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Abstract: This retrospective study aims to provide an intra-individual comparison of aortic CT
angiographies (CTAs) using first-generation photon-counting-detector CT (PCD-CT) and third-
generation energy-integrating-detector CT (EID-CT). High-pitch CTAs were performed with both
scanners and equal contrast-agent protocols. EID-CT employed automatic tube voltage selection
(90/100 kVp) with reference tube current of 434/350 mAs, whereas multi-energy PCD-CT scans were
generated with fixed tube voltage (120 kVp), image quality level of 64, and reconstructed as 55 keV
monoenergetic images. For image quality assessment, contrast-to-noise ratios (CNRs) were calculated,
and subjective evaluation (overall quality, luminal contrast, vessel sharpness, blooming, and beam
hardening) was performed independently by three radiologists. Fifty-seven patients (12 women,
45 men) were included with a median interval between examinations of 12.7 months (interquartile
range 11.1 months). Using manufacturer-recommended scan protocols resulted in a substantially
lower radiation dose in PCD-CT (size-specific dose estimate: 4.88 ± 0.48 versus 6.28 ± 0.50 mGy,
p < 0.001), while CNR was approximately 50% higher (41.11 ± 8.68 versus 27.05 ± 6.73, p < 0.001).
Overall image quality and luminal contrast were deemed superior in PCD-CT (p < 0.001). Notably,
EID-CT allowed for comparable vessel sharpness (p = 0.439) and less pronounced blooming and
beam hardening (p < 0.001). Inter-rater agreement was good to excellent (0.58–0.87). Concluding,
aortic PCD-CTAs facilitate increased image quality with significantly lower radiation dose compared
to EID-CTAs.

Keywords: CT angiography; aorta; photon-counting-detector CT; radiation dose reduction; spectral
imaging

1. Introduction

Cardiovascular disease constitutes an increasing concern in an aging population
and in patients with risk factors such as hypertension, diabetes mellitus, dyslipidemia,
or smoking history [1]. In recent decades, the morbidity and mortality associated with
aortic disease have steadily increased [2]. Despite major advances in diagnosis as well
as in minimal invasive and surgical treatment, the burden of disease remains high [3].
Computed tomography angiography (CTA) of the aorta plays a central role in the diagnosis,
risk evaluation, and follow-up of aortic disease [4], being performed repeatedly in the pre-
and post-treatment setting. The resulting radiation exposure is a risk factor for secondary
malignancies [5], especially in younger patients with genetic aortic diseases like Marfan or
Ehlers–Danlos syndrome [6,7].

Following the “As Low As Reasonably Achievable” (ALARA) principle, reducing the
radiation exposure while ensuring diagnostic image quality is crucial, and innovations such
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as automated tube voltage selection (ATVS) or low-kV imaging have been instrumental
for dose saving in energy-integrating-detector CT (EID-CT) [6,8]. With the introduction
of dual-energy CT (DE-CT) scanners, an attempt was made to also reduce the amount
of contrast medium required by using virtual monoenergetic images (VMI) in order to
prevent potential kidney damage. For this purpose, reconstructions with a low keV level
close to the k edge of iodine were generated from multienergetic spectral data to maintain
the luminal attenuation despite reduced contrast agent dosage. One major disadvantage of
DE-CT, however, lies in the higher radiation exposure per scan compared to single-energy
CT, especially for abdominal CTA [9–11], although a dose benefit is achievable in multi-
phase scans due to virtual non-contrast reconstructions. Further limiting DE-CT for aortic
CTA, image noise is considerably increased at low keV levels, subsequently hampering
diagnostic assessability [12,13].

With the recent introduction of photon-counting-detector CT (PCD-CT) to clinical rou-
tine, the CT landscape has been altered substantially. Unlike conventional EID-CT, PCD-CT
converts incoming photons directly into electrical voltage, allowing the measurement of
each photon’s specific energy. This facilitates spectral imaging without dose penalty, while
eliminating electronic noise [14]. Previous studies comparing PCD-CT with conventional
EID-CT have shown improved image quality on the one hand and radiation-saving poten-
tial on the other [15,16]. However, dedicated intra-individual comparisons of aortic CTA
with the two detector technologies are lacking thus far.

Therefore, the aim of this study was to investigate the differences between PCD-CT
and EID-CT regarding image quality and radiation dose in patients with consecutive aortic
CTAs on both scanners using manufacturer-recommended settings.

2. Materials and Methods
2.1. Study Design and Ethical Compliance

The local ethics committee granted approval for this single-center retrospective study
(protocol number: 20230928 01). The need for additional written informed consent was
waived and the principles of the declaration of Helsinki were adhered.

2.2. Study Protocol and Patient Population

The institutional database was searched for patients who had undergone PCD-CTA
of the thoraco-abdominal aorta between October 2022 and August 2023. Only patients
who had previously received a comparable EID-CTA examination with a third-generation
dual-source CT scanner (Somatom Force, Siemens Healthineers, Forchheim, Germany)
were considered for study inclusion. Additional exclusion criteria were deviations from the
standard scan or contrast medium protocols and incomplete scan volumes. A maximum
difference of 10 mL contrast medium in favor of EID-CT was tolerated and did not lead to
study exclusion.

Within the study period, a total of 421 PCD-CTA scans of the aorta were performed
at our institution. Of these, 170 examinations were excluded from the study due to the
lack of a previous EID-CTA examination. Of the remaining 251 scans, 27 were performed
with a different EID-CT scanner, 41 exhibited an incomplete scan volume, 114 displayed
deviations from the standard scan protocol, and 12 cases presented relevant deviations
from the standard contrast agent protocol. The final study cohort comprised 57 patient
examinations (12 woman, 21.1%; and 45 men, 78.9%) with matched pairs of PCD-CTA and
EID-CTA examinations (Figure 1). Mean age at the time of imaging was 64.19 ± 10.31 years
(PCD-CT) and 62.84 ± 10.13 years (EID-CT). The median interval between examinations
was 12.7 months (IQR 11.1 months).
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Figure 1. Flowchart visualizing patient exclusion criteria. EID-CT, energy-integrating detector 
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ride-based system (Naeotom Alpha, Siemens Healthineers). Acquiring multienergetic da-
tasets (Quantum plus) with a fixed tube voltage of 120 kVp and a reference image quality 
index of 64 (dimensionless index to compare image quality between different scan proto-
cols), the standard scan mode with 2 × 2 pixel binning and a collimation of 144 mm × 0.4 
mm were used in all patients. EID-CTA were performed in single-energy mode with ATVS 
(CARE kV, Siemens Healthineers), resulting in scans with either 90 kVp (reference tube 
current of 434 mAs) or 100 kVp (350 mAs). In EID-CT two detector acquiring modus with 
96 mm × 0.6 mm collimation using z flying focal spot was used resulting in an effective 
collimation of 192 mm × 0.6 mm. Automatic tube current modulation (CARE Dose 4D, 
Siemens Healthineers) was employed for radiation saving in both cases. 

2.4. Image Reconstruction 
Using a slice thickness/increment of 3.0 mm and a soft reconstruction kernel (Bv 36), 
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Figure 1. Flowchart visualizing patient exclusion criteria. EID-CT, energy-integrating detector
computed tomography; PCD-CT, photon-counting detector computed tomography.

2.3. CTA Protocols

Irrespective of scanner, CTA examinations were conducted with manufacturer-recommended
ECG-triggered high-pitch protocols (pitch factor 3.2, rotation time 0.25 s in cranio-caudal
direction. PCD-CTA was performed with a first-generation cadmium-telluride-based sys-
tem (Naeotom Alpha, Siemens Healthineers). Acquiring multienergetic datasets (Quantum
plus) with a fixed tube voltage of 120 kVp and a reference image quality index of 64
(dimensionless index to compare image quality between different scan protocols), the
standard scan mode with 2 × 2 pixel binning and a collimation of 144 mm × 0.4 mm
were used in all patients. EID-CTA were performed in single-energy mode with ATVS
(CARE kV, Siemens Healthineers), resulting in scans with either 90 kVp (reference tube
current of 434 mAs) or 100 kVp (350 mAs). In EID-CT two detector acquiring modus with
96 mm × 0.6 mm collimation using z flying focal spot was used resulting in an effective
collimation of 192 mm × 0.6 mm. Automatic tube current modulation (CARE Dose 4D,
Siemens Healthineers) was employed for radiation saving in both cases.

2.4. Image Reconstruction

Using a slice thickness/increment of 3.0 mm and a soft reconstruction kernel (Bv 36),
an axial image stack was created and analyzed for all CT examinations. Since every PCD-
CTA comprises a multi-energy dataset with intrinsic spectral information, monoenergetic
images were reconstructed at 55 keV, following manufacturer recommendations. Field
of view was kept constant at approximately 350 × 350 mm with slight variations in case
of a larger abdominal girth. The pixel matrix for EID-CTA scans was fixed at 512 × 512,
while the PCD-CT scanner automatically adjusts the matrix depending on the field of
view (512 to 768 pixels). CT protocols and image reconstruction settings are summarized
in Table 1.
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Table 1. Scan parameters and image reconstruction settings.

Parameters/Settings EID-CT PCD-CT

Collimation 192 mm × 0.6 mm * 144 mm × 0.4 mm

Tube voltage 90/100 kVp (ATVS) 120 kVp

Rotation time 0.25 s 0.25 s

Pitch 3.2 3.2

Reconstruction kernel Bv36 Bv36

Slice thickness/increment 3.0 mm 3.0 mm

Iterative reconstruction level ADMIRE, level 3 QIR, level 3
ADMIRE, ADvanced Modeled Iterative REconstruction; ATVS, Automatic tube voltage selection; EID-CT, energy-
integrating-detector computed tomography; PCD-CT, photon-counting-detector computed tomography; QIR,
Quantum Iterative Reconstruction. * two detectors with 96 mm × 0.6 mm fusion z flying focal spot.

2.5. Contrast Agent Protocol

The standard protocol was specified as follows: 20 mL saline pre-bolus, followed
by bolus injection of 60 mL iodine contrast medium (Imeron 350 mg iodine/mL; Bracco,
Milan, Italy) and a subsequent 20 mL saline post-bolus. The application was performed
via a 20-Gauge peripheral vein catheter and an automatic injector (CT motion, Ulrich
GmbH, Ulm, Germany) at a flow rate of 3.5 mL/s. To ensure proper arterial enhancement,
bolus tracking was performed with a region of interest (ROI) positioned in the descending
thoracic aorta (trigger threshold 100 HU; delay 7 s).

2.6. Quantitative Image Comparisons

The intravascular attenuation (HUartery) was measured using a five-segment model
by manually placing ROIs in the ascending thoracic aorta (1), aortic arch (2), descending
thoracic aorta (3), infrarenal abdominal aorta (4), and common iliac artery (5). In addition,
signal attenuation in muscle tissue (HUmuscle) and the standard deviation of HU values in
fat tissue (SDfat; considered representative of image noise) were measured on the same
image slice using ROIs of similar size. Contrast-to-noise ratio without (CNR) and with
dose-correction (CNRD) were calculated using the following formulas:

CNR =

(
HUartery − HUmuscle

)
SD f at

and CNRD =
CNR√

CTDI Vol

2.7. Qualitative Image Comparisons

Image quality was further assessed subjectively using four evaluation criteria: overall
image quality, luminal contrast, vascular sharpness, and influence of blooming/beam
hardening. Two radiology residents (with 1 and 6 years of training in vascular imaging) and
a board-certified radiologist with 9 years of experience in the field evaluated each dataset
independently using a five-point rating scale (1: non-diagnostic, 2: poor, 3: moderate,
4: good, 5: excellent), while being blinded to all clinical and protocol-related information.

2.8. Statistical Analysis

Statistical analysis was conducted using specialized software (DATAtab Team 2023,
DATAtab e.U., Graz, Austria). Metric data were analyzed for normal distribution using
Kolmogorov–Smirnov tests. Mean ± standard deviation is reported for continuous vari-
ables with normal distribution, while median values (interquartile ranges, IQR) are stated
otherwise. To compare objective and subjective image quality parameters, non-parametric
t-tests or Wilcoxon signed rank tests were employed, with statistical significance being
assumed at p < 0.050. Of note, for subjective image parameters, the ratings of all three ob-
servers were pooled. Kendall’s W was used to determine the level of inter-rater agreement.
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Coefficients between 0.5 and 0.8 were considered indicative of good agreement, whereas
higher coefficients were presumed to indicate excellent agreement [17].

3. Results
3.1. Patient Characteristics and Radiation Dose

No significant difference in body mass index was found between patients at the time of
examination (PCD-CT: 24.68 ± 2.20 kg/m2 versus EID-CT: 24.92 ± 2.36 kg/m2; p = 0.187).
Automatic tube current modulation predominantly selected a tube voltage of 100 kVp
(52 patients), while 90 kVp was only chosen for five patients.

Using manufacturer-recommended scan protocols resulted in a significant reduction in
volume computed tomography dose index (CTDIVol: PCD-CT: 3.95 ± 0.54 mGy versus EID-
CT: 4.97 ± 0.57 mGy; p < 0.001) and size-specific dose estimate (PCD-CT: 4.88 ± 0.48 mGy
versus EID-CT: 6.28 ± 0.50 mGy; p < 0.001) with the novel detector technology (Figure 2).
Patient characteristics are summarized in Table 2.
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Figure 2. Computed tomography dose index (top) and size-specific dose estimation (bottom)
for photon-counting-detector CT and energy-integrating-detector CT. Boxplots show median and
25%/75% quantile (solid line), minimum and maximum as well as mean value with standard devia-
tion (dashed line). EID-CT, energy-integrating detector computed tomography; PCD-CT, photon-
counting detector computed tomography.
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Table 2. Patient characteristics.

Characteristics EID-CT PCD-CT p-Value

Age (years) 62.84 ± 10.13 64.19 ± 10.31 <0.001

Weight (kg) 78.00 (67.00–89.00) 75.00 (65.50–84.50) 0.285

Height (m) 1.78 (1.68–1.88) 1.76 (1.62–1.90) 0.657

BMI (kg/m2) 24.92 ± 2.36 24.68 ± 2.20 0.187

CTDIVol (mGy) 4.97 ± 0.57 3.95 ± 0.54 <0.001

SSDE (mGy) 6.28 ± 0.50 4.88 ± 0.48 <0.001
Normally distributed variables are given as mean ± standard deviation, otherwise we report median values
and interquartile ranges in parentheses. BMI, body mass index; CTDIVol, volume computed tomography dose
index; EID-CT, energy-integrating-detector computed tomography; PCD-CT, photon-counting-detector computed
tomography; SSDE, size-specific dose estimate.

3.2. Objective Image Quality

Averaged attenuation in the vascular lumen was significantly higher in PCD-CT
(528.53 ± 77.28 HU) than in EID-CT (368.8 ± 62.63 HU; p < 0.001), while the used contrast
agent dose was equal (60.60 ± 1.30 mL versus 60.69 ± 1.26 mL; p = 0.958). Image noise
measurements in virtual monoenergetic PCD-CT reconstructions at 55 keV and polychro-
matic EID-CT scans at 90/100 kVp were equal (PCD-CT: 11.99 ± 1.4 HU versus EID-CT:
11.99 ± 1.32 HU; p = 0.943), resulting in an approximately 50% higher CNR when using the
PCD-CT (41.11 ± 8.68 versus 27.05 ± 6.73; p < 0.001). Taking into account the applied radi-
ation dose, CNRD in PCD-CTA was 70% higher compared to EID-CTA (21.25 ± 5.54 versus
12.33 ± 3.44; p < 0.001). Results are summarized in Figure 3 and Table 3. A side-by-side
comparison of the achieved CTA images is shown in Figure 4.
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Table 3. Image quality parameters. EID-CT, energy-integrating-detector computed tomography;
PCD-CT, photon-counting-detector computed tomography; HU, Hounsfield unit.

Image Quality Parameter EID-CT PCD-CT p-Value

Vessel attenuation avg. (HU) 368.80 ± 62.63 528.53 ± 77.28 <0.001

Attenuation muscle avg. (HU) 53.80 ± 5.02 47.57 ± 5.80 <0.001

SD attenuation fat avg. (HU) 11.99 ± 1.32 11.99 ± 1.40 0.943

Contrast-to-noise-ratio 27.05 ± 6.73 41.11 ± 8.68 <0.001

Dose-corrected contrast-to-noise-ratio 12.33 ± 3.44 21.25 ± 5.54 <0.001
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Figure 4. Side-by-side comparison between energy-integrating-detector computed tomography
(EID-CT) (A,C) and photon-counting-detector CT (PCD-CT) angiography (B,D) in a 61-year-old man
with surgically repaired aortic dissection. EID-CT: CTDIVol 5.93 mGy; SSDE 6.52 mGy. PCD-CT:
CTDIVol 4.58 mGy; SSDE 5.26 mGy. (A,B) representative axial orientated CTA images (reconstruction
kernel Bv36; slice thickness/increment 3 mm; window setting: width 700 HU/center 100 HU)
(C,D) cinematic volume rendering images.

3.3. Subjective Image Quality

Overall subjective image quality and lumen attenuation were substantially higher for
PCD-CT compared to EID-CT (5 [IQR 5-5] versus 4 [IQR 4-5], each; p < 0.001). No significant
difference in vessel sharpness was ascertained between the two scanners (both 5 [IQR 4-5],
p = 0.439). Blooming and beam hardening artefacts were considered more pronounced in
PCD-CT than EID-CT (4 [IQR 4-4] versus 4 [IQR 4-5]; p < 0.001). Inter-reader reliability
was good to excellent, with the lowest level of agreement being established for lumen
attenuation in EID-CT (W = 0.58) and the highest level of agreement for blooming/beam
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hardening in EID-CT (W = 0.87). The pooled rating results of all three readers are visualized
in Figure 5, while a side-by-side visualization of the differences in the subjectively assessed
image characteristics of EID-CT and PCD-CT is shown in Figure 6.
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Figure 6. Side-by-side comparison between energy-integrating detector computed tomography
(EID-CT) (A) and photon-counting detector CT (PCD-CT) angiography (B) in a 56-year-old man with
TEVAR. EID-CT: CTDIVol 5.73 mGy; SSDE 6.42 mGy. PCD-CT: CTDIVol 5.72 mGy; SSDE 6.39 mGy.
Representative axial orientated CTA images (reconstruction kernel Bv36; slice thickness/increment
3 mm; window setting: width 700 HU/center 100 HU). (A) EID-CT with subjective advantages in
terms of blooming/beam hardening (compare wall calcification in the dissection membrane) and
vessel sharpness (see dissection membrane). (B) PCD-CT with advantages in terms of luminal contrast
and overall image quality.
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4. Discussion

In this retrospective study, we performed intra-individual comparisons of image
quality and radiation exposure in aortic photon-counting and energy-integrating detector
CT angiographies using manufacturer-recommended scanner settings. The obtained results
indicate significant dose reduction potential with simultaneous improvement of image
quality when employing the novel detector technology.

Studies dealing with VMI of PCD-CT in vascular imaging recommend different keV
levels between 45 and 70 keV for contrasted depiction of the aorta. However, a compromise
has to be found between the required intraluminal attenuation and an acceptable image
noise level, as these increase progressively at low keV levels [18–21]. In accordance with
the employed PCD-CT system’s standard setting, virtual monoenergetic reconstructions at
55 keV were investigated in the current study. In principle, VMI could also be generated
with the used EID-CT scanner. However, since image acquisition in dual-energy scan
mode is associated with increased radiation exposure, the clinical use of VMI for aortic
assessment is mainly restricted to multiphase examinations, which offset the additional
dose burden by using a virtual instead of a true non-contrast phase. Moreover, DE-CT limits
the applicable pitch factor, which increases radiation dose and susceptibility to motion
artifacts even further [22]. Hence, high-pitch low-kV single-phase aortic imaging has
become the standard for EID-CTA [10,11,15,16,23] and is used for comparison to PCD-CTA
in the present investigation.

In accordance with previous research, monoenergetic reconstructions of PCD-CT data
showed significantly improved intraluminal attenuation over the corresponding low-kV
EID-CTA scans. Euler et al. compared different VMI level settings for PCD-CTA with
single-energy EID-CTA in a matched patient population [19]. While the authors reported
slightly higher vessel attenuation and image noise as well as slightly lower CNR in 55 keV
reconstructions, we were able to demonstrate significantly higher CNR based on superior
intraluminal attenuation and almost equal image noise. We assume that this discrepancy
may be attributed to the overall higher radiation dose applied in our study. With a quasi-
linear relationship between radiation dose and CNR in the clinical dose range [24], an
additional radiation dose reduction of approximately 35% in PCD-CT would be possible
(from about 4 mGy to 2.6 mGy) to achieve the same CNR as in EID-CT. Together with the
already 20% lower applied dose of the PCD-CT scan, this results in an extrapolated total
dose reduction of about 55%. While the extrapolated CNR of our examinations at the dose
used by Euler et al. [19] (CTDIVol 2.6 mGy) calculated according to the principle mentioned
above would be about 15 for the EID-CT and thus comparable with the reported 17 ± 8 by
Euler et al., in contrast, the calculated CNR of the PCD-CT scan would be 27 and thus
significantly higher than the CNR stated by Euler et al. (16 ± 5). Thus, the differences in
image quality shown by our study should remain almost unchanged even if this lower
radiation dose would be applied. Further studies are needed to verify this assumption.

In contrast to Euler et al., who ascertained no significant differences between the
subjective image quality of 55 keV PCD-CT and conventional EID-CT (subsequently rec-
ommending VMI at 40–45 keV as the optimal setting), we were able to demonstrate
considerable advantages for PCD-CT VMI at 55 keV regarding overall image quality and
intraluminal contrast, while vessel sharpness and influence by blooming or beam hard-
ening were also deemed clinically acceptable. This finding is supported by our objective
image quality assessment. It must be mentioned that, irrespective of scanner, no CTA
examination was considered diagnostically inacceptable. Therefore, further dose reduction
may be feasible with either CT system. Even more aggressive low-dose protocols would
particularly benefit younger patients, e.g., with genetic aortic diseases or bicuspid aortic
valves, since these individuals require repeated CTA examinations and thus have a high
lifetime radiation exposure. Future investigations are certainly warranted to find the mini-
mum tolerable radiation dose for aortic CTA generated with PCD-CT. With that being said,
the radiation dose in the present investigation was already low compared to other stud-
ies, which applied 3.7 mGy [22] and 8.3 mGy [25], respectively, with the exception being
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Euler et al., who reported a very low dose of merely 2.6 mGy [19]. However, our results
suggest that even this radiation dose could be considerably reduced while maintaining
diagnostic quality imaging.

In another recent study, Higashigaito et al. attempted to develop a low-contrast
media protocol for PCD-CT with equal radiation dose and image quality [18]. Depending
on the CNR gain in PCD-CT, the amount of applied contrast agent was reduced by the
same proportion. The authors concluded that a 25% reduction in contrast agent volume
(25.9 mg versus 19.4 mg iodine) results in noninferior subjective and objective image quality.
However, the contrast agent volume of 60 mL (Imeron 350 mg/mL Iodine) used in our study
corresponds to an iodine amount of 21.0 mg, which is only slightly (8%) above the protocol
suggested by Higashigaito et al. With this contrast agent protocol, the achievable CNR in
EID-CT was about 35% lower than in PCD-CT. Since Higashigaito et al. demonstrated a
linear relationship between the administered amount of contrast agent and the resulting
CNR, we can assume that applying merely 40 mL of contrast agent (14 mg iodine) in PCD-
CTA would be sufficient to match the CNR of EID-CTA with the regular contrast agent
volume. By increasing the applied radiation dose up to the national dose reference value
(CTDIVol 7 mGy), i.e., 75% more than used in our study, the required amount of contrast
agent could theoretically even be reduced to about 25 mL if PCD-CT is used instead of
EID-CT. This finding is especially relevant for patients with renal insufficiency, who could
be examined via CTA with a lower risk for acute/chronic kidney failure.

Our results suggest the need for explicit scan protocols adapted to the examined
patient population. In our opinion, at least a low-dose protocol to minimize stochastic
radiation effects of repetitive CT examinations and a low-contrast protocol to protect the
patient’s kidney function should be established. In addition to the dose reduction potential
of PCD-CT compared to conventional EID-CT described above, our subjective assessment
suggests a diagnostically justifiable image quality reduction below the quality generated by
EID-CT by reducing the image quality (IQ) level leading to further radiation dose reduction.
A similar situation applies to a low-contrast protocol using a contrast medium quantity of
approx. 30 mL (350 mg/mL iodine), optionally with a compensatory elevation of the IQ
level with a slight increase in the applied radiation dose, which should lead to diagnostic
image quality and contrast-to-noise-ratio. Further studies are required to define the exact
scan parameters, eventually using preliminary phantom examinations.

Several methodological limitations have to be acknowledged. First, due to a previous
EID-CTA examination being defined as a prerequisite for study inclusion, the investigated
sample comprised only 57 patients. Second, the investigated data were collected retrospec-
tively at one tertiary-care university hospital in the form of a single-center study. Third,
despite being technically feasible, no ultra-high resolution PCD-CT scans were performed,
particularly as the scan time would be more than twice as long compared to standard
mode due to the deviating maximum table feed, which is disadvantageous for vascular
examinations. Instead, we focused on standard resolution CTA scans to maximize com-
parability to EID-CT. Fourth, acquisition of multienergetic datasets with a lower kV level
(<100 kV) would have been desirable for PCD-CT. However, this setting was not available
for clinical use at the time of writing. Fifth, a comparison with VMI of EID-DE-CTA was
omitted because dual-energy acquisition has been superseded by low kV single-energy
examinations in recent years for this particular imaging task. Sixth, inter-vendor and inter-
scanner transferability of results was not investigated. Finally, diagnostic accuracy was not
investigated, however, all included examinations were deemed to be of diagnostic quality.

Concluding, aortic PCD-CTA allows for significantly improved subjective and objec-
tive image quality while requiring substantially lower radiation dose compared to EID-CTA,
when using manufacturer-recommended scan protocols.
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