

# Supplementary Material

- **1** Supplementary Figures and Tables
- **1.1 Supplementary Figures**





1.1. Intensity thresholding







2.2. Pixel-by-pixel analysis

2. Data analysis (Time-resolved)

2.1. Ensemble analysis





#### 3. Parameter – readout

3.1. Ensemble analysis

3.2. Pixel-by-pixel analysis

|                                                        | Parameter                             |                                 | Parameter                   |
|--------------------------------------------------------|---------------------------------------|---------------------------------|-----------------------------|
| $\tau_1, x_1, \tau_2, x_2, \ldots$                     | Lifetime and fraction of species 1,2, | $	au_{FF}$                      | Average photon arrival time |
| $\tau_{avg}$                                           | Species-weighted average lifetime     | $I^{D D}, I^{A D}, I^{A A}$     | Signal intensities          |
| $E_{	au}$                                              | Lifetime-based FRET efficiency        | S <sub>PIE</sub> <sup>raw</sup> | Stoichiometry               |
| $I_{\Sigma}^{D D}, I_{\Sigma}^{A D}, I_{\Sigma}^{A A}$ | Signal intensities sum of all pixels  | $E_{PR}^{raw}$                  | Proximity ratio             |
| $S_{\Sigma PIE}^{raw}$                                 | Stoichiometry of summed intensity     | $I_{\Sigma}$                    | Sum of signal intensities   |

## Supplementary Figure 1. Schemes of PIE-based FRET-FLIM experimental design.

After ROI selection, two analysis pipelines were performed: ensemble analysis and pixelwise analysis. PIE mode allows for retrieving stoichiometry information. The ensemble approach concludes the dimerization based on overall changes of donor lifetime and stoichiometry. In the pixelwise approach, the parameters such as donor lifetime and stoichiometry are calculated per pixel and displayed as oneor two-dimensional distributions. Here, the ensemble approach robustly provides information of multiple lifetime species while the pixelwise approach was only used to reveal heterogeneity in livecell agonist activation experiment.



Supplementary Figure 2. Spectral information of fluorescent proteins used in FRET.

Excitation and emission spectra of eGFP and mCherry. Laser lines (480 nm, 560 nm) and filters (520/35 and 600/50) used in the FLIM measurement were indicated.



Supplementary Figure 3. Membrane expression of single and double transfected Mc4r.

Mc4r A, B1, B2 expression, by confocal microscopy. Single transfection of eGFP or mCherry fused Mc4r isoforms all show clear cell membrane expression. Double transfection of two Mc4r isoforms with one eGFP tag (donor) and one mCherry tag (acceptor) also exhibit correct cell membrane expression. Scale bar:  $10 \mu m$ .



Supplementary Figure 4. Total fluorescent signal intensity of all protomers combinations.

Total fluorescent signal intensity  $I_{\Sigma}$  were calculated by **equation (7)**, from all measured cells. Histogram were plotted with 50 bins for each protomer combination. All  $I_{\Sigma}$  were distributed within one order of magnitude.



### Supplementary Figure 5. Monomer β1AR and dimer CD28 controls.

(A) Lifetime images show species-weighted average lifetime of eGFP. Scale bar: 10 µm.

(B) Superplot of lifetime-based FRET efficiency  $E_{\tau}$ . In the superplot, data from three replicates are plotted in red squares, yellow triangles, and blue circles, respectively. The mean of each replicate is indicated with the larger sign of same color pattern. The overall mean (horizontal bar), and standard deviation of the mean (error bars) are indicated. Two tails unpaired *t*-test are used in statistical analysis. Grey \*: compared to  $\beta$ 1AR 1:1. Black \*: compared to  $\beta$ 1AR 1:5. Black #: 1:1 *vs.* 1:5 for each pair. Statistics (summary in **Supplementary Table 2**): ns: not significant, \*/#: p < 0.05, \*\*/##: p < 0.01.

(C) 2D scatter plots of lifetime-based FRET efficiency to effective stoichiometry for controls.



## Supplementary Figure 6. Average fluorescence lifetime for two controls and all fish samples.

- (A) Controls.
- (B) Mc4r homodimers.
- (C) Mc4r heterodimers.

In each pair, donor-only samples (black), and samples of donor/acceptor ratio 1:1 (dark orange) and 1:5 (light purple) were displayed. All data are presented as individual points, and the boxes represented median with 25<sup>th</sup> and 75<sup>th</sup> percentiles, with whisker at 1.5 interquartile range.



Supplementary Figure 7. Superplots of Mc4r homodimer and heterodimer pairs.

(A) Mc4r homodimers.

(B) Mc4r heterodimers.

Superplot of lifetime-based FRET efficiency  $E_{\tau}$ . The superplots were designed same as in **Supplementary Figure 5B**. Dotted and dashed lines represent reference lines from CD28 and  $\beta$ 1AR, respectively, at 1:1 (grey) and 1:5 (black). Two tails unpaired *t*-test are used in statistical analysis. Grey \*: compared to  $\beta$ 1AR 1:1. Black \*: compared to  $\beta$ 1AR 1:5. Black #: 1:1 *vs.* 1:5 for each pair. Statistics (summary in **Supplementary Table 2**): ns: not significant, \*/#: p < 0.05, \*\*/##: p < 0.01.



Supplementary Figure 8. FRET-AB measurement of various receptors combinations.

- (A) Controls.
- (B) Mc4r homodimers.
- (C) Mc4r heterodimers.

In each pair, samples with donor/acceptor ratio 1:1 and 1:5 were measured. Superplots were designed same as **Supplementary Figure 5B**. Two tails unpaired *t*-test are used in statistical analysis. Grey \*: compared to  $\beta$ 1AR 1:1. Black \*: compared to  $\beta$ 1AR 1:5. Black #: 1:1 *vs.* 1:5 for each pair. Statistics (summary in **Supplementary Table 3**): ns: not significant, \*/#: *p*<0.05, \*\*/##: *p*<0.01.



### Supplementary Figure 9. Fish Mc4r B1-A heterodimerization.

(A) Lifetime images show species-weighted average lifetime of eGFP. Scale bar: 10 µm.

(B) Superplot of lifetime-based FRET efficiency  $E_{\tau}$ . The superplots were designed same as in **Supplementary Figure 5B, Supplementary Figure 7A**. Dotted and dashed lines represent reference lines from CD28 and  $\beta$ 1AR, respectively, at 1:1 (grey) and 1:5 (black). Two tails unpaired *t*-test are used in statistical analysis. Grey \*: compared to  $\beta$ 1AR 1:1. Black \*: compared to  $\beta$ 1AR 1:5. Black #: 1:1 vs. 1:5 for each pair. Statistics (summary in **Supplementary Table 2**): ns: not significant, \*/#: p<0.05, \*\*/##: p<0.01.

(C) 2D scatter plot of lifetime-based FRET efficiency to effective stoichiometry for B1-A.



## Supplementary Figure 10. Analysis of activated homo- and heterodimers.

(A) Samples A-A with donor/acceptor ratio 1:1.

(B) Samples A-B1 with donor/acceptor ratio 1:1.

Time-course changes were plotted for each cell in transparent thin color lines and the average of all cells are plotted as the thick black lines. Left panels are change of stoichiometry through time and right panels are change of lifetime-based FRET efficiency through time.



Supplementary Figure 11. Dimerization of human MC4R as a comparison.

(A) Lifetime images show species-weighted average lifetime of eGFP. Scale bar: 10 µm.

- (B) Lifetime plots.
- (C) FRET-FLIM measurement.
- (D) FRET-AB measurement.

Superplots were designed as Supplementary Figure 7 and Supplementary Figure 8. Two tails unpaired *t*-test are used in statistical analysis. Grey \*: compared to  $\beta$ 1AR 1:1. Black \*: compared to  $\beta$ 1AR 1:5. Black #: 1:1 *vs.* 1:5 for each pair. Statistics (summary in Supplementary Table 2 and Supplementary Table 3): ns: not significant, \*/#: p<0.05, \*\*/##: p<0.01.

## **1.2** Supplementary Tables

## Supplementary Table 1. Primers.

| Primers                  | Sequences                                            | Comments                                    |
|--------------------------|------------------------------------------------------|---------------------------------------------|
| hMC4R_HindIII<br>_kATG_F | CACC <b>AAGCTT</b> GCCGCCATG<br>GTGAACTCCACCCACCGTG  | Cloning for human MC4R wild-<br>type/mutant |
| hMC4R_XbaI_<br>R         | TATA <b>TCTAGA</b> ATATCTGCT<br>AGACAAGTCAC          | Cloning for human MC4R wild-<br>type/mutant |
| Mc4rA_HindIII<br>_kATG_F | CACC <b>AAGCTT</b> GCCGCCATG<br>AACTCCACGGCTCAGCAAG  | Cloning for Xiphophorus Mc4r A/B1/B2        |
| Mc4rA_XbaI_R             | TATA <b>TCTAGA</b> CAGAAAGCT<br>AATACACGAGA          | Cloning for Xiphophorus Mc4r A              |
| Mc4rB1_XbaI_<br>R        | TATA <b>TCTAGA</b> CAGAAAGCT<br>AATACACCAGA          | Cloning for Xiphophorus Mc4r B1             |
| Mc4rB2_XbaI_<br>R        | TATA <b>TCTAGA</b> CAGATGAAC<br>TACCTGGAGCG          | Cloning for Xiphophorus Mc4r B2             |
| CD28_HindIII_<br>kATG_F  | CACC <b>AAGCTT</b> GCCGCCATG<br>CTCAGGCTGCTCTTGGCTC  | Cloning for CD28                            |
| CD28_XbaI_R              | TATA <b>TCTAGA</b> CCTGCTCCT<br>CTTACTCCTCA          | Cloning for CD28                            |
| b1AR_HindIII_<br>kATG_F  | CACC <b>AAGCTT</b> GCCGCCATG<br>GGCGCGGGGGGTGCTCGTCC | Cloning for β1AR                            |
| b1AR_XbaI_R              | TATA <b>TCTAGA</b> CACCTTGGA<br>TTCCGAGGCGA          | Cloning for β1AR                            |

Note: Red letters indicate restriction sites and blue letter are the Kozak sequence.

|        |     | F          | I     | N  | <i>t</i> -test 1:1 <i>vs</i> . |      | <i>t</i> -test each |      |
|--------|-----|------------|-------|----|--------------------------------|------|---------------------|------|
|        |     | $L_{\tau}$ | 土     | IN | 1:5                            |      | vs. β1AR            |      |
| β1AR   | 1:1 | 0.081      | 0.043 | 21 | 8.60E-04                       | ***  |                     |      |
|        | 1:5 | 0.126      | 0.038 | 21 |                                |      |                     |      |
| CD28   | 1:1 | 0.195      | 0.051 | 21 | 1.43E-09                       | **** | 1.61E-09            | **** |
|        | 1:5 | 0.326      | 0.057 | 21 |                                |      | 2.26E-16            | **** |
| А      | 1:1 | 0.127      | 0.029 | 21 | 2.01E-08                       | **** | 1.88E-04            | ***  |
|        | 1:5 | 0.261      | 0.083 | 21 |                                |      | 3.49E-08            | **** |
| B1     | 1:1 | 0.098      | 0.040 | 21 | 2.73E-06                       | **** | 1.88E-01            | ns   |
|        | 1:5 | 0.189      | 0.065 | 21 |                                |      | 3.79E-04            | ***  |
| B2     | 1:1 | 0.119      | 0.040 | 21 | 1.26E-08                       | **** | 5.46E-03            | **   |
|        | 1:5 | 0.212      | 0.045 | 21 |                                |      | 3.55E-08            | **** |
| A-B1   | 1:1 | 0.154      | 0.055 | 21 | 4.08E-04                       | ***  | 2.31E-05            | **** |
|        | 1:5 | 0.216      | 0.050 | 21 |                                |      | 6.00E-08            | **** |
| B1-A   | 1:1 | 0.079      | 0.036 | 21 | 9.80E-10                       | **** | 8.92E-01            | ns   |
|        | 1:5 | 0.212      | 0.068 | 21 |                                |      | 8.80E-06            | **** |
| A-B2   | 1:1 | 0.093      | 0.044 | 21 | 1.08E-08                       | **** | 3.61E-01            | ns   |
|        | 1:5 | 0.238      | 0.080 | 20 |                                |      | 1.06E-06            | **** |
| B1-B2  | 1:1 | 0.103      | 0.038 | 21 | 1.21E-09                       | **** | 8.44E-02            | ns   |
|        | 1:5 | 0.221      | 0.057 | 21 |                                |      | 1.37E-07            | **** |
| WT     | 1:1 | 0.102      | 0.051 | 21 | 3.74E-09                       | **** | 1.52E-01            | ns   |
|        | 1:5 | 0.236      | 0.064 | 21 |                                |      | 3.70E-08            | **** |
| Mut    | 1:1 | 0.075      | 0.048 | 20 | 2.80E-03                       | **   | 6.96E-01            | ns   |
|        | 1:5 | 0.138      | 0.074 | 21 |                                |      | 5.03E-01            | ns   |
| WT-Mut | 1:1 | 0.074      | 0.033 | 22 | 1.02E-08                       | **** | 5.41E-01            | ns   |
|        | 1:5 | 0.196      | 0.074 | 22 |                                |      | 3.38E-04            | ***  |

Supplementary Table 2. FRET-FLIM statistics summary.

Note:  $E_{\tau}$  represents average lifetime-based FRET efficiency, and  $\pm$  indicates SD.

ns  $p \ge 0.05$ , \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001, \*\*\*\* p < 0.0001.

|        |     | E <sub>int</sub> | ±     | Ν        | <i>t</i> -test 1:1 <i>vs</i> . |                 | <i>t</i> -test each |      |
|--------|-----|------------------|-------|----------|--------------------------------|-----------------|---------------------|------|
| RIAR   | 1.1 | 0.0/3            | 0.021 | 30       | 3.89F_01                       | ng              | <i>vs.</i> prak     |      |
| pIAK   | 1.1 | 0.043            | 0.021 | 30       | 5.691-01                       | 115             |                     |      |
| CD28   | 1.5 | 0.125            | 0.020 | 30       | 6.82E 10                       | ****            | 1 88E 16            | **** |
| CD28   | 1.1 | 0.125            | 0.033 | 30       | 0.821-10                       |                 | 1.66E-10            | **** |
| •      | 1.5 | 0.190            | 0.041 | 22       | 2 49E 05                       | ****            | 2.24E.09            | **** |
| А      | 1:1 | 0.093            | 0.03/ | 33<br>20 | 3.48E-03                       |                 | 2.24E-08            | **** |
|        | 1:5 | 0.140            | 0.046 | 30       |                                | she she she she | 2.6/E-13            |      |
| BI     | 1:1 | 0.059            | 0.033 | 30       | 6.10E-07                       | * * * *         | 2.95E-02            | *    |
|        | 1:5 | 0.115            | 0.043 | 30       |                                |                 | 1.37E-09            | **** |
| B2     | 1:1 | 0.092            | 0.033 | 30       | 2.52E-02                       | *               | 5.46E-09            | **** |
|        | 1:5 | 0.113            | 0.039 | 30       |                                |                 | 3.41E-10            | **** |
| A-B1   | 1:1 | 0.068            | 0.024 | 30       | 8.16E-12                       | ****            | 6.06E-05            | **** |
|        | 1:5 | 0.147            | 0.045 | 30       |                                |                 | 6.71E-15            | **** |
| B1-A   | 1:1 | 0.047            | 0.028 | 30       | 1.09E-03                       | **              | 5.69E-01            | ns   |
|        | 1:5 | 0.077            | 0.040 | 30       |                                |                 | 1.47E-03            | **   |
| A-B2   | 1:1 | 0.063            | 0.034 | 30       | 8.05E-06                       | ****            | 7.10E-03            | *    |
|        | 1:5 | 0.106            | 0.034 | 30       |                                |                 | 7.17E-10            | **** |
| B1-B2  | 1:1 | 0.041            | 0.024 | 30       | 1.93E-03                       | **              | 6.79E-01            | ns   |
|        | 1:5 | 0.065            | 0.034 | 30       |                                |                 | 3.49E-02            | *    |
| WT     | 1:1 | 0.081            | 0.022 | 30       | 1.69E-04                       | ***             | 5.49E-09            | **** |
|        | 1:5 | 0.113            | 0.038 | 30       |                                |                 | 1.87E-10            | **** |
| Mut    | 1:1 | 0.068            | 0.032 | 30       | 1.01E-01                       | ns              | 5.70E-04            | ***  |
|        | 1:5 | 0.081            | 0.027 | 30       |                                |                 | 1.40E-05            | **** |
| WT-Mut | 1:1 | 0.055            | 0.024 | 33       | 1.32E-09                       | ****            | 4.00E-02            | *    |
|        | 1:5 | 0.111            | 0.038 | 31       |                                |                 | 3.37E-10            | **** |

Supplementary Table 3. FRET-AB statistics summary.

Note:  $E_{int}$  represents intensity-based FRET efficiency, and  $\pm$  indicates SD.

ns  $p \ge 0.05$ , \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001, \*\*\*\* p < 0.0001.

### 2 Supplementary Data

Supplementary Script 1. Export Symphotime-based ROIs for grouped/ensemble analysis.

```
*****
# Katherina Hemmen ~ Core Unit Fluorescence Imaging ~ RVZ
# katherina.hemmen@uni-wuerzburg.de
****
# Converting Symphotime ROIs export for grouped / ensemble analysis
# Input:
\# (1) ASCII export of green channel data, where the ROI has been marked in Symphotime
# Data is in txt format, where the top-half of the file corresponds to the green
# photon count and the bottom-half corresponds to the tau(FastFLIM) calculated by Symphotime
# (2) Tif-images exported from Symphotime for the following channels and time windows:
# (i) green prompt, (ii) red prompt and (iii) red delay
# Output:
# (1) Intensity images of the three channels & time windows
# (i) green prompt, (ii) red prompt and (iii) red delay
# where intensity values outside the marked ROI have been set to 0
# (2) Table of summarizing values, with first column being the filename:
# (i) sum of number of green photons in prompt time range (gp)
# (ii) sum of number of red photons in prompt time range (rp)
# (iii) sum of number of red photons in delay time range (rd)
# (iv) green to red intensity ratio in prompt time window
# (v) effective stoichiometry
# (vi) apparent FRET efficiency (proximity ratio)
# 1. Importing of all required modules
from skimage import io
import glob
import os
import numpy as np
# 2. Data to be processed
path = 'C:/Users/Downloads/DATA/*.ptu'
# All files within this folder in PTU format will be used to generate a list of filenames.
save file as = 'C:/Users/Downloads/Results.txt'
# The relevant parameter such as sum of photons are saved into a txt document.
# Initialize list of parameters to be saved at the end
list filenames = list() # filenames
list_nr_green_ph = list() # number of green photons in prompt time range (gp)
list_nr_red_p_ph = list() # number of red photons in prompt time range (rp)
list_nr_red_d_ph = list() # number of red photons in delay time range (rd)
list_SgSr = list() # green to red intensity ratio in prompt time window
list effSpie = list() # effective stoichiometry
list appE = list() # apparent FRET efficiency (proximity ratio)
# Loop over all files in folder
for file in glob.glob(path):
filename = os.path.abspath(file).split(".")[0] # Get the filenames
print('Processing....' + filename)
# 3. Read and convert Symphotime ASCII file into binary ROI
ROI = filename + '.txt'
ROI int = np.genfromtxt(ROI, skip header=3, skip footer=259) # First half of txt file
ROI_mean_tau = np.genfromtxt(ROI, skip_header=262) # Second half of txt file
io.imsave(filename + '_green int.tif', ROI_int, check_contrast=False)
io.imsave(filename + '_tauFF.tif', ROI_mean_tau, check_contrast=False)
# ROI int and ROI mean tau have values identical to number of green photons
# / mean lifetime inside the ROI and values = 0 outside the ROI
# To generate the binary ROI (an image filled with 0 outside ROI and 1 inside),
# ROI int is used and all values > 0 are set to 1
binary ROI = np.where(ROI int > 0, 1, 0)
io.imsave(filename + ' ROI.tif', binary ROI, check contrast=False)
# 4. Use ROI to generate masks on the intensity images
```

```
# Read the exported tif-files for channels/time windows
# All images have two channels: channel 0 = intensity, channel 1 = tau(FastFLIM)
int_gp = io.imread(filename + '_gp.tif')[0]
int_rp = io.imread(filename + '_rp.tif')[0]
int_rd = io.imread(filename + '_rd.tif')[0]
# All values where the binary ROI = 1 are kept, other pixel values are set 0
masked_intensity_gp = np.where(binary_ROI ==1, int_gp, 0)
masked_intensity_rp = np.where(binary_ROI ==1, int_rp, 0)
masked intensity rd = np.where(binary ROI ==1, int rd, 0)
# 5. Calculate and save sum of photons
sum green ph = np.sum(masked intensity gp)
sum_red_prompt_ph = np.sum(masked_intensity_rp)
sum red delay ph = np.sum(masked intensity rd)
# 6. Calculate FRET-related parameters
# Note: apparent FRET efficiency and stoichiometry are calculated as no corrections are applied
SgSr = sum green ph / sum red prompt ph
effSpie = (sum_green_ph + sum_red_prompt_ph) / (sum_green_ph + sum_red_prompt_ph
+ sum red delay ph)
appE = sum red prompt ph / (sum red prompt ph + sum green ph)
# Append all values to a growing list
list_filenames.append(str(file)) # filenames
list nr green ph.append(sum green ph) # number of green photons in prompt time range
list_nr_red_p_ph.append(sum_red_prompt_ph) # number of red photons in prompt time range
list_nr_red_d_ph.append(sum_red_delay_ph) # number of red photons in delay time range
list_SgSr.append(SgSr) # green to red intensity ratio in prompt time window
list effSpie.append(effSpie) # effective stoichiometry
list_appE.append(appE) # apparent FRET efficiency (proximity ratio)
# Column header of saved txt file
header = 'Filename\tNr Green ph\tNr Red ph (prompt)\tNr Red ph (delay)\tSgSr\teffSpie\tappE'
# Save results as txt file
np.savetxt(
save file as,
np.vstack(
list filenames,
list nr green ph,
list_nr_red_p_ph,
list nr red d ph,
list SgSr,
list_effSpie,
list appE
1
).T,
delimiter='\t', fmt="%s", header=header
```

Supplementary Script 2. Export tables for pixel-wise analysis.

```
*****
# Katherina Hemmen ~ Core Unit Fluorescence Imaging ~ RVZ
# katherina.hemmen@uni-wuerzburg.de
****
# Export for pixel-wise analysis and heterogeneity analysis
# Input: ROI-masked intensity images (green prompt, red prompt, red delay)
# and mean tau green
# Output: Table of 256 x 256 = 65535 lines and the following columns:
# Y pixel - X pixel- Mean Tau(green) - Number of photons(green) - Number of photons(red prompt)
# - Number of photons (red delay) - eff Stoichiometry (PIE) - SqSr - app FRET efficiency
# 1. Importing of all required functions
from skimage import io, img as ubyte
import glob
import os
import numpy as np
# 2. Data to be processed
path = 'C:/Users/Downloads/DATA/*.ptu'
# All files within this folder in PTU format will be used to generate a list of filenames.
# Loop over all files in folder
for file in glob.glob(path):
   filename = os.path.abspath(file).split(".")[0] # Get the filenames
   output filename = filename + '.er4' # How to save the results
   print('Processing....' + filename)
   # Donor mean fluorescence lifetime - based on symphotime export
   mean tau green img = filename + ' tauFF.tif'
   mean tau green = io.imread(mean tau green img)
    # Intensity images - split by color channel and time windows (prompt & delay)
   green intensity img = filename + ' gp.tif'
   green intensity = io.imread(green intensity img)[0]
   red prompt intensity img = filename + ' rp.tif'
   red prompt intensity = io.imread(red prompt intensity img)[0]
   red delay intensity img = filename + ' rd.tif'
   red delay intensity = io.imread(red delay intensity img)[0]
    # 2. Loading the generated cell mask
   cell ROI = filename + ' ROI.tif'
   mask = img as ubyte(io.imread(cell ROI))
    # 3. Select the pixels of interest
    tau green = mean tau green * mask
   nD = green_intensity * mask
nA_FRET = red_prompt_intensity * mask
   nA_direct = red_delay_intensity * mask
    # 4. Calculate the derived parameter
    #---
                                        _____
         _____
    # 4.1 effective Stoichiometry-PIE
    # Note: effective Spie as we omit all correction factors
   Spie = (nA FRET + nD) / (nA FRET + nD + nA direct)
    # 4.2 Green-Red intensity ratio, Sg/Sr
    # ~> related also to FRET efficiency, but uncorrected intensities are used
    SgSr = nD / nA FRET
    # 4.3 apparent FRET-efficiency (proximity ratio) based on intensities
```

```
# For correct FRET efficiency, a correction factor is required: gamma
    # Gamma defines the ratio of the detector sensitivities
    # E = nA(FRET) /(nA(FRET) + gamma * nD) <=> Eapp = nA(FRET) /(nA(FRET) + nD)
   Eapp = nA FRET / (nA FRET + nD)
    # 5. Reshape the parameter matrices
    # All parameters are reshaped from a 256 x 256 array -> 1 x 65'536 array
   lines, pixel = mean_tau_green.shape
    tau green 1D = tau green.reshape((lines * pixel))
   nD 1D = nD.reshape((lines * pixel))
   nA_FRET_1D = nA_FRET.reshape((lines * pixel))
   nA direct 1D = nA direct.reshape((lines * pixel))
   Spie 1D = Spie.reshape((lines * pixel))
    SgSr 1D = SgSr.reshape((lines * pixel))
   Eapp 1D = Eapp.reshape((lines * pixel))
    # 6. Generate a list of pixel coordinates
   pixel id = np.indices((lines, pixel))
   pixel id 1D = pixel id.reshape((2, lines*pixel))
   Y_pixel = np.array(pixel_id_1D[0, :])
   X pixel = pixel_id_1D[1, :]
    # 7. Export results as text files
   # These files can be read by any text editor or e.g. Margarita from the Seidel-Software
Package
   header = "Y pixel\tX pixel\tMean Tau(green)\tNumber of photons(green)\tNumber of photons(red
prompt)/tNumber of photons(red delay)/teff Stoichiometry(PIE)/tSgSr/tapp FRET efficiency"
    # Change the saving directory!
   np.savetxt(
       output filename,
       np.vstack([Y pixel, X pixel, tau green 1D, nD 1D, nA FRET 1D, nA direct 1D, Spie 1D,
SgSr 1D, Eapp 1D]).T,
       delimiter='\t'
       header=header
       )
```

## **3** Supplementary Information

## Xiphophorus multilineatus Mc4r A

>Xmulti\_Mc4r\_A\_nt

>Xmulti\_Mc4r\_A\_aa

MNSTAQQGLIPCYLNGSLCPGTLPEKDVSGEEKDSSAGCSEQLLISTEVFLTLGIISLLENILVVAA IIKNQNLHSPMYFFICSLAVADMLVSVSNASETIVIALINGGSLTIPVTFIKSMDNVFDSMICSSLL ASICSLLAIAIDRYITIFYALRYHNIVTIRRALLVIAGIWTCCTVSGILFIIYSESTMVLICLITMF FTMLVLMASLYVHMFLLARQHMKRIAALPGNAPIQQRANMKGAITLTILLGVFVVCWAPFFLHLILM ITCPRNPYCTCFMSHFNMYLILIMCNSIIDPIIYAFRSQEMRKTFKEIFCCSQALSCISFL\*

## Xiphophorus multilineatus Mc4r B1

>Xmulti\_Mc4r\_B1\_nt

TCATGTGCAACTCCGTCATCGACCCCATCATCTACGCTTTCCGCAGCCAGGAGATGAGGAAGACCTT TAAGAAGATCTTCTCACAGGCTCTCTGGTGTATTAGCTTTCTGTGA

>Xmulti\_Mc4r\_B1\_aa

MNSTAQQGLIPCYLNGSLCPGTLPEKDVSGEEKDSSAGCSEQLLISTEVFLTLGIISLLENILVVAA IIKNKNLHSPKYFFICSLAVADMLVSVSNASETIVIALFNGGSLTIPVTFIKSMDNVFNSMICSSLL ASICSLLAIAIDRYITIFYALRYHNIVTIRRALLVIGSIWTCCTVSGILFIIYSESTVVLICLITMF FTVLVLMASLYVHMFLLARQHMKRIGALPGNAAIQQRANMKGAITLTILLGVFVFCWAPFFLHLILM ITCPRNPYCTCFMSHFNMYLILIMCNSVIDPIIYAFRSQEMRKTFKKIFSQALWCISFL\*

### Xiphophorus multilineatus Mc4r B2

>Xmulti\_Mc4r\_B2\_nt

>Xmulti\_Mc4r\_B2\_aa

MNSTAQQGLIPCYLNGSLCPGTLPEKDVSGEEKDSSAGCSEQLLISTEVFLTLGIISLLENILVVAA IIKNKNLHSPKYFFICSLAVADMLVSVSNASETIVIALFNGGSLTIPVTFIKSMDNVFNSMICSSLL ASICSLLAIAIDRYITIFYALRYHDIVTIRRALLVIGSIWTCCTVSGILFIIYSESTVVLICLITMS FTVLVLMASLYVHMFLLARQHMKRIGALPGNAAIQQRANMKGAITLTILLGVFVFCWAPFFLHLILM ITCPRNPYCTCFMSHFNMYLILIMCNSVIDPIIYAFRSQEMRKTFKKIFSQARVLAFCETLQVVHL\*