each network. (B) Comparison of control centrality values of critical (left), indispensable nodes (right) in non-
ICU and ICU conditions. This shows a clear difference in control centrality for important control nodes (e.g. Src, Syk; details in Supplementary
Tables 8, 9) of platelets in the ICU patients. The statistical comparison of each group is made using the Mann-Whitney U test and is adjusted by
Holm correction. Significance levels are given based on adjusted p-values, ****p<= 0.0001.
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Collectively, our data indicates an increase in controllability during

the non-ICU to ICU transition. This is driven by an increase in the

size of the controllable downstream signaling of critical nodes and

by an increase in both the proportion of indispensable nodes in the

network and their control power on the network.
3.5 Drug repurposing

One of the major objectives of our study was to identify the

drugs that can help control platelet hyperactivity in COVID-19

patients. Therefore, we extracted the subnetworks. We looked at the

controllable space of filt-ind nodes, and if some of these nodes

lacked paths to connect with platelet proteins, we discarded these

nodes for further analysis (Full lists of filt-ind nodes are given in

Supplementary Tables 10, 11). This decision was made for

simplification. If a source node (referred to as filt-ind) cannot

establish any connections with a target node (in this case, platelet

proteins) using any possible route, then that starting point node is

unlikely to be highly useful for regulating platelet hyperactivation.

To refine our notion of effective control, we also disregarded

downstream nodes of filt-ind that are not associated with platelet

proteins. Essentially, these downstream nodes not linked to PGS
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don’t require control for our purposes. Subsequently, we removed

filt-ind nodes that don’t have any connections to platelet protein

nodes through any pathways. By implementing these filtering steps,

we managed to decrease the size of our networks and generate

smaller subnetworks for analysis.

We checked whether these subnetworks could be targeted by

FDA-approved drugs in the DrugBank database (27). For the non-

ICU network (Figure 4A), we have found a total of 29 drugs acting

on 15 of the 26 indispensable nodes (9 drugs acting on 5 filt-ind

nodes), while for the ICU network, we found 67 drugs controlling

34 of the 52 indispensable nodes (21 drugs controlling 12 filt-ind)

nodes, 20 of which are common in both networks [e.g. MAPK1

(mitogen-activated protein kinase 1), TGFB1 (transforming growth

factor beta 1), AKT1 (AKT serine/threonine kinase 1), PRKACA

(protein kinase cAMP-activated catalytic subunit alpha), RHOA

(ras homolog family member A), STAT3 (signal transducer and

activator of transcription 3)], whereas only 1 filt-ind node is shared

by both networks (JAK3 (Janus kinase 3); see in https://

fostamatinib.bioinfo-wuerz.eu/nonicu.html where we give a useful

detailed map of individual proteins). The filt-ind nodes JAK3 and

CDK4 (cyclin dependent kinase 4; both targeted by 4 drugs) in the

non-ICU network and JAK3 in the ICU network (Figure 5A) were

found to be the most sensitive for manipulation.
A

B C

FIGURE 4

Network state and simulations for non-ICU patients. Subnetworks of controllable space of filt-ind nodes (A) targeted by top three drugs:
fostamatinib (Fos), arsenic trioxide (Ars), and baricitinib (Bar) in non-ICU network. Simulations (B) are summarized for each platelet gene (C) and
activity change of the platelet genes shown in simulations. Green: platelet gene set (PGS), orange: indispensable nodes.
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Next, we ranked the drugs based on how many indispensable

nodes they target with the aim to find the best available drug to treat

certain network states observed in COVID-19 patients. In the non-

ICU network, we found the top drugs led by fostamatinib with 9

indispensable (4 filt-ind) targets, followed by baricitinib with

4 indispensable (1 filt-ind) targets and arsenic trioxide with 3

indispensable (0 filt-ind) targets, tofacitinib with 3 indispensable

(1 filt-ind) and four drugs with 2 indispensable (0 filt-ind except

zanubrutinib with 1 filt-ind) targets each: fedratinib, pralsetinib,

ruxolitinib, zanubrutinib (Supplementary Table 12). In the ICU

network, fostamatinib again was found as the top drug with 17

indispensable (6 filt-ind) targets, followed by arsenic trioxide

targeting 5 indispensable (2 filt-ind) nodes, dasatinib targeting 3

indispensable (0 filt-ind) targets, baricitinib with 3 indispensable (1

filt-ind), and acetylsalicylic acid, isoprenaline, tofacitinib,
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vorinostat, cholecystokinin with 2 indispensable (1 filt-ind)

targets (Supplementary Table 13).

As the top-ranked drug in both networks, we found that

fostamatinib, a non-selective SYK (spleen associated tyrosine

kinase) pathway inhibitor (51), which is also used in the

treatment of chronic immune thrombocytopenia (52), targets

around 30% of the indispensable nodes in both ICU and non-

ICU networks. Members of the SYK pathway that are targets for

fostamatinib were among the indispensable nodes only in the ICU

network: SRC (SRC proto-oncogene, non-receptor tyrosine kinase),

SYK (Tyrosine-protein kinase SYK) and FYN was neutral in terms

of indispensability (FYN proto-oncogene, Src family tyrosine

kinase). Other targets that we found only in the ICU network

were include CDK1 (cyclin dependent kinase 1), CSK (C-terminal

Src kinase), GSK3B (glycogen synthase kinase 3 beta), IKBKE
A

B D

C

FIGURE 5

Network state and simulations for ICU patients. Subnetworks of controllable space of filt-ind nodes (A) targeted top three drugs: fostamatinib (Fos),
arsenic trioxide (Ars), and dasatinib (Das) in ICU network. Simulations (B) are summarized for each platelet gene. (C) Activity change of the platelet
genes (D) and of SYK, FYN, and SRC shown in simulations. Green: platelet gene set (PGS), orange: indispensable nodes.
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(inhibitor of nuclear factor kappa B kinase subunit epsilon), IRAK1

(interleukin 1 receptor associated kinase 1), PRKCD, PRKCE,

PRKCQ (Protein kinase C delta, epsilon, and theta types), and

RAF1 (RAF proto-oncogene serine/threonine-protein kinase)

(details in https://fostamatinib.bioinfo-wuerz.eu/icu-drugtargets.

html). In non-ICU network we found the following nodes to be

targeted by fostamatinib: CDK4 (cyclin dependent kinase 4),

CSNK2A1 (casein kinase 2 alpha 1), and JAK2 (Janus kinase 2)

(details in https://fostamatinib.bioinfo-wuerz.eu/nonicu-

drugtargets.html). JAK1 (Janus kinase 1), JAK3 (Janus kinase 3),

MAPK14 (Mitogen-activated protein kinase 14), PIM1 (Pim-1

proto-oncogene, serine/threonine kinase), PRKACA (Protein

kinase C alpha type), and PTK2B (Protein-tyrosine kinase 2-beta)

were common in both networks.
3.6 Simulations

Next, we tested the effects of the top-ranked drugs in both non-

ICU and ICU networks. We connected the platelet genes (green) to

4 platelet biological processes that were used to construct the

platelet proteins: platelet activation, platelet degranulation, platelet

aggregation, and blood coagulation. Additionally, we have used the

GO terms and literature support for each interaction

(Supplementary Tables 14, 15).

To investigate their effects on platelet proteins, we simulated the

top three drugs, fostamatinib arsenic trioxide and baricitinib, in the

non-ICU network (Figure 4B). We observed the strongest

inhibition of platelet genes ALDOA (aldolase, fructose-

bisphosphate A), GNA15 (G protein subunit alpha 15), HSPB1

(heat shock protein family B (small) member 1), and TIMP1 (TIMP

metallopeptidase inhibitor 1) by fostamatinib, while arsenic trioxide

did not lead to any changes, and baricitinib caused a slight change in

the activities of HSPB1 and PDGFA (platelet derived growth factor

subunit A, Figure 4C). On the other hand, fostamatinib led to a

decrease in the activities of ACTB (actin beta), FLNA (filamin A),

GNA15, ILK (integrin linked kinase) and PRKAR1B (protein kinase

cAMP-dependent type I regulatory subunit beta) in the ICU

network, while arsenic trioxide showed mainly stimulating effects

and dasatinib did not lead to any changes in activities except

PRKAR1B (Figures 5B, C). We also showed the inhibiting effect

of fostamatinib on SYK, FYN, and SRC in our ICU simulations

(Figure 5D), and we could confirm this direct inhibiting effect in

activated mouse platelets.
3.7 Direct experimental validation of
fostamatinib effects on platelets

To explore the effects of R406, the active moiety of the prodrug

fostamatinib processed in the intestine, we applied it directly to

washed murine platelets at a concentration of 1 µM (see Methods

for preparation and immunoblotting), based on findings from

Spalton et al. (2009) (53). Using western blot analyses, we

analyzed p-Syk, p-SFKs (which recognizes p-Src, p-Fyn, and p-
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Lyn), and used GAPDH as a control. Upon stimulation with CRP

(10 µg/ml) for 90s, we observed a pronounced activation of Syk and

Src family kinases (SFKs). Notably, the activation of these kinases

was considerably reduced when platelets were pre-incubated with

R406 across all three biological replicates (Figure 6).

To extend this promising experimental data on drug action of

our top predicted drug further by bioinformatics, including further

top candidates, for the ICU network, we also built the lowest-cost

paths from each filt-ind node to each platelet node to have an equal

contribution of each filt-ind node in the control of platelet genes

(Supplementary Figure 4) and simulated the effects of three top-

ranked drugs. Here, we also confirm the strong inhibitory effect

caused by fostamatinib compared to the other two drugs (arsenic

trioxide and acetylsalicylic acid).

We also investigated ibrutinib, an inhibitor of Bruton’s tyrosine

kinase (BTK) (54), which is following directly after the top scoring

drugs (Supplementary Figure 5). Ibrutinib has been shown to have a

positive effect on a COVID-19 patient with a difficult case of

thrombosis (55, 56). Our analysis excluded ibrutinib for two

reasons (1): its target BTK was identified as neutral and

redundant by our controllability analysis, and (2) with only one

known target ibrutinib would fail to be ranked high. Nevertheless,

we built its controllable space by finding the shortest paths

connecting BTK to platelet proteins. Here, our dynamic

simulations showed the strong effect of ibrutinib on platelet genes

in ICU (Supplementary Figure 5).

In conclusion, our simulations and direct experiments confirm

fostamatinib as the best drug on platelet that can be repurposed

against thrombotic events observed in COVID-19 patients,

especially in ICU patients. Our network analysis shows

convincingly that hyperactivated platelets need better control to

come to a more balanced state. Including a broad range of platelet

kinase modulating drugs we derived several drugs to improve this

dangerous ICU condition and overall, according to this analysis and

this dataset, fostamatinib was best while only clinical trials can

decide which of the top ranked drugs really performs best in clinic.
4 Discussion

4.1 Understanding platelet dynamics in
COVID-19: insights for repurposed
drug strategies

In a recent clinical investigation, Manne and colleagues

examined platelet involvement in SARS-CoV-2-related

thrombosis (19). Among many others, their findings support that

SARS-CoV-2 infection is associated with platelet hyperreactivity,

which may contribute to COVID-19 pathophysiology. This reflects

the critical need for repurposed drugs that can control platelet

hyperactivity which prompted our systems biology study. We did a

comprehensive bioinformatical analysis of the intricate protein

network dynamics - mapping out the hierarchies of protein

control, the interplay between various proteins and network

nodes, and the identification of indispensable elements within the
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signal processing cascade – and conduct a rational screening for an

optimal drug regimen to address platelet hyperactivity, nevertheless

a challenging endeavor.

Utilizing the gene expression data by Manne et al. (19), we

created context-specific platelet signaling networks and then

searched for FDA-approved drugs that can modulate the network.

Analysis of the ICU and non-ICU transcriptome data, we identified

genes highlighted genes with heightened expression linked to

disease severity. We then looked for the high-importance network

nodes as indicated by the controllability method. This method

proved to be robust in estimating the extend of the controlled

subnetwork (25, 57). Prioritizing indispensable and critical nodes,

we reduced the networks to the subnetwork level, given the surplus

of terminal nodes with no defined roles in platelet hyperactivity (see

materials and methods). Within these subnetworks, we had filt-ind

nodes connected with upregulated platelet activity-related genes.

Finally, we extended our analysis to identify known drugs capable of

fine-tuning this subnetwork to manipulate platelet activity-

related genes.

The robustness of our study lies in its thorough examination of

the hyperreactive platelet network, enabling drug ranking based on

individual patient conditions. We assessed each FDA-approved

drug’s network effects comprehensively, considering not only

primary targets but also broader impact on related protein

structures (all FDA drugs and their targets can be found in

Supplementary Table 16). Specifically, for the leading drug,
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fostamatinib, we incorporated its in vitro potency (IC50) as

experimentally validated by Rolf and colleagues (Supplementary

Table 17) (58). Recognizing drugs’ broader effect profile, we

prioritize the best option, vital for ICU patients. Our research

provides insights into selecting the most effective treatment from

the available drugs for a given network condition and patient,

potentially saving lives in critical settings like ICU.
4.2 Network-based approaches to COVID-
19 and drug repurposing

Network-based methods are crucial for understanding protein

interactions (59), host-pathogen relationships (60), drug

mechanisms (61), side-effect discovery (62), novel drug targets,

and drug repurposing (63), which is particularly significant during

pandemics due to their time and cost efficiency compared to new

drug discovery. Cheng et al. developed a human protein-protein

interaction network to identify drug-disease indications, side effects,

and mechanisms, with high accuracy (63, 64). Recently, several

network-based drug repurposing studies have been published for

SARS-CoV-2 (65–69) however, none of them have focused on

platelets. Gordon et al. identified potential drug targets based on

experimentally determined SARS-CoV-2-human protein

interactions (66), and Han et al. used computational methods to

pinpoint drugs targeting SARS-CoV-2-induced pathways and 20%
FIGURE 6

Experimental verification of main fostamatinib targets. Western blot experiment. Left (lane 1,2): Resting platelet. Right (lane 3,4): Stimulation of Syk
and SFKs (Src family kinases) in response to CRP (10 µg/ml) [collagen-related peptide; 90s -/+ inhibitor (n=3)]. Lane 3: DMSO control, lane 4:
reduced stimulation when incubated with R406 (1 µM) for 10 min. Antibody plots show the results for p-Syk, p-Src family kinase (p-SFK, recognizing
p-Src, p-Fyn and p-Lyn) and GAPDH.
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of the identified drugs were already being tested in COVID-19

clinical trials (67). Jang et al. employed a novel virtual screening

strategy for COVID-19, revealing promising drug combinations

with antiviral properties and reduced toxicity (65). Zhou et al.

screened for drugs based on network proximity analysis between

drug targets and coronavirus-associated host proteins (68). More

recent drug repurposing studies have revealed several promising

antiviral treatment options for COVID-19 based on novel network-

based algorithm (70) and on network controllability (71, 72) (more

details in Supplementary Notes). Nonetheless, prior studies

predominantly concentrated on either targeting the virus itself or

exploring host-pathogen interactions for potential drug

repurposing. In contrast, in our study we place a particular

emphasis on the impact of SARS-CoV-2 on platelets to manage

the observed platelet hyperactivity, a condition prevalent in both

ICU and non-ICU COVID-19 patients.

Our approach initially centers on constructing signaling

networks and subsequently determining node importance through

controllability analysis. Control theory aids in identifying critical

driver nodes, which, when manipulated, can steer the network from

its current state to a desired one. Indispensable nodes, crucial for

system integrity, raise the minimum number of driver nodes

required for control when removed. Additionally, critical nodes,

with no incoming connections, appear in every alternative

minimum driver set of the system. Endothelial cells as well as

leukocytes such as neutrophils and alveolar macrophages (73) play

prominent roles in the initiation and continuation of thrombo-

inflammation and can be modelled in the same way as done here for

platelets. However, specific transcriptome data-sets are required to

determine condition-specific system states and design a therapy for

ICU versus non-ICU patients looking at endothelial cells or

leukocytes. As platelets are pivotal in hyperinflammatory

conditions, we focus in this study our attention to platelet

hyperactivity. This is an important strength but cell-type wise

clear limitation of our study.

Applying control theory to platelet networks revealed following

findings: indispensable nodes have the highest number of

connections compared to dispensable and neutral nodes in both

networks. In contrast, critical nodes positioned upstream in

pathways switching the system between different states, have no

incoming and the fewest outgoing connections. Unlike

indispensable nodes, whose impact on the system intensifies with

an increasing number of connections, critical nodes’ significance

lies in orchestrating system shifts rather than extensive connections.

Despite lower connectivity, critical nodes exhibited higher control

centralities, underscoring their potent influence on network

controllability, and signaling dynamics. This clarifies the distinct

roles of indispensable and crit ical nodes in steering

network behavior.

One of our major findings shows how the transition from non-

ICU to ICU can be described in terms of control theory. Although

no change in the proportion of critical nodes was observed, we show

a 4.92% increase in indispensable nodes in ICU patients, mainly due

to the status shift from dispensable to indispensable. Similarly, in

ICU patients we have an increase in average control centralities of
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both critical (by 47.3%) and indispensable nodes (by 66.9%).

Furthermore, we observed a greater number of drug targets

within the ICU networks (34/81, 42%) when compared to the

non-ICU network (15/38, 39,5%). Both findings suggest that the

transition to ICU network offers a higher number of targets to

obtain a larger control ability on the network and illustrates that

platelet signaling and control is quite different in ICU patients.
4.3 Drug effects on platelet control:
fostamatinib and beyond

Our exploration of FDA-approved drugs aimed to control

platelet hyperactivity induced by SARS-CoV-2 infection or septic

conditions led to the identification of promising candidates.

Fostamatinib emerged as the top-ranked drug across both

networks, with an ability to regulate multiple dysregulated

proteins, particularly within the ICU network. While the exact

mechanism of fostamatinib remains unspecified due to its limited

specificity toward SYK, inhibiting other kinases and non-kinase

targets at concentrations comparable to those inhibiting SYK (74).

Therefore, its effect is based on the inhibition of SYK-dependent

and SYK-independent immune signaling pathways (75). Besides its

effect on SYK and SFKs, in our results, we found a major effect of

fostamatinib on SYK-independent immune signaling pathways.

Notably, arsenic trioxide surfaced as a top-ranked drug in both

networks, known for its use for the treatment of acute

promyelocytic leukemia (76). Its anti-platelet activity has also

been observed mainly via its inhibition of the PLCg2-PKC-p38
MAPK cascade (77). However, it is more a powerful manipulator of

the ICU network, as majority of the targets of arsenic trioxide are

activated by the drug, leading to possibly higher platelet activity.

Therefore, we do not recommend arsenic trioxide as an anti-platelet

agent against the hyperactive network state in ICU. Our

simulations, on PGS activities, also indicated the potential efficacy

of drugs like baricitinib in non-ICU and dasatinib in the ICU

network, although their impact was not as pronounced as that of

fostamatinib on simulated platelet protein activity.

Our simulations confirmed fostamatinib’s highpotential to inhibit

platelet hyperactivity compared to other highly ranked drugs. We

confirm that fostamatinib can inhibit most of the platelet genes

upregulated in ICU and non-ICU conditions. Our network shows

the anti-platelet effects of fostamatinib via its targets in addition to SYK

and we computationally and experimentally validated its inhibitory

effect on SYK and SFKs. Its effects through SYK have been shown

before as interfering with thrombosis but not with hemostasis (78, 79)

and its potential use in COVID-19 has also been suggested by a

computational study that confirmed fostamatinib’s targets by

molecular docking (80). It was shown to counteract the platelet

hyperactivity in vitro on platelets from COVID-19 patients with

potentially actionable pathways as central for platelet activation and/

or vascular complications (81). Moreover, there are clinical trials

currently running on fostamatinib’s use in COVID-19 patients

(Phase II: NCT04579393, NCT04581954; Phase III: NCT04629703

and NCT04924660).
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4.4 Immunomodulation and fostamatinib:
relevance in severe COVID-19 and
vaccinated populations

In addressing severe COVID-19, there is a pressing need for

immunomodulatory treatments that balance inflammation and

antiviral responses (82). Severe cases linked to COVID-19-related

coagulopathy, involve a dysregulated immune response, endothelial

dysfunction, platelet hyperactivity, and impaired coagulation

system, contributing to multiorgan dysfunction (82–84). SARS-

CoV-2 spike-specific IgG antibodies contribute significantly to

disease severity by triggering macrophage hyperactivation and

thrombus formation (82). Small molecule inhibitors like SYK

inhibitors show promise in countering anti-spike-IgG-induced

inflammation and endothelial dysfunction. Notably, compounds

targeting SYK and PI3K activity provide potential treatment

avenues for severe COVID-19, specifically addressing

inflammation induced by anti-spike immune complexes (82).

While our study primarily focuses on fostamatinib’s effect on

platelet hyperactivity, it can also impact COVID-19 outcomes by

addressing hyperinflammation in various immune cells (73).

Fostamatinib’s inhibition of SYK plays a crucial role in reducing

pro-inflammatory cytokine release, neutrophil extracellular trap

production, and platelet aggregation, offering potential relief from

organ dysfunction in critically ill COVID-19 patients (51, 85–88).

Considering our study’s use of data from 2020, predating

widespread vaccination, it’s essential to explore two aspects to

why our findings might remain relevant in a vaccinated

population. First, even with fewer severe COVID-19 cases, the

distinction between ICU and non-ICU patients remains vital (89),

validating our drug rankings based on platelet network states. Our

primary focus on the critical state of COVID-19, particularly in ICU

patients, remains crucial, showing the consistent validity of our

drug rankings based on platelet networks, even in severe cases,

irrespective of vaccination status. This perspective, emphasizing the

ongoing importance of addressing COVID-19 effects on platelets,

holds true, especially considering observations of declining vaccine

effectiveness (90–92). Second, our drug analysis may take on added

significance, particularly concerning Vaccine-Induced Thrombotic

Thrombocytopenia (VITT), where excessive platelet aggregation is

observed via FcgRIIA-Syk signaling.Antiplatelet drugs tested by Smith

et al. (2021) showed promise suppressing the platelet aggregation in

response to patient sera in VITT. However, further studies evaluating

clinical relevance are needed before considering these drugs. Some

posebleedingrisks, but rilzabrutinib and fostamatinib showpromise in

addressing thrombosis without causing bleeding, although R406

demonstrated somewhat constrained effect in vitro (93–95). These

findings, although needing additional validation, suggest potential

applications in vaccinated populations, particularly in the context of

VITT.This implies that our frameworkmaybehelpfulnot only against

critical COVID-19 infections but against vaccine-induced

thrombotic complications.

In conclusion, our study not only contributes insights into the

treatment of severe COVID-19 cases but also prompts the need for

expanded research encompassing various populations, including
Frontiers in Immunology 14
those vaccinated. Once available data on vaccinated populations

emerge, our approach, based on molecular insights and platelet

network states, is easily applicable. It is also transferrable to

endothelial cells and leukocytes, representing the next logical

steps in refining treatment strategies for a broader spectrum of

treatment scenarios, from COVID-19 cases to other septic

conditions with platelet hyperactivity.

These findings support growing interest in fostamatinib’s

potential role in COVID-19 treatment, reinforcing the link

between fostamatinib, platelet function, and COVID-19. This

underscores fostamatinib’s potential in mitigating platelet

hyperactivity, particularly in ICU patients, emphasizing the

importance of considering network-wide effects when repurposing

drugs for complex conditions such as COVID-19 or other severe

septic conditions.
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