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Abstract: Kisspeptins (KPs, KISS1) and their receptor (KISS1R) play a pivotal role as metastasis
suppressor for many cancers. Low or lost KP expression is associated with higher tumor grade,
increased metastatic potential, and poor prognosis. Therefore, KP expression has prognostic relevance
and correlates with invasiveness in cancers. Furthermore, KISS1R represents a very promising target
for molecular imaging and therapy for KISS1R-expressing tumors. The goal of this study was to
evaluate the developed KISS1-54 derivative, [68Ga]KISS1-54, as a PET-imaging probe for KISS1R-
expressing tumors. The NODAGA-KISS1-54 peptide was labeled by Gallium-68, and the stability
of the resulting [68Ga]KISS1-54 evaluated in injection solution and human serum, followed by an
examination in different KISS1R-expressing tumor cell lines, including HepG2, HeLa, MDA-MB-231,
MCF7, LNCap, SK-BR-3, and HCT116. Finally, [68Ga]KISS1-54 was tested in LNCap- and MDA-MB-
231-bearing mice, using µ-PET, assessing its potential as an imaging probe for PET. [68Ga]KISS1-54
was obtained in a 77 ± 7% radiochemical yield and at a >99% purity. The [68Ga]KISS1-54 cell uptake
amounted to 0.6–4.4% per 100,000 cells. Moreover, the accumulation of [68Ga]KISS1-54 was effectively
inhibited by nonradioactive KISS1-54. In [68Ga]KISS1-54-PET, KISS1R-positive LNCap-tumors were
clearly visualized as compared to MDA-MB-231-tumor implant with predominantly intracellular
KISS1R expression. Our first results suggest that [68Ga]KISS1-54 is a promising candidate for a
radiotracer for targeting KISS1R-expressing tumors via PET.

Keywords: [68Ga]KISS1-54; KISS1-54; KISS1 receptor; GPR54; kisspeptin; human tumor cell lines;
positron emission tomography; PET

1. Introduction

Kisspeptins (KPs) summarize the family of KISS1 peptides, which bind at the KISS1
receptor (KISS1R or GPR54) with high affinity. Among the KPs, KISS1-54 is the best
characterized representative (Ki 1.45 ± 0.1 nM for KISS1-54) [1,2]. The Kiss1 gene was
first identified as a metastasis suppressor gene in melanoma, which suppresses metastasis
without affecting the formation of primary tumor [3]. Since then, Kisspeptin was also
identified in pancreatic, lung, breast, ovarian, gastric, colon, bladder, esophageal, and small
intestine cancer [4–9].

The KISS1R belongs to the G protein-coupled receptors activating the G protein Gαq/11.
KISS1R has been found largely in many human cancers, while its expression in most healthy
tissues is relatively low [1,2]. The activation of KISS1R by KPs causes extensive downstream
signal transduction, such as a decrease in expression of matrix metalloproteinase 9, which
reduces the degradation of the extracellular matrix, leading to decreased cell motility and
invasion [10]. Moreover, via the Gαq/11 cascade after KISS1R activation, the intracellular
Ca2+ level increases and suppress cell motility [11]. The underlying clinical data for most
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tumors, e.g., melanoma, ovarian, bladder, renal cell cancer, esophageal squamous cell,
and prostate carcinoma, demonstrated that a downregulation of KP/KISS1R correlates
with metastasis and a worse prognosis for patients [3,6,12–16]. These findings support
the pivotal role of the KP/KISS1R system as a metastasis suppressor. However, further
studies convincingly demonstrated a significant increase in the KP/KISS1R expression in
primary tumors of higher or invasive grade and in metastatic tumors [17,18]. Particularly
in estrogen receptor-alpha (ERα)-negative breast cancer, the KISS1R activation has been
reported to increase cell migration and invasiveness, and thus ERα appears to negatively
regulate KISS1R-mediated cell invasion [19–21]. Thus, contrary to its anti-metastatic role in
many tumors, KP/KISS1R might also exhibit pro-metastatic properties, depending on the
tumor entity.

Since KISS1R is either lost in higher-grade tumors or specifically expressed in some
tumor entities, such as breast cancer, the expression of KISS1R has been considered a very
interesting prognostic marker that can provide valuable information on tumor grade and
prognosis, depending on the tumor entity [9,12,14,15,21,22]. In addition, the KISS1 receptor
represents a promising target for molecular imaging by positron emission tomography
(PET), allowing for the noninvasive detection of KISS1R-expressing tumors. On the one
hand, addressing KISS1R should open up the possibility of the prognosis of progression in
tumor patients. On the other hand, KISS1R-positive tumor patients could be selected for
subsequent individualized radionuclide therapy with the corresponding α/β−-emitting
KISS1R radioligands.

In the present study, we aimed to develop a KISS1-54-based radiotracer for the visual-
ization and quantification of KISS1R in KISS1R-expressing tumors, using PET. Thus, we
developed [68Ga]NODAGA-KISS1-54 ([68Ga]KISS1-54) and tested its stability in injection
solution and human serum for further biological evaluations. Furthermore, we investigated
the [68Ga]KISS1-54 cell uptake in the selected human cell lines of different tumor entities in
both in vitro and in vivo in tumor-bearing mice, using µ-PET.

2. Results
2.1. Radiochemistry

Starting from the KISS1R-selective NODAGA-KISS1-54 peptide, we established the
synthesis of [68Ga]NODAGA-KISS1-54 ([68Ga]KISS1-54) in a one-step radiolabeling pro-
cess. The decay-corrected radiochemical yield of [68Ga]KISS1-54 was 77 ± 7%, with a
radiochemical purity of >99%, as assessed by radio-HPLC (Figure 1A). The synthesis,
including purification, formulation, and subsequent quality control, was completed after
35 min. [68Ga]KISS1-54 was stable in the injection solution: 3 h after preparation, the
radiochemical purity of the new radiotracer remained >99% (Figure 1B). For the evaluation
of the stability in vivo, [68Ga]KISS1-54 was incubated in human serum directly at the end
of synthesis (EOS). After 1 h, the radiochemical purity decreased to 98.0% (Figure 1C) and
declined continuously to 95.6% after 3 h (Figure 1D), confirming the high in vivo stability
of [68Ga]KISS1-54 over the period of analysis.
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Figure 1. Radiochemical purity and in vitro and in vivo stability. The radiochemical purity of 
[68Ga]KISS1-54 at the EOS was > 99% (A) and remained at > 99% for at least 3 h after EOS (B), as 
determined by radio-HPLC. The in vivo stability directly after EOS (C) and after 3 h (D). Despite 
the slight decrease to 95.6%, [68Ga]KISS1-54 is largely stable in vivo. 
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In order to identify appropriated tumor cell lines expressing KISS1R for in vitro bind-

ing studies, we examined different human tumor cell lines of various tumor types both by 
immunofluorescence (IF) and Western blot (WB). All selected cell lines, HepG2, HeLa, 
MDA-MB-231, MCF-7, LNCap, SK-BR-3, and HCT116, revealed marked KISS1R expres-
sion by both IF and WB (Figure 2A,B). Thus, the investigated target for [68Ga]KISS1-54 was 
present in all cell lines. However, the results from the Western blot clearly determined 
different amounts of KISS1R protein in the cell lysates obtained from the same number of 
cells (Figure 2B). The varying lamin bands in the WB can be explained by the different 
Lamin expressions of the cells, as the Pouceau-S staining showed similar amounts of 
loaded peptide (Figure 2C). 

 

 

Figure 2. Investigation of KISS1R expression via immunofluorescence and Western blot. (A) Immu-
nofluorescence staining against KISS1R and nucleus counterstaining with DAPI in HepG2, HeLa, 
MDA-MB-231, MCF-7, LNCap, SK-BR-3, and HCT116. The KISS1 receptor expression is proved in 
all cell lines. (B) In addition, KISS1R expression (43 kDa) was confirmed by Western blot in all cell 
lines examined, but KISS1R appears to be differentially expressed. (C) Ponceau-S staining after pro-
tein transfer. Comparable protein loading/transfer was detectable; thus, different Lamin A/C inten-
sities can be explained by different expressions in the examined cells. 

  

Figure 1. Radiochemical purity and in vitro and in vivo stability. The radiochemical purity of
[68Ga]KISS1-54 at the EOS was > 99% (A) and remained at > 99% for at least 3 h after EOS (B), as
determined by radio-HPLC. The in vivo stability directly after EOS (C) and after 3 h (D). Despite the
slight decrease to 95.6%, [68Ga]KISS1-54 is largely stable in vivo.

2.2. Examination of KISS1R Expression by Immunofluorescence and Western Blot

In order to identify appropriated tumor cell lines expressing KISS1R for in vitro
binding studies, we examined different human tumor cell lines of various tumor types both
by immunofluorescence (IF) and Western blot (WB). All selected cell lines, HepG2, HeLa,
MDA-MB-231, MCF-7, LNCap, SK-BR-3, and HCT116, revealed marked KISS1R expression
by both IF and WB (Figure 2A,B). Thus, the investigated target for [68Ga]KISS1-54 was
present in all cell lines. However, the results from the Western blot clearly determined
different amounts of KISS1R protein in the cell lysates obtained from the same number
of cells (Figure 2B). The varying lamin bands in the WB can be explained by the different
Lamin expressions of the cells, as the Pouceau-S staining showed similar amounts of loaded
peptide (Figure 2C).
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Figure 2. Investigation of KISS1R expression via immunofluorescence and Western blot. (A) Im-
munofluorescence staining against KISS1R and nucleus counterstaining with DAPI in HepG2, HeLa,
MDA-MB-231, MCF-7, LNCap, SK-BR-3, and HCT116. The KISS1 receptor expression is proved in all
cell lines. (B) In addition, KISS1R expression (43 kDa) was confirmed by Western blot in all cell lines
examined, but KISS1R appears to be differentially expressed. (C) Ponceau-S staining after protein
transfer. Comparable protein loading/transfer was detectable; thus, different Lamin A/C intensities
can be explained by different expressions in the examined cells.

2.3. Investigation of [68Ga]KISS1-54 in Human Tumor Cell Lines

After the KISS1R expression was analyzed, we investigated the [68Ga]KISS1-54 accu-
mulation in these cells via cell uptake studies. The results are shown in Figure 3A. The
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highest uptake levels were virtually reached after 5 min and remained nearly constant
over a 90 min incubation time. The highest uptake of [68Ga]KISS1-54 was observed in
LNCap cells and was 3.3 to 4.4% per 100,000 cells. HepG2 showed the second highest
uptake of the radiotracer, ranging from 1.2 to 2.2% per 100,000 cells, followed by MCF-7,
with an [68Ga]KISS1-54 accumulation between 1.3 and 0.9% per 100,000 cells. The low-
est uptake levels were measured in HCT116 (1.4–0.6% per 100,000 cells), HeLa (1.1–0.8%
per 100,000 cells), SK-BR-3 (0.9–0.8% per 100,000 cells), and MDA-MB-231 (0.8–0.4% per
100,000 cells). However, after comparing the cellular uptake of [68Ga]KISS1-54 of the re-
spective cell lines (Figure 3A) with their expressed KISS1R amount in the Western blot
(Figure 2B), no correlation was detected.
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In addition, the specificity of the [68Ga]KISS1-54 uptake into tumor cells was deter-
mined via the co-incubation of [68Ga]KISS1-54 with the nonradioactive KISS1-54 peptide 
in excess for 60 min. In all cell lines, we found a reduced [68Ga]KISS1-54 uptake. In detail, 
compared to the control experiments without KISS1-54 co-incubation that were per-
formed in parallel, the accumulation of [68Ga]KISS1-54 was significantly reduced in 
HepG2 to 46% (p = 0.02), in HeLa to 40% (p < 0.001), in MCF-7 to 47% (p = 0.004), in LNCap 
to 50% (p = 0.047), and in SK-BR-3 to 46% (p = 0.02). These results indicate a specific binding 
of [68Ga]KISS1-54 to KISS1R. Only in MDA-MB-231 and HCT116 did the [68Ga]KISS1-54 
uptake did not significantly decrease to 65% (p = 0.08) and 76% (p = 0.07), respectively 
(Figure 3B).  

Next, we wanted to examine if the pharmacological stimulation of KISS1R expression 
results in a higher cellular [68Ga]KISS1-54 accumulation. In a previous study, Kang et al. 
showed that the loss of KISS1R expression might be associated with KISS1R promotor 
methylation [23]. Therefore, HCT116 with a low KISS1R level was pre-incubated with 5-
Aza-2′-Deoxycytidine (Decitabine), a demethylating cytostatic that inhibits DNA-methyl-
transferase, resulting in the hypomethylation of gene promotors and reactivation of 
KISS1R gene expressions. The results from IF (Figure 4A) clearly showed that the pre-

Figure 3. In vitro uptake and blocking studies. (A) In vitro cell uptake of [68Ga]KISS1-54 in the
human cell lines HepG2, HeLa, MCF-7, MDA-MB-231, LNCap, SK-BR-3, and HCT116 over 90 min
in% per 100,000 cells. LNCap showed the highest cell uptake of up to 4.4%. For the other cell lines, the
cell uptake was significantly lower, ranging from 0.4 to 1.9%. (B) Blocking of [68Ga]KISS1-54 uptake
after 60 min of co-incubation with the nonradioactive KISS1-54 peptide (1,000-fold concentrated)
versus the [68Ga]KISS1-54 uptake after 60 min without blocking substance. — p > 0.05, * p < 0.05,
** p < 0.01, and *** p < 0.001.

In addition, the specificity of the [68Ga]KISS1-54 uptake into tumor cells was deter-
mined via the co-incubation of [68Ga]KISS1-54 with the nonradioactive KISS1-54 peptide in
excess for 60 min. In all cell lines, we found a reduced [68Ga]KISS1-54 uptake. In detail,
compared to the control experiments without KISS1-54 co-incubation that were performed
in parallel, the accumulation of [68Ga]KISS1-54 was significantly reduced in HepG2 to
46% (p = 0.02), in HeLa to 40% (p < 0.001), in MCF-7 to 47% (p = 0.004), in LNCap to 50%
(p = 0.047), and in SK-BR-3 to 46% (p = 0.02). These results indicate a specific binding
of [68Ga]KISS1-54 to KISS1R. Only in MDA-MB-231 and HCT116 did the [68Ga]KISS1-54
uptake did not significantly decrease to 65% (p = 0.08) and 76% (p = 0.07), respectively
(Figure 3B).

Next, we wanted to examine if the pharmacological stimulation of KISS1R expres-
sion results in a higher cellular [68Ga]KISS1-54 accumulation. In a previous study, Kang
et al. showed that the loss of KISS1R expression might be associated with KISS1R pro-
motor methylation [23]. Therefore, HCT116 with a low KISS1R level was pre-incubated
with 5-Aza-2′-Deoxycytidine (Decitabine), a demethylating cytostatic that inhibits DNA-
methyltransferase, resulting in the hypomethylation of gene promotors and reactivation
of KISS1R gene expressions. The results from IF (Figure 4A) clearly showed that the pre-
incubation of HCT116 cells with Decitabine (DC) resulted in an increase in the KISS1R
level. Furthermore, the [68Ga]KISS1-54 uptake was significantly increased in the DC-
pre-incubated cells as compared to that shown in the data obtained for untreated cells
(Figure 4B). Moreover, both the DC-treated HCT116 and HCT116 cells without treatment
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were co-incubated with [68Ga]KISS1-54 and KISS1-54. As shown in Figure 4C, the increased
[68Ga]KISS1-54 uptake resulting from DC treatment could be blocked by co-incubation with
KISS1-54 peptide. Therefore, it could be concluded that [68Ga]KISS1-54 binds specifically
to KISS1R.
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2.4. In Vivo Studies in Mice

To confirm the results obtained for the in vitro experiments, [68Ga]KISS1-54 was
subsequently evaluated in vivo in tumor xenografts in mice. For this purpose, we implanted
LNCap, the cell line with the highest [68Ga]KISS1-54 in vitro uptake; and MDA-MB-231, the
cell line with the lowest in vitro uptake, subcutaneously into the front flank of CD1 nu/nu
mice. PET imaging was performed after the intravenous application of [68Ga]KISS1-54.
Representative µ-PET images of mice bearing an LNCap tumor and an MDA-MB-231
tumor, respectively, are shown in Figure 5A,B. [68Ga]KISS1-54 accumulated into the LNCap
xenograft (n = 8) was clearly delineated from the surrounding tissue (Figure 5A, middle
panel). In contrast, there was no significant uptake of [68Ga]KISS1-54 in the MDA-MB-231
tumor (n = 10) (Figure 5B right panel). Tumor vitality was confirmed with a [18F]FDG-
PET scan the day before [68Ga]KISS1-54 application (Figure 5A,B, left panel). Both the
LNCap and MDA-MB-231 tumors showed a clear FDG uptake, confirming the vitality of
the implanted tumor xenografts.
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Figure 5. In vivo PET imaging. (A) Representative µ-PET images of a CD1 nu/nu mouse with a 
subcutaneously implanted LNCap tumor on the right anterior flank (white arrow Tu). Left panel: 
Control [18F]FDG-PET to verify tumor vitality and localization. Middle panel: [68Ga]KISS1-54-PET 
of the same LNCap-bearing mouse. The tumor was clearly delineated from the surrounding tissue 
(white arrow, Tu). In addition, a high [68Ga]KISS1-54 accumulation was found in the kidney and 
bladder, predominantly indicating renal clearance (white arrow Ki and Bl). Right panel: 
[68Ga]KISS1-54-PET after co-injection of [68Ga]KISS1-54 with nonradioactive KISS1-54. Visual in-
spection revealed a marked decrease in [68Ga]KISS1-54 uptake. (B) Representative µ-PET images of 

Figure 5. In vivo PET imaging. (A) Representative µ-PET images of a CD1 nu/nu mouse with a
subcutaneously implanted LNCap tumor on the right anterior flank (white arrow Tu). Left panel:
Control [18F]FDG-PET to verify tumor vitality and localization. Middle panel: [68Ga]KISS1-54-PET
of the same LNCap-bearing mouse. The tumor was clearly delineated from the surrounding tissue
(white arrow, Tu). In addition, a high [68Ga]KISS1-54 accumulation was found in the kidney and
bladder, predominantly indicating renal clearance (white arrow Ki and Bl). Right panel: [68Ga]KISS1-
54-PET after co-injection of [68Ga]KISS1-54 with nonradioactive KISS1-54. Visual inspection revealed
a marked decrease in [68Ga]KISS1-54 uptake. (B) Representative µ-PET images of a mouse with a
left subcutaneously implanted MDA-MB-231 tumor. Left panel: Clear [18F]FDG tumor uptake was
demonstrated, indicating that the tumor is vital and well grown (white arrow, Tu). Right panel:
[68Ga]KISS1-54 PET image of the same mouse. No distinct [68Ga]KISS1-54 tumor uptake can be
detected. (C/D) Semi-quantification of the [68Ga]KISS1-54 in vivo uptake in mice with LNCap (C) and
MDA-MB-231 (D) tumors. (E) Quantified blockage [68Ga]KISS1-54 tumor uptake in LNCap-bearing
mice after co-injection of [68Ga]KISS1-54 and KISS1-54 peptide in 100-fold excess.

For the quantification, we calculated the percent injected dose per gram (mean) into
tumor tissue, muscle, liver, kidney, and brain 60 min p.i. The [68Ga]KISS1-54 uptake was
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0.9 ± 0.3% ID/g in LNCap and 0.7 ± 0.3% ID/g in MDA-MB-231. The tracer accumu-
lation in the muscle, liver, and brain was about 0.5 ± 0.2% ID/g, 0.8 ± 0.3% ID/g, and
0.2 ± 0.1% ID/g, respectively, and comparable in mice with LNCap and MDA-MB-231. We
observed a rapid renal tracer clearance during the first few minutes. At the time point of
quantification, the [68Ga]KISS1-54 kidney activity in LNCap- and MDA-BA-231-bearing
mice was 66.0 ± 14.0% ID/g and 85.6 ± 30.7% ID/g, respectively (Figure 5C,D).

For a more precise determination of the potential of [68Ga]KISS1-54, we calculated
the tumor-to-muscle and tumor-to-liver ratios for both LNCap and MDA-MB-231 tumors.
The tumor-to-muscle ratio for LNCap was 2.0 ± 0.3, and for MBA-MB-231, it was 1.4 ± 0.4.
These findings are in line with the visual observations. The LNCap tumors could be
delineated from the surrounding tissue in all mice examined. In contrast, in MDA-MB-231
tumors (except for one out of ten), no clear tumor detection was possible.

In addition, the specificity of the [68Ga]KISS1-54 binding for the targeted KISS1 recep-
tor in vivo was determined following the co-injection of [68Ga]KISS1-54 with the nonra-
dioactive KISS1-54 at a 100-fold concentration in LNCap-bearing mice. The initial uptake
of [68Ga]KISS1-54 into tumor xenografts could be blocked by 26% to 74% (Figure 5E).

3. Discussion

Kisspeptin is a known metastasis suppressor that triggers wide signal transduction
downstream after binding to its G protein-coupled receptor KISS1R, leading to a suppres-
sion of metastasis in most cancer types [1,2]. Hence, the loss of KP/KISS1R in tumors has
been associated with a poor prognosis for patients [3,6,12–16]. In breast cancer, however,
KP/KISS1R has been found to play a diametric role. There is a lot of evidence that the
KP/KISS1R system positively correlates with tumor invasiveness and poor prognosis in
most breast cancers [24,25]. This discrepancy is not fully understood yet, but, in both
cases, the KP/KISS1R system appears to be a reliable tumor-dependent prognostic marker
which could be used to predict the progression of the disease and to identify possible
therapeutic options [9,12,14,15,21,22], making KISS1R a promising molecular target for
molecular imaging and targeted therapy for KISS1R-expressing tumors.

In the present study, we developed [68Ga]KISS1-54 as a potential radiotracer for
addressing the KISS1 receptor in tumors, starting from the KISS1R selective peptide
NODAGA-KISS1-54, which was used as a precursor. The development includes the ra-
diolabeling of the NODAGA-KISS1-54 peptide by the positron emitter Gallium-68 (68Ga)
and a preclinical evaluation of [68Ga]KISS1-54 in cell culture and tumor-bearing mice to
assess its suitability as a PET radiotracer for molecular imaging. After the establishment
of [68Ga]KISS1-54 as a radiotracer for PET diagnostics, an extended application for tumor
therapy after a successful radiolabeling of KISS1-54 with α/β−-emitting radionuclides
is envisaged.

Radiolabeling, purification, formulation, and quality control of the obtained [68Ga]KISS1-54
were completed after 35 min, which is an acceptable time for further preclinical investi-
gations and for potential clinical studies [26]. In vitro and ex vivo investigations of the
stability showed that [68Ga]KISS1-54 is stable in the injectable solutions, as well as in human
serum, up to 3 h after preparation.

We first determined the expression of KISS1R, the target of the newly developed
[68Ga]KISS1-54 radiotracer in selected human tumor cell lines of different tumor types.
KISS1R expression was assessed via both immunofluorescence and Western blot. However,
the Western blot results revealed that the expression level of KISS1R protein appears to be
different in the cell lines. Our findings regarding MCF-7 and MDA-MB-231 cell lines are
in line with the results reported by Ziegler et al. and Goertzen et al. [20,27]. Furthermore,
Ikeguchi and coworkers reported increased KISS1R expression in hepatocellular carcinoma
tissues compared to normal liver tissues. The detected KISS1R expression in HepG2 is in
line with these results, as well [14]. SK-BR-3 was selected, assuming low KISS1R expression,
as described by Blake et al. Again, our results confirmed the lower level of KISS1R in
SK-BR-3 compared to the MCF-7, MDA-MB-231, or HeLa cells [28].
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The determined in vitro uptake of about 0.6–4.4% of [68Ga]KISS1-54 is comparable to
the uptake levels of other radiotracers targeting cell receptors, e.g., RGD- or NRG-peptides
that bind to integrin or aminopeptidase N, respectively, expressed on activated endothelial
and tumor cells [29,30]. In contrast, the cell uptake of radiotracers that are internalized and
trapped (e.g., FDG) is significantly higher.

The highest cellular accumulation of [68Ga]KISS1-54 was measured in LNCap cells,
followed by HepG2 and MCF-7. The remaining cells examined showed lower tracer uptake
values. Hence, the results do not correlate with the KISS1R protein expression levels in the
cells detected by Western blot. Because MCF-7, HeLa, and MDA-MB-231 had the highest
KISS1R expression, it was expected that these cells would also have the highest [68Ga]KISS1-
54 uptake. However, Goertzen et al. previously described a predominant intracellular
KISS1R expression in MDA-MB-231 [20]. This could be an explanation for the lower binding
of [68Ga]KISS1-54 to the KISS1R target and for the relatively low uptake of [68Ga]KISS1-54
in MDA-MB-231 cells in vitro. Furthermore, in many cases, tumor cells express KP, so
autocrine KP-KISS1R binding could lead to partial receptor blocking, resulting in reduced
radiotracer-KISS1R binding. KP expression on the tumor cells and its correlation with
[68Ga]KISS1-54 uptake in vitro were not investigated in this study but will be addressed in
continuing studies.

We further investigated the specificity of the uptake of [68Ga]KISS1-54 into the different
cell lines via co-incubation with non-radiolabeled KISS1-54 peptide. A significant decrease
in radiotracer uptake besides MDA-MB-231 and HCT116 indicated a specific binding of
the [68Ga]KISS1-54 to KISS1R. These results were corroborated with the results obtained
after increasing the KISS1R expression via Decitabine treatment of HCT116. The uptake
of [68Ga]KISS1-54 could be increased in the HCT116 with higher KISS1R expression (DC
treatment), and the elevated uptake could be blocked by co-incubation with KISS1-54.

Finally, we tested [68Ga]KISS1-54 in a tumor mouse model. For this purpose LNCap cells
with high in vitro [68Ga]KISS1-54 uptake and MDA-MB-231 with low in vitro [68Ga]KISS1-
54 accumulation were selected, and cells were injected subcutaneously into nude mice.
[68Ga]KISS1-54 accumulated in the LNCap tumor xenografts, whereas no visible tracer
accumulation was found in subcutaneously implanted MDA-MB-231 tumor. Accordingly,
the calculated LNCap/background ratios were higher in LNCap than in MDA-MB-231.
The highest radiotracer uptake in the kidneys and bladder indicated predominant renal
tracer excretion. In addition, accumulation was also detected in the liver. Kidney and liver
accumulations were comparable to those demonstrated by Dotterweich et al. following
an intravenous injection of the KISS1-54 peptide conjugated with a fluorescent dye in
mice [31].

Despite the positive and promising results in vivo, the total amount of [68Ga]KISS1-54
in the tumor tissue remained relatively low. Inhibition experiments injecting nonradioactive
KISS1-54 reduced the tracer uptake by only 26 ± 5% in vivo, indicating that [68Ga]KISS1-54
is also bound nonspecifically in the tumor. However, it must be taken into account that,
due to the limited injection volume, only a 100-fold excess of “cold” KISS1-54 peptide could
be injected into the mice. In comparison, the nonradioactive KISS1-54 was co-incubated in
the in vitro experiments in 1000-fold excess.

Nash et al. found that KISS1 could suppress metastasis in the absence of KISS1R,
leading to the hypothesis that an unidentified receptor for KISS1 binding might exist [32].
Similar assumptions were made in the context of KISS1 signaling in the central nervous
system [33]. If another yet unidentified receptor with lower binding affinity for KISS1 exists,
this could explain the relatively low blocking rate after the co-injection of [68Ga]KISS1-54
and the “cold” KISS1-54 peptide used as a blocking agent.

In addition, we observed a rapid tracer clearance in the first few minutes. Thus, further
[68Ga]KISS1-54 circulation was highly reduced, resulting in the relatively low absolute
tracer accumulation in the KISS1R-positive LNCap tumor.

Another aspect which could potentially affect the uptake of [68Ga]KISS1-54 in tumors
could be its structure. [68Ga]KISS1-54 is based on the 54 amino acids of the KISS1-54
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peptide, but it has been N-terminally extended by the NODAGA chelator for complexation
with 68Ga3+, which theoretically could reduce the affinity of the radioligand to KISS1R.
However, only the first 10 C-terminal amino acids are required for receptor binding [1,2].
For this reason, we assume that the NODAGA-extension does not affect the binding affinity
of the ligand.

In summary, further studies are needed to develop a more optimized KISS1 radio-
tracer with a higher tumor uptake and tumor-to-background ratio for clinical applications.
Nevertheless, to our knowledge, we radiolabeled, for the first time, a KISS1R radioligand
for PET-imaging of KISS1R-expressing tumors and successfully evaluated it in cell culture
and an in vivo experiment in a tumor xenograft. The initial promising results encourage
the further optimization of KISS1R radioligands.

4. Material and Methods
4.1. Materials

The NODAGA-KISS1-54 peptide used as the starting material for radiolabeling was
synthesized commercially by Genaxxon Bioscience (Ulm, Germany) via N-terminal conjuga-
tion of KISS1-54 with the NODAGA-chelator. The C-terminal amidated peptide comprises
the peptide sequence 68–121 of the full-length peptide encoded by the Kiss1 gene sequence.
The conjugated NODAGA-KISS1-54 precursor was characterized via mass spectrometry,
and the chemical purity was proved by HPLC (>99% chemical purity). The mass spectrum
and HPLC chromatogram of the compound are provided in the Supplementary Materials.

4.2. Radiosynthesis of [68Ga]KISS1-54

[68Ga]Ga-NODAGA-KISS1-54 ([68Ga]KISS1-54) was synthesized according to a method
described previously [34]. Briefly, the synthesis was performed on a synthesis module from
Scintomics (Fürstenfeldbruck, Germany). 68GaCl3 for radiolabeling was eluted with 0.1 M
HCl from a 68Ge/68Ga-generator (GalliaPharm, Eckert & Ziegler, Berlin, Germany) into
a reaction vial containing 150 µL of 2.5 M HEPES-buffer and 10 µg of KISS1-54 peptide.
After a 10 min reaction time at 90 ◦C, the product was purified with a Sep-Pak-C18 light
cartridge (Waters, Eschborn, Germany), diluted with 0.9% NaCl (B.Braun, Melsungen,
Germany), and finally passed through a 0.2 µm sterile filter (Millex-GV, Merck-Millipore,
Darmstadt, Germany). The 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) was prepared in-house
at the Interdisciplinary PET-Centre of the University Hospital Würzburg, as described
previously [35].

The radiochemical purity of [68Ga]KISS1-54 was determined via high-performance
liquid chromatography (HPLC). A linear gradient started from 100% H2O (0.1% TFA) to
100% acetonitrile (0.1% TFA) over 10 min, with a flow rate of 0.7 mL/min, using a Nucleosil
column (100-5 C18 125 × 4.6 mm) (CS-Chromatographie, Langerwehe, Germany) and
HPLC system (Knauer, Berlin, Germany). For the determination of the in vitro stability, the
[68Ga]KISS1-54 solution was diluted in phosphate-buffered saline (PBS) and stored at room
temperature, and the HPLC runs were repeated 1 h and 3 h after the end of synthesis.

4.3. In Vivo Stability

For the determination of the in vivo stability, [68Ga]KISS1-54 was incubated in fresh
human serum at 37 ◦C for 3 h. After 0.5 h, 1 h, 2 h, and 3 h, adequate samples were
taken, purified, and analyzed via HPLC under the conditions described above. As serum
dilution and purification resulted in a low signal-to-noise ratio in the recorded HPLC
radioactivity channel, fractions were collected every 30 s, and radioactivity was measured
with a gamma counter (Wizard 2480, Perkin-Elmer, Rodgau, Germany). The measured
radioactivity (counts per minute) for each fraction was plotted versus time in a graph.

4.4. Cell Lines and Cell Culture

The human breast cancer cell lines MCF-7, SK-BR-3 and MBA-MB-231 (triple-negative),
LNCap (human prostate carcinoma lymph node metastasis), HeLa (cervix carcinoma),
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HepG2 (hepatocellular carcinoma), and HCT116 (human colon carcinoma) were purchased
commercially from DSMZ (Braunschweig, Germany). If not otherwise stated, all cell culture
media and supplements were obtained from Life Technologies (Darmstadt, Germany).

Cells were cultured as described previously [36]. In detail, MCF-7 in RPMI medium
containing 10% fetal bovine serum (FBS), 1 mM sodium pyruvate, and 0.1 M nonessential
amino acids (NEAA); HeLa and HepG2 in RPMI medium containing 10% FBS and 2 mM
Glutamax; MDA-MB-231 in Leibovitz’s L15 with 10% FBS; HCT116 and SK-BR-3 in McCoy’s
5A medium containing 10% FBS and 2 mM Glutamax; and LNCap in RPMI medium
containing 10% FBS, 1 mM sodium pyruvate, 0.1 M NEAA, 2 mM Glutamax, and 0.01 M
HEPES. All cell culture media were used without antibiotics. MCF-7, HCT116, SK-BR-3,
LNCap, HeLa, and HepG2 were maintained at 37 ◦C in a humidified incubator with a
5% CO2 atmosphere and MDA-MB-231 cells were handled without gaseous exchange.
The absence of mycoplasma in the cell culture was regularly tested using the Venor GeM
qOneStep-Kit (Minerva-biolabs, Berlin, Germany).

4.5. Immunofluorescence

Cells were seeded in 24-well plates on microscope cover glasses (VWR, Ismaning,
Germany). After fixation/permeabilization, cells were incubated overnight with anti-
KISS1R antibody (abcam, Berlin, Germany) or without primary antibody (negative control)
and then stained with Alexa-Fluor®-488 conjugated secondary antibody (abcam, Berlin,
Germany). The nucleus was counterstained with 4′,6-Diamidin-2-phenylindol (DAPI)
(Sigma-Aldrich, Deisenhofen, Germany). Fluorescence images were taken on an Axio
Scope.A1 fluorescence microscope equipped with a camera and the ZEN2 (blue edition)-
Software, version 2.0.0.0 (Zeiss, Jena, Germany). Fluorescence canals were merged using
the software FIJI (Image J, version 1.53t).

4.6. Western Blot

After counting, cells were lysed with Lämmli/β-mercaptoethanol buffer (1× 106 cells/100µL),
followed by heating to 90 ◦C for 5 min. For Western blot, 100,000 cells, respectively, 10 µL
was loaded onto an 8% polyacrylamide gel and subsequently separated via electrophore-
sis. Proteins were transferred to a nitrocellulose membrane via wet transfer, followed by
Ponceau-S staining. Before antibody incubation, the membrane was destained with water
and then blocked for 1 h with 5% milk/TRIS-buffered saline/0.1% Tween20. The mem-
brane was incubated with the appropriated primary antibodies, anti-GPR54 polyclonal
antibody, rabbit, 1:1000 (ab137483, abcam, Berlin, Germany); and anti-lamin A/C, goat,
1:500 (SC-6215, Santa Cruz, Heidelberg, Germany), respectively, at 4 ◦C, overnight. The
next day, the membrane was washed 3 times with TRIS-buffered saline/0.1% Tween20 and
then incubated with the horseradish peroxidase-conjugated secondary antibodies: goat
anti-rabbit, 1:5000 (170-6515, Bio-Rad, Feldkirchen, Germany); or donkey anti-goat, 1:10,000
(V805A, Promega, Walldorf, Germany). After 1 h of incubation and 3 times of washing
with TRIS-buffered saline/0.1% Tween20, visualization was performed using chemilumi-
nescence reagent (Cytiva, Buckinghamshire, UK). Chemiluminescence was recorded on
Amersham Imager 680 (GE Healthcare, Chicago, IL, USA).

4.7. In Vitro Cell Uptake

Cells were seeded in 24-well plates, and 1 h before [68Ga]KISS1-54 uptake, the cell cul-
ture medium was replaced by PBS/5% BSA. Cells were incubated at 37 ◦C with [68Ga]KISS1-
54 for 5–90 min or co-incubated for 60 min with [68Ga]KISS1-54 and KISS1-54 (Sigma
Aldrich, Deisenhofen, Germany). After incubation, cells were washed three times with
ice-cold PBS/5% BSA and harvested. Radioactivity was measured with a gamma-counter
(Wizard 2480, Perkin-Elmer, Rodgau, Germany), and cells were subsequently counted with
Countess 3 (Thermo Fisher Scientific, Waltham, MA, USA). In the case of treatment with
5-Aza-2′-Deoxycytidine (Decitabine (DC)), cells were preincubated for 72 h in cell culture
medium containing 5 µM Decitabine (Merck Millipore, Darmstadt, Germany).
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For data analysis, the determined accumulation of [68Ga]KISS1-54 in vitro was stan-
dardized as “uptake/100,000 cells” for a better comparison. For example, the cell number
differed between pretreatment with and without Decitabine, which is due to the treatment
itself, making standardization necessary.

4.8. Animal Studies

The animal studies were conducted according to the principles and procedures out-
lined in the Guide for the Care and Use of Laboratory Animals and were in line with the
Animal Welfare Act and the directive 2010/63/EU. All mice (CD1-Foxn1nu) were purchased
from Charles River (Sulzfeld, Germany) and held in the animal facility of the University
Hospital of Würzburg. After their arrival, they had at least a week to get used to their new
environment in the animal facility.

For implantation, cells were grown to 70–80% confluence, harvested, and placed
in PBS.

Then, 5 × 106 MDA-MB-231-cells in PBS and 5 × 106 LNCap cells in Matrigel Matrix®

without phenol-red (Corning Life Sciences B.V., Amsterdam, The Netherlands), respectively,
were inoculated subcutaneously into the front flank of eight-week-old mice. After implan-
tation, the animals were examined and monitored daily for tumor size and well-being.

4.9. µ-PET Imaging

After the tumor reached a size of ≥0.5 cm in diameter, micro-PET scans were started.
For tracer injection, and during the micro-PET scans, mice were kept under 1.5%

isoflurane anesthesia in 100% oxygen. Body temperature was maintained at a physiological
level by using heating pads throughout the whole examination period.

Then, 3.0 ± 0.9 MBq of freshly prepared [68Ga]KISS1-54 was injected intravenously
(i.v.) into the tail vein. The first animals were scanned over 80 min directly after tracer
injection to find out the optimal time point for PET acquisition. An analysis of these
dynamic PET scans revealed that the optimal tumor-to-background ratio and, thus, the
best delineation of the tumors are achieved 60 min post-injection (p.i.). Therefore, data
acquisition for all further mice started 60 min p.i. over 20 min.

Each acquired set of data was sorted with Fourier rebinning (FORE) to a 2D dataset
of sinograms, which were reconstructed with the OSEM2D reconstruction algorithm. The
software AMIDE Medical Image Data Examiner (Version 1.0.4) was used to quantify the
radioactivity uptake in various regions of interest (ROIs). For the semi-quantitative analysis
of the PET images, spherical ROIs were defined and used. For quantification, tumor-to-
muscle, tumor-to-liver, and tumor-to-lung ratios (maximal tumor uptake/mean organ
uptake) were calculated.

4.10. Statistical Analysis

The calculated cell uptake and micro-PET data were decay-corrected and expressed as
the mean ± standard deviation (SD) or normalized values ± SD. All statistical evaluations
were performed using the OriginPro 2017G software (OriginLab Corporation, Northamp-
ton, MA, USA). If applicable, means were compared using the unpaired Student’s t-test.
The p-values < 0.05 were considered statistically significant.

5. Conclusions

In conclusion, we developed, for the first time, a 68Ga-labeled KISS1-54 derivate,
[68Ga]KISS1-54, with a marked affinity for the KISS1 receptor. The preclinical evaluation in
several tumor cell lines and in tumor-bearing mice demonstrates a specific accumulation of
the new radiotracer in KISS1R-expressing tumor cells in vitro and in vivo. However, the
tumor uptake does not appear high enough for potential clinical applications. Therefore,
further improvements are necessary to ascertain the potential of KISS1-54-based radiophar-
maceuticals as candidates for the PET imaging of KISS1R-expressing tumors clinically.
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Abbreviations

BSA bovine serum albumin
DAPI 4′,6-diamidin-2-phenylindol
DC 5-Aza-2′-Deoxycytidine (Decitabine)
DMEM Dulbecco’s Modified Eagle Medium
FBS fetal bovine serum
GPR54 G protein-coupled receptor
HCl hydrochloric acid
HEPES 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid
HPLC high-performance liquid chromatography
IF immunofluorescence
i.v. intravenous
KISS1R KISS1 receptor
KISS1-54 KISS1 peptide with 54 amino acids
KP kisspeptin
NaCl sodium chloride
NEAA nonessential amino acids
NODAGA 1,4,7-triazacyclononane-1-glutaric acid-4,7-acetic acid
PBS phosphate-buffered saline
PET positron emission tomography
p.i. post-injection
ROI region of interest
RPMI Roswell Park Memorial Institute
SD standard deviation
TRIS tris(hydroxymethyl)aminomethane
[18F]FDG 2-[18F]fluoro-2-deoxyglucose
[68Ga]KISS1-54 NODAGA-KISS1-54 peptide radiolabeled with 68Ga
68GaCl3 [68Ga]gallium chloride
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