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Deep learning-enabled segmentation of
ambiguous bioimages with deepflash2

Matthias Griebel 1 , Dennis Segebarth 2, Nikolai Stein 1, Nina Schukraft2,
Philip Tovote 2,3, Robert Blum 4 & Christoph M. Flath 1

Bioimages frequently exhibit low signal-to-noise ratios due to experimental
conditions, specimen characteristics, and imaging trade-offs. Reliable seg-
mentation of such ambiguous images is difficult and laborious. Here we
introducedeepflash2, a deep learning-enabled segmentation tool for bioimage
analysis. The tool addresses typical challenges that may arise during the
training, evaluation, and application of deep learning models on ambiguous
data. The tool’s training and evaluation pipeline uses multiple expert annota-
tions and deep model ensembles to achieve accurate results. The application
pipeline supports various use-cases for expert annotations and includes a
quality assurance mechanism in the form of uncertainty measures. Bench-
marked against other tools, deepflash2 offers both high predictive accuracy
and efficient computational resource usage. The tool is built upon established
deep learning libraries and enables sharing of trained model ensembles with
the research community. deepflash2 aims to simplify the integration of deep
learning into bioimage analysis projects while improving accuracy and
reliability.

Partitioning images into meaningful segments (e.g., cells, cellular
compartments, or other anatomical structures) is one of the most
ubiquitous tasks in bioimage analysis1. Segmentation facilitates
downstream tasks such as detection (both 2D and 3D), tracking,
quantification, and statistical evaluation of image features. Depending
on thebiological analysis setting,wedistinguishbetween semantic and
instance segmentation. Semantic segmentationmeans subdividing the
image into meaningful categories2. Instance segmentation further
differentiates between multiple instances of the same category by
assigning the segmented structures to unique entities (e.g., cell 1, cell
2,…). Performing image feature segmentationmanually is tedious and
time-consuming, which severely limits scalability. Conversely, its
automated segmentation promises additional insights, more precise
analyses, and more rigorous statistics2.

Deep learning (DL) has proven to be a flexible method to analyze
large amounts of bioimage data3, and numerous solutions for auto-
mated segmentation have been proposed2,4–10. Depending on

annotated training data, these tools and analysis pipelines are well
suited for settings where the observable phenomena exhibit a high
signal-to-noise ratio (SNR), for instance, in monodispersed cell cul-
tures. However, the SNR in bioimages is often low, influenced by
experimental conditions, sample characteristics, and imaging trade-
offs. Such image material is inherently ambiguous, which hampers a
reliable analysis. A case in point is the analysis of fluorescent images of
complex brain tissue—a core technique in modern neuroscience—
which is frequently subject to various sources of ambiguity, such as
cellular and structural diversity, heterogeneous staining conditions,
and challenging image acquisition processes.

Establishing DL-based segmentation pipelines in low SNR settings
means overcoming substantial challenges during model training and
evaluation and during the application of the model for the analysis of
new images. Training and evaluation challenges commence with the
manual annotation process. Here, human experts rely on heuristic
criteria (e.g., morphology, size, signal intensity) to copewith low SNRs.
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Relying on a single human expert’s annotations for training can result
in biasedDLmodels11. At the same time, inter-expert agreement suffers
in such settings, which, in turn, leads to ambiguous training
annotations2,12. Without reliable annotations, there is no stable ground
truth, which complicates both model training and evaluation. The
application challenge emerges when DL models are deployed for
analyzing large numbers of bioimages. This scaling-up step is a crucial
leap of faith for users as it effectively means delegating control over
the study to a black box system. DL models will generate segmenta-
tions for any image. However, the segmentation quality is unknown as
the reliability of model generalizations beyond the training data can-
not be guaranteed. Selecting a representative subset of images for
training and evaluation in a single experiment is already challenging.
Maintaining a representative training set across multiple experiments
with possibly varying conditions compounds these problems andmay
eventually prevent reliable automation. For this reason, a viable
deployment needs effective quality assurance, or as Ribeiro et al.13,p. 1135]

put it, “if the users do not trust […] a prediction, they will not use it.”
In this work, we introduce deepflash2, a DL-based analysis tool

that addresses the key challenges for DL-based bioimage analysis. We
illustrate the capabilities of deepflash2 using five representative
fluorescence microscopy datasets of mouse brain tissue with varying
degrees of ambiguity. In addition, we demonstrate the tool’s perfor-
mance on three recent challenge datasets for prostate cancer grading,
multi-organ nuclei segmentation, and colonic nuclear instance seg-
mentation and classification. We benchmark the tool against other
common analysis tools, achieving competitive predictive performance
under the economical usage of computational resources.

Results
In bioimage analysis, supervised DL models are typically embedded in
two consecutive pipelines2—training and application. deepflash2
extends these pipelines to better cope with ambiguous data (Fig. 1).

The training and evaluation pipeline serves to fit a model on a
given data set. It comprises data annotation, model training, and
model validation. In deepflash2, this pipeline integrates annotations
frommultiple experts and relies onmodel ensembles to ensure highly
accurate and reliable results. The evaluation of themodel ensembles is
achieved through a two-step evaluation process. The application
pipeline leverages a trained DL model to predict the annotations of
new images. By facilitating quality monitoring and out-of-distribution
detection of newdata, deepflash2 goes a step beyondmereprediction.

Training and evaluation of DL model ensembles
Training builds upon a representative sample of the bioimage dataset
under analysis, annotated by multiple experts (the annotations can be
performed with any tool). To derive objective training annotations
frommulti-annotator data, deepflash2 estimates the ground truth (GT)
via majority voting or simultaneous truth and performance level esti-
mation (STAPLE14). deepflash2 computes similarity scores between
expert segmentations and the estimated GT (Dice score for semantic

segmentation, average precision for instance segmentation; Section
“Evaluation metrics”). These measures of inter-expert variation serve
as a proxy for data ambiguity, as shown in the second row of Fig. 2.
Well-defined fluorescent labels are typically unanimously annotated
(green), whereas ambiguous signals are marked by fewer experts
(blue). This causes a high inter-rater variability when different experts
annotate the same images11.

DL model training in deepflash2 capitalizes on model ensembles
to ensure high accuracy and reproducibility in the light of data
ambiguity11. In contrast to recent work on the segmentation of
ambiguous data, which focuses on explicitly modeling disagreements
among experts15,16, our training on the estimated GT aims to provide
the most objective basis possible for bioimage analysis. Furthermore,
the usage of model ensembles facilitates reliable uncertainty
quantification17. To ensure training efficiency, deepflash2 leverages
pretrained feature extractors (encoders) and advanced training stra-
tegies (see “Methods”, Section “Training Procedure”).

The model ensemble predicts semantic segmentation maps,
which are evaluated on a hold-out test set (Fig. 2, third row). For
instance segmentation tasks, we leverage the cellpose library9, a gen-
eralist algorithm for cell and nucleus segmentation. By combining the
semantic segmentation maps with cellpose’s flow representations,
deepflash2 ensures reliable separationof touchingobjects. Indoing so,
we extend the original cellpose implementation to multichannel input
images and multiclass instance segmentation tasks.

Each segmentation is accompanied by a predictive uncertainty
map which is summarized by means of the average foreground
uncertainty score U (Fig. 2, fourth row; Section “Uncertainty quantifi-
cation”). These uncertainties are used for quality assurance during
application (Section “Application and quality assurance”). To assess
the model validity for bioimage analysis, deepflash2 implements the
following two-step evaluation process:
1. Absolute performance: Calculating the similarity scores between

the predicted segmentations and the estimatedGTon the test set.
The scores can be accessed via the GUI or Excel/CSV export
functions.

2. Relative performance: Relating the performance scores to data
ambiguity. The performance scores of individual experts are used
to establish the desired performance range and can also be
accessed through the GUI or Excel/CSV export.

The proposed evaluation procedure can generally be performed
with any analysis tool as long as the required predictive performance is
achieved. With regard to the practical application of a DL tool, how-
ever, we evaluate the tool’s performance along four dimensions:
absolute predictive performance as indicated by the similarity to the
estimatedGT, relative predictive performance compared to the expert
annotations, reproducibility of the experiments, and training dura-
tion (Fig. 3).

We benchmark the predictive performance of deepflash2 against
a select group of well-established algorithms and tools. We utilize

Training &
Evaluation

Predictions and 
two-step evaluation 

on test set
.

Ground truth (GT)
estimation

Representative images 
and segmentations 
by multiple experts

Quantification and 
statistical analysis

Reference 
uncertainties

Model ensemble

Application Images from one or more 
experiments

Quality assurance based on uncertainty 
estimates 

Predictions for semantic or instance 
segmentation 

Ensemble training
and validation

Fig. 1 | deepflash2 pipelines. Proposed integration of deepflash2 into the bioimage
analysis workflow. In contrast to traditional DL pipelines, deepflash2 integrates
annotations frommultiple experts and relies onmodel ensembles for training and

evaluation. Additionally, the application pipeline facilitates quality monitoring and
out-of-distribution detection for predictions on new data.
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Otsu’s method18 as a simple baseline for semantic segmentation and
cellpose9 as a generic baseline for (cell) instance segmentation. Addi-
tionally, we consider U-Net2, nnunet8, and fine-tuned cellpose model
ensembles. cellpose has previously proven to outperform other well-
known methods for instance segmentation such as Mask-RCNN19 or
StarDist20. For greater clarity, Fig. 3 omits the two baseline models
which offered subpar performance (an extensive comparison of all
tools is provided in Supplementary Information 2.2).

Across all evaluation datasets, deepflash2 achieves competitive
predictive performance for both semantic and instance segmentation
tasks. To disentangle the difficulty of the prediction task (driven by data
ambiguity) from the predictive performance, we scrutinize the absolute
performance by relating it to the underlying expert annotation scores
(relative performance). Notably, only deepflash2 achieves human
expert performance across all evaluation tasks and, in some cases, even
outperforms the best available expert annotation (Fig. 3a, b).

Moreover, Fig. 3c shows that the ensemble-basedmethods nnunet
and deepflash2 yield very stable results (high similarity scores between
the predicted segmentations of different training runs with different
training-validation splits) across all datasets. The U-Net2, based on a
single model, is subject to higher performance variability. The cellpose
model ensembles exhibit a high variability for the semantic-
segmentation-only GFAP in HC dataset but yield competitive results
on the other (instance segmentation) datasets.

Relying on generic pretrained encoders, deepflash2 model
ensembles are trained in less than an hour on machines with state-of-
the-art GPUs (free and paid), similar to the pretrained cellpose model
ensembles (Fig. 3d). Due to dynamic architecture reconfiguration,
nnunet ensembles cannot leverage pretraining, and training from
scratch can last longer than a week.

Application and quality assurance
During application, scientists typically aim to analyze a large number
of bioimageswithout ground truth information. To establish trust in its
predictions, deepflash2 enables quality assurance on image as well as
on instance/region level: For quality assurance on image level, the
predicted segmentations are sortedbydecreasing uncertainty scoreU.

We find that U is a strong predictor for the obtained predictive
performance as measured by the Dice score (Fig. 4a). Consequently, U
can be used as a proxy for the expected performance on unlabeled
data, and the U values of the test set can serve as a reference for the
quality assurance procedure (see Section “Quality Assurance” for fur-
ther details). Note that the model ensembles are solely trained on the
estimated GT, that is, there is no longer a concept of ambiguous
annotations. However, Fig. 4b confirms that the uncertainty maps
capture expert disagreement: Low pixel uncertainty is indicative of
high expert agreement, whereas high pixel uncertainty arises in set-
tings where experts submitted ambiguous annotations.
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Fig. 2 | Exemplary results on different immunofluorescence images. Repre-
sentative image sections from the test sets of five immunofluorescence imaging
datasets (first row) with corresponding expert annotations and ground truth (GT)
estimation (second row). The inter-expert variation is indicatedwith ranges (lowest
and highest expert similarity to the estimated GT) of the Dice score (DS) for
semantic segmentation and mean Average Precision (mAP) for instance segmen-
tation. The predicted segmentations and the similarity to the estimated GT are

depicted in the third row, and the corresponding uncertaintymaps and uncertainty
scores U for quality assurance are in the fourth row. Areas with a low expert
agreement (blue) or differences between the predicted segmentation and the
estimatedGT typically exhibit high uncertainties. deepflash2 also provides instance
(e.g., somata or nuclei)-based uncertaintymeasures that are not depicted here. The
maximum pixel uncertainty has a theoretical limit of 1.
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In situations with high uncertainty scores, scientists may want to
check predictions through manual inspection using the provided
uncertainty maps. For semantic segmentation, the uncertainty maps
facilitate rapid visual identification of regions where the predicted
segmentations are subject to high uncertainties. For instance seg-
mentation tasks, deepflash2 additionally calculates an average uncer-
tainty score for each instance. Subsequently, it allows a single click
export-import to ImageJ/Fiji ROIs (regions of interest), with ROIs sor-
ted by their average uncertainty score. This enables a focused

inspection and adjustment of specific instances that are supposedly
segmented poorly. Thus, the quality assurance process helps the user
prioritize the review of both images and single instances within images
that exhibit high uncertainties.

The quality assurance procedure also facilitates the detection of
out-of-distribution images, i.e., images that differ from the training
data and are thus prone to erroneous predictions. We showcase the
out-of-distribution detection on a large bioimage dataset comprising
256 in-distribution images (same properties as training images), 24
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Fig. 3 | Evaluation of predictive performance, relative performance, reliability,
and speed on different immunofluorescence datasets. a, b Predictive perfor-
mance on the test sets for a semantic segmentation (N = 40, 8 images for each
dataset) and b instance segmentation (N = 32, 8 images for each depicted dataset
except GFAP in HC), measured by similarity to the estimated GT. The grayscale
filling depicts the comparison against the expert annotation scores. The p-values
result from a two-sided Wilcoxon signed-rank test (semantic segmentation:
p =0.000170298 for nnunet, p =0.000001405 for cellpose, p =0.000000001 for
U-Net (2019); instance segmentation: p =0.000090546 for nnunet,
p =0.000557802 for cellpose, p =0.000000012 for U-Net (2019)). The expert
comparison bars below themethod names indicate the share of test instances that

scored below the worst expert (white), in expert range (gray), or above the best
expert (black). c Similarity of the predicted test segmentation masks for three
repeated training runs with different training-validation splits (N = 40, 8 images for
each dataset). Box plots are defined as follows: the box extends from the first
quartile (lower bound of the box) to the third quartile (upper bound of the box) of
the data, with a center line at the median. The whiskers extend from the box by at
most 1.5x the interquartile range and are drawn down to the lowest and up to the
highest data point that falls within this distance. d Training speed (duration) on
different platforms: Google Colaboratory (Colab, gratuitous Nvidia Tesla T4 GPU)
and Google Cloud Platform (GPC, costly Nvidia A100 GPU). Source data are pro-
vided as a Source Data file.
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partly out-of-distribution images (same properties with previously
unseen structures such as blood vessels), and 32 fully out-of-
distribution images (different immunofluorescent labels) (Fig. 5b–d).
Using the uncertainty score for sorting, the lowest uncertainty ranks
are entirely taken by the 32 fully out-of-distribution images. Most of
the partly out-of-distribution images obtain uncertainty ranks between
33 and 150 (Fig. 5a). A conservative protocol could require scientists to
verify all images with an uncertainty score exceeding the reference
uncertainty scores (Section “Quality Assurance”). Out-of-distribution
images may then be excluded from the analysis or annotated for
retraining in an active learning manner21.

Evaluation in the biomedical imaging wild
So far, the evaluation of our study has been focused on ambiguous
fluorescent images, as the underlying datasets allow us to demon-
strate the use of deepflash2 along the entire bioimage analysis
pipeline. However, deepflash2 can out-of-the-box deliver convincing
segmentation results for other types of 2D images with an arbitrary
number of input channels. Also, multiclass GT estimation, as well as
multiclass semantic or instance segmentation, are supported. We
showcase the use and performance of deepflash2 on three distinct
biomedical imaging datasets that were part of recent data science
challenges (Fig. 6, see Section “Evaluation metrics” for detailed
dataset descriptions). We used default training parameter settings
for all datasets except for the gleason dataset, where we adjusted a
single hyperparameter to account for the large tumor regions (we
increased the receptive field of the image tiles by selecting a zoom-
out factor of 4).

The gleason challenge (2019) aims at the automatic Gleason
grading (multiclass semantic segmentation) of prostate cancer from
H&E-stained histopathology images22. The grading of prostate cancer
tissue performed by different expert pathologists suffers from high
inter-expert variability. deepflash2 outperforms the nnunet baseline
Fig. 6 (last column) on all classes except the third class (very rare
Gleason grade 5).

The monuseg (2018) challenge aims at nuclei segmentation in
digital microscopic tissue images23. In this binary instance segmenta-
tion task, deepflash2 also outperforms the nnunet baseline and would

have reached a Top-10 rank in the challenge monuseg leaderboard
yielding 0.67 in the challenge metric Aggrated Jaccard Index.

Finally, the recent conic (2022) challenge also aims at nuclei seg-
mentation of H&E-stained histology images. The challenge is based on
the Lizard dataset24 containing half a million labeled nuclei in colon
tissue and requires multiclass instance segmentation. deepflash2 out-
performs the nnunet baseline Fig. 6 (last column) on all classes except
the fourth class (Eosinophil).

Discussion
The deepflash2 DL pipelines facilitate the objective and reliable seg-
mentation of ambiguous bioimages integrating multi-expert annota-
tions, deep model ensembles, and quality monitoring. They may
therebyoffer a blueprint for the training, evaluation, and applicationof
DL in bioimaging projects, as they can be used with any tool or in
custom DL pipelines.

As a tool, deepflash2 supports various use-cases for the integra-
tion of expert annotations, e.g., one annotation per image, multiple
annotations per image (can be achieved by providing the same image
under different names for each annotation), or training on the est. GT.
Here, we want to discuss the best use of multi-expert annotations.
These can help to mitigate the emerging DL replication crisis in the
bioimage analysis as single-expert annotationsmay introduceerrorsor
bias into model training25. Recall that image feature annotation is a
complex perception task for humans and is subject to the individual
annotator’s graphical perceptual abilities26. Clear labeling instructions
are of special importance to reduce the need for multi-expert anno-
tations, as highlighted by Rädsch et al.27.

There is not a per-se best annotation strategy, but the choice will
rather depend on the bioimaging project and the available resources,
i.e., we need to trade-off the number of training images, which should
represent the diversity of the data, against the annotation quality gains
from multiple annotations. Unbiased and precise annotations are
typically acquired via GT estimation from multiple experts. Also, the
repeated annotation of the same images allows us to approximate a
human performance level on the given data, which is part of our
proposed two-step evaluation process. Yet, repeated labeling of
identical images results in amarkedly higher annotation effort for each
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plot) on the test set. Source data are provided as a Source Data file.
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training image. Given a fixed annotation budget, multi-expert anno-
tations would directly reduce the number of training images, which
can have a detrimental effect on the predictive model performance if
the underlying data distribution is not captured sufficiently. To obtain
a better understanding of the annotation strategy trade-offs, we con-
ducted some initial experiments regarding the most efficient use of
expert time (see Supplementary Notes S4). We compared two strate-
gies over different annotation budgets: The first strategy required the
images to be annotated by all available experts. The second strategy
required the experts to annotate different images, resulting in larger
training sets. The results indicate that the second strategy is superior
when only a few image annotations are available (small annotation
budget). In this case, the model performance benefits frommore (but
less precise) image-annotation-pairs to capture the diverse data dis-
tribution. The first strategy is superior whenmore training annotations
are available (higher annotation budget). Our results suggest that the
consensus segmentations are indeed learnable by the DL models.

deepflash2 builds upon the integration of established DL libraries.
For segmentation architectures such as the U-Net3, deepflash2
leverages the segmentation-models-pytorch library28. The library has a
large record of use in data science competition-winning solutions (see
the “Hall of Fame”28), including deepflash2’s Gold Medal and Innova-
tion Award in the Kaggle data science competition hosted by the

HuBMAP consortium29. Moreover, the encoder architectures of these
segmentation models are based on the timm library30, which has
emerged as the de-facto benchmark DL library for image classification
and is continuously updated with the latest model architectures,
including the currently used ConvNext encoder31. There is currently no
bioimaging tool making these resources easily accessible to life sci-
ence researchers. Also, deepflash2’s capability to automatically inte-
grate new encoders and pretrained weights is a significant advantage
over existing tools in the rapidly materializing field of DL.

By offering uncertainty measures (uncertainty maps, uncertainty
score U), deepflash2 facilitates the aforementioned quality assurance
procedure. Exploiting thesemeasures in the bioimage analysis process
promises insights into experimental conditions as well as biological
mechanisms. Uncertainty arises from biological processes in experi-
mental groups, for instance, when signal-to-noise ratios change due to
global changes in image feature expression levels. Recognizing such
quality issues during prediction offers a valuable feedback loop from
analysis to experiment design and execution.

Initiatives such as the BioImage Model Zoo32 or the Hugging Face
Model Hub (https://huggingface.co/models) are simplifying DL model
sharing in the research community. deepflash2 simplifies sharing of
trained model ensembles, and we highly encourage scientists in mak-
ing their research reproducible, accessible, and transparent. As
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deepflash2 addresses the segmentation of ambiguous data that
potentially varies across experiments, we think that a rigorous and
transparent evaluation, aswell as an easily accessible demonstration of
the model’s capabilities, can contribute to build trust in new, DL-
enabled research.

deepflash2 aims to be a tool with preconfigured settings that offer
out-of-the-box, very high predictive accuracy for typical bio-imaging
tasks. However, this comes with some rigidity concerning the chosen
hyperparameters. This may limit the tool’s predictive performance on
some datasets using default settings. A case in point was the gleason
dataset, where we had to adjust the scaling factor to accommodate
untypically large input images, which we could not capture with our
default 512 × 512 patch sizes—such a manual expert adjustment of
course runs against the goal of user-friendliness (note that nnunet,
which automatically configures hyperparameters during training, does
not face this problem). The proposed quality assurance procedure
offers a direct assessment of the training data representativeness for a
particular test instance by answering the question: How well-suited is
the trainedmodel ensemble for assessing this very instance? However,
it does not provide any formal guarantees on the overall performance
of the model ensemble and should be interpreted with caution. Ulti-
mately, the reported uncertainty measures are influenced by the
underlying DL models, training procedures, and the theoretical dis-
entanglement between epistemic and aleatoric uncertainty (Section
“Uncertainty quantification” and Supplementary Fig. S5.1).

deepflash2 offers an end-to-end integration of DL pipelines for
bioimage analysis of ambiguous data. An easy-to-use GUI allows
researchers without programming experience to rapidly train

performant and robust DL model ensembles and monitor their pre-
dictions on new data. We are confident that deepflash2 can help
establishmore objectivity and reproducibility in natural sciences while
lowering the overall workload for human annotators. deepflash2
introduces a concept for objective bioimage analysis that goes beyond
ground truth estimation and measures of predictive accuracy. It also
introduces ambiguity not only as a technical but also as a biological
data variable in the bioimage analysis process. We think that this
concept can serve as a baseline for DL-based biomedical image feature
segmentation. Going forward, the tool will benefit from a growing user
base which in turn helps reveal image specifications for which the
default parametersmay be less suitable. Subsequent releaseswill try to
address such instances by establishing useful alternative
configurations.

Methods
Ethical statement
All experiments and experimental procedureswere in accordancewith
the guidelines set by the European Union and our local veterinary
authority (Veterinäramt der Stadt Würzburg). In addition, all experi-
ments and experimental procedures were approved by our institu-
tional Animal Care, the Utilization Committee, and the Regierung von
Unterfranken, Würzburg, Germany (License numbers: 55.2-2531.01-95/
13 and 55.2.2-352-2-509/1067).

Implementation details
The deepflash2 code library is implemented in Python 3, using numpy,
scipy, and opencv for the base operations. The ground truth estimation
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functionalities are based on the simpleITK33. The DL-related part is built
upon the rich ecosystem of PyTorch34 libraries, comprising fastai35 for
the trainingprocedure, segmentationmodels pytorch28 for segmentation
architectures, timm30 for pretrained encoders, and albumentations36 for
data augmentations. Instance segmentation capabilities are com-
plemented using the cellpose library9. The trainedmodel ensembles are
designed to be directly executed in ImageJ using the DeepImageJ
Plugin37, can be shared on the BioImage Model Zoo32, or hosted for
inference. The deepflash2 GUI is based on the Jupyter Notebook
environment38. Using interactive widgets39 deepflash2 allows users to
execute all analysis steps directly in the GUI or use the export func-
tionality for subsequent processing in other tools (e.g., ImageJ or Fiji).
Statistical analyses in this studywere performedusing pingouin; Figures
were created using seaborn and matplotlib.

Ground truth estimation
To train reproducible and unbiased models, deepflash2 relies on GT
estimation from the annotations ofmultiple experts. deepflash2 offers
GT estimation via simultaneous truth and performance level estima-
tion (STAPLE)14 (default in our analyses) or majority voting. Note that
due to the ambiguities in the data, GT estimation can yield biologically
implausible results (e.g., by merging the areas of two cells). We cor-
rected such artifacts in our test sets. deepflash2 supports both multi-
expert joining as well as single-expert annotations.

Training procedure
The training of deepflash2 model ensembles is designed to achieve
out-of-the-box rapid and high-quality segmentation ofmost bioimages
without custom tuning. To achieve this, the deepflash2 pipeline was
developed in an iterative manner seeking to establish a reliable base
configuration.

The starting point for the selection parameter process was the
award-winning solution at the Kaggle data science competition
HuBMAP - Hacking the Kidney (see Section “Discussion”). To obtain a
computationally manageable search space, we conducted some
initial experiments on the training sets of the immunofluorescence
data (PV in HC, cFOS in HC,mScarlet in PAG, YFP in CTX, and GFAP in
CTX) via k-fold cross-validation. During this preselection phase, we
fixed the architecture of our neural network as well as the weight
initializations. Subsequently, we set up large-scale computational
experiments to define the remaining hyperparameters via Bayesian
optimization using sweeps on the Weights & Biases40 MLOps plat-
form. The search spaces included different encoders (ResNet18-50,
EfficientNet b0-b4, ConvNext tiny and standard), tile shapes
(256 × 256, 512 × 512, 1024 × 1024), mini-batch sizes (2, 4, 8, 16, 32),
learning rates (0.00001–0.01) for the Adam optimizer41 with
decoupled weight decay (0.00001–0.1), and training iterations
(100–10,000). The sweeps were also evaluated on the immuno-
fluorescence datasets. The training procedure for individual appli-
cations is outlined below.

Default settings and customization options
The default DL-model architecture in deepflash2 is a U-net3 with a
ConvNext Tiny encoder31. The encoder is initialized with ImageNet42

pretrained weights to allow better feature extraction and fast training
convergence. The remaining weights in the segmentation architecture
are initialized from a truncated normal distribution43. By combining
pretraining and random initialization, this approach improves diver-
sity in model ensembles. The encoder architectures were pretrained
on 3-channel input images. If the new data has fewer than three input
channels, we remove the excess pretrained weights in the first layer. If
the new data comprises more than three input channels, we initialize
the weights from a truncated normal distribution. Similar to the nnu-
net, we chose the mean of the cross-entropy and Dice loss44 as the
learning objective.

Each model is trained using the fine-tune policy of the fastai
library35. This entails freezing the encoder weights, one-cycle training45

of one epoch, unfreezing the weights, and again one-cycle training.
During each epoch, we sample equally sized patches from each image
in the training data. To address the issue of class imbalances, we use a
weighted random sampling approach that ensures that the center
points of the patches are sampled equally from each class. This kind of
sampling also contributes to the data augmentation pipeline. Data
augmentation operations include random augmentations such as
rotating, flipping, and gamma correction; again, this follows best
practices established by nnunet. We trained each model with one
epoch in the first (frozen encoder weights) cycle and 25 epochs in the
second cycle using a mini-batch size of four (patch size 512 × 512), a
base learning rate of 0.001 and decoupled weight decay (0.001). We
used a scale factor of 4 (zoom-out) for the gleason dataset and a scale
factor of 1 for all other datasets (scaling is only applied during training
and does not change the size of the final predictions). The training and
validation data for the different models are shuffled by means of a k-
fold cross-validation (with k = 5 in our experiments).

While they were designed for out-of-the-box usage, the deep-
flash2 Python API and GUI allow us to easily change all configuration
parameters. These parameter choices can also be imported and
exported via a JSON file. Experienced users can select alternative
architectures (e.g., Unet++46 or DeepLabV3+47) and encoders (e.g.,
ResNet48, EfficientNet49). This flexibility is facilitated by the segmenta-
tion models pytorch package28. deepflash2 also provides options for
common segmentation loss functions such as Focal50, Tversky51, or
Lovasz52. Users can also adjust augmentation strategies or add more
augmentations (e.g., contrast limited adaptive histogram equalization
or grid distortions). One can also customize all training settings, for
example, by opting for a different optimizer or setting a dataset-
specific learning rate using the learning rate finder.

Semantic segmentation
For the semantic segmentation of a new image with featuresX 2 Rd × c

deepflash2 predicts a semantic segmentationmap y∈ {1,…,K}d, withK
being the number of classes, d the dimensions of the input, and c the
input channels. Without loss of generality, class 1 is defined as back-
ground. We use the trained ensemble of M deep neural networks to
model the probabilistic predictive distribution pθ y∣Xð Þ, where
θ = (θ1,…, θM) are the parameters of the ensemble. Here, we leverage a
sliding window approach with overlapping borders and Gaussian
importance weighting8. We improve the prediction accuracy and
robustness using T deterministic test-time augmentations (rotating
and flipping the input image). Each augmentation t∈ {1,…, T} applied
to an input image creates an augmented featurematrixXt. To combine
all predictions, we follow Lakshminarayanan et al.17 and treat the
ensemble as a uniformly weighted mixture model to derive

pðy∣XÞ= 1
T

XT
t = 1

1
M

XM
m= 1

pθm
y∣Xt, θm
� � ð1Þ

with pθm
y∣Xt,θm

� �
= Softmax ðf θm ðXtÞÞ and f θm representing the neural

network parametrized with θm. We use M = 5 models and T = 4 aug-
mentations in all our experiments. Finally, we obtain the predicted
segmentation map

ŷ= argmax
k2f1,...,Kgd

pðy=k∣XÞ: ð2Þ

Uncertainty quantification
The uncertainty is typically categorized into aleatoric (statistical or
per-measurement) uncertainty and epistemic (systematic or model)
uncertainty53. To approximate the uncertainty maps of the predicted
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segmentations, we follow the approach of Kwon et al.54. Here, we
replace the Monte-Carlo dropout approach of Gal and Ghahramani55

with deep ensembles, which have proven to produce well-calibrated
uncertainty estimates and a more robust out-of-distribution
detection17. In combination with test-time augmentations (inspired
by Wang et al.56), we approximate the predictive (hybrid) uncertainty
for each class k∈ {1,…,K} as

Varp y= kjXð Þ : =
1
T

XT
t = 1

1
M

XM
m= 1

pθm
y= k j Xt ,θm

� �� pθm
y= k j Xt ,θm
� �2h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
epistemic uncertainty

+
1
T

XT
t = 1

1
M

XM
m= 1

pθm
y= k j Xt ,θm

� �� p y= k j Xð Þ
h i2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aleatoric uncertainty

ð3Þ

where p y= k∣Xð Þ denotes probabilities of a single class k.
To allow an intuitive visualization and efficient calculation in

multiclass settings, we aggregate the results of the single classes to
retrieve the final predictive uncertainty map:

Varp y∣X,θð Þ =
ζ
K

XK
k = 1

Varp y= k∣X,θð Þ ð4Þ

where ζ is a scaling factor. Following the derivation in Kwon et al.54, the
moment-based predictive uncertainty Varp y= k∣Xð Þ 2 ½0;0:25�. There-
fore, we set ζ to 4 in our experiments which scales the theoretical
maximal pixel uncertainty to 1. Note that the formulation in Equation
(4) may differ from the general formulation in Kwon et al.54 for K > 2.

For the heuristic sorting and out-of-distribution detection, we
define an aggregated uncertainty metric on image level. Let ŷi be the
predicted segmentation of pixel i, xi the feature vector of pixel i and N
the total number of pixels defined by d. We define the scalar-valued
foregrounduncertainty score for all predictedNf = i 2 1, . . . ,Nf g∣ŷi>1

� �
as

Up y∣X,θð Þ :=
1

∣Nf ∣

X
i2Nf

Varp yi ∣xi ,θð Þ: ð5Þ

Instance segmentation
If the segmented image contains touching objects (e.g., cells that are in
close proximity), deepflash2 integrates the cellpose library9, a gen-
eralist algorithm for cell and nucleus segmentation. We use the com-
bined predictions of each class p y= k∣Xð Þ to predict the flow
representations with the pretrained cellposemodels. We then leverage
the post-processing pipeline of cellpose to derive instance segmenta-
tions by combining the flow representations with the predicted seg-
mentation maps ŷ. This procedure scales to an arbitrary number of
classes and is, in contrast to the original cellpose implementation, not
limited to one (or two) input channels. However, it requires the image
feature shapes to be compatible with the pretrained cellpose models.
To monitor the compatibility deepflash2 automatically reports the
number of pixels thatwere removed during the instance segmentation
process in the results table (column cellpose_removed_pixels). The dif-
ferences were negligible in our experiments (<0.005%). We recom-
mend increasing the cellpose flow threshold, which is directly
adjustable in the deepflash2 GUI, or fine-tuning the cellpose models if
these differences become more significant.

Evaluation metrics
For semantic segmentation, we calculate the similarity of two seg-
mentationmasks ya and yb using the Dice score. For binarymasks, this

metric is defined as

DS :=
2TP

2TP+ FP+FN
, ð6Þ

where the true positives (TP) are the sum of all matching positive
(pixels) elements of ya and yb, and the false positives (FP) and false
negatives (FN) are the sum of positive elements that only appear in ya
or yb, respectively. In multiclass settings, we use macro averaging, i.e.,
we calculate the metrics for each class and then find their unweighted
mean. The Dice score is commonly used for semantic segmentation
tasks but is unawareof different instances (sets of pixels belonging to a
class and instance).

For instance segmentation, let yIa and yI
b be two instance seg-

mentation masks that contain a finite number of instances Ia and Ib,
respectively. An instance Ia is considered amatch (true positive—TPη) if
an instance Ib exists with an Intersection over Union (also known as
Jaccard index) IoU ðIa,IbÞ= Ia\Ib

Ia ∪ Ib
exceeding a threshold η∈ (0, 1].

Unmatched instances Ia are considered as false positives (FPη), and
unmatched instances Ib as false negatives (FNη). We define the Average
Precision at a fixed threshold η as APη :=

TPη

TPη + FNη + FPη
. To become

independent of fixed values for η, it is common to average the results
over different η. The resulting metric is known as mean Average Pre-
cision and is defined as

mAP :=
1
∣H∣

X
η2H

APη: ð7Þ

We use a set of 10 thresholds H = fη 2 ½0:50, . . . ,0:95�∣η �
0mod 0:05g for all evaluations. This corresponds to themetric used in
the COCO object detection challenge57. Additionally, we exclude all
instances I that are below a biologically viable size from the analysis.
The minimum size is derived from the smallest area annotated by a
human expert: 61 pixel (PV in HC), 30 pixel (cFOS in HC), 385 pixel
(mScarlet in PAG), 193 pixel (YFP in CTX, 38 pixel (monuseg), and 3–6
pixel (conic).

Quality assurance
Once the deepflash2 model ensemble is deployed for predictions on
new data, the quality assurance process helps the user prioritize the
review of more ambiguous or out-of-distribution images. The predic-
tions on such images are typically error-prone and exhibit a higher
uncertainty score U. Thus, deepflash2 automatically sorts the predic-
tions by decreasing the uncertainty score. Depending on the ambi-
guities in the data and the expected prediction quality (inferred from
the hold-out test set), a conservative protocol could require scientists
to verify all images with an uncertainty score exceeding a threshold
Umin. Given the hold-out test setQ= ðX1,y1Þ, . . . ,ðXL,yLÞ

� �
where L is the

number of samples, we define

Umin := min Up y∣X,θð Þ∣ðy,XÞ 2 Q,Sðy,ŷÞ<τ
n o

ð8Þ

with Sðy,ŷÞ being an arbitrary evaluation metric (e.g., DS or mAP) and
τ∈ [0, 1], a threshold that satisfies the prediction quality requirements.
From a practical perspective, this means selecting all predictions from
the test set with a score below the predefined threshold (e.g., DS =0.8)
and taking their minimum uncertainty score value U as Umin. The ver-
ificationprocess of a single image is simplified by the uncertaintymaps
that allow the user to quickly find difficult or ambiguous areas within
the image.

Evaluation datasets
We evaluate our pipeline on five datasets that represent common
bioimage analysis settings. The datasets exemplify a range of
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fluorescently labeled (sub-)cellular targets in mouse brain tissue with
varying degrees of data ambiguity.

The PV in HC dataset published by Segebarth et al.11 describes
indirect immunofluorescence labeling of Parvalbumin-positive (PV-
positive) interneurons in the hippocampus. Morphological features
are widely ramified axons projecting to neighbored neurons for soma-
near inhibition of excitatory neuronal activity58. The axonalprojections
densely wrap around the somata of target cells. This occasionally
causes data ambiguities when the somata of the PV-positive neurons
need to be separated from the PV-positive immunofluorescent signal
around the soma of neighbored cells. Thresholding approaches such
as Otsu’s method (see Supplementary Note S2.2) typically fail at this
task as it requires differentiating between rather brightly labeled
somata that express PV in the cytosol vs. brightly labeled PV-positive
axon bundles that can appear in the neighborhood.

The publicly available cFOS in HC dataset59 describes indirect
immunofluorescent labeling of the transcription factor cFOS in dif-
ferent subregions of the hippocampus after behavioral testing of the
mice11. The counting or segmentation of cFOS-positive nuclei is an
often-used experimental paradigm in the neurosciences. The staining
is used to investigate information processing in neural circuits60. The
low SNR of cFOS labels for most but not all image features renders its
heuristic segmentation a very challenging task. This results in a very
high inter-expert variability after manual segmentation (see Segebarth
et al.11 and Supplementary Fig. S2.1). We use 280 additional images of
this dataset to demonstrate the out-of-distribution detection cap-
abilities of deepflash2. There are no expert annotations available for
the additional images; however, 24 images comprise characteristics
that do not occur in the training data. We classified such partly out-of-
distribution images into three different error categories for our study:
blood vessels if the images contained blood vessels (13 images); folded
tissue (4 images);fluorescent particles if therewas at least one strongly
fluorescent particle unrelated to the actualfluorescent label (7 images)
(see examples in Supplementary Fig. S1.1).

The mScarlet in the PAG dataset shows an indirect immuno-
fluorescent post-labeling of the red-fluorescent proteinmScarlet, after
viral expression in the periaqueductal gray (PAG). Here, microscopy
images visualize mScarlet, tagged to the light-sensitive inhibitory
opsin OPN3. The recombinant protein was delivered via stereotactic
injection of an adeno-associated viral vector (AAV2/5-Ef1a-DIO-eOPN3-
ts-mScarlet-ER) to the PAG. Optogenetics is a key technology in neu-
roscience that allows the control of neuronal activity in selected neu-
ronal populations61,62. Consequently, the number of opsin-expressing
neurons provides highly relevant information in optogenetic experi-
ments. However, due to the substantial efforts that these analyses
require, this data is rarely acquired2. Therefore, we chose this dataset
of a recombinant opsin that shows a particularly low signal-to-noise
ratio (Fig. 2) in order to evaluate the usability of deepflash2 for this
commonly requested use-case.

The YFP in CTX dataset shows direct fluorescence of yellow
fluorescent protein (YFP) in the cortex of so-called thy1-YFP mice. In
thy1-YFP mice, a fluorescent protein is expressed in the cytosol of
neuronal subtypes with the help of promoter elements from the thy1
gene63. This provides a fluorescent Golgi-like vital stain that can be
used to investigate disease-related changes in neuron numbers or
neuron morphology, for instance, for hypothesis-generating research
in neurodegenerative diseases (e.g., Alzheimer’s disease). Here, com-
putational bioimage analysis is aggravated by the pure intensity of the
label that causes strong background signals by light scattering or out-
of-focus light. Both can blur the signal borders in the image plane.

Finally, the GFAP in HC dataset shows indirect immuno-
fluorescence signals of glial acidic fibrillary protein (GFAP) in the hip-
pocampus. Anti-GFAP labeling is one of the most commonly used
stainings in the neurosciences and is also used for histological exam-
ination of brain tumor tissue. Glial cells labeled by GFAP in the hip-
pocampus show different morphologies (e.g., radial-like or star-like).
GFAP-positive cells occupy separate anatomical parts64 (like balls in a
ball bath). Thus, it is highly laborious to manually segment the spatial
area of GFAP-positive single astrocytes in a brain slice. Here, the
extensions of the GFAP-labeled astrocytic skeleton cannot be sepa-
rated from parts of neighboring astrocytes, rendering a reliable
instance separation and thus instance segmentation impossible. Albeit
the signal is typically bright and very clear around the center of the cell,
the signal borders of the radial fibers become ambiguous due to the
3D-ball-like structure, lowSNRat the endof thefibers, andout-of-focus
light interference.

A high-level comparison of the key dataset characteristics is pro-
vided in Table 1.

Challenge datasets
We additionally evaluate the performance of deepflash2 on three
recent biomedical imaging challenge datasets. The gleason challenge
(2019) aims at the automatic Gleason grading (multiclass semantic
segmentation) of prostate cancer from H&E-stained histopathology
images22. The grading of prostate cancer tissue performed by different
expert pathologists suffers from high inter-expert variability. Ground
truth estimation was performed using STAPLE14. For undecided pixels,
we assigned the segmentation of the expert with the highest score.
Class 0 corresponds to benign or other tissue, class 1 to Gleason grade
3, class 2 to Gleason grade 4, and class 3 to Gleason grade 5.

The monuseg (2018) challenge aims at nuclei segmentation in
digital microscopic tissue images23. The task is binary instance seg-
mentation (class 1 nucleus, class 0 other/background).

The conic (2022) challenge aims at nuclei segmentation of H&E-
stained histology images. The challenge is based on the Lizard
dataset24. The imageswereacquiredwith a 20xobjectivemagnification
(about 0.5microns/pixel) from six different data sources. They contain
half a million labeled nuclei in colon tissue and require multiclass

Table 1 | Comparison of immunofluorescence datasets

PV in HC cFOS in HC mScarlet in PAG YFP in CTX GFAP in HC

Annotation target Somata Nuclei Somata Somata Morphology

Semantic segmentation Yes Yes Yes Yes Yes

Instance segmentation Yes Yes Yes Yes No

Train images 36 36 12 12 12

Test images 8 8 8 8 8

Experts 5 5 4–5 4–5 3

Additional images – 280 – – –

Fluorescence microsc. Confocal Confocal Light Light Light

Size (pixel) 1024 × 1024 1024 × 1024 2752 × 2208 2752 × 2208 580 × 580

Resolution (px/μm) 1.61 1.61 3.7 3.7 3.7
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instance segmentation. Here, class 1 corresponds to the category
epithelial, class 2 to lymphocyte, class 3 to plasma, class 4 to eosino-
phil, class 5 to neutrophil, and class 6 to connective tissue.

Performance benchmarks
We benchmark the predictive performance of deepflash2 against a
select group of well-established algorithms and tools. These comprise
the U-Net2 and nnunet8 for both semantic and instance segmentation
as well as two out-of-the-box baselines. We utilize Otsu’s method18 as a
simple baseline for semantic segmentation and cellpose9 as a generic
baseline for (cell) instance segmentation. Additionally, we benchmark
deepflash2 againstfine-tuned cellposemodels and ensembles, showing
superior performance of our method (see Supplementary Table S2.1).
cellpose has previously proven to outperform other well-known
methods for instance segmentation (e.g., Mask-RCNN19 or StarDist20).

For each dataset, we apply the tools as described by their devel-
opers to render the comparison as fair as possible. We train the U-Net2

on a 90/10 train-validation-split for 10,000 iterations (learning rate of
0.00001 and the Adam optimizer41) using the authors’ TensorFlow 1.x
implementation. This includes all relevant features, such as overlapping
tile strategy and border-aware loss function. We derive the parameter
values for the loss function (border weight factor (λ), border weight
sigma (σsep), and foreground-background ratio (νbal) by means of
Bayesianhyperparameter tuning: Parv inHC: λ= 25, σsep= 10, νbal=0.66;
cFOS in HC: λ=44, σsep = 2, νbal =0.23; mScarlet in PAG: λ= 15,
σsep = 10, νbal =0.66; YFP in CTX: λ = 15, σsep = 5, νbal =0.85; GFAP in HC:
λ = 1, σsep = 1, νbal=0.85.

We train the self-configuring nnunet (version 1.6.6) model
ensemble8 following the authors’ instructions provided on GitHub.

cellpose provides three pretrained model ensembles (nuclei, cyto,
and cyto2) for out-of-the-box usage9. We select the ensemble with the
highest score on the training data: cyto for Parv in HC and YFP in CTX,
cyto2 for cFOS in HC, andmScarlet in PAG. During inference, we fix the
cell diameter (in pixel) for each dataset: Parv in HC: 24; cFOS in HC: 15;
mScarlet in PAG: 55; YFP in CTX: 50. We additionally provide a per-
formance comparison for fine-tuned cellposemodels and ensembles in
Supplementary Note S2.2. We use the cellpose GitHub version with
commit hash 316927e (August 26, 2021) for our experiments.

We repeat our experimentswith different seeds to ensure that our
results are robust and reproducible (see Supplementary Note S2.2).
The experiments for training duration comparison are executedon the
free platform Google Colaboratory (Nvidia Tesla K80 GPU, 2 vCPUs;
times were extrapolated when the 12-h limit was reached) and the paid
Google Cloud Platform (Nvidia A100 GPU, 12 vCPUs). The remaining
experiments are executed locally (Nvidia GeForce RTX 3090) or in the
cloud (Google Cloud Platform on Nvidia Tesla K40 GPUs).

Experimental animals
The datasets mScarlet in PAG, YFP in CTX, and GFAP in HC were
acquired for this study. Here, allmicewerebred in the animal facility of
the Institute of Clinical Neurobiology at the University Hospital of
Würzburg, Germany, and housed under standard conditions (55 ± 5%
humidity, 21 ± 1 C, 12:12-h light:dark cycle) with access to food and
water ad libitum. VGlut2-IRES-Cre knock-in mice65 (stock no. 208863),
as well as Thy1-YFP mice63 (stock no. 003782), were obtained from
Jackson Laboratory. Additionally, we used wild-type mice with the
genetic background C57BL/6J (Charles River, CRL:027). Only male
mice at ages between 4 and 8 months were used.

Surgeries
The surgeries for mice in mScarlet in PAG were conducted as follows:
Male VGlut2-IRES-Cre knock-in mice were injected at the age of
4 months, and adeno-associated virus (AAV) was used as vectors to
deliver genetic material into the brain. AAV vectors encoding Cre-
dependently for the inhibitory opsin eOPN366 were injected into the

periaqueductal gray (PAG) bilaterally. The construct EF1α-DIO-eOPN3-
ts-mScarlet-ER was kindly provided by Simon Wiegert, Center for
Molecular Neurobiology Hamburg, Germany. Respective AAV vectors
were produced in house (AAV2/5 capsid). For stereotactic surgeries,
animals were prepared with an administration of Buprenorphin
(Buprenorvet, Bayer). Mice were deeply anesthetized with 4–5% iso-
flurane/O2 (Anesthetic Vaporizer, Harvard Apparatus). Animals were
fixed into the stereotactic frame (Kopf, Model 1900), and anesthesia
was maintained with 1.5–2% isoflurane/O2. Subcutaneous injection of
Ropivacaine (Naropin Aspen) was used for local analgesia before
opening the scalp. Craniotomies were performed at bregma coordi-
nates AP −4.5mm,ML ±0.6mm. A glass pipette (Drummond Scientific)
was filled with the viral vector and lowered to the target depth of
−2.9mmfrombregma. A volumeof 100nl was injectedwith a pressure
injector (NPI electronic). After injection, the pipette was held in place
for 8min before retracting. Thewoundwas closed, and the animal was
treated with a subcutaneous injection of Metacam (Metacam, Boeh-
ringer Ingelheim) for post-surgery analgesia. After 6 weeks of expres-
sion time, animals were perfused, and brain tissue was dissected for
further analysis.

Sample preparation
Following intraperitoneal injection (for YFP in CTX and GFAP in HC):
12μl/g bodyweight of a mixture of ketamine (100 mg/kg; Ursotamin,
Serumwerk) and xylazine (16 mg/kg; cp-Pharma, Xylavet, Burgdorf,
Germany); for mScarlet in PAG: urethane (2g/kg; Sigma-Aldrich) at a
volume of 200μl diluted in 0.9% sterile sodium chloride solution), the
depth of the anesthesia was assessed for eachmouse by testing the tail
and the hind limb pedal reflexes. Upon absence of both reflexes, mice
were transcardially perfused using phosphate-buffered saline (PBS)
with (for YFP in CTX andGFAP in HC) or without (mScarlet in PAG) 0.4%
heparin (Heparin-Natrium-25000, ratiopharm), and subsequently a 4%
paraformaldehyde solution in PBS for fixation. After dissection, brains
were kept in 4% paraformaldehyde solution in PBS for another 2 h (for
YFP in CTX and GFAP in HC) or overnight (formScarlet in PAG) at 4 °C.
Brains were then washed twice with PBS and stored at 4 °C until sec-
tioning. For cutting, brains were embedded in 6% agarose in PBS, and a
vibratome (Leica VT1200) was used to cut 40μm (for YFP in CTX and
GFAP in HC) or 60μm (for mScarlet in PAG) coronal sections. Immu-
nohistochemistry was performed in 24-well plates with up to three
free-floating sections per well in 400μl solution and under constant
shaking.

For YFP in CTX and GFAP in HC: brain sections were incubated for
1 h at room temperature in 100mMTris-buffered glycine solution (pH
7.4). Slices were then incubated with blocking solution (10% horse
serum, 0.3% Triton X100, 0.1% Tween 20, in PBS) for 1 h at room
temperature. Subsequently, sections were labeled with primary anti-
bodies at the indicated dilutions in blocking solution for 48 h at 4 °C
(rabbit anti-GFAP, Acris, DP014, 1:200; chicken anti-GFP, Abcam,
Ab13970, 1:1000). Primary antibody solutions were washed off thrice
withwashing solution (0.1% TritonX100 and0.1% Tween 20 solution in
PBS) for 10min each. Sections were then incubated with fluorescently
labeled secondary antibodies at 0.5 μg/ml in blocking solution for 1.5 h
at room temperature (goat anti-chicken Alexa-488 conjugated, Invi-
trogen; donkey anti-rabbit Cy3 conjugated, Jackson ImmunoR-
esearch). Finally, sections were incubated again twice for 10min with
the washing solution and once with PBS at room temperature, prior to
embedding in Aqua-Poly/Mount (Polysciences).

For mScarlet in PAG: brain sections were incubated in blocking
solution (10% donkey serum, 0.3% Triton X100, 0.1% Tween in 1x TBS)
for 2 h at room temperature. For labeling, sections were incubated for
2 days at 4 °C with rabbit anti-RFP (Biomol, 600-401-379, 1:1000) in
10% blocking solution in 1X TBS-T. Sections were washed thrice with
washing solution for 10min each and then incubated with the fluor-
escently labeled secondary antibody at 0.5μg/ml (donkey anti-rabbit
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Cy3, Jackson ImmunoResearch). Following a single wash with 1x TBS-T
for 20min at room temperature, sections were incubated with DAPI
(Roth, 6335.1, 1:5000) in TBS-T for 5min and eventually washed twice
with 1x TBS-T. The labeled sections were embedded in an embedding
medium (2.4 gMowiol, 6 gGlycerol, 6ml ddH2O, diluted in 12ml 0.2M
Tris at pH 8.5).

Image acquisition, processing, and manual analysis
Image acquisition formScarlet in PAG, YFP in CTX, and GFAP in HCwas
performed using a Zeiss Axio Zoom.V16 microscope, equipped with a
Zeiss HXP 200C light source, an Axiocam 506 mono camera, and an
APO Z 1.5x/0.37 FWD 30mm objective. Images covering
743.7 × 596.7μm of the corresponding brain regions at a resolution of
3.7 px/μm were acquired as 8-bit images. To foster manual ROI anno-
tation, these raw 8-bit images were enhanced for brightness and con-
trast using the automatic brightness and contrast enhancer
implemented in Fiji67. The corresponding image features of interest
were manually annotated by Ph.D.-level neuroscientists.

Statistics and reproducibility
To evaluate the predictive performance of deepflash2 and the
benchmark tools, we used the train-test split from Segebarth et al.11

for the PV in HC and cFOS in HC datasets. Here, we removed one
image (id 1608) from each test set to ensure a balanced evaluation
with eight test images across all five fluorescent datasets in this
study. The datasetsmScarlet in PAG, YFP in CTX, andGFAP in HCwere
randomly split into 12 images used for training and eight images
used for evaluation. The challenge datasets were randomly split into
80% train and 20% test data, resulting in 196 training and 49 test
images for the gleason dataset and 190 training and 48 test images
for the conic dataset. For themonuseg dataset, we used the provided
train-test split from the challenge, comprising 30 training and 15 test
images.

All computational experiments were independently repeated
three times with similar results.

No statistical method was used to predetermine the sample size.
The experts were not blinded during the image annotation process;
however, they did not receive information on the annotations of the
other experts.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data and trained DL models generated in this study have been
deposited on Zenodo68. The train and test data for cFOS in HC can also
be downloaded from Dryad59. The external challenge data is available
at the challenge websites for gleason23,69, monuseg22,70, and
conic24,71. Source data are provided with this paper.

Code availability
The source code is publicly available on GitHub72. The repository also
contains Jupyter notebooks with instructions to easily reproduce the
paper’s analyses and benchmark methods on Google Colab. Addi-
tionally, the documentation73 provides walk-through tutorials and
videos for using the GUI as well as information on the deepflash2
Python API.

References
1. Meijering, E. Abird’s-eye viewof deep learning inbioimageanalysis.

Comput. Struct. Biotechnol. J. 18, 2312 (2020).
2. Falk, T. et al. U-Net: deep learning for cell counting, detection, and

morphometry. Nat. Methods 16, 67–70 (2019).

3. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional net-
works for biomedical image segmentation. Med. Image Comput.
Comput. Assist. Interv. 9351, 234–241 (2015).

4. Haberl, M. G. et al. Cdeep3m-plug-and-play cloud-based deep
learning for image segmentation. Nat. Methods 15, 677–680
(2018).

5. Berg, S. et al. Ilastik: interactive machine learning for (bio) image
analysis. Nat. Methods 16, 1226–1232 (2019).

6. von Chamier, L. et al. Democratising deep learning for microscopy
with ZeroCostDL4Mic. Nat. Commun. 12, 1–18 (2021).

7. Bannon, D. et al. Deepcell kiosk: scaling deep learning–enabled
cellular image analysis with Kubernetes. Nat. Methods 18, 43–45
(2021).

8. Isensee, F., Jaeger, P. F., Kohl, SimonA. A., Petersen, J. &Maier-Hein,
K. H. nnU-Net: a self-configuring method for deep learning-based
biomedical image segmentation. Nat. Methods 18, 203–211 (2021).

9. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a
generalist algorithm for cellular segmentation. Nat. Methods 18,
100–106 (2021).

10. Lucas, A. M. et al. Open-source deep-learning software for bio-
image segmentation. Mol. Biol. Cell 32, 823–829 (2021).

11. Segebarth, D. et al. On the objectivity, reliability, and validity of
deep learning enabled bioimage analyses. eLife 9, e59780 (2020).

12. Niedworok, C. J. et al. AMAP is a validated pipeline for registration
and segmentation of high-resolution mouse brain data. Nat. Com-
mun. 7, 1–9 (2016).

13. Ribeiro, M. T., Singh, S. & Guestrin, C. Why should I trust you?
Explaining the predictions of any classifier. In Proc. 22nd ACM
SIGKDD International Conference on KnowledgeDiscovery andData
Mining, 1135–1144 (ACM, 2016).

14. Warfield, S. K., Zou, K. H. & Wells, W. M. Simultaneous truth and
performance level estimation (staple): an algorithm for the valida-
tion of image segmentation. IEEE Trans. Med. Imaging 23, 903–921
(2004).

15. Kohl, S. et al. A probabilistic U-Net for segmentation of ambiguous
images. Adv. Neural Inf. Process. Syst. 31, 6965–6975 (2018).

16. Ji, W. et al. Learning calibrated medical image segmentation via
multi-rater agreement modeling. In Proc. IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 12341–12351
(CVPR, 2021).

17. Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable
predictive uncertainty estimation using deep ensembles. Adv.
Neural Inf. Process. Syst. 30, 6402–6413 (2017).

18. Otsu, N. A threshold selection method from gray-level histograms.
IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).

19. He, K., Gkioxari, G., Dollár, P. & Girshick, R. B. Mask R-CNN. In Proc.
IEEE InternationalConferenceonComputer Vision, 2980–2988 (IEEE
Computer Society, 2017).

20. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection
with star-convex polygons. Med. Image Comput. Comput. Assist.
Interv. 11071, 265–273 (2018).

21. Gal, Y., Islam, R. & Ghahramani, Z. Deep Bayesian active learning
with image data. PMLR 70, 1183–1192 (2017).

22. Nir, G. et al. Automatic grading of prostate cancer in digitized his-
topathology images: learning from multiple experts. Med. Image
Anal. 50, 167–180 (2018).

23. Kumar, N. et al. A multi-organ nucleus segmentation challenge.
IEEE Trans. Med. Imaging 39, 1380–1391 (2019).

24. Graham, S. et al. Lizard: a large-scale dataset for colonic nuclear
instance segmentation and classification. In Proc. IEEE/CVF Inter-
national Conference on Computer Vision, 684–693 (ICCVW, 2021).

25. Laine, R. F., Arganda-Carreras, I., Henriques, R. & Jacquemet, G.
Avoiding a replication crisis in deep-learning-based bioimage ana-
lysis. Nat. Methods 18, 1136–1144 (2021).

Article https://doi.org/10.1038/s41467-023-36960-9

Nature Communications |         (2023) 14:1679 12



26. Cleveland, W. S. & McGill, R. Graphical perception and graphical
methods for analyzing scientific data. Science 229, 828–833
(1985).

27. Rädsch, T. et al. Labeling instructions matter in biomedical image
analysis. Nat. Mach. Intell. 5, 273–283 (2023).

28. Yakubovskiy, P. Segmentation models pytorch. GitHub reposi-
tory https://github.com/qubvel/segmentation_models.pytorch
(2020).

29. HuBMAP Consortium. Competition results: Hubmap—hacking the
kidney. GitHub Pages https://hubmapconsortium.github.io/ccf/
pages/kaggle.html (2021).

30. Wightman, R. Pytorch image models. GitHub repository https://
github.com/rwightman/pytorch-image-models (2019).

31. Liu, Z. et al. A ConvNet for the 2020s. In Proc. IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 11976–11986
(IEEE, 2022).

32. Ouyang, W. et al. Bioimage model zoo: a community-driven
resource for accessible deep learning in bioimage analysis. Preprint
at bioRxiv https://doi.org/10.1101/2022.06.07.495102 (2022).

33. Lowekamp, BradleyChristopher, Chen, D. T., Ibáñez, L. & Blezek, D.
The design of SimpleITK. Front. Neuroinform. 7, 45 (2013).

34. Paszke, A. et al. Pytorch: an imperative style, high-performance
deep learning library. Adv. Neural Inf. Process. Syst.32, 8024–8035
(2019).

35. Howard, J. & Gugger, S. Fastai: a layered API for deep learning.
Information 11, 108 (2020).

36. Buslaev, A. et al. Albumentations: fast and flexible image aug-
mentations. Information 11, 125 (2020).

37. Mariscal, EstibalizG. ómez-de et al. DeepImageJ: a user-friendly
environment to run deep learning models in ImageJ. Nat. Methods
18, 1192–1195 (2021).

38. Perkel, J. M.Why Jupyter is data scientists’ computational notebook
of choice. Nature 563, 145–147 (2018).

39. Kluyver, T. et al. Jupyter notebooks—a publishing format for
reproducible computational workflows. (eds. Loizides, F. & Scmidt,
B) Positioning and Power in Academic Publishing: Players, Agents
and Agendas, 87–90 (IOS Press, 2016).

40. Biewald, L. Experiment tracking with weights and biases, https://
www.wandb.com/ (2020).

41. Kingma, D. P. &Ba, J. Adam: amethod for stochastic optimization. In
Conference Track Proceedings 3rd International Conference on
Learning Representations, ICLR https://dblp.org/rec/journals/corr/
KingmaB14.html?view=bibtex (2015).

42. Deng, J. et al. ImageNet: a large-scale hierarchical image database.
In Proc. Conference on Computer Vision and Pattern Recognition,
248–255 (IEEE Computer Society, 2009).

43. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers:
surpassinghuman-level performanceon ImageNet classification. In
Proc. International Conference on Computer Vision, 1026–1034
(IEEE Computer Society, 2015).

44. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S. & Pal, C. The
importance of skip connections in biomedical image segmentation.
In Proc. International Workshop on Deep Learning in Medical Image
Analysis, 179–187 (DLMIA, 2016).

45. Smith, L. N. A disciplined approach to neural network hyper-para-
meters: Part 1—learning rate, batch size, momentum, and weight
decay. Preprint at https://arxiv.org/abs/1803.09820 (2018).

46. Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N. & Liang, J. UNet++: A
nested U-Net architecture for medical image segmentation. Deep
Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support
11045, 3–11 (2018).

47. Chen, L. C., Zhu, Y., Papandreou,G., Schroff, F. &Adam,H. Encoder-
decoder with atrous separable convolution for semantic image
segmentation. In Proc. European Conference on Computer Vision
(ECCV) (eds. Ferrari, V. et al.) 833–851 (Springer, 2018).

48. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In Proc. 2016 IEEE Conference on Computer Vision and
Pattern Recognition, 770–778 (CVPR, 2016).

49. Tan, M. & Le, Q. V. EfficientNet: rethinking model scaling for con-
volutional neural networks. PMLR 97, 6105–6114 (2019).

50. Lin, T. -Y., Goyal, P., Girshick, R. B., He, K. & Dollár, P. Focal loss for
dense object detection. In Proc. IEEE International Conference on
Computer Vision, 2999–3007 (IEEE Computer Society, 2017).

51. Salehi, S. S. M., Erdogmus, D. & Gholipour, A. Tversky loss function
for image segmentation using 3D fully convolutional deep net-
works. MLMI 10541, 379–387 (2017).

52. Berman, M., Triki, A. R. & Blaschko, M. B. The Lovász-Softmax loss: a
tractable surrogate for the optimization of the intersection-over-
union measure in neural networks. In Proc. Conference on Com-
puter Vision and Pattern Recognition, 4413–4421 (Computer Vision
Foundation/IEEE Computer Society, 2018).

53. Der Kiureghian, A. & Ditlevsen, O. Aleatory or epistemic? Does it
matter? Struct. Saf. 31, 105–112 (2009).

54. Kwon, Y., Won, Joong-Ho, Kim, BeomJoon & Paik, MyungheeCho
Uncertainty quantification using Bayesian neural networks in clas-
sification: application to biomedical image segmentation. Comput.
Stat. Data Anal. 142, 106816 (2020).

55. Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation:
representing model uncertainty in deep learning. PMLR 48,
1050–1059. (2016).

56. Wang, G. et al. Aleatoric uncertainty estimation with test-time
augmentation for medical image segmentation with convolutional
neural networks. Neurocomputing 338, 34–45 (2019).

57. Lin, T. -Y. et al. Microsoft COCO: common objects in context. In
Proc. EuropeanConference onComputer Vision (eds. Fleet, D. et al.)
740–755 (Springer, 2014).

58. Hu, H., Gan, J. & Jonas, P. Fast-spiking, parvalbumin+ GABAergic
interneurons: from cellular design tomicrocircuit function. Science
345, 1255263 (2014).

59. Segebarth, D. et al. On the objectivity, reliability, and validity of
deep learning enabled bioimage analyses. Elife 9, e59780
(2020).

60. Ruediger, S. et al. Learning-related feedforward inhibitory con-
nectivity growth required for memory precision. Nature 473,
514–518 (2011).

61. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neu-
roscience. Nat. Neurosci. 18, 1213–1225 (2015).

62. Rost, B. R., Schneider-Warme, F., Schmitz, D. & Hegemann, P.
Optogenetic tools for subcellular applications in neuroscience.
Neuron 96, 572–603 (2017).

63. Feng, G. et al. Imaging neuronal subsets in transgenic mice expres-
sing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

64. Bushong, E. A., Martone, M. E., Jones, Y. Z. & Ellisman, M. H. Pro-
toplasmic astrocytes in CA1 stratum radiatum occupy separate
anatomical domains. J. Neurosci. 22, 183–192 (2002).

65. Vong, L. et al. Leptin action onGABAergic neurons prevents obesity
and reduces inhibitory tone to POMC neurons. Neuron 71,
142–154 (2011).

66. Mahn, M. et al. Efficient optogenetic silencing of neurotransmitter
release with a mosquito rhodopsin. Neuron 109, 1621–1635
(2021).

67. Schindelin, J. et al. Fiji: an open-source platform for biological-
image analysis. Nat. Methods 9, 676–682 (2012).

68. Griebel, M. et al. Deep learning-enabled segmentation of ambig-
uous bioimages with deepflash2. Zenodo https://doi.org/10.5281/
zenodo.7653312 (2023).

69. Walker, D. Gleason 2019 challenge. Grand Challenge https://
gleason2019.grand-challenge.org/ (2019).

70. Kumar, N., Verma, R., Anand, D. & Sethi, A.Monuseg 2018 challenge.
Grand Challenge https://monuseg.grand-challenge.org/ (2018).

Article https://doi.org/10.1038/s41467-023-36960-9

Nature Communications |         (2023) 14:1679 13

https://github.com/qubvel/segmentation_models.pytorch
https://hubmapconsortium.github.io/ccf/pages/kaggle.html
https://hubmapconsortium.github.io/ccf/pages/kaggle.html
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.1101/2022.06.07.495102
https://www.wandb.com/
https://www.wandb.com/
https://dblp.org/rec/journals/corr/KingmaB14.html?view=bibtex
https://dblp.org/rec/journals/corr/KingmaB14.html?view=bibtex
https://arxiv.org/abs/1803.09820
https://doi.org/10.5281/zenodo.7653312
https://doi.org/10.5281/zenodo.7653312
https://gleason2019.grand-challenge.org/
https://gleason2019.grand-challenge.org/
https://monuseg.grand-challenge.org/


71. Graham, S. et al. Conic 2018 challenge. Grand Challenge https://
conic-challenge.grand-challenge.org/ (2021).

72. Griebel, M. deepflash2 code repository. GitHub https://github.
com/matjesg/deepflash2 (2022).

73. Griebel, M. deepflash2 documentation. GitHub Pages https://
matjesg.github.io/deepflash2 (2022).

Acknowledgements
We thank Toni Greif and Kai Günder for critically reviewing the mathe-
matical content. We thank Annemarie Schulte for her valuable deep-
flash2 user feedback. We thank Friederike Griebel for the design of the
deepflash2 logo. The research of R.B. was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) project-
ID 424778381-TRR 295 and 426503586-KFO5001. The research of P.T. is
supported by the Deutsche Forschungsgemeinschaft through Heisen-
berg professorship and project funds (TO 1124/1,2,3), TRR 295
(424778381), and a NARSAD Young Investigator Grant of the Brain and
Behavior Foundation. This publication was supported by the Open
Access Publication Fund of the University of Wuerzburg.

Author contributions
M.G., D.S., N.St., R.B., and C.M.F. conceptualized this study. M.G.
designedand implemented thedeepflash2PythonAPI andGUI,wrote the
documentation, implemented testing and continuous integration, exe-
cuted the computational experiments, and prepared all figures. M.G.,
D.S., N.St., and C.M.F. selected and designed the computational experi-
ments. M.G., N.St., and C.M.F. formalized the uncertainties. D.S., N.Sc.,
R.B., and P.T. created the neurobiological datasets and did the animal
experimentation. D.S., N.Sc., and R.B. did the brain slice IHC and anno-
tated thebioimages.D.S. andN.Sc. performedconfocal/lightmicroscopy
to generate the image data. M.G., D.S., and N.St. wrote the original
manuscript. R.B. and C.M.F. reviewed and edited the manuscript. N.Sc.
andP.T. reviewedandcontributed to the improvement of themanuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-36960-9.

Correspondence and requests for materials should be addressed to
Matthias Griebel or Christoph M. Flath.

Peer review information Nature Communications thanks Klaus Maier-
Hein and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-36960-9

Nature Communications |         (2023) 14:1679 14

https://conic-challenge.grand-challenge.org/
https://conic-challenge.grand-challenge.org/
https://github.com/matjesg/deepflash2
https://github.com/matjesg/deepflash2
https://matjesg.github.io/deepflash2
https://matjesg.github.io/deepflash2
https://doi.org/10.1038/s41467-023-36960-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Deep learning-enabled segmentation of ambiguous bioimages with deepflash2
	Results
	Training and evaluation of DL model ensembles
	Application and quality assurance
	Evaluation in the biomedical imaging wild

	Discussion
	Methods
	Ethical statement
	Implementation details
	Ground truth estimation
	Training procedure
	Default settings and customization options
	Semantic segmentation
	Uncertainty quantification
	Instance segmentation
	Evaluation metrics
	Quality assurance
	Evaluation datasets
	Challenge datasets
	Performance benchmarks
	Experimental animals
	Surgeries
	Sample preparation
	Image acquisition, processing, and manual analysis
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




